
1

2

Resume

3

x

4

وتقدير شكر

مخلوق أشرف على والسلام والصلاة منتهاه الحمد يبلغ حتى كثيرا حمدا لله الحمد

الله أناره واصطفاه. بنوره

والتقدير الشكر بخالص نتقدم الله يشكر لم الناس يشكر لم من باب من وإنطلاقا

نتقدم كما , يوما علينا بها يبخل لم التي وتوجيهاته إرشاداته على عيسى فلاح للأستاذ

. بعيد او قريب من العمل هذا في رافقتنا يد كل الى الشكر بجزيل

منهم أخذنا و ايديهم على تتلمذنا الذين الأساتذة جميع نشكر أن ننسى لا كما

اللكثير.

وتقدير شكر

5

إهداء

البحث. هذا لإتمام لي عونه و منه على تعالى الله أحمد

: الى البحث هذا أهدي

قدميها، تحت -الجنة وتعالى سبحانه - المولى وضع من نفسيو على لها ِّض ف أأ من إلى

في وفلاحي سعادتي سبب وجوده من إلى و الغالية أمي العزيز كتابه في رها ّق ووق

و سراء في معي كانو الذين اخوتي وإلى الحميد, عبد خيال الحبيب أبي والأخرة الدنيا

الأحباء. عائلتي أفراد ننسى ولا كما خ, خيال و البشير محمد خيال ضراء

حمادي أسامة, أحمد ,حكوم إلياس عفان سندا لي كانو الذين أصدقائي إلى و

اصدقاء. وباقي ياض ر ميلس و حسين صدام بلقاسمي , جلالي

مع وتقبلهم رميهم وسدد اسرهم فك الجريحة”اللهم فلسطين في في اخوتنا والى

الصالححين“

الرحمان عبد
إهداء

6

هذا في وضعي على فِله يل جز و بعظمته يليق مباركا طيبّا كثيرا حمدا الله الحمد

البحث, لهذا وتوفيقي يق الطر

والآخرة. الأولى في الفِل لك اللهم مسعانا, في علينا أنعم ما على نشكره

: إلى العمل هذا أهدي , بعد اما

و رأسي به أرفع الذي إلى , أجلي من المستحيلات قهر و الصعوبات كابد من كل

صلى محمد سيدنا و نبينا بها أوصى من إلى و , عامر بن حكوم أبيالعزيز أفتخر به

. الغالية أمي ثلاثا سلم و عليه الله

. حياتي في لي سندا كن اللاتي أخواتي إلى

عبد الحاكم ,عبد إلياس عفان , الرحمان عبد خيال رفيقي أولهم و أصدقائي إلى

. الاصدقاء باقي , الرحمان عبد مسعودي , ياض ر ميلس , الجليل

ينصرهم وأن عنهم، الحصار يفك أن الله ونسأل فلسطين. في الجرحى أشقائنا إلى

ان قريبا فرجا يرزقهم و صبرا عليهم يفرغ و موتاهم يرحم وأن وعدوهم. عدونا على

. الله شاء
أسامة أحمد

Table of abreviations

7

Table of abreviations

A: B:

AI : Artificial Intelligence BERT : Bidirectional Encoder
API : Application Programming Interface Representations from Transformers
Adam : Adaptive Moment Estimation BN: Batch Normalization

C: D:
CNN : Convolutional Neural Network DP: Dropout
CVS : Comma Separated Value DL : Deep Learning

G: K:

GLUE : General Language KNN: K-Nearest Neighbor
Understanding Evaluation

L: M:

LLM : Large Language Model ML : Machine Learning
MLM : Masked laguage Modeling

N: R:

NLP : Natual Language Processing ReLU : Rectified Linear Unit
NER : Named Entity Recognition

S:
SVM: Support Vector Machine

Table of abreviations

8

Table of content
الملخص ..2

وتقدير شكر ...4

إهداء ...5
Table of abreviation.. 7
Table of content:...8
Introduction:...11
Chapter 2 : Background ... 14
2.1 introduction ...14
2.2 Spam Detection : ...14
2.2.1 Why is it a problem? .. 15

2.3 AI and Bert ...15
2.3.1. AI .. 15
2.3.2 Machine learning .. 16
2.3.3 Deep learning ..16
2.3.4 LLM (Large language models) .. 16
2.3.5 BERT... 17

2.4 Related work ... 22
2.5 Conclusion ... 24

Chapter 3 : Approach ...26
3.1. Introduction ... 26
3.2. Preprocessing: .. 26
3.3. Model selection: ..29
3.3.1 BERT... 29
3.3.2 DistilBERT: ..32
3.3.3 Training ..36

3.4.Conclusion ...40
Chapter 4 : Experimentation ..42
4.1 Introdcution .. 42
4.2 Description .. 42
4.3 Datasets .. 42
4.4 Tools and libraries ...43
4.5 Metrics of evaluations ... 44
4.6 Results .. 45
4.6.1 Dataset visualization ...46
4.6.2 BERT... 46
4.6.3 DistilBERT...50

4.7 Discussion ... 55
4.7.1 Overfitting anlysis .. 55

Table of abreviations

9

4.7.2 BERT base model ...58
4.7.3 DistilBERT model .. 61

4.8 Deployment: ..65
4.8.1 Standalone Web Application: ... 65
4.8.2 API ... 70

4.9 Conclusion ...72
chapter 5 : Future work and Conclusion ... 74
References ...75

10

Chapter One
Introduction

Chapter 1: Introduction

11

Chapter 1: Introduction

1.1 PREAMBLE
In an era where digital communication is crucial, cyber security has emerged as a serious
concern. Email, being an irreplaceable communication channel, is one of the most
exploited vectors by cyber-attackers. Among the numerous challenges that troubles
email communication, spam stands out as a persistent and significant threat. Spam not
only suffocate users with unwanted messages but often serves as a conduit for malicious
activities, posing severe risks to both individuals and organizations.

Spam is unsolicited and irrelevant messages, and it is a pervasive issue. According to a
2023 report by Kaspersky [1], spam constituted nearly 45.6% of global email traffic,
highlighting the scale of the problem. The nature of spam emails varies widely, from
harmless advertisements to specially engineered phishing schemes designed to deceive
recipients into divulging sensitive information. The ubiquity and variety of spam
underscore the necessity for robust and effective spam detection mechanisms.

Over the years, various approaches have been developed to combat spam, ranging from
primitive keyword-based filters to sophisticated machine learning algorithms for instance
Gupta and Bakliwal et al[21] discussed machine learning techniques for spam detection
on SMS ,Thaer Sahmoud and Dr. Mohammad Mikki [26] implemented an effective high-
performance bert-based spam detector. A recent and notable advancement in this
domain is the introduction of Bidirectional Encoder Representations from Transformers
(BERT)[14]. Developed by Google, BERT represents a significant leap in the field of
natural language processing (NLP). As it excels at understanding the context of words
within a sentence, making it exceptionally effective for a wide array of NLP [7] tasks,
including spam detection.

While we are not the first to apply BERT to spam detection, our research aims to make
significant contributions to this evolving field. By leveraging BERT's powerful
contextual understanding, we seek to enhance the accuracy of spam detection systems.
Our objective is to provide a more refined and effective solution to the spam problem,
therefore improving the security and reliability of email communication.

1.2 PROBLEMATIC
Despite the advancements in spam detection technologies, spam remains an unsolved
hustle in email communication field. Existing solutions have yet to reach perfection, as
spammers continually evolve their techniques to bypass filters. This relentless evolution

Chapter 1: Introduction

12

of spamming strategies necessitates ongoing innovation and improvement in spam
detection methodologies.

1.3 OBJECTIVES
1. Develop a BERT-based spam detection system: Utilize BERT's contextual
understanding to identify and filter spam emails more accurately.

2. Experiment with various configurations: test different configurations and training
strategies to optimize BERT for spam detection.

3. Integrate the model in a web application: offer the capabilities of the model to the
end-user to test suspicious email content.

4. Create a practical API: implement the developed system into an accessible API for
real-world application and evaluation.

5. Contribute new insights: offer innovative experimental enhancements to the field of
spam detection.

1.4 STRUCTURE OF THE MANUSCRIPT
Chapter 1 Background: This chapter will provide a comprehensive review of existing
spam detection techniques, covering both traditional methods and modern machine
learning approaches. Setting the stage for the proposed BERT-based approach.

Chapter 2 Approach: This chapter will delve into the details of the proposed spam
detection technique using BERT. It will outline the data preprocessing steps undertaken
to prepare the data for model training. Then we discuss the model selection and the
proposed model architecture and other hyperparameter value selection.

Chapter 3 Experimentation: This chapter will focus on the experimental setup and
evaluation of the proposed BERT-based spam detection system. It will describe the
evaluation metrics used, such as precision, recall, and F1-score.and compare the
obtained results to related work in the same context (datasets) .Finally, will cover the
integration of the developed spam detection model into a web application and the
creation of a practical API. It will describe the design and implementation of the web
application, including user interfaces and functionalities.

Chapter 5 Conclusion and Future Work: The final chapter will summarize the
research contributions, findings, and limitations of the study. It will highlight the
significance of the proposed BERT-based approach and its potential impact on
improving spam detection accuracy. Additionally, this chapter will provide suggestions
and recommendations for future research directions, potentially exploring areas for
further refinement or expansion of the proposed technique.

13

Chapter Two
Background

Chapter 2 : Background

14

Chapter 2 : Background
2.1 Introduction :
In this chapter, we will discuss the concepts necessary for understanding the rest of our
work, in particular the notion of spam and AI tools for spam detection and finally
related work (in particular with Bert).

2.2 Spam Detection :
The term came from a sketch by the British comedy group Monty Python in which the
word "spam" was repeated constantly, similar to the repetitive nature of unsolicited
messages.
As for the context of emails, it generally represents unsolicited emails containing
commercial advertisements, “get rich fast” scams, or phishing content. Some feelings the
spammers exploit are: greed, trust, helpfulness, and impose or urgency [2]. The first
documented spam electronic mail (not yet known as email) was sent to several hundred
ARPANET users on May 3, 1978. It was an advertisement for a presentation by Digital
Equipment Corporation for their DECSYSTEM-20 products, sent by Gary Thuerk, one
of their marketers.

Figure 1.1 : First Spam email ever

Chapter 2 : Background

15

2.2.1 Why is it a problem?

Spam poses a substantial challenge in every aspect of digital communication due to its
capacity to spread malicious content, such as malware and deceptive hyperlinks. Email
traffic jams result in reduced efficiency and financial burdens. Cybercriminals leverage
spam as a means to execute fraudulent schemes, thereby aggravating financial damage
and weakening confidence in digital communications. This highlights the criticality of
implementing efficient spam mitigation and detection strategies.

Statistics :
According to kaspersky [1] lab In December 2023, 45.6% of all emails were spam,
scattered across different categories [3]:
 Marketing/Advertising : 36%
 Adult content : 31.7%
 Financial matters : 26.5%
 Others (fraud,scams,miscellaneous): 5.8%.

 94% of all malware is delivered by email
 The average cost of BEC exploits was $5.96 million in 2021.
 spam costs businesses $20.5 billion annually in decreased productivity.
 For every 12,500,000 emails sent, spammers receive one reply [4].

2.3 AI & Bert

2.3.1 AI
Advancements in big data, cloud computing, artificial neural networks, and machine
learning have enabled engineers to construct machines capable of replicating human
intelligence. Computers can utilize these technologies to achieve artificial intelligence
(AI), enabling them to detect, recognize, learn, respond to, and solve issues.
Undoubtedly, this intelligent technology will inevitably revolutionize the future work
environments. AI is currently considered by many as a driver that is important to the
fourth industrial revolution, and it may launch the fourth revolution in education. The
integration of AI into the school curriculum has already commenced. So artificial
intelligence (AI) is a dynamic discipline of computer science focused on constructing
machines that can execute operations previously needed by human intellect.

Chapter 2 : Background

16

2.3.2. Machine learning
Machine learning is a branch of artificial intelligence that relies on algorithms and
models that learn from a set of data until they are able to give predictions without the
need for clear programming, unlike previous systems that rely on previously defined
rules. Patterns and connections in machine learning algorithms are identified through
examples or experiments, which gives them the ability to adapt to new and unusual
circumstances. Machine learning has different types, including supervised, semi-
supervised, unsupervised, and reinforcement learning, in order to adapt to tasks and
different types of data. Features are essential for classification tasks, and algorithms are
trained to automatically extract and select features, which advances the classification
process, leads to technological breakthroughs and enables data-driven decision-making
and innovation.
2.3.3 Deep learning
Deep learning is a branch of machine learning that seeks to imitate human thinking
and behavior independently of any human intervention or support. It employs multi-
layer neural networks, which are done by automatically extracting features via
architectural sculpting using hyperparameters. With the rapid development and greater
availability of large datasets, deep learning techniques provide more relevant results
compared to traditional machine learning methods. Deep learning provides a great
ability to model and understand complex patterns in data, which gives more accurate
predictions and automates activities such as natural language processing, autonomous
systems, and recognition. sound or images, and this is what made it a cornerstone of
contemporary artificial intelligence.
2.3.4 - LLM (Large language models)
A large language model (LLM) is a type of artificial intelligence (AI) program that can
recognize and generate text, among other tasks. LLMs are trained on huge sets of data,
hence the name "large." LLMs are built on machine learning: specifically, a type of
neural network called a transformer model. [5].

Figure 1.2: components of AI ,with adaptation by [6]

Chapter 2 : Background

17

2.3.5 - BERT

2.3.5.1 - Natural Language Processing (NLP)

NLP or Natural Language Processing, is a discipline that focuses on the understanding,
manipulation, and generation of natural language by machines. Thus, NLP is really at
the interface between computer science and linguistics. It is about the ability of the
machine to interact directly with humans [7].

2.3.5.2 - Neural network

A neural network is a computer model that draws inspiration from the structure and
functioning of the human brain. It is composed of linked layers of nodes, also known as
neurons. Every individual neuron in the network receives input data and performs
computations on it, transmitting the outcome to the subsequent layer. This process
enables the network to acquire knowledge about patterns and generate anticipations. A
neural network consists of an input layer of neurons (or nodes, units), one or two (or
even three) hidden layers of neurons, and a final layer of output neurons. Figure (1.3)
shows a typical architecture, where lines connecting neurons are also shown. Each
connection is associated with a numeric value called a weight, which determines the
strength of the signal between neurons. Additionally, each neuron has a bias, a numeric
value that is added to the input of the neuron before applying the activation function.
Weights and biases are adjustable parameters that the network learns during the
training process to minimize error and improve accuracy. [8]

Figure 1.3 : a simple neural network

Chapter 2 : Background

18

2.3.5.3 - Transformers
Transformers are a type of deep learning model [9]. They have revolutionized Natural
Language Processing (NLP) by enabling models to process text more efficiently and
effectively than previous architectures. Transformers have a simpler architecture
without having any convolutional or recurrent layers. Transformer models outperformed
the current models with less training cost. Many transformers based models have been
invented :K-BERT [10], XLNet[11].

A. Self-attention
Self-attention is the mechanism used to determine the interdependence of tokens in the
given input sequence. Self-attention encodes a token by taking information from other
tokens. It consists of three weight matrices query, key, and value vectors learned during
the training process. Multiheaded self-attention is the extension of self-attention,
consisting of multiple sets of the query, key, and value vectors built into transformers .
However, this entire process will be managed by the transformers library .
B. Parameters and hyper-parameters

Parameters are the intrinsic variables of a machine learning model that are learnt from
the training data. These settings are modified throughout the training phase to reduce
the error and increase the model's performance.
Hyperparameters are the external settings established before the training process starts.
Unlike parameters, hyperparameters are not learnt from the data but are given by the
user to influence the learning process.

C. Activation functions
Activation functions help determine the neural network's output with the help of some
non-linear function to the corresponding output of neurons.
ReLU:
The rectified linear activation function, often referred to as ReLU, is a linear function
that outputs the input directly if it is positive, and zero otherwise.

� � = ��� (0, �)
Softmax:
The softmax is a function fits perfectly well in the final layer of a neural network model
that is designed for a classification problem. It serves to transform raw output scores
into probabilities. This process means that the obtained values range within 0 < P < 1
and their sum totals 1, which makes them easily comprehendable probabilities.

Chapter 2 : Background

19

D. Loss Function
Cross-entropy loss quantifies of how wrong the model is. It increases when the predicted
probability departs from the true label. So predicting 0.012 when the true label is 1
would be undesirable and result in a high loss value. An ideal model should resulting to
have a log loss of 0.

E. adam optimizer
The Adam optimizer is a widely utilized technique for training deep learning models.
Adam employs adaptive learning rates for individual parameters and integrates
momentum by keeping an exponentially declining average of previous gradients. As a
consequence, this leads to effective and resilient training, rendering it extensively
utilized in diverse machine learning and deep learning applications.

F. attention head
An attention head is a component of the multi-head attention mechanism within the
Transformer architecture. Each attention head independently computes a weighted sum
of input values (using a set of learned weights), which allows the model to focus on
different parts of the input sequence. By using multiple attention heads, BERT can
capture various aspects of the relationships between words, leading to a more
comprehensive understanding of the context and meaning in natural language processing
tasks.[9]

2.2.5.4 BERT Architecture:
One of the most popular transformer-based models, is an encoder stack of transformer
structure and applies the bidirectional training of transformers to language modeling [12].
BERT designs include significant feedforward networks and attention heads. It takes a
classification token (CLS) and a word sequence as input. Each layer uses self-attention
and passes the result through a feedforward network to the next encoder.

Figure 1.4 : The overall structure of the BERT model adapted from [13]

Chapter 2 : Background

20

The BERT architecture is based on the multilayer bidirectional transformer described in
[12]. The authors trained two versions of the neural network a standard one with 12
layers and 768 coordinates in the view (110 million trained parameters in total) and a
large one with 24 layers and 1024 coordinates (340 million parameters). BERT uses text
embeddings described in 2016 to represent an input sequence

BERT was tested on several standard datasets to compare its performance with other
published models. So, on the GLUE test (General Language Understanding Evaluation) ,
a set of tasks and datasets that test natural language comprehension), the BERT-based
model showed an average superiority of 4.5% and 7% (for standard and large neural
networks, respectively) compared to the best-known models. [12]

A.Encoder
The basic BERT model contains an encoder with 12 transformer blocks, 12 attention
areas, and a textual representation dimension of 768. The model receives a text sequence
of no more than 512 tokens as input and outputs its vector representation. The sequence
can contain one or two parts, devided by a special token , each of which necessarily
begins with the token and has a special classification representation [14].
B.Pre-training model
Pre-trained models revolutionized the field of natural language processing (NLP) by
being a building block for many language related tasks, BERT in particular has emerged
as a leader in this class due to his ability to capture bidirectional context from text data.
The process of creating a pre-trained model involves training a deep learning network on
huge datasets for any task, usually language understanding. For instance, BERT has
been trained on the whole English Wikipedia corpus and Book Corpus to finally yield a
model capable of understanding language context[12].

Figure 1.5: Difference between learning transfer and traditional ML, adapted from [15]

Chapter 2 : Background

21

Using a pre-trained model means knowledge gained from a task, like language
understanding, is used for other tasks (named-entity recognition (NER), sentiment
analysis, text classification, etc). In the case of spam detection, fine-tuning BERT on
labeled datasets of spam and ham messages allows the model to adapt its pre-learned
knowledge to the detection task. This approach greatly reduces training time and
computational costs while improving results.

C. Training a pretrained

Masked language modeling

also known as the MLM , is widely used technique to train text oriented models and
consists of teaching a model to predict a word (token) in a text sequence, replaced by a
special token [MASK].During training, 15% of the tokens in each input sequence are
randomly selected . This technique is one of two BERT training tasks and is detailed in
[16].

Figure 1.6 : Masked language modeling [16]

the next sentence prediction

Next Sentence Prediction (NSP) [12] is to determine if the two sentences are contiguous
or not, or randomly selected. This task helps BERT in understanding the connection
that exists between the two sentences. In pre-training, BERT uses two sentences at a
time, where half of them are adjacent and the other half are two random sentences. The
input is represented by embeddings and special tokens are added.

Fine-tuning

Fine-tuning involves adjusting a pre-trained model's parameters to fit a specific task,
without using task-specific parameters initially. This method is used in models like
OpenAI GPT, where the model is pre-trained and then retrained by fine-tuning all
internal parameters. For BERT, the typical fine-tuning approach replaces the original
output layer with a task-specific layer or adjusts the entire model. This includes learning

Chapter 2 : Background

22

new output layer parameters and modifying all original weights, such as word
embeddings, Transformer blocks, and the pooler.[17]

2.3.5.5 DistilBERT

DistilBERT [18], is a distilled version of bert base . It uses knowledge distillation which
is a compression technique that trains small model to reproduce the behavior of a larger
model. The model has an architecture similar to the BERT base with 40% fewer
parameters. DistilBERT runs 60% faster than the BERT model by preserving over 97%
of BERT’s performances. A limited set of attention patterns may often be repeated
across different heads and cause the model to be over-parameterized. Distillation
removes such parameters and improves the model performance.

2.4 Related work
2.4.1 Rule based

uses predefined criteria to identify and filter out spam emails. Those criteria are based
on the common patterns, keywords and behaviors whose expressions contain, for
example, “free money” or “click here”, hyper usage of punctuation or/and suspicious
email headers.

2.4.2 Machine learning
Zamil et al.[19](2019) proposed a method for distinguishing between ham and spam
images using a combination of SVM and kNN, achieving an average accuracy of 97.27%
when K equals 20. next , Nithesh Reddy[20] (2021) introduced a new spam detection
method effective in distinguishing spam from its content, achieving an accuracy of 92%
on average.

2.4.3 Deep learning
In 2018, Gupta and Bakliwal et al[21] took two different dataset of SMS and applied
different machine leaning classifiers and both dataset’s results support CNN for giving
high accuracy. In their paper they discussed machine learning techniques for spam
detection on SMS. After evaluation of different algorithm, they found that
Convolutional Neural Network Classifier achieves the highest accuracy of 99.19% and
98.25% . Rodrigues and Fernandes et al(2022) [22] contributed their work for spam
detection. The primary focus of their work was to detect spam from tweets. After
extracting features from tweets, different classifiers were applied such as decision tree,
random forest, Naive Bayes and deep learning methods. They have also performed
sentiment analysis in tweets by using 1D convolutional neural network (CNN) model.
After analyzing all mention models, they came to know that deep learning model
(LSTM) has achieved hight accuracy (98.74%) out of all models.

Chapter 2 : Background

23

2.4.4 bert :

Jie[23] discussed the bilingual language multi-type spam detection model using M-BERT, which
used image-based spam detection and achieved an accuracy of about 96%. Lee's research [24]
using the proposed CATBERT model by collecting phishing emails. The BERT model was also
used for other applications like fake news detection, lie detector, sentiment analysis. Barsever
and Singh [25] proposed a model with the new generative adversarial network to detect lies. he
proposed a sentiment analysis algorithm based on BERT and Convolutional Neural Network
with an accuracy rate of 93.6% .Thaer Sahmoud, Dr. Mohammad Mikki [26] have implemented
an effective high performance spam detector that can detect spam emails or spam SMSs, they
have trained their model on Enron corpus, SpamAssassin corpus, Ling-Spam corpus and SMS
spam collection corpus, their spam detector performance was 98.62%, 97.83%, 99.13% and
99.28% respectively. C Oswald, SE Simon, A Bhattacharya [27] model ,DistilBERT+SVM
(Poly) obtained an accuracy of 98.07%(SMS Spam dataset). VS Tida, S Hsu [28] provided
different good results on various datasets. It can be helpful in the real-time scenario for spam
classification using BERT based on the combination of different datasets as an input to the
designed model. It achieved a 97% accuracy at a F1 score of 97%.

authors year Datasets accuracy F1-score

Jie [23] 2020 - Enron,
- SMS Spam
- TREC Spam Corpus
- Lingspam

96% Not mentioned

Barsever and Singh [25] 2020 private dataset 90.5% Not mentioned

Thaer Sahmoud,
Dr. Mohammad Mikki [26]

2022 -Enron
-SpamAssassin
-Ling-Spam
-SMS Spam

98.62%
97.83%
99.13%
99.28%

Not mentioned

C Oswald,
SE Simon,

A Bhattacharya [27]

2022 -Enron Spam Dataset
-SMS Spam
-SpamAssassin
-Ling-Spam Dataset

97.23%
98.07%
97.89%
98.45%

97%
97%
97%
98%

VS Tida, S Hsu [28] 2022 -SpamAssassin
-Enron
-Spam Text
-Ling-Spam Dataset

98%
97%
98%
98%

97%
97%
93%
94%

Table 1.1 : Related work

Chapter 2 : Background

24

2.5 conclusion:
In this chapter, we have explored the definition of spam, the role of Artificial
Intelligence (AI) in enhancing spam detection, and the advanced capabilities of the
BERT model in natural language processing. We reviewed the evolution of spam
detection methods from rule-based approaches to machine learning, deep learning, and
the state-of-the-art BERT-based techniques.

In the next chapter, we will delve into our approach and methodology for spam
detection using BERT. We will also discuss the experimentation process, including the
design, implementation, and evaluation of our model, to demonstrate its effectiveness
and accuracy in identifying and filtering spam.

25

Chapter Three
Approach

Chapter 3: Approach

26

Chapter 3: Approach

3.1 Introduction:
We have trained several BERT models using different BERT variants and architectures.
In pursuit of a high-performance model that would still be agile and scalable for our
real-time spam detection system, this chapter shall summarize the essential procedures
for attaining that objective. The following flowchart demonstrates the process.

Figure 2.1: Workflow Visualization

3.2 Preprocessing:

Like every machine learning model, preprocessing is a vital aspect since it may
considerably impact the performance of the model. In the first part of this chapter, we
will review the measures that were taken in depth and underline their relevance.

Chapter 3: Approach

27

Figure 2.2: Preprocessing workflow

3.2.1 Label unification and numerical representation:
The first step involved mapping different label categories to a unified set of categories,
ensuring consistency in labeling across datasets. Then we opted for a numerical
representation of the labels (0 for ham and 1 for spam). We decided to use numerical
labels because they offer compatibility with machine learning libraries, standardization
across all datasets, and an increase in the interpretability of the model, and they
facilitate debugging. Because of this, they are an option that is both practical and
reasonable for data labeling. Figure 2.3 highlights an example of label unification and
adapting numerical presentation.
Chapter 3: Approach

Figure 2.3: Example of Label Unification and Numerical Representation

easy_ham

Spam

Spam_2 (hard spam)

easy_ham_2

hard_ham

0 (ham)

1 (spam)

Chapter 3: Approach

28

3.2.2 Html and Coding Tag Removal:
Chapter 3: Approach

After that, we clean the content of the dataset from any html tags in it, such as (
,
<a>, etc.) and other coding tags, like (\n ,\t …). The goal of this step is to make the
model receive the data like an end user would; there are no html or coding tags in our
emails. This ensures integrity and helps the model recognize patterns in human readable
data.

Figure 2.4: Unprocessed email with leftover coding tags

Figure 2.5: Preprocessed email

3.2.3 Invalid rows:

After that, we checked every row of the datasets for invalid or empty values and
discarded them. This ensures data integrity and avoids the model being biased.

Chapter 3: Approach

29

3.2.4 Metadata removal

Finally, we removed the metadata header from email text, and we now have a clean,
ready-to-use dataset.

These steps prepare the data for use in our model and remove any irrelevant bits,
unwanted characters, and tags. In the upcoming chapter, we will look into the details of
model selection and architecture creation.

3.3 Model selection:

3.3.1 BERT

Choosing a suitable BERT variant for our project was a deep search in itself because of
the massive variety of variants, each with strong and weak traits.

Table 2.1: comparing BERT's characteristics with its variants adapted from [29]

The first model we picked was BERT-Base-768-uncased [30] due to its widespread usage
and popularity within the deep learning community and the fact that it is the building
block for numerous variants. This particular model consists of 12 stacks of encoders with
a hidden size of 768.

Chapter 3: Approach

30

Figure 2.7: BERT encoder stack architecture adapted from [31]

Figure 2.8: Taken from [26] with some changes

3.3.1.1 Final layer architecture:
No pre-trained model is good on its own. That’s why, according to the learning transfer
method, we should incorporate a fine-tuning method that specifies the model for the
task of spam detection. This process involves updating the parameters of the pre-trained
model, the final layer (classification layer), or both, making the model able to
distinguish between spam and ham email effectively.

But before we have to define what a final layer is, a final layer, or classification layer, is
a set of neural networks connected straight to the output of BERT’s model that does
the work of specialization for the task at hand. The number of layers and density of
each layer varies.

Chapter 3: Approach

31

Our final layer consists of five layers, as shown below, and we’ll discuss them layer by
layer.

Figure 2.10: Another representation of final layer architecture

Chapter 3: Approach

32

A. Dropout:
The dropout layer created by [32], is a regularization technique applied in deep learning
that sets the values of neurons to 0 based on a specified percentage chosen by the
developer so they can arbitrarily decide the rate at which neurons are excluded. For
instance, 0.2 means that 20% of neurons would be forgotten or dropped. As a result,
networks are better able to avoid learning unwanted aspects of data, like noise or
memorizing the training data, thus ending up with improved results.

Figure 2.11: Comparison between a standard neural network and after applying
dropout layers adopted from [32]

B. Dense Layer
Dense layers consist of fully connected neurons that establish connections with every
neuron in the preceding layer. These layers perform transformations followed by an
activation function (ReLU in this case) to capture complex patterns in the data.

We chose the hidden neural network sizes of 128, 64, and 32 because it was a good
starting point and yielded good results.

3.3.2 DistilBERT:
Every now and then, a new model is added to the BERT family, a bigger and heavier
model to improve performance (RoBERTa, for instance). But they are time-consuming
and computationally heavy. Sanh et al [18], researched how to improve these aspects of
BERT. The result was a distilled version of BERT called DistilBERT.

Chapter 3: Approach

33

Figure 2.12: Parameter counts of several pre-trained language models adopted from [18]

We chose the distilbert_en_uncased [33], by Tensorflow for the convenience of
implementation; this variation comes with 66 million parameters, a stack of 6
transformer encoders with a hidden layer of 786, and 12 attention heads.

We decided on this model because of the enormous savings in computing resources and
response times and the smaller memory footprint while maintaining high performance,
and it is the ideal model to utilize for experimenting and prototyping our spam
detection system. The following figure represents the difference in architecture between
BERT and DistilBERT.

Figure 2.13: The DistilBERT model architecture and components. Adopted from [34]

Chapter 3: Approach

34

3.3.2.1 Final layer architecture:
This part discusses the final layer of our second model, which is built using a deeper and
more robust network, this network aims to improve performance and provide
protections against overfitting. The figure below shows the architecture of the final layer.

Figure 2.14: DistilBERT final layer architecture

In this revised architecture, several enhancements were introduced to improve the neural
network’s performance and robustness. As a start, L2 regularization was applied to
every dense layer, followed by a batch normalization layer and a dropout.
We enlarged the hidden layer size as followed 512, 256, and 128 neurons, respectively,
and then the output layer with 1 neuron. This allows the model to capture more
complex patterns within the data.

Chapter 3: Approach

35

A. L2 regularization:
L2 regularization [35] (or weight decay) was introduced to all the dense
layers by adding a regulation term to the loss function. This discourages
large weights in the model, therefore promoting simpler and more
generalized solutions. By adding L2 regularization, we aim to mitigate
overfitting and improve the model's performance on unseen data. The
formulas below show L2 regularization in action.

Figure 2.15: L2 formula added to the loss fucntion

B. Batch normalization layer:
Following each dense layer, we added layers of batch normalization [36].
Throughout training, these layers change how each layer is activated within
small data batches. This change makes training faster and more stable.
Another problem the batch normalization tackles is internal covariate shift,
which could slow down deep neural network training. Overall, it enhances
performance and speeds up the convergence of the
model.

https://proceedings.mlr.press/v37/ioffe15.pdf
https://proceedings.mlr.press/v37/ioffe15.pdf

Chapter 3: Approach

36

3.3.3 Training
Introduction:
This section discusses the training of the models. This is a crucial stage at which the
fine-tuning of the pre-trained representations is done for better suitability to the task of
spam detection. We will talk about key points like freezing versus unfreezing of the pre-
trained model, hyperparameter tuning, and strategies for mitigating overfitting. Using
such methodologies for training, we aim to develop a model for spam detection that is
more effective and robust in its operation to help in continued efforts towards digital
security.
3.3.3.1 Freezing the pre-trained model;
1 Definition and purpose:

The pre-trained model is frozen when its weights are kept constant throughout the fine-
tuning stage. Freezing aims to preserve the knowledge the pre-trained model learned
during its first training. And contrary to freezing, unfreezing pre-trained model results
in all the weights changing in training.

Figure 2.17: Training phase in frozen vs unfrozen pre-trained model

Chapter 3: Approach

37

The table below shows key differences between the two approaches

Aspect Freezing Pre-trained Model Unfreezing Pre-trained Model

Training Speed
Faster training, as only the final
layer is trained

require more time for training
as both the pre-trained and
additional layers weights are
fine-tuned

Computational
Resources

Less computational resource are
needed

require more computational
resources due to training the
entire model

Overfitting
Reduced risk of overfitting on small
datasets

Increased risk of overfitting
due to huge number of
parameters

Stability more stable training process
training process may be less
stable due to larger parameter
space being fine-tuned

Performance
Potential

There is limited potential for
performance improvement compared to
fine-tuning the entire model

Potential for improved
performance by fine-tuning the
entire model

Transfer
Learning

Limited transferability of knowledge
to new tasks due to fixed pre-
trained weights

Potential for better transfer
learning to new tasks by fine-
tuning the entire model

Knowledge
forgetfulness

Demonstrates better resistance to
forgetting previously learned
features due to the preservation of
pre-trained layers

Exhibits higher susceptibility
to forgetting previously
learned features

Table 2.2: comparing key aspects of the frozen and unfrozen pre-trained model

Chapter 3: Approach

38

3.3.3.2 Approach selected:

We opted to freeze the pre-trained model for several reasons:

Limited labeled spam datasets
Insufficiently labeled datasets pose a challenge for training a model from scratch.

Complexity of the pre-trained model
LLMs like BERT can reach 340 million parameters making training all of them
costly.

Overfitting concerns with limited datasets
With limited labeled data, there's an increased risk of overfitting during model
training especially working with such a parameter count (i.e., BERT base 111
million parameters).

Preference for leveraging pre-trained knowledge to expedite training and
deployment.
Leveraging knowledge encoded in pre-trained models accelerates the model training
process

Reduction of training time and resource requirements
Freezing layers of the pre-trained model reduces the number of trainable parameters,
thereby decreasing computational resources and time required for training.

Rapidly evolving spam tactics
The dynamic nature of spam techniques needs models that can adapt quickly to
new patterns and variations, making fine-tuning of pre-trained models an appealing
choice.

3.3.3.3 Hyperparameter optimization:

We describe in this part the training hyperparameters and the optimization techniques
used to improve model performance. Including batch size, regularization techniques, and
learning rate, in addition to the reasoning behind the choices.

Chapter 3: Approach

39

Value selected

Hyperparameter Model 1 Model 2 Reason

Data partition
80% training, 10% validation and

10% testing

allows for effective model training,
hyperparameter tuning, and unbiased
evaluation of model performance

L2 decay N/A 0.00001
Balances between regulation against
overfitting while not degrading

performance

Optimizer Adam
faster convergence , improved

performance and adaptive learning
rate

loss Binary cross entropy

It suits best for binary classification
as it measures distance between
actual and predicted guiding model

toward better classification

Activation
function

ReLU Faster convergence

Final layer
architecture

DP/128/64
/32

512/BN/DP/256/B
N/DP/128/BN/DP

Discussed earlier

Epoch 30
Balance between over and under

fitting

Dropout rate 10% 12%
safeguarding overfitting while
maintaining performance

Pre-trained is
trainable

False
Faster training ,reduced overfitting
risk and less resource intensity

Table 2.3: Showcasing hyperparameters used by each model

Chapter 3: Approach

40

3.4 Conclusion:
In conclusion, this chapter emphasizes the importance of informed decisions every step
of the way to strike a balance between efficacy and performance, such as model selection,
final layer architecture, and hyperparameter optimization. Such decision-making is
aimed at providing the best performance of our system in detecting spam messages
effectively while remaining mindful of resource constraints.

In the next chapter, we will develop and evaluate two BERT variant models—BERT
base and DistilBERT—for spam detection. We will compare their performance, test for
overfitting, and benchmark them against related research. The best-performing model
will be selected to create a standalone spam testing web application using Django, along
with an API for integration into other applications. This approach aims to deliver a
robust and accessible spam detection solution.

41

Chapter Four
Experimentation

Chapter 4 Experimentation

42

Chapter 4 Experimentation

4.1 Introduction:
In today’s digital landscape, the never-ending onslaught of spam emails has become an
increasingly pervasive problem. Not only do they clutter mail boxes and increase
internet traffic, but they also pose serious risks such as fraud and malware infections. In
this chapter, we will discuss how we can leverage the state-of-the-art BERT pre-trained
models to extract the context of emails and classify them as either spam or ham.

4.2 Description
For this section, we will be validating our spam detection techniques by utilizing two
pretrained BERT models on standard datasets. We thoroughly assess the models'
performance by conducting extensive testing and comparing them to established
benchmarks. Afterwards, we proceed with deploying the models using a website and API,
showcasing their real-world usefulness and scalability.

4.3 Datasets
In our research, we opted for the most commonly used datasets in related studies,
starting with Enron collection of emails from the Enron Corporation[37], with
approximately 30000 emails evenly split into spam and ham and the ling Linguist [38]
dataset with almost 3000 email Another dataset we used is SMS spam collection [39],
specializing in SMS spam with 5500 emails, and finally the Spamassassin dataset [40]
with more than 10,000 emails, making the training datasets for the model ideal as they
satisfy criteria like being commonly used in research and verified by experts, We chose
to use only the email content for training as it simplifies the workflow and remains
focused.

Figure 3.1: shows the ratio of spam and ham in each dataset

Chapter 4 Experimentation

43

4.4 Tools and libraries
4.4.1 Programing language

JavaScript: is a programming language that gives web pages interactive elements that
engage a user. It has frameworks that are widely used, namely nodejs and nextjs.
Python: a well-known general purpose programming language mostly used for data
science and machine learning.
4.4.2 Libraries:

NumPy: is a Python library used for numerical computation and is essential for data
manipulation and analysis.
Pandas: a data analysis library that offers flexible data structures and tools for
structured data management and facilitates seamless exploration and manipulation of
datasets.
Scikit-learn (Sklearn): free and open-source machine learning library for Python. It
offers many tools, like classification regression and clustering algorithms
Seaborn: a statistical data visualization library, helps in the creation of insightful
graphs for data analysis and presentation.
Matplotlib: is a general-use visualization library for creating static, animated, and
interactive plots, enhancing data visualization capabilities.
4.4.3 Frameworks:

TensorFlow: Developed by Google, TensorFlow is a powerful machine learning
framework utilized for building and deploying sophisticated models
Django: is a robust web framework chosen for its scalability .
4.4.4 Workstation

Kaggle (Cloud Spec)
It is a platform for data science competitions and also used for learning, collaboration,
and research as it offers great variety of openly public datasets and tutorials and
unmatched hardware freely.
4.4.5 Development Tools

 Pycharm Professional Edition

4.4.6 Pre-trained Models
1) BERT (Bidirectional Encoder Representations from Transformers)
2) DistilBERT

Chapter 4 Experimentation

44

4.5 Metrics of evaluations
4.5.1 Confusion matrix:
This matrix gives a detailed breakdown of how the model's predictions compare to the
actual labels. Correct and incorrect predictions are highlighted by class; this gives
insight into model’s performance and sheds light on any potential areas for improvement.

Figure 3.2 : Confusion matrix

True Positive (TP) instances indicate situations in which the model accurately
predicted the positive class and the observed value was indeed positive.
False positives (FPs) it’s when the model wrongfully predicted the positive class,
resulting in a negative actual value.
False negatives (FN) happen when the model made a false prediction about the
negative class, resulting in a positive value being predicted.
True Negative (TN): Instances in which the model accurately predicted the negative
class and the actual result was negative as well.

Accuracy, precision, and F-measures are then calculated as follows:
4.5.2 Accuracy:

Is the percentage of correct classifications that a trained machine learning model
achieves, i.e., the number of correct predictions divided by the total number of
predictions across all classes.

4.5.2 Precision
Precision quantifies the proportion of true positive predictions out of all positive
predictions.

Chapter 4 Experimentation

45

4.5.3 Recall
Measures the proportion of actual positive instances that were correctly identified by the
model.

4.5.4 F-measure
It is mean of accuracy, and recall offers a well-balanced evaluation of the model's
performance, which is especially valuable in datasets with unbalanced classes, where one
class is more dominant than the other.

4.6 Results
This part talks about the results obtained by both models stated in the approach
chapter. We will compare them to each other and then to other researchers work and do
an overfitting analysis.
The models we opted to use are 2 different models from the same family, Bert-base-
uncased-786 and distilbert-base-uncased-786 each with a different final layer architecture
and hyperparameters. The table below features key characteristics of each model.

Hyperparameter Model 1 Model 2

Data partition 80% training, 10% validation and 10% testing

L2 decay Not used 0.00001

Final layer
architecture

DP/128/64/32 512/BN/DP/256/BN/DP/128/BN/DP

Epoch 30

Dropout rate 10% 12%

BERT variant BERT-uncased-base-786 DistilBERT-uncased-base-786

Table 3.1: key difference between the used models

Chapter 4 Experimentation

46

4.6.1 Dataset visualization:

Figure 3.3: Datasets Spam/Ham Ratio

4.6.2 BERT
The first model we will be talking about is the BERT model, with 5 layers
in the final layer. We’ll illustrate the results in each dataset.

4.6.2.1 Enron

Figure 3.4: Classification report of the BERT model on Enron dataset

Chapter 4 Experimentation

47

Figure 3.5: Confusion matrix of Enron data on the BERT model

4.6.2.2 SpamAssassin

Figure 3.6: Classification report of the BERT model on the Spamassassin dataset

Chapter 4 Experimentation

48

Figure 3.7: Confusion matrix of the BERT model on Spamassassin dataset

4.6.2.3 SMS spam

Figure 3.9: Confusion matrix of the BERT model on the SMS spam dataset

Chapter 4 Experimentation

49

Figure 3.9: Confusion matrix of the BERT model on the SMS spam dataset

4.6.2.4.Ling Linguist

Figure 3.10: Classification report of BERT model on Ling spam dataset

Chapter 4 Experimentation

50

Figure 3.11: Confusion matrix of the BERT model on the Ling dataset

4.6.3 DistilBERT
Our second model is lightweight and reinforced with a deeper architecture. The results
are as follows:
4.6.3.1 Enron

Figure 3.12: Classification report of DistilBERT on the Enron dataset

Chapter 4 Experimentation

51

Figure 3.13: Confusion matrix of the DistilBERT on the Enron
4.6.3.2 SpamAssassin

Figure 3.14: Classification report of the DistilBERT on the Spamassassin dataset

Chapter 4 Experimentation

52

Figure 3.15: Confusion Matrix of the DistilBERT on Spamassassin dataset

4.6.3.3 SMS spam

Figure 3.6: Classification report of the DistilBERT model on the SMS dataset

Chapter 4 Experimentation

53

Figure 3.17: Confusion matrix of the DistilBERT on the SMS spam dataset

4.6.3.4 Ling Linguist dataset

Figure 3.18: Classification report of the DistilBERT on Ling spam dataset

Chapter 4 Experimentation

54

Figure 3.19: Confusion matrix of the DistilBERT model on Ling spam dataset

The table below summarizes the results and compares the two models.

BERT model DistilBERT

Dataset F1-score accuracy F1-score accuracy

Enron 96,7040% 96.7177% 98,8273% 98.8273%
Spamassassin 98,3394% 97.8605% 99,3502% 99.1628%

SMS spam 99,1684% 98.5663% 99.5859% 99.2832%

Ling linguist 99,1803% 98.6207% 99,7955% 99.6552%

Table 3.2: Table comparing BERT and DistilBERT performance on different datasets

Chapter 4 Experimentation

55

Authors Year Datasets Performance
F1-score Accuracy

Thaer Sahmoud,
Dr. Mohammad
Mikki [26]

2022

Enron Spam Dataset
Spamassassin

Ling-Spam Dataset
SMS Spam Collection

98,62 %
97,83 %
99,13 %
99,28 %

Not
mentioned

VS Tida, S Hsu
[28] 2022

Spamassassin
Enron Spam Dataset

Spam Text
Ling-Spam Dataset

98 %
97 %
98 %
98 %

97 %
97 %
93 %
94 %

C Oswald,
SE Simon,

A Bhattacharya
[27]

2022

Enron Spam Dataset
SMS Spam Collection

Spamassassin
Ling-Spam Dataset

97.23 %
98.07 %
97.89 %
98.45 %

97 %
97 %
97 %
98 %

Presented Work

2024

Enron Spam Dataset
Spamassassin

SMS Spam Collection
Ling spam dataset

98,8273 %
99,3502 %
99.5859 %
99,7955 %

98.8273 %
99.1628 %
99.2832 %
99.6552 %

Table 3.3: Summary of work that has used the BERT approach

4.7 Discussion
4.7.1 Overfitting analysis
4.7.1.1 Introduction to Overfitting

Important concepts in machine learning, overfitting and underfitting are particularly
applicable to spam detection using BERT models. When a model learns the training
data too well, it overfits, capturing noise and not being able to generalize to new,
unknown data. Contrary, underfitting happens when a model is too basic to represent
the underlying structure of the data, leading to poor performance even on the training
set.
The phenomenon of overfitting and underfitting in the overall context of a BERT-based
spam detection system is the main subject in this section. Our goal is to maximize
model performance and ensure trustworthy spam detection abilities by knowing the
symptoms and consequences of overfitting and underfitting

Chapter 4 Experimentation

56

4.7.1.2 Overfitting
In overfitting, a model becomes so good at our training data that it has mastered every
pattern, including noise. This makes the model perform well with training data but
poorly with test or validation data [41].

Figure 3.20: How an underfitted, optimal and overfitted model fits data, adopted from
[42]

Figure 3.21: loss vs. epoch graph of an overfitted model

Solution:
 Simplify the model
 Incorporate regulation (L1, L2, dropout, etc.)
 Early stopping

4.7.1.3 Underfitting
Underfitting occurs when a model is too simple to capture patterns in the dataset
provided, and that causes the model to perform poorly on both the training and test
data.

Chapter 4 Experimentation

57

Figure 2.22: loss / epoch graph showing an underfitted model adapted from [43]
Solution:
 Increase model complexity
 Reduce regulation strength (L1, L2, dropout, etc.)
 Hyperparamter tuning

4.7.1.4 Model analysis

How to know if a model is overfitting or underfitting ?
● Model accuracy:

A high training accuracy but low validation accuracy indicates overfitting. Low
accuracy in both training and validation indicates underfitting.

● Class-wise measures
○ F1-score

Indication:
Large discrepancies between class-wise training and validation F1-scores can
signal overfitting. Consistently low F1-scores for certain classes on both training
and validation sets can indicate underfitting.

○ Recall
Indication:
High recall in training and low recall in validation indicate overfitting.
Low recall on both can indicate underfitting.

○ Precision
Indication:
High precision in training but low precision in validation indicates overfitting.
Low precision in both can indicate underfitting.

Chapter 4 Experimentation

58

4.7.2 BERT base model
4.7.2.1 Enron dataset

Figure 3.23: train and validation loss against epoch count
4.7.2.2 Spamassassin dataset

Figure 3.24: train and validation loss against epoch count

Chapter 4 Experimentation

59

4.7.2.3 SMS spam dataset

Figure 3.25: train and validation loss against epoch count
4.7.2.4 Ling Linguist dataset

Figure 3.26: train and validation loss against epoch count

Chapter 4 Experimentation

60

4.7.2.5 Interpretation of results:
By viewing the classification reports of our BERT model and the train and validation
loss against epoch, we can determine several key characteristics of the model's behavior

Table 3.4: resulted metrics for the BERT model.

• Model accuracy:
The BERT model with high overall accuracy demonstrates good performance on
all the datasets; however, accuracy by itself can be deceiving, especially if the
dataset is biased. Other metrics like F1-score, precision and recall help us
understand our model better.
• Class wise measures

◦ f1-score
All of the classes in the dataset have high F1-scores which indicate effective
classification with minimal false negatives and false positives.

◦Recall
On both classes, the model performed well with small difference indicating the
model's ability to capture all the instances without bias

◦ Precision
A relatively higher precision rates for both classes indicates correct predictions in
most cases. The precision for minority class is slightly lower yet very high
indicating a reliable procedure for detecting spams that has few false positives.

• Overfitting or underfitting indicators:
Closing the gap between training and validation loss:
Significance:
When validation loss starts plateauing, it means that the model has learned as
much as possible from the training data without overfitting.

Enron Spamassassin SMS spam Ling linguist
accuracy 96.7177% 97.8605% 98.5663% 98.6207%
F1-score 96,7040% 98,3394% 99,1684% 99,1803%

Precision 0 97.3582% 98.6957% 99.1684% 99.5885%
1 96.0908% 96.3636% 94.8052% 93.6170%

recall 0 96,0585% 97,9856% 99,1684% 98,7755%
1 97,3802% 97,316% 94,8052% 97,7778%

Chapter 4 Experimentation

61

Implication: In our case, validation loss shows that this is where our model
reached an optimal generalization level beyond which further training wouldn’t
significantly improve performance.

Validation Loss Plateauing:
Significance: as the validation loss stops decreasing, this means that the model
learned as much as it could from the train data without overfitting.
Implication: The validation loss in our case means that the model reached an
optimal generalization level where further training would not significantly
improve its performance on the validation set.

Very Good Model Results:
Significance: high accuracy, high precision, good recall, and F1-score, meaning
that the model makes accurate predictions in both training and validation sets.
Implication: The model’s performance is strong; therefore, meaningful patterns
have been established based on training samples, and these can be successfully
applied to unseen data.

Conclusion:
The convergence of both training and validation losses, along with good outcomes,
confirms the model's ability to generalize well to unseen data. Therefore
indicating the readiness of the model.

4.7.3 DistilBERT model
4.7.3.1 Enron

Figure 3.27: train and validation loss against epoch count

Chapter 4 Experimentation

62

4.7.3.2 Spamassassin

Figure 3.28: train and validation loss against epoch count

4.7.3.3 SMS spam

Figure 3.29: train and validation loss against epoch count

Chapter 4 Experimentation

63

4.7.3.4 Ling Linguist

Figure 3.30: train and validation loss against epoch count

4.7.3.5 Interpretation of results:

By viewing the classification reports of our DistilBERT model and the train and
validation loss against epoch, we can determine several key characteristics of the model's
behavior.

Enron Spamassassin SMS spam Ling linguist

accuracy 98.8273% 99.1628% 99.2832% 99.6552%

F1-score 98.8273% 99.3502% 99.5859% 99.7955%
Precision 0 98.5461% 99.7101% 99.1753% 100.0%

1 99.1003% 98.1818% 100% 97.8261%
recall 0 99.1100% 98.9928% 100% 99.5918%

1 98.5304% 99.4737% 94.8052% 100.0%

Table 3.5: resulted metrics of the DistilBERT model

Chapter 4 Experimentation

64

• Model accuracy:

The high accuracy across all datasets shows that the DistilBERT model operates
effectively. But we need to further clarify by examining other metrics.

• Class wise measures
◦ f1-score

Consistently high f1-scores across all datasets mean that the model is classifying well
with little to no false positives or negatives.

• Recall
Overall high recall values on both classes with very small differences suggest that the
model effectively captures the majority of instances for both classes without bias
towards either class.

• Precision
High precision values for both classes with very little difference indicate that the model’s
positive predictions are mostly correct for both classes, implying a few false
classifications.

Overfitting or underfitting indicators:
Closing the gap between training and validation loss:

Significance:
The model is proving to generalize well as we see the validation loss approaching the
training loss.
Implication:
The model is learning useful patterns from the training data, and the validation loss
decreasing is a sign of the model not overfitting.
Validation Loss Plateauing:

Significance:
If the validation loss stops decreasing, it means that the model learned best from the
train data without fitting too close.

Implication:
The model learned its best from the training data, and further training will not improve
performance in a noticeable manner but risk entering the overfitting stage.

Chapter 4 Experimentation

65

Very Good Model Results:
Significance:
High accuracy, high precision, good recall, and F1-score, meaning that the model makes
accurate predictions in both training and validation sets.
Implication:
The model’s performance is strong; therefore, we can conclude that useful relations have
been recognized by the model, and these can be applied to unseen data.

Conclusion:
The convergence of the training and validation losses, combined with very good
outcomes from the models, indicate that a good balance has been struck between fitting
to some particular elements within training data while generalizing for unseen items.
Thus, this indicates a competent and well-trained mode.

4.7.4 Overall interpretation
DistilBERT surpasses BERT in every dataset, exhibiting a more remarkable F1-score
and accuracy. It is because of this that our spam detection system should always choose
DistilBERT over BERT, as it can tell spam emails from non-spam ones more accurately.
More observations we saw:
Our model yields exceptionally good results with all the datasets except Enron, trailing
the metrics chart with 98.82% accuracy.
 Consistent high performance across varied datasets underscores our model’s

robustness and reliability, cementing its place as the model we will be using for
further implementation (API and standalone web app).

 Our model outperformed all other related works in Enron, Spamassassin, SMS spam
collection and ling-spam datasets.

 The most sensible hyperparameters were epoch count, dropout intensity, and L2
regulation strength, especially with the Enron dataset.

4.8 Deployment:
In deploying our spam detection system, we have structured our solution to be both
robust and versatile, with the goal of meeting both current testing needs and future
integration requirements. The deployment involves two main components: a standalone
web application for model testing and retraining and an API backend designed to power
mailbox spam detection.
4.8.1 Standalone Web Application:

We have developed a web application using Django to serve as a platform for testing
potential spam emails and model-powering the site. This application offers a user-
friendly interface where users can input their text to check if it is spam. The primary
features of this web application include:

Chapter 4 Experimentation

66

1. Backend integration:
a. The web application is integrated with our state-of-the-art trained
DistilBERT model.

b. Upon receiving user input, the app processes the text using the saved
model to predict whether the text is spam or not.

2. Real-time response:
a. The prediction result is displayed to the user in real-time, offering quick
and easy user experience.

3. User Feedback Feature:
a. We have implemented a way for the user to provide feedback if they
believe the model’s prediction is incorrect.

b. The user can indicate whether the text was spam or ham.
c. The feedback is stored as an additional dataset to retrain the model,
keeping it adapted to raising spam patterns.

4. The feature of testing a whole CSV file, ‘datasets’:
a. The user may want to test many inputs at once; the test CSV file feature
allows for time and performance savings.

5. Export the database as CSV file:
a. This allows the developer to further advance the field of spam detection by
not only keeping the model up-to-date with rising spam patterns but also
submitting the dataset as learning and training material for researchers
and students to work with.

Figure 3.31: Web Application Workflow

Chapter 4 Experimentation

67

4.8.1.1 Screenshots

Figure 3.32: the web application interface

Figure 3.33: Example of Spam text

Chapter 4 Experimentation

68

Figure 3.34: Example of Wrong Prediction

Figure 3.35: Feedback Form with the Correct Label

Chapter 4 Experimentation

69

4.8.1.2 Components of a Feedback Form:
1. The text that was entered by the user:

This displays the text in question for the user to review and provide
feedback on.

2. The correct label selector:
For the user to select the correct label for the text.

3. Feedback description:
to explain their reasoning behind the selected label. This part is for the
developer to see.

f

Figure 3.36: Database interface

The content of the database can be exported as a CSV file. We use it to further retrain
the model to keep up with rising patterns of spam and publish new datasets after
thorough examination to spin the wheel of development in the spam detection field.

Chapter 4 Experimentation

70

Figure 3.37: Results of dataset prediction

4.8.2 API

The Spam Detection API is designed to classify text inputs as either "Spam" or "Ham"
using our trained DistilBERT model. This RESTful API offers a simple and efficient
way for users to integrate spam detection capabilities into their applications. The API
supports both individual text inputs and bulk predictions via CSV files, providing
flexibility for various use cases.
{
"input_type": "text",
"input": "Your text here"
}

Figure 3.38: Request payload example

Chapter 4 Experimentation

71

{
"input_type": "text",
"probabilities": [0.85],
"input_data": "Your text here",
"type": "Spam"

}
Figure 3.39: Expected response

Figure 3.40: example using curl to test a text with response
curl -X POST -F "input_type=csv" -F "csv_file=@path_to_file.csv"
http://192.168.62.28:8000/api/predict/

Figure 3.41: Example of curl to test csv
{
"input_type": "csv",
"predictions": [

{"text": "This is a sample email text 1", "type": "Ham"},
{"text": "This is a sample email text 2", "type": "Ham"},
{"text": "Free money!!! Click here now!", "type": "Spam"},
{"text": "Meeting at 3 PM tomorrow", "type": "Ham"}

]
}

Figure 3.42: Expected response with CSV input

Figure 3.43: Example of CSV test along with result

Chapter 4 Experimentation

72

4.8.2.1 Usage Examples for Integrating the Spam Detection API

1.Email client integration:
Email clients can use the API to automatically filter incoming emails into spam
and non-spam categories, providing users with a cleaner inbox experience.

2.Mobile Applications:
Mobile app developers can integrate the API to scan text inputs from users, such
as chat messages or comments, for spam detection, enhancing the overall user
experience by minimizing unwanted content.

Conclusion

This work presents a multifaceted solution to the pervasive challenge of spam emails.
Leveraging a highly accurate DistilBERT model, we developed a user-centric web app
and a developer-oriented API. This synergy empowers both end-users and developers to
effectively identify and combat spam, fostering a more secure and user-friendly online
experience.

73

Chapter Five
Future work and
conclusion

Chapter 5 Future work and Conclusion

74

Chapter 5 Future work and Conclusion

5.1 Future work

This type of study can be expanded considerably with more time and resources.
Availability of more complex and abundant data can enhance the model’s applicability
to different kinds of spam patterns. Training the bigger and complex models also might
improve the detection accuracy even more. More time spent on fine-tuning and applying
different hyperparameters would benefit the final model by increasing its efficiency.
These, would contribute to a more powerful and reliable spam detection system.The
future research can look into several promising directions. Additional preprocessing on
the data obtained from the method we discussed for collecting feedbacks could further
contribute its utility to studying and improving methods behind spam filtering.
Improving more on the given API architectural structures would considerably improve
the integration of the system. For instance, the application of continuous improvement
processes would ensure effectiveness of the model against continuously emerging spam
strategies. Further research can be viable by exploring hybrid detection models that
incorporate BERT in conjunction with other algorithms or methods. Improving the
possibilities of multilingual spam identification.

5.2 Conclusion
This thesis offers an extensive solution to the spam detection problem using BERT and
its variant model to enhance the efficiency compared to conventional techniques. This
work showed improved performance in comparison with several benchmarks related to
different datasets, resulting from our fine-tuning of configurations and hyperparameters.
The implementation of practical applications was through an easy to use web based
application with feedback which would enable changes to be made as advances are being
made and through a developer API for integration in other apps.

Resources

75

References
Resources

[1] : Kulikova, T. (2024, March 7). Spam and phishing in 2023. Kaspersky. Retrieved
May 12, 2024, from https://securelist.com/spam-phishing-report-2023/112015/
[2] : Staveley, C. (n.d.). Council Post: The Power Of Emotions: How Cybercriminals Are
Taking Advantage Of Psychology. Forbes. Retrieved May 20, 2024, from
https://www.forbes.com/sites/forbestechcouncil/2022/10/10/the-power-of-emotions-
how-cybercriminals-are-take-advantage-of-psychology/?sh=242b77443461
[3] : Moorthy, J. (2024, April 26). 23 Email spam statistics to know in 2024. Mailmodo.
Retrieved May 1, 2024, from https://www.mailmodo.com/guides/email-spam-statistics/
[4] : November 2008, A. H. 10. (n.d.). TechRadar. retrieved in May 20 ,2024
https://www.techradar.com/news/internet/computing/spam-gets-1-response-per-12-500-
000-emails-483381
[5] : Ma, X., Fang, G., & Wang, X. (2023). Llm-pruner: On the structural pruning of
large language models. Advances in neural information processing systems, 36, 21702-
21720.
[6] : Eng Emad Eldin Ibrahim, B. (2024, January 9). AI-ML-DML-GEN AI- LLM
sorting according to prices. Linkedin.com. https://www.linkedin.com/pulse/ai-ml-dml-
gen-ai-llm-sorting-according-prices-moselhy-ibrahim-bakr-7mz2f retrieved in 20/05/2024
[7] : Daniel. (2023, June 9). Natural language processing (NLP): Definition and
principles. Data Science Courses | DataScientest; DataScientest.
https://datascientest.com/en/natural-language-processing-definition-and-principles
retrieved in 20/05/2024
[8] : Neural Network Architecture: all you need to know as an MLE [2023 edition]. (n.d.).
Kili-website. Retrieved May 7, 2024, from https://kili-technology.com/data-
labeling/machine-learning/neural-network-architecture-all-you-need-to-know-as-an-mle-
2023-edition#-what-is-a-neuron?
[9] : Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... &
Polosukhin, I. (2017). Attention is all you need. Advances in neural information
processing systems, 30.
[10] : Liu, W., Zhou, P., Zhao, Z., Wang, Z., Ju, Q., Deng, H., & Wang, P. (2019). K-
BERT: Enabling Language Representation with Knowledge Graph. arXiv e-prints.
arXiv preprint arXiv:1909.07606.

https://www.forbes.com/sites/forbestechcouncil/2022/10/10/the-power-of-emotions-how-cybercriminals-are-take-advantage-of-psychology/?sh=242b77443461
https://www.forbes.com/sites/forbestechcouncil/2022/10/10/the-power-of-emotions-how-cybercriminals-are-take-advantage-of-psychology/?sh=242b77443461
https://www.techradar.com/news/internet/computing/spam-gets-1-response-per-12-500-000-emails-483381
https://www.techradar.com/news/internet/computing/spam-gets-1-response-per-12-500-000-emails-483381
https://www.linkedin.com/pulse/ai-ml-dml-gen-ai-llm-sorting-according-prices-moselhy-ibrahim-bakr-7mz2f
https://www.linkedin.com/pulse/ai-ml-dml-gen-ai-llm-sorting-according-prices-moselhy-ibrahim-bakr-7mz2f
https://datascientest.com/en/natural-language-processing-definition-and-principles

Resources

76

[11] : Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V.
(2019). Xlnet: Generalized autoregressive pretraining for language understanding.
Advances in neural information processing systems, 32.
[12] : Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.
[13] : Sun, J., Liu, Y., Cui, J., & He, H. (2022). Deep learning-based methods for natural
hazard named entity recognition. Scientific reports, 12(1), 4598.
[14] : Koroteev, M. V. (2021). BERT: a review of applications in natural language
processing and understanding. arXiv preprint arXiv:2103.11943.
[15] : Trung, N. D., Ngoc, T. T., & Huynh, H. X. (2019). Automated pneumonia
detection in x-ray images via depthwise separable convolution based learning. Proc
FAIR-Fundament Appl IT Res. https://doi. org/10.15625/vap.
[16] : Lample, G., & Conneau, A. (2019). Cross-lingual language model pretraining.
arXiv preprint arXiv:1901.07291.
[17] : Zhang, T., Wu, F., Katiyar, A., Weinberger, K. Q., & Artzi, Y. (2020). Revisiting
few-sample BERT fine-tuning. arXiv preprint arXiv:2006.05987
[18] : Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled
version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.
[19] : Zamil, Y. K., Ali, S. A., & Naser, M. A. (2019). Spam image email filtering using
K-NN and SVM. International Journal of Electrical and Computer Engineering (IJECE),
9(1), 245-254.
[20] : Reddy, K. N., & Kakulapati, V. (2021). Classification of Spam Messages using
Random Forest Algorithm. Journal of Xidian University, 15(8), 495-505.
[21] : Gupta, M., Bakliwal, A., Agarwal, S., & Mehndiratta, P. (2018, August). A
comparative study of spam SMS detection using machine learning classifiers. In 2018
eleventh international conference on contemporary computing (IC3) (pp. 1-7). IEEE.
[22] : Rodrigues, A. P., Fernandes, R., Shetty, A., K, A., Lakshmanna, K., & Shafi, R.
M. (2022). [Retracted] Real‐Time Twitter Spam Detection and Sentiment Analysis using
Machine Learning and Deep Learning Techniques. Computational Intelligence and
Neuroscience, 2022(1), 5211949.
[23] : Cao, J., & Lai, C. (2020, December). A bilingual multi-type spam detection model
based
on M-BERT. In GLOBECOM 2020-2020 IEEE Global Communications Conference (pp.
1-6).
IEEE.

Resources

77

[24] : Lee, Y., Saxe, J., & Harang, R. (2020). CATBERT: Context-aware tiny BERT for
detecting social engineering emails. arXiv preprint arXiv:2010.03484.
[25] : Barsever, D., Singh, S., & Neftci, E. (2020, July). Building a better lie detector
with BERT: The difference between truth and lies. In 2020 International Joint
Conference on Neural Networks (IJCNN) (pp. 1-7). IEEE.
[26] : Sahmoud, T., & Mikki, D. M. (2022). Spam detection using BERT. arXiv preprint
arXiv:2206.02443.
[27] : Oswald, C., Simon, S. E., & Bhattacharya, A. (2022). Spotspam: Intention
analysis–driven sms spam detection using bert embeddings. ACM Transactions on the
Web (TWEB), 16(3), 1-27
[28] : Tida, V. S., & Hsu, S. (2022). Universal spam detection using transfer learning of
BERT model. arXiv preprint arXiv:2202.03480.
[29] : Godbole Siddharth, Grubinska, K., & Kelnreiter, O. (2020, February 7). Economic
uncertainty identification. Retrieved May 2, 2024, from
https://humboldtwi.github.io/blog/research/information_systems_1920/uncertainty_id
entification_transformers/
[30] : kaggle : BERT https://www.kaggle.com/models/tensorflow/bert
[31] : Evtimov, R., Falli, M., & Maiwald, A. (2020, February). Anti Social Online
Behaviour Detection with BERT. Retrieved May 1, 2024, from https://humboldt-
wi.github.io/blog/research/information_systems_1920/bert_blog_post
[32] : Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting. The journal
of machine learning research, 15(1), 1929-1958.
[33] : Kaggle : distilbert https://www.kaggle.com/models/jeongukjae/distilbert
[34] : Adel, H., Dahou, A., Mabrouk, A., Abd Elaziz, M., Kayed, M., El-Henawy, I.
M., ... & Amin Ali, A. (2022). Improving crisis events detection using distilbert with
hunger games search algorithm. Mathematics, 10(3), 447.
[35] : Cortes, C., Mohri, M., & Rostamizadeh, A. (2012). L2 regularization for learning
kernels. arXiv preprint arXiv:1205.2653.
[36] : Ioffe, S., & Szegedy, C. (2015, June). Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International conference on
machine learning (pp. 448-456). Pmlr.
[37] : huggingface , SetFit’s Enron spam collection
[38] : Kaggle , Mandy Gu’s Ling-Spam Dataset
[39] : Kaggle , UCI’s SMS Spam Collection Dataset
[40] : huggingface , Talby’s Spamassassin dataset

https://humboldt-wi.github.io/blog/research/information_systems_1920/uncertainty_identification_transformers/
https://humboldt-wi.github.io/blog/research/information_systems_1920/uncertainty_identification_transformers/
https://www.kaggle.com/models/tensorflow/bert
https://humboldt-wi.github.io/blog/research/information_systems_1920/bert_blog_post/
https://humboldt-wi.github.io/blog/research/information_systems_1920/bert_blog_post/
https://www.kaggle.com/models/jeongukjae/distilbert

Resources

78

[41] : Ogbemi, M. (2023, October 16). What is Overfitting in Machine Learning?
freeCodeCamp.org. Retrieved May 3, 2024, from
https://www.freecodecamp.org/news/what-is-overfitting-machine-
learning/#:~:text=Our%20training%20dataset%20contains%2080%2C000,we%20have%2
0an%20overfitting%20problem.
[42] : GeeksforGeeks. (2024, March 11). ML Underfitting and overfitting. GeeksforGeeks.
Retrieved May 7, 2024, from https://www.geeksforgeeks.org/underfitting-and-
overfitting-in-machine-learning/
[43] : Jason Brownlee. (2020, January). How to diagnose overfitting and underfitting of
LSTM models. Retrieved May 16, 2024, from
https://machinelearningmastery.com/diagnose-overfitting-underfitting-lstm-models/

https://www.freecodecamp.org/news/what-is-overfitting-machine-learning/
https://www.freecodecamp.org/news/what-is-overfitting-machine-learning/
https://www.freecodecamp.org/news/what-is-overfitting-machine-learning/
https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/
https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/
https://machinelearningmastery.com/diagnose-overfitting-underfitting-lstm-models/

	Resume
	شكر وتقدير
	إهداء
	Table of content
	1.1 PREAMBLE
	1.2 PROBLEMATIC
	1.3 OBJECTIVES
	1.4 STRUCTURE OF THE MANUSCRIPT
	2.1 Introduction :
	2.2 Spam Detection :
	2.2.1 Why is it a problem?
	Statistics :

	2.3 AI & Bert
	2.3.1 AI
	2.3.2. Machine learning
	2.3.3 Deep learning
	2.3.4 - LLM (Large language models)
	 2.3.5 - BERT
	 2.3.5.1 - Natural Language Processing (NLP)
	2.3.5.2 - Neural network
	 2.3.5.3 - Transformers
	 A. Self-attention
	 B. Parameters and hyper-parameters
	 C. Activation functions
	D. Loss Function

	 2.2.5.4 BERT Architecture:
	A.Encoder
	B.Pre-training model
	C. Training a pretrained
	Masked language modeling
	the next sentence prediction
	Fine-tuning

	 2.3.5.5 DistilBERT

	 2.4 Related work
	 2.4.1 Rule based
	 2.4.2 Machine learning
	 2.4.3 Deep learning
	 2.4.4 bert :
	2.5 conclusion:
	Chapter Three
	Approach

	3.1 Introduction:
	3.2 Preprocessing:
	3.2.1 Label unification and numerical representati
	3.2.2 Html and Coding Tag Removal:

	3.3 Model selection:
	3.3.1 BERT
	3.3.1.1 Final layer architecture:
	A. Dropout:

	B. Dense Layer

	3.3.2 DistilBERT:
	3.3.2.1 Final layer architecture:
	A. L2 regularization:
	B. Batch normalization layer:

	3.3.3 Training
	Introduction:
	3.3.3.1 Freezing the pre-trained model;
	3.3.3.2 Approach selected:
	3.3.3.3 Hyperparameter optimization:

	3.4 Conclusion:

	4.2 Description
	4.3 Datasets
	4.4 Tools and libraries
	4.4.1 Programing language
	4.4.2 Libraries:
	4.4.3 Frameworks:
	4.4.4 Workstation
	4.4.5 Development Tools
	4.4.6 Pre-trained Models
	1)BERT (Bidirectional Encoder Representations from T
	2)DistilBERT

	4.5 Metrics of evaluations
	4.5.1 Confusion matrix:
	4.5.2 Accuracy:
	4.5.2 Precision
	4.5.3 Recall
	4.5.4 F-measure

	4.6 Results
	4.6.1 Dataset visualization:
	4.6.2 BERT
	4.6.2.1 Enron
	4.6.2.2 SpamAssassin
	4.6.2.3 SMS spam
	4.6.2.4.Ling Linguist

	4.6.3 DistilBERT
	4.6.3.1 Enron
	4.6.3.2 SpamAssassin
	4.6.3.3 SMS spam

	4.6.3.4 Ling Linguist dataset

	4.7 Discussion
	4.7.1 Overfitting analysis
	4.7.1.1 Introduction to Overfitting
	4.7.1.2 Overfitting

	Solution:
	4.7.1.3 Underfitting
	Solution:
	4.7.1.4 Model analysis
	How to know if a model is overfitting or underfitt
	4.7.2 BERT base model
	4.7.2.2 Spamassassin dataset
	4.7.2.3 SMS spam dataset
	4.7.2.4 Ling Linguist dataset
	4.7.2.5 Interpretation of results:
	Conclusion:

	4.7.3 DistilBERT model
	4.7.3.1 Enron
	4.7.3.2 Spamassassin
	4.7.3.3 SMS spam
	4.7.3.4 Ling Linguist
	4.7.3.5 Interpretation of results:
	Conclusion:
	4.7.4 Overall interpretation

	4.8 Deployment:
	4.8.1 Standalone Web Application:
	4.8.1.1 Screenshots
	4.8.1.2 Components of a Feedback Form:

	4.8.2 API
	4.8.2.1 Usage Examples for Integrating the Spam D
	2.Mobile Applications:

	Conclusion
	Chapter Five Future work and conclusion

	5.1 Future work
	5.2 Conclusion
	References

