REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA

RECHERCHE SCIENTIFIQUE

UNIVERSITE Dr. TAHER MOULAY SAIDA FACULTE DES SCIENCES ET DE LA TECHNOLOGIE

DEPARTEMENT DE BIOLOGIE

Laboratoire De Biotoxicologie, Pharmacognosie Et Valorisation Biologique Des Plantes

MEMOIRE EN VUE DE L'OBTENTION DU DIPLOME

Master EN BIOLOGIE

Spécialité: Microbiologie appliquée

Présenté Par:

M^{elle} .Touati Fatma Zohra et M^{elle} .Rahmani Nadjat

THEME

Contribution à l'étude des activités biologiques de quelques extraits de Citrullus colocynthis de région d'El Bayadh et de Béchar

Soutenu le : 28/06/2016 devant la commission d'examen :

➤ Mr. Gacemi.B Maitre de conférences. U de Saida Président.

➤ Mr.Adli.D Maitre de conférences .U de Saida Examinateur.

Mr. Halla.N Maitre de conférences .U de Saida Encadreur.

Année Universitaire: 2015-2016.

La première personne que nous tenons à remercier est **Mr HALLA NOUREDDINE**, maitre-assistant classe « A » à la Faculté des Sciences de l'Université Dr. Moulay Tahar, d'avoir d'accepté de nous encadré et qui a su nous laisser la liberté nécessaire à l'accomplissement de notre recherche, tout en y gardant un sil critique et avisé Qu'il nous soit permis de le remercier pour nous avoir confié le sujet et d'en avoir dirigé la réalisation en nous faisant bénéficier de son expérience, de sa compétence. Merci pour votre rigueur scientifique et vos conseils toujours judicieux et aussi d'avoir eu la patience de corriger notre mémoire et de nous avoir responsabilisées du début jusqu'à la fin de notre travail...

Nous voudrions également nos remerciements aux membres du jury d'avoir d'accepte d'examiner ce travail :

Nos remerciements à Monsieur Adli. D d'avoir accepté d'être examinateur de ce travail .nous lui adresse une mention spéciale pour son aide précieuse durant la réalisation de notre travail. Monsieur. Gacemi .B nous fait l'honneur d'accepter de présider ce jury. Qu'il nous permette de lui exprimer notre respectueuse gratitude.

Sans oublier de remercier nos enseignons de la première année jusqu'à cette année spécialement Mr BENREGUIG.M, Mr. Ziani.K et Mr Ammam.A pour leur rigueur scientifique, l'effort fourni leurs conseils prodigués.

Nos vifs remerciements vont à Monsieur A. MOUSSAOUI, Professeur à l'Université de Béchar.

A nos promotions de biologie surtout nos frères **Cheikh** .**A**, **Med Ali**, **Dellaoui** .**H**, **Bouanani** .**A Mansouri** .**A**, et à tous les membres du Laboratoire de biologie

Nous tiens à remercier aussi tous les membres de Laboratoire de biologie surtout **Mm Fouzia** Pour leur gentillesse, leur écoute et leurs conseils : Professeurs, maîtres de conférences, techniciens et secrétaires et étudiantes.

Dedicace

Je dédié ce modeste travail:

A ceux qui sont les plus chères au monde mes parents:

Quoi que j'aurai dit ou écrit, je ne s'aurai jamais exprimé mes nobles sentiments

de reconnaissances.

A mon Père pour m'avoir soutenu moralement et matériellement jusqu'au ce jour .Père ce travail est le tien. A ma Mère, voici l'aboutissement de tes nombreuses nuits de prières de ta sagesse et ta générosité pour votre fille. Chère mère ce travail est le fruit de tes efforts.

Mes parents, vous êtes l'exemple de dévouement qui n'a pas ces m'encourager. Ce travail est le fruit de vos sacrifice pour mon éducation et ma formation.que le dieu vous protège et vous accord santé, langue vie et bonheur.

A ma petite sœur khouloud, le chemin est dur et encore long, il faudrait du courage et beaucoup de chance que dieu vous garde

Je n'oublie jamais aussi la générosité illimité de mes grandes frères Mohammed et Abed Rahman, leurs soutien moral tout simplement je vaudrais leurs dire je les aime de tout mon cœur

A tous mes tantes et oncles de la famille Touati et Berradja sans l'exception.

A mon très cher binôme Nadjet, pour son accompagnement, pour sa patience.

A toute mes amies: Mloka, Hanane, Nour El Hoda, Ikram Madi,

,Ihsane, Tou7a, Mona, Cheick, Amine, Karim, Abdel jalile, Med Ali et a tous

mes collègues mauritaniens.

À tous mes collègues de la promotion microbiologie applique et tous mes professeurs et a M^M FOUZIYA Sans l'exception

A Tous Ceux Que J'aime. A Tous Ceux Qui Éprouvent Un Sentiment D'amitié Envers Moi, A Tous Ceux Dont Ma Réussite Leur Tiens A Cœur

Fatma Zohra.T

Résumé

Ce travail porte sur l'étude in vitro de de la phytochimie et des activités antioxydantes, antifongique et antibactérienne des extraits qu'étant isolées à partir de la plante médicinale de la flore du Sahara algérienne (la région de Bechar et de l'Abiodh sidi cheikh) : Citrullus colocynthis (L.) Schard, une plante aromatique importante et largement utilisé dans la médecine traditionnelle.

Les extraits du *Citrullus colocynthis* des deux régions ont été effectués comme suit : extrait hydro- méthanolique (EM) des fruits par macération par un rendement de 11.3 % pour la région du El Abiodh Sidi Cheik (32) et de 10.75 % pour la région de Béchar (08) et décoction par une rendement de 19.96 % (32) , et 22.86% (08) ; hexanique : 15.7% (32) et 16.1% (08) ; l'extrait d'acétate d'éthyle : 10% (32) et 13% (08) . Les tests phytochimiques et des dosages en polyphénols totaux ont permis de détecter la présence des alcaloïdes, substances polyphénoliques (flavonoïdes, tanins, anthocyanes), quinones, coumarines, stérols et triterpènes, et les composés réducteurs. Aussi, la séparation des extraits par chromatographie sur couche mince des extraits montre qu'ils contiennent des différentes classes des alcaloïdes, et présentent certains flavonoïdes. Les extraits méthanoliques de la *C. colocynthis* est majoritairement composés des stérols et des triterpènes.

Les activités biologiques étudiées consistent : une détermination des CMI sur milieu liquide de l'EM de deux régions vis-à-vis 14 souches bactériennes de références. Les CMI obtenues vis-à-vis des bactéries testées sont comprises entre 3.25 et 208 mg/ml. Les résultats obtenus indiquent que *B. cereus* qu'était la plus sensible parmi nos souches testées avec une valeur égale à 3.25 mg/ml pour l'EM₍₃₂₎ et de EM₍₀₈₎. Par contre, *C. fetus*, *E. coli*, *K.pneumoniae* sont les plus résistantes vis-à-vis l'extrait EM₍₃₂₎ et pour l'extrait de EM₍₀₈₎ *C. fetus*, *E. coli*, *C. freundii* représentent les souches les plus résistantes parmi les souches testées.

L'effet antifongique des EM₍₃₂₎ montre qu'*Aspergillus flavus* et *F. oxysporum* ont été les plus sensibles vis-à-vis l'extrait et la souche la plus résistance est *R.stolonifer*. Cependant, pour l'EM₍₀₈₎ la souche *F.oxysporum* est la souche la plus résistance. Les souches *A. flavus* et *A.niger*, *A. ochraceus* et *R.stolonifer* sont moyennement sensible à l'extrait. L'EM(32) a exercé un fort effet inhibiteur vis-à-vis : *C.albicans* IP444 et *C.albicans* 10231. Par contre, pour les mêmes concentrations EM₍₀₈₎ exerce un effet inhibiteur faible vis-à-vis : *C.albicans* IP444 et *C.albicans* 10231. La détermination des CMI sur milieu gélose des extrait qui a été rendu efficace vis-à-vis la croissance des souches de moisissures testées (pour les EM de ₍₀₈₎ et ₍₃₂₎) : *Rhizopus stolonifer* (53.85%),(61.54%), Aspergillus niger (32.50%),(30.77%), et Aspergillus flavus (46%),(60%) et F.oxysporum (46%),(46%) respectivement, à une concentration de (5mg/ml).

L'étude de l'activité antioxydante des extraits, a montré un pouvoir de piégeage du radical libre DPPH avec une IC50 à une concentration de 0.98 mg/ml (EM₀₈) et de 1.1 mg/ml (EM₃₂). L'activité réductrice est proportionnelle avec l'augmentation des concentrations de l'extraits dans lesquelles les extraits méthanolique (32) et de (08) testés possèdent une capacité dose dépendante à réduire le fer. L'essai de la cytotoxicité de l'EM (32) et (08) vis-à-vis les globules rouges présentent un effet cytotoxique, les extraits testés ont montré une forte activité hémolytique avec des pourcentages supérieurs à 4 % Donc, ils ont d'une très forte toxicité

Mots clés : Citrullus colocynthis, Extrait méthanolique, tests phytochimique, dosage des polyphénols, Activité antibactérienne, Activité antifongique, Activité antioxydante chromatographie sur couche mince, Cytotoxicité.

Abstract -

This work focuses on the in vitro study of the phytochemical and antioxidant, antifungal and antibacterial extracts which being isolated from the medicinal plant of the Algerian Sahara flora (the region of Bechar and Sidi Abiodh Sheikh): Citrullus colocynthis (L.) Schard an important aromatic plant and widely used in traditional medicine.

The excerpts from Citrullus colocynthis of the two regions have been made by: hydro-methanol extract by maceration (yield 11.3%) for the fruit of the region of El Abiodh Sidi Sheik (32) and for the fruit of Bechar(08) 10.75% and for the décoction (yield of 19.96%) (32) and 22.86% (08); hexane 15.7% (32) 16.1% (08); for the extract ethyl acetate 10% (32) and 13% (08). Phytochemical tests and the dosages of total polyphenol are allowed to detect the presence of alkaloids, polyphenolic substances (flavonoids, tannins anthocyanins) the Quinones, Coumarins Sterols and triterpenes, reducing compounds. The Separating of the extracts by thin layer chromatography shows that they contain different class of alkaloids, and have certain flavonoids. The methanolique extracts of C.colocynthis is mainly composed of sterols and triterpenes.

The biological activities Studied consists: a determination of (MIC) on liquid medium of ME of 2 the regions against 14 referenced bacterial strains; The obtained MIC against the tested bacteria are between 208 and 0.40mg / ml. The results indicate that *B. cereus* was the most sensitive among our tested strains with a value of 3.25mg / ml for the ME (32) and (08). Contrariwise *C. fetus*, *E. coli*, *K. pneumoniae* are the most resistant to the extract (32) and to extract (08) *C. fetus*, *E. coli*, *C. freundii* are represent the most resistant strains among the tested strains.

The antifungal effect of ME (32) shows that Aspergillus flavus and F. oxysporum were more sensitive against the extract and the most resistant strain is R.stolonifer, ME (08) against the F. oxysporum strain the most resistant strains . A. flavus strains and A.niger, A. ochraceus and R.stolonifer are middling sensitive to the extract. The ME (32) exerted a strong inhibitory effect against C. albicans IP444 and C. albicans 10231 with high sensitivity in the (MIC) approximately 104 mg / ml respectively. Contrariwise at the same concentrations of ME (08) exerts a weak inhibitor against: C. albicans IP444 and C. albicans 10231 at the concentration of 104 mg / ml. The determination of MIC on agar medium of the extract that was made effective against mold's tested strains growth (for ME (08) and (32)): Rhizopus stolonifer (53.85%),(61.54%), Aspergillus Niger (32.50%),(30.77%), and Aspergillus flavus (46%),(60%) and F.oxysporum (46%),(46%), respectively, at a concentration of (5mg / ml)

The study of the antioxidant activity of the extracts showed a trapping power of free radical DPPH with an IC50 at a concentration between 0.98 mg / ml $_{(08)}$ and 1.1mg / ml $_{(32)}$. The reducing activity is proportional with the increase in the concentrations of the extracts in which the methanol extracts tested $_{(32)}$ and $_{(08)}$ has a dose ability dependent to reduce iron.

The test of cytotoxicity of ME (32) and (08) against the red blood cells have a cytotoxic effect, tested extracts showed strong hemolytic activity with percentages greater than 4% So they have very high toxicity.

Key words: Citrullus colocynthis, Methanol extract, Phytochemical tests, The dosages of total polyphenol, Antibacterial activity, antioxidant activity, antifungal activity, Thin layer chromatography, Cytotoxicity.

ملخص

يركز هذا العمل على الدراسة في المختبر واجراء لاختبار الكيميائي النباتي والمضاد للأكسدة، مضاد للفطريات ومضادة للجراثيم للمستخلص المستخرج من النبات الطبي الموجود في الغطاء النباتي للصحراء الجزائرية (منطقة بشار والأبيض سيدي الشيخ) :نبات الحنظل من النباتات العطرية الهامة المستخدمة على نطاق واسع في الطب التقليدي.

المستخلصات من نبات الحنظل للمنطقتين تمت كالتالي: مستخلص الميثانول ب طريقة النقع بمردود 11.3٪ لثمرة منطقة الأبيض سيدي الشيخ (32) و 10.75٪ فيما يتعلق بثمرة منطقة بشار (30) ولطريقة الاستخلاص بالغلي بمردود 19.96٪ (32) و 22.86٪ (30)؛ المستخلص الهكساني 15.7٪ (32) 16.1٪ (30)؛ ومستخلص خلات الإيثيل من 10٪ (32) و 13٪ (30) اختبارات الكيميائي النباتي وتراكيز البوليفينول الكلية تمكن من الكشف عن وجود القلويدات والمركبات البوليفينولية (الفلافونويد وحمض الطنطاليك والانثوسيانين) كينونات، الكومارين الستيرول والتربينات الثلاثية والمركبات المرجعة. فصل المستخلصات ب كروماتو غرافيا بالطبقة الرقيقة تبين احتواءها على فئات مختلفة من أشباه القلويات، ومركبات الفلافونويد. تتكون المستخلصات الميثانولية للحنظل بشكل عام من الستيرول والتربينات الثلاثية دراسة الانشطة البيولوجية تبرز:

تحديد (CMI) في الوسط السائل للمستخلص الميثانولي للمنطقتين \Box د 14 سلالة بكتيرية مرجعية. CMI التي تم الحصول عليها \Box د البكتيريا المختبرة متضمنة ما بين 208 و 0.40 ملغ / مل. وتشير النتائج إلى أن B. cereus كان الأكثر حساسية بين السلالات المختبرة بقيمة 3.25 ملغ/ مل للمستخلص الميثانولي (32) و (33). بالمقابل E. coli C. fetus هي تمثل هي الأكثر مقاومة لمستخلص (32) و للمستخلص (32) و للمستخلص (32) هي تمثل السلالات المختبرة.

التأثير المضاد للفطريات لمستخلص $_{(32)}$ بين أن $_{(32)}$ المستخلص الميثانولي $_{(33)}$ المستخلص والسلالة الأكثر مقاومة $_{(32)}$ المستخلص والسلالة الأكثر مقاومة $_{(32)}$ المستخلص الميثانولي $_{(32)}$ المستخلص المستخلص المستخلص الميثانولي $_{(32)}$ المستخلص المستخلص الميثانولي $_{(32)}$ يمار س تأثير مثبط قوي $_{(32)}$ د: $_{(32)}$ 21 $_{(32)}$ يمار س تأثير مثبط قوي $_{(32)}$ د: $_{(32)}$ 21 $_{(32)}$ 21 $_{(32)}$ 22 $_{(32)}$ 23 $_{(32)}$ 24 $_{(32)}$ 25 $_{(32)}$ 25 $_{(32)}$ 26 $_{(32)}$ 26 $_{(32)}$ 27 $_{(32)}$ 28 $_{(32)}$ 28 $_{(32)}$ 29 $_{(32)}$ 29 $_{(32)}$ 20 $_{(32)}$ 20 $_{(32)}$ 20 $_{(32)}$ 20 $_{(32)}$ 20 $_{(32)}$ 20 $_{(32)}$ 20 $_{(32)}$ 20 $_{(32)}$ 20 $_{(32)}$ 20 $_{(32)}$ 21 $_{(32)}$ 22 $_{(32)}$ 23 $_{(32)}$ 24 $_{(32)}$ 25 $_{(32)}$ 26 $_{(32)}$ 26 $_{(32)}$ 26 $_{(32)}$ 27 $_{(32)}$ 28 $_{(32)}$ 28 $_{(32)}$ 28 $_{(32)}$ 29 $_{(32)}$ 29 $_{(32)}$ 29 $_{(32)}$ 29 $_{(32)}$ 20 $_{(32)}$

أظهرت دراسة النشاط المضاد للأكسدة لمستخلصات ان قوة محاصرة الجذور الحرة DPPH مع IC50 بتركيز بين 9.08 ملغ / مل $_{(08)}$ و $_{(11)}$ النشاط المرجعي يتناسب مع زيادة تركيزات المستخلصات اين المستخلصات الميثانولية ل مل $_{(20)}$ و $_{(20)}$ المختبرة لها قدرة جرعة تابعة للحد من الحديد.

اختبار السمية الخلوية للمستخلصات الميثانولية $_{(32)}$ و $_{(08)}$ $_{-}$ د خلايا الدم الحمراء بينت ان لديهم تأثير سمي خلوي، أظهرت المستخلصات المختبرة نشاط انحلالي قوي مع نسب أكبر من 4٪. اذن لديهم سمية عالية جدا.

ً الكلمات المقتاحية: حنظل، المستخلص الميثانولي، اختبارات الكيميائي النباتي، تراكيز البوليفينول الكلية، والنشاط المضادة للبكتيريا، النشاط المضاد المضادة المنساط المضادة المنساط المضادة المنساط المضادة المنساط المضادة الخلوية.

Listes des figures

Figure n° 1:	igure n° 1: Groupe phénol				
Figure n° 2:	Représentation des voies de biosynthèse des polyphénols				
Figure n° 3:	Structure d'acide ferulique				
Figure n° 4:	e n° 4: Structure d'acide caféique				
Figure n° 5:					
Figure n° 6:	Structure de base des flavonoïdes				
Figure n° 7:	Structure des lignanes				
Figure n°8:	Squelette de base des coumarines				
Figure n °9:	Structures de l'acide gallique et d'un tannin gallique				
Figure n°10:	Structure de base de l'isoprène				
Figure n°11:	Photo personnelle ; Fruits de coloquinte				
Figure n°12:	Plante de Citrullus colocynthis				
Figure n°13:	Coloquinte citrullus colocynthis				
Figure n°14:	Fruits et grains de Citrullus colocynthis				
Figure n°15:	Fruit de Citrullus colocynthis décortiqué				
Figure n°16:	Structure de la cucurbitacine E				
Figure n°17:	Structure de l'acide caféique				
Figure n°18:	Structure de l'acide chlorogénique				
Figure n°19:	Structure de l'acide linoléique				
Figure n°20:	Structures de la quercétine et du kaempférol				
Figure n°21 :	Le fruit entier de Citrullus colocynthis après le séchage				
Figure n°22:	Carte de l'Algérie présentant les Situation géographique des zones de				
Figure n°23 :	collecte				
Figure n°24 :	Montage de dispositif de la décoction				
Figure n°25:	Schéma explicatif pour préparation d'acétate d'éthyle à partir du fruit entier de la coloquinte				
Figure n°26:	Schéma explicatif pour préparation des extraits méthanolique à partir du fruit entier de la coloquinte				
Figure n°27:	Schéma explicatif pour préparation de l'extrait hexanique à partir du fruit entier de la coloquinte				
Figure n°28:	Montage de dispositif de rotavapor				

Figure n°29 :	les trois réactifs					
Figure n°30 :	liqueur de Fehling6					
Figure n°31 :	Les étapes du préparation du pré-culture					
Figure n°32 :	Utilisation de la microplaque (la méthode des micro-dilutions sur milieu liquide)					
Figure n°33 :	<u>.</u> '					
Figure n°34 :	Schéma représente le procède du Croissance radiale sur milieu					
Figure n°35 :	Principe d'évaluation d'activité antifongique des extraits par la Méthode de croissance radiale					
Figure n°36 :	Mécanisme réactionnel d'une réduction du DPPH• avec l'antioxydant	78 81				
Figure n°37 :	Structure du quelle que anti oxydante synthétiques	84				
Figure n°38 :	Rendements en (%) des extraits bruts de citrullus colocynthis de deux	O.				
Figure n°39 :	régions differentes	89 93				
Figure n°40 :	Résultat des saponines ED(m) 32 et ED(m) 08	9.				
Figure n°41 :	Résultat des alcaloïdes d'éd (m) 08	9.				
Figure n°42 :	Résultat du tanin d'extrait de 08	9.				
Figure n°43 :	Résultat de coumarine d'extrait de 08					
Figure n°44 :	Résultat du composes réducteur de régions 08/32					
Figure n°45 :	méthanol/ NH4OH prises après révélation à la lumière UV à 366 nm					
Figure n°46 :	Séparation des extraits de la coloquinte sur plaque CCM. Au système chloroforme/méthanol prises après révélation à la lumière UV à 366	99				
Figure n°47 :	nm	9:				
Figure n°48 :	Courbe d'étalonnage de l'acide gallique pour le dosage des polyphénols totaux	10				
Figure n°49 :	Teneurs des dosages des polyphénols dans les extraits bruts de <i>citrullus colocynthis</i>	10				
Figure n°50 :	Les résultats des déterminations concentrations minimales inhibitrices par la méthode du micro dilutions	1(
Figure n°51 :	Résultat des Concentration minimal inhibitrices des EM(d) de C.colocynthis vis-à-vis les souches bactériennes G	1(
Figure n°52 :	Résultat des Concentration minimal inhibitrices des EM(d) de C.colocynthis vis-à-vis les souches bactériennes G+	10				
Figure n°53 :	Résultat des Concentration minimal inhibitrices des EM(d) de <i>C.colocynthis</i> vis-à-vis les levures (candida)	1(
Figure n°54 :	Résultat des Concentration minimal inhibitrices des EM(d) de C.colocynthis vis-à-vis les moisissures	1(
Figure n°55:	L'indice antifongique d e l'extrait méthanolique du Bechar	11				
Figure n°56:	igure n°56: L'indice antifongique d e l'extrait méthanolique de l'Abiodh S/D					

Figure n°57:	C			
	différentes concentrations d'EM(d) 08	114		
Figure n°58 :	Pourcentages d'inhibition du radical libre DPPH en fonction des			
	différentes concentrations d'EM (d) 32.	114		
Figure n°59:	Représente les résultats visuels de réduction du DPPH en DPPH-H			
Figure n°60:	Pourcentage d'inhibition du radical libre DPPH en fonction des			
	différentes concentrations d'acide ascorbique	115		
Figure n°61:	Pouvoirs réducteurs des extraits EM(d) 32 et EM(d) 08et des			
S	antioxydants de synthèse	118		
Figure n°62 :	Évolution du taux de hémolyse des differentes concentration du			
S	l'extrait EM(d)08 C.Colocynthis du BÉCHAR Après 0 à 120minute			
	d'incubation par rapport le hémolyse total	120		
Figure n°63 :	Évolution du taux de hémolyse des differentes concentration du			
11801011 00 1	l'extrait EM(d) <i>C.Colocynthis</i> du ABIODH S/C Après 0 à 120minute			
	d'incubation par rapport la hémolyse total	121		
	a medication par rapport in hemoryse total	141		

Liste des tableaux

		Page
Tableau n°1:	Présente quelques classes distinctes des flavonoïdes	
Tableau n°2:	Les cinq catégories des coumarines et leur Activités biologiques et intérêts pharmacologiques.	15
Tableau $n^{\circ}3$:	Différents classes de terpenoïdes	20,21
Tableau n°4:	Quelles que noms de la coloquinte	26
Tableau $n^{\circ}5$:	Systématique de Citrullus colocynthis L	27
Tableau n°6 :	Quelques études sur les effets thérapeutiques de la coloquinte (<i>Citrullus colocynthis</i>) à travers le monde	33
Tableau n°7:	Composition en métabolites secondaires des différentes parties de la coloquinte (Citrullus <i>colocynthis</i>)	40
Tableau n°8:	Les classes majeures de composés antimicrobiens à partir de plantes	47
Tableau n°9 :	Quelques travaux antérieurs sur Citrullus colocynthis L	48
Tableau n°10:	Paramètres géographiques et bioclimatiques des stations d'étude	54
Tableau n°11:	Dosage de polyphénols totaux du fruit de la coloquinte	68
Tableau n°12:	Description et pouvoir pathogène des souches testées	70
Tableau n°13 :	Concentrations en extrait en citrullus colocynthis obtenue avant et après mélange avec le milieu PDAac	78
Tableau n°14 :	Dosage antioxydante du fruit de la coloquinte	82
Tableau n°15 :	Quelques utilisations traditionnellement de la coloquinte dans la zone d'étude et les parties utilisées et leurs modes de préparation traditionnelles	88
Tableau n°16:	Quelques caractéristiques des extraits préparés du fruit complet du citrullus colocynthis	90
Tableau n°17 :	Résultats expérimentaux des tests phytochimiques effectués sur citrullus colocynthis de la région de Béchar	92
Tableau n°18:	Résultats expérimentaux des tests phytochimiques effectués sur citrullus colocynthis de la région d'abiodh SIDI CHIK	95
Tableau n°19 : Résultats de quelques analyses chromatographiques (CCM) des différents extraits de fruit de la coloquinte à 254 mn		98
Tableau n°20:	Résultats de l'activité inhibitrice de l'EM(d) ₀₈ . Sur les souches fongiques testées	109

Tableau n°21:	: Résultats de l'activité inhibitrice de l'EM(d) ₃₂ . Sur les souches fongiques testées	
Tableau n°22 :	IC50 des extraits ED(d) 32 et ED(d) 08 de fruit de la coloquinte et de la vitamine C	116

Liste des abréviations

%: Pourcentage [C]: Concentration
°C: Degré Celsius

ADN: Acide Désoxyribonucléique **ALP:** Alanine Amino Transférase

ANOVA: Analyse de variance

A.Flavus Aspergillus Flavus

A.Niger Aspergillus Niger

ATCC: American Type Culture Collection

BHA: Butylhydroxyanisole
BHT: Butylhydroxytoluène
C. colocynthis: Citrullus Colocynthis

CAT: Capacité Antioxydante Totale

CCM: Chromatographie Sur Couche Mince

CHCI3: Chloroforme.

CLSI: Clinical And Laboratory Standards Institute

Cm: Centimètre

CMI: Concentrations Minimales Inhibitrices

DI50 : Dose Létale 50.

DMSO : Dimethylsulfoxide

DO : Densité Optique

DP : Point Du Dépôt

DPPH: 2,2-Diphenyl-1-Picrylhydrazyl

EAc: Extrait D'acétate D'éthyle Par Décoction

EH Extrait hexanique

EM(d)08: Extrait Méthanolique Par Décoction Du La Région Du Béchar EM(d)32: Extrait Méthanolique Par Décoction Du La Région Du Abiodh S/C

EM(m): Extrait Methanolique Par Macération

ERO: Espèces Réactives Oxygénées

et al.: et autres auteurs EtOAc: Acétate D'éthyle

Ext: Extrait
Fe2+: Ions ferreux
Fe3+: Ions ferriques
FeCl3: Chlorure De Fer

F.Oxysporum Fusarum oxysporum

g: Gramme

GGT: Gamma-Glutamyl Transférase

h: Heure

H₂SO₄: L'acide Sulfurique

IC50: Concentration Permettant D'inhiber 50% Du Radical DPPH

IP: Intra Péritonéale. IP: Institut Pasteur

K₃**F**_e(**CN**)₆: Ferricyanure De Potassium

Kg: Kilogramme

KH2PO4: Potassium Phosphate

Km: Kilomètre

LDH: Lactate Déshydrogénase

M: Molaire MeOH: Méthanol

mg EAG/g: Mg Équivalent Acide Gallique Par Gramme De Matière Sèche

Mg: Milligramme

Mg/kg:Milligramme/Kilogrammemg/ml:Milligramme/MillilitreMgCl2:Chlorure De MagnésiumMHB:Mueller Hinton Bouillon

min:Minutesml:MillilitremM:Mili Molaire

Na Cl: Chlorure De Sodium

NCCLS: Stands For National Committee For Clinical Laboratory Standards

NH4OH: Ammoniaque nm: Nanomètre

OMS : Organisation Mondiale De La Santé

PBS: Phosphate Buffered Saline "Tampon Phosphate Salé

PDA: Potatose Dextrose Agar

PDAac : Potatose Dextrose Agar Acidifié

PH: Potentiel D'hydrogène

R2 : Coefficient De La Corrélation

Rdt:RendementRF:Rapport FrontaleR.StoliniferRhizobus stolinifer

TGO: Transaminase Glutamo-Oxalo-Acétique

TGP: Transaminase Glutamopyruvique

UFC: Unité Formant Colonie

UV: Ultra Violé

v/v: Rapport volume/volume

μg: Microgramme

μg/ml: Microgramme/Millilitre

Table des matières

REMERCIEMENT	I
DEDICACES.	II
RESUME	III
ABSTRACT	IV
ملخص LISTE DES FIGURES	V VI
LISTE DE TABLEAUX.	VII
LISTE D'ABREVIATIONS	X
INTRODUCTION GENERALE	1
PARTIE I : Synthèse Bibliographique	
Chapitre I: Généralité sur les métabolites secondaires	
I. Présentation générales des métabolites secondaire	06
I.1.Définition	06
II. Classification des métabolites secondaires	07
II.1. Les composés phénoliques	07
II.1.1. Définition	07
II.1.2. Structure chimique	07
II.1.3. Biosynthèse des polyphénols	08
1. La voie de l'acide shikimique	08
2. La voie de l'acétate	08
II.2. Classification des polyphénols	09
II.2.1.1. Acides hydroxycinamiques	09
II.2.1.2. Acide hydroxybenzoïques	10
• • •	11
II.2.2. Les flavonoïdes.	11
II.2.2.1. Structure des flavonoïdes	11 12
II.2.4. Les coumarines	14
1. Définition.	14
2. Classification des coumarines.	14
3. Toxicité des coumarines	16
II .2.5. Les tannins.	16
1. Classification	16
2. Effets bénéfiques des tannins	16

II.3. Les alcaloïdes	17
1. Définition 2. Propriétés des alcaloïdes	17 17
3. Structure des alcaloïdes	17
3.1. Les alcaloïdes vrais	18
3.2. Les pseudo-alcaloïdes	18
3.3. Les proto-alcaloïdes	18
4. la biosynthèse des alcaloïdes	18
5. Le Rôle des alcaloïdes	18
5.1. Effet pharmacologique	18 19
II.4. Les terpenoïdes	19
1. Définition	19
2. Structure des terpenoïdes	19
3. Classification des terpenoïdes	20
Chapitre II : Présentation de la plantes étudiée	
I-Ethnopharmacologie et ethnobotanique	25
I.1. Noms vernaculaires	26
I.2.Taxonomie	27
I.3. Description morphologique	28
I.4. Répartition géographique	30
5. Actions thérapeutiques	31
I.6. Utilisation populaire	34
I.7.Toxicité	35
I.8. Composition chimique (Composition en métabolites secondaires des différentes parties de la coloquinte (<i>Citrullus colocynthis</i>)	36
I.8.1. La pulpe	36
I.8.2 . L es graines	37
I.8.3. Les tiges, les feuilles et les fleurs	38
I.8.4. les racines	39
Chapitre III : Les activités biologies	
I. Activité antioxydante	42
I.1. Généralités	42
I.2. Mécanismes de l'oxydation	43
I.3. Mécanismes d'action des antioxydants	44

II. Activité antimicrobienne	44
II.1. L'activité antibactérienne	44 45
II.1.1.1 Mécanismes génétiques	45 45
II.1.2. Site D'action des métabolites secondaires	46
II.2. L'activité antifongique	46
II.3. L'activité antiparasitaire	48
PARTIE II: Matériel Et Méthodes	
I. Objectif I. Enquête ethno pharmacologique	52 52
II.1. Description de la zone d'étude	52
II.2. Questionnaire	53
III. Matériel végétal	54
III .1. Situation géographique de la zone de récolte	54 55
IV. Les extractions	56
IV.1 Préparation des extraits	56
IV.1.1 Extraction par macération hydro-methanolique	57
IV.1.2. Décoction de l'extrait hydro-méthanolique	57
IV.1.3. Décoction en présence d'acétate d'éthyle	58
IV.1.4. Décoction en présence de hexane	58
IV.2. Détermination du rendement des extraits secs	61
V. Les analyses qualitatives	62
V.1. Tests phytochimiques (Screening phytochimique)	62
V.2. Chromatographie sur couche mince	66 66
VI. les Analyses quantitatives	67
VI.1.Dosage des composés phénoliques	67 67
VII. Évaluation des activités biologiques des extraits bruts	69 69
1.1. Microorganismes	69
1.2. Globule rouge.	69
2. Méthode	69
2.1. L'activité antimicrobienne de la <i>C</i> , <i>colocynthis</i>	69
	U)

2.1.1 Préparation des solutions des extraits
2.1.2. Préparation de l'inoculum
a. Préparation de pré-culture
b. Préparation de la suspension microbienne
2.1.3. Détermination des concentrations minimales inhibitrices (CMI) par la méthode des micro-dilutions sur milieu liquide
2.1.3.1. Activité antibactérienne. 2.1.3.2. Activité antifongique.
2.1.3.2.1. Le principe
2.1.3.2.2. Mode opératoire
2.1.4. Détermination des concentrations minimales inhibitrices (CMI) par la méthode Des micro-dilutions sur milieu solide
2.1.4.1.1. méthode direct
2.1.2. Détermination des concentrations minimales inhibitrice
3 . L'activité anti oxydante
3. 1. Méthodes de détermination de l'activité antioxydante
3.1.1.1. Mode opératoire
3.1.2. Pouvoir réducteur du fer
4. Étude de la cytotoxicité d'extrait vis-à-vis des érythrocytes
4.1. Préparation de la suspension érythrocytaire
4.2. Évaluation de la cytotoxicité extrait
I. Enquête ethno pharmacologique
II. Extractions
II.1. Rendements des extraits bruts obtenus
III. Screening phytochimiques
IV. Analyse chromatographique sur couche mince
V. Dosage des composés phénoliques
V.1. Courbe d'étalonnage pour le dosage des polyphénols totaux
VI. Étude des activités biologiques des extraits bruts
VI.1. Évaluation de l'activité antimicrobienne

VI.1.1. détermination des concentrations minimales inhibitrices (CMI) par la méthode Des micro-dilutions sur milieu liquide	102
VI.1.1. Activité antibactérienne	102
VI.1.1.2. Activité antifongique.	106
VI.1.1.2.1. Les levures.	106
VI.1.2.2. Les moisissures	107 108
VI.3. Évaluation du potentiel antioxydant des extraits	113
VI.3.1. Piégeage du radical 2,2-diphényl-1-picrylhydrazyl (DPPH•)	113
1. Courbe d'étalonnage	115
VI.3.2. Pouvoir réducteur du fer	117
VII. Tests d'hémolyse in vitro	118
CONCLUSION GENERALE	123
REFERENCES BIBLIOGRAPHIQUES	126
ANNEXE	143

De part sa situation géographique particulière, l'Algérie bénéficie d'une gamme très variée de climats favorisant le développement d'une flore riche et diversifiée à laquelle s'ajoute une tradition d'utilisation des plantes. En effet, le territoire Algérien couvre d'importantes ressources végétales réparties sur les côtes, les plaines, les montagnes, la steppe, le Sahara. Ces ressources naturelles sont importantes pour l'économie algérienne et pour le maintien de l'équilibre écologique de la région. La recherche de nouvelles molécules doit être entreprise au sein de cette biodiversité végétale en se servant de données ethno-pharmacologiques. Cette approche permet de sélectionner des plantes potentiellement actives et d'augmenter significativement le nombre de découvertes de nouveaux principes actifs, qui pourraient aider à résoudre le problème croissant de la résistance microbienne et la cancérogénicité des additifs alimentaires synthétiques actuellement disponibles dans le commerce.

Actuellement, les scientifiques favorisent le développement d'une nouvelle génération de substances antimicrobiennes et/ou antioxydante d'origine végétale pour remplacer celles de synthèse. De même, un certain nombre de secteurs industriels se tournent de nouveau vers l'incorporation de ces molécules aux caractéristiques biologiques intéressantes dans leurs formulations (Taviano et al., 2013). A cet effet, des études scientifiques s'intéressent à la phytochimie et aux activités des extraits de plantes, dans le but d'élargir les perspectives de valorisation des produits naturels (Atik et al., 2008; Ksouri et al., 2012; Larbat et al., 2012; Haddouchi et al., 2013; Taviano et al., 2013).

La région sud de notre pays, même s'il est désertique et doté d'un climat sec, renferme des régions spécifiques qui possèdent des variétés de plantes, surprenantes par leurs aspects et par leur pouvoir d'adaptation .on en dénombre plusieurs espèces endémiques. Dans ce contexte, et dans le but de la valorisation de la flore locale, nous nous sommes intéressés à l'étude des activités biologique d'une plante endémique du Sud Algérien. : *Citrullus colocynthis* de deux régions différentes de la région du Beni Ounif de la willaya Béchar et El Abiodh Sidi Cheikh de la willaya El Bayadh.

Cette étude comporte trois parties :

La première partie est consacrée à une synthèse bibliographique ;

Le premier chapitre nous étudierons les généralités sur les métabolites secondaires.

Introduction générale

- Dans le deuxième chapitre, est consacré à présenter le plante médicinale étudiée: citrullus colocynthis.
- Dans le troisième chapitre, nous passerons en revue les principales activités biologiques des extraits végétaux.

La seconde décrit la partie expérimentale :

Le matériel végétal a été récolté dans deux régions différentes la région du El Abiodh sidi cheik de la wilaya d'El Bayadh et la 2 ^{éme} est Béni Ounif de la wilaya de Béchar.

Nous avons extrait les extraits par deux méthodes differentes : macération et décoction a l'aide des solvants du différente polarités.

Aussi, nous avons caractérisé ces extraits en composition chimique. Les extraits, qui se sont montrés les plus actifs, ont été analysés par chromatographie sur couche mince, ainsi, leurs taux en polyphénols a été déterminé.

Ensuite, nous avons évalué les activités biologiques suivantes :

- ❖ Détermination des concentrations minimales inhibitrices (CMI) par la méthode des micro-dilutions sur milieu liquide vis-à-vis sept (7) souches fongiques ainsi que quatorze (14) souches bactériennes de références.
- ❖ Détermination des concentrations minimales inhibitrices (CMI) par la méthode des micro-dilutions sur milieu solide vis-à-vis quatre (4) souches fongiques
- Évaluation de l'activité antioxydante de nos extraits par deux méthodes : Piégeage du radical DPPH et pouvoir réducteur du fer
- Étude de la cytotoxicité des extraits vis-à-vis des érythrocytes.

La troisième est consacrée aux résultats et à la discussion. Ce travail s'achève par une conclusion générale et des perspectives

De nos jours, l'utilisation des plantes médicinales en phytothérapie a reçu un grand intérêt dans la recherche biomédicale et devient aussi importante que la chimiothérapie. Les plantes ont toujours été une source riche de médicaments parce qu'elles produisent une gamme de molécules bioactives, dont la plupart jouent probablement le rôle de défense chimique contre de prédateurs ou des agents infectieux (Small & Catling, 2000), comme métabolites secondaires, les huiles essentielles interviennent dans plusieurs domaines .Les métabolites secondaires sont produits en très feible quantité, dont plus de 200000 molécules ont été identifiées. Classés selon leur appartenance chimique en composés phénoliques, alcaloïdes et terpenoides (Amas, 1997).

Ces métabolites secondaires ont des fonctions très importants pour la survie et la propagation des plantes qui les produisent, comme signaux chimique, pour défendre leur producteur contre les herbivores et les pathogènes, comme ils participent à des réponses allélopathiques (compétition entre les plantes pour la germination et croissance). Certains assurent une protection contre les radiations solaires et d'autre encore facilitent la dispersion du pollen et des graines (Jeaun et al., 2005). Les métabolites secondaires sont aussi très exploités par l'Homme dans les différents domaines : dans le domaine culinaires comme colorants et arômes, dans le domaine agricole comme herbicides et dans le domaine médicinale comme antibiotiques, antioxydants, drogues.....etc. [(Bruneton, 1993); (Krief, 2003)].

I .Présentation générales des métabolites secondaire :

I.1.Définition:

Le terme «métabolite secondaire», qui a probablement été introduit par Albrecht Kossel en 1891, est utilisé pour décrire une vaste gamme de composés chimiques dans les plantes, qui sont responsables des fonctions périphérique indirectement essentielles à la vie des plantes. Telles que la communication intercellulaire, la défense, la régulation des cycles catalytiques (Guillaume, 2008).

Les métabolites secondaires (SM) sont présents dans toutes les plantes supérieures, et ayant une répartition limitée dans l'organisme de la plante. Dont plus de 200.000 structures ont été définies (Hartmann, 2007) et sont d'une variété structurale extraordinaire mais sont produits en faible quantité. Ces molécules marquent de manière originale, une espèce, une famille ou un genre de plante et permettent parfois d'établir une taxonomie chimique.

II. Classification des métabolites secondaires :

On peut classer les métabolites secondaires en trois grands groupes : les composés phénoliques, les terpènes et les alcaloïdes. Chacune de ces classes renferme une très grande diversité de composés qui possèdent une très large gamme d'activités en biologie humaine [(Krief, 2003), (Haven et al., 2000)].

II.1.Les composés phénoliques :

II.1.1.Définition:

Les composés phénoliques ou les polyphénols (pp) sont des produits du métabolisme secondaire des plantes, depuis les racines jusqu'aux fruits ce qui signifie qu'ils n'exercent pas de fonctions directes au niveau des activités fondamentales de l'organisme végétal, comme la croissance, ou la reproduction [(Fleuriet, 1982); (Yusuf, 2006)].

Les polyphénols sont des produits de la condensation de molécules d'acétyl-coenzyme A et de phénylalanine. Cette biosynthèse a permis la formation d'une grande diversité de molécules qui sont spécifiques d'une espèce de plante, d'un organe ou d'un tissu particulaire (**Nkhili**, 2009).

Ils ont largement distribués et comportant au moins 9000 structures connues différentes (Bahorun, 1997). Ces corps jouent un rôle fondamental car sont des éléments importants de qualités sensorielles (couleur et caractères organoleptiques) et nutritionnelles des végétaux, tels que les légumes, les fruits, les céréales ou les fruits secs, ainsi que dans les boissons, le café, le cacao ou le thé. Une alimentation équilibrée fournit à l'Homme environ un gramme de polyphénols chaque jour, soit dix fois plus que de vitamine C et 100 fois plus que de caroténoïdes ou vitamine E (Scalbert et al., 2005).

II.1.2.Structure chimique:

La structure chimique des polyphénols est comparable à tous les polyphénols. Ils sont caractérisés par un ou plusieurs noyaux aromatiques hydroxylés. Les polyphénols sont classés en différents groupes en fonction du nombre de noyaux aromatiques qui les composent et des substitutions qui les relient (Manallah, 2012).

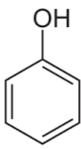


Figure n°01: Groupe phénol sité par (Manallah, 2012).

II.1.3.Biosynthèse des polyphénols :

La biosynthèse des polyphénols se fait par deux voies principales qui sont :

1. La voie de l'acide shikimique :

Dans cette voie, l'érythrose 4-phosphate et le phosphoénol pyruvate sont produits par les hydrates de carbones lors de leur dégradation par la voie des pentoses phosphate et la glycolyse, respectivement. Ces derniers sont à l'origine des composés phénoliques C6-C1 formant les tannins hydrolysables et de la chalcone qui est la molécule de base de tous les flavonoïdes et tannins condensés [(Haslam, 1994); (Dewick, 1995)].

Aussi, il est intéressant de préciser que la tyrosine et la phénylalanine dérivent de cette voie métabolique. En effet, ces deux acides aminés sont des intermédiaires métaboliques entre l'acide shikimique et l'acide cinnamique. [(Haslam, 1994); (Dewick, 1995)].

2. Voie de l'acétate :

La voie de l'acétate conduit (origine de ces poly à des poly β-coesters (polyacétates) de longueur variable, menant par cyclisation à des composés polycycliques tels que les dihydroxy-1,8 anthraquinones ou les naphtoquinones [(Bruneton, 1999); (Naczk et Shahidi, 2004)].

De plus, la diversité structurale des composés polyphénoliques due à cette double origine biosynthétique, est encore accrue par la possibilité d'une participation simultanée des deux voies (du shikimate et de l'acétate) dans l'élaboration de composés d'origine mixte, comme les flavonoïdes (Martin et Andriantsitohaina, 2002).

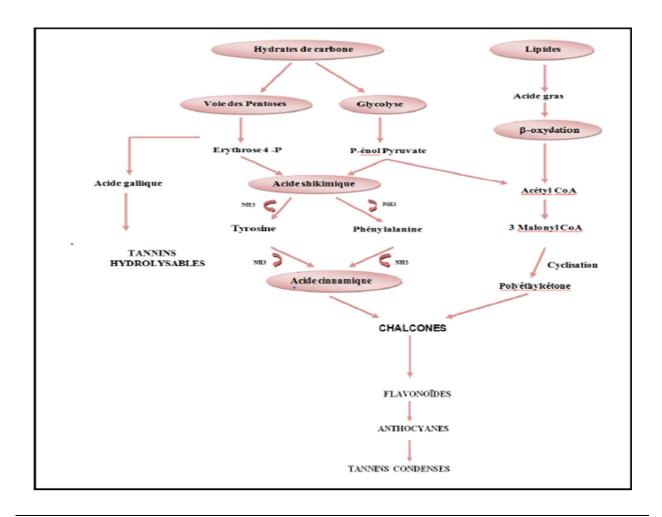


Figure n°02: Représentation des voies de biosynthèse des polyphénols (Akroum, 2011).

II.2. Classification des polyphénols :

On distingue les acides phénoliques (phénols simples), les flavonoïdes, les lignanes, les stilbènes, les coumarines et les tannins [(Glombitza, 1985); (Harborne, 1980); (Goodwin, 1988); (Porter, 1989); (Boros, 2010)].

II.2.1.Les acides phénoliques :

Ces composés sont dérivés de deux sous groupes distingués : Les acides hydroxycinnamiques, dont les plus abondants sont l'acide caféique, l'acide férulique, l'acide chlorogenique, et les acides hydroxybenzoïque, mais les plus répandus sont l'acide salicylique et l'acide gallique. Ils sont contenus dans un certain nombre de plantes agricoles et médicinales et présents chez toutes les céréales. (Laraoui, 2007).

II.2.1.1. Acides hydroxycinamiques:

1. Acide ferulique:

L'acide ferulique est identifié dans les grains d'orge, maïs, mils, avoine, seigle, blé, riz. Cet acide a comme principale propriété biologique, l'effet antioxydant [(Hahn et al., 1983); (Andreasen et al., 2000); (Zhou et al., 2004); (Kim et al., 2006)]. Leur structure chimique est montrée dans la figure n°03.

Figure n°03: Structure d'acide ferulique (Benaissa, 2011).

2. Acide caféique :

L'acide caféique est un composé naturellement présent dans toutes les plantes (maïs, mils, avoine, seigle, blé, riz). [(Suba et al., 2002) ; (Zhou et al., 2004); (Kim et al., 2006)].Il intervenant dans la synthèse de la lignine (molécule formant les parois des cellules végétales). Il a des propriétés, antitumorales, antivirales, antiradicalaires et anti-inflammatoires, il a été employé comme antioxydant naturel pour inhiber l'oxydation des lipides de poisson dans les matrices alimentaires (Cunha, et al., 2004). Leur structure chimique est montrée dans la figure n°04.

Figure n°04: Structure d'acide caféique par (Nkhili, 2009).

II.2.1.2. Acide hydroxybenzoïques:

1. Acide gallique:

L'acide gallique est abondant dans le mils, riz, sorgho[(Hahn et al, 1983); (Suba et al, 2002); (Zhou et al, 2004)]. Cet acide présente une très grande activité antioxydante (Smith et Kramer, 1999). Leur structure chimique est montrée dans la figure suivante.

Figure $n^{\circ}05$: Structure d'Acide gallique par (Akroum, 2011).

II .2.2.Les flavonoïdes :

Le terme flavonoïde (de flavus, «jaune» en latin). Ils constituent des pigments responsables des colorations jaune, orange et rouge de différents organes végétaux (Havasteen, 2002).

Ces diverses substances se rencontrent à la fois sous forme libre (aglycone) ou sous forme de glycosides. On les trouve, d'une manière générale, dans toutes les plantes vasculaires (**Erlund**, **2004**), où ils peuvent être localisés dans divers organe : racine, tiges, bois, feuilles, fleurs et fruits et ils jouent un rôle important dans la protection des plantes (**Bruneton**, **1993**).

II .2.2.1.Structure des flavonoïdes :

Flavonoïde, est un terme générique pour des composés basés sur un squelette à 15 atomes de carbone qui fait de deux cycles phényles C6, les cycles A et B, connectés par un pont à trois carbones (structure en C6-C3-C6). Ce dernier est situé entre les cycles A et B est communément cyclisé pour former le cycle C (cycle centrale). Les atomes de carbone dans les cycles C et A sont numérotés de 2 à 8, et dans le cycle B de 2' à 6' (**Figure ci-dessous**) (**Bruneton, 1999**).

Figure n°06 : Structure de base des flavonoïdes par (Dacosta, 2003)

Les composés de chaque sous-classe se distinguent par le nombre, la position et la nature des substituants (groupements hydroxyles libres, méthylés ou glycosylés) sur les deux cycles aromatiques A et B et le cycle central C. les flavonoïdes peuvent être divisés en différentes classes : anthocyanidines, flavonoles, isoflavonoles, flavones, isoflavones, flavanes, isoflavanes, flavanols, isoflavanols, flavanones, isoflavanones et aurones [(Havsteen, 2002); (Edenharder et Grünhage, 2003)], quelque classes sont cités dans le tableau n° 1.

II .2.3.Les lignanes :

1. Définition:

Le terme lignane à l'origine présenté par Haworth en 1936. Les lignanes sont les dimères des unités de phenylpropane (C6 C4) (**Benarous**, **2009**).

La distribution botanique des lignanes est large: plusieurs centaine des composés ont été isolés dans environ soixante-dix familles .Chez les gymnospermes, Ils sont surtout rencontrés dans les bois alors que chez les Angiospermes, Ils ont été découvert dans toutes les parties des plantes : les racines, les feuilles, les fruites est les graines (**Midoun, 2011**).

Figure n°07: Structure des lignanes par (Midoun, 2011).

Tableau n°1: présente quelques classes distinctes des flavonoïdes (Bellebcir, 2008).

Classe	Formule	source	propriété	
flavanols	ОН	raisins, Thé, cacao	-Antioxydants naturels -anticancéreuses	
flavanones	7 8 1 2 2 4 4 5 5 5 6 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	Les Agrumes : orange, citron, pamplemousse, mandarine, orange amère	 -neutralisation des radicaux libres. -amélioration de l'absorption de la vitamine C. - la prévention des cancers de la peau. 	
Isoflavones		Soja	-phytoestrogéniques Source de phytoestrogènes.	
flavonols	7 8 1 1 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Oignon, pomme, brocoli, fruits rouges	antihistaminique, antioxydante. anti-inflammatoire et - antihistaminique, anti- inflammatoire et antioxydante Isorhamnétine : propriétés antioxydante.	
anthocyanes	HO OH R ₁ = H: R ₂ = H: Kaempferol R ₁ = OH: R ₂ = H: Quercetin R ₁ = OH: R ₂ OH: Myricetin R ₁ = OCH ₃ : R ₂ = H: Isorhamnetin	Myrtille, mûre, raisin noir, aubergine, prune	la lutte contre le vieillissement cellulaire en améliorant l'élasticité et la densité de la peau. - Présente comme des couleurs brillant dans les fruits et les légumes. - antiseptiques urinaires.	

Les lignanes sont répartis en huit groupes structuraux classés selon le mode d'incorporation du (ou des) atome (s) d'oxygène dans le squelette carboné et selon le type de cyclisation (Umezawa, 2003).

Ces groupes sont : les furanofuranes, les aryltétralines, les furanes, les arylnaphtalènesles-, di benzylbutanes, les dibenzocyclooctadiènes, les dibenzylbutyrolactones, et les dibenzylbutyrolactols. Selon plusieurs chercheurs [(McRae & Towers, 1984); (Charlton, 1998); (Fauré et al., 1990); (Saleem et al., 2005); (Cos et al., 2008); (Pan et al., 2009); (Yousefzadi et al., 2010)], les lignanes montrent plusieurss activités biologiques, antivirales, anticancéreuse, antimicrobienne et antioxydante.

II .2.4.Les coumarines :

1. Définition

Les coumarines tirent leur nom de « coumarou », nom vernaculaire de fève tonka (*Dipterix ordorota* Wild., Fabaceae) dont les fèves contiennent 1 à 3% de coumarine, d'où fut isolée en 1982 (**Bruneton, 1993**).

Le squelette de base des coumarines est constitué de deux cycles accolés avec neuf atomes de carbone (**Ford et al., 2001**). Le squelette est montré dans la figure suivante n°08

Dipterix ordorota

Figure n°08 : Squelette de base des coumarines par (**Djemoui**, 2012).

2. Classification des coumarines : Les coumarines sont substituées par un hydroxyle ou plus sur les six positions disponibles. La majorité des coumarines sont substituées en C-7 par un hydroxyle. Selon la nature des substituant sur leurs structures. On peut classer les coumarines en cinq catégories : [(Guignard, 1998); (Deina et al., 2003); (Booth et al., 2004)].

Tableau n°02: les cinq catégories des coumarines et leur Activités biologiques et intérêts pharmacologiques.; (Booth et al., 2004).

Classe	Caractères	sous classes	intérêts pharmacologiques
Coumarines Simples (Harkati, 2011).	possèdent des Substitutions (OH ou OCH3) en 6 et 7.	Les génines ex : Fraxétol (R1 : OcH3 -R2 : OH - R3 : OH) (Djemoui, 2012). Les hétérosides ex :Fraxoside (R1 :OcH3 - R2 : O-Glu- R3 : OH)	-anti-agrégation plaquettaires -anti-inflammatoire -anticoagulante anti tumorale - diurétiques - antivirale
Furanocoumarines (Harkati, 2011).	elles dérivent par condensation isopronoïdes en C5, sont liposolubles	(Djemoui, 2012). Les Furanocoumarines lineaires : dérivant de la molécule de psoralène. .les Furanocoumarines angulaires ; basées sur la structure de l'angélicine.	- analgésique -antibactérienne, les coumarines sont efficaces contre les bactéries à Gram positif (Cottiglia et al., 2001; Laure, 2005; Khan et al.,2005).
Pyranocoumarines (Harkati, 2011).	la fusion d'un hétérocycle pyrane avec la coumarine	soit dans le prolongement forme linéaire : le xanthylétine soit dans le prolongement forme angulaire : les séseline.	
Dicoumarines (Harkati, 2011).	la liaison de deux unités coumariniques simples. : Edgeworthine Daphnorétine		
Tricoumarines (Djamila, 2012)	l'union de trois unités coumarique		

3. Toxicité des coumarines :

La coumarine n'est pas toxique en soi, elle peut être convertie par les champignons, en une toxine qui est le dicoumarol qui est typiquement présent dans le foin moisi ; chez le bétail, le dicoumarol provoque des hémorragies fatales en inhibant la vitamine K qui est un facteur de coagulation du sang [(Schorderet, 1992) ; (Repcak et al., 2001); (Khan et al., 2005)].

II .2.5.Les tannins :

1. Classification:

Les tannins sont des macromolécules qui se divisent selon leur structure en deux groupes distincts. Les tannins hydrolysables et les tannins condensés [(Mueller-Harvey et Mc Allan, 1992); (Bruneton, 1999); (Hagerman, 2002)]. Comme leur nom l'indique, ces substances s'hydrolysent facilement en milieux acides et alcalins ou sous l'action d'enzymes (telle que la tannase), pour donner des glucides et des acides phénoliques (Leinmüller et al., 1991).

1.1. Les tannins galliques possèdent un acide gallique

1.2. Les tannins éllagiques ont un acide hexahydroxyphénique.

Figure n°09: Structures de l'acide gallique et d'un tannin gallique par (Bruneton, J., (1999).

2. Effets bénéfiques des tannins :

Les tanins peuvent exercer des effets nutritionnels bénéfiques chez les ruminants qui en consomment des taux modérés. Plusieurs études suggèrent que la présence des tanins condensés à un seuil inférieur à 6% est avantageuse et induit une amélioration des performances animales, croissance et rendement en viande et en lait (Barry et al., 1986).

La précipitation des protéines par les tanins protège les microorganismes du rumen de leurs effets délétères. Les tanins ont également un pouvoir cicatrisant car ils favorisent la régénération des tissus en cas de blessure superficielle (**Brunet**, 2008).

Les tannins sont aussi un moyen de défense contre les agressions des prédateurs tels les insectes et les mammifères herbivores [(Mueller-Harvey et Mc Allan, 1992); (Woodward et Coppock, 1995); (Feucht et al., 1997)].

II.3. Les alcaloïdes :

1. Définition :

Un alcaloïde est une substance organique azotée d'origine végétale a caractère alcalin et présentant une structure moléculaire hétérocyclique complexe (**Badiaga**, **2011**).

Chez de nombreuses plantes, les alcaloïdes se localisent dans les pièces florales, les fruits ou les graines, ces substances sont trouvées concentrées dans les vacuoles (**Krief**, 2003). Ce sont des composés relativement stables qui sont stockés dans les plantes en tant que produits de différentes voies biosynthétiques (**Mauro**, 2006).

2. Propriétés des alcaloïdes :

Les alcaloïdes sont caractérisés par une solubilité faible dans l'eau, facilement soluble dans l'alcool et peuvent donner des colorations spécifiques avec certains réactifs (réactifs de Mayer, de Dragendorf, deWasicky, de Bouchardat). Ils exercent en générale de puissante action pharmacologique. Les alcaloïdes ayant des masses moléculaires très variables de 100 à 900 g/mol. La plupart des bases non oxygénées sont liquides à température ordinaire celles qui comportent dans leur formule de l'oxygène sont des solides cristallisables, rarement colorés (Rakotonanahary, 2012).

3. Structure des alcaloïdes :

La plupart des alcaloïdes sont dérivés d'acide aminés tels que le tryptophane, l'ornithine, la lysine, l'asparate, l'anthranilate, la phénylalanine et la tyrosine. Ces acides aminés sont décarboxylés en amines et couplées à d'autres squelettes carbonés (**Cyril, 2001**). On divise les alcaloïdes en trois genres :

3.1. Les alcaloïdes vrais :

Les alcaloïdes vrais sont toxiques et disposent d'un large spectre d'activités biologiques. Ils dérivent d'acides aminés et comportent un atome d'azote dans un système hétérocyclique. Ils sont présents dans les plantes, soit sous forme libre, soit sous forme de sel, soit comme N-Oxyde. (Badiaga, 2011).

3.2. Les pseudo-alcaloïdes :

Les pseudo-alcaloïdes présentent le plus souvent toutes les caractéristiques des alcaloïdes vrais, mais ne sont pas des dérivés des acides aminés. (Badiaga, 2011). Ce sont des dérivés d'isoprénoïdes (alcaloïdes terpéniques) et du métabolisme de l'acétate. (Rakotonanahary, 2012).

3.3. Les proto-alcaloïdes :

Les proto-alcaloïdes sont des amines simples dont l'azote n'est pas inclus dans un hétérocycle, ils ont un caractère basique et sont élaborés *in vivo* à partir d'acide aminé. Ils sont appelés « amines biologiques » et sont soluble dans l'eau. (**Badiaga, 2011**). En pratique, il est admis que ne sont pas des alcaloïdes : les amines simples, les bétalaïnes, les peptides, les acides aminés, les amino-sucres, les porphyrines, les alkylamines et les arylakylamines. (**Rakotonanahary, 2012**).

4. la biosynthèse des alcaloïdes :

L'origine des alcaloïdes vrais remontent aux acides aminés précurseurs entre autres : La lysine, la phénylalanine, la tyrosine, l'acide anthranilique, l'acide nicotinique, l'histidine, le tryptophane, l'ornithine (Mauro, 2006).

5. Le Rôle des alcaloïdes :

5.1. Effet pharmacologique :

Les alcaloïdes affectent chez l'être humain le système nerveux particulièrement les transmetteurs chimiques tels l'acétyl choline, norepinephrine, acide ß aminobutyrique (GABA), dopamine et la serotonine. (Badiaga, 2011).

D'autres effets pharmacologiques sont attribués également aux alcaloïdes telles que l'effet analgésique (cocaïne), anti-cholinergique (atropine), anti-malaria (quinine), antitussive (codéine), stimulant centrale (caféine), dépressant cardiaque et diurétique narcotique (morphine), anti-tumeur et sympathomimétique (éphédrine) (**Badiaga, 2011**).

5.2. Effet sur la plante :

Les alcaloïdes tout d'abord, ont des effets bénéfiques sur la plante synthétisante, parmi ces effet, selon DA CONCEICAO en (2010), ils régulent la croissance et le métabolisme interne des végétaux, ils désintoxiquent et transforment les substances nocives au végétal, ils Protègent la plante contre les rayons ultraviolets comme ils ont des effets contre les herbivores (**Mauro**, **2006**).

II.4.Les terpenoïdes :

1. Définition :

Le terme terpène inventé par **Kekulé**, vient de leur origine historique de l'arbre de terebinth : « *Pistacia terebinthus* » (**Ayad**, **2008**).

Le terme de terpénoïde est attribué à tous les composés possédant une structure moléculaire construite d'un monomère à 5 carbones appelé isoprène. (Malecky, 2005).

2. Structure des terpenoïdes :

Les terpènes sont des hydrocarbonés naturels, de structure soit cyclique soit à chaîne ouverte : leur formule brute est (C_5H_X) n dont le x est variable en fonction du degré d'instauration de la molécule et n peut prendre des valeurs (1-8) sauf dans les poly terpènes qui peut atteindre plus de 100 (le caoutchouc). La molécule de base est l'isoprène de formule C_5H_8 .

Le terme terpénoïde désigne un ensemble de substances présentant le squelette des terpènes avec une ou plusieurs fonctions chimiques (alcool, aldéhyde, cétone, acide, lactone, etc.) (Malecky, 2005 .Benaissa, 2011).

Figure n°10: structure de base de l'isoprène par (Khenaka, 2011).

3. Classification des terpenoïdes :

La classification des terpenoïdes est basée sur le nombre de répétitions de l'unité de base isoprène en donnant des hémiterpènes (C5), monoterpènes (C10), sesquiterpènes (C15), diterpènes (C20), sesterpènes (C25), triterpènes (C30), tetraterpènes (C40) et polyterpènes (Mebarki, 2010). Le tableau n°03 présenté quelque exemple des différents types de terpenoïdes.

Tableau n°03: Différents classes de terpenoïdes avec quelques (Belbache, 2003)

N	Squelette	Type de	description	exemple
	carboné	terpenoides		
1	C5	Hemiterpene	ayant une formule de C5 ramifiée	seul l'isoprène
			(Malecky, 2005).	qui a toutes les
				caractéristiques
				biogénétiques des
				terpènes (Loomis
				et Croteau,
				1980
2	C10	Monoterpéne	-terpènes dont la majorité est rencontrée	Nérol, citronnelle,
			dans 90% les huiles essentielles (Ayad,	huiles essentielles
			2008).	(Allen et al.,
			-Ce sont des molécules légères, très peu	
			fonctionnalisées, très odorantes, la	
			plupart ont des activités biologiques	
			reconnues (Belbache , 2003). Il existe 3	
			catégories structurelles :	
			les monoterpènes linéaires (acycliques).	
			les monoterpènes avec un cycle unique	
			et ceux avec deux cycles et tricyclique	
			(Malecky, 2005; Belbache, 2003).	

3	C15	Sesquiterpène	Les sesquiterpènes forment une série de composés qui renferment 15 atomes de carbones, ils se trouvent sous forme d'hydrocarbures comme le β - Cadinène (Belbache , 2003) ou sous forme d'hydrocarbures oxygénés comme : les alcools, les cétones, les aldéhydes, les acides et les lactones dans la nature.	Les sesquiterpènes et les β -Cadinène (Belbache, 2003) les alcools (Ayad, 2008).
4	C20	Diterpéne	Les diterpènes sont des substances avec 20 atomes de carbone (C20) élaborées à partir de 4 unités d'isoprène; ils se forment à partir de leur précurseur, le géranylgéranyl-pyrophosphate (GGPP) (Malecky, 2005) ou tricycliques comme l'acide abiétique.	ils peuvent être monocycliques comme la vitamine A, bicycliques comme le sclaréol (Loomis et Croteau, 1980; Belbache, 2003; Malecky, 2005).
6	C30	Triterpéne	Les triterpènes sont des molécules à 30 atomes de carbone. Ils ont comme précurseur le squalène (Belbache, 2003).	Le lanostérol qui est ensuite transformé en cholestérol, c'est de plus un des constituants de la graisse de la laine de mouton (Klaas, 2002; Belbache, 2003).
8	C40	Tetraterpéne	Les Tetraterpènes contiennent une longue chaîne de 40 atomes de carbones, à doubles liaisons conjuguées de configuration « trans » dont les extrémités sont des chaînes ouvertes ou des cycles (Ayad, 2008).	Les tétraterpènes les mieux connus sont les caroténoïdes. (Ayad, 2008)
>8	>40		Polyterpéne Les polyterpènes ou polyisoprènes se composent de plus de 8 unités d'isoprène.	Caoutchouc (Loomis et Croteau, 1980)

De nombreux chercheurs ont été intéressés par les composés biologiquement actifs isolés des extraits de plantes. Cette matière végétale contient un grand nombre de métabolites secondaires, qui ont des intérêts multiples mis à profit dans l'industrie, en alimentation, en cosmétologie et en dermopharmacie, ces composés sont réparties en trois classe, les polyphénoles, les alcaloïdes et les terpenoïdes, sont actuellement utilisés comme des médicaments ou des suppléments alimentaires pour guérir ou prévenir diverses maladies.

Dans le monde, de nombreux pays font appel à la médecine traditionnelle pour répondre à certains de leurs besoins en soins de santé primaire. En Afrique, la médecine traditionnelle constitue le premier recours pour près de 80% de la population. La médecine traditionnelle peut être définie comme un ensemble de savoirs, de connaissances, de pratiques explicables ou non, de techniques de préparation et d'utilisations de substances d'origine végétale, animales ou minérales (OMS, 2002). Plusieurs études ethnopharmacologies ont été réalisées dans la région du Maghreb, dont la population est reconnue par l'usage de plantes médicinales, montrent la diversité des plantes médicinales. Elles étaient employées pendant des siècles comme remèdes pour les maladies humaines. Récemment, le développement de la résistance microbienne aux antibiotiques disponibles ainsi que les effets secondaires négatifs infligés par les drogues modernes ont mené les chercheurs à étudier l'activité antimicrobienne des plantes médicinales (Garnero, 1991).

Les substances naturelles issues des végétaux ont des intérêts multiples mis à profit dans l'industrie, en alimentation, en cosmétologie et en pharmacologie. (**Bahorun**, 1997). Parmi ces composés on retrouve dans une grande mesure les métabolites secondaires qui sont surtout utilisés en thérapeutique. La pharmacie utilise encore une forte proportion de médicaments d'origine végétale et la recherche est orientée vers la découverte de nouvelles molécules bioactives, ou des matières premières pour la semi synthèse (**Bahorun**, 1997).

De part sa situation géographique, l'Algérie chevauche entre deux empires floraux : l'Holarctis et le Paleotropis. Cette position lui confère une flore très diversifiée par des espèces appartenant à différents éléments géographiques. Sur les 3139 espèces (5402 taxons en comptant les sous espèces, les variétés et les formes) décrites par **Quezel et Santa** (1962) dans la nouvelle flore de l'Algérie et des régions désertiques méridionales, **Zeraia** (1983) dénombre 289 espèces assez rares, 647 rares, 640 très rares, 35 rarissimes et 168 endémiques (**Inraa**, 2006).

La famille des cucurbitacées est une famille de plantes dicotylédones qui comprend environ 800 espèces réparties en 120 genres. Elles sont principalement des plantes tropicales, présentes dans tous les continents et spécialement en Afrique et en Amérique latine, même s'il en existe des représentants sauvages en Europe (bryone dioïque par exemple). Quelques espèces sont cultivées dans les pays tempérés, mais ne s'y sont pas naturalisées. Les fruits de cette famille à plusieurs utilisation : alimentaire : *Citrullus lanatus* ; médicinale : *Cucumis sativus* ; aromatique : *Cucurbita pepo ssp. Pepo* (Emberger, 1960). De nombreux travaux se sont consacrés aux

propriétés antifongiques et antibactériennes de la coloquinte (*Citullus colocynth*). (Marzouk et al., 2010).

Nous avons axé notre travail sur l'étude phytochimique de plante saharienne : *Citrullus colocynthis*. Le choix de la plante a été guidé par leurs usages dans la pharmacopée. Nous avons proposons avant de présenter nos résultats de donner une revue de littérature des travaux antérieurs effectues sur cet espèce.

I-Ethnopharmacologie et ethnobotanique :

La coloquinte est une plante herbacée, vivace de la famille des cucurbitacées. Sa tige est munie de vrilles et son fruit est une grosse baie sphérique de couleur ocre à maturité, de la dimension d'une grosse orange, lisse à sarcocarpe spongieux. Ses feuilles sont multilobées et velues et ses fleurs sont jaunes. Le figure n° 11 présente ces caractères Elle est cultivée dans les pays tropicaux comme plante médicinale pour la pulpe de ses fruits, qui est amère et toxique (Sincich, 2002).

Figure n°11: Photo personnelle; Fruits de coloquinte

I.1. Noms vernaculaires:

Après une enquête nous avons trouves que les peoples ont donnes à la coloquinte quelle noms qui sont représentes dans le tableau suivant

Tableau n °4 : Quelles que noms de la coloquinte

Le peuple	Les noms	
	Handal, Hadag, Handhal; Hantal, Hadjja. Les Algériens lui attribuent plusieurs noms vernaculaires comme hidedj حدج, handhal علقم , says صيص , âlqam علقم , alqam صحراء مرارة Berber .	
Les Arabes		
Français	coloquinte, chicotin	
Anglais	Colocynth, bitter apple, bitter gourd, egusi [(John et Cincinnati, 1898); (Merad Chiali, 1973); (Batanouny et al., 1999)]	
Inde	Tumba ou Gartoomba	
Allemand	Bitterzitrulle, Bitterapfel.	
Italien	coloquintida, popone amaro coloquinte (Sincich, 2002).	

On peut trouver la coloquinte sous d'autres noms tels que: *Cucumis colocynthis* Linné, (1753); *Colocynthis vulgaris* Schrader, (1833); *Cucumis pseudocolocynthis* Wender (1834) et *Colocynthis officinalis*, Schrader (1838) [(Fursa et al., 1982); (Esquinas-Alcazar and Gulick, 1983); (Burkill, 1985); (Hanelt, 2001)].

I.2. Taxonomie:

La botanique à laquelle incombe la classification des espèces végétales, différencie la famille des cucurbitacées de la façon suivante:

Tableau n°5 : Systématique de Citrullus colocynthis L (Ozenda, 1991).

Règne	Planta
Embranchement	Spermaphyte
Sous-embranchement	Angiosperme
Classe	Dicotylédones
Sous-classe	Dilleniidae
Ordre	Violales
Famille	Cucurbitaceae
Genre	<u>Citrullus</u>
Espèce	<u>Colocynthis</u>

Nom binomial: Citrullus colocynthis (L.) Shrader, 1838.

I.3.Description morphologique:

Citrullus colocynthis est une plante monoïque (fleurs mâles et fleurs femelles séparées). La pollinisation se fait naturellement par des insectes (**Munger et** *al.*, **1991**).

C'est une plante bisannuelle, à tiges rampantes munies de feuilles palmatilobées à 3-5 segments, crénelées ; fleurs jaunes pâles ou verdâtres, à sexes séparés, solitaires, à pédoncules courts, axillaires, apparaissent l'été entre Mai et Août à l'aisselle des feuilles, corolles à 5 pétales ovales, à marge sinueuse ; 5 étamines à anthères épaisses se touchant entre elles. La corolle de couleur jaune comporte cinq lobes. (**Baba Aissa., 2000**).

Figure n°12 : Plante de *Citrullus colocynthis* (la région de **Béni Ounif**, 2015).

Les tiges, assez grêles et souvent cannelées, peuvent dépasser 10 mètres. Au niveau de chaque nœud se différencie un complexe axillaire se composant d'une ou de plusieurs feuilles, d'une ou de plusieurs inflorescences, d'une ramification ou d'une vrille. Les vrilles, simples ou ramifiées, permettent aux tiges de s'accrocher à un support (**Armougom, 1998**). Ces différentes parties sont représentes dans le figure n° 13 et figure n°12.

La plante peut produire 15 à 30 fruits de 7 à 10 cm de diamètre en moyenne ressemblant à une petite pastèque [(Feinbrun-dothan, 1978); (Zahra et al., 1999)]. Les fruits sont des baies appelées aussi pépons ou péponides, globuleux de 8 à 12 cm, à épicarpe coriace, de couleur verte tachetée ou marbrée qui devient jaune à maturité et à pulpe blanchâtre à saveur très amère contenant de très nombreuses graines. Les grosses baies peuvent contenir jusqu'à 500 graines par unité (Casimir et al., 1992). (Figure n°14)

- La chair légère, spongieuse, de couleur jaune orangé.
- Les graines de petite taille (6mm de longueur), ovoïdes et aplaties, lisse, de couleur variant de l'orange au brun noirâtre et ont une saveur amère [(**John et Cincinnati, 1898**) ;(**Duke, 1983**)]. Figure n°14

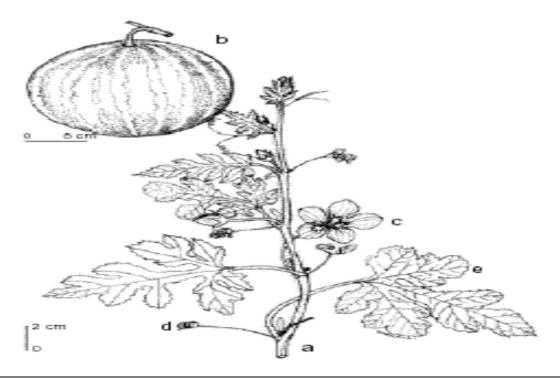


Figure n°13: Coloquinte Citrullus Colocynthis. (Zoro et al., 2003).

a = rameau; b = fruit; c = fleur mâle; d = vrille; e = feuille

Figure n°14 : Fruits et grains de *Citrullus colocynthis* (Université –Saida, 2016).

La section transversale du fruit montre à l'intérieur une fente étoilée à 3 branches rayonnantes, chaque secteur comprend les placentas volumineux portant de très nombreuses graines ovoïdes et jaunâtres (**Armougom**, 1998).

Les proportions de la pulpe, graines et écorce sont 15 :62 :23 (m/m/m) respectivement dans 100g de fruit sec (**Panda**, **2000**).

Figure n°15: fruit de Citrullus colocynthis décortiqué Photo personnelle

I.4. Répartition géographique :

La coloquinte, originaire des sols arides, est très fréquente dans les régions tropicales humides ou modérément sèches, elle est peu présente dans les zones tempérées (Bruneton, 1996). Elle occupe une région très vaste qui s'étend du Nord Africain, du Sahara, Egypte, Arabie Saoudite jusqu'au Inde, ainsi que la région méditerranéenne [(John et Cincinnati, 1898) ;(Batanouny et al., 1999.)] .La coloquinte était aussi bien connue chez les civilisations Grecques et Romaines que chez les Arabes (le Handhal est mentionné par Ibn El-Baytar dans ses prescriptions). Elle est aussi mentionnée dans un herbier Anglais du 11ème siècle [(Trease, 1976) ;(Memon et al., 2003)].Originaire de l'Asie tropicale et d'Afrique, la coloquinte pousse spontanément dans le bassin méditerranéen et la zone pré désertique d'Afrique et d'Asie (Inde et Ceylan). Elle est cultivée essentiellement aux îles grecques, en Syrie, en Egypte Arabie Saoudite jusqu'en Inde, ainsi que la région méditerranéenne (sud européen) pour ses fruits (Batanouny et al. 1999). Récoltés à l'automne lorsqu'ils commencent à jaunir, ces derniers sont pelés au couteau et séchés au soleil ou à l'air chaud [(Takagi et al., 1981) ; (Armougom, 1998)].

I.5. Actions thérapeutiques :

En médecine, la coloquinte est largement répandue il est très conseillé comme aliment regorgé de plusieurs nutriments, dont les fibres, le potassium, le calcium et le fer. Il fournit de précieux antioxydants ayant la capacité à neutraliser ou à réduire les dommages causés par les radicaux libres dans l'organisme humain (Sawaya et al., 1986)

La pulpe (mûre ou séchée) à un effet purgatif énergique, antinéoplasique, antihydropysie, antigoute, anti-arthrite et peut être un remède pour la congestion cérébrale, le rhumatisme et la sciatique (**Armougom**, 1998). Elle peut être aussi utilisée pour traiter les hémorroïdes et les varices (**Khare**, 2007).

A forte dose, elle est émétique et irrite les muqueuses gastro-intestinales et, à petites doses un bon expectorant (**Al Ghaithi et** *al.*, **2004**).

La pâte des racines s'applique aux différentes inflammations et tuméfactions. Dans le traitement de rhumatisme, 180g de mixture de racines et de poivre long à quantité égale sont pris tous les jours par le malade. Pour les inflammations intestinales et tumeurs, la poudre de racines mixée avec l'huile de ricin est administrée au malade, et la poudre seule peut être utilisée comme insecticide [(Dastur, 1962); (Panda, 2000)].

En pharmacie moderne, l'extrait sec de la coloquinte entre dans la formulation des comprimés traitant les affections hépatiques, les fièvres, les parasites intestinaux, la constipation et la congestion cérébrale [(Anonymous, 1970); (Memon et al.,2003)].

Les graines de la coloquinte sont largement répandus dans la médecine traditionnelle, car elles possèdent diverses propriétés thérapeutiques : purgatives, anti-tumorale [(Darwish- Sayed et al., 1973); (Ziyyat et al., 1997); (Abdel-Hassan et al., 2000); (Al-Yahya et al., 2000)], anti-inflammatoire [(Barth, et al., 2002); (Al Ghaithi et al., 2004)], antirhumatismal(Adam et al., 2001), laxative [(Al Faraj, 1995); (Ziyyat et al., 1997)], contre les troubles urogénitaux, la leucémie, l'ictère, la fièvre, l'ascite, les désordres biliaires, les hémorroïdes [(Duke, 1978); (Ziyyat et al., 1997)] et constipation, l'oedème, les infections bactériennes et le cancer (Delazar et al., 2006).

Les racines sont employées dans les traitements de l'ictère, les maladies urinaires et le rhumatisme, les douleurs de joint, l'inflammation et extérieurement dans les maladies

ophtalmiques. Les feuilles sont employées pour le traitement de l'ictère et l'athsme [(Kirtikar et Basu, 1984); (Baquare et Tasnif, 1984)].

Les feuilles sont utilisées contre l'hémorragie, prescrites pour soulager les douleurs des membres inférieurs, le dos et les articulations (Ziyyat et al., 1997).

Le fruit de cette espèce est largement répandu en médecine naturelle, car elle possède diverses propriétés thérapeutiques elle est utilisés dans le traitement des infections génito-urinaires, dont l'aménorrhée en provoquant une contraction de l'utérus [(Ozaki, 1990) ;(Harvey, 1898)]

L'huile extraite à partir des graines est employée pour traiter des morsures (de serpent, de scorpion), épilepsie, pour favoriser la croissance de cheveux et pour noircir les cheveux gris (Roy et al., 2007). L'extrait éthanolique du fruit de la coloquinte exerce un effet antimicrobien sur *Pseudomonas aeruginosa* et *Staphylococcus epidermis* et un effet antifongique sur plusieurs genres de champignons (Gurudeeban et al., 2010).

Des études récentes ont montré que la coloquinte peut avoir un antidiabétique, cancérigènes, antioxydant, des effets antibactériens et toxiques (Al-Ghaithi et al., 2004)

Le cataplasme des feuilles est utilisé dans les migraines et les névralgies [(Kirtikar et al., 1957); (Akhar, 1994); (Khare, 2007)].

En Algérie, le traitement par le fruit du Citrullus coloynthis diffère d'une région à une autre sauf pour le traitement du diabète, où c'est toujours un traitement externe pour les trois régions :

- Dans la région d'El Goléa, en plus du traitement du diabète, il est utilisé pour les dermatoses, odontalgies, infections génitales et algies rhumatoïdes.
- Dans la région de Béni Abbès, on s'en sert surtout pour les infections génitales et les algies rhumatoïdes.
- Dans la région de Ouargla, on traite des plaies, des dermatoses et des piqûres de scorpions (Maiza et al, 1993)

Plusieurs effets thérapeutiques des différentes parties de la coloquinte ont été recherchés scientifiquement au laboratoire in vivo et in vitro. Ces recherches sont montrées dans le tableau suivant n°6.

Tableau n°06: Quelques études sur les effets thérapeutiques de la coloquinte (*Citrullus colocynthis*) à travers le monde.

Région	Métabolites /	Effets thérapeutiques	Références
	parties utilisées		
Iran	Flavonoïdes (Fruits)	Pouvoir antioxydant important	Delazar et <i>al.</i> , 2006
Arabie Saoudite	Extrait éthanolique (pulpe)	Pouvoir antioxydant puissant contre le stress oxydatif chez les rats rendus diabétiques par l'alloxane.	Dallak et Bin- Jaliah, 2010
	Glycoside triterpène Cucurbitacines E et I (Fruits)	Pouvoir anticancéreux (Carcinome hépatocellulaire)	Ayyad et <i>al.</i> , 2012
Inde	Extrait méthanolique (Fruits)	Pouvoir antioxydant	Kumar et <i>al.</i> , 2008
	Extrait méthanolique (graines)	Antiulcéreux	Gill et <i>al.</i> , 2011
Soudan	Graines	Activité cancérogène après administration épicutané chronique aux Souris	Habs et <i>al.</i> , 1984
Tunisie	Extrait aqueux et extrait acétone (différent parties)	Effet antibactérien (sur Escherichia coli et Pseudomonas aeruginosa) et antifongique (Candida albicans et Candida glabrata)	Marzouk et <i>al.</i> , 2009; 2010a.
	Extrait aqueux (différent parties)	Propriété analgésiques et anti- inflammatoire	Marzouk et <i>al.</i> , 2010b;
	Extrait aqueux (feuilles)	Effet anticoagulant et anti microbien	Marzouk et <i>al.</i> , 2012
Egypte	Cucurbitacine E (Fruits)	Une activité antiallergique (un effet inhibiteur sur l'oreille : réactions passifs anaphylactiques cutanées comme un modèle de type I allergique chez la souris) Yoshikawa et al., 2007	
Inde	Extrait méthanolique (feuilles)	Activité anti-inflammatoire Rajamanicka et al., 2010	
Pakistan	Extrait méthanolique (fruits)	Anti hémorragique contre les morsures de serpents	Asad et <i>al.</i> , 2012
Algérie	Extrait aqueux (fruits)	Activité immunostimulante.	Bendjeddou et al., 2003
	Huile fixe des graines	Anti- yperlipidémique chez les rats obèses	Meziane et <i>al.</i> , 2012
Maroc	β-(Pyrazol-1-yl-)- L-alanine (Graines)	Activité insulino-stimulante	Nmila et <i>al</i> 2000; 2002

I.6.Utilisation populaire:

Il y a plusieurs modes d'utilisation:

- A. Pulvérisée, la coloquinte est très utilisée contre les hémorroïdes en application locale soit seule, soit associée à des feuilles de tabac ; (Merzouki et al., 2000).
- B. La décoction de la coloquinte serait insecticide, elle est indiquée pour la destruction des puces ;
- C. Bouillies et torréfiées, les graines de coloquinte sont utilisées comme aliment de bétail dans les régions Saharienne ;
- D. Concernant le traitement du diabète par la coloquinte, plusieurs modes d'utilisation ont été mentionnés :
- raines séchées (mettre une sous la langue 2 à 3 graines par jour).
- ❖ Décoction de 30g des graines broyées dans 1 litre d'eau et à prendre oralement 3X 50ml, par jour (Said et al., 2002).
- ❖ fruits frais coupés en tranche utilisés dans le bain de pied. préparation d'une poudre à partir de l'épicarpe séché et mélangé avec les aliments (Merzouki et al., 2000).
- E. Les racines peuvent également être employées comme purgative et contre les maladies urinaires et le rhumatisme (**Ducke**, 1978).
- F. Un groupe de l'université de Montpellier à fait une étude sur l'effet insulinotropique de *Citrullus colocynthis*. Pour cela différents extraits de graines on été réalisés et testés sur des rats de laboratoire (**Nmila, 2000**).
 - J.il présente une activité antipyrétique et carminative (Nmila, 2000).
- F. Les graines de la coloquinte sont comestibles. Dans les pays d'Afrique de l'Est, ces graines sont consommées, torréfiées (snacks), frites ou aussi sous forme de « cake » à partir de la farine des graines (**Odunfa**, **1981**; **Ikereogu**, **1984**; **Okigbo**, **1984**).
- K. Au Nigeria, la graine est un bon épaississant pour la soupe « egusi » ou aussi après fermentation pour la préparation de « ogiri » qui est un agent aromatisant utilisé comme condiment (**Memon et** *al.*, **2003**).

I.7. Toxicité:

Depuis les périodes bibliques, les fruits de la coloquinte sont considérés comme poison mortel (Yanif et al., 1999). Bien que trop amère pour être consommée par erreur, la coloquinte est tout de même responsable d'accidents plus ou moins sévères résultant particulièrement de problèmes de doses. Les symptômes de surdosage, selon le mode d'administration cette plante est fortement toxique pour des animaux et des humains, peuvent être de différentes natures: violentes coliques, vives douleurs épigastriques et rénales, ténesmes, nausées, vomissements, désordre cardiaque, congestion cérébrale délire, rétention d'urine, crampes, hoquet, avortement. (Merad, 1973). La poudre de pulpe est toxique à 0,6-1g/Kg; les recherches ont montré que le fruit a une activité cancérogène (Khare, 2007).

La coloquinte est une plante irritante. Elle agit même à des doses modérées, produisant abondamment des évacuations aqueuses, des inflammations de la membrane muqueuse des intestins, des vomissements et des selles sanglantes. Les effets toxiques après utilisation chronique de cette plante, provoquent une hypokaliémie, oligurie et les oedèmes, semblable à une néphrite aiguë (**Hammouda** et *al.*, 2005).

Les feuilles et les fruits sont particulièrement toxiques pour les moutons. Selon (Elawad et al., 1984), la dose de 0.25 à 100 g/kg provoque la mort des animaux en 4 à 5 jours de traitement avec difficulté de respiration consécutive à une hémorragie pulmonaire (Elawad et al., 1984). D'autres études de toxicité sur des petits ruminants suggèrent que la consommation du fruit endommage essentiellement le foie, les reins et l'appareil gastro-intestinal [(Al Yahia et al., 2000); (Adam et al., 2001)].

Pour déterminer l'effet toxique de *Citrullus colocynthis*, il est possible de réaliser des études expérimentales. Parmi ces études, l'évolution des paramètres biochimiques sériques:

- Les paramètres hépatiques: TGO (Transaminase Glutamo-oxalo-acétique), TGP (Transaminase glutamopyruvique), ALP (Alanine Amino Transférase, LDH (Lactat deshydrogénase), GGT (gamma-glutamyl transférase),...etc.
- **Les paramètres rénaux** : créatinine, urée, micro albuminurie, corps cétonique,…etc.
- **♣** -D'autres paramètres : cholestérol, triglycéride, glycémie, fructosamine,...etc.

Ainsi, la réalisation des coupes histologiques du foie, reins, cerveau,...etc

I.8. Compositions chimiques de la plante :

Le screening phytochimique de différentes parties de la coloquinte (racines, tiges, graines et feuilles) permet de caractériser les familles de composés chimiques existants dans la plante.

I.8.1.La pulpe:

Les cucurbitacées sont reconnues comme source de carbohydrates et de métabolites secondaires : les cucurbitacines. Les cucurbitacines appartiennent aux groupes des triterpènes tétracycliques, ce sont des molécules en C30 ou C32 possédant 7 à 9 atomes d'oxygène et plusieurs groupes méthyle ou acétyle. Elles peuvent être libres ou associées à un sucre. Ce sucre peut être attaché directement au noyau stéroïdien ou/et à la chaine aliphatique (**Harborne et al., 1993**). Leur structure est montre dans le Figure n°16 :

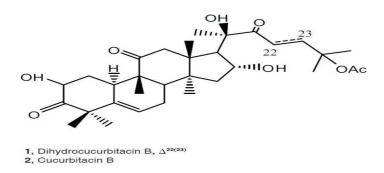


Figure n°16 : Structure de la cucurbitacine E

La présence des cucurbitacines responsables de l'amertume (colocynthinC₅₆H₃₄O₂₃) peut engendrer des propriétés purgatives de cucurbitacées (racine de byrone, fruit de coloquinte, suc d'élatrium) (**Takagi et** *al.*, **1981**).

La présence de cucurbitacines est liée à des facteurs génétiques, au stade de développement de la plante ainsi qu'à des facteurs environnementaux puisqu'ils représentent un moyen de défense de la plante. Ce sucre peut être attaché directement au noyau stéroïdien et/ou à la chaîne latérale aliphatique (Blaise, 1997). Ce sont des substances particulièrement toxiques (DL50 voisine de 1mg/kg chez la souris en I.P.) amères, cytotoxiques, elles confèrent aux drogues qui en renferment des propriétés purgatives drastiques comme les graines de coloquinte (Bruneton, 1993).

De nombreux travaux sur l'extraction de ces principes actifs ont été menés avec succès. C'est ainsi qu'une quinzaine de cucurbitacines ont été isolées à partir des cucurbitacées et désignées par les lettres de l'alphabet : cucurbitacines A, B, C, D, E... (**Armougom, 1998**).

Parmi les cucurbitacines qui ont été identifiés à partir de l'extrait méthanolique de la plante de *Citrullus colocynthis* sont E, I, J, K et L[(Bauer et al., 1983) ; (Seger et al., 2005) ; (Sturm et al., 2009)]. Plusieurs de ces composés (cucurbitacines glucosides) ont diminué la croissance des cellules cancéreuses (cancer du sein) en provoquant des changements de la morphologie globale des cellules en diminuant l'organisation des filaments d'actine du cytosquelette (Tannin-spitz et al., 2007).

Par ailleurs, une revue de la littérature scientifique portant sur la grande famille des cucurbitacines souligne que ces molécules pourraient aussi protéger les cellules du foie contre certains composés toxiques, et aurait également des effets anti-inflammatoires. Puisque ces études sont essentiellement in vitro, ces résultats ne peuvent pas pour l'instant être appliqués à l'humain, et des chercheurs soulignent qu'il est impératif de mieux étudier ces composés afin de vérifier si certains d'entre eux ont des effets indésirables [(Jayaprakasam, 2003); (Chen, 2005); (Vanier, 2006)].

D'autres métabolites secondaires tels que l'acide caféique, l'acide chlorogénique, les flavonoïdes, les alcaloïdes et les terpènes existent aussi dans le fruit [(Galal, 1997); (Gulcan, 2006); (Tehila, 2007); (Jayaraman et al., 2009)].

Figure n°17: Structure de l'acide caféique

Figure n°18 Structure de l'acide chlorogénique

I.8.2 .Graines:

Les graines de *Citrullus colocynthis* représentent une bonne source de protéines et de lipides, elles font l'objet de beaucoup de recherches.

□ **Les protéines** : la fraction protéique représente 8,25% en poids des graines ; elle est riche en lysine, leucine et les acides aminés soufrés telle la méthionine (**Shaheen et** *al.*, **2003**). Au cours

de la germination des graines, les globulines sont utilisées avant les albumines; leur destruction permet l'élaboration des protéines à la jeune plante [(Jacks et al., 1979); (Courtois et al., 1981)].

Notons qu'un acide aminé non protéique présentant une activité anti-helminthique a été identifié dans les graines de cucurbitacées ; il s'agit de la 3-amino-3-carboxypyrolidine ou cucurbitine (Gurudeeban et al., 2010). Les protéines des cucurbitacées intéressent également l'industrie. Ainsi en Roumanie, elles sont utilisées pour la fabrication de colle à papier ou à bois. (Gurudeeban et al., 2010).

□ Les glucides : l'acide phytique ou ester hexaphosphorique de l'inositol identifié dans les graines représente une source importante de phosphate. En outre, les graines contiennent 70 à 80 % de phytine (sels métalliques d'acide phytique). En revanche, l'amidon est apparemment absent (Courtois et al., 1981).

□ **Les lipides** : Les graines de coloquinte sont riches en acides gras tels l'acide myristique, palmitique, stéarique, oléique, linoléique et linolénique (**Khatri et** *al.*, 1993).

La figure n °19 montre la structure chimique de l'acide linoléique **Akhtar** *et al*,. (1999) rapportent que durant la germination des graines de coloquinte à l'obscurité à 30°C, la quantité relative de triacyl glycérols diminue, et le taux d'acides gras libres augmente de manière significative. Cependant, il a été mentionné que le taux d'acides gras saturés augmente par rapport aux acides gras insaturés (qui baissent graduellement pendant la germination).

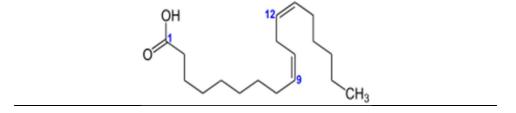


Figure n°19 : Structure de l'acide linoléique

La composition qualitative et quantitative des acides gras des huiles comestibles sont similaires à celle des huiles commercialisées (huile de soja, tournesol...). Leur richesse en acides gras insaturées ainsi que leur forte teneur en acide linoléique confèrent à ces huiles de bonnes propriétés diététiques (**Grompone**, 1988 ; Karlesking, 1992).

Les graines de coloquinte contiennent 26,6% d'huiles, 13,5% des protéines, 2,1% des cendres, 52,9% des fibres brutes, 4,9% d'azote libre et contient 322 mg/100g de potassium, 119 mg/100g de phosphore et 3,3 mg/100 g de fer (Sawaya et *al.*, 1986). Elles contiennentaussi la phytosteroline (ipurand), 2 phytostérols, 2 hydrocarbures, saponines, alcaloïdes, polysaccharides, glycosides, et des tanins, comme métabolites secondaires (Duke, 1978).

I.8.3 Tiges, Feuilles Et Fleurs:

Les feuilles et les fleurs de la coloquinte renferment de la quercétine et du kaempférol [(**Khare**, **2007**); (**Meena et** *al.*, **2008**)]. Ce sont deux flavonols pourvus d'un excellent pouvoir antioxydant qui on une Structures similaires montre dans le figure n°20.

Figure n°20: Structures de la quercétine et du kaempférol

L'activité anti-oxydante au niveau des feuilles et des tiges de *Citrullus colocynthis* a révélé la présence des enzymes anti-oxydantes telles la catalase, le superoxyde dismutase (SOD), la glutathione reductase et la glutathione-S-transférase ; et d'autres molécules non-enzymatiques anti-oxydantes comme l'acide ascorbique, α-tocophérols, les caroténoïdes et les flavonoïdes comme cités ci-dessus. Ceci a permis de conclure que *Citrullus colocynthis* pourrait être une bonne source d'anti-oxydants. Par ailleurs, l'extrait (éther de pétrole) de feuilles a un effet anesthésiant local testé sur des grenouilles et un effet larvicide sur quelques espèces de moustiques[(Abdul Rahman et *al.*, 2008) ; (Ramanathan et *al.*, 2011)].

I.8.4. Racines:

C'est la partie de la plante où il y a eu le moins de recherches ; peu d'informations ont été élucidées sur les molécules présentes à ce niveau ; (Khare, 2007) a montré la présence de

composés aliphatiques. D'autres composés existent au niveau des racines comme l'hentriacontane (alcane longue chaine hydrocarbonnée) et saponines (Memon et al., 2003).

Le tableau n°7 résume la composition en métabolite secondaire des différentes parties de la *Citrullus colocynthis*

Tableau $n^{\circ}7$: Composition en métabolites secondaires des différentes parties de la coloquinte (*Citrullus colocynthis*).

Métabolites	Partie	Composés	Références
	Fruits	isovitexine, iso-orientine	
Flavonoïdes		3'-methyl ether iso-orientine	
	Partie	8-C- <i>p</i> -hydroxybenzoyl- iso-vitexine,	
	aérienne	6-C- <i>p</i> -hydroxylvitexine	Maatooq et
		8-C- <i>p</i> -hydroxybenzoyl- iso-vitexine 4' -O- glucoside	al.,1997
Saponines	Fruits	2-O-B-D glucopyranosyl cucurbitacine I, J, K et L	Seger et <i>al.</i> , 2005
Glycosides	Fruits	2-O-β-D-glucopyranosyl-cucurbitacine I,	Natiq et al.,
		2-O-β-D-glucopyranosyl-cucurbitacine E,	1989
		2-O-β-D-glucopyranosyl-cucurbitacine L	
		2-O-β-D-glucopyranosyl-(22-27) hexano cucurbitacine I	
		trois flavone glycosides : isosaponarine, isovitexine et	Delazar et al.,
		isoorientine 3'-O- méthyle éther;	2006
		deux glycosides cucurbitacines :	
		2-O-β-D-glucopyranosyl-cucurbitacineI	
		2-O-β-Dglucopyranosyl- cucurbitacine L	
		deux nouveaux glycosides triterpéniques cucurbitacines	Delazar et al.,
		: colocynthosides A et B	2006
	Pulpe	α-élaterine-2-D-glycopyranoside	El Khadem et
			Abdel
			Rahman,
			1963
Alcaloïdes	Fruits	- une choline	Darwish-
		- dérivés de la pyridine : C ₁₀ H ₁₅ NO ₃ et C ₂₀ H ₃₂ NO	Sayed et
		- le dérivé de la pyridine ou de la quinoline :C ₁₆ H ₂₄ NO ₇	al., 1973

L'espèce Citrullus colocynthis est une plante endémique dans les zones arides dans le sud des pays maghrébins (Pottier-Alapetite, 1981). Cette plante médicinale est largement utilisé dans la médecine traditionnelle populaire pour le traitement de nombreuses maladies telles que le rhumatisme, l'hypertension et de diverses maladies contagieuses telles que les problèmes dermatologiques et infections gynécologiques ou pulmonaires [(Boukef, 1986); (LeFlock, 1983)]. Certaines études ont démontré l'effet médicinal de C. Suchard. comme anti-tumorale (Tannin- Spitz et al., 2007), immunostimulant (Bendjeddou et al., 2003), antimicrobienne (Marzouk et al., 2009, 2010a) et antioxydant (Marzouk et al., 2010b) et contre les maladies hépatiques (Gebhardt, 2003), l'hyperglycémie (al-Gaithi et al., 2004) et la perte de cheveux (Roy et al., 2007).

I. Activité antioxydante :

I.1. Généralités

Oxydation et auto oxydation: l'oxygène est la source de vie pour les organismes aérobies mais peut être également une source d'agression pour ces organismes (Namiki, 1990). Par contre, il est responsable d'un nombre de processus d'oxydation suivi de mauvaises conséquences comme le stress oxydatif (Dalton, 1995), la détérioration de la qualité des aliments [(Finely et al., 1994);(Hiramatsu et al., 1995); (Frankel, 1996)] ainsi que le désordre de la santé humaine qui est relié à l'oxydation des molécules biologiques [(Bremond, 1990); (Ramarathnam et al., 1995)].

Les substances d'oxydation peuvent avoir différentes structures chimiques que sont les protéines, ADN, acides gras non saturés, cholestérol, phospholipides, et bien d'autres. Les lipides constituent les composés majeurs de notre nutrition, leur étude est donc un sujet très important pour la protection contre l'oxydation puisqu'ils sont des éléments constitutifs des membranes cellulaires. [(Bremond, 1990); (Ramarathnam et al., 1995)].

Les antioxydants

Les antioxydants sont des substances capables de neutraliser ou de réduire les dommages causés par les radicaux libres dans l'organisme et permettent de maintenir au niveau de la cellule des concentrations non cytotoxiques des espèces réactives de l'oxygène (**Vasant, 2004**).

Notre organisme réagit donc de façon constante à cette production permanente de radicaux libres et on distingue au niveau des cellules deux lignes de défense inégalement puissantes pour

détoxifier la cellule (Favier, 2003). L'oxygène est la source de vie pour les organismes aérobies mais peut également être une source d'agression pour ces organismes. En effet des dérivés hautement réactifs de l'oxygène peuvent apparaître au cours des réactions enzymatiques ou sous l'effet des rayons ultraviolets, des radiations ionisantes et de métaux de transition (Ekoumou, 2003). L'oxygène est l'accepteur terminal d'électrons au cours de la respiration cellulaire des organismes aérobies. Dans l'organisme absorbé au niveau des alvéoles pulmonaires, il est transporté par l'hémoglobine au niveau des organes où il diffuse dans les mitochondries (Allain, 1996).Il assure grâce à des enzymes, l'oxydation de divers substrats endogènes : les phospholipides des membranes cellulaires, les protéines, l'ADN. Cette oxydation conduit à la formation des radicaux libres ou espèces réactives oxygénées (ERO). La formation des ERO est un processus tout à fait naturel et joue un rôle essentiel dans l'organisme : efficacité de l'apoptose, prolifération cellulaire normale, régulation de la pression sanguine, état redox normal pour l'expression des gènes, etc.. (Rousseau, 2004). Mais ces ERO peuvent causer des dommages à l'organisme, en effet en cas de stress entraînant un défaut de régularisation de l'oxydation, de conditions environnementales ou de déséquilibre alimentaire ils provoquent des désorganisations cellulaires parfois irréversibles entraînant la mort des cellules (Rolland, 2004). Cela peut conduire à l'apparition de nombreuses pathologies telles que les maladies inflammatoires, l'athérosclérose, l'ischémie cérébrale et le cancer (**Diallo et al., 2001**).

Les radicaux libres se définissent comme tout atome ou molécule, neutre ou ionisée, comportant au moins un électron célibataire dans une orbitale externe. Ils sont caractérisés par une grande réactivité chimique et une courte durée de vie. Leurs agressions sur l'organisme sont multipliées sous l'effet de la fumée du tabac, de la pollution, du soleil, d'un effort physique intense.

Les radicaux libres sont :O₂. - (radical anion su peroxyde); OH. (Radical hydroxyl) ; HO₂. (Radical perhydroxyle) ; RO.(radical alkyl) ; ROO. (Radical peroxyde).

Les espèces à l'origine de radicaux libres sont : $1O_2$ (oxygène singlet) ; H_2O_2 (peroxyde d'hydrogène) ; ROOH (hydro peroxyde) [(Calvin, 1999); (Rolland, 2004)].

L'organisme limite l'extension des réactions radicalaires par un système important de défense constitué par les antioxydants susceptibles de piéger les radicaux libres sous une forme peu réactive (Allain, 1996).

I.2. Mécanismes de l'oxydation :

Les radicaux libres sont formés au niveau de divers organites cellulaires : les mitochondries, les microsomes, le cytosol à travers plusieurs enzymes (la xanthine oxydase) (**Allain, 1996**).

Traditionnellement, on décrit l'oxydation en trois phases distinctes, mais pratiquement simultanées : une phase d'initiation avec formation d'hydro peroxydes ; une 2ème phase de propagation : destruction des hydro peroxydes ; et une dernière phase de terminaison :apparition de nouvelles molécules anarchiques. La chaîne de propagation peut s'arrêter par la formation de polymères ou au contact avec un autre radical. Les molécules créées n'ont plus de fonction biologique (**Rolland, 2004**).

I.3. Mécanismes d'action des antioxydants :

Un antioxydant peut agir de diverses manières (Coene, 2004):

- Il peut empêcher l'oxydation d'un autre substrat en s'oxydant lui-même plus rapidement que celui-ci et en le préservant ainsi de l'oxydation.
- Il peut arrêter la réaction en chaîne qui préside à la multiplication des radicaux libres, le plus souvent parce que la structure des antioxydants est relativement stable.
- Il peut absorber l'énergie excédentaire de l'oxygène singlet pour la transformer en chaleur.
- Il peut aussi agir via chélation avec des métaux, ce qui a pour effet de ralentir les réactions de Fenton (formation de radicaux hydroxyles résultant de la réaction du fer ferreux avec le peroxyde d'hydrogène selon une réaction d'oxydoréduction).

II. Activité antimicrobienne

II.1. L'activité antibactérienne :

La résistance aux antibiotiques est devenue un grave problème de santé public touchant la quasi-totalité des agents antibactériens dans tous leurs champs d'action. Les antibiotiques perdent de leur efficacité et les maladies que l'on croyait éradiquées réapparaissent. La diminution de l'efficacité des moyens de lutte oblige de trouver une alternative à l'utilisation des antibiotiques, en synthétisant de nouveaux composés aux vertus bactéricides (Alami et al., 2005). Les plantes possèdent un système de défense naturel très efficace, basé sur la biodiversité de leurs métabolites secondaires. Cette diversité des groupes structuraux et fonctionnels, permet de se protéger efficacement contre de nombreux pathogènes tels que les bactéries, les champignons et les virus. Les plantes synthétisent, de manière constitutive ou induite, à titre d'exemples de molécules antimicrobiennes contenus dans les plantes, nous citerons les huiles essentielles et les extraits qui sont utilisées depuis longtemps pour traiter des pathologies, et pour améliorer la santé et le bien être (Jones et Dangl, 2006; Gibbons, 2008).

II.1.1 Mécanismes d'action et de résistance des agents antimicrobiens :

Les agents antibactériens sont classés selon leurs cibles bactériennes. Il s'agit de cinq mécanismes (**Bergogne-Bérézin et Dellamonica**, 1999) : Le blocage de la synthèse de la paroi bactérienne ; l'inhibition de la synthèse des protéines ; l'inhibition de la synthèse des acides nucléiques ; l'altération du fonctionnement de la membrane cytoplasmique ; une inhibition de la synthèse de divers métabolites.

Les antibiotiques ont été très efficaces pour le traitement de nombreuses maladies qui étaient un fléau pour le genre humain. Ils ont été qualifiés de « médicaments miracles ». Après plus de 50 ans d'utilisation massive des antibiotiques, nous arrivons maintenant à une période plus délicate. Le monde bactérien est capable de s'adapter à une nouvelle situation écologique, y compris à la présence des antibiotiques. En développant des stratégies de résistance vis-à-vis des molécules d'antibiotiques, les bactéries reprennent l'avantage. En effet, l'emploi intensif des antibiotiques, tant en médecine humaine que vétérinaire, mais aussi pour des usages phytosanitaires, est directement relié à l'augmentation des résistances et la perte d'intérêt d'un grand nombre de molécules (Alami et al., 2005).

II.1.1.1.Mécanismes génétiques :

Au plan génétique, la résistance aux antibiotiques peut être naturelle ou acquise. La résistance naturelle est présente chez tous les membres d'une même espèce ou d'un même genre bactérien. Elle est liée à son patrimoine génétique (Bergogne-Bérézin et Dellamonica,1999). La résistance acquise affecte seulement quelques souches d'espèces naturellement sensibles, à la suite d'évènements génétiques variés : mutations chromosomiques ou acquisition de gènes. Il peut s'agir d'une mutation qui peut entraîner, par exemple une modification de la cible de l'antibiotique ou bien diminuer sa pénétration. Pour les gènes acquis, le plus souvent, il s'agit de l'acquisition d'ADN étranger pouvant provenir de la même espèce ou d'espèces bactériennes différentes. L'acquisition d'ADN se fait le plus souvent par conjugaison. Elle se fait par l'intermédiaire de plasmides ou de transposons conjuguais qui peuvent porter un ou plusieurs gènes de résistance (Bergogne-Bérézin et Dellamonica, 1999); (Chevalier et al., 2003)].

II. 1.1.2. Mécanismes biochimiques :

Les trois mécanismes biochimiques principaux de la résistance aux antibiotiques sont le défaut d'accumulation, la détoxification enzymatique de l'antibiotique et l'absence de cible ou d'affinité de(s) cible(s). Ces mécanismes biochimiques sont effecteurs aussi bien des résistances

naturelles que des résistances acquises. La résistance acquise par mutation chromosomique est souvent associée à une diminution de l'accumulation de l'antibiotique ou une altération des cibles, alors que la résistance par acquisition de gènes est généralement liée à la production d'enzymes inactivâtes (Chevalier et al., 2003).

Par ailleurs, de nombreuses questions se posent à l'heure actuelle sur la toxicité des substances synthétiques. Or ces produits non seulement enrayent l'infection mais affaiblissent en même temps l'organisme qui par la suite aura des difficultés à recréer son propre système de défense. De plus, la prescription à grande échelle et parfois inappropriée de ces agents antimicrobiens a entraîné la sélection de souches multi-résistantes comme celles du milieu hospitalier responsables de syndromes infectieux graves (**Bergogne-Bérézin et Dellamonica,1999**).

II.1.2.Site D'action des métabolites secondaires :

Les sites d'action des classes majeurs de composés antimicrobiens sont représentés dans le tableau n °08(Cowan, 1999).

II.2. L'activité antifongique :

Des différentes études ont documenté l'activité antifongique des différentes extraits et des huiles essentielles de C. colocynthis sur certains champignons pathogènes médicales[(Gurudeeban et al., 2011);. (Hadizadehet al., 2009);. (Alkamel, 2005); (Takhi et al., 2011);. (Doss et al., 2011) ; (Marzouk et al., 2009, 2010, 2011)],

A côté des antifongiques synthétiques connus, différentes plantes sont caractérisées par la synthèse des substances actives appartenant majoritairement d'une part, aux métabolites secondaires tels les polyphénols, les huiles essentielles, les alcaloïdes, etc. Et d'autre part, aux métabolites primaires telles les huiles fixes (**Meunier**, **2003**). De nombreux chercheurs ont étudié leurs effets antimicrobiens notamment antifongiques.

L'importance indiscutable des plantes aromatiques, leur contenu et la nature chimique de leurs constituants, leur confèrent de grandes perspectives d'application. Approximativement20% ont été analysées pour une activité antimicrobienne. Malgré cela, un large spectre de ces composés ont été purifiés et ont démontré des propriétés antifongiques [(DeLucca et al., 2005);(Marzouk et al., 2009)].

L'efficacité antifongique de ces substances est essentiellement due à la composition de celles-ci en molécules bioactives variées appartenant à différentes classes chimiques, pouvant être mises à profit pour réduire la flore fongique contaminant (**Ouraïni et al., 2005**). L'activité antifongique des extrais des plantes a fait l'objet d'un grand nombre de publications à l'échelle internationale. Cependant, la majorité des travaux cités dans ces publications s'arrêtent au niveau de la mise en évidence de l'activité antifongique de ces extraits.

Tableau n^{\circ}08: les classes majeurs de composés antimicrobiens à partir de plantes (Cowan, 1999).

Classe	Sous- classe	Mécanisme		
	Les phénols simples	- Rupture de la membrane		
	Les acides			
	phénoliques			
	Les quinones	- Liaisons à adhésives		
		- Complexassions avec la paroi cellulaire,		
es		d'inactiver les enzymes.		
Les composés phénoliques	Les flavonoïdes	- Liaison à adhésives		
phén	Les flavones	- Complexes avec la paroi cellulaire		
ısés j		- Inactivation des enzymes		
ompc		- Inhibition de la transcriptase inverse du VIH		
ses cc				
H	Les tanins	- Se lient aux protéines		
		- Lier à adhésives		
		- Inhibition de l'enzyme		
		- Complexassions avec la paroi cellulaire		
		- Rupture de la membrane		
		- Complexassions d'ions métalliques		
	Les coumarines	- Interaction avec l'ADN chez les eucaryotes		
Les terpenoïdes		- Rupture de la membrane		
Les alca	loïdes	- S'intercaler dans la paroi cellulaire et /ou de		
		l'ADN		

Tableau n°9 : Quelques travaux antérieurs sur Citrullus colocynthis L.(Amrouche Abdel Illah, 2013)

Fraction de la coloquinte	Utilisation	Références	
	Des applications alimentaires et non alimentaires pour compléter ou remplacer une partie des huiles	Imededdine Arbi Nehdi et al ., 2013	
	conventionnelles. Propriétés antioxydantes	Jing MIAO et al., 2012	
Les graines	contre lignée cellulaire d'hépatome contre carcinome d'Ehrlich ascite	Seif-Eldin N. Ayyad et al., 2013	
	activités antibactérienne et anti-Candida Antidiabétique, effet insulino-stimulant Traiter des scables de chameau et autre anderythema d'infections de peau chez les	B. Marzouk et al,. 2010 N. Sebbagh et al.,2009 ; Nmila et al,. 2002 Habs et al,. 1984	
	animaux domestiques et l'homme Activités antioxydants et activités de chiffonnage Traitement de l'ictère	Abdullah I. Hussain.et al., 2013	
Les racines	Les maladies urinaires Les rhumatismes Activités anti-inflammatoires et anti-analgéstiques	Nadkan., 1998 ;Burkill,.1985 Dafni et al,. 1984 Marzouk et al.2009	
Les fruits	Activités antioxydants et activités de chiffonnage Contre lignée cellulaire d'hépatome Contre carcinome d'Ehrlich ascite effet insulino-stimulant la polyarthrite rhumatoïde Activités analgésiques et anti-inflammatoires Activités antibactérienne et anti-Candida Contre douleur d'estomac Hypoglycémiant	Abdullah I. Hussain.et al., 2013 Seif-Eldin N. Ayyad et al., 2013 Mahmoodi Mehdi et al, .2011 Belsem Marzouk et al ,. 2010 B. Marzouk et al, .2010 Dan Schafferman et al.,1984;Bruneton,.2005;Dane et al,.2007 Baba aissa.,2000;Sebbagh et al,.2008	
La pulpe	Laxatif violent Remède contre les infections de la peau hydragogue efficace et cathartique	Dafni et al,.1984 ; Burkill 1985 Dane et al,.2007	
Les feuilles	Activités antioxydants et activités de chiffonnage Contre l'hémorragie, l'eczéma et les douleurs d'articulation	Abdullah I. Hussain.et al., 2013 Halimi, 2004	

II. 3.L'activité antiparasitaire :

L'utilisation des produits naturels, spécifiquement les extraits des plantes, comme type de lutte contre les insectes en Algérie a commencé de se développer, a travers une multitude des travaux récentes (Kemassi, A etal., 2008; Lebouz, I et al., 2010; Habbachi, W et al., 2013).

(Aouinty et al., 2006) ont montré l'efficacité des extraits de cinq plantes différentes doses (1%, 2%, 3%, 4% et 5%),qui ont été testés sur quatre espèces différentes de moustiques tels que Culexpipiens et Culiseta Longiareolata. AbdulRahuman et Venkatesan ont démontré l'activité des acides oléique et linoléique extraits de Citrullus colocynthis sur les larves des moustiques (Aedesaegypti, A. stephensi et Culex quinquefasciatus)(Abdul Rahuman, A., Venkatesan, P., 2008). Les extraits d'éther de pétrole de Citrullus colocynthis, Coccinia indica, Cucumis sativus, M. charantia, et Trichosanthes anguina ont été utilisés contre les larves des moustiques [(Mullai, K et al., 2008); (Hemingway, J et al., 2004)]

Les extraits aqueux des fruits de *Citrullus colocynthis* provoquent une mortalité élevée chez les larves des deux espèces *Culex pipiens* et *Culisetalongiareolata*. Cette mortalité a été plus prononcée chez *Culex pipiens* que chez *Culiseta longiareolata*. La toxicité des produits naturels peut varier en fonction des facteurs intrinsèques des insectes.(**Merabti B.et** *al.*, **2015**)

L'effet des extraits aqueux des fruits de *Citrullus colocynthis* a été variable en fonction de la dose. Si on considère que la dose 50 mg/L est une dose efficace, elle arrive, dans notre cas, à éliminer plus de50% de population de Culex pipiens uniquement après 24h. De ce fait, cet extrait peut être considéré comme un insecticide préconisé contre cette espèce. L'effet des extraits aqueux des fruits de *Citrullus colocynthis* été variable aussi en fonction du temps d'exposition. L'utilisation de 100 mg/L de cet extrait a pu éliminer plus de 70% de la population des larves de Culex pipiens après 24h, et plus de 90% après 48h.Pouréliminé la totalité de cette population après 72h. (**Merabti B.et** *al.*, **2015**)

I-Objectif:

Dans le cadre de la valorisation des ressources naturelle des plantes médicinale, notre objectif principal consiste à l'évaluation de quelques activités biologiques des extraits de la plante saharienne *Citrullus colocynthis* sous le thème Contribution à l'étude des activités biologiques de quelques extraits de *Citrullus colocynthis*

Dans un premier temps, nous avons déterminé, qualitativement, nos extraits en composition chimique par un screening phytochimique après leur extraction; Suivi d'une d'analyse qualitative préliminaire du contenu phénolique de nos différents extraits par de la chromatographie sur couche mince (CCM).ainsi, leur taux en polyphénols a été déterminé.

Dans un deuxième temps, nous avons évalué les activités biologiques suivantes :

- ❖ Détermination des concentrations minimales inhibitrices (CMI) par la méthode des Micro-dilutions sur milieu liquide et vis-à-vis sept souches fongiques ainsi que quatorze souches bactériennes de références, et sur milieu solide et vis-à-vis 4 souches fongiques.
- Évaluation de l'activité antioxydante par deux méthodes: piégeage du radical DPPH et pouvoir réducteur du fer.
- ❖ Etude de la cytotoxicité des extraits vis-à-vis des érythrocytes.

II. Enquête ethno pharmacologique:

Afin de recenser l'utilisation thérapeutique du *Citrullus colocynthis*_utilisées par la population algérienne dans Différentes Wilayas de l'Ouest algérien, une enquête ethno pharmacologique a été menée, à l'aide d'un questionnaire, entre le mois d'Octobre 2015 et le mois de Juin 2016.

L'enquête a été effectuée auprès de 30 interrogés personnes habitants villes et villages de trois Wilayas de la région Ouest de l'Algérie. Tous les interrogés ont été informés sur l'objectif de cette étude.

II.1.Description de la zone d'étude :

Cette étude a été réalisée à travers trois Wilayas de l'Ouest algérien réparties selon un axe Nord-Sud : Béchar, Naâma, El Bayadh, couvrant ainsi plusieurs étages climaciques : un climat méditerranéen dans le littoral au Nord du pays, semi-aride dans les Hauts Plateaux et aride à travers le Sahara.

La wilaya de Naâma: Située entre l'Atlas tellien et l'Atlas saharien, à l'Ouest de l'Algérie, à plus de 1000 mètres d'altitude sur les hauts plateaux. Elle est voisine au Nord avec les wilayas de Tlemcen, Sidi-Bel-Abbès et Saïda, à l'Est celle d'El-Bayadh et au Sud celle de Béchar et à la frontière avec le Maroc à l'Ouest. Le climat est semi-aride. Elle s'étend sur une superficie de 29950 km² pour une population estimée en 2008 à 209 470 habitants (ONS Algérie, 2008).

La wilaya d'El Bayadh: Elle fait partie intégrante de la région des Hauts Plateaux steppiques du Sud-ouest algérien. Elle présente trois grandes zones distinctes: Au nord: les Hautes Plaines; Au centre: l'atlas saharien; Au Sud la: Présaharienne. Elle est délimitée au Nord, par les wilayas de Saïda et de Tiaret; à l'Est, par les wilayas de Laghouat et de Ghardaïa; au Sud-est, par la wilaya d'Adrar; au Sud-ouest, par la wilaya de Béchar; à l'Ouest, par la wilaya de Naâma; au Nord-ouest, par la wilaya de Sidi Bel Abbés. Elle s'étend sur une superficie de 78870 km² pour une population estimée en 2008 à 262 187 habitants (ONS Algérie, 2008).

La wilaya de Béchar: située à 1 150 km au sud-ouest de la capitale Alger, à 852 km au nordest de Tindouf et à environ 80 km à l'est de la frontière marocaine. Béchar est la plus grande ville du sud-ouest algérien, sa population est de 171 724 habitants Elle est délimitée.: au nord par la wilaya de Naâma et à l'est par la wilaya d'El Bayadh, au sud par les wilayas d'Adrar et de Tindouf à l'ouest par le Maroc.

II.2. Questionnaire:

Le formulaire du questionnaire de l'enquête (Annexe1) se divise en trois Parties permettant de récolter des informations portant sur la plante, et des questions liées à l'utilisation des plantes dites médicinale : la coloquinte par cette population.

1. L'informant : Prénom, âge, sexe, fonction et adresse.

2. L'information générale sur l'utilisation de la coloquinte :

- Fréquence d'utilisation de la plante ;
- Nom du plante : nom vernaculaire;
- Parties utilisées : tiges, racines, feuilles, graines, partie aérienne, ...;
- Mode de préparation : décoction, macération, infusion,...;

3. Date et source d'information.

.

III. Matériel végétal :

Dans notre étude nous avons utilisé une plante médicinale, il s'agit Citrullus colocynthis

III .1. Situation géographique de la zone de récolte :

La partie aérienne de la plante étudiée a été récoltée dans deux régions differentes : Béni ounif dans la wilaya de Béchar, El Abiodh sidi cheikh dans la wilaya de El -Bayadh. (Figure n°22).

La zone du Béni ounif (Béchar) couvre une superficie de 1660000 hectares soit 16600,00 km², Et avec des coordonnées géographiques bien déterminer soit en décimales ou bien sexagésimales selon (ONS Algérie, 2008).

La zone du El Abiodh sidi cheikh (El -Bayadh.) est un vaste chaines montagneuses qui sont presque dépourvues de végétation. Elle est caractérisé par une précipitations comprises entre 364 mm/an au nord et 100mm/an au sud elle couvre une superficie de 1 602 330 hectares 16 023,30 km² avec des coordonnées géographiques bien étudies selon. (**ONS Algérie, 2008**).

On ne récolte que les fruits matures à une journée ensoleillée, le végétal récolté est ramassé dans des endroits où il n'est pas répondu d'engrais chimique.

Le tableau n°10 représente les paramètres géographiques et bioclimatiques des stations d'étude.

Tableau n°10: Paramètres géographiques et bioclimatiques des stations d'étude

Quantité du la plante traité	700-900g	700-900g
Lieu de récolte	Béni ounif	El Abiodh sidi cheik
Durée de séchage	20-30jours	20-30jours
partie utilisée et leur état	fruit entier sec	fruit entier sec
Date de la récolte	22/10/2015	07/11/2015
Longitude	-décimales -1.25° de longitude. - sexagésimales longitude ouest 1°15'.	Longitude: 0.53936 0° 32′ 22″ Est
latitude	-décimales : 32.05°. de latitude sexagésimales : latitude nord 32° 3'	Latitude: 32.8986, 32° 53′ 55″ Nord,
Altitude(m)	830 m	904 m
Étage bioclimatique	Aride à hivers frais	désertique sec et chaud

III.3. Récolte et séchage:

Le matériel végétal a été récolté fraîchement au mois d'Octobre au niveau de la région de Béni ounif et au moins du Novembre au niveau de la région de El Abiodh sidi cheikh. L'identification botanique a été faite au niveau de laboratoire Antibiotique, Antifongique : physico-chimie, synthèse et activité biologique; département de biologie; Faculté des Sciences de la Nature et de la Vie, des Sciences de la Terre de l'Université de Tlemcen.

Au sein de notre laboratoire, les fruits sont triés, coupés et séchés à température ambiante et à l'abri du soleil pendant quelques semaines.

Afin d'éliminer toutes traces d'eau, la plante a été sèche a été complété à l'étuve à T=45C°. Après séchage, les fruits ont été ensuite broyées en poudre fine à l'aide d'un moulin à Café puis a été récupérées et conservées à l'abri de l'humidité dans des flacons en verre, sur lesquels le nom et la région du récolte sont mentionnés., jusqu'au jour d'utilisation pour des tests phytochimiques et biologiques .la figure n°21 porte la aspect (couleur et l'état du plante) après le séchage.

Figure n°21: le fruit entier de Citrullus colocynthis après le séchage (photo originale).

Figure n°22 : Carte de l'Algérie présentant les Situation géographique des zones de collecte (Encarta, 2006)

IV. Les extractions :

IV.1 Préparation des extraits :

Il existe différentes méthodes d'extraction qui sont particulièrement adaptées à l'extraction des composés naturels. Parmi celles-ci, la macération et la décoction se sont des techniques simples et faciles. A partir des résultats de l'enquête ethno pharmacologique et des données bibliographiques, nous avons sélectionné trois solvants' méthanol, hexane, acétate d'éthyle et ces extractions ont été effectuées sur le fruit entièrement sur lesquelles porte notre étude expérimentale:

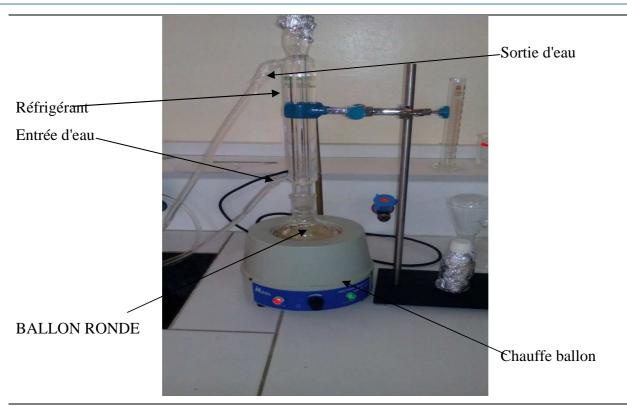
IV.1.1 Extraction par macération hydro-methanolique :

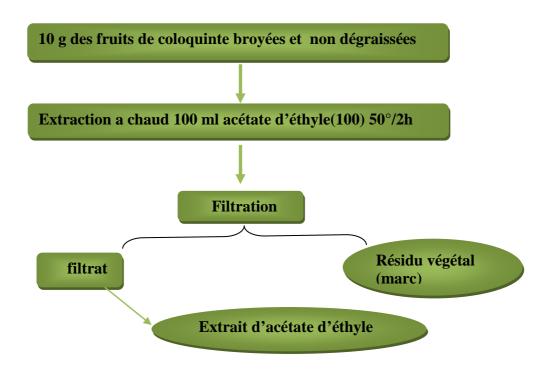
Tout d'abord pour l'extraction nous avons choisi la technique est celle utilisée par **SHENG-HSIEN et al., 2007.**Une quantité de 10 g du fruit entier (graines, pulpe et épicarpe) est prise dans un erlenmeyer, à laquelle nous avons ajouté 100 ml d'eau froid /méthanol-20/80ml) pendant 24 heures sous agitation, à température ambiante, pendant 24 heures .Puis Filtre le mélange sur papier filtre Wattman N° 01. A la fin de l'extraction, les fractions obtenus sont récupérées dans un flacon et conservées à 4°C à l'abri de la lumière jusqu'au moment de leurs utilisations .Les étapes de l'opération est celle qui a été représente dans le figure n°23

Figure n°23: macération hydro-methanolique

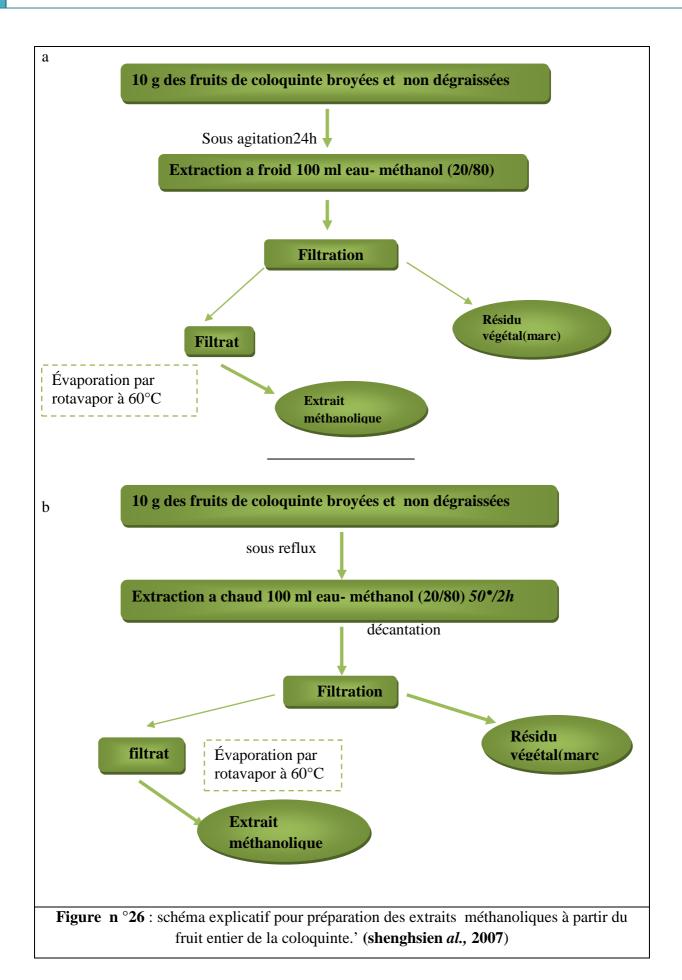
IV.1.2. Décoction de l'extrait hydro-méthanolique (EM) :

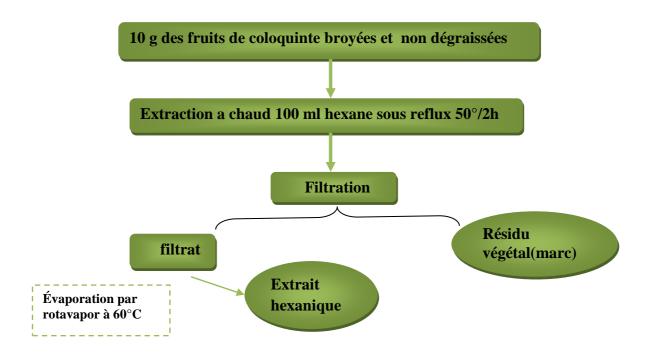
Dans 100 ml de mélange eau/méthanol (20/80), 10 g du fruit entier (graines, pulpe et épicarpe) broyé est soumis à une extraction sous reflux, à chaud et sous agitation pendant 2 heurs-mélange. Puis on fait la filtration du mélange sur papier filtre Wattman N° 01 et récupération du filtrat.aprés la évaporation à sec du filtrat. Nous avons récupérée l'extrait sur les parois du ballon d'évaporation .les étapes d'extraction sont mentionnes brièvement dans la figure n° 26 est celle utilisée par **Harborne** (1998).




figure n° 24 : montage de dispositif de la décoction

IV.1.3.Décoction en présence d'acétate d'éthyle :


Dans 100 ml de solvant polaire acétate d'éthyle 10 g du fruit entier (graines, pulpe et épicarpe) broyé est soumis à une extraction sous reflux, à chaud et sous agitation pendant 2heurs. Puis on fait la filtration du mélange sur papier filtre Wattman N° 01 et récupération du filtrat.aprés la évaporation à sec du filtrat. Nous avons récupérée l'extrait sur les parois du ballon d'évaporation .les étapes d'extraction sont mentionnes brièvement dans la figure n°25.


IV.1.4 .Décoction en présence de hexane :

Dans 100 ml de solvant apolaire hexane 10 g du fruit entier (graines, pulpe et épicarpe) broyé est soumis à une extraction sous reflux, à chaud et sous agitation pendant 2heurs. Après qui a laissé la solution refroidir on fait la filtration du mélange à l'aide d'un papier filtre Wattman N° 01 .ensuite la phase organique récupérée est évaporée à sec Nous avons récupérée .L'extrait hexanique sur les parois du ballon d'évaporation. Les étapes d'opération sont résumées dans la figure n°27.

Figure n°25 : schéma explicatif pour préparation du extrait d'acétate d'ethyle à partir du fruit entier de la coloquinte.' (**shenghsien** *al.*, **2007**)

Figure n°27 : schéma explicatif pour préparation de l'extrait hexanique à partir du fruit entier de la coloquinte.

IV.2.Détermination du rendement des extraits secs :

Dans ce volet de notre travail, afin de pouvoir calculer le rendement de chaque extrait.

Premièrement l'extrait aqueux est récupéré sec par évaporation de l'eau dans une étuve à 50°C. Par conséquence, le rotavapor est utilisé à une température de 60°C pour évaporer les extrait ; méthanoïque, d'acétate, hexane.

Nous pouvons déterminer le rendement (Rdt) de la plante en extrait sec en calculant le rapport du poids de l'extrait sec après évaporation sur le poids de la matière végétale sèche utilisée pour l'extraction, multiplié par 100% (**Bekhechi Benhabib, 2001**).

Le rendement de l'extrait sec obtenu après évaporation de chaque extrait est calculé

Selon le rapport suivant:

Rdt (%) =
$$(P1 - P2)/P3 \times 100$$

P1: Poids du ballon après le séchage.

P2: Poids du ballon vide.

P3 : Poids de la matière végétale de départ.

Les rendements sont calculés par rapport à 10 g de matière végétale sèche.

Les extraits secs sont repris, soit dans quelques millilitres de méthanol pour les dosages et les évaluations de l'activité antioxydante, soit dans quelques millilitres de DMSO pour l'évaluation de l'activité antimicrobienne.

Le montage d'évaporation par le dispositif de rotavapor sont est représente dans la figure n° 28

Figure n° 28 : Montage de dispositif de rotavapor. (laboratoire du centre universitaire du Nàama 2016)

V. Les analyses qualitatives :

Après l'extraction par des trois solvants de polarités differentes (hexane, méthanol, acétate d'éthyle). Chaque mélange est filtré et les trois extraits sont soumis aux différents tests.

V.1. Tests phytochimiques (Screening phytochimique):

Il s'agit d'une analyse qualitative qui permettent de caractériser les différents groupes chimiques contenus dans un organe végétal.il basée sur des réactions de coloration et/ou de précipitation ainsi que sur des examens en lumière ultra violette effectuée sur les extraits préparés précédemment dans le but de mettre en évidence la présence ou l'absence de certains composés chimiques : les flavonoïdes, les tanins, les sucres réducteurs, les coumarines, et les saponosides.

Ces tests sont réalisés en présence de certains réactifs de caractérisation. Les résultats ont été évalués comme suit : +++ : Fortement positif ; ++ : Moyennement positif ; + : Faiblement positif ; -: Négatif ; ND : non déterminé.

1. Les alcaloïdes :

Les tests sont réalisés par des réactions de précipitation avec les réactifs de Mayer, de Wagner et Dragendorff. (**L Majob, 2003**) .6 mL de chaque extrait sont évaporés à sec, le résidu est repris par 5 mL d'HCl 2N. Dans trois tubes à essai contenant 1mL du filtrat, nous avons ajouté 5 gouttes de réactif de Mayer dans le premier tube, 5 gouttes du réactif de Wagner dans le second tube et 5 gouttes du réactif de Dragendorff dans le troisième tube, l'apparition d'un précipité blanc, brun et orange, respectivement, révèle la présence d'alcaloïdes :

- réactif Mayer: précipité blanc jaunâtre.
- réactif Wagner: précipité rouge orangé ou brun.
- réactif de Dragendorff : précipité orange.

Les réactifs de Mayer, de Wagner et de Réactif de Dragendorff sont préparés comme suite:

Réactif de Dragendorff : (Tétraiodobismuthate de potassium) ou appelle aussi réactif à l'iodobismuthate de potassium : Solution A : Dissolve 0.5g de bismuth nitrate (Bi (NO3)3 5 H2O) dans 20 ml d'acide acétique 20% ; Solution B : 5ml de KI préparée à 40% dans l'eau distillé ; Mélanger A et B et Ajuster à 100ml par l'eau distillé.

Réactif de Mayer : Solution A : 1.358g de chlorure de mercure HgCl2 sont dissous dans 60 ml d'eau distillée ; Solution B : 5g d'iodure de potassium KI sont dissous dans 10ml d'eau distillée ;Les solutions A et B sont mélangées extemporanément et le volume final est ajusté à 100ml avec d'eau distillée.

Réactif de Wagner : 2g de KI et 1,27g de I sont dissous dans 75ml d'eau distillée, puis ajustés à 100ml avec d'eau distillée.

Figure n° 29: les trois réactifs wagner, mayer, dragendorff.

2. Les substances polyphénoliques :

a. Tanins:

Dans un tube à essai, introduire 5 ml d'extrait à analyser, ajouter 1mL d'eau et 1 à 2 gouttes de solution aqueuse de FeCl₃ diluée à 1%. le chlorure ferrique développe une coloration verdâtre ou bien bleu verdâtres qui indique la présence des tanins. (**Karumi et al., 2004**)

- -L'apparition d'une coloration verdâtre foncée indique la présence des tanins catéchiques.
- -L'apparition de la coloration bleu-noirâtre qui révèle la présence des tanins galliques.

b. Flavonoïdes:

A 5 ml d'extrait à tester, ajouter, 1 ml d'alcool iso amylique, quelques copeaux de magnésium et quelques gouttes d'acides chlorhydrique (HCl), l'apparition d'une coloration rose ou rouge indique la présence des flavonoïdes. (Karumi et al., 2004)

c. Anthocyanes:

A 1mL de l'extrait, nous avons ajouté 5 mL d'acide sulfurique (H₂SO₄) à 10% puis de l'hydroxyde d'ammonium (NH₄OH) à 25%. Si la coloration s'accentue par acidification, puis vire au bleu-violacée en milieu basique, cela permet de conclure la présence des anthocyanes. (**Oloyede, 2005**)

3. Quinones:

Les substances quinoniques sont recherchées par le réactif de Bornstraëgen. 2 mL de chaque extrait est évaporé à sec. Le résidu est trituré dans 5 mL d'acide chlorhydrique 37% au 1/5. Le triturât est versé dans un tube à essai et porté ensuite au bain-marie pendant 30 min. Après refroidissement, il est extrait par 20 mL de chloroforme. L'ammoniaque diluée 2 fois (0,5 mL) est ajouté à la solution chloroformique. Une coloration rouge ou violette confirme la présence de quinones. (Oloyede, 2005)

4. Saponines: Indice de mousse

Dans une série de 10 tubes à essai numérotés de 1 à 10, introduire respectivement 1, 2, 3,...,10ml de la solution à analyser. Ajuster le volume de chaque tube à 10 ml avec de l'eau distillée. Agiter chaque tube dans le sens de la longueur du tube pendant 15 secondes à raison de 2 agitations par seconde. Laisser reposer 15 min et mesurer l'hauteur de la mousse produite dans chaque tube.

L'indice de mousse (I) est calculée par la formule suivante : I = 1000 / N

N est le numéro du tube où la hauteur de mousse est égale à 1 cm.

5. Coumarines: Fluorescence UV

5 mL de chaque extrait est évaporé à sec. Le résidu ainsi obtenu est repris dans l'eau chaude. Un volume de cette phase aqueuse est additionné d'une solution d'ammoniaque (NH4OH) à 10% et un autre volume est gardé comme témoin. L'apparition de fluorescence après observation sous UV à 366 nm indique la présence de coumarines. (**Benmehdi, 2000**)

6. Stérols et triterpènes : La réaction de Liebermann Buchard.

Évaporer à sec 10 ml de la solution à analyser, dissoudre le résidu dans 5 ml d'anhydride acétique puis 5 ml de chloroforme. A l'aide d'une pipette ajouter 1 ml de H₂SO₄ concentré au fond du tube sans agiter. Laisser reposer 30 minutes. La formation d'un anneau rouge brunâtre à la zone de contact des deux liquides et une coloration violette de la couche surnageant révèlent la présence de stérols et triterpènes. (**Edeoga et al., 2005**)

7. Composés réducteurs :

Introduire 2 ml d'extrait dans un tube, ajouter 2 ml de liqueur de Fehling (1ml réactif A et 1ml réactif B) et incuber l'ensemble 8 min dans un bain marie bouillant. L'apparition d'un précipité rouge brique indique la présence des composés réducteurs

Figure n °30: liqueur de Fehling

V.2. Chromatographie sur couche mince :

V.2.1.Principe de la méthode :

La chromatographie sur couche mince (CCM) repose principalement sur des phénomènes d'adsorptions; la phase mobile est un solvant ou un mélange de solvants, qui progressent le long d'une phase stationnaire fixée sur une plaque de verre ou sur une feuille semi-rigide de matière plastique ou d'aluminium. (**Smaoui et al,.2009**). Cette partie de notre travaille nous permettra de procéder à un fractionnement de nos extraits, qui sont des extraits brut contenant plusieurs composants, dans ce but nous nous somme basés sur la CCM comme technique d'analyse qualitative afin de nous orienter sur la composition des nos extraits EM(d) 32 et EM(d) 08 de fruit de la coloquinte.

Une plaque CCM en gel de silice (20x20 cm) a été utilisée dans trois systèmes de Migration pour mieux séparer les différents composés polyphénoliques éventuellement présents dans nos extraits :

Système 1 : Les alcaloïdes : méthanol/NH₄OH(85/15ml)

Système 2 : Les flavonoïdes : chloroforme/méthanol (90/20ml).

Système 3 : Les terpènes : benzène/acétate (50/50ml)

Nous déposons 5µ1 de chaque extrait. Le développement des plaques s'effectue dans des cuves en verre saturées avec l'éluant approprié. Les substances migreront à une vitesse qui dépend de leur nature et de celle du solvant. Après développement, les plaques ont été séchées, puis visualisées séparément par Une lampe UV à 366 nm. L'interprétation qualitative des chromatogrammes s'effectue par la détermination des facteurs de rétention *Rf*, Le rapport frontal calculé selon la formule suivante :

 $Rf = \frac{Distance\ parcourue\ par\ la\ substance}{Distance\ parcourue\ par\ le\ solvant}$

VI. les Analyses quantitatives :

VI. 1.Dosage des composés phénoliques :

Si les tests de la présence des polyphénols, des flavonoïdes et des tanins donnent des résultats positifs, vous passez à la quantification par méthode spectrophotomètre.

1-Détermination de la teneur des Polyphénols totaux:

Ce dosage repose sur la méthode colorimétrique utilisant le réactif de Folin-Ciocalteu. Décrite par **Awah et ses collaborateurs 2012** Ce dernier est constitué d'un mélange de complexes de l'acides phosphotungstique (H3PW12O40) et l'acide phosphomolybdique (H3PM012O40) de couleur jaune. Le principe de la méthode est basé sur l'oxydation des composés phénoliques par ce réactif. Elle entraîne la formation d'un nouveau complexe molybdène-tungstène de couleur bleu qui absorbe à 700 nm.

Le dosage de Polyphénols totaux (PT) est effectué par la comparaison de la densité optique (D.O) observée à celle obtenue par un étalon d'acide gallique de concentration connue selon la méthode décrite par [(Vermerius et Nicholson, 2006) ; (Boizot et charpentier, 2006)]. Ce dosage est représenté dans le tableau 11(Benariba et *al.*, 2013).

Une prise de 125 μ L d'extrait convenablement de concentration 525mg/ml du El Abiodh Sidi cheik et du 525 mg/ml du Béchar dilué est mise dans un tube en présence de 500 μ L d'eau distillée et de 125 μ L du réactif de Folin-Ciocalteu. Après agitation vigoureuse et repos du mélange pendant 6 mn, 1250 μ L d'une solution de carbonate de sodium (Na2CO3) à 7% sont

ajoutés et le mélange est ajusté à 3 ml avec de l'eau distillée. Le tube est placé au repos pendant 90 mn à température ambiante et à l'obscurité, ensuite l'absorbance est mesurée à 760 nm Une gamme étalon a été réalisée en parallèle dans les mêmes conditions opératoires en utilisant l'acide gallique à différentes concentrations finales (6 ,25/ 12,5/ 25/ 50/ 100/ 200/ 400) μg.ml - 1. Les teneurs en polyphénols totaux sont exprimées en milligramme équivalent acide gallique par gramme de matière végétale sèche (mg EAG.g-1 MS).(tableau n°11).

La teneur ou la concentration en polyphénols totaux présents dans nos extraits est exprimée en µg Eq d'acide gallique/ mg d'extrait est calculée selon la formule suivante:

[Polyphénols]= a. f / C

- **a**: concentration des polyphénols (μg / ml) déterminée à partir de courbe étalon.
- + **f**: facteur de dilution (\times 22).
- **C**: concentration d'extrait.

Tableau n°11: Dosage de polyphénols totaux du fruit de la coloquinte

			I	T		T = = =	I	T	T	T
Concentration	6.25	12.5	25	50	100	200	400	EM(d)	EM(d)	
de l'acide								08	32	
gallique (µg/ml)										
Volume de	125	125	125	125	125	125	125			
l'acide gallique										
(µl)										
Les extraits (µl)								125	125	
Di AVEC										
Blanc AVEC										125
MeOH										120
NaCO3 µl	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250
1	ère Inc	ubation	penda	nt 5 mi	in à ten	npératu	ire aml	biante		
Folin Ciocalteu	125	125	125	125	125	125	125	125	125	125
(µl)										
2ème Incubation pendant 30 min à température ambiante et à l'obscurité										
Lecture au spectrophotomètre à 700 nm										

VII. Évaluation des activités biologiques des extraits bruts :

1. Matériel biologie :

1. 1. Microorganismes:

Les différents extraits de plantes ont été testés sur une gamme panel de micro-organismes références comprenant des bactéries, des moisissures et une levure sont mentionnées dans le tableau n°12. Elles sont entretenues par repiquages successifs sur gélose nutritive sabouraud et le PDA (potatos dextrose d'agar). Les souches bactériennes et levure proviennent le Laboratoire Antibiotiques, Antifongiques : Physico- Chimie, Synthèse et Activité Biologique, du département de Biologie (Université de Tlemcen).alors que les moisissures qui nous ramenées ont été isolées, identifiées par le laboratoire de recherche sur la valorisation des ressources végétales et la sécurité alimentaire dans les zones semi-arides du Sud-ouest algérien de l'université de Bechar.).

1. 2. Globule rouge:

Les tests sur la cytotoxicité sélective des extraits, ont été effectués sur le globule Rouge humain (modèle universel de cellules animales) provenant d'un donneur unique sain.

2. MÉTHODE:

2.1. L'activité antimicrobienne de la C, colocynthis :

Dans cette partie, nous recherchons des composés antimicrobiens synthétisés par *citrullus colocynthis* plante médicinale connues pour leurs propriétés thérapeutiques.

2.1.1 Préparation des solutions des extraits:

Nous avons préparé une solution mère (2ml) dans une éprouvette de 5ml à partir de notre extrait méthanolique par décoction .Les extraits étudiés sont dissouts dans le diméthylsulfoxyde (DMSO) à une concentration de $275 \text{mg}/4000 \,\mu\text{L}$ du extrait EM(d)₃₂ et 549 mg/4000 μL du extrait EM(d)₀₈. La concentration finale en DMSO dans le milieu est de 8% et 13.70%.Ce volume a été complété par le Bouillon Mueller Hinton (MHB) jusqu'à 2 ml (2000 μL). (Pour le test antibactérien) et Sabouraud (pour le test anti-Candida). Ensuite, nous avons mélangé la solution manuellement et la filtré aseptiquement à l'aide d'un filtre stérile (**Burt, 2004**).

Tableau n°12: Description et pouvoir pathogène des souches testées

GRAM	Espèces de	Références	Pouvoir pathogène
	microorganisme		
	Enterobacter cloacea	ATCC 13047	Infection nosocomiale
n L	Escherichia coli	ATCC 25933	Gastro-entérite et infection urinaire
rai	Pseudomonas aeruginosa	ATCC 27853	Infections nosocomiale et pulmonaire
e G	Salmonella typhimurium	ATCC 13311	Fièvre paratyphoïde et toxi-infection A
Bacille Gram	Klebsiella pneumoniae	ATCC 70603	Infections respiratoires, intestinales
Ba	Citrobacter freundii	ATCC 8090	Infections urinaires et de plaies
	Pasteurella multocida	ATCC 43137	Cholera des poules et septicémies
	Campylobacter fetus	ATCC 27374	Infection intestinale
	Salmonella enterica	ATCC 13311	Infection septicémique
	Listeria monocytogenes	ATCC 19 115	listériose
ille	Bacillus cereus	ATCC 11778	Infection alimentaire
Bacille G+	Bacillus subtilis	ATCC 6633	Septicémies chez les immunodéprimés
c.	Staphylococcus aureus	ATCC 25923	Intoxication alimentaire
Cocci G+	Enterococcus faecalis	ATCC 49452	Infections nosocomiale et urinaire
e	Candida albicans	IP 444	Infections fongiques (digestive et
Levure		ATCC 10231	gynécologique , Septicémies et infections
Le			viscérales, Candidoses superficielles
	Fusarium oxysporum	CDRb9	Parasite de plantes, fumonisine
Š	Aspergillus flavus	VD7	Producteur d'aflatoxines B1
Moisissures	Aspergillus niger	CBRb6	Infection respiratoire, aspergillomes,
siss			taches noires sur la plante
Iois	Aspergillus ochraceus	VDAC1	Aspergillose broncho-pulmonaire et
2			production ochratoxine A
	Rhizopus stolonifer	CDAC2	Mucormycose/rhino-cérébrale, pulmonaire

ATCC: American Type Culture Collection. IP: Institut Pasteur

2.1.2. Préparation de l'inoculum :

a. Préparation de pré-culture :

Les tests de l'activité antimicrobienne doivent être réalisés à partir des cultures jeunes de (18 à 24 heures) en phase exponentielle de la croissance. La réactivation des souches s'effectuée par ensemencement de l'espèce bactérienne ou fongique dans un milieu de culture liquide (bouillon nutritif ou bouillon sabouraud, respectivement). Après incubation de 24 heures à 37°C

(bactéries) ou 48 heures à 30°C, un deuxième repiquage est réalisé sur des boites de pétri contenant de la gélose nutritive, GN (bactéries) ou sabouraud gélose (levures) et PDA (moisissure)puis, incubées à 37°C ou 30°C pendant 18 heures ou 24 heures, Respectivement (Hellal,2011).(figure n°31)

Figure n°31 : les étapes du préparation du pré-culture (photo originale)

b. Préparation de la suspension microbienne:

A partir des cultures jeunes qui ont été revifiées sur la gélose nutritive (bactéries) ou sabouraud gélose (levures), ou le PDA(moisissure) nous avons prélevé cinq (05) colonies bien isolées et identiques dans 5 ml d'eau physiologie stérile, agitées manuellement pendant quelques secondes. La turbidité est ensuite ajustée au standard McFarland 0.5 avec un spectrophotomètre ce qui correspond à 10^6 UFC/ml, pour les bactéries ($\mathbf{DO} = \mathbf{0.08}$ à $\mathbf{0.1}$ / $\lambda = \mathbf{625}$ nm) .Selon la standardisation de Mc Farland, nous admettons une DO comprise entre 0.08 et 0.1 correspond à une concentration de 10^8 UFC/ml; la suspension d'inoculum est diluée à 1/100ème dans le milieu de culture pour avoir une concentration de 10^6 UFC/ml.). Les cultures ont été diluées avec bouillon Mueller-Hinton pour les bactéries (Hellal, 2011). $1-5 \times 10^6$ UFC/ml pour les levures ($\mathbf{DO} = \mathbf{0.09}$ à $\mathbf{0.17}$ / $\lambda = \mathbf{530}$ nm) (NCCLS, 2001). Pour les champignons, les souches ont été revifiées et la turbidité a été ajusté à 0.5 McFarland, ce qui correspond à $1-5 \times 10^6$ UFC/ml pour la levure c. albicans ($\mathbf{D.O} = 0.12$ à 0.15 / $\lambda = 530$ nm) (NCCLS, 2001) et 10^6 spores/ml ($\mathbf{D.O} = 0.09$ à 0.17 / $\lambda = \mathbf{530}$ nm), pour les champignons filamenteux (**Pfaller et al., 1998**). Pour les moisissures, les suspensions (préparées à partir

d'une culture de 7 jours ayant atteint le stade de sporulation sur milieu PDA sont ajustées à 10^6 spores/ml, ce qui correspond à une transmittance de 68-82 % ($\lambda = 530$ nm) (Pfaller *et al.*, 1998, bouillon Sabouraud pour *C. albicans* et une solution saline stérile pour les souches fongiques, afin d'atteindre des densités optiques (D.O) correspondantes pour chaque test.

Deux méthodes différentes ont été utilisées pour la détermination de l'activité antimicrobienne, *in vitro* : une méthode de micro-dilution en bouillon pour les bactéries et les champignons et la méthode en contact direct pour les moisissures.

2.1.3. Détermination des concentrations minimales inhibitrices (CMI) par la méthode des micro-dilutions sur milieu liquide:

Ce test en milieu liquide a pour objectif de déterminer les valeurs des paramètres Antimicrobiens dont la Concentration Minimale Inhibitrice (CMI) La méthode décrite par **Okusa** *et al.* (2007), avec une légère modification, a été employée

2.1.3.1. Activité antibactérienne :

Le Bouillon Mueller Hinton (MH) (pH de 7,2 à 7,4) est largement utilisé comme milieu standard pour la micro-dilution en plaque. Il permet une meilleure croissance de la plupart des bactéries pathogènes non exigeantes, en plus de son faible effet antagoniste vis-à-vis des antibiotiques. Ce bouillon est considéré comme milieu de référence.

A partir du la solution mère qui était considère comme première concentration et une gamme de concentrations de chaque extrait est effectuée par des dilutions au demi dans les milieux de culture dans des onze tube de façon à obtenir des dilutions successives.

A partir d'une culture microbienne de 24 h d'incubation, une pré-culture pour atteindre la phase exponentielle de croissance microbienne est préparée. Une fois sa densité optique obtenue, cette pré culture est utilisée pour préparer un inoculum de 10⁶ UFC/ml (pour les bactéries dans une solution de chlorure de sodium (0.9%). Pour chaque ligne de la microplaque, nous avons déposés 50μl de l'inoculum dans les 12 puits à l'exception du puits N°12 qui servira de puits de contrôle de contamination, qui contient seulement le Bouillon Mueller Hinton, comme témoin négatif (100 μl).Nous avons ensuite ajouté 50 μl de la solution de l'extrait dans les 12 puits à l'exception du puits N°11et puits N°12.le puits N°11 servira de témoin positif(croissance sans extrait). Les concentrations finales de la gamme ainsi générée sont comprises entre 208 et 0.40

mg/ml. Les plaques sont scellées avec un aluminium stérile et placées dans une étuve à 35°C pendant 24 heures.

La lecture du résultat s'effectue a l'œil nu à l'aide de d'une source de lumière sous la microplaque pour visualisé si il y'a une inhibition ou non (la croissance sous forme une trouble). [(Espinel-Ingroff et Canton., 2007).

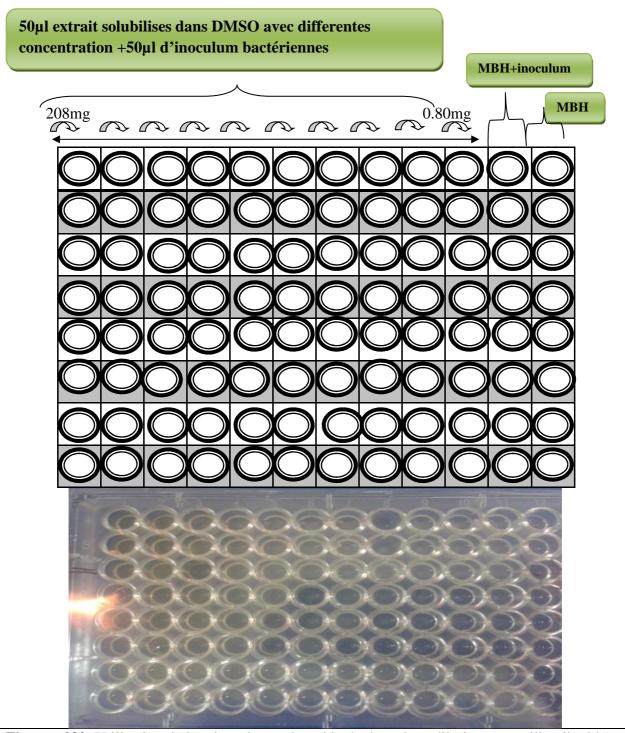


Figure n°32: Utilisation de la microplaque (la méthode des micro-dilutions sur milieu liquide)

La plus faible concentration de chaque fraction ne montrant aucune croissance sera considérée comme la concentration minimale inhibitrice (CMI), elle est confirmée par la un ensemencement sur milieu solide (CLSI-M7-A7 2006).

2.1.3.2. Activité antifongique :

Nous avons utilisé la méthode décrite en **2002** par *Clinical and Laboratory Standards Institute* M27-A2 (**CLSI**). C'est la méthode de référence qui permet de tester l'efficacité des antifongiques et de déterminer les CMI correspondantes (**CLSI-M27-A2 2002**). La concentration minimale inhibitrice (CMI) est définie comme étant la concentration la plus faible de la substance antimicrobienne qui inhibe la croissance des microorganismes.

2.1.3.2.1. Le principe :

Cette méthode est d'évaluer la capacité des levures et moisissure à produire une croissance visible dans les puits d'une microplaque à fond rond (à 96 puits) contenant le milieu de culture liquide, en présence de concentrations décroissantes d'huile essentielle. Le milieu de culture préconisé pour cette technique est le bouillon RPMI (*Roswell Park Memorial Institut*). Nous avons utilisé ce milieu à pH 7,0.

2.1.3.2.2. Mode opératoire :

Les souches *Candida albicans* conservées dans sabouraud gélose à 4°C, sont ensemencées dans sabouraud liquide à 35°C pendant 24 h, puis réensemencées en strie sur boite de pétri contenant de sabouraud gélose à 35°C pendant 20 h, nous avons prélevé 5 colonies d'un millimètre de diamètre, que nous avons placé dans un tube à essai contenant 5 ml d'eau physiologique stérile. La concentration cellulaire de cette solution est ensuite ajustée à 10^8 cellules/ml (une DO de 0.08 à 0.1, $\lambda = 625$ nm) Une dilution au $1/100^{\rm ème}$ est effectuée pour avoir un inoculum final de 10^6 cellules/ ml.

Pour les champignons filamenteux, l'inoculum doit être préparé à partir d'une conidie ou une suspension sporangiospore obtenue à partir de cultures de 7 jours cultivés sur gélose au dextrose de pomme de terre à 35 °C. Certains isolats ont besoin d'une incubation plus longue (plus de 7 jours) pour produire des conidies. Récupérer les conidies par mouillage d'anse de platine dans le Tween 20 et transférer la pleine anse de conidies dans 3 ml de solution saline stérile.

Vortexer la suspension de conidies vigoureusement pendant 15 à 20 s afin de prévenir l'agglutination des spores. Laisser les particules lourdes se déposer pendant 3-5 min, puis

transférer la suspension à un tube stérile et d'ajuster l'aide d'un spectrophotomètre (530 nm) à la densité optique (DO) qui donne un stock suspension de $0,4-5 \times 10^6$ conidies viables ou sporangiospores par millilitre. La densité optique à laquelle l'inoculum doit être réglé dépendra de la taille des conidies.

Préparer une suspension de travail en diluant 1:50 des conidies stocks suspension dans le milieu standard; bien mélanger avec un mélangeur à vortex. Les dilutions 1:50 de l'inoculum correspond au double de la densité nécessaire (environ 0.4 à 5×10^4 UFC/ml). Ou bien on peut ajustée La concentration cellulaire de cette solution est ensuite ajustée à 108 cellules/ml par cellule de Thomas. Une dilution au 1/100ème est effectuée pour avoir un inoculum final de 10^6 cellules/ml.

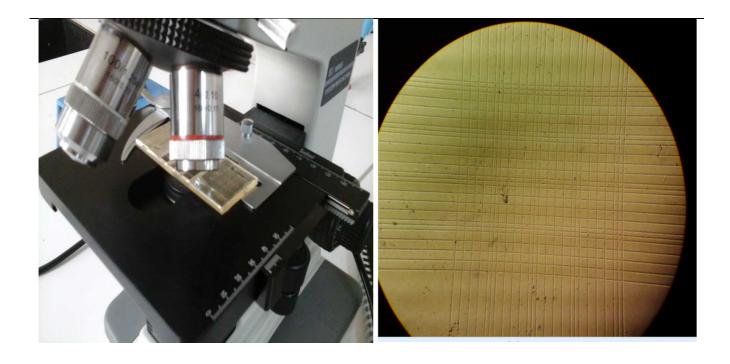


Figure n°33 : représente l'ajustement par cellule thomas (photo originale le 2016/05)

Pour chaque ligne de la microplaque, nous avons déposés $50\mu l$ de l'inoculum dans les 12 puits à l'exception du puits $N^{\circ}12$ qui servira de puits de contrôle de contamination qui contient seulement l'RPMI comme témoin positif ($100 \mu l$).

Nous avons ensuite ajouté 50 μ l de la solution de l'extrait dans les 12 puits à l'exception du puits N°11et puits N°12.le puits N°11 servira de témoin négatif (croissance sans extrait). Les

plaques sont scellées et placées dans une étuve à 35°C pendant 24 heures (CLSI-M27-A2 2002).

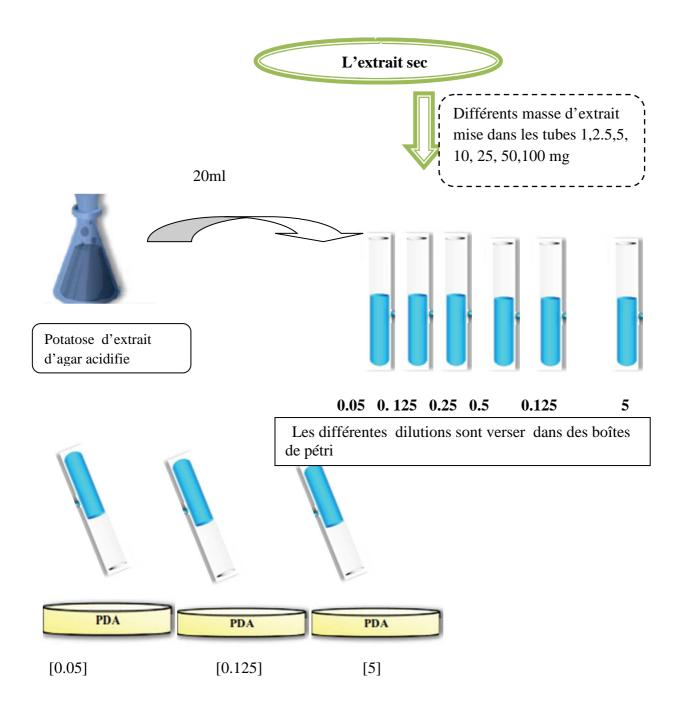
La lecture du résultat s'effectue a l'œil nu à l'ai de d'une source de lumière sous la microplaque pour visualisé si il y'a une inhibition ou non (la croissance sous forme une trouble). [(Espinel-Ingroff et Canton., 2007); (Majoros et *coll.*, 2005)].

La plus faible concentration de chaque fraction ne montrant aucune croissance sera considérée Comme la concentration minimale inhibitrice (CMI), elle est confirmée par la un ensemencement sur milieu solide (CLSI-M27-A2 2002)

2.1.4. Détermination des concentrations minimales inhibitrices (CMI) sur milieu solide :

2.1.4.1Croissance radiale sur milieu solide :

2.1.4.1.1) méthode direct :


Le test préalable de l'activité antifongique de ces extraits a été réalisé. À partir de tubes contenant des concentrations différentes soit par extrait méthanolique du Béchar et /ou extrait methanolique du Abiodh sidi cheik. tout d'abord une gamme de concentrations a été realise nous prélevons différentes masse d'extrait 1,2.5, 5, 10, 25, 50,100 mg que l'on complet aseptiquement chacun d'une à 20ml du milieu Potatose d'agar acidifié .). Convenablement vortexer le contenu des tubes ou bien elles sont agités manuellement. Les tubes sont ensuite versé dans des boîtes de pétri. (HIBAR et *al.*, 2006).

Une boite pétrie contenant 20 ml du milieu PDAac sans extrait est utilisée comme témoin. La masse de l'extrait et Les concentrations des extraits obtenus après mélange avec le milieu PDAac sont résumées dans le tableau n°13.

L'inoculation sporale préparée est déposée au centre de chaque boîte un disque mycélien d'environ 6 mm de diamètre d'une pré-culture de 3 à 7 jours. se fait À l'aide d'une anse de platine, Pour chaque concentration 3 essai ont été répète. De plus, la croissance du champignon est estimée par le diamètre moyen de chaque colonie (mesure de deux diamètres perpendiculaires).

La croissance radiale mycélienne est mesurée à partir du 3ème jour d'incubation à une température de 28±4°C, et juste avant que les filaments mycéliens n'atteignent la périphérie des boîtes témoins (7ème jours) [(Soro et al., 2010); (Kra et al., 2009). (Wang et al., 2005)]

.Le principe de cette méthode est illustré dans la figure n°34.et figure n°35.

Figure n° 34: schéma représente le procède du Croissance radiale de la souche fongique sur milieu solide

Figure n°35: Principe d'évaluation d'activité antifongique des extraits par la méthode de croissance radiale.

Tableau n°13: concentrations en extrait en citrullus colocynthis obtenue avant et après mélange avec le milieu PDAac.

	La masse	Concentration des extrait du	Concentration des extrait
Numéro de tube	des extraits	Béchar après mélange avec	Abiodh sidi cheik aprés
	mg	le milieu PDAac mg/ ml	mélange avec le milieu
			PDAac mg / ml
1	1	0.05	0.05
2	2.5	0.125	0.125
3	5	0.25	0.25
4	10	0.5	0.5
5	25	1.25	1.25
6	50	2.5	2.5
7	100	5	5

Expressions des résultats

Matériel et méthodes

Après incubation à 25 ± 2 °C pendant 2 à 7 jours en tenant compte de la croissance de témoin, les diamètres sont mesurés à l'aide d'une règle, à l'extérieur de la boite fermée, on calcule l'indice antifongique (Pourcentage d'inhibition) qui est déterminé par la formule (**Wang et al.**, **2005**; **Singh et al.**, **2009**) selon :

Indice antifongique = $(1-Da / Db) \times 100$

Avec:

Da: Diamètre de la zone de croissance de l'essai

Db : Diamètre de la zone de croissance du témoin.

Les boites ne présentent pas de croissance, le disque de mycélium est transféré sur un milieu PDA neuf pour confirmer s'il s'agit d'un effet fongistatique ou fongicide. Après l'inhibition de la croissance on détermine la concentration minimale inhibitrice **C.M.I** des extraits testés.

2.1.2. Détermination des concentrations minimales inhibitrice:

a. La Concentration Minimale Inhibitrice (CMI):

Elle est définie comme étant la plus faible concentration de l'extrait capable d'inhiber toute croissance visible du germe. Elle mesure donc, un effet bactériostatique et ne renseigne pas sur l'état de la population bactérienne, ne permettant notamment pas de préciser si elle a été tuée en partie ou totalement ou si elle a seulement cessé de se multiplier (**Bergogne-Bérézin et Brogard, 1999**). La turbidité de chaque puits est appréciée à l'œil nu à la lumière du jour.

3.L'activité anti oxydante :

3. 1.Méthodes de détermination de l'activité antioxydante :

Les antioxydants sont des molécules qui, lorsqu'elles sont présentes à faibles concentrations par rapport aux substrats oxydables, retardent ou stoppent le processus d'oxydation. Pour évaluer l'activité antioxydante des extraits naturels, différentes méthodes ont été développées.

Ces méthodes impliquent le mélange d'espèces oxydantes, tels que des radicaux libres ou des complexes métalliques oxydés, avec un échantillon qui contient des antioxydants capables d'inhiber la génération de radicaux. Ces antioxydants peuvent agir selon deux mécanismes

majeurs, par transfert d'atome d'hydrogène ou par transfert d'électron. Ainsi, compte tenu des différents facteurs impliqués, tels que les propriétés physico-chimiques des molécules, il est recommandé d'utiliser plusieurs tests pour confirmer une activité antioxydante (**Prior et al.**, 2005).

C'est pourquoi notre choix s'est porté sur l'utilisation de neuf tests chimiques : la capacité antioxydante totale (CAT), le pouvoir réducteur du fer, le piégeage du radical 1,1-diphenyl-2-picrylhydrazyl (DPPH⁻), le piégeage du radical l'acide 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonique (ABTS⁻+), le piégeage du radical hydroxyle (•OH), le piégeage de l'anion superoxyde (•O2–), le piégeage d'oxygène singulet (1O2), le blanchiment du β-carotène et le pouvoir chélateur des ions ferriques.

Dans notre étude, la mise en évidence de l'activité antioxydante *in vitro* de nos extrais des composés phénoliques a été réalisée par deux techniques chimiques à savoir : la réduction du fer, le piégeage du radical libre DPPH.

3.1.1. Piégeage du radical DPPH:

Le DPPH' est généralement le substrat le plus utilisé pour l'évaluation rapide et directe de l'activité antioxydante en raison de sa stabilité en forme radicale libre et la simplicité de l'analyse. A température ambiante, le radical DPPH' présente, en solution alcoolique, une intense coloration violette qui disparaît au contact d'une substance donneuse de protons (figure n°36). Cette décoloration met en évidence le pouvoir antioxydant d'un échantillon par sa capacité à piéger le radical libre et se traduit par une diminution de l'absorbance de 517 nm à 520nm (Sanchez-Moreno, 2002).

Figure n°36 : Mécanisme réactionnel d'une réduction du DPPH• avec l'antioxydant (Molyneux, 2004).

Pour la mesure de l'activité, une prise d'essai de 1 ml d'extrait à différentes concentrations est mise en présence de 250 μ L d'une solution de DPPH $^{\cdot}$ (0.2 mM, préparée dans le méthanol). Le mélange est placé pendant 30 mn à l'obscurité pour réagir et l'absorbance est mesurée à 517 nm contre un témoin négatif (sans extrait). A des fins comparatives, l'antioxydants standards est utilisé l'acide ascorbique (vitamine c) .

3.1.1.1. Mode opératoire :

Le protocole expérimental suivi pour étudier l'activité du piégeage du radical libre DPPH, est celui de **Benhammou** *et al.*, **2007.**A différentes concentrations, 200μl de chaque extrait méthanolique, est ajouté à 1800 μL d'une solution méthanolique de DPPH à 6,34.10-5 M (0,0014g dans 100mL méthanol) suivi d'une dilution ½ successif pour chaque concentration un blanc est préparé. En ce qui concerne le contrôle négatif, ce dernier est préparé, en parallèle, en mélangeant 1500 μL du méthanol avec 500 μL d'une solution méthanolique de DPPH à la même concentration utilisée. Le blanc de l'appareil est le méthanol 2 ml. Après incubation à l'obscurité pendant 30minutes et à la température ambiante, la réduction du DPPH s'accompagne par le passage de la couleur violette à la couleur jaune de la solution. La lecture des absorbances est effectuée à 515nm à l'aide d'un spectrophotomètre. Les résultats sont exprimés en pourcentage d'inhibition, calculés suite à la diminution de l'intensité de la coloration du mélange, selon la formule :

 $PI = (D.O \ t\acute{e}moin - D.O \ extrait / D.O \ t\acute{e}moin) \times 100$

PI: pourcentage d'inhibition.

D.O témoin a t0: absorbance du témoin négatif.

D.O extrait à t30min: absorbance de l'extrait.

L'étude de la variation de l'activité antiradicalaires en fonction de la concentration des Extrait permet de déterminer la concentration qui correspond à 50% d'inhibition (IC50). Plus la valeur de IC50est Une faible valeur correspondant à une grande efficacité de l'extrait.

Tableau n°14: Dosage antioxydante du fruit de la coloquinte.

Concentration de l'acide ascorbique (mg/ml)	6	3	1.5	0.75	0.31	0.18	EM(d) 08	EM(d) 32	
Volume de l'acide ascorbique (ml)	125	125	125	125	125	125			
Les extraits (µl)							125	125	
Control négatif MeOH (ml)									2
Volume de DPPH (ml)	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
2ème Incubation pendant 30 min à température ambiante et à l'obscurité									
Lecture au spectrophotomètre à 510 nm									

3.1.1.2. Détermination IC50:

La valeur IC50 est la concentration qui assure la réduction de 50% de l'activité du DPPH Déterminée graphiquement pour chaque extrait à partir de la courbe du pourcentage de réduction en fonction de la concentration (Samarth et al., 2008). Les IC₅₀ sont calculées graphiquement par les régressions linéaires des graphes tracés, pourcentages d'inhibition en fonction de différentes concentrations des fractions testées (Bertoncelj et al., 2007; Marxen et al., 2007; Scherer et al., 2009; Fabri et al., 2009).

3.1. 1.3. Détermination l'activité anti radicalaire:

Les résultats peuvent être aussi exprimés en puissance antiradicalaires (**Brand williams et** *al*, **1995**). L'activité anti radicalaire est déterminée, en calculant l'inverse des valeurs des IC50 (**Maisuthisakul et** *al*, **2007**).

$$PAR = 1/IC50$$

PAR: Puissance anti radicalaire.

IC50 : Concentration de l'extrait nécessaire pour réduire à 50% la concentration initiale du radical DPPH.

3.1.2. Pouvoir réducteur du fer :

Le pouvoir réducteur d'un extrait est associée à son pouvoir d'anti oxydante .l'activités reductrice de fer du nos extraits est déterminés selon la méthode décrit par **Pan et al.,2008,** basé sur par la réaction d'oxydoréduction entre l'extrait et les ions métalliques de transition, notamment le fer. Le ferricyanure de potassium K3Fe(CN)₆ fournit des ions Ferriques (Fe3+) qui seront réduits en Ferreux (Fe2+) par les antioxydants présents dans l'extrait végétal.

Cette méthode consiste à mélanger 1 ml de l'extrait à différentes concentrations avec 2,5 ml de tampon phosphate 0.2 M à pH 6.6 et 2.5 ml d'une solution de K3Fe(CN)₆ à 1% (m/v).Le mélange obtenu est incubé pendant 20 minutes à 50°C, puis 2.5 ml d'acide trichloracétique (CCl₃COOH) à 10% sont ajoutés pour arrêter la réaction. Le mélange est centrifugé à 650 g

pendant 10 mn à température ambiante et 2.5 ml du surnageant sont additionnés de 2.5 ml d'eau distillée et 0.5 ml de chlorure de fer (FeCl3) à 0.1%. La lecture de l'absorbance se fait 700 nm contre un blanc où l'extrait est remplacé par le tampon d'extraction. Les résultats permettent de calculer la concentration efficace (CE₅₀), concentration de l'extrait correspondant à une absorbance égale à 0.5 obtenue par l'interprétation de la courbe de régression linéaire ou logarithmique. L'activité de l'extrait est enfin comparée à celle des antioxydants de synthèse (témoins positifs), butylhydroxyanisole (BHA). La figure n°37 représente leurs structures chimiques

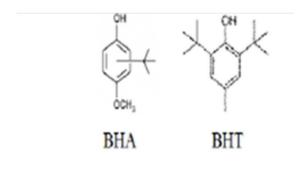


Figure n °37 : Structure du quelle que anti oxydantes synthétiques

4. Étude de la cytotoxicité d'extrait vis-à-vis des érythrocytes :

4.1. Préparation de la suspension érythrocytaire :

Du sang fraîchement prélevé sur tube héparine est centrifugé à 4000 tours/minutes pendant 5 minutes. Après élimination du surnageant, le culot est lavé deux (2) fois avec la solution de lavage de chlorure de magnésium MgCl2 (2mM) contenant 150mM de Na Cl, puis resuspendues à nouveau dans le tampon phosphate salé de sodium (PBS) 100mM, pH 7,4 contenant aussi 150mM de Na Cl.

4.2. Évaluation de la cytotoxicité extrait :

Mesure de la fuite de l'hémoglobine : Les globules rouges sont suspendus dans le PBS à raison de 4000 cellules/ml (0.5 ml sont mis en contact avec 9.5 ml de PBS). La suspension érythrocytaire à 2% est incubée à 37°C pendant 90 min avec différentes concentrations des

extraits testés. Des prélèvements de 0.5 ml sont réalisés chaque 15 min pour être repris dans 2.5 ml d'une solution de lavage glacée MgCl2 (2 mM). Les tubes sont centrifugés à 4000 tours/min pendant 5 min. Le surnageant est utilisé pour suivre la fuite de l'hémoglobine intracellulaire par mesure de l'absorbance à une longueur d'onde de 548 nm. Pour le contrôle positif, l'hémolyse totale est obtenue par la mise en suspension des globules rouges avec l'eau distillée à une concentration de 1% (V/V).

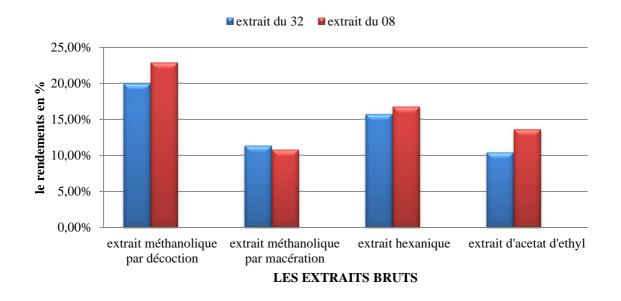
Pour chaque échantillon le pourcentage de l'activité hémolytique maximale est déterminé par L'équation (Lee, 2002):

Taux d'hémolyse (%) = [(Contrôle positif -D.O Extrait)/ D.O Contrôle positif] x 100 Le sud-ouest algérien renferme une flore très riche et peu valorisée. Parmi cette végétation qui se raréfie, on trouve les plantes médicinales traditionnellement utilisées par nos ancêtres à des fins thérapeutiques. Un des axes de recherche développé par le laboratoire de l'université de Saida consiste à valoriser les plantes sahariennes d'un point de vue de leur potentiel chimique et biologique. Notre objectif a été tracé, dans un premier temps, à l'étude phytohimique ainsi à évaluer l'activité biologique du *C. colocynthis* de deux régions différentes.

I. Enquête ethno pharmacologique:

Cette étude ethno pharmacologique qui a été menée dans l'Ouest sahariennes d'Algérie montre l'importance du traitement traditionnel par la coloquinte. Le tableau n°15 présente des réponses sur des questions proposées aux interrogés personnes de trois Wilayas (Béchar, El Bayadh .Naàma) l'Algérie sur les connaissances et l'utilisation efficace, de la coloquinte dans notre zone d'étude.

D'après nos résultât on constate que :


Plus de 40 % des personnes questionnés préfèrent l'utilisation de l'huile du grain qui est riche en acides gras tels l'acide mydriatique, palmitique, stéarique, oléique, linoléique et linolénique ces résultats sont en accord avec les travaux du (Khatri et al., 1993). Tandis que 23,33% des cas questionnés, dans notre étude, ont montré que la poudre du grain ou bien du fruit sont efficace vis-à-vis les hémorroïdes, les varices, anti—diabétique, anti parasitaire-insecticide), la leucémie, l'ictère, la fièvre, l'ascite, et les désordres biliaires qui en accord avec les recherche de (Khare, 2007). alors que 3.3% des personne notent que la pâte des racines s'applique aux différentes malades ces données sont comparables avec les résultats de (Panda, 2000). Alors que plus de 13 à 19% de cette population déclarent que l'utilisation des fruits est efficace contre les insectes (Merabti B et al., 2015). Nous pouvons conclure que notre plante comporte plusieurs composés actifs qui sont responsables de l'activité pharmacologique et les effets thérapeutiques selon Benmehdi et al., (2011).

Citations % par rapport N.T	Noms vernaculaire	Parties utilisée	préparation	Effet thérapeutique	La saison de la récolte	Voie d'utilisation
13.33%		fruit	Infusion /décoctio	Anti otite, Anti-eczéma, contre les parasites intestinaux, la constipation contre les troubles urogénitaux		Cutanée locale
10%		grain	poudre	Anti –diabétique. Anti parasitaire-insecticide), , la leucémie, l'ictère, la fièvre, l'ascite, les désordres biliaires		rale
13.33%	adag	edInd	эd	les hémorroïdes et les varices		Voie orale
19.99%	hanadl /Hadag	fruit	cru	Anti parasitaire-insecticide (ténia, scorpion, anti inflammatoire	Printemps/automne	
3.33%	h	racine Pate		le traitement de rhumatisme, antinéoplasique, antihydropysie, anti goute, anti-arthrite et peut être un remède pour la congestion cérébrale, le rhumatisme et la sciatique	Prir	o
40%		grain	huile	pour traiter des morsures (de serpent, de scorpion), épilepsie, pour favoriser la croissance de cheveux et pour noircir les cheveux gris		Voie cutanée

II. Extractions:

II. 1. Rendements des extraits bruts obtenus :

L'extraction du *Citrullus colocynthis* nous a permis de récupérer nos extraits sous différentes aspects et couleur avec rendements variables. Le rendement déterminé par rapport à 10 grammes de matériel végétal sec et broyé est exprimé en pourcentage. Les rendements d'extraction sont représentés dans l'histogramme illustré dans la figure n°38, et le tableau n°16 résumé les caractéristique des chacun des extraits.

figure n°38: rendements en (%) des extraits bruts de *Citrullus colocynthis* de deux régions différentes.

D'après la figure n°38 et le tableau n°16 ci dessous, nous remarquerons que la plus part de nos extraits ont été récupérés sous forme de poudre de couleur différente, à l'exception de l'extrait hexanique qui présente l'aspect hygroscopique. Nous signalons que l'extrait eau-méthanol par décoction présente le rendement d'extraction le plus élevé, il est de 19.96 % pour la fruit de la région du El Abiodh sidi cheik , et 22.86% concernant la fruit du Béchar, suivie par l'extrait héxanique 15.7% dans la fruit du El 'Abiodh sidi chiek et 16.1% dans la région du Béchar alors que les extraits acétate d'éthyle et extrait eau méthanol (EMm) présentent de faible rendement entre 10% et 13% respectivement. De plus ces extraits présentent une bonne solubilité dans le méthanol et dans le DMSO.

Tableau n°16 : Quelques caractéristiques des extraits préparés du fruit complet du *Citrullus colocynthis*.

Ext	trait	Caractéristiques	Aspect	Couleurs	Rendement	Solubilité
					(%)	
		Extrait eau	Poudre	marron	11.3	Méthanol-
۵		méthanol (EMm)		fonce		Dmso
BIO.	¥	Extrait eau-	Poudre	marron	19.96	Méthanol-
Extrait de l'El ABIOD	cheik	méthanol (EMd)		fonce		Dmso
le 17	<u>:=</u>	Extrait Hexane	produit	vert claire	15.7	Dmso
ait d	sidi	(EH)	hygroscopique			
Extr		Extrait acétate	Poudre	jaune clair	10.4	Dmso
		d'éthyle (AE)				
		Extrait eau-	Poudre	marron	10.75	Méthanol-
char		méthanol (EMm)		fonce		Dmso
Bé		Extrait eau-	Poudre	marron	22.86	Méthanol-
Extrait du Béchar		méthanol (EMd)		fonce		Dmso
xtra		Extrait Hexane	produit	vert claire	16.1	Dmso
		(EH)	hygroscopique			
		Extrait acétate	Poudre	jaune clair	13.6	Dmso
		d'éthyle (AE)				

Nos résultats d'extraction pour nos extraits est nettement supérieurs que ceux obtenus par **Marzouk et al., (2012)** qui sont de l'ordre de 11.047 % pour l'extrait aqueux et 2.046% pour l'extrait éther du pétrole et 8.874 % pour le chloroforme et 1.342 % pour l'extrait d'acétate d'éthyle et 7.376% pour l'acétone et 13.304 % pour le méthanol ainsi que nos résultat ne sont pas en accord avec ceux obtenus par **Djedidi, R et al., (2009)** qui sont de l'ordre de3.6% pour l'extrait aqueux et 4.15% pour l'extrait eau -méthanol et 1.1% pour l'extrait d'acétate d'éthyle.

Aussi, nous constatons que nos résultats sont supérieurs a ceux obtenus par **Marzouk et** *al.*, (2009) qui ont a obtenu un rendement de 2.907% pour l'extrait aqueux et 2.980% pour l'extrait acétone .De même ont obtenu un rendement de 0.73 % pour l'extrait aqueux.

On conclue que le rendement d'extraction dépend de la région, la saison de la récolte, la partie utilisée de la plante, la méthode d'extraction et la nature et la polarité des solvants utilisés. Toutes ces propriétés influencent la solubilité des constituantes du fruit de coloquinte utilisé.

III. Screening phytochimiques:

Les tests phytochimiques ont été réalisés sur différents extraits préparés à partir des fruits du *Citrullus colocynthis* en utilisant des solvants de polarités différentes et des réactifs spécifiques de révélation. Le screening phytochimique nous a permis de mettre en évidence la présence de métabolites secondaires au niveau des tissus végétaux de nos plantes. La détection de ces composés chimiques est basée sur des essais de solubilité des constituants, des réactions de précipitation de floculation et de turbidité, un changement de couleur spécifique ou un examen sous la lumière ultraviolette. Les résultats expérimentaux des tests phytochimiques réalisés sur le matériel végétal broyé de la *Citrullus colocynthis* sont représentés dans le tableau n°17 et tableau n°18.

Selon les résultats mentionnés dans le **tableau** ci-dessous, on constate : L'absence totale des anthraquinones, saponines, et les tanins galliques dans les quatre extraits (figure n° 39 et 40 ,42). Seul l'extrait héxanique présente un test fortement positif confirmé par l'apparition des colorations verte-violet dans la classe d'hétérosides tri terpéniques et l'extrait d'acétate d'éthyle présente un test fortement positif dans la classe hétérosides stéroïdiens confirmé par l'apparition des colorations verte-bleue.

Tableau n°17 : Résultats expérimentaux des tests phytochimiques effectués sur *Citrullus colocynthis* de la région de Béchar.

	métabolites ondaires	réactifs	EM(m) (08)	EM(d) (08)	EH (08)	EA _C (08)
		Mayer	++	++	-	1
A	Alcaloïdes	Wagner	++	++	_	+
		Dragendorf	-	-	-	_
nin	gallique		_	-	_	-
Tanin	cathéchique	Fec13	++	++	++	++
f	lavonoïdes	Mg+	++	++	ND	ND
\$	saponines	Indice de mousse	-	_	-	-
Cou	marines	Fluorescence U-V	+	++	++	++
Stér	ols et	Libermann-	_	-	+++ (vert	+++(vert
trite	erpènes	Burchard			violet)	bleu)
anth	nocynes	H2 SO4	ND	ND	ND	ND
Con	nposes	liqueur de	++	++	-	_
rédu	ıcteurs	Fehling				

Les résultats sont classés selon : Réaction négative : - Réaction faiblement positive : +

Réaction moyennement positive : +++ Réaction fortement positive : +++

ND: non déterminée

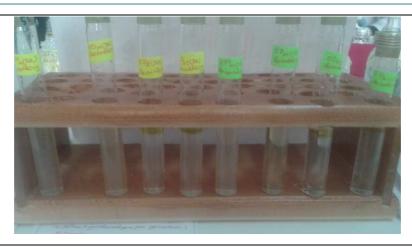


Figure n°39 : résultat des anthocyanes d'ED (m) 32 et ED (m) 08

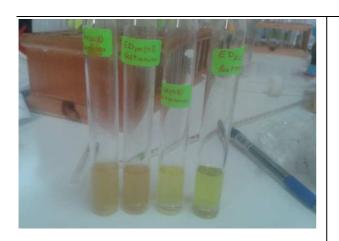


Figure n°40: résultat des saponines ED(m) 32 et ED(m) 08.

Par contre on note un test positif (++) des tanins catéchiques pour les quatre extraits. Sa présence est confirmée par une réaction positive avec la solution de chlorure ferrique en donnant une coloration bleue verdâtre. Concernent les alcaloïdes on note un test positif plus riche avec turbidité et précipitation seulement pour les extraits méthanolique par macération et décoction par (Wagner/Mayer) (figure n°41) et l'extrait d'acétate d'éthyle riche en alcaloïde (Wagner) et l'absence par les réactifs (Mayer et Wagner) et absence totale dans l'extrait hexanique.

Figure n° 41: résultat des alcaloïdes d'ED(m) 08

Figure n°42 : résultat du tanin d'extrait de 08

Figure n°43 : résultat de coumarine d'extrait de 08

Alors que les flavonoïdes sont présents en forte quantité seulement dans les extraits méthanoliques est confirmée par l'apparition d'une couleur vire rose en contact avec la tournure de magnésium. Les composes réducteurs sont absentes dans l'extrait héxanique et l'extrait d'acétate d'éthyle se trouvent en quantité remarquable dans les extraits méthanolique confirmé par l'apparition des colorations rouge brique (figure n°44). On note également la présence des coumarines en forte quantité (figure n°43). Dans tous nos extraits confirmés par forte fluorescence, mais en faible quantité dans l'extrait macération méthanolique.

Figure n° 44: résultat du composes réducteur de régions 08/32

Tableau n°18: Résultats expérimentaux des tests phytochimiques effectués sur *Citrullus colocynthis* de la région d'Abiodh sidi cheik.

Les	métabolites	Réactifs	EM(m)	EM(d)	ЕН	EAc
secondaires			(32)	(32)	(32)	(32)
		Mayer	++	++	_	_
	Alcaloïdes	Wagner	++	++	_	+
		Dragendorf	-	-	-	+
Tanin	gallique		-	_	_	_
Тап	cathéchique	Fec13	++	++	++	++
f	lavonoïdes	Mg+	++	++	ND	ND
	saponines	Indice de	-	_	_	_
		mousse				
Cou	ımarines	Fluorescence	+	++	++	++
		U-V				
Sté	rols et	Libermann-	_	_	+++ (vert	+++(vert
trite	erpènes	Burchard			violet)	bleu)
ant	hocynes	H2 SO4	ND	ND	ND	ND
Cor	nposes	liqueur de	++	++	-	-
réd	ucteurs	Fehling				

Les résultats sont classés selon : Réaction négative : — Réaction faiblement positive : + Réaction moyennement positive : ++ Réaction fortement positive : +++ ND : non déterminée

D'après les résultats des tests phytochimiques portés dans le **tableau n** °18 précédent montrent que l'extrait EM(m) est très riche en alcaloïdes (Wagner et Mayer) et absence totale par le réactif Dragendorf .Dans cet extrait les tanins catéchique, les coumarines , les composes réducteurs et les flavonoïdes sont fortement présents par contre les anthraquinones, saponines, et les stérols sont totalement absents dans cet extrait.

Pour l'extrait EM(d), les tests révèlent une forte présence des coumarines avec fort fluorescence et des composes réducteurs avec l'apparition du couleur rouge brique comme indicateur et des tanins catéchiques sa présence est confirmée par une réaction positive avec la solution de chlorure ferrique en donnant une coloration bleue verdâtre .cet extrait est riche en alcaloïdes (Wagner et Mayer) et absence totale par le réactif Dragendorf. En revanche les stérols et les triterpènes, les anthocynes et les saponines sont totalement absents.

Tandis que pour l'extrait EAc, la forte présence n'est observée que pour les stérols et triterpènes confirmé par l'apparition des colorations verte-bleu dans la classe d'hétérosides stéroïdiens Une présence moyenne pour les tanins catéchique et les coumarines confirmées par forte fluorescence. Cet extrait riche en alcaloïdes (Wagner et Dragendorf) et absence totale par le réactif Mayer. Alors que pour le reste des composes on note une absence totale.

L'extrait hexanique n'a permis d'avoir que les coumarines et les stérols et les triterpènes. Elles présentent un test fortement positif confirmé par l'apparition des colorations verte-violet dans la classe d'hétérosides tri terpéniques par rapport aux autres classes de composes cités.

Notre résultats des tests phytochimique qui sont rassemblées dans nos extraits sont confirmés par l'étude de **Sediki**, (2009) et **Benmahdi**, (2000) ont révèle la présence des alcaloïdes et les flavonoïdes et les stéroïdes. Cependant nos résultats sont similaires à ceux obtenus par **Ambi et al.**, (2007) et **Gacem**, (2011), **Najafi et al.**, (2010), **Gurudeeban et al.**, (2010) ils ont confirmé la présence de composes réducteurs (a l'exception d'extrait hexanique) et la présence de flavonoïdes dans l'extrait entier de *C.colocynthis*

Par ailleurs nos résultats se rapprochent de ceux obtenus par **Bentabet**, (2010), qui constate la présence des tanins catéchiques, flavonoïdes et des coumarines et l'absence des alcaloïdes et les saponosides, sucres réducteurs et anthraquinones dans les extraits Aqueux, Eau- méthanol, Acétate d'éthyle, n-butanol. Autres divergences dans les résultats obtenus par **Gacem et** *al*. (2011) et **Ambi et** *al*., (2007) qui présument l'absence totale de coumarines dans les deux extraits aqueux et méthanolique alors que les coumarines existent dans tous nos extraits.

IV. Analyse chromatographique sur couche mince :

Pour un essai d'analyse qualitative préliminaire du contenu phénolique de nos différents extraits, nous avons eu recours à l'utilisation de la chromatographie sur couche mince (CCM). nos résultats sont obtenues après le déplacement des composants du nos extraits à sa propre vitesse derrière le font des solvants de polarité différentes sous la lampe UV à 254 nm .Dans laquelle les composants absorbant les UV apparaissent sous forme des taches visibles ou des bandes .Ces derniers révèlent la présence de principes actifs correspondant. (Flavonoïdes, terpènes et alcaloïdes .on voit que le brut réactionnel contient encore du produit de départ après on doit rendre les taches visibles par un procédé de révélation chimique par Iodine et l'on chauffe la plaque jusqu'à ce que des taches colorées apparaissent. .nos résultat obtenus sont rapportés dans le tableau n°19 et la figure n°45, 46,47.

Après révélation sous lampe UV à 254 nm. Les résultats de la séparation chromatographique sur couche mince de nos extraits concrétisés par les photos des plaques CCM sur les figures. Ces résultats obtenus nous ont permis de mettre en évidence une comparaison des Rf des différentes taches obtenues entre nos extraits étudiés. On constate que :

Le système (méthanol /ammoniaque) aux proportions (85/15) a permis la séparation de 2 taches pour l'extrait EM(d) 32 et 2 pour l'extrait EM(d) 08.cette migration était visualisée par l'apparition de fluorescences du la couleur bleu-brun dans la plaque. Donc nous avons démontré que cette séparation est due a l'interaction entre le groupement amine de l'ammoniaque et la fonction d'azote des de différentes classe des alcaloïdes.

Avec le système chloroforme/méthanol aux proportions (90/20) plusieurs taches a été observée avec une couleur jaune clair .on a obtenu trois taches pour l'extraite EM(d) 32 ainsi que On remarque aussi trois tache pour l'extraite EM(d) 08 grâce a la réaction l'ionisation des nombreux groupes hydroxyles entre solvants et de nos extrait. Ces taches a démontrent la présence des certains flavonoïdes. Elle s'agit de la quercitrine, les flavonols et aurones.etc.

Autre système à base (benzène/d'acétate d'éthyle) aux proportions (50/50) permis de séparer six taches pour l'EM (d) 32. Ce même système aux proportions on remarque une séparation de cinq taches au niveau de l'EM(d) 08 .nous constatons que la extrait méthanoïque des *C.colocynthis* est majoritairement composée de stérols et de triterpènes qui sont observés avec la couleur jaune.

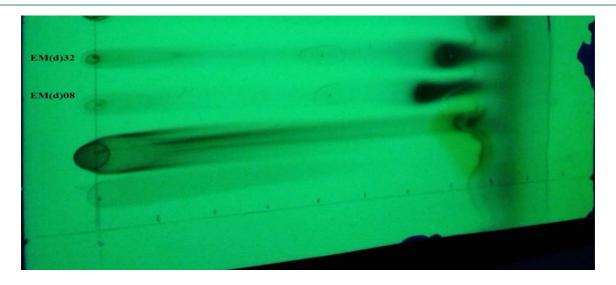
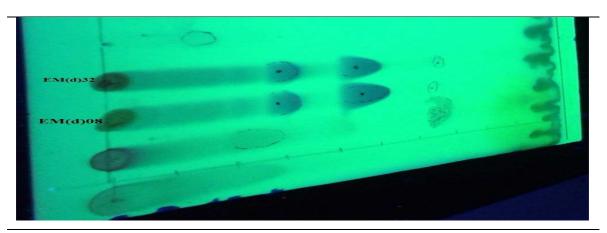

Le meilleur système éluant adéquat permettant une bonne séparation des extraits est Bénzene/ EtOAc (50/50) cependant on assiste à quelques différences entre nos résultats et ceux obtenus par **Maatooq et al., (1997)** selon une analyse chimique d'extrait eau-méthanol du fruit de la coloquinte (RM) ont identifié six flavonoïdes: 3'méthoxy-iso-orientine, isoorientine, 8-C-p-hydroxybenzenoil-isovitexine, 6-C-p- hydroxybenzoylvitexine et 8-C-p hydroxylbenzoyl isovitexine 4-0-glycoside.ensuite. Nos résultats sont en accord avec celle obtenu par **Delazar et al., (2006)** qu'ont isolé et identifié trois flavonoides glycosylés à partir du fruit de la coloquinte.nos résultat sont confirmées par les travaux de **Affifi et al., (1973)** qui ont déterminés trois alcaloïdes dans tous les organes de la Plante (C ₁₀H₁₅NO₃) et (C₁₆H ₂₄NO₃) le troisième (C₂₀H₃₆NO₆) est présent au niveau des graines, pulpes, feuilles et racine. Cependant nos résultats sont en accord avec l'étude récente du **Sanjay et al., (2013).**

Tableau n°19 : Résultats d'analyses chromatographiques (CCM) des différents extraits de fruit de la coloquinte à 254 mn.


Les composes phénoliques	solvant	Système	DP (colvent)	T ache	Extraits	
					EM(d) 32	EM (d) 08
	$\begin{array}{c c} \text{Solvant} & \text{Systeme} \\ \hline & (\text{v/v}) & \text{(solvant)} \end{array}$			RF		
	MeOH/	17/3	9.5	1	0.45	0.43
	NH4OH			2	0.69	0.73
Flavonoïdes	CHCI3/ MeOH	18/2	10.5	1	0.26	0.26
				2	0.42	0.43
				3	0.62	0.59
terpènes	Bénzene/ EtOAc	1/1	9.6	1	0.31	0.46
				2	0.47	0.57
				3	0.58	0.81
				4	0.74	0.92
				5	0.87	0.94
				6	0.96	

Rf: Rapport frontale. CHCI3: Chloroforme. MeOH: Méthanol

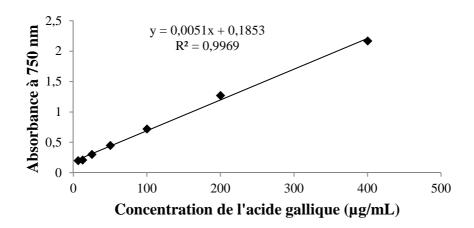
EM(d): Extrait eau-méthanol par décoction. **EtOAc** : Acétate d'éthyle

Figure n° 45: Séparation des extraits de la coloquinte sur plaque CCM. Au système méthanol/ NH4OH prises après révélation à la lumière UV à 366 nm.

Figure n °**46 :** Séparation des extraits de la coloquinte sur plaque CCM. Au système chloroforme/méthanol prises après révélation à la lumière UV à 366 nm

Figure n°47: Séparation des extraits de la coloquinte sur plaque CCM. Au système bénzene/ acétate prises après révélation à la lumière UV à 366 nm

V. Dosage des composés phénoliques :


A partir les tests phytochimique qui confirme le fortement présence des polyphénols, des flavonoïdes et des tanins dans nos extraits méthanoïques .Pour ces raisons. Nous avons passée à la quantification par méthode spectrophotomètre. Pour nos extraits en utilisant l'équation de régression linéaire de courbe d'étalonnage qui est élaborées par de solutions standard de l'acide gallique et préparée à des concentrations différentes.

V.1. Courbe d'étalonnage pour le dosage des polyphénols totaux :

Cette courbe est établie en utilisant l'acide gallique comme référence. La formule de la Régression linéaire de cette courbe est de y = 0.005 x + 0.185 avec un coefficient de corrélation R2 égal à 0.996 (figure 48).

La figure n°49 montre les résultats des teneurs en phénols totaux des extraits de *C.colocynthis* du la région de Abiodh S/C et de Béchar analysés par spectrophotométrie. Ces résultats Constatent que l'extrait EM(d) ₀₈ est le plus riche en phénols totaux est de l'ordre de **127.6 mg** GAE/g MS. suivi de l'extrait EM(d) ₃₂ qui détient une valeur plus moins que l'autre, elle est de l'ordre de **113.52 mg** GAE/g MS.

En définitif, on peut dire que la *C. colocynthis* du 08 possède une teneur en polyphénols totaux élevée par rapport à la *C. colocynthis* du 32. Ces résultats importants reflètent les données trouvées dans la figure n° 38 où nous avons enregistré des rendements élevés des extraits bruts ce qui prouve la richesse de chaque partie de la plante en polyphénols à savoir les flavonoïdes et les tanins.

Figure n°48 : Courbe d'étalonnage de l'acide gallique pour le dosage des polyphénols totaux.

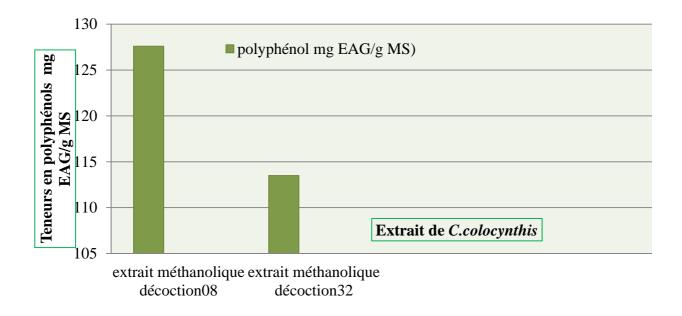
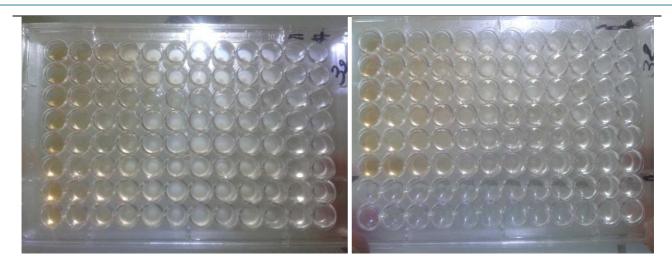


Figure n°49: Teneurs des dosages des polyphénols dans les extraits bruts de Citrullus colocynthis

Notre résultats et d'autres ceux de **Benhabib**, (2011) restent en accord avec ceux obtenus par **Bentabet**, (2010) qui a révélé des teneurs de l'ordre de 134 mg équivalent acide gallique/g de matière sèche. Ce résultat confirme la richesse du fruit en polyphénols et qui sont facilement récupérable dans un mélange eau/méthanol. Néanmoins, l'étude de **Djedidi et Sahi**, (2009) a montré des teneurs plus élevées en polyphénols totaux dans l'extrait aqueux qui sont de l'ordre de 0,33% Eq d'acide gallique et des valeurs semblables dans l'extrait eau-méthanol, avec un taux de 0,40% Eq d'acide gallique. Cependant nos résultats restent supérieurs à celle qui a déjà été publiés par **Ben hsouna et** *al.*, (2012) ont déterminés 205 mg GAE/g dans l'extrait acétate d'éthyle, suivie par l'extrait méthanolique (85 mg GAE / g). Les contenus obtenus dans les extraits hexanique (12 mg GAE / g) et aqueux (35 mg GAE / g) sont beaucoup plus petits.

De ce fait, on constate que le mélange eau- méthanol reste le meilleur solvant pour assurer une meilleure extraction de composés phénoliques. Cela est dû à la capacité de méthanol à inhiber l'action du polyphénol oxydase qui provoque l'oxydation des polyphénols dans les tissus végétaux (Yao et al., 2004).

VI. Étude des activités biologiques des extraits bruts :


VI .1. Évaluation de l'activité antimicrobienne :

VI .1.1. Détermination des concentrations minimales inhibitrices (CMI) par la méthode des micro-dilutions sur milieu liquide:

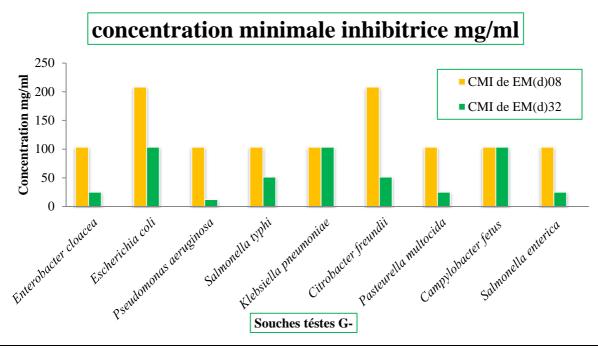
La méthode du micro dilutions sur milieu liquide est une technique quantitative permettant de déterminer la sensibilité des microorganismes vis-à-vis une substance antimicrobienne. Cette méthode est basé sur le pouvoir inhibiteur des extraits à l'intérieur d'un puits, dans un milieu nutritif (Mueller Hinton bouillon) ensemencée par l'inoculum des souches à testées.

VI .1.1. 1. Activité antibactérienne :

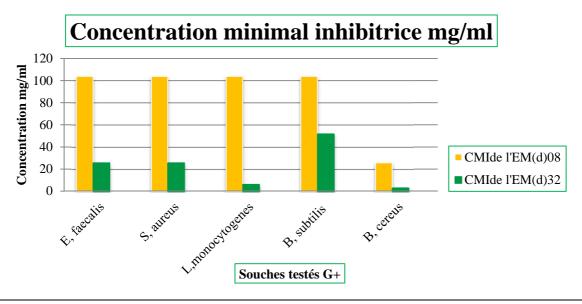
Les observations effectuées sur l'effet des EM(d) de *Citrullus colocynthis* de deux régions sur la croissance des souches bactérienne testées sont représentées dans la figure n°50 suivante :

Figure n° 50: les résultats des déterminations concentrations minimales inhibitrices par la méthode du micro dilutions sur microplaque

A partir les histogrammes illustrés dans les figures n°51 et la figure n°52:


Les résultats de la méthode de micro dilution montrent qu'EM(d) 32 d'C. colocynthis a un effet inhibiteur à une concentration de 104 mg/ml vis-à-vis des souches C. fetus, E. coli, K.pneumoniae qui représentent les souches la plus résistance parmi nos souches testées. Par ailleurs, l'extrait exerce un effet inhibiteur à une concentration de 52 mg/ml vis-à-vis des B. subtilis S. typhi, C. freundii qui sont les souches les moins résistantes. D'autre part, une activité médiocre de notre extrait a été visiblement remarquée pour les cinq souches qu'elles ont montré une même valeur de CMI qui est de 26 mg/ml, il s'agit de : E. faecalis et S. enterica. E. cloacea., S. aureus, P.multocida. par contre P.aeruginosa est plus sensible par une concentration de 13 mg/ml. Tandis que, la CMI est de 6.50 mg/ml vis-à-vis de L. monocytogenes . Par contre, la plus petite valeur de CMI correspondant à une activité inhibitrice majeure était celle pour B. cereus qui était la plus sensible parmi nos souches testées avec une valeur égale à 3.25 mg/ml.

Dans la même condition et à partir des observations effectuées sur l'effet des EM(d) 08 de C.colocynthis, nous avons constaté que la plus petite valeur de CMI correspondant à une activité inhibitrice majeure était celle pour la souche la plus sensible B. cereus à l'action de l'extrait avec une valeur égale à 26 mg/ml. Cependant les grandes valeurs de CMI correspondant au faible effet inhibiteur de l'EM(d) étaient contre C. fetus, E. coli, C. freundii qui représentent les souches la plus résistance parmi nos souches testées avec des valeurs de CMI égales à 208 mg/ml. D'autre part, une activité médiocre de notre extrait a été visiblement remarquée pour les dix souches qu'elles ont montré une même valeur de CMI qui est de 104

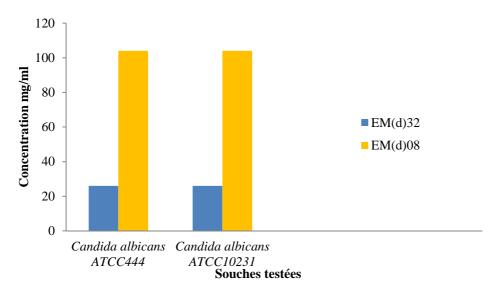

mg/ml, il s'agit de : E. faecalis et S. enterica. E. cloacea., S. aureus, P.multocida. B. subtilis S. typhi,, P.aerugenusa et L.monocytogenes. K.pneumonia.

Nous pouvons conclure qu'à partir de nos résultats présentés dans les figure n°51 et figure n °52, que nos extrait EM(d)₃₂ exerce un effet inhibiteur vis-à-vis des bactéries à GRAM négatif par des concentrations entre 26 et 6.50 mg/ml par contre dans la même concentration les bactérie G- restent plus résistance durant le contact avec l'extrait l'EM(d)₀₈. Tandis que l'extrait EM(d)₃₂ exerce une forte activités inhibitrice contre les gram positive par rapport l'extrait EM(d)₀₈. Nos résultats ont montré la présence de l'activité antibactérienne envers les bactéries à Gram négatif et Gram positive. Elles rejoignent celles qui ont été faites par Marzouk et al., (2009); Marzouk et al., (2010) qu'ils ont travaillé sur les extraits de toutes les parties de la plante Citrullus coloncynthis tels les racines, la tige, les feuilles, les fruits et les graines, et il sont démontré que toutes les parties possèdent une activités antibactérienne contre les Gram positif (S. aureus avec (CMI, 3.25mg/ml E.faecali(CMI 0.81mg/ml)s)) et les Gram négatif P. aeruginosa (CMI 0.81mg/ml) et E.coli (CMI 0.41mg/ml mais à un degré moindre pour les racines. L'étude réalisée par Marzouk et al., (2009) montre que les extraits aqueux et les extraits acétone ont une forte activité antibactérienne, Ils ont observé des sensibilités variables contre les fruits et les graines qui n'ont pas atteint leur maturité ont été les plus actifs contre les bactéries déjà citées; ces auteurs ont également montré que les métabolites secondaires diffèrent d'une région à une autre en quantité et en qualité (exemple les alcaloïdes et les flavonoïdes) et par conséquent l'activité antibactérienne de chaque partie de la plante est tributaire de la composition de chaque plant (Marzouk et al., 2009; Marzouk et al., 2010).

Par ailleurs nos résultats concordent avec les travaux de **Gurudeeban et al., 2010**qui ont indiqué que l'extrait méthanolique du *C.colocynthis* a une activité anti bactérienne vis-à-vis *B.subtilis*, *S. aureus*, *S. faecalis*, *S. pyogenes*, *E. coli*. *K. pneumoniae*, *P. mirabilis*, *P. vulgaris*, *S. typhi*, *V. cholerae*. Peu de travaux concernant du pouvoir antimicrobien des extraits du *C.colocynthis* ont été réalisés. Pour cette raison nous avons comparé nos résultats avec ceux de l'activité antibactérienne de l'huile de coloquinte est corrélée à la présence de certains composés dont les hydrates de carbone, les flavonoïdes, les glycosides et les tannins qui sont présents dans l'extrait de la *Citrullus colocynthis* au niveau du parois bactérienne, perturbante ainsi le fonctionnement et la perméabilité du membrane cytoplasmique, ce dernier utilisé par **Memou et al., (2003)** a été signicativement actif, et a montré l'inhibition de la croissance appréciable de *S.aureus, B. pumilus* et *B. subtilis*. Par contre l'activité antibactérienne contre *E. coli* et *P. aeruginosa* est négligeable.

Figure n°51: résultat des concentrations minimal inhibitrices des EM(d) de *C.colocynthis* vis-à-vis les souches bactériennes G-

Figure n° 52: résultat des concentrations minimal inhibitrices des EM(d) de *C.colocynthis* vis-àvis les souches bactériennes G+.

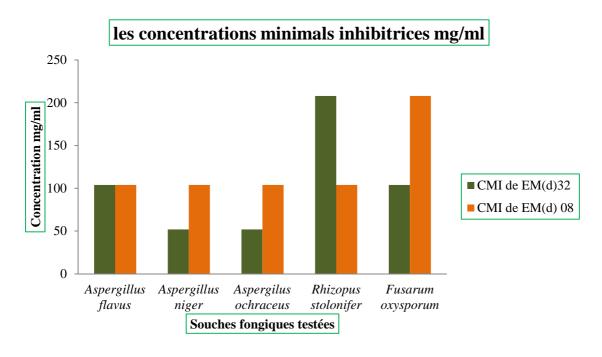

VI.1.1.2. Activité antifongique :

VI.1.1.2.1. Levures:

D'après les résultats obtenus dans la figure n° 53 on constate que l'EM(d) 32 de la *C.colocynthis* a exercé un fort effet inhibiteur vis-à-vis : *C.albicans* IP444 et *C.albicans* 10231 par une CMI de l'ordre de104 mg/ml. Par contre dans les mêmes concentrations on a remarqué que l'EM(d) 08 exerce un effet inhibiteur faible vis-à-vis : *C.albicans* IP444 et *C.albicans* 10231 dans la concentration 104mg/ml.

Concernant l'activité antifongique de l'EM(d) vis-à-vis les deux souches de *Candida albicans*. Nos résultats ne sont pas en concordance avec ceux de **Samaneh et al., 2015** qui ont rapporté que l'extrait hydroalcoolique du C.*colocynthis* exerce une activité anti candida dans la CMI de 1.56 à 12.5mg/ml. Tandis que **Marzouk et al,. (2009)** et **Marzouk et al,. (2010)** ont décelé cette activité à des CMI de 0.10 mg/ml qui ne sont pas en concordance avec nos résultats. **Gurudeeban et al,. (2010)** ont démontré que les espèces de *Candida* sont résistantes a l'action d'extrait méthanolique.

Concentration minimale inhibitrice mg/ml


Figure n° 53 : résultat des concentrations minimal inhibitrices des EM(d) de *C.colocynthis* visà-vis les levures (*Candida albicans*)

VI.1.1.2.2. Moisissures:

Les observations effectuées sur l'effet des EM(d) de *Citrullus colocynthis* de deux régions sur la croissance des moisissures testées sont représentées dans la figure n°54 ci-dessous.

En examinant les résultats illustrés dans la figure n°54, nous signalons que nos l'extrait EM(d) 08 exerce une activité antifongique plus forte que l'extrait EM(d) 32. La lecture des résultats des figures de l'effet antifongiques des EM(d) 32 montre qu'Aspergillus flavus et F. oxysporum ont été plus sensible vis-à-vis l'extrait par une concentration de 104 mg/ml .Cependant, la petite valeur de CMI correspondant au faible effet inhibiteur de l'EM(d) étaient contre A. niger et A. ochraceus avec une valeur de 52 mg/ml respectivement. D'autre part, une activité médiocre de notre extrait a été visiblement remarquée pour la souche la plus résistance R. stolonifer, vu leurs CMI qui était de l'ordre de 208 mg/ml.

En parallèle à ce constat, nos extraits EM(d)₀₈ ont révélé un effet antifongique plus faible de nos extrait EM(d)₀₈ contre le *F.oxysporum* la souche la plus résistance permis nos souche. Par contre nous remarquons que les souches que *A. flavus et A.niger*, *A. ochraceus et R.stolonifer* sont moyennement sensibles vis-à-vis nos extraits par une concentration de 104 mg/ml.

Figure n°54 : résultat des concentrations minimals inhibitrices des EM(d) de *C.colocynthis* vis-à-vis les moisissures.

VI.1.2 Détermination des concentrations minimales inhibitrices des moisissures par méthode direct sur milieu solide :

VI.1.2.1. Extrait Méthanolique du Bechar EM(d) 08:

L'analyse des résultats relatifs à la croissance fongique soumise à l'action de différentes concentrations d'extrait méthanolique de *C.colocynthis* testée (figure n°55) nous a permis de constater que l'EM(d) ₀₈ de cette coloquinte a exercé une action antifongique variée sur les espèces fongiques testées à des concentrations allant de 0.05 mg/ml. En effet, à une concentration égale à 1.25mg/ml, l'EM(d) de coloquinte a pu inhibée à 50 % la croissance d'*A.flavus. F.oxysporum* (voir tableau n°20), tandis que la croissance de *A.niger*, *chraceus et R.stolonifer*, a été inhibée à la concentration de 5 mg/ml.

Cependant, la croissance des souches n'ont pas pu être inhibées totalement (voir tableau n°20). On a aussi remarqué que le taux d'inhibition de la croissance fongique est proportionnel à la concentration de l'extrait méthnolique.

1. Activité inhibitrice de l'EM(d) 08 à 0.05mg/ml: d'après le profil inhibiteur de l'EM(d) 08 de C.colocynthis à 0.05 mg /ml vis-à-vis les souches testées, on a remarqué en terme de sensibilité que les deux souches : F.oxysporum et. R.stolinifer ont présenté une sensibilité visiblement remarquable à 30% et 23% respectivement, tandis que L'A.flavus a présenté une sensibilité médiocre à 20%, cependant la souche : A.niger ont été marquées par une résistance à 18% respectivement vis-à-vis ce traitement. Une ANOVA a été conduite pour comparer l'inhibition de l'EM(d) 08 de la C.colocynthis sur les différentes espèces de moisissures. L'analyse statistique a révélé une signification entre les souches fongiques. (Figure n°55).

2. Activité inhibitrice de l'EM(d) ₀₈ à 0.125μg/ml: le fait de doubler la concentration en EM(d)₀₈, des variations ont été produites en termes de sensibilité pour les différentes espèces testées. En général la concentration de 0.125μg/ml a fait augmenté la sensibilité vis-à-vis cette EM(d) par rapport à la concentration précédente, F.oxysporum dont a présenté une sensibilité à 32%, R.stolinifer à 30.70%, A.flavus à 30%, A.niger à 25%. Par ailleurs, l'analyse statistique ANOVA révèle une relation significative de l'inhibition de l'EM(d) sur les différentes souches fongiques (Figure n°55).

- 3. Activité inhibitrice de l'EM(d) 08à 0.25, 0.5. Et 1.25 mg/ml: l'observation de l'histogramme de figures (n°64) relatif aux concentrations 0.25, 0.5, 1.25 mg/ml, montre que l'effet inhibiteur de l'EM(d) a persisté avec une augmentation par rapport aux concentrations précédentes. D'où une proportionnalité entre l'indice antifongique en (%) et la concentration en EM(d) 08 a été remarquée. Toutefois, l'analyse statistique montre une différence très significative entre les souches testées.
- 4. Activité inhibitrice de EM(d) 08 à 2.5 mg/ml: À partir d'une concentration en EM(d) de 2.5 mg/ml, on a pu révéler un effet inhibiteur Partiels vis-à-vis A.flavus et F.oxysporum, R.stolinifer tandis que l'effet inhibiteur reste proportionnel avec la concentration en EM(d) pour la souche A.niger à un pourcentage variable. L'analyse statistique indique une relation significative de l'EM(d) de C. colocynthis vis-à-vis l'inhibition entre les différentes souches testées.
- 5. Activité inhibitrice de l'EM(d) 08 à 0.50mg/ml: l'inhibition n'a pas pu être effectué à 100% pour toutes les souches testées, dans lequel l'inhibition reste partiel et demandé une concentration plus élève. De plus, l'analyse statistique ANOVA a montré une relation significative de l'effet d'EM(d).

Tableau n°20: Résultats de l'activité inhibitrice de l'EM(d) ₀₈. sur les souches fongiques testées.

concentration (mg/ml) Espèce	0.05	0.125	0.25	0.5	1.25	2.5	5
A.flavus	20	30	40	46	50	70	67,50
F.oxysporum	30	32	40	46	50	60	48,57
A.niger	17,50	25	30	32,50	37,50	40	62,50
R.stolinifer	23,08	30,77	46,15	53,85	61,54	69,23	72,31

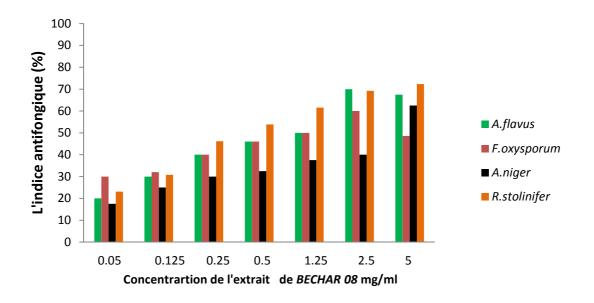


Figure n°55 : L'indice antifongique de l'extrait méthanolique du Bechar

VI.1.2.2. Extrait Méthanolique d'Abiodh sidi cheik EM(d) 32:

Par ailleurs L'expertise des résultats des indices moyens de l'essai de l'effet antifongique du l'extrait méthanolique par décoction de la région d'Abiodh Sidi Cheik consignés sur la figure n °56 en et le tableau n°21 montrent que :

1. Activité inhibitrice de l'EM(d) 32 à 0.05mg/ml: d'après le profil inhibiteur de l'EM(d) 32 de C.colocynthis à 0.05mg/ml vis-à-vis les souches testées, on a remarqué en terme de sensibilité que les deux souches : L'A.flavus et. R.stolinifer ont présenté une sensibilité visiblement remarquable à 22% et 23.08% respectivement, tandis que F.oxysporum a présenté une sensibilité médiocre à 20%, cependant la souche : la souche A.niger s'est révélée plus résistante à 7.69% respectivement vis-à-vis ce traitement. Une ANOVA a été conduite pour comparer l'inhibition de l'EM(d) 32 de la C.colocynthis sur les différentes espèces de moisissures. L'analyse statistique a révélé une signification entre les souches fongiques (figure n°56).

2. Activité inhibitrice de l'EM(d) 32 à 0.125mg/ml: le fait de doubler la concentration en EM(d) 32, des variations ont été produites en termes de sensibilité pour les différentes espèces testées. En général la concentration de 0.125mg/ml a fait augmenté la sensibilité vis-à-vis cette EM(d) par rapport à la concentration précédente, F.oxysporum dont a présenté une sensibilité à 40%, R.stolinifer a présenté une sensibilité médiocre à 38.46%, A.flavus à 40%, En parallèle à

ce constat, l'extrait n'a exercé pas un éffet antifongique forte sur *A.niger* dans la quelle a été remarque par une résistance à 15%. Par ailleurs, l'analyse statistique ANOVA révèle une relation significative de l'inhibition de l'EM(d) sur les différentes souches fongiques (Figure n°56).

- 3. Activité inhibitrice de l'EM(d) 32 à 0.25, 0.5 et 1.25 mg/ml: L'observation de l'histogramme de figure (n°56) relatif aux concentrations 0.25,0.5 Et 1.25 mg/ml, montre que l'effet inhibiteur de l'EM(d) a persisté avec une augmentation par rapport aux concentrations précédentes. D'où une proportionnalité entre l'indice antifongique en (%) et la concentration en EM(d) 32 a été remarquée avec une sensibilité forte des souche vis-à-vis l'extrait.. Une ANOVA a été conduite pour comparer l'inhibition de l'EM(d) 32 de la *C.colocynthis* sur les différentes espèces de moisissures. L'analyse statistique a révélé une signification entre les souches fongiques (figure n°56). Toutefois, l'analyse statistique montre une différence très significative entre les souches testées.
- 4. Activité inhibitrice de EM(d) 32 à 2.5 mg/ml: À partir d'une concentration en EM(d) de 2.5 mg/ml, on a pu révéler un effet inhibiteur Partiels vis-à-vis A.flavus et F.oxysporum, R.stolinifer tandis que l'effet inhibiteur reste proportionnel avec la concentration en EM(d) pour la souche A.niger à un pourcentage Variable. L'analyse statistique indique une relation significative de l'EM(d) de Citrulus colocynthis vis-à-vis l'inhibition entre les différentes souches testées.
- 5. Activité inhibitrice de l'EM(d) 32 à 5mg/ml: Notons à cette concentration que l'inhibition n'a pas pu être effectué à 100% pour toutes les souches testées, dans lequel l'inhibition reste partiel et demandé une concentration plus élève que 5mg/ml. De plus, l'analyse statistique ANOVA a montré une relation significative de l'effet D'EM(d) 32.

D'après nos résultats, La forte activité antifongique de l'extrait méthanolique a aussi été rapportée par **Hadizadeh** et *al*,. (2009) qui ont démontré que les extraits alcooliques de *Citrullus colocynthis* possèdent une bonne activité antifongique. Nos résultat est en accorde avec les études de **Gurudeeban** et *al*,. (2010) qui ont signalé que l'extrait méthanolique des parties aériennes de *Citrullus colocynthis* est menu d'une importante activité antifongique sur *A. fumigatus* alors que l'extrait aqueux n'a aucune activité antifongique sur cette souche. En outre, *Aspergillus flavus* s'est révélé résistante aux deux types d'extraits. Ces deux souches fongiques sont moins résistantes en présence d'extrait éthanolique alors que le rhizopus s'est révélé sensible à l'extrait aqueux. En ce qui concerne l'extrait des graines de *Citrullus colocynthis* L.

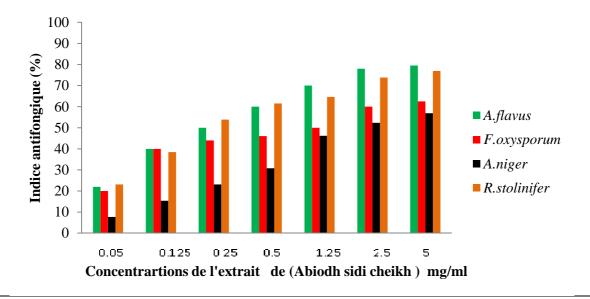
plusieurs études ont prouvé leur activité antifongique notamment le travail de **Merzouk et al.**, (2009), où l'on a constaté que les extraits des fruits de cette plante ont présenté un large spectre antifongique. Dans le même sens **Gacem et al.**, (2009) ont montré que l'extrait aqueux de la pulpe inhibe la croissance d'Aspergillus flavus avec un indice antifongique de l'ordre de 82%. En paralléle l'etude faite par **Samaneh et al.**, (2015) a révèle que les souches A. niger et A. flavus et A. fumigataus montrent une sensibilité à l'extrait hydro alcoolique brut de

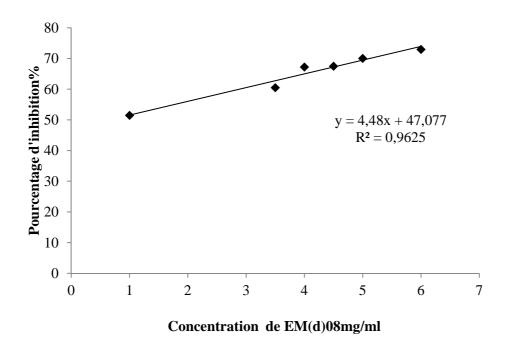
C.colocynthis. Les effets antifongiques des extraits aqueux et méthanolique des graines de la coloquinte peuvent être attribués aux différentes substances phytochimiques détectées lors du screening phytochimique. Dans leur étude, **Abdel ghani** et al., (2008) mettent aussi en relation l'activité antifongique des extraits des graines de C. colocynthis avec les substances bioactives de la plante. La tendance de ces substances phytochimiques d'avoir une activité plus élevée sur l'ensemble des souches est en fonction de leurs concentrations dans les extraits (Fogliani et al., 2005; YAN et al., 2008).

Nous pouvons conclure que l'importance de ces familles phytochimiques est influencée par la répartition géographique de *Citrullus colocynthis*, ce qui influe par la suite sur leurs activités biologiques. L'activité antimicrobienne des extraits dépend donc de la plante, de sa composition, de l'organe végétal à tester, de la nature de l'extrait et de la souche à étudier (GRAVEN et *al.*, 1992).

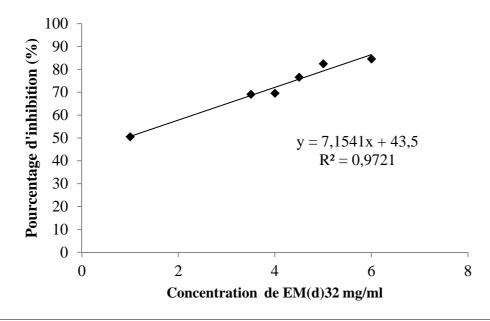
Tableau n °21 : Résultats de l'activité inhibitrice de l'EM(d) 32. sur les souches fongiques testées.

concentration (mg/ml) Espèce	0,05	0.125	0.25	0.5	1.25	2.5	5
A.flavus	22	40	50	60	70	78	79,49
F.oxysporum	20	40	44	46	50	60	62,50
A.niger	7,69	15	23	30,77	46,15	52	56,92
R.stolinifer	23,08	38,46	53,85	61,54	64,62	73,85	76,9230769




Figure n° 56: L'indice antifongique de l'extrait méthanolique de l'Abiodh S/D

VI.3.Évaluation du potentiel antioxydant des extraits :


A travers nos recherches bibliographiques et compte tenu de la complexité des processus d'oxydation, il apparaît clairement qu'une seule méthode n'est pas suffisante pour caractériser le potentiel antioxydant d'un échantillon. C'est pourquoi notre choix s'est porté sur l'utilisation de deux tests chimiques. Le principe de ceux-ci repose sur un changement de couleur qui a été suivi par la lecture de l'absorbance à des longueurs d'ondes spécifiques. Dans ce qui suit, nous présentons les résultats du potentiel antioxydant des extraits bruts sélectionnés pour cette étude.

VI.3.1 .Piégeage du radical 2,2-diphényl-1-picrylhydrazyl (DPPH•) :

En faisant varier les concentrations des extraits 7, 6, 5, 4.5, 4, 3.5, 3,1 et en calculant pour chaque concentration le pourcentage d'inhibition correspondant (PI %), nous avons établi les profils d'activité antiradicalaires présentés dans les courbes qui déduit la valeur correspondante nécessaire pour diminuer 50% du taux des radicaux libres). D'après le courbe illustré dans la figure n° 57et 58 on remarque que il existe une augmentation proportionnelle des pourcentage d'inhibition en fonctions des concentrations des extraits ,ont permis l'obtention des courbes linaires et logarithmiques avec un R² compris entre 0.962 et 0.972.

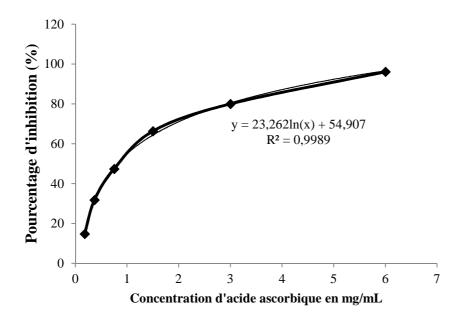
Figure n°57: Pourcentages d'inhibition du radical libre DPPH en fonction des différentes concentrations d'EM(d)₀₈

Figure n°58: pourcentages d'inhibition du radical libre DPPH en fonction des différentes concentrations d'EM (d) 32.

Les profils de l'activité antiradicalaires obtenus révèlent que les extraits riches en capacité anti radicale qui s'accompagne par son passage de la couleur violette à la couleur jaune mesurable à 515nm (figure n°59). Nous observons une augmentation proportionnelle des pourcentages d'inhibition en fonction des concentrations, la présence d'une phase exponentielle signifie une réduction presque moitié du radical DPPH. L'extrait EM (d) ₀₈du l'espèce *C.colocynthis* a montré un pouvoir réducteur plus important par rapport aux autres extraits à une concentration de 6 mg/ml, il atteint une bonne capacité d'inhibitrice avec pourcentage égale à 84.23%.

Alors que les EM (d) 32 n'ont atteint que 73% à cette même concentration. Ces valeurs sont comparées avec ceux de l'acide ascorbique qui à une concentration de 6mg/ml peut réduire 98 % du DPPH.

1. Courbe d'étalonnage:


Cette courbe est établie en utilisant l'acide ascorbique comme référence. La formule de la Régression linéaire de cette courbe est de $y = 23.26 \ln x + 54.90$ avec un coefficient de corrélation R2 égal à 0.998 (figure n °60).

Les concentrations des extraits et de l'acide ascorbique qui inhibent 50% du DPPH a été déterminés graphiquement et résumé dans le tableau n °22. Les IC50 déterminés graphiquement varient d'un extrait à l'autre, A une concentration entre 0.98 et 1.1mg/ml, les deux extraits ont atteint le seuil de 1'IC50. En comparant ces résultats avec la vitamine C dans la quelle IC50 représente 0.97 mg/ml donc on constate que les deux extraits possèdent le plus fort pouvoir antioxydant. Elles sont proches de celle d'acide ascorbique.

.

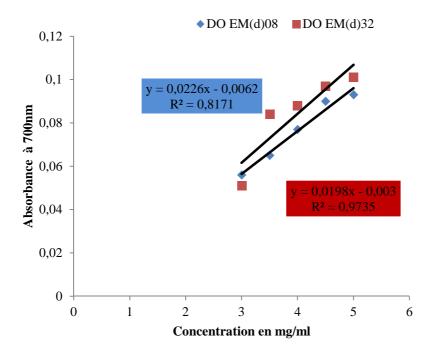
Figure n°59: représente les résultats visuels de réduction du DPPH en DPPH-H

Figure n°60 : Pourcentage d'inhibition du radical libre DPPH en fonction des différentes concentrations d'acide ascorbique

Tableau n° 22:IC50 des extraits EM (d) $_{32}$ et EM (d) $_{08}$ de fruit de la coloquinte et de la vitamine C.

Les extraits	EM (d) 32	EM (d) 08	Vitamine C
IC50 (mg/ml)	1.100	0.98	0.97
Activité antiradicalaires 1/IC50	0.91	1.020	1.030

VI.3.2.Pouvoir réducteur du fer ;


Ce pouvoir se traduit par la réduction du Fe3+ en Fe2+, en présence d'antioxydants dans l'échantillon testé. La quantité de Fe2+est suivie par la mesure de l'absorbance à 700 nm. Par des dilutions en cascade des différents extraits à tester EM (d) 32 et EM(d) 08, ainsi que l'antioxydant de synthèse (BHA). Une gamme de concentrations a été réalisée allant de 3 à 7 mg/ml.les valeurs des D.O ont permis du tracer des courbes ayant des allures linéaire avec R² entre 0.81 et 0.91.

Nous remarquons que l'activité réductrice est proportionnelle avec l'augmentation des concentrations de nos extraits dans les quelles les extraits : EM (d) 32 et EM (d) 08 testés possèdent une capacité dose dépendante à réduire le fer. Comme la montre la courbe illustrée dans la **figure n** °61, on remarque que le pouvoir réducteur varie considérablement entre les différents extraits avec des valeurs des densités optiques maximale égale 0.107 à la concentration du 7 mg/ml pour *C. colocynthis* EM(d) 08 alors que l'extrait EM(d)32 a présente l'activités plus élevé dans le même concentration du 7 mg/ml pour réduire le fer par rapport le premier avec une densité optique qui atteint le seuil de 0.212. Et dans la concentration du 3 mg/ml la densité optique est similaire dans les deux extraits mais plus faible entre 0.056 et 0.051. Cette valeur reste plus supérieur à celles de BHA. IC50 obtenu pour l'acide ascorbique, utilisé comme molécule de référence, est bien inférieur à ceux des extraits, est donc, l'acide ascorbique possède une activité antioxydante très élevé.

Nos résultats de l'activité anti radicalaire sont pas en accord avec ceux de **Boutchiche**, (2011) qui a démontré qu'à faible dose de l'ordre de 1 à 3 mg/ml aucun effets antioxydant n'a été observer pour aucun extraits, par contre à forte concentration 30 mg/ml, ils peuvent réduire respectivement 80.84%, 88.86%, 91.89% et 90.58% du DPPH, après 30 min d'incubation, avec IC50 plus inferieurs a nos résultats est égale 0.469mg/ml.

Tandis nos résultat sont inférieur a ceux qui obtenus par (**Kumar** et al "2008), ont démontré qu'une concentration de 2.5 mg/ml de l'extrait méthanolique de l'épicarpe du fruit de *C. colocynthis* peut réduire 88% du DPPH après 30 min d'incubation. Nos results sont en accord avec **Djedidi et Sahi**, (2009) ont démontré que les trois extraits acétate d'éthyle, eau-méthanol et aqueux, à une concentration de 2 mg/ml, peuvent réduire respectivement 88.73%, 66.19% et 74.46% du DPPH, après 30 min d'incubation. Cependant nos résultats sont pas en accord avec l'étude récente qui indiqué que le activité anti radicalaire qui était détermine par (**Ben hsouna et**

al,. 2012) pour l'extrait aqueux IC₅₀ =1,85 μ g / ml, suivie par l'acétate d'éthyle IC₅₀= 3,80 μ g ml et extrait méthanolique IC₅₀ =19,5 μ g / ml, contre l'acide ascorbique IC₅₀ = 3,1 μ g / ml.

Figure n° 61: pouvoirs réducteurs des extraits EM(d) 32 et EM(d) 08et des antioxydants de synthèse

VII. Tests d'hémolyse in vitro:

Ce test a été évalué parce que, même si une plante possède un pouvoir antioxydant puissant et une activité antimicrobienne modérée, son utilisation en médecine traditionnelle et dans les préparations pharmacologiques sera contrôlée en présence de leur effet hémolytique, qui est un indicateur de cytotoxicité. Les érythrocytes constituent un modèle cellulaire très adéquat pour cette étude, en raison de la richesse de leurs membranes en acides gras polyinsaturés et la concentration cellulaire élevée en oxygène et en hémoglobine. L'exposition des érythrocytes à un agent hémolytique (extrait) conduit donc à la lyse de leurs membranes plasmiques avec libération du contenu cellulaire hémoglobine mesurable à 540 nm. Les concentrations finales

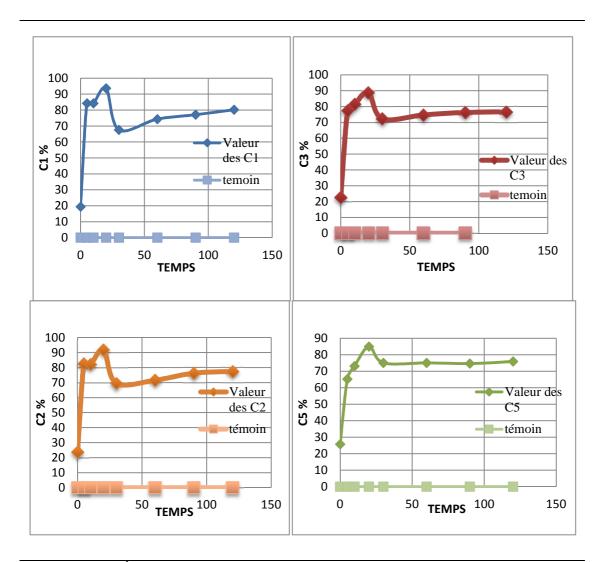
des extraits ont été choisies selon les CMI obtenues par la méthode des microdilutions vis-à-vis de toutes les souches testées.

Les extraits EM(d) 32 et EM(d) 08 de *C. colocynthis* , possèdent un potentiel antioxydant important, ont été testés à différentes concentrations (100,50,25, 12.5 ,6.25 ,3.13 ,1.6 mg.ml-1) pendant 0, 5, 10 ,20, 30, 60, 90 et 120 min d'incubation avec des érythrocytes humains diluées à 10% (v/v) dans du PBS à température ambiante. Un pouvoir hémolytique se définit si le pourcentage d'hémolyse est supérieur à 5% (**Sharma et Sharma, 2001**), puis nous pouvons comparer à un témoin négatif (tube contenant que de PBS et suspension érythrocytaire).

En examinant les résultats illustrés dans les courbes la figure n°62, nous signalons que d'effet hémolytique sont directement proportionnels à l'augmentation des concentrations des extraits en fonction du temps (figure n°62). A 0 min d'incubation nous observons une augmentation du pouvoir a partir du 9.67 jusqu'au l'atteinte du seul 61.67 % dans la concentration 100mg/ml

Dans 5 min et pour toutes les concentrations testées du l'extrait EM(d) ₀₈, les pourcentages d'hémolyse sont atteignent le seul de 47% dans la [C]=100mg/ml et 1.67 % dans la [1.6] mg/ml. Les pourcentages atteignent des valeurs entre 66.67% et 24.33%, après 30min d'incubation. Après le temps 90nous pouvons montrer que les pourcentages atteignent des valeurs entre 73.67% et 41.33%.

En examinant les résultats illustrés dans les courbes la figure n°63, nous signalons que d'effet hémolytique sont directement proportionnels à l'augmentation des concentrations des extraits en fonction du temps


A 0 min d'incubation nous observons une augmentation du pouvoir hémolytique d'extrait EM(d) 32. À partir du 24 .50% jusqu'au l'atteinte du seul 23.71 % dans la concentration 100mg/ml Dans 5 min et pour toutes les concentrations testées du l'extrait EM(d) 32 du 100mg/ml, le pourcentage d'hémolyse est atteigne le seul de 84.19% dans et 21.74%, dans la concentration 1.6mg/ml. Les pourcentages atteignent des valeurs entre 93.67% et 81.82%, après 20min d'incubation. Après le temps 90nous pouvons montrer que les pourcentages atteignent des valeurs entre 77.10% et 64.43%.

Donc, on peut classer l'effet hémolytique des différents extraits testés, à la concentration de 6.25 mg.ml-1, après 120 min de contact avec les érythrocytes humain, comme suit :

EM(d) 32 >EM(d) 08. De ce fait, les extraits testés ont montré une forte activité hémolytique avec des pourcentages supérieurs à 4 % Donc, ils sont d'une très forte toxicité, même à des concentrations petites et après 1 heure de contact avec les érythrocytes humains. Dans cétte toxicité probablement due à la richesse de la plante par les alcaloïdes. Du même c'est une plante est reconnue dans la littérateur par sa toxicité, citons les travaux (Elawad et al., 1984, Ott et al., 2003).

Figure n° 62: Évolution du taux de hémolyse des differentes concentration du l'extrait EM(d) ₀₈ *C.Colocynthis* du BÉCHAR Après 0 à 120minute d'incubation par rapport l'hémolyse total.

Figure n° 63: Évolution du taux de hémolyse des differentes concentration du l'extrait EM(d) *C.Colocynthis* du ABIODH S/C Après 0 à 120minute d'incubation par rapport l' hémolyse total

Conclusion générale

Les plantes médicinales restent toujours la source fiable des principes actifs connus par leurs propriétés thérapeutiques. Leur utilisation est en progression constante, étant donné la toxicité et les effets secondaires indésirables des molécules de synthèse. Dans ce contexte, on s'est intéressé à évaluer la composition chimique ainsi, on s'est intéresse à déterminer le taux en polyphénols et les activités antioxydants et antimicrobiennes des extraits du fruit d'une plante saharienne. Il s'agit de *citrullus colocynthis* de deux régions différentes utilisées dans la pharmacopée traditionnelle de notre région, pour le traitement de plusieurs maladies.

L'enquête ethno-pharmacologique nous a révélé pas moins d'une vingt et un de plantes recensées et présumées posséder des propriétés thérapeutique dans notre région.

L'obtention des extraits par des solvants de polarités différentes a été réalisée par décoction et macération. Le rendement l'extrait EM(d) 32 présente le rendement d'extraction le plus élevé, a été voisin de 19.96 %, et 22.86% concerne EM(d) 08, suivie par l'extrait héxanique 15.7% dans EH32 et 16.1% pour l'EH 08 alors que les extraits EAc et EM(m) présentent de faible rendement entre 10% et 13% respectivement.

Cette étude nous a permis d'identifier les composés chimiques des extraits par screening phytochimique et par la chromatographie en couche mince et de doser leur contenu en polyphénols totaux et d'évaluer aussi trois activités biologiques (antimicrobienne, antioxydante et cytotoxicité) des extraits de plante de citrullus colocynthis de région d'EL Bayadh (Abiodh sidi cheik) et Béchar (Béni ounif).

Ceci souligne un ensemble des résultats montré que :

- L'étude de nos extraits nous a permis de montrer que EM(d) et EM(m)présentent des compositions riches et variées en métabolites secondaires notamment en flavonoïdes, tanins, alcaloïdes ,coumarine et composés réducteurs; avec cependant une absence totale en saponines ,stérols et triterpènes et anthocynes ainsi nous a permis de montrer que EH et EAc présentent des compositions riches et variées en métabolites secondaires notamment en, tanins, alcaloïdes , et hétérosides stérodiques et hétérosides triterpenes coumarine; avec cependant une absence totale en saponines et anthocynes flavonoïdes et composés réducteurs.
- L'étude qualitative et quantitative de l'activité antimicrobienne de nos extraits d'EM(d) 32 et EM(d) 08 est avérée très intéressant, du fait que nous avons obtenu des résultats positifs sur toutes les souches testées. En effet, le pouvoir antibactérien est relativement élevé, avec des CMI obtenues sont comprises entre 3.25 et 104mg/ml.

Conclusion générale

Les résultats obtenus indiquent que *B. subtilis* et *L. monocytogenes* sont les souches les plus sensibles. Par contre souches *C. fetus*, *E. coli*, *K.pneumoniae* sont les plus résistantes. En revanche, la méthode de microdillution en milieu liquide a montré une activité antifongique intéressante contre les souches fongiques examinées (levures et moisissures). Les CMI anti candida obtenues sont comprises entre 26 et 104 mg/ml, et Les CMI anti moisissures obtenues sont comprises entre 52 et 208 mg/ml En plus, le pouvoir antifongique des d'EM(d)₀₈ et EM(d)₃₂de citrullus colocynthis vis-à-vis les souches fongiques testées indiquent que ces extrait ont une capacité inhibitrice de croissance importante pour les six souches testées.

- ❖ Le test de l'activité antioxydante de nos extraits nous a permis de constater que nos extraits ont une activité efficace en tant que donneur d'hydrogène et un antioxydant primaire par réaction avec le radical libre DPPH.
- L'essai de la cytotoxicité de nos extraits vis-à-vis les globules rouges révèle que les EM(d) 32 et EM(d) 08 présentent un effet cytotoxique Donc. même si une plante possède un pouvoir antioxydant puissant et une activité antimicrobienne modérée, son utilisation en médecine traditionnelle et dans les préparations pharmacologiques sera impossible en présence de leur effet hémolytique, qui est un indicateur de cytotoxicité.

La composition chimique des extraits de citrullus colocynthis pourrait être modifié selon la distribution géographique et il pourrait être un facteur efficace affectant son activité biologique; même que les variations écologiques et locales liées à l'élévation des sites de populations.

Nos perspectives de recherche pour le futur sont les suivantes :

- Isoler les molécules contenues dans les extraits actifs de citrullus colocynthis
- valoriser les extraits des *citrullus colocynthis* en industrie agroalimentaire, pharmaceutique et cosmétique.
- Étudier la cytotoxicité de ces molécules par des autres méthodes afin de confirmer ou d'infirmer l'activité attribuée à cette plante.

- AAbdel Ghani, S.B., Weaver, L., Zidan, Z.H., Hussein, M.A., Keevil, C.W. & Brown, R.C.D., 2008. Microware-assisted synthesis and antimicrobial activities of flavonoid derivatives. *Bioorganic & Medicinal Chemistry Letters* 18, 518-522.
- **Abdel-Hassan I.**, **Abdel-Barry J.A** et **Mohammeda S.T.**, **2000**. The hypoglycaemic and antihyperglycaemic effect of *Citrullus colocynthis* fruit aqueous extract in normal and alloxan diabetic rabbits. Journal of Ethnopharmacology; 71: 325-330.
- **Abdul Rahuman,A. and Venkatesan P., 2008.** Larvicidal efficacy of five cucurbitaceous plant leaf extracts against mosquito species. *Parasitology Research*; 130:133-139.
- Adam S. E. I., Al-Yahya M. A., Al-Farhan A. H., 2001. Combined toxicity of *Cassia senna* and *Citrillus colocynthis* in rats. Vet. Hum. Toxicol. 43 (2): 70-72.
- Adam S.E., Al Yahya M.A., Al Farhan A.H., 2001. Response of Najdi sheep to oral administration of *Citrullus colocynthis* fruits, *Nerium oleander* leaves or their mixture. Small Rumin. Res.; 40:239-244.
- Adnane Remmal^a, Touria Bouchikhi^a, Khadija Rhayour^a, Mohamed Ettayebi^a & Abdelrhafour Tantaoui-Elaraki^b ., 1993. Improved Method For The Determination Of Antimicrobial Activity Of Essential Oils In Agar Medium Pages 179-184 Doi:10.1080/10412905.1993.9698197.
- Afifi,M.D; Sayed,M.S; Balbaa, S.I., 1973. Nitrogenous bases of différent organ of *Citrullus colocynthis*. Planta Medica. 24 (3): 260-265.
- **Akhar J., 1994.** Studies on composition and metabolism of lipids in seeds of Citrullus species; *thèse de Doctorat, Pakistan*: p 7.
- **Akroum, S., (2011).** Etude Analytique et Biologique des Flavonoïdes Naturels. Thèse de doctorat. Université Mentouri de Constantine. 125p.
- Al Faraj S., 1995. haemorrhagic colitis induced by *Citrullus colocynthis*. Annual Tropen parasitology; 89 (6): 695-696.
- Al Ghaithi F., El Ridi M.R., Adeghate E., Amiri M.H., 2004. Biochemical effects of *Citrullus colocynthis* in normal and diabetic rats. Mol. Cell Biochem.; 261(1): 143-149.
- Alami M., Barret R., Brion J. D., Enguehard-Gueiffier C., Foliot P., Gaudy C., Gerondeau N., Gueiffier A., Lanotte P., Leconte-Astruc V., Mereghetti L., Peyrat J. F., Ratsimbazafy V., Tandé D., (2005). In Pharmacothérapie Pratique à L'officine : L'essentiel, Antibiotiques: Pharmacologie et Thérapeutique. *Elsevier*, P14.
- Al-Gaithi F, El-Diri MR, Adeghate E, Amiri MH., (2004). Biochemical effects of *Citrullus colocynthis* in normal and diabetic rats. Mol. Cell. Biochem., 261: 143-149
- **Alkamel ML., 2005**. Antimicrobial activity of aqueousextract of *Citrullus colocynthis*L. fruit. Tikrit J PharmSci;1(2):9–15
- Allain P., (1996). Les Médicaments. Ed ESTEM, Paris.
- **Al-Qura'n S., 2009.** Ethnopharmacological survey of wild medicinal plants in Showbak, Jordan. J. Ethnopharmacol.; 123: 45-50.
- Al-Yahya M. A, Al-Farhan A. H et Adam S. E. I., 2000. Preliminary toxicity study on the individual and combined effects of *citrullus colocynthis* and *Nerium oleander* in rats. Fitoterapia; 71: 385-391.
- Amas., (1997). Food and Agricultural Research Council, Réduit, Mauritius.
- Amrouche, a., 2007. étude mycologique et mycotoxicologiques du blé tendre local et importé et ses dérivés de meunerie (farines et sons) stockés dans la région de Bechar. Extraction et détection des aflatoxines par méthode chromatographique. Thèse de magistère en biologie, Université de Bechar, Algérie.

- Andreasen, M.F., Christensen, L.P., Meyer, A.S., et Hansen., (2000). Content of phenolic acids dehydrodimersin 17 rye (Secale Cereale L.) varieties, J.Agric. Food Chem. p48, 2837, 2000.
- **Anonymous., 1970.** Hamdard Pharmacopoeia of Eastern Medicine. Handard National Foundation, Pakistan 2nd Impression p 373.
- Aouinty, B., OufaraS, Mellouki, F et Mahari, S., 2006: Évaluationpréliminaire de l'activité larvicide des extraits aqueux des feuilles du ricin(Ricinuscommunis L.) et du bois de thuya (Tetraclinisarticulata (Vahl) Mast.) sur leslarves de quatre moustiques culicidés: Culexpipiens (Linné), Aedescaspius(Pallas), Culiseta longiareolata (Aitken) et Anophelesmaculipennis(Meigen), Biotechnol. Agron. Soc. Environ. 10 (2), 67 71.
- **APG III.**, **2009.** An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc.; 161: 105-121
- Armougom, M., (1998). Etude De La Fraction Lipidique Des Graines De Cucurbitacees Tropicales Des Genres Lagenaria, Luffa Et Momordica = Studies Of Tropical Cucurbitaceae Seed Oils : Lagenaria, Luffa, Momordica, Université de La Réunion, Sainte-Clotilde, France.
- Asad M.H.H.B., Razi M.T., Murtaza G., Azhar S., Khan S.A., Saqib Q.N.U., Hussain I., 2012. Antihaemorrhagic Potential of *Citrullus colocynthis* Schrad (Cucurbitaceae) against Naja naja karachiensis (Black Pakistan Cobra) Venom. Journal of Medicinal Plants Research; 6 (18): 3455-3458.
- Atik Bekkara F, Benhammou N, Panovska K., 2008. Biological activity of essential oil and the extract of the extract of the phenolic compounds of *Inula viscosa* of the area of Tlemcen (Algeria). *Advances in Food Science*, 30(3): 132-139.
- Awah, F. M., Uzoegwu, P. N., Ifeonu, P., Oyugi, J. O., Rutherford, J., Yao, X. J., Fehrmann, F., Fowke, K. R., Eze, M. O., 2012. Free radical scavenging activity, phenolic contents and cytotoxicity of selected Nigerian medicinal plants. *Food Chemistry*, vol. 131, n° 4, pp. 1279-1286.
- **Ayad, R., (2008).** recherche et détermination structurale des métabolites secondaires de l'espèce *zygophyllum cornutum*, Mémoire magister En Chimie Organique, université Mentouri Constantine. p 35-39, 40, 47.
- Ayyad S.E.N., Abdel-Lateff A., Alarif W.M., Patacchioli F.R, Badria F.A, Ezmirly S.T., 2012. In vitro and in vivo study of cucurbitacins-type triterpènes glucoside from *Citrullus colocynthis* growing in Saudi Arabia against hepatocellular carcinoma. Environmental toxicology and pharmacology; 33:245-251.
- **Baba Aissa F., 2000.** Encyclopédie des plantes utiles, flore d'Algérie et du Maghreb, substances végétales d'Afrique, d'Orient et d'Occident. *EDAS*: 77-78.
- **Badiaga**, M., (2011). Etude ethnobotanique, phytochimique et activités biologiques de Nauclea Latifolia Smith une plante médicinale africaine récoltée au Mali, thèse de doctorat, université de Bamako.10 p.
- **Bahorun, T., 1997.** Substances naturelles actives: la flore mauricienne, une source d'approvisionnement potentielle. *Food and agricultural research council* **2**, 83-93.
- Baquar S R et Tasnif M., 1984. Medicinal plants of Southern West Pakistan. Periodical export Book Agency. (Delhi).
- Barros, L., Cabrita, L., Boas, M. V., Carvalho, A. M., Ferreira, I. C. F. R.,2011. Chemical, biochemical and electrochemical assays to evaluate phytochemicals and antioxidant activity of wild plants. *Food Chemistry*, vol. 127, n° 4, pp. 1600-1608.

- Barry, T.N., Manley, T.R. and Duncan, S.J., (1986). The role of condensed tannins in the nutritional value of *Lotus pedunculatus* for sheep 4. Sites of carbohydrate and protein digestion as influenced by dietary reactive tannin concentration. British Journal of Nutrition. p55, 123-37.
- Barth A., Mûller D., Dürrling K., 2002. *In vitro* investigation of a standardized dried extract of *Citrullus colocynthis* on liver toxicity in adult rats. Exp. Toxic. Pathol.; 54: 223-230.
- Batanouny K.H., Abou Tabl S., Shabana M., Soliman F., 1999. Wild medicinal plants in Egypt:An Inventory to Support Conservation and Sustainable Use. Chapitre 2: Pharmacopoeial Wild Medicinal Plants in Egypt Academy of Scientific Research and Technology, Egypt International Union for Conservation (IUCN).
- **Bauer R., Wagner H., 1983.** Curcubitacin-containing drugs, Analysis and Standardization of medicinal drugs and plant preparations by high-performance liquid chromatography (HPLC) and other chromatographic methods; *Dtsch Apoth Ztg*, 123: 1313-1321.
- **Belbache, H.,** (2003). Investigation phytochimique de l'extrait chloroforme de *Centaurea Parviflora Desf*, mémoire de magister en chimie organique, université Mentouri Constantine. p 16-20.
- **Bellebcir**, **L.**, (2008). Etude des composés phénoliques en tant Que marqueurs de biodiversité chez les céréales. En vue de l'obtention du Diplôme de Magister. 119p.
- Belsem Marzouk1*, Ehsen Haloui, Najoua Akremi, Mahjoub Aouni1, Zohra Marzouk and Nadia Fenina ., 2012. Antimicrobial and anticoagulant activities of *Citrullus colocynthis* Schrad. leaves from Tunisia (Medenine) DOI: 10.5897/AJPP12.098 ISSN 1996-0816 ©2012 Academic Journals
- Ben hsouna anis, et Alayed Abdullah Sulaimain., 2012. Gas chromatography-mass spectrometry (GC-MS) analysis and *in vitro* evaluation of antioxidant and antimicrobial activities of various solvent extracts from *Citrullus colocynthis* (L.) roots to control pathogen and spoilage bacteria. African Journal ofBiotechnology. 11(47). 10753-10760
- **Benaissa, O., (2011).** Etude des métabolismes terpénique et flavonique d'espèces de la famille des composées, genres *Chrysanthemum* et *Rhantherium*. Activité Biologique, Thèse Doctorat, université Mentouri Constantine. 63p.
- Benarous, K., (2009). Effets des extraits de quelques plantes médicinales locales sur les enzymes: a amylase, trypsine et lipase; université Amar Telidji Laghouat, Mémoire de fin d'étude d'Ingénieur d'état en génie biologique.
- **Bendjeddou D, Lalaoui K, Satta D., (2003)**. Immunostimulating activity of the hot water soluble polysaccharide extracts of Anacyclus pyrethrum, *Alpinia galangal* and *Citrullus colocynthis*. J. Ethnopharmacol., 88: 155–160.
- **Benhabib C.F., 2011.** Etude phytochimique de quelques extraits de graines de la coloquinte « *Citrullus colocynthis* ». Mémoire de Master en Biochimie appliquée. Université de Tlemcen
- Benhammou, N., Atik Bekkara, F., Panovska, T.K., 2007. Antiradical capacity of the phenolic compounds of Pistacia lentiscus L. and Pistacia atlantica Desf., *Advances in Food Sciences*, 29 (3): pp 155-161,.
- **Benmehdi, H., 2000.** Valorisation de certaines plantes médicinales à activité hypoglycémiante comme la coloquinte. Thèse de magistère. Chimie organique appliquée. Université de Tlemcen.

- **Bentabet N., 2010.** Contribution à l'étude de l'effet d'extrait acétate d'éthyle des graines de « *Citrullus colocynthis* » sur l'hyperglycémie des rats males « Wistar » rendus diabétiques par la streptozotocine. Mémoire de Master en Biochimie appliquée. Université de Tlemcen.
- Bergogne-Bérézin E., Brogard J. M., 1999. Bases biologiques de l'antibiothérapie. ed., Masson, p. 27.
- Bergogne-Bérézin E., Dellamonica P., (1999). Antibiothérapie en pratique clinique. 2ème Ed. *Masson*. Paris. France.
- **Bermond, P., (1990)**. "Biological effects of food antioxidants. In Food Antioxidants, Ed. B.J.F Hudson. London: Elsevier
- Blaise P., 1997. Etude de lipides par spectroscopie de RMN, thèse de Doctorat I.N.P. de Toulouse.
- **Boizot N et Charpentier J-P., 2006** .Méthode rapide d'évaluation du contenu en composés Phénoliques des organes d'un arbre foustier. Le cahier des Techniques de 1'Inra: 79-82.
- Booth, N.L., Dejan, N., Richard, B., Stoci, E., (2004). New lanthanide complexes of 4 methyl 7 hydroxy coumarin and their pharmacological activity. *Clinical Pharmacology and Therapeutics*. p50, 120-123.
- Boros, B., Jakabova, S., Dornyei, A., Horvath, G., Pluhare, Z., Kilar, F., Felingera, A., (2010). Determination of polyphenolic compounds by liquid chromatography—mass spectrometry in Thymus species. Journal of Chromatography A. p1217, 7972–7980.
- **Boukef MK.**, (1986). Médecine traditionnelle et pharmacopée. Les plantes dans la médecine traditionnelle tunisienne. Ed. Agence de coopération culturelle et technique, Paris.
- **Boutchiche H., 2011.** Mesure de l'activité antioxydante de quelque extrait de graines de *Citrullus colocynthis*. Mémoire de Master en Biochimie appliquée. Université de Tlemcen.
- **Brand-Williams W., Cuvelier M.E., Berset C., 1995.** Use of a free radical method to evaluate antioxidant activity. Lebensmittel- Wissenschaft and Technology, 28, 25-30.
- Brunet A, Orr SP, Tremblay J, Robertson K, Nader K, Pitman RK.J Psychiatr Res., 2008 May;42(6):503-6. Epub 2007 Jun 22.
- **Bruneton J., 1993.** Pharmacognosie, Phytochimie, Plantes médicinales. *Techniques & documentation- Lavoisier*; ISBN: 2-85206-911-3; p606.
- **Bruneton J., 1996.** Plante toxique : Végétaux dangereux pour l'homme et les animaux. Tec Doc (Paris).
- **Bruneton, J., (1993).** Pharmacognosie et phytochimie des plantes médicinales, 2ème Ed. Lavoisier, Paris.
- **Bruneton, J., (1999).** Pharmacognosie, Phytochimie, Plantes médicinales, 3ème Ed. Ed. médicales internationnales and Tec & Doc Lavoisier, Paris.
- **Bruneton, J., (1999).** Tannins. In: *Pharmacognosie, phytochimie, Plantes* Cannas A. www.ansci.cornell.edu/plants/ toxic agents/tannin/pos_effects.html 6k.
- **Burkill H.M., 1985.** The useful plants of West Tropical Africa. Vol.1. Families A-D 2nd ed. Royal Bot. Gardens, kew, 960 pp.
- **Burt S., (2004).** Essential oils: their antibacterial properties and potential applications in foodsa review. Int. J. Food Microbiol. 94: 223-253
- Casimir, J., (1992). The Influence of Varicocele on Parameters of Fertility in a Large Group of Men Presenting to Infertility Clinics, Journal: Fertility And Sterility, 1289-1293 pages.

- Cavin A., (1999). Investigation phytochimique de trios plantes indonésiennes aux proprieties antioxydantes et antiradicalaires ; *Tinospora Crispa* (Ménispermacées), *Merremai Emarginata*(Convolvulacées) et*Oropea Enneandra*(Annoncées). Thèse présentée en vue de l'obtention du grade de docteur enbiochimie, Université de Lausanne-Suisse.
- Charlton J. L., (1998). Antiviral activity of lignans. *Journal of Natural Products*, 61, 11, (1998),pp. 1447-1451, 0163-3864
- Chen JC., Chiu MH., Nie RL., Cordell G.A., Qiu SX., 2005. Cucurbitacines and cucurbitane glycosides: structures and biological activities. *Natural Product Report*; 22(3):386-99.
- Chevalier J., Choisy C., Crémieux A., Darbord J. C., Davin-Régli A., Dubreuil L., Finance C., Linxe C., Quentin-Noury C., Quero A. M., Reynaud A., (2003). Microbiologie Générale Et Santé. Ed. Eska. Paris. France.
- CLSI, Clinical and Laboratory Standards Institute (CLSI)., (2006) Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard. Ninth Edition (M2-A9).26 (1).
- Coene I., (2004). Les antioxydants et l'alimentation, nutrition information center NICE, Symposium, 23 Octobre 2004, Bruxelles, Belgique. Nutri news, N°4.
- Cos P.; L. Maes; A. Vlietinck; L. Pieters., (2008). Plant-derived leading compounds for chemotherapy of human immunodeficiency virus (HIV) infection an update (1998-2007). *Planta Medica*, 74, 11, (2008), pp. 1323-1337, 0032-0943
- Cottiglia, F., Loy, G., Garan, D., Floris, C., Casu, M., Pompei, R., Bonsignore, L., (2001). Antimicribial evaluation of coumarins and flavonoids from the stems of *Daphne gnidium* L. *Phytomedecine*, 8(4): 302-305.
- Courtois J.E. et Perles R., 1981. Precis de chimie biologique 2. *Masson*, p 135.
- Cowan M M., (1999). Plant Products Antirnicrobial Agents. Clinical Microbiology *review*, 12(4): 564-582.
- Cyril, T., (2001).étude des métabolismes primaires et secondaires de racines transformées de *Catharanthus* Rose usen, vue du développement d'un modèle cinétique, université de Montréal. 28p.
- Dacosta, E., (2003).Les phytonutriments bioactifs. Yves Dacosta (Ed). Paris, 317 p.
- **Dallak M., Bin-Jaliah I., 2010.** Antioxidant activity of Citrullus colocynthis pulp extract in the RBC'S of alloxan-induced diabetic rats. Pak. J. Physiol.; 6(1): 1-5.
- **Dalton, D.A., (1995)**. Antioxidant defenses of plants and fungi. In: Ahmad S, editor. Oxidative Stress and Antioxidant Defenses in Biology. New York: Chapman & Hall. 298–355
- Darwish-Sayed M., Balbaa S.I., Afifi M.S.A., 1973. Nitrogenous base of the different organs of *Citrullus colocynthis*. Planta Medica; 24 (3): 260-265.
- **Dastur J.F.**, **1962.** Medicinal plants of India and Pakistan. D.B. Taraporevala Sons and Co. Pvt. Ltd. Bombay, India, p.56.
- De Lucca, A.J., Cleveland, T.E., Wedge, D.E., (2005). Plant-derived antifungal proteins and peptides. Can. J. Microbiol. Vol.51. NRC Research. Canada
- Deina, M., Rosa, A., Casu, V., Cottiglia, F., Bonsignore, L., (2003). Natural product: their chemistry and biological significance. *Journal of the American Oil Chemistry Society*. 80:65-70.
- Delazar A., Gibbons S., Kosari A.R., Nazemiyeh H., Modarressi M., Nahar L., Satyajit D., 2006. Flavone C-Glycosides and cucurbitacin Glycosides from *Citrullus colocynthis*. DARU; 14 (3): 109-114.

- **Dewick PM., 1995.** The biosynthesis of shikimate metabolites. Natural Product Reports, 12(6):579-607.
- Diallo, D., Paulsen, B.S., Liljeback, T.H.A., Michaelsen, T.E., (2001). Complement fixing activity of polysaccharides from the roots of *Entada Africana* Guill. Et Perr., *Mimosaceae. J. Ethnopharmacol.*, **74**: 159-171.
- **Dickinson, D. A., Forman, H. J., 2009.** Cellular glutathione and thiols metabolism. *Biochemical Pharmacology*, 2002, vol. 64, n° 5-6, pp. 1019-1026.
- **Djedidi, R; Sahi, R., 2009.** Contribution à l'étude de l'activité antioxydante des extraits des graines de *citrullus colocynthis*. D.E.S en biologie moléculaire et cellulaire. Université de Tlemcen.
- **Djemoui, D.,** (2012). Contribution à l'étude de l'activité antioxydante et antibactérienne de quelques coumarines synthétisées. Mémoire Master Academique, Spécialité : Chimie Appliquée. 53p.
- Doss A, Vijayasanthi M, Anand SP, Parivuguna V, VenkataswamyR., 2011.. Screening of antimicrobial activity of essential oil and methanol extracts of *Citrullus colocynthis* (L.) Schrad. South Asian J BiolSci2011;1(1):7–15.
- **Duke J.A., 1978**. The quest for tolerant germ plasm. In: ASA Special Symposium 32, Crop tolerance to suboptimal land conditions. Am. Soc. Agron. Madison; WI: 1-61.
- **Duke J.A., 1983.** Citrullus colocynthis (L.) Schrad. Handbook of Energy Crops
- **Duke J.A., Duke P. A. K.** et **Cellier J.L., 2008.** Duke's Handbook of Medicinal Plants of the Bible. *CRC Press*: 115.
- **Edenharder, R., Grünhage, D.,** (2003). Free radical scavenging abilities of flavonoids as mechanism of protection against mutagenicity induced by tert-butyl hydroperoxide or cumene hydroperoxide in *Salmonella typhimurium* TA102. *Mutat. Res.* p540, 1–18.
- Edeoga, H.0; Okwu, D.E; Mbaebi, e B .0., 2005. Phytochemical constituents of some Nigeiian medicinal plants. African Journal of Biotechnology, 4: 685-685.
- **Ekoumou C., (2003).** Etudes Phytochimiques Et Pharmacologiques De 5 Recettes Traditionnelles Utilisées Dans Le Traitement Des Infections Urinaires Et De La Cystite. Thèse de Pharmacie, Bamako
- El Khadem H., Abdel Rahman M.M.A., 1963. Constituents of the Fruit of *Citrullus colocynthis*. Journal of the Chemical Society; 4: 4991-4993.
- Elawad Alawia A, Abdel Bari E. M, Mehmoud O. M, Adam S. E. I., 1984. The effect of *Colocynthis* on sheep. Vet. Hum. Toxicol. 26 (6): 481-485.
- Emberger, L., (1960). Traité de Botanique Systématique, vol. 2, Masson & Cie, p. 1280-97.
- Ernest Small, Paul M. Catling., 2000. Les cultures médicinales canadiennes Canadian electronic library: Books collection NRC Research Press, 2000 .ISBN 0660963809, 9780660963808
- Espinel-Ingroff Ana and Cantón Emilia., (2007) Antifungal Susceptibility Testing of Yeasts. In:Richard Schwalbe, Lynn Steele-Moore, and Avery C. Goodwin.
- Esquinas-Alcazar J.T et Gulick P.J., 1983. Genetic resources of cucurbitaceae: a global report. Int. board for Plant Genet. Ressources, Rome; p101.
- Favier A., (2003). Le Stress Oxydant : Intérêt conceptuel et expérimental dans la compréhension des mécanismes des maladies et potentiel thérapeutique. *Actualité Chimique*, novembre-décembre : 108-115
- **Feinbrun-Dothan N., 1978.** Flora Palestina-Part III. *The Israeli Academy of Sciences and Humanities.* Jerusalem.

- Feucht, W., Treutter, D. et Christ, E., (1997). Role of flavanols in yellowing beech trees of the Black forest. *Tree Physiol.* p17, 335-340.
- Finley, B., Proctor, D., Scott, P., Harrington, N., Paustenbach, D., Price, P., (1994). Recommended Distributions For Exposure Factors Frequently Used In Health Risk Assessment. Risk Analysis, 14: 533-553.
- Fleuriet, A., (1982). Thèse Doc. Etat, Montpellier.
- Fogliani, B., Raharivelomanana, P., Bianchini, J.P., Bouraimamadjebi, S. & Hnawia, E., 2005. Bioactive ellagitannins from Cunonia macrophylla, an endemic Cunoniaceae from New Caledonia. *Phytochemistry* 66, 241–247
- Frankel, E.N., (1996). Antioxidants in lipids and their impact on the food quality. Food Chem, 57: 51-55.
- Fursa T.B., Filov I., 1982. XXI Cucurbitaceae (Citrullus, Cucurbita). In *Flora of Cultivated plants*. Eds. O. N. Korovina and T. B. Fursa; Moscow; Vol 21: 279.
- Galal T.M., Saleh H., Snarkawy E., Jack M.S., Rosazz PN., 1997. "C-p-Hydroxy benzoyl glycoflavones from *Citrullus colocynthis*. *Phytochemistry*; 44: 187-190.
- Garnero, J., 1991. Les huiles essentielles, leur obtention, leur composition, leur analyse et leur normalisation. Encyclopédie des médecines naturelles phytothérapie, Aromathérapie, Paris, pp. 2-20.
- **Gebhardt R., (2003)**. Antioxidative, antiproliferative and biochemical effects in Hep G2 cells of a homeopathic remedy and its constituent plant tinctures tested separately or in combination .Arzneimittel for schung, 53: 823-830.
- **Gibbons S., (2008).** Phytochemicals For BacterialResistance-Strengths, Weaknesses And Opportunities. *Planta Medica*, **74 (6)**: 594-602.
- Gill N.S., Supreet K., Arora R., Bali M., 2011. Screening of Antioxidant and Antiulcer Potential of *Citrullus colocynthis* Methanolic Seed Extract. Research Journal of Phytochemistry; 5: 98-106.
- Glombitza, K. W. & Gerstberger, G., (1985). Phytochemistry (Elsevier) p24, 543-551.
- González-Tejero M.R., Casares-Porcel M., S'anchez-Rojas C.P., Ramiro-Gutiérrez J.M., Molero-Mesa J., Pieroni A., Giusti M.E., Censorii E., De Pasquale C., Della A., et *al.*, 2008. Medicinal plants in the Mediterranean area: Synthesis of the results of the project Rubia. J. Ethnopharmacol.; 116: 341-357.
- Goodwin, T. W., & Editor., (1988). Plant Pigments.
- Graven, E.H., Deans, S.G., Svoboda, K.P., Mari, S., & Gundidza, M.G., 1992. Antimicrobial and antioxidative properties of the volatile (essential) oil of Artemisia afra Jacq. *Flavour Fragrance J* 7, 121-123.
- **Grompone M.A., 1988.** Fat Sci. Technol. 90. Jahrang, 12, 487.
- Guignard, J.L., (1998). Abrégé de botanique. Masson (Ed). Paris, 212p.
- Gulcan AV., Esra K., Abdullah E, Erdem Y., Ismail K., 2006. Antihypercholesterolaemic and antioxidant activity assessment of some plants used as remedy in Turkish folk medicine, *Journal of Ethnopharmacology*; 107:418-423.
- Gurudeeban S, Ramanathan T, Satyavani K, Dhinesh T., 2011. Antimicrobial effect of coastal medicinal plant *Citrullus colocynthis* against pathogenic microorganisms. Afr J Pure ApplChem2011;5(5):119–22.
- Gurudeeban S., Satyavani K. and Ramanathan T., 2010. Bitter apple (Citrullus colocynthis): An Overview of Chemical Composition and Biomedical Potentials. *Asian Journal of Plant Sciences* 9 (7): 394-401. ISSN 1682-3974.

- Gurudeeban, S., Rajamanickam, E., Ramanathan, T. & Satyavani, K., 2010. Antimicrobial activity of *citrullus colocynthis* in gulf of mannar. *International Journal of Current Research* 2, 078-081.
- Habbachi, W., Benhissen, S et Ouakid, M.L., 2013. Effets biologiques d'extraits aqueux de *Peganumharmala*(L.) (Zygophyllaceae) sur la mortalité et le développement larvaire de *Drosophila melanogaster* (Diptera-Drosophilidae).
- Habs M, Jahn S.A, Schmahi D., 1984. Carcinogenic activity of condensate from coloquint seeds (*Citrullus colocynthis*) after chronic epicutaneous administration to mice. J. Cancer Res. Clin. Oncol.;108:154-156.
- Haddouchi F, Chaouche TM, Zaouali Y, Ksouri R, Attou A, Benmansour A., 2013. Chemical composition and antimicrobial activity of the essential oils from four *Ruta* species growing in Algeria. *Food Chemistry*, 141(1): 253-258.
- Hadizadeh I, Peivastegan B, Kolahi M., 2009. Antifungal activity of Nettle (*Urticadioica*L.), colocynth (*Citrullus colocynthis* L.Schrad), Oleander (*Neriumoleander*L.) and Konar (*Ziziphusspina-christi*L.) extracts on plants pathogenic fungi. Pak J BiolSci2009;12(1):58–63.
- Hadizadeh, F., Ebrahimzadeh, M.A., Hosseinzadeh, H., Motamedshariaty, V., salami, S. & Bekhradnia, A.R., 2009. Antidepressant and antioxidant activities of some 2-benzoxazolinone derivatives as bupropion analogues. *Pharmacolog yonline* 1, 331-335
- **Hagerman**, **A.E.**, (2002). Tannin Chemistry (www.users.muohio.edu/hagermae). Institute of Animal Nutrition, University of Hohenheim (Germany).
- Hahn, D. H., Faubion, J.M., and Roony, L.W., (1983). Sorghom phenolic acids, their hight performance chromatography separation and their relation to fungal resistance. Cereal Chem. 60: 255. In: Phenolic Compounds in Cereal Grains and Their Health Benefits. Dykes, L; Roony, W.L. 2007. Texas A&M University. CFW-52-3-0105.
- **Hammiche V., Maiza K., 2006.** Traditional medicine in Central Sahara: Pharmacopoeia of Tassili N'ajjer. J. Ethnopharmacol.; 105: 358-367.
- Hammouda F.M., Ismail S.I., Abdel-Azim N.S., Shams K.A., 2005. Citrullus colocynthis L. A Guide to Medicinal Plants in North Africa: 87-89.
- **Hanelt P., 2001.** Mansfel's Encyclopedia of Agricultural and Horticultural Crops. *Institute of plant genetics and crop plant research; Ed Springer;* Vol 3: p 1533-1535.
- Harborne B. and Baxter H., 1993. Phytochemistry dictionary, a hand book of bioactive compounds from plants. Taylor and Francis Ltd, London.
- **Harborne, J.B., (1980).** Plant Phenolics: Encyclopedia of Plant Physiology, New series.p8, 329-402.
- Harkati, B., (2011). valorisation et identification structurale des principes actifs de la plante de la famille Asteraceae : Scorzonera Undulata . thèse de doctorat Universite Mentouri Constantine.
- **Hartmann, T., (2007).** From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry. p68, 2831–2846.
- Harvey W.F.M.D., John Urithayd., 1898. Colocynthis (U.S.P)king's American Dispensatory.
- **Haslam E., (1994).** Natural polyphenols (vegatable tannins): Gallic Acid metabolism. Nat. Prod. p11, 41-66.
- **Havsteen, B.H., (2002).** The biochemistry and medical significance of the flavonoids. *Pharmacol. Therapeut.* p96, 67–202.

- Hellal Zohra., (2011). Contribution à l'étude des proprieties antibatériennes et antioxydantes de certaines huiles essentielles extradites des Citrus. Application sur la sardine (Sardine pilchardus). Mémoire magister option ; Biochimie Appliquée et Biotechnologies. Université Mouloud Mammeri De Tizi-ouzou
- Hemingway, J., Hawkes, N.J., McCarroll, L., Ranson, H., 2004: Themolecular basis of insecticide resistance in mosquitoes. InsectBiochem. Mol. Biol. 34,653–665
- Hibar, K., Daami-Remadi, M., Jabnoun-Khiareddine, H., Znaïdi, I.E., El Mahjoub, M., (2006). Effet des extraits de compost sur la croissance mycélienne et l'agressivité du Fusarium oxysporum f. sp. Radicislycopersici. Biotechnol. Agron. Soc. Environ. Vol. 10 (2). P. 101 108.
- **Ikereogu J.E.G., 1984.** Some micro-environmental changes under cassava (Manihot esculenta crantz) maize (*Zea mays L.*) intercrops grown with okra (Abelmoschus esculentus L.) and egusi melon (Colocynthis vulgarisL.). Ph. D Thesis, university of Ibadan, Nigeria, 259.
- Inraa., (2006). Organisation Des Nations Unies Pour L'alimentation Et L'agriculture, Deuxième rapport national sur l'état des ressources phytogénétiques, Algérie.
- Jacks T.J., Hensarling T.P., Yatsu L.Y., 1979. Economic botany, 2, 135.
- Jayaraman R., Shivakumar A., Anitha T., Vishal D., Joschi, Narahari N., Palei., 2009. Antidiabetic effect of petroleum ether extract of *Citrullus colocynthis* fruits against streptozotocin-induced hyperglycemic rats. *Rom. J. Biol.-Plant Biol*; 54: 127-134.
- **Jayarprakasam B., Seeram NP., Nair MG., 2003.** Anticancer and anti-inflammatory activities from Curcubita andreana. *Cancer letters*; 189(1):11-6.
- Jeaun, J. M., Annie. F., Chrystian. J. L., (2005). les composés phénoliques des végétaux, p203-204.
- John U., Cincinnati O., 1898. Citrullus colocynthis. Reprinted from the Western druggist. Chicago.
- Jones J.D., Dangl J.L., (2006). The plant immune system. *Nature*, 444: 323-329
- Karlesking A.,1992. Manuel des corps gras 1. Techniques & documentation., Lavoisier.
- Karumi, Y; Onyeyili, P.A; Ogugb uaja, V.O., 2004. Identification of active principales of *M.balsamina* (Balsam apple) leaf extract. J. Med. Scien. 4: 179-1 82.
- **Kemassi, A et OueldEl-hadj, M.D., 2008 :** Toxicité comparée des extraits dequelques plantes acridifuges du saharaseptentrional est algérien sur les larves du cinquième stade et les adultes de *schistocercagregaria*(forskål, 1775).
- Khan, I., Kulkari, M.V., Gopal, M., Shahabuddin., (2005). Synthesis and biological evaluation of novel angulary fused polycyclic coumarins. *Bioorganic and Medicinal Chemistry Letters*. p15, 3584 3587.
- **Khare C. P., 2007.** Indian medicinal plants. *Springer; ISBN:978-0-387-70637-5: 152.*
- Khatri L.M., Nasir M.K., Saleem R. and Valhari., 1993. Characteristics and chemical composition of *Citrullus colocynthis. Pakistan Journal of Scientific and Industrial Research*; 36: 384
- Khenaka, K., (2011). Effet de diverses plantes médicinales et de leurs huiles essentielles sur la méthanogènes ruminale chez l'ovin, Diplôme de Magister En Microbiologie Appliquée, Université Mentouri Constantine. p19, 24.
- Kim, K. H., Tsao, R and Cui, S. W., (2006). Phenolic acid profile and antioxidant activities of wheat bran extracts and the effect hydrolysis conditions. Food Chem. p95, 466, 2006.
- **Kirtikar et Basu., 1984.** Indian medicinal plants. Bishen Singh, Mahendra Pal Singh, Dchra Dern ...022.

- Kirtikar K.R., Basu B.D., An I.C.S., 1957. Indian Medicinal Plants; 2nd Ed., L.M. Basu, Allahabad; 2; 1147.
- Klaas1 and David E. Archer., 2002. Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA Received 27 September 2001; revised 6 May 2002; accepted 15 August 2002; published 5 December 2002. Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio Christine
- Kra ,K.D., Diallo, H.A., Kouadio, Y. J., (2009). Activités antifongiques de l'extrait de Chromolaena odorata (L.) King & Robins sur deux isolats de Fusarium oxysporum (E.F. Sm.) responsables du jaunissement mortel des feuilles des bananiers. Journal of Applied Biosciences. Vol. 24.P.1488 1496.
- **Krief, S.** (2003). Métabolites secondaires des plantes et comportement animal, thèse doctorat, muséum national d'histoire naturelle. 32p.
- Ksouri R, Megdiche Ksouri W, Jallali I, Debez A, Magné C, Hiroko I, Chedly Abdelly., 2012. Medicinal halophytes: potent source of healthpromoting biomolecules with medical, nutraceutical and food applications. *Critical Reviews in Biotechnology*, 32(4): 289-326
- Kumar S., Kumar D., Manjusha, Saroha K., Singh N., Vashishta B., 2008. Antioxidant and free radical scavenging potential of *Citrullus colocynthis* (L.) Schrad. methanolic fruit extract. Acta Pharm.; 58 (2): 215-220.
- Laraoui, H., (2007). "Etude Phyotchimique L'Extrait Chloroformique de Bupleurum Atlanticum" Docteur de l'université Louis pasteur (Chimie Organique, UV El Hadj Lakhdar Batna).
- Larbat R, Le Bot J, Bourgaud F, Robin C, Adamowicz S., 2012. Organ-specific responses of tomato growth and phenolic metabolism to nitrate limitation. *Plant Biology*, 14(5), 760-769.
- **Lebouz, I et Oueld El-hadj, M.D., 2010 :** Activité biologique des extraits foliaires de *Cleome arabica* L. (Capparidaceae) chez *Schistocercagregaria* (Forskål, 1775) (*Orthoptera, Acrididae*).Mim.Mag.Uni de mohamedKheider.Biskra.165p
- Lee JY, Cho PY, Kim TY, Kang SY, Song KY, Hong SJ., 2002. Hemolytic activity and developmental expression of pore-forming peptide, clonorin. *Biochemical and Biophysical Research Communications*, 296(5): 1238-1244.
- Leinmüller, E., Steingass, H. and Menke, K.H., (1991). Tannins in Ruminant feed stuff.
- Loomis, D., and R. Croteau., 1980. Biochemistry of Terpenoids: A Comprehensive Treatise. In: P. K. Stumpf and E. E. Conn (eds.) The Biochemistry of Plants. Lipids: Structure and Function No. 4. p 364-410. Academic Press, San Francisco.
- Maatooq G., El-Sharkawy S., Afifi M., Rosazza P., 1997. C-p-Hydroxybenzoyl-glycoflavanones from *Citrullus colocynthis*. Phytochemistry; 44: 187-190.
- Maisuthisakul P, Suttajit M and Pongsawatmanit R., (2007). Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food
 - Chem., 100: 1409-1418.
- Maiza K., Brac de la Perrière R. A., Hammiche V., 1993. Pharmacopée traditionnelle saharienne : Sahara septentrional. *Médicaments et aliments : l'approche ethnopharmacologique :* 169-171.
- Majob, F; Kamalinejab, M; Ghaderi, N; Vahidipour, H.R; 2003. Phytochemical screening of some species of Iranien plants. Iranien Journal of Pharmaceutical Research. 77-82.

- Malecky, M., (2005). Métabolisme des terpenoïdes chez les caprins, thèse Pour obtenir le grade de docteur de l'Institut des Sciences et Industries du Vivant et de l'Environnement, Agro Paris Tech. p 9, 13-19, 20, 27.
- Manallah, A., (2012). Activités antioxydante et anticoagulante des polyphénols de la pulpe d'olive *Olea europaea* L. Pour obtenir le Diplôme de magister, Option : Biochimie Appliquée. Université Ferhat Abbas- sétif, 87p.
- Martin, S., Andriantsitohaina, R., (2002). Mécanismes de la protection cardiaque et vasculaire des polyphénols au niveau de l'endothélium. Annales de cardiologie et d'angéologies. p51, 304–315.
- Marzouk B, Marzouk Z, Décor R, Edziri H, Haloui E, Fenina N, Aouni M., (2009). Antibacterial and anticandidal screening of Tunisian *Citrullus colocynthis Schrad*. fromMedenine. J. Ethnopharmacol., 125: 344-349.
- Marzouk B, Marzouk Z, Décor R, Mhadhbi L, Fenina N, Aouni M., (2010a). Antibacterial and anticandidal activities of several populations of Tunisian *Citrullus colocynthis Schrad*. Immature fruits and seeds. J. Med. Mycol., 20: 179-184.
- Marzouk B, Marzouk Z, Mastouri M, Fenina N, AouniM., 2011. Comparative evaluation of the antimicrobial activity of *Citrullus colocynthis* immature fruit and seed organic extracts. Afr J Biotechnol 2011;10(10):2130–4.
- Marzouk B., Haloui E., Akremi N., Aouni M., Marzouk Z., Fenina N., 2012.
 Antimicrobial and anticoagulant activities of *Citrullus colocynthis* Schrad. leaves from Tunisia (Medenine). African Journal of Pharmacy and Pharmacology; 6 (26): 1982-1988.
- Marzouk B., Marzouk Z., Halouib E., Fenina N., Bouraoui A., Aouni M., 2010b. Screening of analgesic and anti-inflammatory activities *of Citrullus colocynthis* from southern Tunisia. J.Ethnopharmacol.; 128: 15-19.
- Marzouk Z, Marzouk B, Mahjoub MA, Haloui E, Mighri Z, Aouni M, Fenina N., (2010b). Screening of the antioxidant and the free radical scavenging potential of Tunisian *Citrullus colocynthis Schrad*. From Mednine. J. Food Agric. Environ., 8: 261-265
- Marzouk, B.; Marzouk, Z.; Decor; Mhadhebi, L.; Fenina, N.; Aouni, M. (2010). Activite´ antibacterienne et antifongique des fruits et des graines immatures de sept populations tunisiennes de Citrullus colocynthis Schrad, from Monastir. Mycologie Médicale, 179:184-20.
- Matooq G.T; El-Sharkawy S.H; Afifi M.S; Rosazza P.N., 1997. C-p-hydroxy benzoylglyco-flavones from *Citrullus colocynthis*. Phytochemistry; 11(1):187-190.
- Mauro, N. M. (2006). Synthèse d'alcaloïdes biologiquement actifs : la (+)-anatoxine-a et la (±)-camptothécine, thèse doctorat, l'université Joseph Fourier Grenoble, p13, 16-28.
- McRae, DW et Towers, GHN., (1984). Biological activities of lignans. *Phytochemistry*. 23(6): 1207 1220.
- Meena M.C. and Patni V., 2008. Isolation and identification of flavonoid quercetin from *Citrullus colocynthis* (Linn.) Schrad. *Asian Journal of Experimental Science*, 22: 137-142.
- Memon U., Brohi A. H., Waseemuddin S. A., Azhar I., Bano H., 2003. Antibacterial screening of *Citrullus colocynthis*. *Pakistan Journal of the Pharmaceutical sciences*;16: 1-6.
- Merabti B.1, 2, Lebouz I.1, Adamou A.2, Ouakid M. L., 2015. Insecte effet toxique de l'extrait aqueux des fruits de *citrullus colocynthis* (l.) schrad sur les larves des *culicidae*. Revue des Bio Ressources 120-130

- Merad Chiali R., 1973. Contribution à la Connaissance de la Pharmacopée Traditionnelle **Algérienne ; Thèse de Doctorat d'état en Pharmacie ; Institut Sciences Médicales: 101-370.
- Merzouki A., Ed-Derfoufi F., Molero M.J., 2000. Contribution to knowledge of Rifian traditional medicine. Folk medicine in Ksar Lakbir (NW Morocco). Fitoterapia; 71: 278-307.
- **Meunier, J.D., (2003)**. La silice, une bienfaitrice peu connue pour les plantes. Revue. Echos science. N°3. P. 9-11.
- Meziane R.K, Khemmar L., Amamou F., Yazit M., Didi A., Chabane-Sari D., 2012. Anti-obesity and anti-hyperlipidemic effect of *Citrullus colocynthis* oil in the offspring of obese rats. Annals of Biological Research; 3 (5): 2486-2490.
- **Molyneux, P., 2004.** The use of the stable radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. *Songklanakarin Journal of Science and Technology*, 2004, vol. 26, n° 2, pp. 211-219.
- Mueller-Harvey, I. et Mc Allan, A.B., (1992). Tannins: their biochemistry and nutritional properties. *Adv. Plant Cell Biochem. Biotechnol.* p1, 151-217.
- Muhizi, T., (2008). Synthèse d'aminosucres conduisant a des biocides d'origine naturelle. Thèse de doctorat. Inédite, École doctorale : sciences chimiques. Université bordeaux.
- Mullai, K., Jebanesan, A et Pushpanathan, T., 2008: Mosquitocidal and repellent activity of the leaf extract of *Citrullus vulgaris*(cucurbitaceae) against malarial vector, Anopheless tephensiliston (dipteraculicidae). EurRevMed PharmacolSci 12(1):1–7
- **Munger H.M.** and **Robinson R.W.**, **1991.** Nomenclature of *Cucumis melo* L. Curcubit Genetics Cooperative 14: 43-44.
- Naczk, M., Shahidi, F., (2004). Extraction and analysis of phenolics in food. Journal of Chromatography A. p1054, 95–111.
- Namiki, M., (1990). Antioxidants / Antimutagens in food. Critical Reviews in Food Science and Nutrition, 29: 273–300.
- Natiq A.R.H., Donald A.W., Nahia J.Y., 1989. Cucurbitacin glycosides from *Citrullus colocynthis*. Phytochemistry; 28: 1268-1271.
- Nkhili, Ez-zohra., (2004). Polyphénols de l'Alimentation : Extraction, Interactions avec les ions du Fer et du Cuivre, Oxydation et Pouvoir antioxydant. Diplôme de Doctorat, Spécialité: Sciences des Aliments. Université Cadi Ayyad. Marrakech Université D'avignon Et Des Pays De Vaucluse Ecole Doctorale 306 SPSA, Montpellier. 378p.
- Nmila R., Gross R., Rachid H., Roye M., Manteghetti M., Petit P., Tijane M., Ribes G et Sauvaire Y., 2000. insolinotropic Effect of *Citrullus colocynthis* fruit extracts. Planta Medica; 66: 418-423.
- **Novelli GP., 1997**. Role of free radicals in septic shock. *Journal of physiology and pharmacology*, 48(4): 517-527.
- Odunfa S.A., 1981. Microbiology and amino acid composition of 'Ogiri', a food condiment from melon seeds. Die Nahrung, 25: 811-816.
- Okigbo B.N., 1984. Neglected plants and horticultural and nutritional importance in traditional farming systems in tropical Africa; Act. Hort., 53: 131-150.
- Okusa, P. N., Penge, O., Devleeschouwer, M., Duez, P., 2007. Direct and indirect antimicrobial effects and antioxidant activity of *Cordia gilletii* De Wild (Boraginaceae). *Journal of Ethnopharmacology*, 2007,vol. 112, n° 3, pp. 476-481.

- Oloyede, 0.1., 2005. Chemical profile of Unripe Pulp of Carica papaya, Pakistan journal of nutrition. 4:379-381.
- ONS Algeria., 2008. Office National des Statistiques Algeria, Recensement General de la Population et de l'Habitat 2008 Preliminary results of the 2008 population census. Accessed on 2008-07-02.
- Otang-Ntui, V; Sher-khan, R; Poh-Chin, D; Nakamura, I; Mii, M., 2010. An efficient Agrobacterium tumefaciens-mediated genetic transformation of "Egusi" melon (Colocynthis citrullus). Plant Cell Tiss Organ Cult. 103:15-22.
- Ouraïni, D.,.Agoumi,A., Ismaïli-Alaoui, M., Alaoui,K., et al., (2005). Étude de l'activité des huiles essentielles de plantes aromatiques à propriétés antifongiques sur les différentes étapes du développement des dermatophytes. Phytothérapie. N°4: 147-157.Springer.
- Ozaki Y., Ma J.P., 1990.Inhibitory effects of tetre methyl pyrazine and ferulicacide on spontaneous movement of rat uterus in situ.chem.pharm.bull;38(6):1620-1623.
- OZENDA, P., (1991). Flore et végétation du Sahara, 3éme édition, CNRS Editions, Paris. P 459.
- Pan J. Y.; S. L. Chen; M. H. Yang; J. Wu; J. Sinkkonen; K. Zou., (2009). An update on lignans: natural products and synthesis. *Natural Products Reports*, 26, 10, (2009), pp. 1251-1292, 1460-4752
- Pan Y., Wang K., Huang S., Wang H., MuX., He C., Ji X., Zhang J., Huang F., (2008). Antioxydant activity of microwave-assisted *extract of longan (Dimocarpus Longan* Lour.) peel, *Food Chemistry*, *106*: 1264-1270.
- **Panda H., 2000.** Herb Cultivation and Medicinal Uses. *National Institute of Industrial Re*; ISBN 8186623469, 9788186623466: p 240-243.
- Pokorny J, Yanishlieva N, Gordon M., 2001. Antioxidants in food, Practical applications. *Woodhead Publishing Limited*.
- **Porter, L. J., (1989).** Methods in Plant Biochemistry. p1, 389-419.
- **Pottier-Alapetite G., (1981)**. Flore De La Tunisie, Angiospermes- Dicotylédones : Gamopétales ; première partie. Tunisia, ministère de l'enseignement supérieuret de la recherche scientifique et ministère de l'agriculture. p. 930.
- **Prieto P, Pineda M, Aguilar M., 1999.** Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. *Analytical Biochemistry*, 269(2): 337-341.
- **Prior RL**, **Wu X**, **Schaich K.**, **2005.** Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. *Journal of Agricultural and Food Chemistry*, 53(10): 4290-4302.
- Quézel P, Santa S., (1962-1963). Nouvelle flore de l'Algérie et des régions désertiques méridionales.CNRS (Paris); 2: 677.
- Rajamanickam E., Gurudeeban S., Ramanathan T., Satyavani K., 2010. Evaluation of anti inflammatory activity of *Citrullus colocynthis*. International Journal of Current Research; 2: 67-69.
- Rakotonanahary, M., (2012). thèse présentée pour l'obtention du titre de docteur en pharmacie diplôme d'état, université Joseph Fourier. p16, 19, 27, 28.
- Ramadan M. F., Moersel J. T., 2006. Screening of the antiradical action of vegetable oils. *Journal of Food Composition and Analysis*; 19: 838–842.
- Ramarathnam N, Osawa T, Hirotomo O., Kawakishi S., (1995). The contribution of plant food antioxidants to human health. Trends in Food Science and Techno. 6: 75–82.

- **Repcak, M., Imrich, J., Fanekova, M., (2001)**. Umbelliferone, a stress metabolite of *Chamomilla recutita* (L) Rauschert. *Plant Physiol*. p158, 1085-1087.
- Rolland Y., (2004). Actualités Des Lipides En Cosmétique : Antioxydants Naturels Végétaux. O. C. L., 11(6): 419 424.
- Rousseau D. P. L., Vanrolleghem P. A., Pauw N. D., (2004). Model-based design of horizontal subsurface flow constructedtreatmentwetlands: AReview. *Water Res.*, 38: 1484–1493.
- Roy RK, Thakur M, Dixit VK., (2007). Development and evaluation of polyherbal formulation for hair growth-promoting activity. J. Cosm. Dermatol., 6: 108-112.
- Said O., Khalil K., Fulder S., Azaizeh H., 2002. Ethnopharmacology survey of medicinal herbs in Israel, the Golan height and the West Bank region. J. Ethnopharmacol.; 83: 251-265.
- Saleem M.; H. J. Kim; M. S. Ali; Y. S. Lee. (2005). An update on bioactive plant lignans. *Natural Product Reports*, 22, 6, (2005), pp. 696-716, 0265-0568
- Samaneh Eidi a,*, Hamideh Ghodrati Azadib, Nasrollah Rahbarc, Hamid Reza Mehmannavazc., 2015 Evaluation of antifungal activity of hydroalcoholic extracts of Citrullus colocynthis fruit
- Samarth R.M., Panwar M., Soni A., Kumar M., Kumar A., 2008. Evaluation of antioxidant and radical-scavenging activities of certain radio protective plant extract, Food Chemistry, 106, 868-873.
- Sanchez-Moreno, C., 2002. Methods used to evaluate the free radical scavenging activity in foods and biological systems. *International Journal of Foods Science and Technology*, 2002, vol. 8, n° 3, pp. 121-137.
- Sanjay R. Biradar, Bhagyashri D. Rachetti., 2013. Extraction of Some Secondary Metabolites & Thin Layer Chromatography from Different Parts of *Centella Asiatica* L. (URB). *American Journal of Life Sciences*. Vol. 1, No. 6, 2013, pp. 243-247. **DOI:** 10.11648/j.ajls.20130106.11
- Satrani, B. et al., 2001. Composition chimique et activité antimicrobienne des huiles essentielles de Satureja calmintha et Satureja alpine du Maroc. Ann. Falsif. Chim. Toxicol., 94(956); 241-250.
- Sawaya W.N., Daghir N.J., Khalil J.K., 1986. Citrullus colocynthis seeds as a potential source of protein for food and feed. Journal-of Agricultural and Food Chemistry; 34 (2): 285-288.
- Scalbert, A., Manach, C., Morand, C., Rémésy, C., (2005). Dietary Polyphenols and the Prevention of Diseases. Critical Reviews in Food Science and Nutrition. p45, 287–306
- Schorderet, M., (1992). Pharmacologie. Des concepts fondamentaux aux applications thérapeutiques. OPU. Alger. 918p.
- **Seger C., Sturm S., 2007.** HPLC-SPE-NMR-a novel hyphenation technique. LC-GC Europe; 20:587-597.
- Seger C., Sturm S., Mair M., Ellmerer E., Stuppner H., 2005. 1H and 13C NMR signal assignment of cucurbitacin derivatives from *Citrullus colocynthis* (L.) Schrader and *Ecballium elaterium* (L.) (Cucurbitaceae). Magn. Reson. Chem.; 43(6): 489-91.
- Service R., (1995). Antibiotics that resist resistance. Science, 270: 724-727.
- **Shaheen A.M. and Hamed A.I., 2003.** Comparative studies and nutritional values of some weedy species collected from newly reclaimed areas (Western shore of Lake Nasser, Aswan, Egypt). *Egypt.J.Biotechnol.*, 13: 176-186.

- Sheng-Hsien, L., Ku-Shang, C., Min-Sheng, S., Yung-Sheng, H. & Hang-Der, J., 2007. Effect of some Chinese medicinal plant extracts on five different fungi. *food contro* 18, 1547-1554
- **Sincich, F., 2002.** Bedouin Traditional Medicine in the Syrian Steppe. Rome, FAO, pp. 114-115.
- Singh, P., Kumar, A., Dubey, N.K., Gupta, R., (2009). Essential Oil of Aegle marmelos as a Safe Plant- Based Antimicrobial Against Postharvest Microbial Infestations and Aflatoxin Contamination of Food Commodities. Journal of food science. Vol. 74 (6).P.302-307.
- Soro,S., Ouattara, D., Guédé, N.Z.,Coffi, K., et al., (2010).Effet Inhibiteur in Vitro et in Vivo de l'extrait de Poudre et de l'huile Essentielle de Xylopia Aethiopica (Dunal) A. Rich. (Annonaceae) sur Fusarium oxysporum f. sp Radicis-lycopersici (Forl), Champignon Parasite des Cultures de Tomate .European Journal of Scientific Research Vol.39(2).P.279-288.
- Sturm S., Schneider P., Serger C., Stuppner H., 2009. Analysis of *Citrullus colocynthis* Cucurbitacine Derivatives with HPLC-SPE-NMR. *Scientia pharmaceutica*; 77: 254. Doi:10.3797/scipharm. Oephg. 21. PO-55
- Suba, A., Muralikrishna, G., (2002). Evaluation of the antioxidant properties pf free and bound phenolic acids from native and malted finger mille J. Agric.Food Chem. 50:889, 2002. In Phenolic compounds in cereal grains and their health benefits: Dykes, L; Rooney, L W. 2007. Texas A&M university college station TX. PDF.
- Takagi T., Itabashi Y., 1981. Lipids, 16: 546.
- Takhi D, Ouinten M, Yousfi M., 2011. Study of antimicrobial activity of secondary metabolites extracted from spontaneous plants from the area of Laghouat, Algeria. Adv Environ Biol2011;5(2):469–76.
- Tannin-Spitz T., Grossman S., Dovrat S., Gottlieb H.E. and Bergman M., 2007. Growth inhibitory activity of cucurbitacin glucosides isolated from Citrullus colocynthis on human breast cancer cells. *Biochemichal pharmacology*, 73:56-67.
- Taviano MF, Marino A, Trovato A, Bellinghieri V, Melchini A, Dugo P, Cacciola F, Donato P, Mondello L, Guvenc A, De-Pasquale R, Miceli N., 2013. *Juniperus oxycedrus* L. subsp. *oxycedrus* and *Juniperus oxycedrus* L. subsp. *macrocarpa* (Sibth. & Sm.) Ball. "berries" from Turkey: Comparative evaluation of phenolic profile, antioxidant, cytotoxic and antimicrobial activities. *Food and Chemical Toxicology*, 58: 22-29.
- Tehila S., Shlomo Grossman, Sara Dovrat, Hugo E., Gottlieb, Margalit Bergman., 2007. Growth inhibitory activity of cucurbitacin glucosides isolated from *Citrullus colocynthis* on human breast cancer cells. *Biochemical pharmacology*; 73: 56-67.
- Trease G.E., 1976. A text-book on Pharmagnosy. *Bailliere Tindall and Cox*.London. England. P 646.
- Umezawa, T., (2003). Diversity in lignan biosynthesis. *Phytochem. Rev.* 2(3): 371-390
- Vanier P., 2006. Courge. Passeport santé. Net sur http://passeportsante.net/fr/Nutrition/EncyclopedieAliment/Fiche.aspx?doc=courge_nu
- Vansant G., (2004).Radicaux libres et antioxydants: principe de base.Symposium «Antioxydant et Alimentation». Institut Danone.
- **Vermerjus W; Nicholson R., 2006.** Isolation and identification of Phénolic Compounds, Phenolic Compound biochemistry, Published by Springer, Dordrecht, *35*-62-151-191.

- Wang, S. Chen, P F. Chang, S T., (2005). Antifungal activities of essential oils and their constituents from indigenous cinnamon (cinnamomum osmophleoum) wood decay fungi. Bioresource technology
- Woodward, A. et Coppock, D.L., (1995). Role of plant defense in the utilization of native browse in southern Ethiopia. *Agroforestry Systems* 32 (2), 147-161.
- Yan, D., Jin, C., Xiao, X.H., & Dong, X.P., 2008. Antimicrobial properties of berberines alkaloids in Franch Coptis chinensis by microcalorimetry, *J Biochem Biophys Methods* 70, 845–849;
- Yanif Z., Ellashabelsky, Schafferman D., 1999. Colocynth: Potential arid land oil seed from an ancient cucurbit. *in*: J. janick (Ed). Perspectives on new corps and new use. ASHS press; AlescendriaVA.
- Yao HW, Li J, Chen JQ, Xu SY., 2004. Inhibitory effect of leflunomide on hepatic fibrosis induced by CCl4 in rats. *Acta Pharmacologica Sinica*, 25(7): 915-920
- Yoshikawa M., Morikawa T., Kobayashi H., Nakamura A., Matsuhira K., Nakamura S., Matsuda H., 2007. Structures of new cucurbitan-type triterpene glycosides and antiallergic constituents from *Citrullus colocynthis*. Chem. and pharmaceutical bulletin; 55(3): 428-434.
- Yousefzadi M.; M. Sharifi; M. Behmanesh; E. Moyano; M. Bonfill; R. M. Cusido; J. Palazon., (2010). Podophyllotoxin: Current approaches to its biotechnological production and future challenges. *Engineering in Life Sciences*, 10, 4, (2010), pp. 281-292, 1618-2863
- Yusuf, Y., (2006). Trends Food Sci. Tech. p17, 64-71.
- Zahra et al., (1999). Étude *in vitro* du potentiel nématicide de quelques extraits de plantes médicinales, Agadir, Maroc.
- **ZERAÏA**, L., (1983). Protection de la flore. Liste et localisation des espèces assez rares, rares et rarissimes. Station Centrale de Recherche en Ecologie Forestière, Alger, Algérie.
- Zhoo, Z., Robards, K., Helliwell, S & Blanchard, C., (2004). The distribution of phenolic acids in rice. Food chem.87:401.2004. In Phenolic compounds in cereal grains and their health benefits .Dykes, L; Rooney, L.W. 2007. Texas A&M university college station TX. PDF.
- Ziyyat A., Legssyer A., Mekhfi H., Dassouli A., Serhrouchni M., Benjelloun W., 1997. Phytotherapy of hypertension and diabetes in oriental Morocco. J. Ethnopharmacol.; 58: 45-54.
- Zoro, A.B.I., Koffi, K.K. & Djè, Y., 2003. Caractérisation botanique et agronomique de trois espèces de cucurbites consommées en sauce en Afrique de l'Ouest: Citrullus sp., Cucumeropsis mannii Naudin et Lagenaria siceraria (Molina) Standl. Biotechnol. Agron. Soc. Environ 7 (4), 189–199.

Annexe n°1 : Questionnaire

1- Identification:
N°:
Prénom:
Sexe :
Adresse :wille :Willaya :
·
2- <u>Informations générales sur la plante :</u>
Est-ce que tu sais cette plante ?
Est-ce que tu sais cette plante ?
Quelles sont ses utilisations ?
Quelles sont les maladies qu'elles guérissent?
Est-ce qu'elle est utilisée pour la peau ? les yeux ?produits cosmétiquées ? dits ses
utilisations ?
Quelle est la partie utilisée (feuilles, tiges) ?
Quel est le meilleur temps pour sa récolte ?
Quelle est sa région de récolte ?
Est-ce qu'elle utilisée sec ou humide ?
Si elle est utilisée sec, quels sont ces moyens de séchage (soleil, feu, ombre) ?
Quelle est la quantité utilisée ? et le volume d'eau pour sa préparation ?
Qual act la tampa avagt pour gala ?
Quel est le temps exact pour cela ?
Commont utilisar catta práparation ?
Comment utiliser cette préparation ?

Quel est le dosage utilisé (adulte, enfant, enceinte) ?
Est-ce qu'elle provoque certain empoisonnement quelquance ?
Que fait-il faire dans ce cas ?
Quelle est la durée des soignes ?
Quels sont les faites indésirables possibles
Quelles sont les aliments autorises oui interdites lors de son utilisation ?
Quelle était la question qu'on devait poser et qu'on N'a pas faite ?
Vérifie de la part de :
La Date de questionnaire :

Annexe 2: Préparation des réactifs pour tests Photochimiques

RÉACTIF DE DRAGENDORF

(Tétraiodobismuthate de potassium) ou appelle aussi réactif à l'iodobismuthate de potassium

_Solution A : Dissolve 0.5g de bismuth nitrate (Bi (NO3)3 5 H2O) dans 20 ml d'acide acétique 20% ;

_Solution B : 5ml de KI préparée à 40% dans l'eau distillé ;

_Mélanger A et B et Ajuster à 100ml par l'eau distillé.

Réactif de Mayer

_Solution A : 1.358g de chlorure de mercure HgCl2 sont dissous dans 60 ml d'eau distillée ;

_Solution B : 5g d'iodure de potassium KI sont dissous dans 10ml d'eau distillée ;

_Les solutions A et B sont mélangées extemporarement et le volume final est ajusté à 100ml avec d'eau distillée.

Réactif de Wagner

_2g de KI et 1,27g de I sont dissous dans 75ml d'eau distillée, puis ajustés à 100ml avec d'eau distillée.

Liqueur de Fehling

_Solution A : solution de sulfate de cuivre à 40 g/l ;

_Solution B : 200 g de tartrate de potassium-sodium et 150 de NaOH pour 1 litre d'eau distillée ;

_ Mélanger les deux solutions à volumes égaux (à mélanger juste avant l'emploi).

Annexe n °3: Composition des milieux de culture

Milieu PDA (Potatoes Dextrose agar)

Pomme de terre (macération 500ml de filtrat) 200 g

Dextrose 10 g

Agar 15 g

Eau distillée 1000 ml

Bouillon Nutritif (BN, Fluka):

Peptone 15,0

Extrait de levure 3,0

Chlorure de sodium 6,0

Glucose 1,0

Eau Distillée qsp IL

 $pH = 7.5 (\pm 0.2) \text{ à } 37^{\circ}C$

Suspendre 25g de la poudre dans un litre d'eau distillée, en suite stériliser par autoclavage à $121\,^{\circ}\text{C}$ pendant $15\,\text{min}$.

Gélose Nutritive (GN, Fluka)

Peptone 15,0

Extrait de levure 3,0

Chlorure de sodium 6,0

Glucose 1,0

Agar 15,0

Eau Distillée qsp IL

 $pH = 7.5 (\pm 0.2) \text{ à } 37^{\circ}C$

Suspendre 40g de la poudre dans un litre d'eau distillée, en suite chauffer sous agitation jusqu'à ébullition pour la dissolution totale du milieu et stériliser par autoclavage à 121 °C pendant 15 min.

Bouillon Sabouraud:

Peptone (Fluka) 10,0

Extrait de levure (Fluka) 3.0

Glucose (Sigma-Aldrich) 20,0

Eau Distillée qsp IL

$$pH = 5.8 (\pm 0.2) \text{ à } 37^{\circ}C$$

Suspendre la poudre dans un litre d'eau distillée, chauffer si c'est nécessaire pour la dissolution totale du milieu et stériliser par autoclavage à 121 °C pendant 15 min.

Gélose Sabouraud:

Peptone (Fluka) 10,0

Extrait de levure (Fluka) 3,0

Glucose (Sigma-Aldrich) 20,0

Agar 15,0

Eau Distillée qsp IL

 $pH = 5.8 (\pm 0.2) \text{ à } 37^{\circ}C$

Suspendre la poudre dans un litre d'eau distillée, en suite chauffer sous agitation jusqu'à ébullition pour la dissolution totale du milieu et stériliser par autoclavage à 121 °C pendant 15 min.

Bouillon Mueller Hinton (BMH, Fluka):

Infusion de viande de boeuf 2,0

Hydrolysat de case me 17,5

Amidon 1,5

Eau Distillée qsp IL

 $pH = 7.4 (\pm 0.2) \text{ à } 37^{\circ}C$

Suspendre 23 g de la poudre dans un litre d'eau distillée, en suite stériliser par autoclavage à 121°C pendant 15 min.