v\ of SAIDA L>

r MOULAY TAHAR

&”“""J;’/ ‘3?\ O LI

/»' S OUNIVERSITY
i

Master Thesis

Speciality : Computer Networks and Distributed

Systems (RISR)

Theme

S
chr(DSOS) in

on

Scientific Workflow Optimization
Discrete Symbiotic Organism S
Cloud Comp

Directed by :

Presented by :

Dr. KOUIDRI Siham

CHAREF Chahinaz

MOUEDDENE Mohamed Hassane

@Année universitaire 2022-2023

S

uidla

allall e caldal) die S0l 5 3 5 A sall ilaadd Jladll 2l 1351 La"3 gai dplacd) dus sal) g_\;.ua\l
Caills 5l Jledll Jagladill (3ley Jlaall 138 3 Lags Wing Lo guin 50 algeall Jaghads sl cdplaiadl 3) sall e) sidll
i Jiay Janll ypas Jashads () Gy yaall o elld ma g Jaall s S i 5 Q8 gy dpaial yidll) V) il
Z il Lingi s Jlaall 138 & Al Jlaaly clpall Laa™) el 485) 03 a5 Al ciland JS Laa ALalS NP
Adandl) saiivsall algal) & gan Allise Aalladl

Jalaill ¢ Glall ¢ Aglalall ¢ Aliagiall 408K WK e Gaall ¢ Jardl yan 4 s ¢ dpland) A gal) ¢ A1l LS|
.CloudSim. ¢ (sl aUaill ¢

Abstract
Cloud Computing has emerged as a prominent paradigm for utilizing on-demand computing,
storage, and network services in an efficient manner. With the increasing demand for cloud
[resources, task scheduling has become a significant research topic in this domain. Efficient
task scheduling aims to assign tasks to virtual machines in order to minimize workflow
execution time. However, the scheduling of workflows is known to be an NP-complete
problem, posing computational challenges. This paper presents a literature review of existing
work in this field and introduces our proposed approach to address the task scheduling
[oroblem in cloud computing.

Key words: cloud computing, workflow scheduling, makespan, Discrete symbiotic organism
search,mutualism, commensalism, parasitism, ecosystem, CloudSim.

Résumé
L'informatique en nuage est devenue un paradigme de premier plan pour l"utilisation efficace
des services d’informatique, de stockage et de réseautage a la demande. Avec la demande
croissante de ressources en nuage, la planification des taches est devenue un sujet de
recherche important dans ce domaine. Une planification efficace des taches consiste a
attribuer des taches a des machines virtuelles pour réduire le temps d’exécution du flux de
travail. Cependant, la planification du flux de travail est connue pour étre un probleme NP
complet, posant des défis informatiques. Le présent document présente une recension des
|écrits sur les travaux existants dans ce domaine et I'approche que nous proposons pour
aborder la question de la planification des taches en nuage.
Mots clés: cloud computing, workflow scheduling, makespan, Discrete symbiotic organism
search, mutualism, commensalism, parasitism, ecosysteme, CloudSim.

GRATITUDE

F irst and foremost, we would like to express our gratitude to Allah the
almighty that has granted us the strength, willpower, and patience to com-
plete this endeavor.

Our sincere appreciation goes to our mentor, Dr. KOUIDRI Siham, whose
guidance, trust, and patience have made an invaluable contribution without
which this work could not have reached its destination. May this work serve as
a profound tribute to their exceptional character.

We would also like to extend our heartfelt thanks to the members of the jury,
who graciously dedicated their time to evaluate this humble piece of work.

Our profound gratitude is also extended to all of our teachers. It is through
their teachings and shared knowledge that this project has come to fruition. We
owe them a great debt of gratitude for their contributions to our growth and the
realization of this brief.

DEDICATION CHAREF CHAHINAZ

To my cherished parents, to whom | owe an immeasurable debt of gratitude.

To my beloved sisters and my nephew, whose unwavering support has been a
constant source of strength and inspiration.

To my brother and family and many friends who were there throughout the
entire journey.

To my good friend and source of strength Nada for always being there.
To that lobster that once walked by.

A very heartfelt gratitude to Dr. Kouidri Siham for her sacrifice with us during
this thesis. As well as my partner Moueddene Mohamed hassane Thank you
for always being there for me.

DEDICATION MOUEDDENE HASSANE

| dedicate this work to:

To my family, whose unconditional love, encouragement, and sacrifices have
been my driving force.

To my friends who have been a great support throughout the academic years.

A big appreciation to Mrs KOUIDRI Siham for the best guidance in our thesis,
also to my partner Charef Chahinaz who accompanied me in this bizarre journey.

To those who have supported and believed in me, this thesis is dedicated with
deep appreciation.

Contents

List of Figures

List of Tables

1

Cloud computing

1.1
1.2
1.3
1.4

1.5

1.6

1.7
1.8
1.9
1.10
1.1
112
1.13

Introductiono
Cloud computing o Lo
History
Cloud computing services
1.41 Infrastructure as a service (laaS)
1.42 Platform as a Service (PaaS)
1.43 Software as a service (SaaS)
Cloud Computing Deployment Models
1.5.1 Public cloud computingo L
152 Private cloud computing o oL
1.5.3 Community cloud computing
1.5.4 Hybrid cloud computing oL
Virtualization L
1.6.1 Types of virtualization
Grid Computing
Utility computing o o oo
Service-Oriented Architecture (SOA).
Load Balancing
Data centers
Cloud computing characteristics
Cloud computing architecture
1131 Front-end
1132 Back-end

CONTENTS

114 Cloud computing security 27
1.14.1 The location of data centers 27
1.14.2 Guarantees of audits and contracts 28
1.14.3 Constant data availability 28
1.14.4 Securing datainmoving 28

1.15 advantages and disadvantages of cloud computing 28
1151 advantages 28
1.15.2 disadvantages o 29

116 Example of clouds o 29
1.16.1 Amazon EC2 L 29
1.16.2 Google App Engine L Lo 30
1163 Oraclecloud L 30

117 Conclusion 30

2 Scientific workflow scheduling strategies in cloud computing 32

21 Introduction L 33

2.2 Overview of scientific workflows 33
221 Definition and characteristics of scientific workflows . .. 33

2.3 Components and structure of a scientific workflow in cloud computing 35

23.01 Cloud resources: 35
2.3.1 Workflow management system: 35
232 Datatransfer: o 35
233 Scaling: 36
234 Security: e 36

2.4 Scheduling concept and definition 36
241 scheduling: 36
242 tasks: ... 37
243 Data:r ... 37

2.5 Workflow scheduling strategies in cloud computing 37
251 Definition and importance of workflow scheduling 37
2.5.2 Types of scheduling strategies 38

2521 Independent task scheduling 38

2522 dependent task scheduling 38

253 Algorithms of scheduling 39
2531 First in first out algorithm (FIFO) 39

2532 Shortest Job First (SIF), 39

2533 Round-Robin (RR), 39

2534 Critical Path Method (CPM) 39

26 Conclusion e 40

Page | 5

CONTENTS

3

Description of the proposed approach 1
3.1 Introductiono 42
3.2 Representation of Scientific Workflow 42
3.3 Adaptation description Lo oo 43
3.4 Symbiotic Organisms Search (SOS) 44
340 Innature 44
3411 Mutualism . ..o oo 44

3412 Commensalism, 45

3413 Parasitism o oo 46

342 Formal 47
3421 Mutualism phase: o o000 48

3422 Commensalism phase: 49

3423 Parasitismphase: L. 49

3.5 Discrete Symbiotic Organisms Search Algorithm 49
351 SOSwvs DSOSo 49
352 Fitnessfunction Lo o o 49
3.5.3 Adaptation description Lo 50

3.6 Conclusion 54
Discussion of the experimental results 55
41 Introduction L 56
4.2 Java programming language 56
4.3 Development environments. Lo oL 57
431 Hardware environment. Lo 57
43.2 Software environment L L Lo oL 57
4321 Eclipse 57

4322 CloudSim Simulator., 57

43.2.3 CloudSim Architecture 58

4324 Cloudsimclasses 59

44 Maininterface L 01
45 Simulationsetup Lo 62
451 Cloudletssetup L 62
452 Virtual machinessetup. 63
453 Datasetup e 63
454 Ecosystemsetup 63

46 Simulation. L 65
4.6.1 Virtual machines list 66
46.2 Datalist 67
463 Cloudlets list o 68
464 Listoftheecosystem. 69

47 Bestorganism e 69

Page | 6

CONTENTS

48 Simulationdisplay o 71
49 Experimentalresults 71
491 Experiment 1 72

492 Experiment2 73

493 Experiment3 75

410 Results discussion L Lo oo 76
General conclusion and prescriptive 77
Bibliography 79

Page | 7

LIST OF ACRONYMS

NIST: The National Institute of Standards and Technology.
laaS : Infrastructure as a service.

SaaS: Software as a service.

PaaS: Platform as a service.

VM: Virtual Machine.

FCFS: First Come First Served.

FIFO: First in first out algorithm.

SJF: Shortest Job First.

RR : Round Robin algorithme.

CPM: Critical Path Method.

SOS : Symbiotic Organisms Search.

DSOS : Discrete Symbiotic Organisms Search Algorithm.
PT: Processing time.

DT: Data transfer.

CB: Cloud broker.

List of Figures

11 Cloud computing L 18
1.2 Cloud service models 19
1.3 Cloud computing services 20
1.4 CSmodels. 22
1.5 Cloud computing architecture 27
2.1 A simple DAG including data and control nodes. 35
2.2 Structure of a typical scientific workflow 36
31 Anexample of DAG 43
3.2 An example of an organism (our adaptation). 44
3.3 Mutualismexamples. 45
3.4 Commensalism examples 46
35 Parasitismexamples. L o 47
3.6 Organogram of the DSOS. 52
3.7 DSOS algorithm.o o 53
41 CloudSim Architecture 58
42 CloudSim classes diagram 60
43 Interface 1. 61
44 Interface 2. 62
45 Interface 3. 64
4.6 Simulation interface L L Lo 65
47 VMUst . . .o e 66
48 Datalist. e 67
49 Cloudlets list 68
410 List of the ecosystem L L L. 69
411 Organism best L 70
412 Simulation display 71

LIST OF FIGURES

413 Experiments interface Lo oo 72
414 Impact of cloudlets number on the response time 73
415 Impact of the number of VMs on the response time 74
4.16 Impact of the iteration on the response time 75

Page | 10

List of Tables

41 Impact of cloudlets number on the respond time
4.2 Impact of VMs number on the respond time . .
4.3 Impact of VMs number on the respond time . .

11

G ENERAL INTRODUCTION

loud computing has revolutionized the way businesses and individuals ac-
C cess and utilize computing resources. It is a model that provides on-demand
access to a shared pool of computing resources, including networks, servers,
storage, applications, and services. These resources can be rapidly provisioned
and released with minimal management effort.
In traditional computing models, organizations would have to invest in and main-
tain their own physical infrastructure, such as servers and data centers. This
required significant upfront costs, ongoing maintenance, and limited scalability.
Cloud computing, on the other hand, offers a flexible and cost-effective alterna-
tive.
This plateform provides a scalable and flexible platform for executing scientific
workflows by leveraging the computational power and resources available in the
cloud. It allows researchers and scientists to access virtualized resources, such
as virtual machines, storage, and networks, on-demand and pay for what they
use.
Optimizing the scheduling of scientific workflows is crucial for achieving optimal
performance, reducing execution time, and maximizing resource utilization. The
goal is to allocate tasks to available resources in a way that minimizes the
overall makespan (total time to complete the workflow) and optimizes other
performance metrics such as cost, energy consumption, or reliability.
This problem is considered as an NP-hard problem. NP-hardness refers to a
class of computational problems that are considered difficult to solve efficiently,
meaning there is no known polynomial-time algorithm to solve them, in this case,
the problem complexity arises due to various factors, including task dependencies,
resource constraints, data transfert, and optimization objectives. The goal is
to find an optimal schedule that minimizes the overall makespan, maximizes
resource utilization, minimizes data transfert, and considers other performance

metrics.

General introduction

Finding an optimal solution for scientific workflow scheduling is often impractical
in real-world scenarios, especially for large-scale workflows. Instead, heuristic
and approximation algorithms are commonly employed to find near-optimal or
satisfactory solutions within a reasonable amount of time. This thesis explores
the potential of utilizing the Discrete Symbiotic Organism Search (DSOS) algo-
rithm for scientific workflow optimization in cloud computing. DSOS, inspired
by symbiotic relationships observed in nature, is a metaheuristic algorithm ca-
pable of efficiently exploring solution spaces to find near-optimal solutions for
combinatorial optimization problems. By simulating the symbiotic interactions
between organisms, DSOS offers a promising approach to address the optimiza-
tion challenges within scientific workflows.

The primary objective of this research is to investigate the effectiveness of DSOS
in optimizing various aspects of scientific workflows in cloud computing environ-
ments. Key optimization areas include task scheduling, resource allocation, data
transfer. This research contributes to the advancement of scientific workflow
optimization, providing valuable insights and techniques to improve research

efficiency and accelerate scientific discoveries in cloud computing environments.

ORGANIZATION OF THE MANUSCRIPT
The work that we have carried out in the context of the problem is summarized
in this document, which is structured in four chapters:

Chapter 1 : The first chapter serves as an introduction to cloud computing
and its significance in modern computing environments. It provides a
comprehensive overview of the key concepts, architectures, and benefits
associated with cloud computing.

Chapter 2 : This chapter focuses on the scientific workflow scheduling strategies
in cloud computing.

Chapter 3 : Third chapter is dedicated to the description of the approach pro-
posed , detailing the algorithm used " Discrete Symbiotic organism search

DSOS".

Chapter 4 : The last chapter is a discussion of the application developped in
this concept and the results optained.

Page | 13

Chapter 1

CLOoUD COMPUTING

14

Cloud computing

1.1. INTRODUCTION

he rapid advancement of information and communication technologies has
T enabled the development of new computing paradigms, where processing,
storage, communication, sharing and dissemination techniques information have
changed dramatically. Individuals and organizations are increasing use of exter-
nal servers for storage and distribution efficient and reliable information.

Nowadays all that is required to use services on a remote server, using
computing cycles of a pile of servers that are in different locations, share private
and confidential information and complete tasks simply with a web page that will
allow the user to have access to different resources from all around the globe.
In this chapter we will be addressing this technology called Cloud Computing, the
latter has attracted so much attention recently. According to a Gartner press re-
lease from June 2008, Cloud Computing will be no less influential than e-business
(Gartner 2008a). Cloud computing is also expected to be a fundamental approach
towards Green IT which aims to minimize the negative effect caused by IT opera-
tions on the environment. To understand this concept, we dedicated this chapter
to defining it and mentioning different terminologies and elements related to it. [1]

1.2. CLOUD COMPUTING

Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources that can
be rapidly provisioned and released with minimal management effort or provider
interaction this definition is commonly used and it was formulated by the Na-
tional Institute of Standard and Technology (NIST). [7]

The main idea of these technologies is to offer computing data, applications,
resources as a public utility in the form of distributed services on the network in
a payment system (pay as you go), more plainly, cloud computing is a model
that can obtain resources such as processors, memory, storage, and applications
quickly from the Internet in real time and based on demand. Instead of having
to make major investments to buy equipment, train staff, and provide ongoing
maintenance, all the above can be handled by a cloud service provider, reducing
the financial cost of it, the latter in turn depend on the data center industry,
with more than 500,000 server farms set up around the globe. The functioning of
such broadly disseminated data centers, in any case, requires a lot of energy for
processing and cooling purposes which adds more expenses.

Page | 15

Cloud computing

This is the case for example of Google App Engine, Amazon EC2 or Microsoft
Azure, offers allowing the use of computing and communication infrastructures
from Google, Amazon or Microsoft as utility services.

1.3. HisToRY

The concept of cloud computing is not a new invention, since mainframes
were already a step towards the latter in the 1950s by giving users access to the
central computer through several terminals within the and use its capabilities.
At first, however, it was time-sharing (users had to reserve computing time, and
were allowed to use the performance of the mainframe for their computations
during that time).

The notion of multiple people sharing the same computer resource requires
a technology called virtualization, this allowed that the computation instances
could be built in an abstract way, these virtualized environments were finally
accessible to everyone with the invention of the Internet in the 1990s.

In 1997, Professor Ramnath Chellapa of Emory University defined cloud
computing as the new computing paradigm, where the boundaries of computing
will be determined by economic rationale, rather than technical limits alone. Fol-
lowed by that in 1999, Salesforce became the first company to offer applications
over the internet, heralding the arrival of Software as a Service. [3]

In 2002, Amazon introduced its web-based retail services providing services
like storage, computation and even human intelligence, On August 25, 2006,
Amazon Web Services launched Elastic Compute Cloud (EC2), enabling people to
rent virtual computers and use their own programs and applications online. [3]

In 2009, Google Apps also started to provide cloud computing enterprise
applications, as well as Windows Azure which was launched by Microsoft, and
many other companies joined the field like Oracle and HP. [3]

Cloud computing has become part of everyday life for many people. Most
smartphones, or more broadly, the Internet of Things, are in constant contact
with the cloud.

Page | 16

Cloud computing

Cloud Computing

= Ee—)
-
T Q)

Virtual Software Application Storage
Desktop Platform Data
(((J)) llntemet
—
Router Switch
| I I End User | | |
O] ==t S
Mobile Laptop Printer Desktop Desktop Desktop

Figure 1.1: Cloud computing
[4]

1.4. CLOUD COMPUTING SERVICES

Cloud computing providers use many service models. These services are or-
ganized into three successive levels: the infrastructure level (laaS), the platform
level (PaaS) and the application level (SaaS), referred to as SPI.

Page | 17

Cloud computing

Cloud service models

Gmail, Trello, Slack,

Acumbamail, Office 365 End users

Flynn, Cloud Foundry
Heroku, OpenShift

Software
developers

Stackscale, AWS,
VMware, Azure

Network architects
IT administrators

Figure 1.2: Cloud service models

5]

1.4.1. INFRASTRUCTURE AS A SERVICE (IAAS)

Infrastructure as a service (laaS) is the most basic category of cloud comput-
ing services, it is a form of cloud computing that provides virtualized computing
resources (network, storage, operating systems) over the internet, Users have
most of the time almost complete control over the VMs they rent, they can choose
pictures of preconfigured operating systems, or machine images custom apps
containing their own apps, libraries, and configuration settings.

There are many commercial and open-source laa$S providers. From commer-
cial platforms, the most common are: Amazon EC2, Microsoft Azure. [0]

1.4.2. PLATFORM AS A SERVICE (PAAS)

Paa$S as a services have specialized application development environments
that include the tools and modules needed for this type of work letting to the
developer manage the hardware or software necessary (develop, design, imple-
mentation, test, provide), including also a solution stack.

Paa$S offers great flexibility, allowing in particular to quickly test a prototype or
provide an IT service over a period of short duration.

Google App Engine, Microsoft Azure are examples of Paa$S services. The Mi-
crosoft platform offers the possibility of modifying applications directly online
thanks to remote desktop techniques. [/]

Page | 18

Cloud computing

1.4.3. SOFTWARE AS A SERVICE (SAAS)

Software as a service makes it possible to provide users with ready-to-use

applications. Unlike ordinary web applications, it is characterized by a high
level of abstraction that allows the application to be adapted to a particular use
case.
There are different types of application ranging from CRM (Customer Relationship
Management), human resources management, collaborative tools, messaging,
Bl (Business Intelligence) and other business applications. Users connect to
the application via the Internet, usually through a web browser on their phone,
tablet or PC. [7]

Private Infrastructure Platform
(On-Premise) (as a Service) 2 (as a Service)
~ ~ C ~
Applications Applications g I Applications
(0]
. = ' S :
Runtimes g Runtimes o Runtimes
>
. CB— 3 "’
Security & Integration S Security & Integration Security & Integration
>
[0) o =
o Databases > Databases Databases %
®
g a
©— Servers SEWES = Servers [0)
S) |
=] o — . S =] . e (=2
o Virtualization Virtualization Q Virtualization <
> 3 P
Server HW Server HW - Server HW =
o Q
< o
=/
Storage Storage é Storage
a
Networking Networking o Networking
- —

Figure 1.3: Cloud computing services

[6]

1.5. CrLoun CoMPUTING DEPLOYMENT MODELS

1.5.1. PuBLIC cLOUD COMPUTING

Public cloud (also known as external cloud), is when services are provided
and used in a so-called pay-per-use manner where the cloud provider is external
and its infrastructures and sources are accessible to everyone.

Page | 19

Cloud computing

This infrastructure can be owned, managed and operated by a business, an
educational institution or a public administration, or a combination of the three.
It is accessible on the provider’s website.

1.5.2. PRIVATE CLOUD COMPUTING

This cloud consists on the hosting of private applications, storage, or compu-
tation in a specific group or organization and restricts access to that entire group.

Unlike public cloud, private cloud computing requires resources and sig-
nificant upfront development costs, data center costs, ongoing maintenance,
hardware, software, and software. in-house expertise.

These resources are the property of the company, which manages and shares
them. That is the reason it is used by large organizations and government
agencies mostly. [/]

1.5.3. COMMUNITY CLOUD COMPUTING

In a community cloud, infrastructure is deployed for exclusive use by a group
of organizations or companies that share the same interests (missions, security
requirements, policies, compliance rules, etc.), in such an architecture, system
administration can be performed by one or more of the organizations sharing
the cloud resources.

An example of this is OpenCirrus formed by HP, Intel, Yahoo, and others.

1.5.4. HYBRID CLOUD COMPUTING

Hybrid cloud computing is a combination of both public and private cloud,
linked together by standardized or proprietary technologies that allow the porta-
bility of applications. Organizations can have parts of their services in their
own infrastructures but also in public cloud. Or can use the public just when its
needed.

Page | 20

Cloud computing

1.6. VIRTUALIZATION

Virtualization is a method of running multiple independent virtual operating
systems on a single physical computer, the main use of this technology is to
provide applications with standard versions to their cloud users.

Virtualization is the most essential part of cloud computing, in other words,
it is one of the main cost-effective, hardware-reducing, and energy-saving tech-
niques used by cloud providers. It consists of a software layer that allows the
abstraction between the hardware and the operating system. Thus, several
systems can be installed on the same physical machine. [8]

Cloud Service Models

laaS PaaS Saas

Infrastructure As A Service Platform As A Service Software As A Service

\

Private Community
Cloud Cloud

Cloud Deployment Models

Figure 1.4: CS models

[9]

1.60.1. TYPES OF VIRTUALIZATION

e Server virtualization: Typically, each physical server is dedicated to one
specific application or task, so to solve the inefficiency problem, server
virtualization came to light allowing an administrator to convert a server into

Page | 21

Cloud computing

multiple virtual machines, So, each system can operate its own operating
systems in an isolated manner.

Its beneficial in virtual migration, reducing energy consumption, reduce
infrastructural cost, etc.

e Storage virtualization: Storage virtualization uses all of the physical data
storage of a machine and creates one large virtual storage unit that can be
assigned and controlled using management software. It allows to manage
and use storage from multiple sources as a single repository.

e Application virtualization: Application virtualization encapsulates the ap-
plication and separates it from the underlying operating system. As an
example, without changing the machine configuration, users can run a
Microsoft Windows application on a Linux machine. It gives you access to
the application without installing it onto the native device, in other words
it helps a user to have remote access to an application from a server.

e Network virtualization: Network virtualization provides a facility to create
and provision virtual networks-logical switches, routers, firewalls, load
balancer, Virtual Private Network (VPN), and workload security within a
short period of time.

e Desktop virtualization: Desktop virtualization grants the users OS to be
remotely stored on a server in the data center. It allows the user to access
their desktop virtually, from any location by a different machine through
a thin client (such as a web browser), essentially creating a portable
workstation. [8]

1.7. GRID COMPUTING

Grid computing, also called "distributed computing." is a group of networked
computers that work together as a virtual supercomputer to perform large
tasks that would be difficult for a single machine. Splitting tasks over multiple
machines helps reduce processing time and increase efficiency and minimize
wasted resources. A grid computing network consists of a control node, a provider
and a user. The control node gives the user access to the resources when they
are idle. [10]

Page | 22

Cloud computing

1.8. UTILITY COMPUTING

Utility computing is a model in which computing resources are provided to
the user based on specific demand charging exactly for the services that has
been provided which reduces the cost.

Utility computing helps eliminate data redundancy; as huge volumes of data
are distributed across multiple servers or backend systems. And the client can
have access anytime. [/]

1.9. SERVICE-ORIENTED ARCHITECTURE (SOA)

Service-oriented architecture (SOA) is a type of software design that makes
software components and services reusable, it can work with or without cloud
computing.

Each service offers a trade capability, and the services can also communicate
with each other across platforms and languages. Developers use SOA to reuse
services in different systems or combine multiple independent services to perform
complex tasks. [10]

1.10. LoAD BALANCING

Load balancing helps distribute traffic and workloads evenly between two
computers or more to ensure that no single server or machine is under-loaded,
overloaded, or idle.

The load balancer is in charge of managing traffic, it sits between servers
and client devices, it is able to deal with different amount of work capacity by
adapting its distribution decisions according to the moments a request is made.

1.141. |DATA CENTERS

Data centers are a physical destination or more specifically warehouses
of networked computers, storage systems, and computing infrastructure that
organizations use to organize, process, store a large amount of data. Businesses
can enhance their performance, scalability, and security by utilizing a data center

Page | 23

Cloud computing

as a cloud computing strategy because they offer enterprises processing and
storage resources to execute their applications. It includes:

e Systems for storing, accessing and processing data across the organization.
e Physical infrastructure for data processing and data communication.

e Ultilities such as cooling, electricity, network access, and uninterruptible
power supplies (UPS).

1.12. CLOUD COMPUTING CHARACTERISTICS

On demand self-service: Users are able to provision, monitor and manage com-
puting resources such as server time and network storage, as needed
without a human administrators required.

Multi tenancy and resource pooling: It is the software architecture that allow
a single program instance to issue services to multiple users.

Measured and reporting service: Cloud systems automatically monitor and op-
timize resource usage, this technology will provide both the user and the
resource provider with an account of what has been used.

Rapid elasticity: The Computing services should have IT resources that are able
to rapidly scale out and in based on demand. For the user, the capacities
available for supply often appear to be unlimited and can be appropriated
in any quantity at any time.

Broad network access: Cloud computing is so versatile that it enables its users
to access cloud services, and upload data. The users can be thin or
thick heterogeneous client platforms (ex: mobile phones, laptops and
workstations) [11]

1.13. CLOUD COMPUTING ARCHITECTURE

Every organization weather its small or large uses cloud computing services
for storing data and having access to it from anywhere, anytime with the help
of internet. Every cloud infrastructure should provide scalability, transparency,
security and intelligent monitoring. [12]

Cloud computing architecture consists of two parts, the frontend and backend
as represented in figure 1.4

Page | 24

Cloud computing

1.13.1. FRONT-END

In cloud computing the clients side is the front-end, it includes all the users
interfaces and applications, which are used by the client to have access to the
cloud computing services and resources. It consists of:

e User interface: it is the interface made by cloud where the users can
complete tasks without the need to install any software on their machines.

e Software: in charge of the browser or the software the end user uses.
e Client device: the device and input devices used by the end user, it is a

simple device that doesnt require any super abilities. [1”]

1.13.2. BACK-END

The back-end is the cloud environment itself, it includes all the resources to
provide cloud services, it consists of hardware and storage located on a remote
server controlled by the cloud provider.

It is comprised of:

e Application: this layer deals with the users requests, it has access to the
data of clients by offering back-end services.

e Service: referring to the three types of services SaaS, laaS and Paa$S

e Cloud runtime: provides the execution and runtime environment for the
virtual machine.

e Storage: a big portion of cloud is dedicated to store data like solid-state
drives (SSDs), hard disk drives (HDDs), Intel Optane DC Persistent Memory

e Infrastructure: the various technologies such as CPU, Motherboard, Graph-
ics Processing Unit (GPU), network cards, accelerator cards

e Management: it makes sure to allocate different resources to different
tasks with every task getting its share of attention. [12]

Page | 25

Cloud computing

Client Infrastructure Front End

M

A B
N A
A C
E R
M E
3 N
N D
:

{ Infrastructure ’

Figure 1.5: Cloud computing architecture

[15]

1.14. CLOUD COMPUTING SECURITY

To protect the cloud-based systems a set of policies, technologies, controls
and procedures were set, it is called Cloud computing security, in order to
preserve the cloud data and the users privacy.

The providers security responsibilities are related to the safequarding of
the infrastructure itself, as well as access to, patching, and configuration of the
physical hosts and the physical network on which the compute instances run
and the storage and other resources reside. [/]

Several points must be addressed to ensure that all security measures are
implemented:

1.14.1. THE LOCATION OF DATA CENTERS

Data centers should be in a secure location, an area not susceptible to natural
disasters like floods, earthquakes or fires with barriers to prevent forced entry.
Some hosts have several data centers; the client company must therefore be
able to know where its data is located geographically. [/]

Page | 26

Cloud computing

1.14.2. GUARANTEES OF AUDITS AND CONTRACTS

the chosen service provider must be able to demonstrate through various
audits that all the security rules are optimal and up-to-date.[/]

1.14.3. CONSTANT DATA AVAILABILITY

the data should be available to the user at all times and will not be lost even
in the event of technical problems. Providing a Disaster Recovery Plan (DRP)
that prevents data loss by duplicating it and cloud infrastructure and services so
that they remain available even if the initial servers encounter a problem.[/]

1.14.4. SECURING DATA IN MOVING

Securing data in motion: data security therefore depends on the quality of
the relationship and administrative transparency with its service provider, but
also on the purely technical quality of its offer. Data is vulnerable when it is
being moved. This is why the streams are highly secured by trusted hosts.[/]

1.15. ADVANTAGES AND DISADVANTAGES OF CLOUD COM-
PUTING

1.15.1. ADVANTAGES

e Scalability: Cloud computing enables businesses to easily adjust their
computing resources without significant upfront investments in hardware,
allowing for quick additions or removals of resources.

e Cost-efficiency: By eliminating the need for businesses to invest in and
maintain expensive infrastructure, cloud computing allows them to pay
for resources on a subscription or pay-as-you-go basis, reducing capital
expenses.

e Flexibility and accessibility: Cloud computing provides users with the
ability to access data and applications from any location with an internet
connection, facilitating remote work, collaboration, and multi-device acces-
sibility.

e Reliability and uptime: Cloud service providers ensure high levels of re-
liability and uptime through redundant systems and backup procedures,

Page | 27

Cloud computing

ensuring constant availability of data and applications.

e Security: Cloud service providers prioritize security, employing advanced
technologies and adhering to strict compliance standards, often providing
superior security compared to individual businesses.

e Back-up and recovery: a robust disaster recovery and data backup capa-
bilities is offered. Cloud service providers often have redundant systems
and data replication mechanisms in place, ensuring that data is backed up
and can be quickly restored in a case of a natural disaster

1.15.2. DISADVANTAGES

e Vendor lock-in: Adopting a particular cloud service provider and infras-
tructure can create challenges in switching providers or migrating to a
different architecture, potentially limiting flexibility and increasing costs.

e Internet dependency: Cloud computing heavily relies on a stable and fast
internet connection, making it susceptible to difficulties in data and appli-
cation access during internet downtime or instability.

e Data security concerns: Although cloud service providers implement strong
security measures, storing data in the cloud can raise concerns about
unauthorized access, data breaches, or loss, particularly for businesses
with regulatory restrictions on data storage.

e Potential downtime: Despite the generally high reliability of cloud service
providers, there is still a possibility of service disruptions or downtime,
which can disrupt business operations for those heavily reliant on cloud
services.

1.16. EXAMPLE OF cLOUDS

1.16.1. AmMAzoN EC2

Amazon Elastic Compute Cloud (Amazon EC2) offers the user unparalleled
computing power and means of controlling his account, it can be auto-scaled to
meet demand; it facilitates creating and starting virtual machines and simplified
commands via a web interface.

Today EC2 provides complete control over a customer’s computing resources,

Page | 28

Cloud computing

so new sample servers can be installed and booted in minutes, and their capacity
can be quickly measured by platform utilities (Amazon Cloud Watch). Amazon
EC2 provides so many features like virtual computing environments, known as
instances as well as various configurations of CPU, memory, storage, and net-
working capacity for the instances, known as instance types. It also provides
private and public keys to secure the login information for the instance; and
storage volumes for the temporary data; plus, the Persistent storage volumes
with multiple physical locations for the resources [14].

1.106.2. GooGLE ArP ENGINE

Google App Engine (GAE) is a platform-as-a-service, it is mostly used to
run Web applications to meet demand of the community of users of Google
services, which always demand more efficiency and security on web platforms,
GAE requires applications to be written in Java or Python and use the Google
query language after storing them in Googles Bigtable.

The remarkable interest in GAE is providing more infrastructure than other
hosting services such as EC2, in addition of eliminating some system admin-
istration and development tasks to make writing scalable applications easier.

[14]

1.16.3. ORACLE cLOUD

Oracle offers all types of infrastructure services; The global data centers in
Oracle Cloud Infrastructure (OCl) provide servers, storage, network, applications,
data management and other services that support dedicated cloud, multi-cloud,
hybrid cloud and on-premises environments.

Oracle has an entire range of cloud solutions; it is up to the user to buy parts
of the solutions or all of it in a form of an engineered system. [14]

1.17. CONCLUSION

Cloud computing has transformed the way businesses operate by providing
scalable resources, seamless collaboration, and global expansion opportunities.
Organizations can leverage cloud technology to streamline operations, access
advanced technologies, enhance data security, and drive innovation. With cloud
computing, businesses can focus on core competencies, reduce |IT complexities,

Page | 29

Cloud computing

and accelerate time-to-market. Cloud computing has become an essential tool
for businesses to thrive in the digital era.

Page | 30

Chapter 2

SCIENTIFIC WORKFLOW SCHEDULING STRATEGIES
IN CLOUD COMPUTING

31

Scientific workflow scheduling strategies in cloud computing

2.1. INTRODUCTION

n recent years, the use of cloud computing has become increasingly popular in
| scientific research. Cloud computing provides on-demand access to a shared
pool of computing resources, which can be used to perform scientific workflows
more efficiently and cost-effectively than traditional on-premises computing
environments.

With the growth of cloud computing, scientific workflows can be executed on
cloud resources, which provide on-demand access to a large pool of computing,
storage, and networking resources. Cloud computing offers several benefits
for executing scientific workflows, including scalability, flexibility, and cost-
effectiveness. However, executing scientific workflows in the cloud also presents
significant challenges, such as resource allocation, data management, and task
scheduling.

However, managing and scheduling scientific workflows in the cloud can be
a complex task. Workflow scheduling involves determining the order in which
tasks should be executed and allocating resources such as CPU, memory, and
storage to each task. The goal is to optimize performance, minimize execution
time, and reduce costs while meeting the workflow's requirements.

2.2. OVERVIEW OF SCIENTIFIC WORKFLOWS

Scientific workflows are a series of interconnected computational and data
processing tasks that are used to solve a scientific problem or perform a scientific
experiment. These workflows can be used in a variety of domains, including
bioinformatics, physics, astronomy, and environmental science, among others.

2.2.1. DEFINITION AND CHARACTERISTICS OF SCIENTIFIC WORKFLOWS

a scientific workflow is a series of computational and data processing tasks
that are executed on a cloud-based infrastructure. These tasks can be executed
on a variety of virtualized resources, including virtual machines, containers, and
server less computing platforms, among others. Scientific workflows in the cloud
typically leverage the benefits of cloud computing, such as scalability, elasticity,
and cost-effectiveness, to perform data-intensive and computationally intensive.

[15]

Page | 32

Scientific workflow scheduling strategies in cloud computing

e Data-intensive: Scientific workflows involve large amounts of data, which
are processed and analyzed using various computational tools.

e lterative: Scientific workflows are often iterative in nature, as scientists
repeat the same process several times with different parameters or inputs
to test their hypotheses.

e Collaborative:Scientific workflows involve collaboration among multiple
researchers and often require the use of shared data and computing re-
sources.

e Reproducible: Scientific workflows must be reproducible, meaning that
other researchers should be able to reproduce the results of a given
workflow using the same data and tools.

e Transparent: Scientific workflows should be transparent, meaning that
the methods and techniques used to generate results should be clearly
documented and available for scrutiny.

e Flexible: Scientific workflows should be flexible, allowing researchers to
modify the workflow to accommodate changes in data or research goals.

o Automated: Scientific workflows often involve the use of automation tools
to streamline the process of data processing and analysis.

e Modular: Scientific workflows are often composed of multiple, interdepen-
dent modules that can be combined to create more complex workflows.

e Scalable: Scientific workflows should be scalable, meaning that they can
handle increasing amounts of data and computing resources as needed.

e Domain-specific: Scientific workflows are often tailored to specific scientific
domains and their associated computational tools and techniques. [15]

Of the many possible ways to distinguish workflow computations, one is to
consider a simple complexity scale. At the most basic level one can consider
linear workflows, in which a sequence of tasks must be performed in a specified
linear order. The first task transforms an initial data object into new data object
that is used as input in the next data-transformation task.

At the next level of complexity, one can consider workflows that can be repre-
sented by a DAG, where nodes of the graph represent tasks to be performed and
edges represent dependencies between tasks. Two main types of dependencies
can be considered: data dependencies (where the output of a task is used as
input by the next tasks) and control dependencies (where before to start one or
a set of tasks some tasks must be completed).

Page | 33

Scientific workflow scheduling strategies in cloud computing

Figure 2.1: A simple DAG including data and control nodes.

[16]

2.3. COMPONENTS AND STRUCTURE OF A SCIENTIFIC WORK-
FLOW IN CLOUD COMPUTING

2.3.0.1. CLOUD RESOURCES:

Cloud computing provides access to a variety of computing resources, such
as virtual machines, storage, and databases, which can be used to run scientific
workflows. These resources are typically provisioned dynamically based on the
needs of the workflow. [17]

2.3.1. WORKFLOW MANAGEMENT SYSTEM:

A workflow management system is used to manage the execution of scientific
workflows on cloud resources. It provides tools for creating, deploying, and
monitoring workflows, as well as managing the resources used by the workflows.

2.3.2. [DATA TRANSFER:

Data transfer is a key component of scientific workflows on cloud computing.
Large datasets may need to be transferred between cloud resources, and efficient
data transfer mechanisms are essential for minimizing the time and cost of running
workflows.

Page | 34

Scientific workflow scheduling strategies in cloud computing

2.3.3. SCALING:

Cloud computing allows scientific workflows to be scaled up or down dynam-
ically based on the needs of the workflow. This requires the workflow to be
designed to take advantage of cloud scaling capabilities, such as parallelization
and load balancing.

2.3.4. SECURITY:

Cloud computing introduces new security considerations for scientific work-
flows, such as protecting data during transfer and ensuring the security of cloud
resources. Security measures, such as encryption and access control, must be
implemented to protect sensitive data. [17]

Design and Visualization

D —

e —

Strategy Pool

Scheduling Strategy 1,
Scheduling Strategy 2|
= I

Workflow

Scheduler

- -

- I
e L =

S TemIT e S

= s)
- - J = & e
- . -
f___ll' "r L = - LT

= T gl Tr—

™ Sen -
", LT LTS -
. - e - L
Operational
Layer

Figure 2.2: Structure of a typical scientific workflow

[16]

2.4. SCHEDULING CONCEPT AND DEFINITION

2.4.1. SCHEDULING:

A scheduling problem consists in ordering in time an en-set of tasks con-
tributing to the realization of the same project. The objective is to minimize the
duration of the project taking into account the constraints anteriority depending

Page | 35

Scientific workflow scheduling strategies in cloud computing

on the different tasks. Scheduling in scientific workflow refers to the process of
assigning computational resources, such as computing nodes or virtual machines,
to specific tasks or stages in the workflow.

2.4.2. TASKS:

a task refers to a specific unit of work that performs a well-defined computa-
tional operation on data. A task can be a single command, script, program, or a
combination of these that performs a specific analysis or transformation on the
data. Tasks are organized in a sequence to form a workflow that represents the
entire data processing or analysis pipeline.

2.4.3. DATA:

refers to any information that can be stored and processed by a computer
system. Data is often the primary input for scientific workflows, and it may
be processed, analyzed, and transformed by different tasks in the workflow
to achieve a specific scientific goal. Data can be stored in various formats
and structures, and it may be distributed across different storage systems or
computing resources.

2.5. WORKFLOW SCHEDULING STRATEGIES IN CLOUD COM-
PUTING

2.5.1. DEFINITION AND IMPORTANCE OF WORKFLOW SCHEDULING

Workflow scheduling is the process of assigning and allocating computing
resources, such as CPUs, memory, and storage, to specific tasks or stages in a
workflow. The goal of workflow scheduling is to optimize the execution of the
workflow by minimizing the overall execution time and maximizing the utilization
of resources. [19]

Workflow scheduling is important in scientific computing and data-intensive
applications because these workflows typically involve multiple stages or tasks
that must be executed in a specific order and often have dependencies between
them. In addition, these workflows often require significant computing resources,
which can be expensive or limited. [19]

Effective workflow scheduling can help to improve the performance and effi-
ciency of scientific computing and data-intensive applications by ensuring that

Page | 36

Scientific workflow scheduling strategies in cloud computing

tasks are executed in the correct order and on the appropriate computing re-
sources. By minimizing the overall execution time and maximizing the utilization
of resources, workflow scheduling can also help to reduce the cost of executing
these workflows. [19]

2.5.2. TYPES OF SCHEDULING STRATEGIES

2.5.2.1. INDEPENDENT TASK SCHEDULING

Independent task scheduling refers to scheduling tasks in a workflow that do
not have any dependencies on each other, meaning they can be executed in any
order without affecting the final outcome of the workflow.

In scientific workflows, tasks that are independent of each other can be sched-
uled concurrently, thereby reducing the overall execution time. For example, if a
workflow contains two tasks, A and B, and task A does not depend on the output
of task B and vice versa, then both tasks can be scheduled to run concurrently
on different computing resources.

Scheduling independent tasks can be done using various scheduling algo-
rithms, such as First-Come, First-Served (FCFS) or Round-Robin (RR) scheduling.
These algorithms can be used to allocate resources to tasks in an efficient and
fair manner. [20]

2.5.2.2. DEPENDENT TASK SCHEDULING

In such workflows, the order in which the tasks are executed is critical to the
overall outcome of the workflow. Scheduling dependent tasks requires careful
consideration of the dependencies between tasks to ensure that they are executed
in the correct order. Scheduling dependent tasks in a scientific workflow can be
a complex task, and there are many factors to consider, such as the available
computing resources, the complexity of the workflow, and the desired performance
goals. It is important to choose the right scheduling algorithm and to carefully
analyze the dependencies between tasks to ensure that the workflow is executed
efficiently and correctly. [20]

Page | 37

Scientific workflow scheduling strategies in cloud computing

2.5.3. ALGORITHMS OF SCHEDULING

2.5.3.1. FIRST IN FIRST oUT ALGORITHM (FIFO)

The First-In, First-Out (FIFO) algorithm is a simple scheduling algorithm
that schedules tasks in the order they arrive. It is also known as the First-Come,
First-Served (FCFS) algorithm. In the context of scientific workflows, the FIFO
algorithm can be used to schedule independent tasks that do not have any
dependencies on other tasks. [18]

2.5.3.2. SHORTEST JoB FiIrsT (SJF)

It resembles (FIFO) algorithm but (SJF) is a scheduling algorithm used to
schedule tasks in order of their execution time. The advantage of the SJF
algorithm is that it minimizes the average waiting time and turnaround time of
the tasks. This can lead to a more efficient utilization of the computing resources
and a shorter overall execution time of the workflow. [23]

2.5.3.3. Rounbp-RoBIN (RR)

This algorithm assigns a fixed time slice to each task in the queue. When
the time slice for a task is up, the next task in the queue is executed, and the
process continues in a circular fashion. When a new task is submitted to the
queue, it is added to the end of the queue. The task at the front of the queue is
then assigned a fixed time quantum for execution. If the task completes execution
within the allotted time quantum, it is removed from the queue. If the task does
not complete within the allotted time quantum, it is moved to the end of the
queue and the next task in the queue is assigned a time quantum for execution.
This process continues until all tasks have been completed. The advantage of
the RR algorithm is that it provides a fair allocation of computing resources to
all tasks, regardless of their execution time. [21]

2.5.3.4. CriTicAL PATH MEeTHOD (CPM)

The CPM algorithm works by creating a directed acyclic graph (DAG) of the
workflow, where each node represents a task and each directed edge represents
a dependency between two tasks. The algorithm then calculates the earliest
and latest start times and earliest and latest finish times for each task in the
workflow. This information is used to calculate the slack time for each task,
which is the amount of time by which a task can be delayed without affecting
the completion time of the workflow. The critical path is identified by finding
the longest path through the DAG, where the length of a path is defined as the

Page | 38

Scientific workflow scheduling strategies in cloud computing

sum of the expected completion times of the tasks on the path. The expected
completion time of the workflow is then calculated as the sum of the expected
completion times of the tasks on the critical path.

2.6. CoNcLUSION

In conclusion, scientific workflow scheduling is an important aspect of cloud
computing that can significantly impact the performance and efficiency of sci-
entific workflows. A well-designed scheduling strategy can help minimize the
overall execution time and maximize the utilization of resources, resulting in
faster completion times and reduced costs. It is important to consider the
characteristics of the scientific workflow, such as the task dependencies and
resource requirements, when designing a scheduling strategy. Additionally, the
availability and performance of the cloud computing resources should also be
taken into account.

Page | 39

Chapter 3

IDESCRIPTION OF THE PROPOSED APPROACH

40

Description of the proposed approach

3.1. INTRODUCTION

he cloud computing platform is characterized by the use of a large pool of
T computing resources accessible on demand through a service provider on
the Internet. A variety of resources is given, such as network, storage, to users
adopted by all three cloud computing as services.
In data-intensive or compute-intensive scientific workflows, cloudlets require
the execution of multiple datasets. The minimization of the makespan of the
workflow, which is the time taken to complete all the cloudlets, by finding the
optimal assignment of cloudlets to resources and cloudletss scheduling can be
accomplished with the Discrete Symbiotic Organisms Search (DSOS) [24] .
The DSOS algorithm can be applied to various optimization problems in cloud
computing and scientific workflows, where the goal is to allocate resources and
schedule cloudlets in an optimal manner, leading to improved performance and
efficiency of the system.
In this chapter, we will introduce the DSOS algorithm and provide a detailed
adaptation of its working principles. We will also discuss the key features of
the algorithm, such as its symbiotic relationships, reproduction, and selection
mechanisms.

3.2. REPRESENTATION OF SCIENTIFIC WORKFLOW

In the context of cloudlet scheduling, a scientific workflow refers to a series
of cloudlets that need to be executed using particular datasets and in a specific
order to achieve a specific result. A scientific workflow can be represented with
a directed graph with no directed cycles (acyclic) DAG represented in the next
figure, noting G = (T,E) with:

1. T=T1,, Tn the finite set of cloudlets which compose the scientific workflow,
that are performed independently.

2. E : is the set of its arcs representing the data constraints between tasks T.

Page | 41

Description of the proposed approach

AN S

5 ®

. Workflow Task Dataset —» Data Flow

Figure 3.1: An example of DAG

3-3. ADAPTATION DESCRIPTION

To solve optimization problem in large complex workflows, an algorithm in-
spired by the symbiotic relationships between different species of organisms in
nature called Discrete Symbiotic Search Organisms (DSOS) was applied.

This algorithm is a metaheuristic optimization technique that can be used to
schedule the execution of computational tasks in a workflow to minimize the
overall runtime or resource utilization and the selection of the optimal set of
experiments that can provide the information for a given scientific question,
improving the efficiency and effectiveness of a scientific research. Our approach
toward this algorithm is to include both cloudlets and data each cloudlet rep-
resents a computational operation that needs to be performed, and each data
represents the input of the cloudlet, the cloudlets and data and their allocation
to different virtual machines, in a discrete optimization problem, are represented
as organisms in the DSOS algorithm. Each organism represents a possible
solution to the problem, and the symbiotic relationships between the organisms
are used to improve the quality of the solutions in the ecosystem according to
the defined fitness function (see equation (4)).

The DSOS algorithm works by simulating the symbiotic relationship between
different organisms, such as mutualism, commensalism, and parasitism. The
organisms in the algorithm represent potential solutions to the optimization

Page | 42

Description of the proposed approach

problem, and they interact with each other to improve their fitness. Discrete
Symbiotic Organisms Search (DSOS) algorithm is a discrete approach of Symbi-
otic Organisms Search (SOS).

S.W ID

elements
ci
C12
Cl13
Cl4
C15
D1
D2
D3
D4
D5
D6

Cloudlets and Data assignments vector:

0 1 2 3 4 5] 7 8 9 10
Cl1 | CI2 | CI3 | C4 CI5| D1 | D2 D3 D4 D5 Dé
Vm2 || Vml Vm2 Vm3 Vm3 | Vml Vm2 Vm3 Vml Vm3 Vml

N=R--REN R - N R SRR]

[y
=]

Figure 3.2: An example of an organism (our adaptation).

3.4. SymsioTic ORGANISMS SEARCH (SOS)

3.4.1. IN NATURE

The Symbiotic Organisms Search Algorithm (SOS) is a nature-inspired opti-
mization algorithm that is based on the concept of symbiosis,

3.4.1.1. MuTUALISM

In nature, mutualistic symbiosis occurs when two different species of organ-
isms interact with each other in a way that benefits both parties. For example,
humans and certain strains of Escherichia E coli (gut bacteria), as illustrated
in figure 3.3. It relies on intestinal contents for nutrients, and humans derive
certain vitamins from E. coli, particularly vitamin K, which is required for the
formation of blood clotting factors. [24]

Page | 43

Description of the proposed approach

sciencenotes.org

Mutualism Examples
Mutualism is a type of symbiosis where two or more
species benefit from each other.

humans and gut bacteria bees and flowers clownfish and anemone

— 3 ‘ /~ 'h)i'(-‘) \#/
e g e
,/ ';,.' A @LJ =

ants and aphids lichen woolly bat and
(fungi and algae) pitcher plant

WA
—~

Figure 3.3: Mutualism examples

[24]

3.4.1.2. COMMENSALISM

Commensalism is a symbiotic relationship where one species benefits while
the other remains unaffected. It's a harmonious interaction where the benefiting
species gains advantages without causing harm or receiving benefits in return
from its partner. [24]

Page | 44

Description of the proposed approach

Commensalism
Definition and Examples

Commensalism is a symbiotic relationship where one organism
benefits without harming the other.

sciencenotes.org

Figure 3.4: Commensalism examples

[24]

3.4.1.3. PARASITISM

Parasitism is a type of symbiotic relationship where one species, known as
the parasite, benefits at the expense of another species called the host. In this
relationship, the parasite gains advantages while the host experiences harm or
negative effects. few example are illustrated in the next figure. [24]

Page | 45

Description of the proposed approach

Parasitism
Definition and Examples
Parasitism is a symbiotic relationship in which one

organism benefits while the other is harmed.

gt

tick and dog hookworms and humans aphids and plants

oy

w;,ﬂ 3 “ 2 Xa!

cuckoo in other bird's nest barnacles and whales leeches and humans

Figure 3.5: Parasitism examples

[24]

This algorithm has been successfully applied to a wide range of optimization
problems, including engineering design, data mining, and image processing. It
is a robust and efficient algorithm that can find optimal solutions in complex
problem spaces.

Overall, the Symbiotic Organisms Search Algorithm is an example of how
nature can inspire innovative solutions to complex problems. By simulating the
mutualistic relationship between different organisms, the SOS algorithm can
find optimal solutions in a variety of problem domains.

3.4.2. ForRMAL

The SOS algorithm is a new metaheuristic algorithm for solving numerical
optimization problems on a continuous real space, it uses an ecosystem of or-
ganisms, which consist of many candidate solutions, examined by it step by step,
to eventually find an optimal solution.

Formally, the SOS algorithm works by maintaining the ecosystem, represented
as a set of organisms. At each iteration, the algorithm simulates three types of
symbiotic relationships between the organisms in the population: mutualism,
commensalism, and parasitism.

The SOS starts its process by first randomly generating n number of organisms
to populate the ecosystem. Each organism in this case represents a candidate

Page | 46

Description of the proposed approach

solution to the corresponding problem with a specific objective function. The
search process begins immediately after the creation of the initial ecosystem.
Subsequently, the candidate solution or new organism is updated in each
evaluation phases of the algorithm, following a common symbiosis strategies
adopted by organisms to increase their fitness and survival advantage in the
ecosystem. The three phases of symbiosis considered here include mutualism
phase, commensalism phase, and parasitism phase respectively. However, an
update in each of the phase is only accepted if there is an improvement in the
quality of the new solution. The optimization steps are performed iteratively
until the algorithm termination condition is met. The three SOS evaluation
phases adapted from the most common symbiotic relationships that exist among
organisms in nature are briefly described as follows: Consider two organisms x;
and x; to be coexisting in the ecosystem, where and are the optimization iterative
values (indexes) with t = 1,2, d and ¢ # j ,in this case, d is the dimension of the
problem. [20]

3.4.2.1. MUTUALISM PHASE:

in this phase, the organism x; is randomly selected from the ecosystem to
mutually interact with the organism x; with the sole aim of increasing their
mutual survival advantage in the ecosystem. The resulting new solutions x; and
x; which is as a consequence of this interaction is calculated based on equations
(1) and (2)

R R e (3.1)
X; + X;
X = x+ e - X2)y (3.2)

where the function r’ generates a vector of random numbers between 0 and
1. The term % equations (1) and (2) represents the relationship between
the two organisms x; and x; . the term x"*' denotes the highest degree of
adaptation for the organisms. The terms f; and f, denote the mutual benefit
factors, which represent the level of benefit that both x; and x; derive from the
mutual association, since either of the organism can get partial or full benefit from

the interaction. Both f; and f, are determined randomly using the expression:

fi = f, =1+ round[r(0, 1)]
The new candidate solutions x{ and x; are however, accepted only if they
give better fitness values than the previous solutions. [25]

Page | 47

Description of the proposed approach

3.4.2.2. COMMENSALISM PHASE:

Similar to the mutualism phase, an organism x; is randomly selected from
the ecosystems population and made to interact with the organism x;. The rela-
tionship interaction is such that only one organism benefits from the interaction.
For example, the organism drives benefit from its interaction with x;, while x;
does not benefit and is neither harmed as a result of the interaction.

x! = x; + rand(—1,1) - (x"*' — x)) (3:3)

where the term (x**' — x)) represents the benefit provided by the organism
x; to assist to x; increase its level of survival advantage in the ecosystem. [25]

3.4.2.3. PARASITISM PHASE:

in this phase, an artificial parasite vector denoted by x,, created in the
problem search space by mutating the organism x;then modifying its randomly
selected dimensions using a random number. The organism x; with i # j is
selected randomly from the ecosystems population to serve as a host to the
Xpy - The evaluation is carried out such that, if the fitness value of the x,, is
better than that of the organism x;, then x,, will replace the position of x; in the
population, otherwise, if the fitness value of x; is better, then x; will build an
immunity against x,, after which x,, is removed from the population. [25]

3.5. DISCRETE SYMBIOTIC ORGANISMS SEARCH ALGORITHM

35.1. SOS vs DSOS

Discrete Symbiotic Organisms Search (DSOS) algorithm is a discrete ap-
proach towards Symbiotic Organisms Search (SOS) algorithm, proposed by
Abdullahi et al [27]. The main difference between these two algorithms lies in
their search mechanisms. DSOS is designed for discrete optimization problems,
where the decision variables can only take on discrete values. On the other
hand, SOS is designed for continuous optimization problems, where the decision
variables can take on any real value within a specified range.

3.5.2. FITNESS FUNCTION

A fitness function is used to evaluate the quality of each solution in the
population, and to pick the optimal one, solutions can be compared to choose

Page | 48

Description of the proposed approach

which is fitter, in this case it is the minimum of the makespan time, that is
calculated by scheduling the cloudlets to the given VMs, each cloudlet has a
processing time, in addition to the Data transfer time, in case the data are not
located in the same virtual machine as the cloudlet, represented in equation (4).

fitness = min (}_/_; (Cloudlets processing time, + Data transfer time))

f=min|Y PT,+DT, (3.4)

e Cloudlets processing time:

Cloudlet length,

PT[= o) ;
Processing speed

e Data transfer time:

23'7:1 Data Transfer time

DT, =
! Bandwidth

3.5.3- ADAPTATION DESCRIPTION

When cloudlets that are going to be scheduled and the data that is going
to be used are received by the cloud broker (CB), cloud information service
(CIS) has to identify the services required to execute the received cloudlets
and data from the user and then schedule the tasks on the proper services, for
instance there are tasks T1, T2, T3,..,Tn and data D1, D2, D3,.., Dt may be
submitted to CB in a given time interval; the virtual machines that process the
tasks are heterogeneous, each one has a different processing speed and memory,
so the cost of executing a task varies from a VM to another. Suppose the virtual
machines V1, V2, V3, ..., Vm, the cloudlets received by the CB will be executed in
a First Come First Serve supposing that the machines are available. However,
our goal is to schedule cloudlets and data on VMSs in order to achieve higher
utilization of VMs with minimal makespan, by finding the best group of tasks
to be executed on VMs. Let Cy(i € {1,2,3,...,m},j € {1,2,3,...,n}) be the
execution time of executing jth cloudlets on ith VM where m is the number of
VMs is and n is the number of tasks. The fitness value of each organism can be
determined using (4), which determines the strength of the level of adaptation of
the organism to the ecosystem. [28]

Page | 49

Description of the proposed approach

In DSOS, the movement and position of organisms in the continuous space
are mapped into developed discrete functions. DSOS consists of three phases:
initialization phase, repetition phase, and termination. The initialization phase
generates the initial population of organisms. Each organism consists of D
elements indicating candidate solutions and a fitness function to determine the
extent of optimality of solutions. Therefore, each organism corresponds to a
choice for cloudlet schedule encoded in a vector of dimension 1 x n, with n being
the number of cloudlets. The elements of the vector are natural numbers in
the range [1, m], where m is the number of VMs. Suppose x; is the position of
the k-th organism in the solution space; x; signifies the virtual machine where
task j is assigned by scheduler in the organism. The iterative phase mimics the
mutualism, commensalism, and parasitism kinds of association to update the
positions of the organisms. In mutualism and commensalism stages, x"*! forms
part of the update variables which act as the memory of the procedure. x*t is
the best point an organism and its neighbors have visited so far. (5) through (8)
are used to create modified positions of the selected organisms at mutualism
phase.

s1(p) xi+ ry (X0 - %) (35)
S2(p) = x; + 1o (X — %) (3.6)
x/(q) < |s1(P)| mod m (3.7)
xi(q) < |s2(P)| mod m (3.8)

Vpe{1,2,3,...,n}Vqg € {1,2,3,...,m}

We use (9) and (10) to obtain the modified position of the organism xi in the
commensalism phase.

s3(p) « 3 (xIJeSt — xj) (3.9)
x/(q) < |s3(p)| mod m (3.10)

Vpe{1,2,3,....,n}¥qg €{1,2,3,...,m} andj+i

Page | 50

Description of the proposed approach

Where r3 is a uniformly generated random number between 0 and 1.

Create and initialize population of organisms, setup stopping eriteria
| i=0
¥

Identify the best organism, i=i+l

Mutualism phase: ¥

Randomly select an organism)(r with] =]

Create .'I.'J. and X’- according to (7) and (8)

_\‘I: and X are fiter

than X, and X . ?

Y

Discard X, and X, Replace X; &nd X, with X, and X
T]

Cpmmensalism PiT'xse:

X

Create .X’f according to (10)

Discard X, Replace X, with X,
!]
*

Pgrasitism phase: -
Randomly select an organism ¥, with [=1

v

Create a parasite vector xP acenrding to (12)

Mo Yes

Discard x* Beplace X with X E

Stopping eriteria reached?

Output optimal solution

Figure 3.6: Organogram of the DSOS.

Page | 51

Description of the proposed approach

Algorithm 2 Discrete Symbiotic Organism Search Procedure

Create and Initialize the population of organisms in ecosystem X = -{.\‘1,.\’3._.\’3 - .\‘N}

Set up stopping criteria
iteration _number < 0

best :
X e X

Do

iteration _number < iteration _number +1

i=0
Do

i<—i+l
For j —1to N
If f(x,)<f (x™") Then // f(x) is the fitness function

best
X —x i

End if
End for
/Mmutualism phase

Randomly select x; with i # j

Update T? and \'J according to equation (1) and (2)

If f(,\‘;)<f(xi) Then
x < v

End if

If f(x,)<f(x;) Then
X, x;
End if
//commensalism phase
Randomly select X, with i =# j
Update ¥, according to equation (3)
It f(x]‘)<f(x[.} Then
: x!f
End if
/fparasitism phase
Randomly select x; with i = j
Create a parasite vector # according to equation(12)
r
If /(x")<f(x;) Then
b o el
X, <X
End if

While i <= N
While stopping condition is not true

Figure 3.7: DSOS algorithm.

Page | 52

Description of the proposed approach

3.6. CoNcLusioN

DSOS has been successfully applied to various optimization problems in
scientific workflows, it has shown promising results in solving resource allocation
problems, has a strong exploration and exploitation capability, which enables
it to search a large solution space and identify high-quality solutions. This is
particularly important in our field of research, which is scientific workflows that
involve complex and diverse tasks and constraints.

Overall, DSOS is a promising optimization algorithm that offers a powerful tool
for solving real-world optimization problems in various domains.

Page | 53

Chapter ;

[DISCUSSION OF THE EXPERIMENTAL RESULTS

54

Chapter 4. Discussion of the experimental results

4.1. INTRODUCTION

n this chapter we will delve in the details of the practical side regarding
| our work, the scientific workflow optimization based on Discrete Symbiotic
Organism Search (DSOS) in cloud computing, we have made a simulator designed
in the given approach following the algorithm we introduced in the previous
chapter, next we will define our work environment, the language used and present
a series of simulations and their interpretations to highlight our proposals.

4.2. JAVA PROGRAMMING LANGUAGE

Java is a widely used, object-oriented, class based programming language; it
is a computing platform for application development. Java offers a high level of
reliability, scalability, versatility and most importantly security and it is easy to
learn and use.

Java programming language was created by a team of developers led by James
Gosling at Sun Microsystems (now a part of Oracle Corporation) in the early
1990s; it was initially called "Oak". In 1995, Sun changed the name to Java and
modified the language to take advantage of the development business burgeoning
by the www (World Wide Web). [29]

Java programming language is accompanied by several tools and components
that are used for developing, running, and managing Java applications, such as:

e Java Development Kit (JDK): The JDK is a software development kit that
includes all the necessary tools to develop and run Java applications, such
as a compiler, debugger, and runtime environment.

e Java Runtime Environment (JRE): The JRE is a software package that
provides the runtime environment necessary to run Java applications.

e Java Virtual Machine (JVM): The JVM is a software component that provides
an execution environment for Java applications. It translates Java byte-
code into native processor instructions and allows indirect OS or platform
program execution.

e Software Development Kit (SDK): The SDK is a collection of software
development tools that are used to create, test, and deploy software
applications. [30]

Page | 55

Chapter 4. Discussion of the experimental results

4.3. DEVELOPMENT ENVIRONMENTS

4.3.1. HARDWARE ENVIRONMENT

The computer used to implement and test the proposed approach is equipped
with an Intel Core i5-5200U processor operating at a speed of 2.20 GHz, and it
has 8GB of memory capacity.

4.3.2. SOFTWARE ENVIRONMENT

4.3.2.1. EcLipse

In 2004, IBM established the Eclipse Foundation as an independent non-

profit organization to manage the Eclipse project and promote its adoption
among the software development community, its membership is available to
anyone who wants to contribute, therefore, it is an open-source integrated
development environment (IDE); it is free, extensible, universal and versatile
integrated known for its plugins that allow developers to develop and test code
written in other programming languages. It has the ability to support a wide
range of programming languages and frameworks. It can be used from any
machine since it's designed to work on a variety of platforms, including Windows,
Linux, and macOS.
It provides a comprehensive set of tools for software development in various
programming languages. It is cross-platform and includes a rich set of features,
such as a powerful code editor with syntax highlighting, code completion and
refactoring tools, as well as debugging tools. In the course of time, Eclipse has
become widely vast used by software development teams of all sizes, from small
startups to large enterprises with a large and active community of developers
contributing to the project, helping it evolve. [31]

4.3.2.2. CLounSIM SIMULATOR

Cloudsim is also an open-source project, developed by a team of researchers
under the guidance of Dr. Raj Kumar Buyya at Cloud Computing and Distributed
Systems (CLOUDS) Laboratory, University of Melbourne. It is a common simula-
tion tool for modeling and simulating different cloud computing scenarios, such
as Infrastructure as a Service (laaS), Platform as a Service (PaaS), and Software
as a Service (SaaS).

It has many features such as the ability to simulate different cloud infrastructures,
such as data centers, hosts, and virtual machines; and being a self-contained
platform for modeling Clouds, service brokers, provisioning, and allocation poli-

Page | 56

Chapter 4. Discussion of the experimental results

cies. CloudSim supports different scheduling algorithms, such as static, dynamic,
and hybrid scheduling. Users can simulate these algorithms to analyze their
performance and compare them against each other. This allows users to optimize
the scheduling algorithm based on their specific needs and requirements as in
our field of study. [32]

4.3.2.3. CLounSIM ARCHITECTURE
Simulation i
Specificatio E
:
o
=]
=
=
!
3
CloudSim Core simulation Engine

Figure 4.1: CloudSim Architecture
[33]

e The CloudSim Core simulation engine: provides a modular architecture
that allows for the addition of custom models and algorithms, making it
highly flexible and extensible. Its comprehensive set of features includes
modeling virtual machines, hosts, data centers, and various types of cloud
services.

e The CloudSim layer: provides a high-level interface for defining cloud
services and workloads, automatically creating the necessary virtual ma-
chines, hosts, and data centers. The CloudSim layer abstracts away many

Page | 57

Chapter 4. Discussion of the experimental results

of the details of the simulation engine, making it easier for users to create
simulations without needing expertise in programming.

e The User Code layer: provides a flexible and extensible interface that
enables researchers to conduct a wide range of cloud computing experiments
and simulations.

4.3-2.4- CLOUDSIM CLASSES

Here are few definitions of the major classes of CloudSim Simulation Toolkit
(Version 3.0.3):

- CloudSim: This is the main class of the CloudSim framework, responsible
for initializing and starting the simulation. It provides methods for setting up
the simulation environment, specifying simulation parameters, and running the
simulation.

- Cloudlet: A Cloudlet represents a task or job that runs on a virtual machine
in the cloud. It contains information about the resource requirements, execution
time, and deadline of the task.

- CloudletScheduler: This class determines the scheduling policy for Cloudlets
on a virtual machine. It defines methods for adding, deleting, and querying
Cloudlets, as well as allocating resources to them.

- Datacenter: A Datacenter represents a physical data center that hosts
virtual machines and provides cloud services. It contains information about the
hosts, virtual machines, and data center resources, such as storage and network
bandwidth.

- DatacenterBroker: This class acts as a mediator between cloud consumers
and data centers, managing the allocation of resources. It contains methods for
creating and submitting Cloudlets to data centers, as well as monitoring the
progress of the tasks.

- Host: A Host represents a physical machine that can host one or more
virtual machines. It contains information about the processing capacity, memory,
and storage of the machine.

- Pe: A Pe (processing element) represents a processing core in a physical
machine. It contains information about the processing power and utilization of

Page | 58

Chapter 4. Discussion of the experimental results

the core.

- Vm: A Vm (virtual machine) represents a virtual machine that runs on a
host in the cloud. It contains information about the resource requirements, such
as processing power, memory, and storage.

- VmAllocationPolicy: This class determines how virtual machines are allo-
cated to hosts in a data center. It defines methods for selecting hosts for virtual
machines, as well as migrating virtual machines between hosts.

- VmScheduler: This class determines the scheduling policy for virtual ma-
chines on a host. It defines methods for adding, deleting, and querying virtual
machines, as well as allocating resources to them. [34]

UMallrfcation : Datacenter Datacenter Datacenter
Policy 1 1| Characteristics Broker

I Y
VM allocation Federated Cloud Sensors

SANStorage Policy Simple Datacenter |1

CloudletScheduler
N 1 1
| BWProvisioner | Host 1 1| RAMProvisioner | |
1 1

Y
1 ’ CloudletScheduler CloudletScheduler

-

Coordinator |1 N

Timeshared SpaceShared
1

| BWProvisionerSimple ‘ VMscheduler
VmScheduler VmScheduler
Timeshared SpaceShared

| RAMProvisionerSimple

Figure 4.2: CloudSim classes diagram

[35]

Page | 59

Chapter 4. Discussion of the experimental results

4.4 MAIN INTERFACE

To facilitate the user’s access to CloudSim we created an application, consid-
ering CloudSim simulator does not have a graphic interface. The first interface
gives a way in to the simulator by clicking the button "Launch" (Fig 4.2) the
application begins and it transfers the user to the next interface.

|| Welcame - O X

D MOULAY TAHAR

Figure 4.3: Interface 1

By launching the application the user

Page | 60

Chapter 4. Discussion of the experimental results

4.5. SIMULATION SETUP

| £ configuration - O X

Configuration

Number of Cloudlet [|

Number ot VM | |

Number ot Data | |

Size ot ecosystem | |

® Generate x: defanlt settin...

Figure 4.4: Interface 2

In the second interface (Figure 4.4), the user will encounter four empty pa-

rameters that need to be populated in order to create the ecosystem. These
parameters are initially empty, allowing the user the flexibility to either generate
them automatically using default settings or manually input specific values as
per their requirements.
This empowers the user to have full control over the creation process, ensuring
that the ecosystem is tailored precisely to their needs and preferences. Whether
the user chooses to rely on the default settings or provide their own inputs, this
stage plays a crucial role in defining the characteristics and composition of the
ecosystem.

4.5.1. CLOUDLETS SETUP

This section provides you with the ability to configure the number of Cloudlets
in the ecosystem. By adjusting this parameter, you can define the desired quan-
tity of Cloudlets to be generated.

Moreover, the interface offers a convenient feature: it can automatically generate
the parameters of each Cloudlet, including its size, length, and processing speed.

Page | 61

Chapter 4. Discussion of the experimental results

This random generation ensures a diverse range of Cloudlets, each with unique
characteristics, contributing to the overall richness and variety of the ecosystem.

4.5.2. VIRTUAL MACHINES SETUP

the user is allowed you to define the number of virtual machines in the
ecosystem. By specifying this parameter, you can establish the desired quantity
of virtual machines to be included. Additionally, the interface incorporates
a convenient feature where the parameters of each virtual machine are set
randomly. This randomization process ensures a diverse set of virtual machines,
each with its own unique characteristics. Parameters such as processing power,
memory capacity, storage capacity, and network bandwidth are assigned in a
randomized manner.

4.5.3. DATA SeTUP

insert the number of Data which will be needed in the cloudlet execution.

4.5.4- EcosYSTEM SETUP

To customize the size of the ecosystem, the user can make a selection. He
has the option to use the "Default settings" button, which will generate all the
previous attributes randomly, eliminating the need for manual input.
Alternatively, the user can click the "Generate" button to proceed to the next
interface, where he will be prompted to choose the desired iteration number, as
depicted in (Fig 4.5).

This iterative selection process allows the user to refine and specify the ecosys-
tem according to their preferences.

Page | 62

Chapter 4. Discussion of the experimental results

[£ itteration — O >

insert the number of itteration to start the simulatdon

Start simulation

Figure 4.5: Interface 3

After picking the iteration number, the user can initiate the simulation by
clicking the button in (Fig 4.5) in order to get the results.

Page | 63

Chapter 4. Discussion of the experimental results

4.6. SIMULATION

A new interface appears that consists of with an empty text field, each button
obtain specific results:

Simulation - O
&)

Figure 4.6: Simulation interface

Page | 64

Chapter 4. Discussion of the experimental results

4.6.1. VIRTUAL MACHINES LIST

The list of virtual machines (VMs) appears, showcasing their respective details
such as VM ID, MIPS, number of processing elements (PEs), bandwidth, size,
and VM name for each virtual machine we have got.

|5 Simulation - O
§ 17860 | 4 | 3446 | 1452 | 17683 | Men |
@Il-istVM 10 | 1o0@30 | o2 | 2791 | 1617 | 15096 | Xen |
11 18870 | 4 | 3081 | 1624 | 18964 | Hen |
@ListData
12 | 16880 | 2 | 3357|1284 | 18960 | Men |
13 18870 | 3 | 762 | 1840 | 12082 | Men |
¢ List Cloudlet —
14 17820 | 2 | 3861 | 1873 | 11388 | Men |
15 [11§1n |4 | 1681 | 1280 | 11637 | en |
E Ecosystem
16 (10170 | 4 | 2447 [1679 | 12140 | Hen |
@Bestorgmﬁm 17 13880 | 2 | 2831|1878 | 18662 | Men |
18 18800 | 3 | 3310|1003 | 12887 | Men |
(8 simulation displ... 19 [18730 | 3 | 2607 | 1802 | 12479 | Men |
“"'"i Experiments

Figure 4.7: VM list

Page | 65

Chapter 4. Discussion of the experimental results

4.6.2. DATA LIsT

The list of data used in our simulation, and the parameters are the Id and
the size of each data.

Sirnulation — O
1D Data || s=size |
o pner)
e
_ 7 jasen |
R
_ PRI
5 e |
_ PR
PR
[mesmmiar] |2 o1
o e
N— -
T ia1oel

Figure 4.8: Data list

Page | 66

Chapter 4. Discussion of the experimental results

4.6.3. CLOUDLETS LIST

The list of Cloudlets is displayed, providing essential information about each
Cloudlet, including its ID, length, number of processing elements (PEs), file size,
and output size (fig 4.8)

| £ Simulation - O

10 Cloudlet || length || pes Mumber || file gize || outputsize ||

] | 1093 |1 | 287 | 324 |

List VM
@ ° 1 | 1052 [| 2 | 215 [
. 2 | 1068 | 1 | 232 | 2 |
@ List Data

3 | 973 | 1 | 3a0 | 386 |

: List Cloudlet 4 | 938 | 1 | 248 | 344 |

] | 961 | 1 | 3a0 | 281 |
E Ecosystem G | 1034 | 1 | 265 | 243 |

7 | 961 | 1 | 238 | 277 |

@ Best organism 8 | 985 [1 | 33 | 224 |
9 | 949 | 1 | 219 | 304 |
b simulation displ... 10 | 851 |1 | 277 | 366 |
11 | Q77 | 1 | K] [|

Figure 4.9: Cloudlets list

Page | 67

Chapter 4. Discussion of the experimental results

4.6.4. LIST OF THE ECOSYSTEM

By leveraging all the aforementioned attributes, a diverse ecosystem of
organisms is created. Clicking the "List of the ecosystem' button reveals a
comprehensive view of this ecosystem, showcasing each organism along with
their associated elements, including cloudlets, data, and the corresponding virtual
machines to which they are assigned.

| £/ Simulation - O

! Ecosystem

the organism number# 0
@List\ml ot 203141868788 |01 1213

the organism number #1
ot 203141868788 |01 1213

E Ecasystem the organism number# 2
ot 203141868788 |01 1213

the organism number# 3

LE) 011 | 20 21 415 | B | T |8 |9 10 11 | 12| 13 |

simulation displ...

Figure 4.10: List of the ecosystem

4.7. BEST ORGANISM

Upon completing all the phases and steps of the selected DSOS algorithm,
thorough calculations were performed, leading us to identify the optimal organism
(X best) . On the screen, the details of this organism are showcased, including
the allocation of each cloudlet and data, indicating their respective locations. the
parameters inserted are 40 cloudlets, 20 VMs, 20 data with the size of ecosystem
equals 200 and 1000 iterations.

Page | 68

Chapter 4. Discussion of the experimental results

| £ Simulation

t@ simulation displ...

Experiments
i =

Cloudlet 1D :
Cloudlet D :
Cloudlet 1D :
Cloudlet D :
Cloudlet 1D :
Cloudlet D :
Cloudlet 1D :
Cloudlet D :
Cloudlet 1D :
Cloudlet D :
Cloudlet 1D :
Cloudlet D :
Cloudlet 1D :
Cloudlet D :
Cloudlet 1D :
Cloudlet D :
Cloudlet 1D :
Cloudlet D :
Cloudlet 1D :
Cloudlet D :
Cloudlet 1D :
Cloudlet D :

P TR T

[e R L L

Lacated in
Located in
Lacated in
Located in
Lacated in
Located in
Lacated in
Located in
Lacated in
Located in
Lacated in
Located in
Lacated in
Located in
Lacated in
Located in
Lacated in
Located in
Lacated in
Located in
Lacated in
Located in

Domemde et

Wrn 1D
Ym D
Wrn 1D
Ym D
Wrn 1D
Ym D
Wrn 1D
Ym D
Wrn 1D
Ym D

Wi 1D
Ym D
Wi 1D
Ym D

Wi 1D
Wm 1D

Wim D

Wm 1D

Wim D

Wm 1D
Wi 1D
Wm 1D

e A

Best Organisme

11
11
12
2

2

G
17
]
18
13
11
18
3
3
4
14
a
14
1
AT
18
AT

-

Figure 4.11: Organism best

Page | 69

Chapter 4. Discussion of the experimental results

4.8. SIMULATION DISPLAY

The following figure presents the results of our approach and random place-
ment approach , depicting each cloudlet’s status (success or failure), along with
their corresponding data center and assigned virtual machine (VM). Additionally,
it displays the execution time for each cloudlet, defining the start and finish
times.

| £ Simulation - O
========== QUTPLT s=========
CloudletlD STATUS Datacenter!D WMID Time StartTirme Finish Tirme
1 SUCCESs 2 1 1950 02 18.79 18.79
: 16 SUCCESS 2 5 2369 02 23.89 22.89
@ LSt VM § SUCCESS 2 B 722 02 37.42 77.42
31 SUCCEsS 2 7 2948 02 20,68 20,58
: 73 SUCCESS 2 13 801 02 30,11 30,11
@ List Data 7 SUCCEss 2 9 3241 02 3251 32,51
7 SUCCESS 3 12 3372 02 32.92 32,92
37 SUCCEss 2 11 3458 02 24.78 2478
) 11 SUCCESS 3 18 3772 02 37.92 27.92
¢ List Cloudlet 30 SUCCESS 3 18 37065 02 3816 3816
18 SUCCESs 2 1 |8 02 39.01 28,01
39 SUCCESS 2 11 4003 02 40.23 40.23
E Ecosystem 9 SUCCESS 2 13 4045 02 40,66 40,58
10 SUCCESs 2 11 4103 02 41.23 41.23
78 SUCCESS 3 18 4126 02 41,46 41,45
35 SUCCESS 3 16 4205 02 4215 4315
@ Best organism 0 SUCCESS 2 11 4474 02 44.04 44,04
37 SUCCEss 2 9 4516 02 45.36 4538
36 SUCCESS 2 5 4533 02 45,53 4553
G . S 39 SUCCESS 3 18 4645 02 46.65 46.55
b simulation displ... 17 SUCCESS 3 14 476 02 478 478
37 SUCCEss 2 9 4879 02 48.99 48,99
12 AURCESR 2 3 A4 N7 Al Fi Al A

Figure 4.12: Simulation display

4.9. EXPERIMENTAL RESULTS

In order to showcase the merits of our approach, we will primarily emphasize
the response time metric. To comprehensively study the behavior of our proposal
and analyze its simulation results, we will compare them with the random
placement approach. We have conducted three sets of simulations to facilitate
this comparative analysis.

Page | 70

Chapter 4. Discussion of the experimental results

|| Experirnents

experiment # 1:

in this experience we
observe the impact of
numbers of cloudlets on
respond time for RDP and
our strategy

experiment o1

the experiments

experilnent # 2 :

in this experience we
abserve the impact of
number of VM on respond
time for RDP and our
strategy

experitment oz

experiment # 3 :

in this experience we
observe the impact of
number of itteration on
respond time for our
strategy

experiment 03

4.9.1. EXPERIMENT 1

Impact of cloudlet number on the respond time:

Figure 4.13: Experiments interface

In this simulation, we have designed three Data Centers comprising of 2 diverse
Hosts. Each Host is equipped with a single processor with varying speeds in
MIPS ranging from 20,000 to 200,000. The bandwidth of each Host ranges from
10,000 to 200,000. The size of the generated data is randomly generated between
900 MB and 1,100 MB. The purpose of this simulation is to investigate the effect

of varying the number of Cloudlets on the response time.

We fixed 30 virtual machines, 10 data, 200 organisms and 1000 itteration.

Number of Cloudlets | Space shared + Random placement | Our strategie (DSOS)
10 76.63 40.12
40 182.84 92.81
80 581.31 315.25
200 869.73 669.9
400 1153.92 862.39

Table 4.1: Impact of cloudlets number on the response time (ms)

Page | 71

Chapter 4. Discussion of the experimental results

|£] Expirement 1 —

Impact cloudlet number on respond time

1,200 |
1,100 |
1,000 |
200 |
200 |
700 |
800 |
500 |
400 |
300 |
200 |

respond time {ms)

100

10 40 80 200 400
number of Cloudlet(cloudlet)

B DSOS M Random

Figure 4.14: Impact of cloudlets number on the response time

Table 4.1 reveals the outcomes of a simulation conducted to examine the
impact of varying the number of Cloudlets, comparing the results of our proposed
approach (DSOS) to the space shared and random placement strategy we note
that our approach provide reduced response time.

4.9.2. EXPERIMENT 2

Impact of VMs number on the response time:

In this experiment, we set up three Data Centers comprising 2 diverse
Hosts. Each Host is equipped with a single processor, with speeds varying
between 20,000 and 200,000 MIPS, and bandwidth ranging from 10,000 to 20,000,
bandwidth (ranging from 2,000 to 20,000).

The objective of this experiment is to analyze the impact of the VMs number
on the response time, we fixed 100 cloudlets, 40 data, 200 organisms with 1000
iteration.

Page | 72

Chapter 4. Discussion of the experimental results

Number of VMs | Space shared + Random placement | Our strategie (DSOS)
10 862.27 713.84
20 466.76 198.03
30 316.26 180.21
50 241 96.94
80 199.94 80.13

Table 4.2: Impact of VMs number on the response time (ms)

Expirernent 2 —

Impact VM number on respond time

900

800

[9)) =] =l
o o [=]
(=] o [=]

respond time (ms)
o Y
(]
(=]

number of VM({VMs)

W DSOS M Random

Figure 4.15: Impact of the number of VMSs on the response time

In table 4.2 we conducted a comparison between the results of our chosen
approach (DSOS) and thus of the space shared and random placement strategy.
Concluding that our method offers less response time, which proves the reliability
of our strategy.

Page | 73

Chapter 4. Discussion of the experimental results

Number of iterations | Our strategie (DSOS)
200 341.81
400 339.25
600 339.25
800 335.51
1000 335.51

Table 4.3: Impact of VMs number on the response time (ms)

4.9.3. EXPERIMENT 3

Impact of the iteration number on the response time:

We conducted an experiment fixing 100 cloudlets, 30 virtual machines, 40
data and 200 organisms to observe the impact of the iteration number on the
response time, the results are shown in the next table and figure.

| £ Expirernent 3 —

Impact of itteration on respond time

342.0
341.5
341.0
340.5

340.0

wow
[]
n

L

J
=] o0
in

m

respond time {ms)
73]

W o

w
o h =]
o o u

[0
Ll

]
W W W W W L

LN

L

200 400 Bo0 B0 1000
number of itteration

Figure 4.16: Impact of the iteration on the response time

As the number of iterations increases, the response time decreases noticeably.

Page | 74

Chapter 4. Discussion of the experimental results

This indicates the significant impact of iteration on improving system efficiency
and reducing response time.

It is believed that the improvement in performance through DSOS is attributed
to three operators: Mutualism, Commensalism, Parasitism. These operators have
a higher probability of obtaining progressive solutions. DSOS is capable of
converging towards an almost optimal solution

4.10. RESuLTS DpIscussioN

we explain this improvement in performance by DSOS to be originated from
the mechanisms of mutual benefit and parasite vector that are unique to DSOS.

The mutual benefit factor mechanism in the mutualism phase gives the search
process exploitative power by allowing it to explore the best solution regions.
The commensalism mechanism allows for exploring new solutions without nega-
tively affecting the current solution. This means that the algorithm can continue
to search for better solutions while retaining a good solution at each iteration.
The commensalism mechanism also helps diversify the search space, which can
help avoid getting stuck in local optima.

Overall, the commensalism mechanism balances exploration and exploitation,
resulting in better performance and more efficient optimization. The parasite
vector technique in the parasitism phase is capable of preventing premature
convergence by eliminating inactive solutions and introducing a more active
solution that moves the search process away from local optima.

The parasitism phase gives the search process the ability to explore by not

solely focusing on the best solution regions that could potentially trap the search
in a certain area of exploration. These mechanisms play a vital role in the
exploration and exploitation in the search process.
DSOS has fewer parameters and is easier to implement, which is considered
an advantage in addition to its explorability and exploitability. The method is
capable of improving the quality of the search process, which means that DSOS
has a higher probability of obtaining a nearly optimal solution.

Page | 75

GENERAL CONCLUSION

loud computing has fundamentally transformed the IT industry by providing
C scalable and cost-effective solutions for data storage and access. lIts flexibil-
ity and convenience have revolutionized how businesses and individuals operate.
Meanwhile, task scheduling is a critical aspect of cloud computing that ensures
efficient utilization of computational resources. By intelligently assigning tasks
to available resources, scheduling algorithms optimize performance, minimize re-
sponse time, and reduce costs. It has a vital role in scientific workflows, optimizing
the execution of complex computations by managing task dependencies and allo-
cating resources efficiently. In this context the DSOS algorithm offers valuable
assistance by optimizing cloudlet’s scheduling, minimizing the makespan time by

selecting the best organism after going through the three phases of the algorithm.

Through the development of our CloudSim simulator using the DSOS algo-
rithm, we conducted a series of experiments to showcase the notable advantages
of the approach we employed. The results validate the effectiveness and value
of the approach we implemented, confirming its success in achieving desirable
results.

the Discrete Symbiotic Organism Search (DSOS) algorithm stands as a
promising metaheuristic approach for solving combinatorial optimization prob-

lems with discrete variables.
As a future perspective for us:

- Explore hybrid optimization approaches by combining DSOS with other

algorithms to enhance scientific workflow optimization in the cloud.

- Integrate cost optimization techniques into the DSOS framework to mini-

mize expenses while optimizing performance.

General conclusion

- Validate DSOS performance in large-scale cloud environments with diverse

datasets to ensure robustness and efficiency.

- Extend DSOS to handle dynamic changes in cloud environments for adap-

tive task scheduling and resource allocation.

Page | 77

BIBLIOGRAPHY

[1] Stanoevska-Slabeva, K., Wozniak, T. (2010). Cloud Basics An Introduc-
tion to Cloud Computing. In: Stanoevska-Slabeva, K., Wozniak, T., Ris-

tol, S. (eds) Grid and Cloud Computing. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-05193-74

[2] Mell, P, Grance, T. (September 2011). National Institute of Standards and
Technology Special Publication 800-145

[3] Rajinder, S., Inderveer, C. (2013). Cloud Computing Standardization Initiatives:
State of Play, 10.11591/closer.v2i5.4894. International Journal of Cloud Computing
and Services Science (IJ-CLOSER)

[4] Basics - Cloud computing. https://www.geeksforgeeks.org/cloud-computing/

[5] Main cloud service models: laaS, PaaS and SaaS, (2023),
https://www.stackscale.com/blog/cloud-service-models/

[6] ATVelte, T.JVelte,Ph.D, R. Elsenpeter, (2010), Cloud Computing: A Practical
Approach, a book.

[7] Implementation of a private laaS cloud and analysis of big data within a dis-
tributed system at ACM (Master's degree, 2019-2020).

[8] David Chou, (2018), Cloud Service Models (laaS, PaaS, SaaS) Diagram,
https://dachou.github.io/2018/09/28/cloud-service-models.html

[9] D. Koshkin, Cloud Deployment Models: Advantages and Disadvantages,
https://sam-solutions.us/advantages-and-disadvantages-of-cloud-deployment-
models/

[10] C. Fehling, F. Leymann, R. Retter, W. Schupeck, P. Arbitter, (2014), Cloud Comput-
ing Patterns (Fundamentals to Design, Build, and Manage Cloud Applications)
(a book)

78

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Bibliography

Bhatia,V., Essential Cloud Computing Characteristics.
https://www.synopsys.com/cloud/insights/essential-cloud-computing-

characteristics.html /doi/10.5555/1983741.1983763

Vicat-Blanc P, Figuerola S, Chen X, Landi G, Escalona E, Develder C, Tzanakaki
A, Demchenko Y, Espin J, Ferrer J, Lopez E, Soudan S, Buysse J, Jukan A, Ciulli N,
Brogle M, van Laarhoven L, Belter B, Anhalt F, Nejabati R, Simeonidou D, Ngo
C, de Laat C, Biancani M, Roth M, Donadio P, Jiménez J, Antoniak-Lewandowska
M and Gumaste A. Bringing optical networks to the cloud. The future internet.
(307-320).

https://www.sketchbubble.com/en/presentation-cloud-architecture.html

JW. Rittinghouse, J.F. Ransome, (2010), Cloud Computing Implementation, Man-
agement, and Security (a book)

Rodriguez, M. A,, Buyya, R. (2014). Deadline based resource provisioningand
scheduling algorithm for scientific workflows on clouds. IEEE transactions on
cloud computing, 2(2), 222-235.

Thramboulidis, K., Lai, B. C, Cao, J., Talia, Domenico, (2013), Workflow Sys-
tems for Science: Concepts and Tools, 10.1155/2013/404525, ISRN Software
Engineering https://doi.org/10.1155/2013/404525

K. Ganga and S. Karthik, (2013), A fault tolerent approach in scientific workflow
systems based on cloud computing, International Conference on Pattern Recog-
nition, Informatics and Mobile Engineering, Salem, India, 2013, pp. 387-390, doi:
10.1109/ICPRIME.2013.6496507.

Wang, Yawen , Guo, Yunfei, Guo, Zehua, Liu, Wenyan, Yang, Chao (2020) ,
Protecting Scientific Workflows in Clouds with an Intrusion Tolerant System
10.1049/iet-ifs.2018.5279

Abrishami, S., Naghibzadeh, M. (2012). Deadline-constrained workflow schedul-
ing in software as a service cloud. Scientia Iranica, 19(3), 680-689.

Bessai, K. Gestion optimale de lallocation des ressources pour lexécution des
processus dans le cadre du Cloud (thése de Doctorat, Université Paris1 Panthéon-
Sorbonne), 2014.

S., Mohapatra, S. Mohanty, and K.S. Rekha, Analysis of different variants in
round robin algorithms for load balancing in cloud computing, International
Journal of Computer Applications, vol. 69, no. 22, 2013.

Page | 79

Bibliography

[22] Rahul,M. A Brief Review of Scheduling Algorithms in Cloud Computing. Asian
Journal of Technology Management Research, vol.05, 2015.

[23] Akhtar, Muhammad AND Hamid, Bushra AND Ur-Rehman, Inayat AND Humayun,
Mamoona and Hamayun, Maryam Khurshid, Hira. An Optimized Shortest job first
Scheduling Algorithm for CPU Scheduling. J. Appl. Environ. Biol. Sci, 5(12)42-46,
2015. 5. 42-46. 2015.

[24] B. D. Martin, E. Schwab, (2012), Current Usage of Symbiosis and Associated
Terminology, School of Allied Health Professions, Loma Linda University, Loma
Linda, CA 92350, USA http://dx.doi.org/10.5539/ijb.v5n1p32

[25] Absalom El-Shamir Ezugwu , Aderemi Oluyinka Adewumi , Discrete Sym-biotic
Organisms Search Algorithm for Travelling Salesman Problem, Expert Systems
With Applications (2017), doi: 10.1016/j.eswa.2017.06.007

[26] M. Abdullahi, M.A. Ngadi, S.M. Abdulhamid, Symbiotic Organism Search optimiza-
tion based task scheduling in cloud computing environment, Future Generation
Computer Systems (2015), http://dx.doi.org/10.1016/].future.2015.08.006

[27] Megha Sharma, Amandeep Verma, Energyaware Discrete Symbiotic Organism
Search Optimization algorithm for task scheduling in a cloud environment, (2017)

[28] Songll Choe, Bo Li, IINam Ri, ChangSu Paek, JuSong Rim, (2018), Improved Hybrid
Symbiotic Organism Search Task-Scheduling Algorithm for Cloud Computing,
College of Information Science, Kim Il Sung University,

[29] Gosling, J., Holmes, D. C.,, Arnold, K. (2005). The Java programming language.

[30] Haggar, P. (2000). Practical Java: programming language guide. Addison-Wesley
Professional.

[31] Merks, E., Eliersick, R., Grose, T.,, Budinsky, F., Steinberg, D. (2003). The eclipse
modeling framework. retrieved from, total, 37.

[32] Sundas, A., Panda, S. N. (2020, March). An introduction of CloudSim simulation
tool for modelling and scheduling. In 2020 international conference on emerging
smart computing and informatics (ESCI) (pp. 263-268). IEEE.

[33] Oussama, Simite and Afdel, Karim, Impact Live Migration on Cloud Per-
formance (May 28, 2018). Smart Application and Data Analysis for Smart
Cities (SADASC'18), Available at SSRN: https://ssrn.com/abstract=3186348 or
http://dx.dot.org/10.2139/ssrn.3186348

[34] What is CloudSim? https://www.geeksforgeeks.org/what-is-cloudsim/

Page | 80

Bibliography

[35] Mishra, Suchintan, Sahoo, Manmath (2017) , On using CloudSim as a Cloud
Simulator: The Manual 10.13140/RG.2.2.30215.91041

Page | 81

	List of Figures
	List of Tables
	Cloud computing
	Introduction
	Cloud computing
	History
	Cloud computing services
	Infrastructure as a service (IaaS)
	Platform as a Service (PaaS)
	Software as a service (SaaS)

	Cloud Computing Deployment Models
	Public cloud computing
	Private cloud computing
	Community cloud computing
	Hybrid cloud computing

	Virtualization
	Types of virtualization

	Grid Computing
	Utility computing
	Service-Oriented Architecture (SOA)
	Load Balancing
	Data centers
	Cloud computing characteristics
	Cloud computing architecture
	Front-end
	Back-end

	Cloud computing security
	The location of data centers
	Guarantees of audits and contracts
	Constant data availability
	Securing data in moving

	advantages and disadvantages of cloud computing
	advantages
	disadvantages

	Example of clouds
	Amazon EC2
	Google App Engine
	Oracle cloud

	Conclusion

	Scientific workflow scheduling strategies in cloud computing
	Introduction
	Overview of scientific workflows
	Definition and characteristics of scientific workflows

	Components and structure of a scientific workflow in cloud computing
	Cloud resources:
	Workflow management system:
	Data transfer:
	Scaling:
	Security:

	Scheduling concept and definition
	scheduling:
	tasks:
	Data:

	Workflow scheduling strategies in cloud computing
	Definition and importance of workflow scheduling
	Types of scheduling strategies
	Independent task scheduling
	dependent task scheduling

	Algorithms of scheduling
	First in first out algorithm (FIFO)
	Shortest Job First (SJF)
	Round-Robin (RR)
	Critical Path Method (CPM)

	Conclusion

	Description of the proposed approach
	 Introduction
	Representation of Scientific Workflow
	Adaptation description
	Symbiotic Organisms Search (SOS)
	In nature
	Mutualism
	Commensalism
	Parasitism

	Formal
	Mutualism phase:
	Commensalism phase:
	Parasitism phase:

	Discrete Symbiotic Organisms Search Algorithm
	SOS vs DSOS
	Fitness function
	Adaptation description

	Conclusion

	Discussion of the experimental results
	Introduction
	Java programming language
	Development environments
	Hardware environment
	Software environment
	Eclipse
	CloudSim Simulator
	CloudSim Architecture
	Cloudsim classes

	Main interface
	Simulation setup
	Cloudlets setup
	Virtual machines setup
	Data setup
	Ecosystem setup

	Simulation
	 Virtual machines list
	Data list
	Cloudlets list
	List of the ecosystem

	Best organism
	Simulation display
	Experimental results
	Experiment 1
	Experiment 2
	Experiment 3

	Results discussion
	General conclusion and prescriptive
	Bibliography

