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Recent advancements in Artificial Neural Networks (ANNs), have significantly 

impacted the field of antenna engineering. In patch antenna design, where 

electromagnetic behavior is governed by complex, nonlinear interactions among 

geometrical and material parameters, ANNs have demonstrated exceptional capability 

as predictive and optimization tools. Unlike traditional methods - such as parametric 

sweeps and full-wave electromagnetic (EM) simulations - which are often 

computationally intensive and time-consuming, ANN models can learn the underlying 

patterns from simulation or measurement data and generalize to unseen designs with 

remarkable efficiency. 

Numerous studies have explored the use of ANNs for modeling and optimizing 

patch antennas. Early works primarily focused on simple feedforward networks trained 

to predict basic performance parameters such as resonant frequency, gain, and 

bandwidth. These models significantly reduced design time by enabling rapid 

estimation of antenna characteristics based on input design parameters. More recent 

approaches have incorporated deeper architectures and hybrid models, combining 

ANNs with evolutionary algorithms (like Genetic Algorithms or Particle Swarm 

Optimization) to enhance the inverse design process. Additionally, convolutional 

neural networks (CNNs) and recurrent neural networks (RNNs) have been explored 

for feature extraction from 2D/3D antenna geometries and for modeling dynamic or 

frequency-dependent behavior. 

In this regards, this study aims to integrate ANNs with EM solvers in a closed-

loop optimization, where the ANN acts as a surrogate model, accelerating convergence 
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toward optimal solutions. This hybrid approach allows high fidelity with reduced 

computational cost, especially valuable in multi-objective optimization tasks involving 

efficiency, return loss, bandwidth, and radiation characteristics. The increasing 

availability of data and improvements in ANN training methods continue to expand 

the role of machine learning in antenna design, establishing ANN-based modeling as a 

state-of-the-art methodology for developing efficient, compact, and high-performance 

patch antennas. 
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1.1. Introduction 

The design of patch antennas was early proposed on 1953 by Deschamps [1], but 

it was not until 1970 that Howell and Muson [2] could be effectively implemented, 

thanks to the arrival of low-loss dielectrics on the market. Since then, the patch 

antennas have undergone numerous refinements and research efforts to overcome its 

many drawbacks. A printed radiating element, commonly referred to as a “patch” is a 

micro-strip that it is generally rectangular in shape. The structure consists of a ground 

plane and a dielectric substrate with one or more metallic features on its surface. Their 

distribution over a surface at the microscopic scale is also important, as are criteria 

such as lightness and cost. New requirements were reached with the expansion of 

communication methods in wireless communication systems. There is no doubt that 

these antennas are also very useful because they are cheap and space-saving [3]. 

1.2. Structure and Parameters  

Patch antennas are the most important type of antennas used in wireless 

communications systems and find a broad application. These antennas first appeared in 

the 1950s, but the fully-fledged development took place in the 1970s. Printed antennas 

are evenly radiated parts of the planar structure. The patch antenna operates on the 

principle of generating electromagnetic waves due to oscillating electric currents in the 

metallic patch. The patch is placed on a dielectric material (substrate) above the 

ground plane. The “patch” functions to transmit and radiate the electromagnetic signal, 

while the “ground plane” provides a stable reference point to enhance the antenna’s 

overall efficiency by reflecting the waves and directing them effectively. The antenna 
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is made by etching a printed circuit board. Owing to their design technology, they can 

be integrated as close as possible to electronic circuits while taking up minimal space 

and adapting to various surface types. It has the advantages of being lightweight, easy 

to manufacture, and easy to implement, in addition to being aerodynamic and low-

cost. Patch antennas are used in many applications, starting from the VHF bands [3]. 
1.2.1. Description of the Structure  

A patch antenna is a microstrip line with a particular shape. It performs two 

fundamental functions that define the general principle of an antenna, radiation 

(emission) and the reception of an electromagnetic wave. It consists of a [4]: 

 

Figure 1.1- Presentation of a Patch Antenna Design 

 Ground plane: is a conductive surface (copper) covering the bottom the lower part 

of the substrate. It is used to radiate the upper part of the substrate. 

dielectric substrate 

Ground plane 

Substrate 

Patch 
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 Dielectric substrate: Made of an insulating material, generally thin compared to 

the wavelength, with a relative permittivity(2.2 < 𝜀ݎ < 12 ). This substrate is used 

to increase the power radiated by the antenna, reduce Joule losses, and improve 

antenna bandwidth. Sometimes it's preferable to use thick dielectric substrates with 

low permittivity for high efficiency and wide bandwidth.  

 Radiating element (patch/microstrip): A metallic part (generally 17.5 to 35 

microns thick for microwaves and 9 microns thick for millimeter waves) of variable 

shape and size depending on the application. It can have various geometries 

(circular, rectangular, triangular, etc.). It must be connected to the rest of the circuit 

by a transmission line (microstrip), which should be impedance-matched to the 

antenna and the rest of the circuit to avoid reflectionphenomenon.In practice, the 

rectangle and the disk represent the most used forms of the radiating element. It 

consists of a part conductor which will radiate, the shape and dimensions determine 

the frequency operation of the antenna. 

1.2.2. Main Parameters  

 Resonance Frequency: It is the frequency at which the antenna exhibits a 

minimum amplitude of the reflection coefficient. It is given by the following 

relationship [5]: 

𝑓ݎ = ܿ2 𝜀ݎ 1𝐿 + 2∆𝐿 

c : Speed of light in vacuum (≈ 3 × 108𝑚/ݏ) 

L: Length of the patch 𝜀ݎ : Relative permittivity 

Patch 
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 Bandwidth: It refers to the range of frequencies over which the antenna performs 

efficiently, typically defined by the return loss or the reflection coefficient. The 

bandwidth of a patch antenna is generally narrow due to the compact size and 

relatively small frequency range within which the antenna resonates efficiently. 

The bandwidth is determined by the quality factor (Q) of the antenna, which 

depends on the size of the patch, the dielectric constant of the material, and the feed 

method. For most standard patch designs, the bandwidth is typically around 1% to 

5% of the center frequency [6]. 

(%)𝑊ܤ = 𝑓ܪ − 𝑓𝐿𝑓  × 100 

𝑓ܪ : highest frequency 𝑓𝐿:lowest frequency 𝑓 :the central or resonant frequency 

 Return loss: It measures how much of the signal is reflected back from the antenna 

due to impedance mismatches. A high return loss means that less power is reflected, 

and more is radiated by the antenna. The value of return loss greater than -10 dB is 

generally considered good because it means less than 10% of the signal is reflected 

back. Mathematically, return loss RL is related to the reflection coefficient 1ܵ1 : 

ܴ𝐿 = −20 log 1ܵ1  
1ܵ1: Reflection coefficient 

The impedance matching between the antenna and the transmission line (e.g., 

coaxial cable or microstrip line) is critical in minimizing return losses [7]. 



 Chapter 1: Patch Antenna Design  

 9 

 Gain: The gain of an antenna is a measure of how well it focuses the radiated 

energy in a particular direction compared to an isotropic radiator (which radiates 

equally in all directions). Patch antennas typically have a gain of 6-9 dBi, which is 

relatively moderate compared to other types of antennas like parabolic dishes, but 

it’s sufficient for many communication applications. This parameter is expressed 

by: 

= 𝜃,𝜙 ܩ 4𝜋  𝜃,𝜙 𝑃𝑖ݎݐݏ𝑖ܿ  

𝑖ܿݎݐݏ𝜃,𝜙 : Power radiated in a specific direction 𝑃𝑖  : Power that would be radiated by an ideal isotropic antenna in that direction 

(uniform in all directions) 

The gain depends on the: 

 Patch's size: Larger patches generally provide higher gain. 

 Feed configuration: Optimized feed designs can improve efficiency. 

 Quality of materials: Low-loss materials improve radiation efficiency. 

 Characteristic Impedance: The calculation of the characteristic impedance is not 

an easy task. From the transmission line theory, the relation between the velocity 

and per unit length inductance and capacitance is: 

𝑣 = 1 𝐿ܥ = ݎ𝜀 ܥ  

Using equation 𝑍0 =  𝐿ܥ, the characteristic impedance can be expressed as: 

𝑍0 =  𝐿ܥ = 1𝑣ܥ =  𝜀ܥܿݎ  
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Thus, to compute the characteristic impedance, we just need to obtain the per unit 

length capacitance C once the effective permittivity is known. This approach makes 

a difficult task slightly easier. When the thickness of the metal strip can be 

neglected, it has been found that [8]: 

 When 𝑊/݀ < 1, the characteristic impedance of the line is: 

𝑍0 = 60 𝜀ݎ ln  8𝑊 + 𝑊4݀ > 126 𝜀ݎ  

It decreases monotonically to 126/ 𝜀ݎ  as𝑊/݀ increases to 1. 

 When 𝑊/݀ > 1, the characteristic impedance of the line is: 

𝑍0 = 120𝜋 𝜀ܴ  �݀� + 1.393 + 0.667 ln  �݀� + 1.44  < 126 𝜀ݎ  

It also decreases monotonically from 126/ 𝜀ݎ  as 𝑊/݀ increases. That is, the larger 

the ratio 𝑊/݀ , the smaller the characteristic impedance; also, the larger the 

permittivity, the smaller the characteristic impedance. Practical limitations exist on 

the range of impedances that can be manufactured. These limits depend on factors 

such as the dielectric constant, substrate height and manufacturing capability. In 

general, the thinnest line that can be etched routinely with a goodphotolithographic 

process is of the order of 0.1 mm. This then puts the upper bound of the impedance 

at [90–120]Ω. The lower bound is determined by the line width, which should not 

be comparable to a wavelength. The typical value of the characteristic impedance 

for industrial standard lines is 50 or 75 [8]. 

 Radiation patterns: The radiation pattern (or antenna pattern) of an antenna refers 

to a mathematical or graphical representation that describes how an antenna 
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transmits or receives electromagnetic energy as a function of direction in space. It is 

generally expressed in 2D or 3D in the far-field domain, where the radiation 

characteristics are well defined. There are two principal planes: 

 The E-plane: in the x-z plane (𝜑 = 0∘, elevation plane). 

 The H-plane: in the x-y plane (𝜃 = 𝜋
2, azimuthal plane). 

 In the case of a patch (or microstrip) antenna, which is a planar directional antenna 

mounted on a dielectric substrate, the radiation pattern presents a main lobe 

directedperpendicularly to the surface of the patch, with minimal radiation towards 

the back [9]. 

 
Figure 1.2 - 3D and Polar Radiation Pattern of a Patch Antenna 
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1.3. Feeding Methods for Patch Antennas 

There are many configurations that can be used to feed microstrip antennas. The 

four most popular are: 

1.3.1. Microstrip Line Feed 

The microstrip line feed is also a conducting strip, usually of much smaller width 

compared to the patch. This method of feeding is very widely used because it is easy 

to fabricate, simple to match by controlling theinset position and rather simple to 

model. However, as the substrate thickness increases, surface waves and spurious feed 

radiation increase, which for practical designs limitthe bandwidth (typically 2–5%) [3]. 

 

Figure 1.3 - Microstrip Line Feed 

1.3.2 Coaxial Probe 

Coaxial feed or probe feed is a very common technique used for feeding 

Microstrip patch antennas. As seen from Figure 1.4, the inner conductor of the coaxial 

Ground plane 

Microstrip feed line 

Substrate 
Patch 
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connector extends through the dielectric and is soldered to the radiating patch, while 

the outer conductor is connected to the ground plane. The main advantage of this type 

of feeding scheme is that the feed can be placed at any desired location inside the 

patch in order to match with its input impedance. This feed method is easy to fabricate, 

cheap, effective and has low spurious radiation. However, its major disadvantage is 

that it provides narrow bandwidth and is difficult to model since a hole has to be 

drilled in the substrate and the connector protrudes outside the ground plane [10]. 

 

Figure 1.4 - Coaxial Probe 

1.3.3. Proximity Coupling 

This type of feed technique is also called as the electromagnetic coupling 

scheme. As shown in Figure 1.5, two dielectric substrates are used such that the feed 

line is between the two substrates and the radiating patch is on top of the upper 

substrate. The main advantage of this feed technique is that it eliminates spurious feed 

radiation and provides very high bandwidth (as high as 13%), due to overall increase 

Substrate 

Patch 

Coaxial cable 
Central conductor         

of coaxial cable 
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in the thickness of the microstrip patch antenna. The major disadvantage of this feed 

scheme is that it is difficult to fabricate because of the two dielectric layers, which 

need proper alignment. Also, there is an increase in the overall thickness of the 

antenna [11]. 

 

 

Figure 1.5 - Proximity Coupled Feed 

1.3.4 Aperture Coupled  

In this type of feed technique, the radiating patch and the microstrip feed line are 

separated by theground plane as shown in Figure 1.6. Coupling between the patch and 

the feed line is made through aslot or an aperture in the ground plane.The coupling 

aperture is carefully designed to be centered beneath the patch to ensure a symmetrical 

configuration, thereby reducing cross-polarization effects.The amount of coupling 

from the feed line to the patch is determined by the shape, size and location of the 

aperture. Since the ground planeseparates the patch and the feed line, spurious 

radiation is minimized.This type of coupling gives wider bandwidth. However, its 

major disadvantage is that it is difficult to fabricate due to multiple layers, which also 

increases the antenna thickness [12]. 

Substrate 1 
Substrate 2 

Patch 

Microstrip line  
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Figure 1.6 - Aperture Feed 

1.4. Types of Patch Antennas  

There are a large number of shapes of microstrip patch antennas; they have been 

designed to match specific characteristics. Some of the common types are shown in 

Figure 1.7, for millimeter wave frequencies, the most common types are rectangular, 

square, and circular patches.  

 

Figure 1.7 - The Most Common Shapes of Patch Antenna Designs 

Substrate 1 
Substrate 2 

Patch 

Microstrip line  
Aperture/Slot 

Patch 

Ground plane 
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The choice of the substrate is also important, we have to consider the 

temperature, humanity, and other environmental ranges of operating. Thickness of the 

substrate h has a big effect on the resonant frequency and bandwidth BW of the 

antenna. Bandwidth of the microstrip antenna will increase with increasing substrate 

thickness but with limits, otherwise the antenna will stop resonating [13]. 

1.5. Advances and Limitations in Patch Antenna Designs 

1.5.1. State of the Art 

Patch antennas have gained significant attention in recent decades because of 

their small size, ease of manufacture, and multiple uses in several fields such as 

wireless networks, radar, mobile phone systems, 5G devices, and others. This interest 

has prompted many researchers to conduct in-depth studies on antenna designs with 

the aim of improving their performance in terms of bandwidth, gain, miniaturization 

and efficiency. Among the proposed designs are the following: 

 Single-band and multi-band antennas: Traditional single-band antennas have 

been replaced by dual or multi-band designs to operate over several frequency 

bands simultaneously [14]. 

 Miniaturized and low-profile antennas: Miniaturization techniques such as short 

pins, meandered lines, and slots have been employed to reduce the size of the patch 

antenna [15]. 

 Wearable and flexible antennas: wearable antennas using textile substrates have 

emerged as a key solution for body area networks and smart clothing [16]. 
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 Reconfigurable antennas: Reconfigurable patch antennas use electronic switches 

like PIN diodes and varactors to alter frequency, bandwidth or polarization [17]. 

Several achievements have been achieved in the field of patch antennas, 

represented by the application of artificial intelligence techniques such as genetic 

algorithms and machine learning have been applied to optimize antenna parameters 

and improve its performance [18].  

The use of electromagnetic band blocking structure techniques and metamaterials 

also contributed to enhance bandwidth and gain 12 . In addition, patch antennas have 

proven to be highly effective in 5G and millimeter wave applications due to their 

ability to achieve strong performance [19].  

However, microstrip antennas also have some limitations compared to 

conventional microwave antennas: 

 Narrow bandwidth and associated tolerance problems. 

 Somewhat lower gain (-6 dB). 

 Large ohmic loss in the feed structure of arrays. 

 Most microstrip antenna radiate into half-space. 

 Complex feed structures required for high-performance arrays. 

 Polarization purity in difficult to achieve. 

 Poor end fire radiation, except tapered slot antennas. 

 Extraneous radiation from feeds and junctions. 

 Lower power handling capability (-100 W). 

 Excitation of surface waves. 
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1.5.2. DMS and DGS Techniques for Patch Antenna Designs  

 The Defective Microstrip Structure (DMS): The defect is corrected by applying a 

uniform or non-uniform, periodic or non-periodic pattern to the structure of the 

microstrip. Regarding microstrip antennas, the patch (radiating element) is etched. 

Two methods can be used to repair the defect: either by filling the slot on the 

surface of the printed part, or by cutting the slot at the boundaries of the part. 

Defects are recorded on the patch surface during slot loading and can take various 

shapes, such as bent slots. Or square slots [20]. 

 

Figure 1.8 - Types of DMS Slot Load 

In the slot loading technique, imperfections are eliminated at the boundaries of the 

radiating element, as shown in Figure 1.8, where the current flow is determined by 

the length of the part and the depths of the slot. 

 Defective Earth Structure (DGS): The Defective Ground Structure (DGS) is a 

method used in the design of antennas and microwave circuits. This technique 

involves creating patterns or specific structures on the ground plane adjacent to the 
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antenna or circuit, with the aim of modifying or interfering with the electromagnetic 

properties of the structure. The Defective Ground Structure (DGS) is primarily used 

to improve the performance of antennas and circuits by mitigating undesirable 

effects such as spurious resonances, unwanted couplings, losses, and 

electromagnetic interference. By modifying the structure of the adjacent ground, 

DGS can alter the propagation properties of electromagnetic waves, thereby 

optimizing the performance of the antenna or circuit in terms of bandwidth, 

directivity, gain and rejection of unwanted frequencies [20]. 

 

Figure 1.9 - Different Forms of DGS 

1.6. Conclusion 

Patch antennas represent a significant advancement in the field of wireless 

communications thanks to their compact, cost-effective, and easily integrated design. 

Despite some limitations such as low bandwidth or moderate gain, their numerous 

advantages make them an ideal solution for many applications, particularly in modern 

telecommunications systems. Their continued evolution and ongoing research suggest 

promising improvements to meet the growing needs for performance and 

miniaturization. 
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2.1. Introduction 

In recent decades, Artificial Intelligence (AI) [21] has made significant strides in 

solving complex problems that were once thought to be the exclusive domain of 

human intelligence. Among the various subfields of AI, Artificial Neural Networks 

(ANNs) [22] have emerged as one of the most powerful and versatile tools for tasks 

involving pattern recognition, classification, prediction, and decision-making. Inspired 

by the structure and functioning of the human brain, ANNs are computational models 

composed of interconnected processing units called neurons. These networks are 

capable of learning from data, identifying intricate patterns, and improving their 

performance over time through training. Their ability to generalize from examples has 

made them essential in a wide range of applications, from image and speech 

recognition to medical diagnosis, financial forecasting, and autonomous systems. The 

objective of this chapter is to explore the fundamental principles of artificial neural 

networks, analyze their architectures, and examine their practical applications. Special 

emphasis is placed on understanding how ANNs optimize the performance of patch 

antennas and how recent ANN advancements have significantly enhanced their 

capabilities. 

2.2. Fundamentals of Artificial Neural Networks 

2.2.1. Principles of Artificial Neural Networks 

These are the basic elements of a neural network, they are mathematical models 

inspired by the structure and behavior of biological neurons. They are composed of 

interconnected units called formal or artificial neurons capable of performing certain 

specific and well-defined functions. Neural networks allow to approach non-linear 
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relationships with significant degrees of complexity. The input cells are intended to 

collect the information that is transformed by the hidden cells up to the output cells 

(figure 2-1) [22]:  

 

Figure 2.1 – Basic Artificial Neural Network Model 

The weighting coefficients are called synaptic weights. In the behavior of these 

neurons, two phases are distinguished: the first is the calculation of the weighted sum 

of the inputs, while the second is the application of a transfer function that calculates 

the value of the neuron's state from this sum. 

2.2.2. Neuron Entries in Artificial Neural Networks  

 Neurons to enter simply: The output depends on the chosen transfer function.            

The bias is almost similar to the weight, 

except that it has a constant input value 

equal  to 1. However, it can be omitted 

depending on the conditions chosen by 

the user. Note that w and b are 

adjustable scalar parameters of the 

neuron. Typically, the transfer function f is chosen by the user and                              
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the parameters w and b are adjusted by learning laws to adapt                            

the input/output neuron to a specific goal [23]. 

 Neurons with multiple inputs: Typically, a neuron has more than one input, as 

shown in the figure. The result n is then transformed by a transfer function f that 

produces the neuron's output a. This output corresponds to a weighted sum of the 

weights and inputs minus what is 

called the bias b of the neuron. 

The result n of the weighted sum 

is called the activation level of the 

neuron. The bias b is also called 

the activation threshold of the 

neuron. When the activation level exceeds the bias, the neuron is considered active. 

While the activation level reaches or exceeds threshold b, then the argument of f 

becomes positive (or null). Otherwise, it is negative. The weight of an artificial 

neuron therefore represents the efficiency of a synaptic connection. A negative 

weight inhibits an input, while a positive weight accentuates it [24]. 

2.2. Structure of Artificial Neuron Networks 

Neural network architecture defines its structure including number of hidden 

layers, number of hidden nodes and number of output nodes: 

 Layers of neural networks: As the brain is a gigantic network of neurons, the 

neural network is a network of nodes. A variety of neural networks can be created 

depending on how the nodes are connected. One of the most commonly used types 

of neural networks uses a layered structure of nodes, as illustrated in figure 2.2. The 
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neural network has evolved from a simple architecture to an increasingly complex 

structure. Originally, the pioneers of neural networks had a simple architecture with 

only input and output layers, called single-layer neural networks. 

 

Figure 2.2 – Structure of Artificial Neural Network 

 A layered node structure: The group of square nodes in figure 2.2 is called the 

input layer. The nodes in the input layer simply act as the passage that transmits the 

input signals to the following nodes. Therefore, they do not calculate the weighted 

sum and the activation function. This is why they are indicated by squares and 

distinguished from the other circular nodes. In contrast, the group of nodes farthest 

to the right is called the output layer. The output of these nodes becomes the final 

result of the neural network. The layers between the input layer and the output layer 

are called hidden layers. They are given this name because they are not accessible 

from outside the neural network. 

When hidden layers are added to a single-layer network, it produces a multilayer 

neural network. Therefore, the multilayer neural network consists of an input layer, 
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one or more hidden layers, and an output layer. A neural network with a single 

hidden layer is called a shallow neural network or a vanilla neural network. A 

multilayer neural network that contains two or more hidden layers is called a deep 

neural network. Most of the contemporary neural networks used in practical 

applications are deep neural networks [25]. 

The neuron network began as a single-layer neural network and evolved into a 

shallow neural network, followed by deep neural networks. Deep neural networks 

were not seriously highlighted until the mid-2000s, after two decades since the 

development of shallow neural networks. Therefore, for a long time, the multilayer 

neural network meant only the single hidden layer neural network. When the need 

to distinguish multiple hidden layers arose, a distinct name was given to deep neural 

networks (figure 2.3). 

     

(a)                                                                              (b) 

Figure 2.3 – Artificial Neural Network Depend on the Architecture of the Layers, 

(a) Machine Model, (b) Deep Model 

Machine learning models and deep learning models differ primarily in their 

architectural complexity and application scope. Traditional machine learning 

models, often referred to as shallow ANNs, typically consist of one or two hidden 
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layers and are well-suited for relatively simple tasks with structured and lower-

dimensional data. These models are faster to train, require less computational 

power, and offer better interpretability, making them practical for straightforward 

prediction or classification problems. In contrast, deep learning models, or deep 

ANNs, feature multiple hidden layers that allow them to learn hierarchical and 

highly abstract representations of data. This deep architecture makes them 

particularly powerful for solving complex, nonlinear problems such as image 

processing, speech recognition, or advanced electromagnetic modeling in antenna 

design. However, deep models demand large datasets, significant computational 

resources, and careful regularization to prevent overfitting, and they are generally 

more difficult to interpret. 

Whenever we learn something, our brain stores knowledge, the computer uses 

memory to store information. Although they both store information, their 

mechanisms are very different. The computer stores information in a specific 

memory location, while the brain modifies the association of neurons. The neuron 

itself has no storage capacity; it only transmits signals from one neuron to another. 

The brain is a gigantic network of these neurons, and the association of neurons 

forms specific information. The neural network imitates the mechanism of the brain. 

As the brain is composed of connections of many neurons, the neural network is 

built with node connections, which are elements that correspond to the neurons in 

the brain. The neural network mimics the association of neurons, which is the most 

important mechanism of the brain, using the weight value. 
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 Activation function: Activation functions are mathematical formula that 

determines the output of a processing node. Each unit takes its net input and applies 

an activation function to it. Non linear functions have been used as activation 

functions such as logistic, tanh etc. Each function has its strengths and is chosen 

based on the problem type, network depth, and performance needs. The purpose of 

the transfer function is to prevent output from reaching very large value which can 

paralyze neural networks and thereby inhibit training. Transfer functions such as 

sigmoid are commonly used [26]. 

 

 

Sigmoid: Maps input to a range between 0 and 1. Useful for binary classification but can suffer from vanishing gradients. 

Tanh (Hyperbolic Tangent): Outputs values between -1 and 1. It centers data but also faces vanishing gradient issues for 

deep networks. 

ReLU (Rectified Linear Unit): Outputs zero for negative inputs and linear for positive ones. It is computationally efficient 

and helps mitigate vanishing gradients, making it popular in deep learning. 

Leaky ReLU: A variation of ReLU that allows a small gradient for negative inputs, reducing the risk of "dying neurons". 

Softmax: Converts outputs into probabilities that sum to one, commonly used in the final layer of classification networks 

with multiple classes. 

ELU (Exponential Linear Unit): Similar to Leaky ReLU but with smoother output transitions for negative values, 

improving learning in some cases. 

 

Figure 2.4 – Different Activation Function for ANN 
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2.3. Architectures of Artificial Neural Networks 

A neural network architecture (RNA) [27] is a set of formal neurons linked in 

layers and functioning in parallel. They have the ability to store empirical knowledge 

and make it available for use. According to the chosen interconnection logic, neural 

networks are distinguished into two major groups: feed forward networks (static) and 

recurrent networks (dynamic), as shown in figure 2.5 which illustrates the synoptic 

diagram of the two respective types of networks. 

 

Figure 2.5 - Network Architecture Taxonomy 

Network Architecture Taxonomy classifies neural networks based on their 

structure and connectivity. Broadly, networks are divided into: 

 Feedforward Networks (Non-recurrent):  Information flows in one direction — 

from input to output — without cycles. Examples include: 
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 Single-layer Perceptron: Basic model for simple classification tasks. 

 Multilayer Perceptron (MLP): Has one or more hidden layers, capable of 

modeling complex relationships. 

 Radial Basis Function Networks (RBF): Use radial basis functions as 

activation functions, ideal for interpolation and approximation tasks. 

 Feedback Networks (Recurrent Networks / With loops):  Networks where 

connections form directed cycles, allowing them to maintain a "memory" of 

previous inputs. Examples include: 

 Hopfield Networks: Used for associative memory and optimization 

problems. 

 Self-Organizing Maps (Kohonen Maps): Unsupervised learning models 

for clustering and visualization. 

 Adaptive Resonance Theory (ART) Networks: Designed for pattern 

recognition, capable of learning new patterns without forgetting old ones. 

Feedforward architectures are generally used for static pattern recognition, while 

recurrent ones are suited for dynamic problems like sequence prediction and time-

series analysis. 

2.3.1. Non-looped neural networks (Static) 

An un-looped neural network performs one (or more) algebraic functions of its 

inputs, by composition of the functions performed by each of its neurons [28]. This 

network is represented graphically by a set of neurons connected to each other.  In 

such a network, the flow of information flows from the entrances to the exits without 

"going back". The neurons that perform the final composition calculation function 
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neurons are the output neurons, those that perform intermediate calculations are the 

hidden neurons. The only constraint on the graph of the connections of a non-neural 

network loop, is that it does not contain a cycle, so one can imagine a wide variety of 

topologies for these networks. For example, layers of neurons can be formed by 

prohibiting any connection between neurons in the same layer and also connections 

between neurons in the same layer. The majority of applications for 

neurons bring into play its layered networks. The most popular class of non-layered 

loops are called Multilayer Perceptrons or MLP in which the hidden layers use a multi-

layer threshold or sigmoid. 

2.3.2. Looped neural networks (Dynamics) 

Also called "recurrent networks" [29], these are networks in which there is a 

return in Back of Information. This is the most general architecture for a neural 

network, whose graph of connections is cyclic: 

in this type of network when you move in the 

direction of the connections, it is possible to 

find at least one path that returns to its starting 

point. The exit of a neuron from the network 

can therefore be a function of itself; this is 

obviously not the case appropriate only if the notion of time is explicitly taken into 

account. At each connection of a looped neuron is attached an integer multiple delay 

of the chosen unit of time. Looped networks have less memory in the sense that their 

response, to an input, is independent of the previous state of the network. In other 

words, the recurring or feedback are dynamic systems. 
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2.3.3. Multi-Layer Perceptron (MLP) 

The most popular form of neural network architecture is MLP as shown in             

figure 2.6 [25].  There are some of the features of MLP listed as follow: 

 It consists of any number of inputs. 

 It has one or more hidden layers with any number of units. 

 Input layers consist of linear combination functions. 

 Hidden layers consist of sigmoid activation functions. 

 Output layer consist of any activation function It has connections between the 

input layer and rest hidden layer, between hidden layers and between hidden 

layer and the output layer. 

 It is an extended Perceptron, with one or more layers hidden between the input 

and output layers. 

 Due to its extended structure, a Multi-Layer Perceptron can solve any logical 

operation, including the XOR problem. type Feedforward 

 

Figure 2.6 - MLP Architecture 
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The architecture of an MLP is straightforward yet powerful. Its layered structure-

with an input layer, one or more hidden layers applying non-linear transformations, 

and an output layer- allows it to approximate complex functions. The fully connected 

nature and the training process via backpropagation are key components that enable 

MLP to learn from data effectively [25]. 

2.3.4. Convolutional Neural Network (CNN) 

The Convolutional Neural Network (CNN) [29] is a specialized deep learning 

architecture designed to process data with a grid-like topology, such as images. Its 

architecture is typically composed of several key layers and components that work 

together to extract and learn hierarchical features. CNNs have a come a long way in 

recent years. CNNs have been really beneficial for the field of deep learning for 

computer vision and image processing. In this article, we will be analyzing the 

common architectures of CNN. 

 

Figure 2.7 - Architecture of Convolution Neural Networks 
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 Classic network architecture of convolution neural networks: It typically 

follows a structured sequence of layers designed to automatically and adaptively 

learn spatial hierarchies of features from input images: 

 Input Layer: Receives raw pixel data (e.g., an image of size 32×32×3 for a 

color image). 

 Convolutional Layers: Apply multiple filters (kernels) to the input to 

extract feature maps such as edges, textures, and patterns. Each filter slides 

over the input image to create an activation map. 

 Activation Function (typically ReLU): Introduces non-linearity after each 

convolution operation to help the network learn complex patterns. 

 Pooling Layers (Subsampling/Downsampling): Reduce the spatial 

dimensions (width and height) of the feature maps while retaining the most 

important information. Common methods include Max Pooling and 

Average Pooling. 

 Fully Connected (Dense) Layers: After several convolutional and pooling 

layers, the high-level reasoning in the neural network is done via fully 

connected layers. These layers connect every neuron from the previous 

layer to the next. 

 Output Layer: Produces the final prediction, usually through a Softmax 

activation (for classification tasks) or another suitable function. 

2.3.5. Hybrid Models 

A Hybrid Architecture [26] refers to a system that combines different types of 

systems, such as connecting multiple SMP machines using a high-speed interconnect 
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or linking small MPP machines that share memory. The choice of a hybrid architecture 

depends on the specific application's requirements and concurrency needs. Hybrid 

models in the context of artificial intelligence and machine learning refer to 

approaches that combine two or more different modeling techniques or paradigms to 

leverage the strengths of each. These models are designed to address the limitations 

inherent in any single method by integrating complementary methods. Many 

organizations need a hybrid approach to analytics, automation, and services because 

their data is hosted both on-premises and in the cloud. Organizations often extend on-

premises data solutions to the cloud. some common aspects and examples of hybrid 

architecture in AI as shown in figure 2.8 : 

 

 

Data collection: Simulation and measurement -based dataset generation 

Data preprocessing: Normalization - Features selection - Augmentation 

Training process: Choosing  hyper-parameters  - Loss function –Optimizers 

Validation techniques: Cross validation - Test dataset - Performance evaluation 

 

Figure 2.8 - Architecture of the Hybrid Model 
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Optimizers play a vital role in the performance and efficiency of neural networks. 

The selection of an appropriate optimizer depends on several factors including dataset 

characteristics, model complexity, convergence speed, and generalization ability. 

While traditional methods such as SGD remain useful, modern alternatives like Adam, 

AdamW, and Lookahead have become standard in many deep learning applications. 

2.4. Validation Techniques for Artificial Neural Network Models 

Validation is a critical process in training artificial neural networks to ensure that 

the model generalizes well to unseen data. While training focuses on minimizing the 

loss function on the training dataset, validation assesses the model's performance on a 

separate dataset that is not used for training. This helps prevent overfitting and guides 

the selection of hyper-parameters. 

 Hold-Out Validation: This is the simplest method, where the original dataset is 

split into: 

 Training set (e.g., 70–80%) 

 Validation set (e.g., 10–15%) 

 Test set (e.g., 10–15%) 

The model is trained on the training set, and its performance is monitored on the 

validation set. After training, final performance is reported on the test set. 

 Pros: Fast and simple 

 Cons: May lead to high variance depending on the data split 

 K-Fold Cross-Validation: The dataset is divided into K equally sized folds. The 

model is trained K times, each time using a different fold for validation and the 
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remaining K−1 folds for training. The average validation performance across all 

folds is reported. 

 Pros: More reliable estimate of performance 

 Cons: Computationally intensive 

 Stratified K-Fold Cross-Validation: A variant of K-Fold that ensures each fold 

maintains the same class distribution as the entire dataset. It is particularly useful 

for imbalanced classification problems. 

 Pros: Balanced evaluation 

 Cons: Slightly more complex implementation 

 Leave-One-Out Cross-Validation: A special case of K-Fold where K = number of 

samples. Each sample is used once as validation, and the rest for training. 

 Pros: Makes full use of the data 

 Cons: Extremely computationally expensive for large datasets 

 Time-Series Split: For time-dependent data (e.g., financial, weather, sensor data), 

data must be split chronologically to preserve temporal order. Typically, the training 

set precedes the validation set in time. 

 Pros: Respects time dependencies 

 Cons: Can lead to limited validation size 

 Nested Cross-Validation: Used for both model selection and evaluation, especially 

when tuning hyper-parameters. An inner loop is used for hyperparameter tuning, 

while an outer loop evaluates generalization performance. 

 Pros: Reduces bias in model selection 

 Cons: Computationally expensive. 
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2.5. Advantages of ANN over Conventional Modeling Methods 

 Learning ability: One of the main advantages of ANNs is their ability to learn and 

adapt to new situations. They can be trained on large datasets and learn patterns that 

are not easily discernible by humans. 

 Non-Linear Relationships:  ANNs are capable of learning non-linear relationships 

between inputs and outputs, making them useful in a wide 

 They can also be adapted to handle different types of data and perform different 

types of tasks.range of applications such as image and speech recognition. 

 Fault tolerance: ANNs are also able to tolerate faults, meaning that they can still 

function correctly even if some of the neurons in the network are damaged or 

destroyed. 

 Handles missing data: Another advantage of artificial neural networks is that they 

remain functional despite noise or errors in data. This makes them suitable in 

situations with noisy, incomplete, or corrupted data. 

 Parallel processing: Another advantage of ANNs is their ability to perform many 

calculations simultaneously, which allows them to process large amounts of data 

quickly and efficiently. 

 Generalization ability: ANNs can generalize from examples they have seen during 

training and apply their learning to new data. This means that they can make 

accurate predictions even on data they have not seen before 

 Uses large datasets: Artificial neural networks can learn and generalize from large 

amounts of data. They can be trained using large datasets and this allows them to 

make predictions and decisions based on patterns. 
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2.6. Conclusion  

A neural network is an artificial representation of the human brain that attempts 

to simulate the learning process. The term "artificial" means that neural networks are 

implemented in computer programs that are able to handle the large number of 

calculations required during the learning process. Artificial neural networks (ANNs), 

like people, learn by example. An ANN is configured for a specific application, such 

as pattern recognition or data classification, through a learning process, connections 

that exist between the neurons. This is true of ANNs as well, they are composed of 

layers of interconnected processing units – neurons- that transform input data through 

a series of weighted connections and activation functions. The ability of ANNs to 

approximate complex, nonlinear functions makes them powerful tools for modeling, 

prediction, classification, and optimization tasks. 
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3.1. Introduction 

In antenna design, engineers often face challenges involving multi-variable 

optimization, where numerous geometrical and electrical parameters influence the 

antenna's performance. Parameters such as resonant frequency, bandwidth, gain, 

efficiency, return loss, and radiation pattern must all be carefully considered. 

Traditional design methods typically involve full-wave electromagnetic (EM) 

simulations, parametric sweeps, and manual tuning processes that can be both time-

consuming and computationally intensive. ANNs offer a promising alternative by 

acting as surrogate models or predictive engines that can learn the input-output 

relationships from previously simulated or measured antenna data. Once trained, an 

ANN can rapidly predict performance metrics based on input design parameters, or 

inversely, determine suitable design parameters to achieve target specifications. This 

greatly accelerates the design process and reduces the computational cost [23]. 

3.2. ANN Relevance in Antenna Designs 

Artificial Neural Networks (ANNs) have emerged as powerful tools in the field 

of antenna design, offering efficient alternatives to traditional simulation-based 

approaches. Antenna design is inherently a complex, nonlinear, and multi-parametric 

problem, involving a wide range of variables such as geometry, materials, frequency 

response, bandwidth, gain, and radiation patterns. Traditional methods like full-wave 

electromagnetic simulations, while accurate, are often computationally expensive and 

time-consuming, especially when multiple design iterations are required. 
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ANNs address these challenges by learning the intricate relationships between 

input design parameters and output performance metrics from existing simulation or 

measurement data. Once trained, an ANN model can predict antenna characteristics 

(like resonant frequency or return loss) or suggest optimal design parameters with high 

speed and accuracy. This not only reduces the need for repeated simulations but also 

enables rapid optimization, real-time analysis, and intelligent design exploration. In 

modern antenna engineering — especially for complex structures such as microstrip 

patch antennas, MIMO systems, or antennas for 5G and IoT applications — ANNs 

enhance the design process by enabling inverse design, tolerance analysis, and 

performance prediction under various conditions. They can also be integrated with 

evolutionary algorithms or electromagnetic solvers to create hybrid optimization 

frameworks [29]. 

3.3. State of Art of ANN-Based Modeling for Patch Antenna Designs 

The design of microstrip patch antennas is a complex and multi-objective 

optimization problem that involves numerous parameters such as geometry, substrate 

properties, and operating frequency. Traditional design methods rely heavily on full-

wave electromagnetic (EM) simulations, which, although accurate, are often 

computationally intensive and time-consuming, especially when exploring large 

design spaces or performing inverse designs. To overcome these limitations, Artificial 

Neural Networks (ANNs) [30-31] have emerged as efficient surrogate models capable 

of learning the nonlinear relationships between antenna design parameters and 

performance metrics such as resonant frequency, return loss, bandwidth, and radiation 

efficiency. 
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Early research in this domain, such as that by Patnaik et al. (2000), demonstrated 

the use of feedforward ANNs to predict the resonant frequency and bandwidth of 

rectangular patch antennas with reasonable accuracy. Subsequent works expanded the 

scope to include multi-output models and hybrid approaches combining ANN with 

optimization algorithms like Genetic Algorithms (GAs) and Particle Swarm 

Optimization (PSO). These hybrid methods further improved the design accuracy and 

computational efficiency. Das et al. (2013) presented an ANN-based approach for 

modeling the input impedance and return loss, showing excellent generalization 

capability across a wide design space. Recent studies have also explored the use of 

deep neural networks (DNNs) for more complex antenna structures and multi-layer 

configurations. 

More advanced architectures, including Convolutional Neural Networks (CNNs) 

and Long Short-Term Memory (LSTM) networks, are now being applied to extract 

spatial and temporal features from high-dimensional design data. These models are 

often integrated into closed-loop frameworks with EM simulators, where the ANN 

serves as a fast surrogate model that accelerates convergence during optimization. The 

work of Abdelrahman et al. (2021) offers a comprehensive review of hybrid machine 

learning approaches in antenna design, emphasizing the growing role of ANN in 

reducing simulation cost, enhancing prediction accuracy, and enabling real-time 

design feedback. Overall, ANN-based modeling is becoming a cornerstone 

methodology for modern patch antenna design, particularly in the development of 

compact, high-performance antennas for 5G, IoT, and wearable applications. 
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3.4. Patch Antenna EM Design 

3.4.1. Designing Tools 

Various software tools are used in this study. Below is a concise presentation of 

each, along with its role in the modeling task: 

 HFSS: It is 3D high-frequency electromagnetic simulation software developed by 

ANSYS. It is based on the finite element method (FEM) to solve Maxwell's 

equations. It enables precise analysis of complex structures such as antennas, 

waveguides, and RF/microwave components, by providing key results including 

scattering parameters (S), impedances, reflectance factors (VSWR), and the spatial 

distribution of electromagnetic fields. 

HFSS is used for designing an initial structure of a rectangular patch antenna and 

extracting its EM response. It allows defining parameters and varying them during 

simulation to understand the antenna response’s behavior and extract the needed 

data set. One of the advantages of HFSS is its ability to directly provide the return 

loss parameter (S11), the voltage standing wave rate (VSWR) and impedance 

parameters (Z) as a function of frequency. 

 Python and Google Co-Lab: It is an open-source programming language known 

for its simplicity, readability, and extensive scientific libraries, such as NumPy, 

Pandas, TensorFlow, and Keras. It is used to develop the ANN to allow data 

processing and antenna modeling. It is mainly employed to train and evaluate the 

applied machine learning model. Google Co-Lab, is a also a free platform offered 

by Google that allows users to write and execute Python code directly in their web 
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browser. It enables the execution of Jupyter notebooks without the need to worry 

about hardware specifications or software installations. This tool is particularly 

useful in the fields of artificial intelligence, data processing and machine learning. It 

allows easy access to computing resources (CPU, GPU, TPU) as well as libraries 

commonly used for developing, training and evaluating models, including artificial 

neural networks. 

3.4.2. Initial Patch Antenna Design 

The explored patch antenna [32] is of a rectangular shape. It has been designed 

using HFSS to meet the specifications defined as follows: 

 A dielectric substrate of Rogers RT/duroid 6002 having a permittivity                     ݎߝ = 2.49, a thickness ݄ = 0.32 ݉݉ and a tangent loss ߜ = 0.001 

 A direct microstrip feed line that is assumed to be 50Ohms. 

 A wide frequency range from 60 to 66 GHz. 

 An implemented patch and ground plane using copper. 

 An overall size of  7.91 × 7.2 mm
2
 for the proposed antenna. 

Figure 3-1 illustrates the initial antenna structure obtained by using matching 

technique that involves inserting notches at the corners of the rectangular patch to 

achieve the target goal for the desired frequency. Initial antenna dimensions are 

summarized in table 3-1. The initial patch antenna EM response is displayed in figure 

3.2 that is of -24dB of return loss and 1,13 of voltage standing wave rate at the 

resonance frequency which is equals to 60.66GHz. 
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(a)                                                                           (b) 

Figure 3.1 - Initial patch antenna design, (a) 2D / (b) 3D view in HFSS  

Table 3.1 - Geometric dimensions of the initial patch antenna design 

Parameters Value (mm) 

Ground plane 
Width (ܹ݃ ) 7.91 

Length (݃ܮ) 7.2 

Substrate 
Width (ܹܵ ) 7.91 

Length (ܵܮ  ) 7.2 

Patch 
Width (W) 4.73 

Length (L) 3.055 

Transformer 
Width ( ܹܶ) 0.2 

Length  (ܶܮ) 2.5 

Feedline 
Width (  1.5 (ܨܹ

Length (ܨܮ) 1 

 

     
(a)                                                                                  (b) 

Figure 3.2 – Initial patch antenna EM response, (a) return loss (𝑺𝟏𝟏), (b) voltage 

standing wave rate (VSWR)  
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3.4.3. DGS Implementation to the Patch Antenna Design 

Defected Ground Structure (DGS) technique has been introduced to enhance the 

electromagnetic performance. This method involves creating a specific slot in the 

ground plane, which alters the propagation characteristics of electromagnetic waves 

and reduces unwanted effects such as surface waves, spurious resonances, and 

undesirable coupling. In this design, a π-shaped slot has been modeled in the ground 

plane using HFSS, known for its ability to improve impedance matching and reduce 

losses. 

 
Figure 3.3 – Implemented DGS geometry 

        
(a)                                                                                  (b) 

Figure 3.4 – DGS patch antenna EM response, (a) return loss (𝑺𝟏𝟏), (b) voltage 

standing wave rate (VSWR)  
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It is clearly shown that the antenna achieves a good reflection level of 

approximately -35.60dB and good voltage standing wave rate of 1.03 at 63.81GHz due 

to the good impedance matching.  

3.5. ANN-Based Modeling for Patch Antenna Design 

3.5.1. Data Collection  

Upon finalizing, the antenna design stage, a data collection process has been 

initiated as a crucial step for building a training dataset for subsequent modeling using 

ANN. This phase involved defining the input variables of the antenna, performing 

multiple simulations through parametric sweep techniques using HFSS and extracting 

the necessary data including the reflection coefficient (real and imaginary parts).  

The input variables primarily consisted of the geometrical characteristics of both 

patch and DGS, in addition to operating frequency. These variables were chosen due 

to their direct impact on the electromagnetic behavior of the antenna. Each parameter 

was assigned a variation range and a number of sweep points (count) to ensure the 

generation of diverse and sufficient data. The table 3.2 below summarizes the selected 

parameters, their respective variation ranges, and the number of values used in each 

sweep: 

Table 3.2 - Input parameters for data collection 

 

 

 

Dimensions Bottom Top Count 

Freq (GHz) 60 66 100 1ݏܮ (mm) 5.4 5.9 6 ܺ3 (mm) 0.32 0.37 6 ܺ5 (mm) 0.175 0.17505 6 

6ܻ (mm) 5.5 6 6 
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HFSS automatically ran a series of simulations, where different sets of geometric 

parameters were applied in each run. For each simulation, the antenna's response was 

extracted in the form of the reflection coefficient. The output data included both its 

real and imaginary parts which will later serve as output values for training the ANN 

model. After completing all simulations, the antenna’s performance is analyzed by 

evaluating the variation of the reflection coefficient across the frequency range from 

60GHz to 66GHz. This parameter is essential for assessing impedance matching and 

identifying the resonance frequency. 

 

Figure 3.5 - Representation of reflection coefficient sweeps as a function of 

resonance frequency 

Upon completing the simulations and collecting the results, the data was 

organized and stored directly using HFSS. This dataset includes all input variables for 

each simulation, along with the corresponding output results represented by the real 

and imaginary parts of the reflection coefficient. This dataset plays a key role in 

training and validating ANN model, which is designed to predict the antenna’s 

electromagnetic behavior based on its geometrical configuration and operating 

frequency. 
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3.5.2. ANN Model  

A neural network architecture is chosen in a way that suits the design problem 

solving according to collected data characteristics by considering the number of layers, 

the types of activation function and the connectivity schemes based on the complexity 

of the problem and the available computing resources. In this study, the develop ANN 

model is illustrated by the figure 3.6 below: 

 

Figure 3.6 – developed ANN topology 

Inputs are the geometric DGS parameters including (Ls1, x3, x5, y6) in addition to 

the operating frequency. Lets x = [x1, x2, x3, x4, x5] represent the vector of the model’s 

inputs, and lets y = [y1, y2] represent the vector of the model's outputs. The vector y 

contains the real and imaginary parts of the S11 parameters. Five hidden layers were 

used with ReLU and sigmoid activation functios  as shows the figure 3.7: 

 

Figure 3.7 – Developed ANN model of a single neuron 

X5 
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The network initializes the weights (w) and biases (b) randomly for each neuron 

in the network, then it takes the input data and propagates it forward through the layers 

to calculate the final output. The input layer consists of 5 neurons, each representing 

one input feature, each neuron in the input layer multiplies its corresponding input 

value with its weight and sums them up with the bias term. 

The ReLU activation function is then applied to the weighted sum, which sets 

negative values to 0 and keeps positive values unchanged. Similarly, the above steps 

are repeated for each neuron in each hidden layer, propagating the inputs forward 

through the network. The network compares the predicted outputs with the desired 

outputs and calculates the loss or error. This can be done using a suitable loss function, 

such as mean squared error (MSE) or cross-entropy loss. 

Backpropagation is the process of updating the weights and biases to minimize 

the loss, the network calculates the gradients of the loss with respect to the weights and 

biases using the chain rule of calculus, these gradients indicate how much each weight 

and bias contributes to the overall loss, and they are used to update the weights and 

biases in the opposite direction of the gradient, thereby reducing the loss. The weights 

and biases are updated using an optimization algorithm, such as stochastic gradient 

descent (SGD), multiplied by a learning rate to control the step size of the updates. 

3.5.3. Training Stage 

Training the ANN model involves the process of iteratively presenting the 

training dataset to the model, calculating the loss, and updating the model's internal 

parameters to minimize prediction errors. Steps involved in training  are: 
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 Define the training process and the loss function: The number of epochs 

(iterations) is specified. An appropriate loss function is chosen to measure the 

discrepancy between the model's predicted outputs and the true outputs in the 

training dataset. 

 Select an optimizer: An optimization algorithm is selected to update the model's 

parameters based on the calculated loss.  

 Training loop: The training dataset is iterated for the specified number of epochs. 

In each epoch, present the input samples to the model and obtain the predicted 

outputs. Compare the predicted outputs with the true outputs and calculate the loss 

using the chosen loss function. 

 Backpropagation and parameter update: A backpropagation is performed to 

calculate the gradients of the loss with respect to the model's parameters. The 

optimizer updates the model's parameters accordingly, using the gradients and the 

chosen optimization algorithm. 

 Monitor training progress: During training, monitor and log metrics such as loss, 

accuracy, or other relevant evaluation metrics on the training set. This allowed to 

assess the model's performance and detect any potential issues. 

 Validation set evaluation: The model's performance is periodically evaluated on a 

separate validation dataset to assess its generalization capabilities and prevent 

overfitting. 

 Hyperparameter tuning: Different hyperparameter values such as learning rate, 

batch size and/or regularization techniques are experimented to find the best 

combination that maximizes the model's performance on the validation set. 
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 Iterate and refine: Based on the evaluation results, the model is refined to adjust 

hyperparameters, introduce regularization techniques and/or modify the network 

architecture as necessary. 

 Test set evaluation: Finally, the model's performance is assessed on a separate test 

dataset that was not used during training or validation. Relevant metrics are 

evaluated to gauge the model's generalization capabilities. 

 

Figure 3.8 - Overall development process diagram of the developed ANN model 
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A python simulation script is used to train the ANN model training because it 

allows customizing various aspects of the network, facilitating a deeper understanding 

of neural networks and their applications. The general process of the developed ANN 

model parametric model based python is illustrated by figure 3.8 above. 

 Step 1- Data preparation: Starting with collecting the data and preprocessing it.  

 

 Step 2 - Normalization and standardization: Normalizing features involves 

adjusting all features to a common scale, which improves the accuracy of ANN 

detection.  

 Step 3 – Training and testing model: This line trains the model using the training 

features (x train) and training labels (y train). The training is performed for 100 

epochs, where an epoch represents a complete pass through the entire training 

dataset.  
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Figure 3.9 - Training and testing dataset split 

 Step 4 - Implementation of ANN model: Use the trained model to predict S-

parameters for new geometric configurations. 

 

Table 3.3 - Make prediction 

Iteration Real of S11 Imaginary of S11 

Real value -0.12325997 -0.11197192 

Predicted value -0.14129093 -0.1114959 

Real value -0.42618481 -0.07313558 

Predicted value -0.42236537 -0.05730164 

Real value -0.47033788 -0.04204915 

Predicted value -0.47152174 -0.0215576 

 

 Step 5 – Test evaluation: In this case the mean square error on the error metric is 

chosen to evaluate the developed ANN model. The mean square error metric 

Available data 

Training Testing 
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calculate the average magnitude of the errors between the actual and predicted 

values :  ܧܵܯ = 1݊ | �ܻ�݅ − �ܻ�݅|݊݅
=1

2
 

 

3.6. Results and Discussion 

 

Figure 3.10 - Comparison of S11 parameter between simulated and predicted 

values 

From figure 3.10, it is clearly observed that a successful alignment of both real 

and imaginary values of S11 parameter as provided by the HFSS and predicted by the 

developed ANN model is obtained. This comparison has been made using a data test 



Chapter 3: ANN-Based Modeling for Patch Antenna Design 

 56 

by X_Test = [ 5.8     0.36    0.17504    5.9] that falls in the range of 0 to 100 at the first 

simulation . 

 

Figure 3.11 – Comparison of S11 magnitude between simulated and predicted 

values 

The magnitude of S11 parameter is also plotted as function of frequency for both 

the true values and the predicted values of the selected data (figure 3.11). The figure 

compares the magnitude values of a data set with the predicted values from a model. 

The data test of X_Test = [5.8  0.36 0.17505  5.9] falls in the range of 600 to 700. 

From the assumption that the output results are almost good. The predicted values 

closely align with the magnitude values of the data set, indicating accurate predictions.  

The phase of S11 parameter built by the ANN model (figure 3.12) closely match 

the target simulated values, demonstrating a high level of accuracy in the simulation of             

X_Test = [5.8  0.36 0.17505  5.9] which is from data test between 1600 and 1700 that 

builds confidence in the model's predictive ability. 
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Figure 3.12 – Comparison of S11 phase between simulated and predicted values 

 

Figure 3.13 – Test results (mean absolute error metric) 
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Foundational steps have been required to build effective ANN model, from data 

preprocessing to training, testing, evaluating then deployment. The developed ANN 

model presents an efficient tool in designing the explored DGS patch antenna. A 

specific synthesis is defined as the forward side and then analysis as the reverse side of 

the problem. Therefore, using the geometric DGS dimensions at the output of the 

synthesis network can predict the response of the patch antenna which are the real and 

imaginary parts of S11 with high accuracy and very low MAE (figure 3.13). 

3.7. ANN-based Patch Antenna Advantages   

The use of ANNs in the design and analysis of patch antennas is becoming 

increasingly popular due to their ability to model complex and nonlinear relationships. 

Main advantages of using ANN in antenna design can be summarized as follows [14]: 

 Fast and accurate design optimization: Reduce the time and computational cost 

which is involved in traditional design methods like full-wave EM simulations. 

Provide quick predictions of antenna parameters (e.g., resonant frequency, gain, 

bandwidth) based on geometric and material inputs. 

 Inverse design capabilities: Enable inverse modeling, where desired antenna 

performance metrics (e.g., bandwidth, frequency) are given, and the ANN predicts 

the optimal design parameters. 

 Nonlinear function approximation: Model the "complex, nonlinear behavior" of 

patch antennas that may not be easily described by analytical equations. 

 Multi-objective optimization: Simultaneously optimize several performance 

metrics (e.g., bandwidth, gain, return loss) using ANN models in conjunction with 

optimization algorithms like GA or PSO. 
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 Adaptive and Intelligent Design: Allow for self-learning and adaptability in 

design processes. Improve performance with iterative learning. 

 Efficient parametric studies: Rapidly explore the effect of varying parameters 

(e.g., substrate thickness, dielectric constant, patch dimensions) on antenna 

performance. 

  Integration with CAD tools: Serve as a surrogate model in design software to 

accelerate the optimization loop within electromagnetic solvers. 

3.8. Conclusion  

Engineers frequently encounter complex multi-variable optimization problems in 

antenna design, where numerous geometric and electrical parameters significantly 

affect performance. Key factors such as resonant frequency, bandwidth, gain, 

efficiency, return loss, and radiation pattern must be meticulously evaluated. 

Conventional design approaches rely heavily on full-wave electromagnetic (EM) 

simulations, parametric analyses, and manual tuning, which are often both time-

consuming and computationally demanding. Artificial Neural Networks (ANNs) 

present a compelling alternative by serving as surrogate models capable of learning the 

relationships between design inputs and performance outputs from prior simulations or 

experimental data. Once trained, ANNs can swiftly predict performance metrics from 

given design parameters or inversely determine optimal design configurations to meet 

specific targets. This significantly streamlines the design workflow and minimizes 

computational overhead. 



 
 
 
 
 
 
 
 
 
 

General Conclusion 
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This study has demonstrated the potential of leveraging artificial intelligence 
particularly artificial neural networks (ANNs)to model and optimize a patch 
antenna incorporating a Defected Ground Structure (DGS). The primary objective 
was to highlight how AI techniques can be utilized to enhance antenna 
performance while significantly reducing design costs and development time. 

We began by conducting a comprehensive analysis of the electromagnetic 
characteristics of patch antennas, with a specific focus on the role of DGS in 
improving performance metrics. This investigation underscored key challenges in 
antenna design, including miniaturization, bandwidth enhancement, and the 
optimization of operational parameters. 

Subsequently, we examined the fundamental concepts of artificial neural 
networks, detailing their structure, operating principles, and the various 
architectural types both static and dynamic. This theoretical foundation was 
essential to support their application in the field of electromagnetic modeling. 

The final phase of this work presented a practical implementation of 
ANN for the modeling and optimization of a 64GHz DGS patch antenna. Using a 
dataset generated through electromagnetic simulations, we trained an ANN 
capable of accurately predicting critical performance parameters such as resonance 
frequency, bandwidth, and gain based on geometric inputs.  
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The results validated the ANN’s capacity to reduce design time and 

effectively optimize antenna parameters, all while maintaining a high level of 
predictive accuracy. These findings confirm the relevance of integrating ANN as 
intelligent tools in antenna design processes. Looking forward, several avenues for 
further research can be identified: 
 Expanding the training dataset to encompass a wider variety of antenna 

geometries and frequency bands; 
 Investigating alternative AI methodologies, such as convolutional neural 

networks or evolutionary algorithms; 
 Conducting experimental validation of the proposed configurations to reinforce 

the credibility of the simulation-based results. 
Finally, this study demonstrates that the incorporation of ANN into the 

antenna design process that offers a fast, effective, and cost-efficient approach. 
Future work aiming at broadening the learning scope, applying advanced AI 
architectures, and validating results experimentally could further enhance the 
robustness and applicability of this methodology. 
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Summary 
 

Patch antennas are essential components in wireless communication systems, 

supporting various applications. They are easily implemented using planar technology, 

consisting of a microstrip patch on the top and a grounded substrate on the bottom. Designing 

patch antennas still faces limitations and requires effective techniques to achieve high 

electromagnetic (EM) responses. Artificial Neural Network (ANN)  modeling  is  a  powerful  

technique  for  optimizing  patch  antenna  performances.  By learning complex relationships 

between design parameters and performance metrics, ANN models can predict antenna 

characteristics with high accuracy. This  approach  reduces  computational  costs  compared  

to traditional  simulation  methods  and  enables  rapid  design  optimization  for  improved  

efficiency, bandwidth,  and  radiation  performance.  In this regard, this study aims to develop 

efficient patch  antenna  designs  using  accurate  ANN modeling, combined with  an  EM  

simulator  as  a  realistic environment for effective optimization procedures.   
 

Key words:  Wireless communications, Patch Antennas, EM-Response, Return Loss, ANN 

Modeling. 

 

 ملخص
 

Ϊόُت ΕائياϮϬϟا ΔόّϗήϤϟا Ϧϣ ΕاϧϮّϜϤϟا Δفي الأساسي ΔϤψϧأ Εالاμالات ،ΔيϜϠلاسϟحيث ا ϢϋΪت ΔϋϮϤجϣ Δόاسϭ Ϧϣ 
ΕاϘيΒتطϟا .ϦϜϤيϭ اϫάيϔϨت ΔϟϮϬبس ϡاΪΨباست ΔيϨϘت ،ΔيϮستϣ ϥϮّϜتتϭ Ϧϣ Δόϗέ ΔيطيήشϭήϜيϣ ى فيϠϋالأ ΔϘΒطϭ Δيοέى أϠϋ 

 استΪΨاϡ يتطϠب Ϥϣا اϘϟيΩϮ، بξό تϮاجϪ اϮϬϟائياϩάϫ Ε تϤμيϠϤϋ ϢيΔ تΰاϝ لا بساطتϬا، έϭغϢ. اήϟكيϦϣ Γΰ اϟسϠϔي اϟجاϧب
ΕياϨϘت Δϟاόّف ϖيϘتحϟ Εاستجابا ΔاطيسيϨغϣϭήϬك Δيϟاϋ .ήΒتόُيϭ ΔجάϤϧ ΕاϜΒشϟا ΔيΒμόϟا ΔيϋاϨالاصط ΔيϨϘت ΔيϮϗ Ϧتحسيϟ اءΩأ 

ΕائياϮϬϟا ،ΔόّϗήϤϟحيث ا ϦϜّϤُت ϩάϫ جΫاϤϨϟا Ϧϣ ϢّϠόت Εاϗلاόϟا ΓΪϘόϤϟا Ϧبي ΕاϤϠόϣ ϢيϤμتϟا ΕاήشΆϣϭ ،اءΩي الأϟتاϟباϭ ΆΒϨتϟا 
 Ϡϋى اόϤϟتΓΪϤ اϟتϠϘيΪيΔ باϟطϘϣ ϕήاΔϧέةً  اϟحسابيΔ اΔϔϠϜϟ تϠϘيϞ في اϘϤϟاέبϭ ϩάϫ Δتسُاϋ .ϢϫاϟيΔ بΔϗΪ اϮϬϟائي بμΨائص
،ΓحاكاϤϟا اϤتتيح ك Ϧتحسي ϢيϤμتϟا Δϋήبس Ϧϣ Ϟأج ϊفέ ،ΓاءϔϜϟا ϊسيϮتϭ νήϋ ،ϕطاϨϟا Ϧتحسيϭ اءΩأ ωاόفي. الإشϭ اάϫ 
،ϕسياϟف اΪϬت ϩάϫ ΔاسέΪϟى اϟ· ήيϮتط Ϣيϣاμت Δϟاόف ΕائياϮϬϟ Δόّϗήϣ ϡاΪΨباست ΔجάϤϧ ΔϘيϗΩ ΕاϜΒشϠϟ ΔيΒμόϟا 

،ΔيϋاϨك الاصطϟΫϭ ΩاϤتϋى بالاϠϋ حاكيϣ اطيسيϨغϣϭήϬحيط كϤي كόϗاϭ ϖيΒتطϟ Εاءاήج· Ϧتحسي Δϟاόّف. 

 
Εالكلما Δالمفتاحي: Εالاμالات ،ΔيϜϠلاسϟا ΕائياϮϬϟا ،ΔόϗήϤϟا Δالاستجاب ،ΔاطيسيϨغϣϭήϬϜϟا ϥاΪϘف ،αاϜόϧالا ΔجάϤϧ 
ΕاϜΒشϟا ΔيΒμόϟا ΔيϋاϨالاصط. 

 

Résumé 
 

Les antennes patch sont des composants essentiels dans les systèmes de communication 

sans fil, soutenant une variété d’applications. Elles sont facilement réalisables grâce à la
technologie planaire, consistant en une plaque micro-ruban sur la face supérieure et un 

substrat relié à la masse en dessous. Cependant, la conception des antennes patch reste limitée 

par certains défis et nécessite des techniques efficaces pour obtenir de bonnes performances 

électromagnétiques (EM). La modélisation par réseaux de neurones artificiels (RNA) 

représente une méthode puissante pour optimiser les performances des antennes patch. En 

apprenant les relations complexes entre les paramètres de conception et les indicateurs de 

performance, les modèles RNA permettent de prédire avec une grande précision les 

caractéristiquesdel’antenne.Cetteapprochepermetderéduirelescoûtsdecalculparrapport
aux méthodes classiques de simulation, tout en accélérant le processus d’optimisation pour
améliorerl’efficacité,labandepassanteetlesperformancesderayonnement.Danscecadre,
cette étude vise à développer des conceptions d’antennes patch efficaces en utilisant une
modélisation RNA précise, combinée à un simulateur électromagnétique servant 

d’environnementréalistepourdesprocéduresd’optimisationperformantes. 
 

Mots clés : Communications sans fil, antennes patch, réponse électromagnétique, perte de 

retour, modélisation par réseaux de neurones artificiels. 


