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ABSTRACT 

 
Terahertz (THz) communications is considered one of the most 

promising wireless technologies for the sixth generation (6G) and beyond. A 

fundamental challenge for the practical deployment of THz systems is accurate 

channel estimation, due to the unique propagation characteristics of THz 

frequencies. In this context, we address the problem of channel modeling and 

estimation by considering deterministic propagation and the physical 

characteristics specific to THz bands. We also explore the application of machine 

learning algorithms for THz channel estimation, including Neural Networks 

(NN), Logistic Regression (LR), and Projected Gradient Ascent (PGA). 

we provide a clear explanation of machine learning and deep learning, 

introducing the three main types of machine learning: supervised, unsupervised. 

The objective is to offer a comprehensive understanding of what machine learning 

truly is and why it is essential. Furthermore, In the final chapter, we present 

simulation results showcasing a recent class of radio channel estimation based on 

Deep Neural Networks (DNN), which differs fundamentally from the classical 

channel estimation algorithms previously discussed. 

Keywords: 6G wireless communication, Terahertz (THz) frequency band, 

channel estimation algorithms, Logistic Regression (LR), Projected Gradient 

Ascent (PGA), Deep Neural Networks (DNN) 
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RÉSUMÉ 

 
Les Télécommunications basées sur le Terahertz (THz) sont considérées 

comme l’une des technologies sans fil les plus prometteuses pour la sixième 

génération (6G) et au-delà. Un défi fondamental pour le déploiement pratique des 

systèmes THz réside dans l’estimation précise du canal, en raison des 

caractéristiques de propagation uniques des fréquences THz. Dans ce contexte, 

nous abordons le problème de la modélisation et de l’estimation du canal en 

prenant en compte la propagation déterministe ainsi que les caractéristiques 

physiques spécifiques aux bandes THz. Nous explorons également l’application 

d’algorithmes d’apprentissage automatique pour l’estimation du canal THz, y 

compris les réseaux de neurones (NN), la régression logistique (LR) et l’ascension 

de gradient projetée (PGA). 

Nous fournissons une explication claire de l’apprentissage automatique et de 

l’apprentissage profond, en introduisant les trois principaux types d’apprentissage 

automatique : supervisé, non supervisé. L’objectif est d’offrir une compréhension 

complète de ce qu’est réellement l’apprentissage automatique et pourquoi il est 

essentiel. De plus, dans le dernier chapitre, nous présentons des résultats de 

simulation mettant en évidence une nouvelle classe d’estimation de canal radio 

basée sur les réseaux de neurones profonds (DNN), qui diffère fondamentalement 

des algorithmes classiques d’estimation de canal précédemment abordés. 

 

 

Mots-clés: Télécommunications sans fil 6G, Bande Terahertz (THz), Channel 

Estimations, Logistic Regression (LR), Projected Gradient Ascent (PGA), Deep 

Neural Networks (DNN) 
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GENERAL INTRODUCTION 

 
Communication methods have undergone a radical transformation since 

the dawn of humanity: over the past millennium, we shifted from relying on fire 

and animal messengers to using electrical signals. 

In the last few decades, wireless systems have evolved at an astonishing 

pace today, terahertz (THz) communication systems (300 GHz–10 THz) are at the 

forefront of the transition toward sixth-generation (6G) networks, thanks to the 

extraordinarily high data rates they promise. However, operating at such high 

frequencies brings fundamentally new physical challenges that complicate 

channel modeling and estimation, including increased atmospheric absorption 

losses, near field multipath dispersion, elevated receiver noise, and diminished 

obstacle penetration compared to earlier mmWave bands (30 GHz–300 GHz). 

Against this backdrop, recent research has focused on developing mmWave 

MIMO channel estimation techniques as a stepping stone to THz applications. To 

overcome these obstacles, machine learning based solutions have emerged as a 

primary tool for improving channel estimation accuracy without relying on overly 

simplified statistical models. For example, some researchers have proposed using 

a Deep Convolutional Neural Network (DCNN) Channel estimation algorithms 

based on Deep Convolutional Neural Networks (DCNNs) are employed, where 

the terahertz (THz) channel is simulated using a channel model originally 

developed for millimeter-wave (mmWave) systems, with the frequency 

parameters adjusted accordingly, This approach leverages existing modeling 

techniques while tailoring them to the challenges of high-frequency 

communication. In addition, the search explores several machine learning 

algorithms applied in MIMO systems, including Projected Gradient Ascent 

(PGA), Frank-Wolfe techniques, and Logistic Regression. 

Chapter I provides the introduction for Overview about 6G & Machine 

Learning. Chapter II describes the channel and system model. Chapter III explains 

the machine learning algorithms studied for channel estimation. Chapter IV 

concludes with the simulation results. 
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As 5G communication networks are being deployed commercially, academia 

and industry started developing 6G wireless communication systems as we move 

beyond the capabilities of 5G the development of 6G (sixth Generation) wireless 

networks is set to revolutionize connectivity, offering ultra-fast speeds, near-zero 

latency, and intelligent automation [1] Commercial deployment of 6G is expected 

to begin around 2030. These networks will utlilize higher frequencies than 5G, 

offering significantly greater capacity and lower latency [2]. 

Terahertz (THz) propagation characteristics will play a key role in 6G mobile 

communication systems, integrating cuttingedge technologies such as Artificial 

Intelligence (AI), Machine Learning (ML), and the Internet of Everything (IoE) 

to create more autonomous, efficient, and intelligent communication networks. 

Machine Learning (ML) is crucial in the evolution of 6G and THz by enabling 

smart network management, predictive maintenance, and real time decision 

making. ML algorithms can optimize network performance and improve spectrum 

efficiency. In this context, we present a holistic, forward-looking vision that 

defines the core tenets of a 6G system. We believe that 6G will not just be an 

exploration of higher frequency spectrum bands combined with ML, but rather 

the convergence of emerging technological trends driven by exciting, underlying 

services [3] 

I .2. Sixth-Generation Communication system 

6G (sixth generation wireless) is the successor to 5G cellular technology. 6G 

networks will be able to use higher frequencies than 5G networks and provide 

substantially higher capacity and much lower latency. One of the goals of the 6G 

internet is to support one microsecond latency communications. This is 1,000 

times faster (or 1/1000th the latency) than one millisecond throughput. 

The 6G technology market is expected to facilitate large improvements in the 

areas of imaging, presence technology and location awareness. Working in 

conjunction with Artificial Intelligence (AI), the 6G computational infrastructure 

will be able to identify the best place for computing to occur; this includes 

decisions about data storage, processing and sharing [4] 

INTRODUCTION 

https://www.techtarget.com/searchnetworking/definition/5G
https://www.techtarget.com/searchnetworking/definition/throughput
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Figure I.1: Major Features for Different Generations of Wireless 

Cellular Communication (1-6G) 

6G is categorized into three main classes: Ultrahigh Data Density (UHDD), 

Ultrahigh Speed with Low Latency Communications (UHSLLC) and Ubiquitous 

Mobile Ultra Broadband (UMUB). Figure I.1 summarizes evolution from 1G to 

6G. 6G is expected to fill gap of radio coverage limitation in previous generations 

[5] 
 

 

 

 

I.3. 6G NETWORK ARCHITECTURE 

6G will be "digital, intelligent and ubiquitous". If the 5G era can realize the 

ubiquitous acquirement of information, then 6G should fully support the 

digitization of the world on the basis of 5G, and combine with the development 

of AI and other technologies to realize the ubiquitous acquirement of information 

and comprehensively enable everything. 
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In the future, it will move towards a "digital" world that combines virtual and 

reality. The world will generate a digital virtual world based on the physical world. 

Information and intelligence can be transmitted among persons, persons and 

things, and things and things in the physical world through the 6G. The twin 

virtual world is the simulation and prediction of the physical world, which will 

accurately reflect and predict the real state of the physical world, help human 

beings further emancipate themselves, improve the quality of life, and improve 

the efficiency of social production and governance, so as to achieve the goal of 

"creating a new world through digital innovation, and making all things 

intelligent"[6] 

 

 

I.3.1. 6G Time-Space-Frequency Characteristics 

6G requires to use a wide spectrum compared to previous generations to ensure 

high data speed. Some studies have suggested the multiplicity of frequency bands 

used in 6G, for example, millimeter wave band, terahertz band and visible light 

band to achieve transmission of hundreds of gigabytes per second. On the other 

hand, mobile phone networks will be combined with satellite systems and the 

Internet to build integrated networks. In the spatial dimension, a huge number of 

antennas will be used in transmitters regularly in the socalled ultra-huge 

MIMO(UM-MIMO) in the terahertz range. In the time dimension, there will be a 

clear improvement in response time, and there will be flexibility in the versatility 

of the systems as well, this facilitating their compatibility with 2G to 5G [7] 
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Figure I .2 : A Framework of 6G Founded On The Space Resource use, 

Frequency,Time 

 

The specific characteristics are as follows:[6] 

(a) In the time dimension, the basic time slot in 6G can be compressed to use the 

high frequency band more effectively and meet the demand of delay sensitive 

service. The flexibility and versatility of the network will be improved as the time 

slot becomes shorter. 

(b) In the spatial dimension, ultra massive multiple input multiple output (UM- 

MIMO) for THz communication can support hundreds to thousands of transmit 

and receive antennas, and further utilize the "multipath" technology. 

(c) In the frequency dimension, on the one hand, THz band and even visible light 

band will be used for 6G transmissions; on the other hand, in the future, mobile 

network can be integrated with satellite system and Internet to build space-ground 

integrated network. From the perspective of personal mobile communication, this 

will indeed increase the frequency range for services. As a result, 6G will use 

higher frequencies than previous generations of mobile communication systems 

to increase data rates. 
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I.4. 6G TECHNOLOGY CHARACTERISTICS 

New technologies will be introduced into the 6G mobile communication system 

as follows: [6] 

a) Novel discontinuous communication technology: 

When new frequency bands such as millimeter wave and terahertz wave 

are added to the applied frequency band, 6G will adopt a very wide frequency 

band compared with the past. Therefore, it seems that there are many related 

research fields, such as optimizing the selection of multi band according to the 

application, studying the method of frequency reuse between cells, upgrading the 

duplex mode in uplink and downlink, and studying the utilization mode of low 

frequency band. 

b) Ultra high rate, high reliability communication: 

Wireless communication highly reliable control information is an 

important requirement of many industrial use cases (such as remote control and 

factory automation), and 6G is expected to achieve higher reliability and security 

than 5G. With the popularity of robots, unmanned aerial vehicles, and the 

expansion of radio coverage to the sky, highly reliable communication is required 

not only in limited areas such as factories, but also in wider areas, and it is possible 

to achieve highly reliable communication in various scenarios. 

c) Network based positioning and sensing: 

The 6G network will use a unified positioning and communication 

interface to improve control operations, which can rely on context information to 

form beam forming patterns, reduce interference and predict switching, and 

provide innovative user services, such as vehicle and electronic health services. 

d) Terahertz communication: 

Spectrum efficiency can be achieved by using THz communication (0.1- 

10THz) and using advanced UM-MIMO technology. RF frequency band has been 

almost exhausted, and it is not enough to meet the requirement of 6G. THz band 

will play an important role in 6G communication. THz band will become the next 

frontier of high data rate communication. The small wavelength of THz signal 

allows more antenna elements to be integrated into the equipment and base 

stations operating in frequency band. 
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The THz spectrum can resolve the spectrum scarcity problem and 

tremendously enhance current wireless system capacity. Various promising 

applications are envisaged, such as Tbps WLAN system (Tera-WiFi), Tbps 

Internet of Things (Tera-IoT) in wireless data center, Tbps Integrated Access 

Backhaul (Tera-IAB) wireless networks, and ultra-broadband THz space 

communications (Tera-SpaceCom), as illustrated. Besides these macro/micro- 

scale applications, the THz band can be utilized for wireless connections in 

nanomachine networks, to enable Wireless Networks-On-Chip Communications 

(WiNoC) and the Internet of Nano-Things (IoNT), motivated by the state of the 

art nanoscale transceivers and antennas that oscillate in the THz band [8] 

Terahertz wave has many characteristics: 

▪ Terahertz wave is easily absorbed by moisture in the air, which is more 

suitable for high-rate and short-range wireless communication; 

▪ The wave beam is narrower and has better directionality, and has stronger 

anti interference ability; 

▪  Terahertz wave has wide bandwidth, which can meet the demand of 

spectrum bandwidth in wireless broadband transmission. 

▪ Terahertz wave can be widely used in space communication, especially for 

the communication between satellites or between satellite and ground; 

▪ The propagation characteristics of electromagnetic wave show that the free 

space fading is proportional to the square of frequency, so terahertz has 

larger decline of free space compared with low frequency band. 

▪ Terahertz signal is very sensitive to shadow and has great influence on 

coverage. 

▪ At the moving rate, the channel coherence time is linearly related to the 

carrier frequency, which means that the coherent time of terahertz band is 

very small and the doppler spread is large, which is much faster than the 

frequency band used in the current cellular system. 

Terahertz system is a highly spatially oriented signal transmission, 

which means that the path fading, service beam and cell correlation will 

change rapidly, and a fast adaptation mechanism is needed to overcome this 

fast changing intermittent connection problem [9][10] 
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e) Unmanned Aerial Vehicals (UAVs): 

UAV will be an important part of 6G wireless communication. In 

many cases, UAV technology will be used to provide high data rate wireless 

connections. The base station entity will be installed on the UAV to provide 

cellular connectivity. UAVs have some characteristics that are not available in 

a fixed base station infrastructure, such as ease of deployment, strong LoS 

links, and degree of freedom with controllable mobility. In emergency 

situations such as natural disasters, it is not economically feasible to deploy 

ground communication infrastructure, and sometimes it is impossible to 

provide any services in unstable environments. UAVs can easily handle these 

situations. UAV will become a new mode in the field of wireless 

communication 

f) Integration Of Sensing and Communication: 

The key driver of autonomous wireless network is to be able to 

continuously sense the dynamic changes of the environment and exchange 

information among different nodes. In 6G, sensors will be tightly integrated 

with communications to support autonomous systems 

g) Big data analysis: 

Big data analysis is a complex process of analyzing various big data sets. 

This process discovers information, such as hidden patterns, unknown 

correlations, and customer preferences, to ensure perfect data management. 

Big data is collected from a variety of sources, such as videos, social networks, 

images and sensors. This technology will be widely used in the processing of 

massive data in 6G system. 

h) WPT and energy harvesting: 

Any IOT device in 6G will consume more power due to the huge 

computing demands of AI processing. WPT doesn't play a key role in 5G, but 

in 6G, it will eventually shine. First of all, because the density of wireless 

network continues to increase, the communication distance will be greatly 

shortened. In addition, the use of UAV as base station further shortens the 

distance, which makes WPT more meaningful. UAVs will benefit a lot from 

Wireless Power Transmission (WPT), which enables UAVs to move all the 

time. In addition, with the continuous progress of energy harvesting 
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technology, energy harvesting from RF signals may become a feasible power 

supply for low-power applications.[10] 

 

 

I.5. Machine Learning (ML) 

 

I.5.1. Definition 

Machine learning (ML) is a branch of Artificial Intelligence (AI) focused on 

enabling computers and machines to imitate the way that humans learn, to 

perform tasks autonomously, and to improve their performance and accuracy 

through experience and exposure to more data. 

(UC Berkeley), breaks out the learning system of a machine learning 

algorithm into three main parts. 

a. A Decision Process: In general, machine learning algorithms are used to 

make a prediction or classification. Based on some input data, which can 

be labeled or unlabeled, your algorithm will produce an estimate about a 

pattern in the data. 

b. An Error Function: An error function evaluates the prediction of the 

model. If there are known examples, an error function can make a 

comparison to assess the accuracy of the model. 

c. A Model Optimization Process: If the model can fit better to the data 

points in the training set, then weights are adjusted to reduce the 

discrepancy between the known example and the model estimate. The 

algorithm will repeat this iterative “evaluate and optimize” process, 

updating weights autonomously until a threshold of accuracy has been met 

[11] 

I.5.2. Types of Machine learning 

Machine learning models fall into three primary categories: [12] 

a. Supervised learning : 

Supervised learning, also known as supervised machine learning, is defined 

by its use of labeled datasets to train algorithms to classify data or predict 

outcomes accurately. As input data is fed into the model, the model adjusts its 
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weights until it has been fitted appropriately. This occurs as part of the cross- 

validation process to ensure that the model avoids overfitting or underfitting. 

Supervised learning helps organizations solve a various real world problems at 

scale, such as filtering spam into a separate folder from in an inbox. Some methods 

used in supervised learning include neural networks, Naïve Bayes, linear 

regression, logistic regression, random forest, and Support Vector Machine 

(SVM). 
 

Figure I.3 : Supervised learning 

 

 

b. Unsupervised learning : 

Unsupervised learning, also known as unsupervised machine learning, uses 

machine learning algorithms to analyze and cluster unlabeled datasets (subsets 

called clusters). These algorithms discover hidden patterns or data groupings 

without the need for human intervention. 

Unsupervised learning’s ability to discover similarities and differences in 

information make it ideal for exploratory data analysis, cross-selling strategies, 

customer segmentation, and image and pattern recognition. It’s also used to 

reduce the number of features in a model through the process of dimensionality 

reduction. Principal Component Analysis (PCA) and Singular Value 

Decomposition (SVD) are two common approaches for this. Other algorithms 

used in unsupervised learning include neural networks, k-means clustering, and 

probabilistic clustering methods. 
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c. Semi-supervised learning : 

Semi-supervised learning offers a happy medium between supervised and 

unsupervised learning. During training, it uses a smaller labeled data set to guide 

classification and feature extraction from a larger, unlabeled data set. Semi- 

supervised learning can solve the problem of not having enough labeled data for 

a supervised learning algorithm. It also helps if it’s too costly to label enough data. 

d. Reinforcement learning : 

Reinforcement learning is a machine learning model that is similar to 

supervised learning, but the algorithm isn’t trained using sample data. This model 

learns as it goes by using trial and error. A sequence of successful outcomes will 

be reinforced to develop the best recommendation or policy for a given problem. 
 

 

 

Figure I.4: Different Categories of Machine Learning and their Applications 

 

 

I.5.3. Designing a machine Learning System 

Designing a learning system in machine learning is a multi-step 

process that ensures the system is effective, efficient, and adaptable to 

real-world challenges. Each stage builds on the previous one to create 

a robust framework: [13] 
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Figure I.5: Machine Learning Algorithms 

a) Defining the Problem and Objectives: 

The foundation of a learning system begins with a clear problem definition.it 

starts by identifying the type of task the system aims to solve such 

as classification, regression, or clustering Alongside the task, and it is measurable 

performance objectives using metrics like accuracy, precision, recall, or F1-score. 

These metrics act as benchmarks to assess the system’s success and align its 

outcomes with organizational goals. 

b) Data Collection and Preparation : 

Data is the backbone of any learning system. Collecting and preprocessing 

high-quality, relevant data is critical for the system’s success. 

- Data Gathering: Data can come from databases, APIs, or real time sensors. 

- Data Preprocessing: Raw data often contains inconsistencies, missing values, 

and outliers. Use techniques like imputation to handle missing values and 

normalization to scale features. Data cleaning ensures the dataset is ready for 

training, minimizing errors caused by poor-quality data. 

c) Choosing the Training Experience : 

Decide on the type of training experience based on the problem and the nature of 

the data: 

• Supervised Learning: Best for tasks where labeled data is available 



Chaptre I : Overview about 6G & Machine Learning 

13 

 

 

• Unsupervised Learning: Suitable for uncovering hidden patterns in 

unlabeled data 

• Reinforcement Learning: Ideal for dynamic environments like robotics or 

gaming, where the system learns through trial and error. 

d) Choosing a Representation for the Target Function: 

Choosing the appropriate representation for the target function depends on 

the problem’s complexity and data characteristics 

• Decision Trees: Effective for hierarchical decision-making tasks. 

• Neural Networks: Suitable for handling non-linear relationships in large, 

complex datasets. 

• Linear Models: Best for interpretable, straightforward problems. 

This step requires balancing model complexity with interpretability and 

computational efficiency. 

e) Selecting a Function Approximation Algorithm: 

To set a learning algorithm that effectively approximates the target function. 

• Gradient Descent: Common in training neural networks for minimizing 

error. 

• Support Vector Machines (SVM): Used for classification tasks requiring 

clear decision boundaries. 

• K-Means Clustering: Effective for grouping data points in unsupervised 

learning scenarios. 

The algorithm choice must align with the problem type, data characteristics, and 

performance objectives. 

f) Training the Model : 

Training the chosen model using the prepared data. This involves 

• Iteratively feeding the data into the algorithm. 

• Adjusting model parameters to minimize errors using techniques like 

backpropagation in neural networks. 
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• Monitoring the training process to avoid issues like overfitting, which 

occurs when the model performs well on training data but poorly on unseen 

data. 

g) Evaluating Model Performance : 

Evaluating the model ensures it generalizes well to new data. 

Analyze metrics such as : 

• Accuracy for classification tasks. 

• Mean Squared Error (MSE) for regression problems. 

• SNR (Signal-To-Noise Ratio) 

This evaluation process identifies weaknesses in the model, guiding further 

refinement. 

h) Iterative Refinement : 

Refining the model is a continuous process aimed at improving its performance: 

• Hyperparameter Tuning: Adjust parameters like learning rate, depth of 

decision trees, or the number of layers in neural networks. 

• Retraining with Updated Data: Incorporate new or additional data to 

enhance the model’s understanding of the problem domain. 

This iterative cycle ensures the learning system evolves, adapting to changing data 

and requirements while achieving optimal performance. 
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I.6. Conclusion 

In conclusion, this chapiter examined the theoretical foundations and 

emerging technologies underpinning ML-driven networks. Although still in their 

infancy, these networks are poised to become a fundamental component of 

complex 6G systems. The envisioned 6G architecture will leverage distributed 

artificial intelligence to implement a fully user-centric network infrastructure. 

Consequently, terminal devices will be empowered to make autonomous network 

decisions based on prior operational outcomes, eliminating the need for 

continuous communication with a centralized controller. This distributed 

approach facilitates real-time ML processing with sub-millisecond latency, 

thereby meeting the stringent requirements of various 6G services and 

significantly enhancing network management responsiveness. The terahertz 

(THz) spectrum stands as a key enabler for 6G, offering ultra-wide bandwidth to 

meet the demands for extreme data rates and ultra-low latency. In the following 

chapter, we delve into THz channel models, their unique characteristics, and the 

challenges they pose, paving the way for optimized strategies to enhance future 

network performance 
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II.1. INTRODUCTION 

In recent years, with the growing requirements of high data rate in various 

environments, the sixth generation (6G) wireless communication system has 

attracted increasing attention all over the world. It has been widely known that the 

objective of 6G is to realize the smart interconnection of everything, which 

requires ultra-high transmission data rate, ultra-high connection density and high 

reliability [14] 

To target this, many studies have suggested that the terahertz (THz) technique is 

one of potential key enabling technologies in 6G. Indeed, the THz frequency band 

(0.1-10 THz) has the potential to carry information at a scale of terabit (Tbit, 

1Tbit/s=1000Gbit/s). As we know, accurate and efficient wireless communication 

channel modeling plays an indispensable role in communication system design 

and performance optimization. This is due to the fact that we have to design the 

communication systems only by experience and experiment without channel 

models. Electro- magnetic radiation from a transmitter to a receiver is the typical 

work pattern of a wireless channel, and the change of channel strength with time 

or frequency is its major characteristic [15] 

 

 

II.2. THz channel models 

Terahertz (THz) communications, operating within the frequency range of 

0.1-10 THz, are considered a crucial technology for the advancement of sixth 

generation (6G) wireless systems. The study of underlying THz wireless 

propagation channels provides the foundations for the development of reliable 

THz communication systems and their application. The wireless propagation 

channel serves as the conduit through which signals are transmitted from the 

transmitter (Tx) to the receiver (Rx), with channel properties playing a crucial role 

in determining the overall performance capabilities of wireless communications, 

as well as the effectiveness of specific transmission strategies and transceiver 

configurations. Given that wireless channels form the fundamental basis for 

constructing wireless communication systems in novel frequency spectrums and 

diverse environments, it is essential to investigate the propagation channels for 

Terahertz (THz) radio frequencies in anticipation of future 6G wireless 

communication technologies. The examination of wireless channel characteristics 

hinges on conducting physical channel measurements using channel sounders. 

Subsequent analysis of these measurements aids in the development of channel 

models, which aim to encapsulate the behavior of wave propagation with a 
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Terahertz Channel Models 

Molecular Absorption Deterministic Model 

Nanoscale Channel 

suitable level of complexity, facilitating equitable comparisons of various 

algorithms, designs, and performance metrics within wireless networks [16] 

 

 

II.2.1 Classification of THz channel models 

This section provides a detailed discussion on THz channel modeling. While 

some channel models derived from the mmWave band can be applied to the THz 

band in practice, THz channel models have distinct classifications, as illustrated 

in Figure II. 1. Due to the varying parameters that must be carefully considered 

across different THz communication scenarios, most research over the past 

decade has focused on propagation models tailored to specific scenarios. 

Typically, THz channel modeling studies emphasize outdoor, indoor, and 

nanoscale channel models, employing both deterministic and stochastic 

approaches [15] 
 

 

Figure II. 1: THz Channel Models Classification 

 

 

II.2.1.1. THz channel models by scenarios: 

a) Outdoor channel model: 

Models that emulate THz channels in outdoor environments are scarce, 

primarily focusing on point-to-point links. This limitation arises due to the lack of 

reported experimental measurements in the literature. Notably, the first 120 GHz 
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experimental radio station license has been issued, yet existing outdoor channel 

models still address only point-to-point scenarios. A key challenge in outdoor THz 

measurements is the interference from unintentional Non Line of Sight (NLOS) 

paths, which can significantly impact the Bit Error Rate (BER) [17]. 

The comprehensive mmWave channel modeling method from the previous 

chapter can be extended to outdoor environments by adjusting specific system 

parameters. In outdoor settings, differences in the positions of Reconfigurable 

Intelligent Surfaces (RIS) and terminals affect channel parameters while 

following the same fundamental modeling approach. the path loss exponent and 

shadow fading parameter in equation should be modified to match the outdoor 

propagation environment. 

Regarding small scale fading, adjustments should be made for clusters whose 

angle of departure is directed toward the ground by reducing the maximum 

transmission distance based on terminal positions in the outdoor environment. The 

primary distinction from the indoor channel model lies in the channel 

characteristics between the RIS and the receiver (Rx). In outdoor settings with a 

random number of unique clusters, small-scale fading may influence this channel 

as well. 

In cases where the distance between the RIS and Tx is relatively short and the 

Line of Sight (LOS) probability is high, the LOS dominated channel from 

equation remains useful. However, in more general outdoor scenarios, additional 

fading effects and random cluster distributions must be taken into account [18] 
 

 

 

 

 

 

Figure II. 2: RIS-assisted communication between Tx-RIS and RIS-Rx and 
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Here, 𝑑𝑇−𝑅𝐼𝑆is the distance between the Tx and the RIS, 𝐿𝑇−𝑅𝐼𝑆 is the path 

attenuation 𝑛 is the path loss exponent, 𝑏 is a system parameter, and 𝑓0 is a fixed 

reference frequency (the centroid of all frequencies represented by the path loss 

model), and 𝑋𝜎∼ N (0,𝜎2) is the shadow fading term in logarithmic units. 
 

 

                    𝑑𝑇−𝑅𝐼𝑆 = ((𝑥𝑅𝐼𝑆 − 𝑥𝑇𝑥)2 + (𝑦𝑅𝐼𝑆 − 𝑦𝑇𝑥)2 + (𝑧𝑅𝐼𝑆 − 𝑧𝑅𝐼𝑆)2)1 2⁄          (II.1) 

     𝐿𝑇−𝑅𝐼𝑆 = −20𝑙𝑜𝑔10 (
4𝜋

𝜆
) − 10𝑛 (1𝑏 (

𝑓−𝑓0

𝑓0
)) 𝑙𝑜𝑔10(𝑑𝑇−𝑅𝐼𝑆)𝑋𝜎               (II.2) 

 

h=𝛾̅ ∑ ∑ 𝛽𝑐,𝑠
̅̅ ̅̅̅𝑠𝑐̅

𝑠=1
𝑐̅
𝑐=1 √𝐺𝑒(𝜃𝑐,𝑠

𝑅𝑥)𝐿𝑅𝐼𝑆−𝑅  𝑎(𝜙𝑐,𝑠
𝑅𝑥, 𝜃𝑐,𝑠

𝑅𝑥) + 𝑔𝐿𝑂𝑆                           (II.3) 

 

where, 𝛾̅ is a normalization term, 𝐶̅̅ and 𝑆̅𝑐 stand for number of clusters and sub 

rays per cluster for the RIS-Rx link, 𝛽𝑐,𝑠is the complex path gain, 𝐿𝑅𝐼𝑆−𝑅 is the 

path attenuation, 𝐺𝑒(𝜃𝑐,𝑠
𝑅𝑥)is the RIS element radiation pattern in the direction of 

the (c, s)th scatterer, 𝑎(𝜙𝑐,𝑠
𝑅𝑥, 𝜃𝑐,𝑠

𝑅𝑥) is the array response vector of the RIS for the 

given azimuth and elevation angles, and 𝑔𝐿𝑂𝑆 is the LOS component [18] 

 

b) Indoor channel model: 

Several indoor channel models are available in the literature. Indoor channel 

models can be categorized into either analytical or stochastic models. In terms of 

deterministic channels, the ray-tracing model is usually applied. This technique is 

site- specific abiding with propagation theories and capturing the continuously 

adapting the model to a new environment, which can limit its time efficiency. 

From the communications perspective, it is fundamental to understand the large 

and small scale statistics of the channel including path loss, shadowing and 

multipath propagation. Hence, statistical methods arise as suitable options to 

model THz propagation based on empirical channel measurements. The first 

statistical model for THz channels, spanning the range between 275 and 325 GHz, 

the given model depends on extensive ray-tracing simulations to realize the 

channel statistical parameters. Yet, the information concerning the channel 

statistics such as the correlation function and power delay profile cannot be 

captured easily [17] 
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Indoor wireless communication systems require accurate channel models to 

describe signal propagation. Various models have been developed to account for 

multipath effects, scattering, and attenuation in indoor environments. One 

commonly used model is the Saleh-Valenzuela (S-V) model, which effectively 

captures multipath clustering and random variations in arrival and departure 

angles. The S-V model has been modified to suit Terahertz (THz) frequency bands 

by incorporating measurement based adjustments to reflect the distinctive 

propagation characteristics of high frequency signals. In this context, the model 

assumes that arrival paths consist of multiple clusters, each containing several 

rays, with the arrival time calculated relative to a reference point [18] 

the arrival time of the first cluster is set as the reference time, 𝑇0= 0. The arrival 

time of the 𝑖th cluster and the arrival time of the lth ray in the 𝑖th cluster are 

denoted as 𝑇𝑖and 𝜏𝑖𝑙 , respectively. Then, the arrival time of each ray will be: 

                                             𝑡𝑖𝑙 = 𝑇𝑖 + 𝜏𝑖𝑙                                                      (II.4) 

  

   𝐻(𝑓, 𝑑) = ∑ ∑ 𝛼𝑖𝑙(𝑓, 𝑑)𝐺𝑡(
𝑁𝑟𝑎𝑦

1 −1

𝑙=0

𝑁𝑐𝑙𝑢−1
𝑖=0 𝜙𝑖𝑙

𝑡 , 𝜃𝑖𝑙
𝑡 )𝐺𝑟(𝜙𝑖𝑙

𝑟 , 𝜃𝑖𝑙
𝑟) ×

                                   𝑎𝑟(𝜙𝑖𝑙
𝑟 , 𝜃𝑖𝑙

𝑟)𝑎𝑡
†(𝜙𝑖𝑙

𝑡 , 𝜃𝑖𝑙
𝑡 )                                                                                            

              (II.5) 

Where, 𝛼𝑖𝑙(𝑓, 𝑑) = ⃒𝛼𝑖𝑙(𝑓, 𝑑)⃒𝑒𝑗𝜓𝑖𝑙 denotes the path gain of the arrival ray, 

where 𝜓𝑖𝑙is the associated independent phase shift uniformly distributed over 

(0,2𝜋). 𝜙𝑖𝑙
𝑡 ⁄𝜃𝑖𝑙

𝑡  and 𝜙𝑖𝑙
𝑟⁄𝜃𝑖𝑙

𝑟  refer to the azimuth/elevation angles of departure an

arrival, respectively. 𝐺𝑡(𝜙𝑖𝑙
𝑡 , 𝜃𝑖𝑙

𝑡 )and 𝐺𝑟(𝜙𝑖𝑙
𝑟 , 𝜃𝑖𝑙

𝑟) represent the transmit and 

receive antenna gains, while vectors  𝑎𝑡
†(𝜙𝑖𝑙

𝑡 , 𝜃𝑖𝑙
𝑡 )and  𝑎𝑟(𝜙𝑖𝑙

𝑟 , 𝜃𝑖𝑙
𝑟)𝑎𝑡

† are the 

associated array steering. 

Another approach to indoor channel modeling considers line of sight 

(LOS) and Non Line of Sight (NLoS) conditions. In certain scenarios, such as 

those involving Reconfigurable Intelligent Surfaces (RIS), the LOS component 

dominates due to the close proximity between the receiver (Rx) and the RIS. 

When the inter-terminal distance is less than 4.5 meters, the probability of LOS 

exceeds 50%, leading to stronger direct paths and reduced multipath interference. 

The channel gain in an RIS-assisted setup can be determined using azimuth and 

elevation angles, which influence the overall characteristics of signal attenuation 

and reflection. 
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                       g=√𝐺𝑒(𝜃𝑅𝑥
𝑅𝐼𝑆)𝐿𝑅𝐼𝑆−𝑅𝑒𝑗𝜂𝑎(𝜙𝑅𝑥

𝑅𝐼𝑆 , 𝜃𝑅𝑥
𝑅𝐼𝑆)                                                                    

              (II.6) 

Both models provide valuable insights into indoor Terahertz communication 

channels, with the S-V model focusing on multipath clustering, while the RIS- 

based model emphasizes LOS dominated conditions. The choice of an appropriate 

model depends on the specific indoor scenario and the desired propagation 

characteristics [18] 

 

 

c) Nano-Scale channel model: 

In the past few years, advancements in the field of nanotechnology have 

paved the way towards the development of miniaturized sensing devices which 

capitalize on the properties of novel nanomaterials. Such devices, denoted as 

nanodevices, can perform simple tasks including computing, data storing, sensing 

and actuation. As such, the formulation of nanonet works will allow various 

applications in the biomedical, industrial, and military fields. Based on radiative 

transfer theory and in light of molecular absorption, a physical channel model for 

wireless communication among nanodevices in the THz band. The provided 

model considers the contribution from the different types and concentrations of 

molecules, where the HITRAN database is used in order to compute the 

attenuation that a wave suffers from. The Beer Lambert law was used to compute 

the transmittance of the medium which relies on the medium absorption 

coefficient. The model provided was also utilized to compute the channel capacity 

of nanonetworks operating in the THz band, in which the authors deployed 

different power allocation schemes. The authors recommended using the lower 

end of the THz band which has lower absorption coefficients in order to ensure a 

strong received signal. Moreover, the sky noise model is the basis of the existing 

absorption noise models. The authors in elaborated on this topic by presenting 

different perspectives on how to model the molecular absorption noise. However, 

there is no real experiments conducted in order to validate the proposed models. 

Not only absorption, but also scattering of molecules and small particles affects 

the propagation of electromagnetic waves. Hence, a wideband multiple scattering 

channel model for THz frequencies. Further, the authors in presented an analytical 

model based on stochastic geometry for interference from omnidirectional nano- 

sensors. However, in their model, they disregarded interference arising due to the 

existence of base stations. The authors in tackled this issue where they studied 

interference from beamforming base stations. As such, it has been concluded that 
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having a high density of base stations using beamforming with small beam- width 

antennas and deploying a low density of nano-sensors is recommended to improve 

the coverage probability [17]. 

where ℒ𝑚𝑟 is the path loss that the main ray faces in its path to a point on the 

focal line. Note that 𝐸⃗ →0 i s  initially considered to be polarized along 

                                               𝐸⃗⃗ 𝐹
𝑚𝑟 = ⃓𝐸⃗⃗ 0⃓ℒ𝑚𝑟𝑎̂𝑥               (II.7) 

field coming through the main ray over the focal line can be also given, where γ(r) 

is the cell-size gain factor, 𝒢𝑚𝑝 is the multi-path gain caused by the reflected rays 

from adjacent cells 

 

        H (𝑓, 𝑑) = 𝛾(𝑟)𝒢𝑚𝑝 . (⃓𝐸⃗⃗ 𝐹
𝑚𝑟⃓𝑒−𝑗𝜔𝜏𝑚𝑟 + ⃓𝐸⃗⃗ 𝐹

𝑓𝑟
⃓𝑒−𝑗𝜔𝜏𝑓𝑟)               (II.8) 

 

II.2.1.2. THz channel models by type of loss: 

a) Propagation gain model: 

According to the Fris equation, the propagation gain in the free space can be given 

by: 

 

                                               ℎ =
𝑐√𝐺𝑡𝐺𝑟

4𝜋𝑑𝑓
                              

              (II.9) 

Where c, 𝐺𝑡, 𝐺𝑟, d, and f respectively represent the velocity of light, the 

transmitting antenna gain, the receiving antenna gain, the transmission distance 

and frequency. 

It is easy to check that the propagation gain in the THz band is much smaller than 

that in a radio band. Actually, such high spreading loss is a serious constraint to 

THz transmission. Since only 𝐺𝑡 and 𝐺𝑟 could be increased by improving 

hardware component performance, and hence the high gain antennas become 

essentially important in developing THz systems in order to overcome the high 

spreading loss [15] 

b) Molecular absorption loss model: 

The molecular absorption loss is one of the main fading sources in a THz 

channel. The energy of electromagnetic wave can be absorbed by the atmospheric 

molecules, such as water vapor and oxygen. When the operation frequency is 

higher than 200 GHz, the molecular absorption mainly originates from the water 
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vapor, resulting in several absorption peaks at resonant frequencies, which makes 

the THz frequency band split into several transmission windows 

yAccording to the Beer Lambert Law, the molecular absorption gain is given by: 

 

                                     h = 𝑒
−1

2
𝑘(𝑓)𝑑

                                                                   (II.10) 

where absorption coefficient k (f) can be calculated by: 

 

                                k(f)=∑
𝑝

𝑝0

𝑇𝑠𝑡

𝑇𝑖,𝑔 𝑄𝑖,𝑔𝜎𝑖,𝑔(𝑓)                                                                           (II.11) 

The total absorption coefficient k(f) is the sum of those for isotopologue 

𝑖(𝑖 ∈ {1,2, … … 𝑁𝑖} 𝑖(𝑖 ∈ {1,2, … … 𝑁𝑔} of ges Besides, T and 𝑝 are the 

temperature and the pressure respectively, while 𝑝 𝑇𝑠𝑡 and 𝑝0 denote the 

standard temperature and the standard atmospheric pressure respectively. 

Furthermore, 𝑄𝑖,𝑔and 𝜎𝑖,𝑔stand for the total number of molecules per volume 

unit and the absorption cross section of the given gas mixture. The computing 

methods or definition of these parameters are detailed. 

In actual calculation, we can usually extract these parameters from some specific 

database. In most studies of THz channel modeling, the HIgh-Resolution 

TRANsmission molecular absorption database (HITRAN) is adopted. 

However, the accurate computation of above models is quite complex and tedious. 

Recently, a simplified but fairly accurate model has been proposed to compute the 

molecular absorption loss in the 275-400 GHz band. In this model, the absorption 

coefficient is approximately written as 

 

                                k(f)=𝑦1(𝑓, 𝑢) + 𝑦2(𝑓, 𝑢) + 𝑔(𝑓)                                                                                         (II.12) 

where: 

                                    𝑦1(𝑓, 𝑢) =
𝐴(𝑢)

𝐵(𝑢)+(
𝑓

100𝑐
−𝑐1)

2                                                                                              (II.13) 

                                    𝑦2(𝑓, 𝑢) =
𝑐(𝑢)

𝐷(𝑢)+(
𝑓

100𝑐
−𝑐1)2

                                                                                                           (II.14) 
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                                𝐺(𝑓) = 𝑝1𝑓
3 + 𝑝2𝑓

2 + 𝑝3𝑓
1 + 𝑝4                                                                                 (II.15) 

 

The evaluation expressions of 𝐴(𝑢), 𝐵(𝑢), 𝑐(𝑢), 𝐷(𝑢)and the values of 

parameters c1, c2, 𝑝1, 𝑝2, 𝑝3, 𝑝4 refer to Besides, u stands for the volume mixing 

ratio of water vapor 

                                                              u=
∅

100
 
𝑝𝑤(𝑇,𝑝)

𝑝
                    (II.16) 

where 𝑝𝑤 denotes the saturated water vapor partial pressure, which is given by 
 

𝑝𝑤 = 6.1121(1.0007 + 3.46 × 10−6𝑝) × exp (
17.502𝑇

240.97 + 𝑇
) 

     (II.17) 

according to the Buck equation. Besides, φ stands for the relative humidity. 

On this basis, the approximate formulas of transmission windows. Actually, this 

simplified model has been used in lots of THz studies, such as channel modeling 

performance evaluation and reconfigurable intelligent surface (RIS). 

Furthermore, the state of the art work in presented a novel simplified model for 

molecular absorption loss in the 100-450 GHz band, and exhibited six absorption 

peaks in this band, including 119 GHz, 183 GHz, 325 GHz, 380 GHz, 439 GHz 

and 448 GHz 

In fact, the atmosphere can affect THz communications. The first is to cause the 

atmospheric attenuation, or molecular absorption loss, which has been introduced 

detailedly in this part. Secondly, since the phase velocities and refractive indexes 

are different in different frequencies, the arrival time of waves in different 

frequencies will be different, which leads to the waveform broadening. This 

phenomenon is also known as atmospheric dispersion. Furthermore, the 

atmospheric turbulence refers to effects of the air motion and the inhomogeneous 

distribution of air parameters, which typically brings random fluctuations for THz 

signals [15]. 

 

 

c) Misalignment fading model: 

As aforementioned, high gain antennas are required and indeed widely 

adopted in THz systems owing to the presence of severe path loss. For instance, 

the corrugated conical horn antennas with gain of 55 dBi are adopted to achieve 

a 850 m link at 240 GHz. Since the antenna beam width is inversely proportional 
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to the antenna gain, the THz systems usually need highly directional and narrow 

beam width antennas. Nevertheless, the highly directional antennas are extremely 

susceptible to the random motion of antennas, which originates in traffic, wind, 

and so on. As a consequence, it easily causes the problem of antenna alignment, 

and hence the pointing error is one of the paramount factors influencing the 

performance of THz wireless communications. 

The relationship between reflectarray antenna gain and beam width was discussed. 

Moreover, suggested that the misalignments induced by the mobility userend 

devices may result in severe deterioration of channel capacity and outages in THz 

wireless communications with highly directional antennas, and presented a 

mathematical framework to analyze this issue, the effect of antenna directivities 

on the THz links in indoor scenarios is examined. Be sides, the authors put 

forward a misalignment model based on statistics, and suggest an optimum 

antenna configuration to minimize the transmission attenuation. Since the THz 

wave is quasi optical, the study argued that the misalignment fading can be 

modeled from a pointing error model in free- space optical communications. After 

this statistical misalignment fading model is proposed, it has been used in many 

subsequent studies [15] 

the receiver’s effective area is assumed to be a circle with a radius of a. Also, the 

beam of a transmitter is circle, and its radius changes with the distance. The radius 

at the distance d is denoted as ρ, which meets 0 ≤ ρ ≤ wd where wd denotes the 

maximum radius of the transmission beam. Moreover, the antenna movements 

from building sways give rise to pointing errors between transmission and 

receiving beams. The radial distance between such beams is denoted as r. On this 

basis, a statistical model can be utilized to characterize the misalignment fading 

coefficient, which is approximated as 

where 𝐴0 is the fraction of received power, which is determined by the radius of 

the receiver’s effective area and the maximum radius of the transmission beam at 

the distance. Besides, weq denotes the equivalent beam width. 𝐴0 and weq are 

studied in details. 

As stated the random motion of antennas can be modeled as the Gaussian 

movement. Furthermore, assuming the elevation and the horizontal sways follow 

independent identical Gaussian distributions, the radial distance obeys a Rayleigh 

distribution. Therefore, the probability density function of the misalignment 

fading can be evaluated as 
 

h(𝑟, 𝑑) ≈ 𝐴0exp (−
2𝑟2

𝑤𝑒𝑞
2

) 
              (II.18) 



Chapter II THz CHANNEL MODELS 

2
17 

 

 

                                    𝑓ℎ𝑚𝑖𝑠
(𝑥) =

𝛾2

𝐴0
𝛾2 𝑥𝛾2−1   , 0 ≤ x ≤ 𝐴0                                                   (II.19) 

where the parameter γ is the ratio between the receiver’s equivalent beam width 

and the radial displacement standard deviation. 

Although the misalignment fading induced by highly-directional antennas triggers 

a drastic decrease of the received power, such as up to 13 dB power decrease for 

20◦ tilts, it is still worth of rewarding for THz wireless networks with particular 

respects. 

the propagation gain and the molecular absorption loss are both deterministic 

variables, while the above misalignment fading is a random variable. However, if 

antennas move regularly rather than meeting random motion, the performance of 

stochastic misalignment fading models will be degraded. For example, in an 

eavesdropping scenario, the angle be- tween the antenna of a legitimate user and 

that of an eavesdropper may be constant. In this case, an exact characterization of 

the misalignment fading is urgently needed. The impact of antenna directivity at 

300 GHz is studied by means of a Gaussian beam model based on ray tracing 

(RT). So far, there is limited re- search investigating deterministic models of 

misalignment fading, and it is extremely meaningful to further construct a more 

comprehensive and accurate deterministic misalignment fading model in the 

future [15] 

 

 

d) Multipath fading model: 

The multipath fading is definitely one of the key aspects, and it is of great 

significance to develop a novel multipath channel models for THz 

communications. In fact, the power difference between the Line of Sight (LoS) 

and Non Line of Sight (NLoS) is larger in the THz band than that in the mmWave 

bands. On average, when compared to the LoS path, the attenuation of the power 

of the firstorder reflection path is larger than 10 dB, and that of the secondorder 

reflection path is larger than 20 dB in the 275-325 GHz band in an indoor 

environment. Furthermore, according to the previous study, there are an 

exceedingly limited number of NLoS paths. Hence, THz channels are generally 

considered to be LoS dominant and NLoS assisted, and sensitive to obstacles. A 

lot of research on THz channels so far focuses on the LoS path, and neglects NLoS 

paths since the LoS path usually plays a decisive role in THz propagation, while 

a multipath channel should be considered in several specific scenarios, the indoor 
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THz communication just as an example, since the multipath effects are often 

obvious in such limited spaces [15] 

A lot of studies of THz multipath channels especially indoor channels, have been 

indeed done, and suggest that the S-V channel model can be adopted for THz 

communications. Moreover, a 2-D geometrical propagation model for THz indoor 

scenarios. Based on RT, the authors in discussed multipath channels in details, 

including the LoS, reflected, scattered and diffracted ray propagation schemes. To 

be more specific, the Kirchhoff theory, the modified Beckmann Kirchhoff theory 

and the Fresnel Knife Edge Diffraction theory are used to characterize the 

reflected, scattered and diffracted paths, respectively. a new two-path channel 

model was proposed in the 275-400 GHz band, which is composed of the LoS 

path and one reflected path. In addition, the work presented an analytical model 

for a THz multipath channel, which analytically derives the number of multipath 

components and the probability of the LoS. 

On the other hand, quite a few studies characterize the THz multipath fading by 

means of stochastic models. For instance, the authors presented a THz multipath 

channel model. According to, the first- order statistics of its attenuation factor can 

be characterized by the Nakagamim or Rician distribution in the LoS dominant 

scenarios, while they should be described by the Rayleigh or Nakagamim 

distribution when there is no LoS path. the α − µ distribution is suggested to model 

the THz multipath channel, and the channel capacity and outage probability are 

presented based on it. Very recently, the work stated that the fluctuating Two Ray 

(FTR) distribution can characterize the small-scale amplitude fading well, since 

the FTR distribution fits the measurement data much better than the Rician, 

Gaussian, Nakagamim distributions in the train-to-train scenarios at 304 GHz 

[15]. 
 

 

𝑦(𝑡) = 𝑔1 × 𝑠(𝑡) + 0.5[𝜏 × 𝑔2 × 𝑠(𝑡)] + 0.25[𝜏 × 𝑔2 × 
𝑠(𝑡)] + 𝑛(𝑡) 

(II.20) 

 

 

Where, y(t) is output signal, s (t) is input signal, τ is delay or phase shift, 𝑔1is 

fixed gain, 𝑔2 is variable gain and n (t) is noise. 
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e) Rain attenuation model: 

Rain attenuation is one of important obstacle to over-come for imaging and 

sensing system to detect the hazardous things using Terahertz waves above 300 

GHz because of its masking action. Raindrop-size distribution has been found to 

play an important role in monitoring rainfall and in predicting the rain attenuation. 

The rain attenuation is particularly severe and greatly dependent on various 

models of raindrop-size distribution in a Millimeter and Terahertz wave system. 

Rain attenuation using three types of raindrop-size distributions and a specific 

attenuation model for use in prediction method recommended by ITU-R. For 

calculations using by raindrop-size distributions, rain specific attenuation A in 

dB/km is calculated by integrating all of the drop sizes as [20] 

 

 

𝐴 = 4.343 ∫ 𝑄(𝐷, 𝜆, 𝑚)𝑁(𝐷)𝑑𝐷 (II.21) 

where 𝑄 is the attenuation cross section that is a function of the drop diameter 

D, the wavelength of the radio wave , and the complex refractive index of the 

water drop m, which is a function of the frequency and the temperature, and 

N(D) is the drop-size distribution. The attenuation cross section 𝑄 is found by 

applying the classical scattering theory of Mie for a plane wave radiation to an 

absorbing sphere particle. According to Hulst, the cross-section 𝑄 is expanded as 

 
 

                           𝑄(D,𝜆,𝑚) =
𝜆2

2𝜋
∑ (2𝑛 + 1)𝑅𝑒[∞

𝑛=1 𝑎𝑛 + 𝑏𝑛]                             
             (II.22) 

 

where 𝑎𝑛 and 𝑏𝑛 are the Mie scattering coefficients, which are complex functions 

of m, D, and . The complex refractive index of liquid water 

m was taken from. The “Mie scattering coefficients” 𝑎𝑛 and 𝑏𝑛 in Equation 

represent a contribution to the scattered field from the multi poles induced in the 

sphere, such as raindrops. For calculation by using the recommended prediction 

methods by ITU-R, rain specific attenuation R  dB/ km is obtained from the rain 

rate R mm/hr using the power-law relationship: 

𝛾𝑅=𝐾𝑅𝛼 (II.23) 

Values for the constants for the coefficients k and 𝛼 are determined as functions 

of frequency, f GHz, in the range from 1 to 1000 GHz, from the equations 
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which have been developed from curve-fitting to power-law coefficients derived 

from scattering calculations. It is shown in ITU-R P.838-3 [20] 

 

 

II.2.1.3. THz channel models by methods: 

a) Stochastic model: 

A stochastic model has the capacity to handle uncertainties in the inputs 

applied, making it useful for representing real-world systems where variability is 

present. These models possess inherent randomness, meaning that even when 

provided with the same set of parameter values and initial conditions, they 

generate an ensemble of different outputs. This characteristic distinguishes 

stochastic models from deterministic ones, as the latter always produce the same 

outcome under identical conditions. By incorporating randomness, stochastic 

models better capture uncertainty and fluctuations in complex systems. [21] [22] 

The following theorems return the probability density function (PDF) and 

cumulative density function (CDF) of the random process that is used to model 

the stochastic behavior of the channel, 

|ℎ𝑓𝑝| = |ℎ𝑓||ℎ𝑝| (II.24) 
 

 

Theorem 1: The PDF of |hfp | can be analytically evaluated as 

    𝑓|ℎ𝑓𝑝| = 𝛾2𝐴0
−𝛾2 𝜇

𝛾
𝛼

2

ℎ̂𝑓
𝛼Γ(𝜇)

𝑥𝛾2−1 × Γ(
𝛼𝜇−𝛾2

𝛼
, 𝜇

𝑥𝛼

ℎ̂𝑓
𝛼 𝐴0

−𝛼)                 (II.25) (II.22) (II.22) 
                        

(II.22) 

Proof: Please see Appendix A. 

Theorem 2: The CDF of |hfp | can be obtained as 
 

            𝐹|ℎ𝑓𝑝|(𝑥) = 1 −
1

𝛼

𝑥𝛾2

ℎ̂𝑓
𝛾2

𝛾2

𝐴0
𝛾2 × ∑

𝜇
𝛾2

𝛼

𝑘!
Γ(

𝜇−1
𝑘=0

𝛼𝑘−𝛾2

𝛼
, 𝜇

𝑥𝛼

ℎ𝑓
𝛼̂ 𝐴0

−𝛼)            
        (II.26) 

 

Proof: Please see Appendix B. 

it is evident that the presented distribution depends on the multipath fading 

channels characteristics, which are modeled through the parameters α and µ, as 

well as the level of misalignment fading that is described via the parameters 𝛾2 

and 𝐴0[23]. 
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b) Deterministic model: 

Deterministic channel models accurately model the wave propagation based 

on the theory of electromagnetic (EM) wave propagation. The approach is site- 

specific, and requires detailed geometric information of the propagation 

environment, dielectric properties of materials and spatial positions of the Tx and 

the Rx. Therefore, a deterministic approach provides a good agreement between 

the simulation results and the measurements in general, though the accuracy 

varies based on the specific method, the accuracy of the environmental 

information, and the analyzed frequency band. The results from the deterministic 

modeling can be useful by themselves (e.g., for deployment planning), to provide 

statistical channel information by applying Monte Carlo analysis on many random 

transmit/receive locations, and/or as input for statistical channel modeling. In 

particular, RT, and finite Difference Time Domain (FDTD) are two representative 

methods of deterministic channel modeling, while the use of measured, stored 

impulse responses (or equivalent) is another possible deterministic approach [24]. 

1) Ray-Tracing: RT has emerged as a popular technique for the analysis of site- 

specific scenarios, due to its ability to analyze very large structures with 

reasonable computational resources. The ray-tracing algorithm models the 

propagation of electromagnetic waves based on the high-frequency 

approximation of Maxwell’s equations, geometrical optics. The locations of the 

Tx and the Rx are first specified, followed by determining all possible routes 

between the transceivers, based on high-frequency-approximation rules like 

Geometric Optic (GO), Geometric Theory of Diffraction (GTD), Uniform Theory 

of Diffraction (UTD), and Kirchhoff theory. The technique is especially suitable 

for THz channels due to the fact that these approximations become more accurate 

due to the stronger corpuscular property in the THz band, which is associated with 

the wave-particle (wave corpuscle) duality of light. 

2) Finite-Domain Time-Domain: FDTD is also known as Yee’s method named 

after the Chinese American applied mathematician Kane S. Yee. It is a numerical 

analysis technique that directly solves Maxwell’s equations. FDTD can resolve 

the impact of small and complex scatterers, and rough surfaces in the THz band, 

but suffers from very high computational complexity when applied to an 

environment that has large dimensions in units of wavelength, as often occurs for 

THz channels. Furthermore, a database of the environment with sufficient 

resolution, e.g., a point cloud from laser scanning (see above) is required [24] 
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3) Measurement-based: The measurement-based approach relies on channel 

measurement along with data storage. The concept of “stored measurements” has 

been used at least since the 1990s, when channel sounder measurements started 

to be stored digitally. Various projects, such as the Metamorp project, attempted 

to standardize formats for data storage both in the time domain (as impulse 

response) and frequency domain (transfer function). Major challenges revolve in 

particular around unified formats of metadata such as calibration data of the 

channel sounders, and descriptions of the measurement parameters and 

environments. More recently, the principle of “open source” data has motivated 

many researchers to place measurement results online for download. Various 

standardization groups, including the NextG Channel alliance aim to facilitate 

data exchange. The challenges in the context of THz channels revolve around the 

size of the measured data, both due to the large bandwidth, and large antenna 

arrays [24] 

 

 

II.3. Characteristics Thz channel model: 

• Path loss models: 

The path loss elements include free-space loss, atmospheric losses due to gaseous 

and water vapor absorption, precipitation, fading loss due to multipath, and other 

miscellaneous effects based on frequency and the environment [25] 

Path loss models are used to compute the decrease in the power of a radio signal 

as it propagates away from the transmitter. Path loss models are implemented by 

path loss modules, which are submodules of the radio medium module. The 

default path loss model is most often free space path loss, which computes 

attenuation according to the inverse square law along a single line-of-sight 

propagation path. This is a simple model, and realistic only in certain cases. 

Because of its low computational cost, it is also useful if the emphasis of the 

simulation is not on the accuracy of radio propagation (e.g. for testing protocols.) 

However, there are several more path loss models available in INET, suitable for 

various other scenarios. Here is a list of the path loss module types featured in this 

showcase example: 

𝑃𝐿 = 𝐴𝑙𝑜𝑔10(𝑑) + 𝐵 + 𝑋𝜎 (II.27) 
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where PL is short for path loss, d is the distance between the Tx and the Rx, A is 

the slope, B is the intercept, and Xσ is the shadow fading, which can be expressed 

as a Gaussian variable with zero mean value and a standard deviation of σ [25] 

• Free Space Path Loss computes the loss of signal power in a single 

line-of-sight propagation path, without any reflections or shadowing. 

• Two Ray Ground Reflection computes the loss of signal power by 

assuming a line-of-sight wave interfering with another wave reflected from 

the ground between the transmitter and the receiver. This model computes 

interference in the far-field only and is the same as free space path loss up 

until a certain crossover distance [26] 

• Two Ray Interference is the same as the two-ray ground reflection 

model in the far-field, but it models the interference of the two waves in the 

near-field as well. 

• Rician Fading is a stochastic path loss model that assumes a dominant 

line-of-sight signal and multiple reflected signals between the transmitter 

and the receiver. It is useful for modeling radio propagation in an urban 

environment. 

• Log Normal Shadowing is a stochastic path loss model where power 

levels follow a lognormal distribution. It is useful for modeling shadowing 

caused by objects such as trees [26] 

 

 

https://doc.omnetpp.org/inet/api-current/neddoc/inet.physicallayer.wireless.common.pathloss.FreeSpacePathLoss.html
https://doc.omnetpp.org/inet/api-current/neddoc/inet.physicallayer.wireless.common.pathloss.TwoRayGroundReflection.html
https://doc.omnetpp.org/inet/api-current/neddoc/inet.physicallayer.wireless.common.pathloss.TwoRayInterference.html
https://doc.omnetpp.org/inet/api-current/neddoc/inet.physicallayer.wireless.common.pathloss.RicianFading.html
https://doc.omnetpp.org/inet/api-current/neddoc/inet.physicallayer.wireless.common.pathloss.LogNormalShadowing.html
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Figure II.4: Examples of Path Loss Models 

 

 

II .4. CONCLUSION 

Based on the discussions presented above, the conclusions are obtained. 

Terahertz (THz) communication, operating in the 0.1–10 THz frequency range, is 

a key technology for 6G wireless systems, enabling ultra-high data rates in the 

terabit-per-second (Tbps) range. However, THz signals suffer from high path loss, 

molecular absorption, and limited transmission range, making line-of-sight (LoS) 

propagation, high-gain directional antennas, and beamforming essential. THz 

channel models are classified based on outdoor, indoor, and nanoscale 

environments, each addressing unique propagation challenges such as multipath 

fading, misalignment fading, and rain attenuation. While deterministic models 

like ray-tracing (RT) and finite-difference time-domain (FDTD) provide precise 

predictions, stochastic models are used for practical deployment scenarios. 

Despite these challenges, THz technology holds great promise for 6G, high-speed 

indoor networks, nanoscale communication, and advanced imaging applications. 

Future research must focus on optimizing hardware, signal processing, and 

propagation models to overcome current limitations and fully harness THz 

potential 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III: 

Algorithms of THz Channel Estimation 
 

 

 

 



CHAPTER III Algorithms of THz Channel Estimation 

36 

 

 

 

 

III.1. INTRODUCTION 

Terahertz communication is one of the most promising wireless 

communication technologies for 6G generation and beyond. and it is based on 

measurements specifically made for an intended communication system. 

Propagation models are the base for channel modelling, as they try to describe 

signal changes during its travel from the transmitter to the receiver [27] 

For THz systems to be practically adopted, As the key to wireless communication, 

channel estimation has become a hot research topic in recent years. We consider 

the problem of channel modeling and estimation with deterministic channel 

propagation and the related physical characteristics of THz bands, and benchmark 

various machine learning algorithms to estimate THz channel, including neural 

networks (NN), logistic regression (LR), and projected gradient ascent (PGA) 

[28] 

The aim to introduce wireless channel models by providing a selection of the most 

popular ones. The types of fading typical of the wireless environment are also 

presented, together with the relevant propagation models. carrying out vast indoor 

and outdoor measurement campaigns at the packet level, in order to define 

channel models derived [27] 

 

 

III.2. Channel Estimation 

In all communication systems, data is transferred from source to the 

destination in form of signals. These signals traverse different medium which can 

be wired or wireless. Copper wires or fibre cables are two examples of wired 

medium while air is a wireless medium. These mediums are also called channel. 

When a signal passes from channel, it is distorted from the noise or from other 

signals traversing that same medium. This means that when signal is received at 

its destination, it could have errors. So, in order to remove the noise and distortion 

effects of channel from the received signal, channel’s properties have to be found 

out. The process of figuring out channel characteristics is called Channel 

Estimation [29]. 
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Figure III.1: Learning Based Channel Estimation 

 

 

Channel estimation process consists of multiple steps. First a mathematical model 

is created of the channel. Then a signal which is known by both sender and 

receiver is transmitted over the channel. When the receiver receives the signal, it 

is of course distorted and contains noise from the channel, but the receiver also 

knows the original signal, thus it can compare the original signal and received 

signal to extract the properties of channel and the noises added to the sent signal 

in the channel. 

To put is in 3 main steps: 

1. Mathematical model for channel is created. This model correlates sent and 

received signal using channel matrix. 

2. A signal known by both sender and receiver is sent by sender over the channel. 

3. Receiver compares the received signal with original signal and figures III.1 

out the values in channel matrix [29] 

 

 

III.3. Algorithms of THz channel estimation 

III.3.1. Neural Network Algorithm (NN) 

Neural networks are machine learning models that mimic the complex 

functions of the human brain. These models consist of interconnected nodes or 

neurons that process data, learn patterns, and enable tasks such as pattern 

recognition and decision making. 
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In this article, we will explore the fundamentals of neural networks, their 

architecture, how they work, and their applications in various fields. 

Understanding neural networks is essential for anyone interested in the 

advancements of artificial intelligence [30] 
 

FigureIII.2: Analogy Between a Biological Neuron and an Artificial Neuron 

 

 

III.3.1.1. Neural Network Architecture: 

Input Layer: This is where the network receives its input data. Each input neuron 

in the layer corresponds to a feature in the input data. 

Hidden Layers: These layers perform most of the computational heavy lifting. A 

neural network can have one or multiple hidden layers. Each layer consists of 

units (neurons) that transform the inputs into something that the output layer can 

use. 

Output Layer: The final layer produces the output of the model. The format of 

these outputs varies depending on the specific task (e.g., classification, regression) 

[30] 
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Figure III.3: Neural Network Architecture 

III.3.1.2. Principal of Neural Networks Working: 

1. Forward Propagation : 

When data is input into the network, it passes throughh the network in the 

forward direction, from the input layer through the hidden layers to the output 

layer. This process is known as forward propagation. 

Here’s what happens during this phase: 

• Linear Transformation: 

Each neuron in a layer receives inputs, which are multiplied by the weights 

associated with the connections. These products are summed together, and a bias 

is added to the sum. This can be represented mathematically as: 

𝑍 = 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛 + 𝑏 (III.1) 

 

Where w represents the weights, x represents the inputs, and b is the bias. 

• Activation: 

The result of the linear transformation (denoted as z) is then passed through an 

activation function. The activation function is crucial because it introduces non- 

linearity into the system, enabling the network to learn more complex patterns. 

Popular activation functions include ReLU, sigmoid, and tanh. 

In the input layer, tanh function is selected as activation function since the input 

data contains negative values, which can be expressed as 
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𝑓𝑡𝑎𝑛ℎ 
(𝑥) = 

𝑒𝑥−𝑒−𝑥 

𝑒𝑥+𝑒−𝑥 (III.7) 
 

 

Figure III.4: tanh Function 

 

 

Where x stands for the input of the function. The rectified linear unit (ReLU) 

function is explored at the CV layers for its fast computation speed, which is 

represented as: 

𝑓𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) (III.8) 
 

 

Figure III.5: ReLU Function 

 

 

We also choose the sigmoid function at the output layer as 
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                                                     𝑓𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+𝑒−𝑥
                                               (III.9)             

 

 

 

Figure III.6: Sigmoid Function 

 

 

• Backpropagation : 

After forward propagation, the network evaluates its performance using a loss 

function, which measures the difference between the actual output and the 

predicted output. The goal of training is to minimize this loss. This is where 

backpropagation comes into play: 

• Loss Calculation: The network calculates the loss, which provides a 

measure of error in the predictions. The loss function could vary; common 

choices are mean squared error for regression tasks or cross-entropy loss 

for classification. 

• Gradient Calculation: The network computes the gradients of the loss 

function with respect to each weight and bias in the network. This involves 

applying the chain rule of calculus to find out how much each part of the 

output error can be attributed to each weight and bias. 

• Weight Update: Once the gradients are calculated, the weights and biases 

are updated using an optimization algorithm like stochastic gradient 

descent (SGD). The weights are adjusted in the opposite direction of the 

gradient to minimize the loss. The size of the step taken in each update is 

determined by the learning rate [30] 
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III.3.1.3. Types of Neural Networks 

There are five types of neural networks that can be used. 

Feedforward Networks: A feedforward neural network is a simple artificial 

neural network architecture in which data moves from input to output in a single 

direction. 

Multilayer Perceptron (MLP): MLP is a type of feedforward neural network 

with three or more layers, including an input layer, one or more hidden layers, and 

an output layer. It uses nonlinear activation functions. 

Deep Convolutional Neural Network (DCNN): A Convolutional Neural 

Network (DCNN) is a specialized artificial neural network designed for image 

processing. It employs convolutional layers to automatically learn hierarchical 

features from input images, enabling effective image recognition and 

classification [30] 

where the THz Array of Subarrays AoSA architecture is equipped at both 

transmitter (Tx) and receiver (Rx). In the AoSA, there are 𝑁𝑅𝐹 RF- chains with 

𝑁𝑅𝐹<<N where N represents the number of antennas, leading that each RF-chain 

connects to 

𝑁𝑎 = 𝑁⁄𝑁𝑅𝐹  antennas that form one subarray. Among the subarrays, analog 

beamforming and combining are conducted. In this case, the corresponding 

analog beamforming matrix F and combining matrix W hold the same block 

diagonal structure. In particular, the form of W can be expressed as [31] 

 

 

                                         W = [

𝑤1      0   … 0
0          𝑤2 … 0
⋮           ⋮     ⋱        ⋮
0        0 ⋯ 𝑤𝑁𝑅𝐹

]                                                     (III.2)
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𝑁 

 

 

Figure III.7: THz AoSA system model for SCE 

 

where 𝑊𝑘 = [𝑤1,𝑘 , …  ,𝑤𝑁𝑎,𝑘]𝑇represents the analog combining vector of the 

𝐾𝑡ℎ RF-chain, with k = 1, ..., 𝑁𝑅𝐹. Since the analog combining is implemented 

by phase shifters, each element in wk can be expressed as 

                                   𝑤𝑛𝑎,𝑘 = (1
√𝑁

⁄ )𝑒𝑗2𝜋𝑤̃𝑛𝑎,𝑘                                                        (III.3) 

Where 𝑛𝑎 = 1, … , 𝑁𝑎 stands for the index of the antenna on the subarray, the 

phase shift coefficient satisfies 0≤ 𝑤̃𝑛𝑎,𝑘  ≤ 1. In addition, during the SCE stage, 

At the receiver side, by denoting the 𝑐𝑡ℎ codeword at Tx and Rx as 𝐹𝑐 and 𝑊𝑐 , 

respectively, with c = 1, ..., C is the codeword index, the received signal can be 

represented as 

𝑦𝑟 = 𝑊𝐻𝐻𝐹 𝑆 + 𝑊𝐻𝑁 (III.4) 
𝑐 𝐶̅ 𝐶̅ 

where H stands for the THz channel matrix. The transmitted pilot symbol vector 

is denoted by s. Since the pilot symbol vectors are orthogonal to each other, we 

have S𝑆𝐻 = 𝐼𝑁𝑎. In addition, n refers to the complex additive white Gaussian 

noise (AWGN), with zero mean and variance 𝜎𝑛
2,which follows the distribution 

as n~𝐶̅𝑁(0, 𝜎𝑁
2𝐼𝑛).  Furthermore, the digital precoding matrix is chosen as an 

identity matrix during the pilot transmission stage, without loss of generality. 

After that, the received signal 𝑦𝑟 is sent to the matched filter, which can be 

represented by multiplying 𝑠𝐻 to 𝑦𝑟 as 

 

                                                   𝑦𝑐,𝑐 = 𝑊𝐶
𝐻𝐻𝐹𝐶 + 𝑁𝐶                                             (III.5) 
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Where 𝑁𝐶̅ = 𝑊𝐶
𝐻𝑛𝑠𝐻 describes the modified noise. Following the same 

procedure, 𝐶̅2matrices like can be acquired by varying the beam codewords at 

both Tx and Rx sides, to traverse all codebook combinations. Stacking them 

together, we can construct the channel observation matrix as 

 

                                                      Y=𝑊̅𝐻𝐻𝐹̅ + 𝑁                                                             (III.6) 
 

 

Figure III. 8: The Structure of The DCNN Framework Proposed in [31] 

 

 

The structure of the proposed DCNN network is illustrated in Fig III. 8, which 

learns the estimation of channel parameters in light of the channel observation 

matrix. In total, the DCNN architecture contains several layers, including one 

input layer, many convolution (CV) layers, max-pooling (MP) layers, one 

flattening layer and one fully-connected (FC) output layer. In each layer, an 

activation function describing the non- linear mapping relationship is tailored to 

the neurons, which is basic unit of the DCNN network 

after the last CV layer, a flatting layer rearranges the neurons into one dimension 

and connects to the FC output layer for parameter estimation results. Distinguished 

from CV layer, the neurons between neighboring layers in FC are fully connected. 

the output z (M) based on the proposed method is represented as [31] 

 

𝑍(𝑀) = 𝐹(𝑀)(𝐹(𝑀−1) (… 𝐹(1)(𝑥))) (III.10) 

Recurrent Neural Network (RNN): An artificial neural network type intended 

for sequential data processing is called a Recurrent Neural Network (RNN). It is 

appropriate for applications where contextual dependencies are critical, such as 

time series prediction and natural language processing, since it makes use of 

feedback loops, which enable information to survive within the network. 

https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/
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ℎ𝑡 = 𝜎ℎ(𝑤𝑥ℎ𝑥𝑡 + 𝑤ℎℎℎ𝑡−1 + 𝑏ℎ) (III.11) 

 

where 𝑤𝑥ℎ is the weight matrix between the input and hidden layer, 𝑤ℎℎ is the 

weight matrix for the recurrent connection, 𝑏ℎ is the bias vector, and 𝜎ℎ is the 

activation function, typically the hyperbolic tangent function (tanh) or the 

rectified linear unit. The output at each time step, t, is given by the following: 

𝑦𝑡 = 𝜎𝑦(𝑤ℎ𝑦ℎ𝑡 + 𝑏𝑦) (III.12) 

 

where 𝑤ℎ𝑦 is the weight matrix between the hidden and output layers, 𝑏𝑦 is the 

bias vector, and 𝜎𝑦 is the activation function for the output layer.[32] 
 

Figure III. 9: Basic RNN Architecture 

 

 

Long Short-Term Memory (LSTM): LSTM is a type of RNN that is designed 

to overcome the vanishing gradient problem in training RNNs. It uses memory 

cells and gates to selectively read, write, and erase information [30] 

 

 

III.3.1.4. Advantages of Neural Networks 

Neural networks are widely used in many different applications because of their 

many benefits: 

Adaptability: Neural networks are useful for activities where the link between 

inputs and outputs is complex or not well defined because they can adapt to new 

situations and learn from data. 
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Pattern Recognition: Their proficiency in pattern recognition renders them 

efficacious in tasks like as audio and image identification, natural language 

processing, and other intricate data patterns. 

Parallel Processing: Because neural networks are capable of parallel processing 

by nature, they can process numerous jobs at once, which speeds up and improves 

the efficiency of computations. 

Non-Linearity: Neural networks are able to model and comprehend complicated 

relationships in data by virtue of the non-linear activation functions found in 

neurons, which overcome the drawbacks of linear models [30] 

 

 

III.3.1.5. Disadvantages of Neural Networks: 

Neural networks, while powerful, are not without drawbacks and difficulties: 

Computational Intensity: Large neural network training can be a laborious and 

computationally demanding process that demands a lot of computing power. 

Black box Nature: As “black box” models, neural networks pose a problem in 

important applications since it is difficult to understand how they make decisions. 

Overfitting: Overfitting is a phenomenon in which neural networks commit 

training material to memory rather than identifying patterns in the data. Although 

regularization approaches help to alleviate this, the problem still exists. 

Need for Large datasets: For efficient training, neural networks frequently need 

sizable, labeled datasets; otherwise, their performance may suffer from 

incomplete or skewed data [30] 

 

 

III.3.1.6. Applications of Neural Networks 

Neural networks have numerous applications across various fields: 

Image and Video Recognition: CNNs are extensively used in applications such 

as facial recognition, autonomous driving, and medical image analysis. 

Natural Language Processing (NLP): RNNs and transformers power language 

translation, chatbots, and sentiment analysis. 

Finance: Predicting stock prices, fraud detection, and risk management. 
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Healthcare: Neural networks assist in diagnosing diseases, analyzing medical 

images, and personalizing treatment plans. 

Gaming and Autonomous Systems: Neural networks enable real-time decision- 

making, enhancing user experience in video games and enabling autonomous 

systems like self-driving cars [30] 

 

 

III.3.2. Logistic Regression Algorithm (LR) 

Logistic regression is a statistical method for developing machine learning 

models with binary dependent variables, i.e. binary. Logistic regression is a 

statistical technique used to describe data and the relationship between one 

dependent variable and one or more independent variables. used for classification 

tasks where the goal is to predict the probability that an instance belongs to a given 

class or not. Logistic regression is a statistical algorithm which analyze the 

relationship between two data factors. The article explores the fundamentals of 

logistic regression, it’s types and implementations. 

Logistic regression is used for binary classification where we use sigmoid 

function, that takes input as independent variables and produces a probability 

value between 0 and 1. 

For example, we have two classes Class 0 and Class 1 if the value of the logistic 

function for an input is greater than 0.5 (threshold value) then it belongs to Class 

1 otherwise it belongs to Class 0. It’s referred to as regression because it is the 

extension of linear regression but is mainly used for classification problems. 

Key Points : 

• Logistic regression predicts the output of a categorical dependent variable. 

Therefore, the outcome must be a categorical or discrete value. 

• It can be either Yes or No, 0 or 1, true or False, etc. but instead of giving 

the exact value as 0 and 1, it gives the probabilistic values which lie 

between 0 and 1. 

• In Logistic regression, instead of fitting a regression line, we fit an “S” 

shaped logistic function, which predicts two maximum values (0 or 1) [33] 



Chapter III Algorithms of THz Channel Estimation 

48 

 

 

 

 

Figure III. 10: Logistic Regression Algorithm 

 

 

III.3.2.1. Types of Logistic Regression 

On the basis of the categories, Logistic Regression can be classified into three 

types: 

Binomial: In binomial Logistic regression, there can be only two possible types 

of the dependent variables, such as 0 or 1, Pass or Fail, etc. 

Multinomial: In multinomial Logistic regression, there can be 3 or more possible 

unordered types of the dependent variable. 

Ordinal: In ordinal Logistic regression, there can be 3 or more possible ordered 

types of dependent variables, such as “low”, “Medium”, or “High” [33] 

 

 

 

III.3.2.2. Assumptions of Logistic Regression 

We will explore the assumptions of logistic regression as understanding these 

assumptions is important to ensure that we are using appropriate application of 

the model. The assumption include: 

Independent observations: Each observation is independent of the other. 

meaning there is no correlation between any input variables. 

Binary dependent variables: It takes the assumption that the dependent variable 

must be binary or dichotomous, meaning it can take only two values. For more 

than two categories SoftMax functions are used. 
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Linearity relationship between independent variables and log odds: The 

relationship between the independent variables and the log odds of the dependent 

variable should be linear. 

No outliers: There should be no outliers in the dataset. 

Large sample size: The sample size is sufficiently large [33] 

 

 

III.3.2.3. Logistic Regression working 

The logistic regression model transforms the linear regression function 

continuous value output into categorical value output using a sigmoid function, 

which maps any real-valued set of independent variables input into a value 

between 0 and 1. This function is known as the logistic function. [33] 

Let the independent input features be: 

𝑋 = [

𝑥11  … 𝑥1𝑚

𝑥21 … 𝑥2𝑚

𝑥𝑛1 … 𝑥𝑛𝑚

] 
                      

(III.13) 

 
and the dependent variable is Y having only binary value i.e. 0 or 1. 

 

                                  Y={
0     𝑖𝑓 𝑐𝑙𝑎𝑠𝑠 1
1    𝑖𝑓 𝑐𝑙𝑎𝑠𝑠 2

                                                            (III.14) 

 

then, apply the multi-linear function to the input variables X. 
 

𝑛 
𝑖=1 𝑤𝑖𝑥𝑖) + 𝑏 (III.15) 

 

Here 𝑥𝑖 is the ith observation of X, 𝜔𝑖 = [𝜔1, 𝜔2, 𝜔3, …, 𝜔𝑚] is the weights or 

Coefficient, and b is the bias term also known as intercept. simply this can be 

represented as the dot product of weight and bias 

Z = 𝜔 ⋅ X+ b (III.16) 

 

• Equation of Logistic Regression : 

Z= (∑ 
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𝑖=1 

𝑖=1 

The odd is the ratio of something occurring to something not occurring. it is 

different from probability as the probability is the ratio of something occurring to 

everything that could possibly occur. so odd will be:[33] 

𝑝(𝑥) 

1−𝑝(𝑥) 
= 𝑒𝑧 (III.18) 

 

Applying natural log on odd. then log odd will be: 
 

                                                         log[
𝑝(𝑥)

1−𝑝(𝑥)
] = 𝑧                                                 (III.19) 

 

 

𝑝(𝑥) 

1−𝑝(𝑥) 
= 𝑒𝜔.𝑋+𝑏 (III.20) 

 

Exponentiate both sides 

P(x)=𝑒𝜔.𝑋+𝑏. (1 − 𝑝(𝑥)) (III.21) 
 

 

                                                      P(x)=
𝑒𝜔.𝑋+𝑏

1+𝑒𝜔.𝑋+𝑏
                                                         (III.22) 

 

then the final logistic regression equation will be: 
 

p(X ;b, 𝜔) = 𝑒
𝜔.𝑋+𝑏 

1+𝑒𝜔.𝑋+𝑏 
= 

1 

1+𝑒−𝜔.𝑋+𝑏 (III.23) 

 

• Likelihood Function for Logistic Regression 

The predicted probabilities will be: 

• for y=1 The predicted probabilities will be: p(X;b, 𝜔) = p(x) 

• for y = 0 The predicted probabilities will be: 1-p (X;b, 𝜔) = 1-p(x) 

 

 

L(b,𝜔)=∏𝑛 𝑝(𝑥𝑖)𝑦𝑖(1 − 𝑝(𝑥𝑖))1−𝑦𝑖 (III.24) 

 

Taking natural logs on both sides; 

Log (L(b, 𝜔)) = ∑𝑛 𝑦𝑖𝑙𝑜𝑔𝑝(𝑥𝑖) + (1 − 𝑦𝑖)log(1 − 𝑝(𝑥𝑖)) 
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𝑖=1 
𝑛 
𝑖=1 −𝑙𝑜𝑔1 + 𝑒𝜔.𝑥𝑖+𝑏 + ∑𝑛 𝑦𝑖(𝜔. 𝑥𝑖 + 𝑏) (III.25) 

 

• Gradient of the log-likelihood function 

To find the maximum likelihood estimates, we differentiate w.r.t 𝜔

                                          
∂J(l(b,𝜔)

∂𝜔i
= ∑ (yi − p(xi; b, 𝜔))xij

n
i=n                                      (III.26) 

 

III.3.2.4. Advantages of logistic regression in ML 

Simplicity and Interpretability: Easy to implement and understand; useful when 

quick results and insights are needed. 

Efficiency: Performs well even when data isn’t perfect; the underlying math is 

simple and fast to optimize. 

Insightful: Suitable for binary classification; helps identify variable importance 

and their impact direction (positive or negative). 

 

 

III.3.2.5. Disadvantages of logistic regression in ML 

Limited to Discrete Outcomes: Cannot handle continuous target variables. 

Assumes Linearity: Assumes linear relationships between variables, which may 

not hold in real-world data. 

Poor at Modeling Complex Relationships: Struggles with nonlinear or highly 

interdependent features. 

Risk of Overfitting: May overfit large or complex datasets without proper 

regularization [34] 

III.3.3. Frank-Wolfe Algorithm (FW) 

The Frank-Wolfe (FW) method, also known as the conditional gradient 

method, is a well-studied first-order algorithm for smooth convex optimization 

with a bounded feasible region. Compared to other first-order methods, such as 

projected gradient methods and proximal type methods, where a projection 

operation onto the feasible set is required at every iteration, the Frank-Wolfe 

method avoids projection by minimizing a linear objective over the feasible set. 

=∑ 
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Solving this problem is often computationally more attractive than a projection 

step in several large-scale problems arising in machine learning [35] 

H= Min f(x) (III.27) 

           x∈ 𝐷 
 

 

III.3.3.1. Types of frank-wolfe: 

• Unbounded Frank-Wolfe Algorithms 

In this section, we present two new Frank-Wolfe algorithms designed to solve 

with an unbounded feasible region. As mentioned above, we alternate between 

performing a Frank-Wolfe step on the bounded set S and a gradient descent step 

along the subspace T. Since the gradient descent direction can also be viewed as 

an extreme ray to the solution of the Frank-Wolfe linear subproblem along the 

linear subspace T, we call this the “Unbounded Frank-Wolfe Method”. 

Algorithm 1 presents our first algorithm: the unbounded Frank-Wolfe method, 

for solving. In each iteration, we first perform a gradient descent step along the 

unbounded subspace T. To do so, we first compute the negative projected gradient 

onto T, namely PT f(xk). Unlike gradient descent, the traditional Frank-Wolfe 

method does not have linear convergence even if the objective function is strongly 

convex. An intuitive explanation is that the solutions to the linear subproblems in 

the Frank-Wolfe algorithm may alternate between two extreme points of the 

constraint set, the iterate solutions zigzag, slowing down the convergence of the 

algorithm. Awaystep Frank-Wolfe method allows moving in a direction opposite 

to the maximal solution of the linear model. 

Algorithm 2 adapts the away-step Frank-Wolfe method to solve with the 

unbounded feasible region T S. The major difference of Algorithm 2 with 

Algorithm 1 is that the former allows performing an away step for the update 

along S [35] 

III.3.3.2 Frank-Wolfe method 

The Frank-Wolfe method, also called conditional gradient method, uses a local 

linear expansion of: 

𝑠(𝑘−1) ∈ 𝑎𝑟𝑔𝑚𝑖𝑛∇f(𝑥(𝑘−1))𝑇 (III.28)    

s∈ 𝑐 
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𝑘𝑠 𝑥(𝑘) = (1 − 𝛾𝑘)𝑥(𝑘−1) + 𝛾 (𝑘−1) (III.29) 

 

 

Note that there is no projection; update is solved directly over C 

Default step sizes: γk = 2/ (k + 1), k = 1, 2, 3, …… Note for any 

0 ≤ γk ≤ 1, we have x(k) ∈ C by convexity. Can rewrite update as 

𝑥(𝑘) = 𝑥(𝑘−1) + 𝛾𝑘(𝑠(𝑘−1) − 𝑥(𝑘−1)) (III.30) 
 

 

i.e., we are moving less and less in the direction of the linearization minimizer as 

the algorithm proceeds [36] 

• Algorithm Franke-Wolfe method to estimate: 

Instead of estimating the original mmWave channel matrix H, the authors propose 

estimating a pseudo-channel defined as: 

G = HS (III.31) 

 

where S is a known training matrix. Since H is assumed to be low-rank, the matrix 

G also retains this property. Estimating G simplifies the optimization process. 

Low-Rank Constraint: The rank constraint rank(X) = r is non-convex and 

difficult to handle directly. Instead, it is relaxed using the nuclear norm: 

This creates a convex constraint set, enabling efficient optimization. The 

parameter β can be chosen based on prior knowledge of the channel statistics. 

Log-Likelihood Function: The log-likelihood function measures how well a 

candidate matrix X matches the 1-bit quantized measurements Y, accounting for 

Gaussian noise. 

For the real part of the received signal, the log-likelihood is:[37] 

ℒ𝑌𝑅(𝑋𝑅) = ∑ ∑[𝟙[𝑌𝑘,𝑙
𝑅 =1log (Φ(

𝑁

𝑙=1

𝑋𝑘,𝑙
𝑅 𝜎⁄ )) + 𝟙[𝑌𝑘,𝑙

𝑟 =1log (1 − Φ(𝑋𝑘,𝑙
𝑅 𝜎⁄

𝑁

𝑘=1

))] 

                                                                                                                                     (III.32) 

where Φ(𝑋𝑘,𝑙
𝑅 𝜎⁄ ) is the cumulative distribution function (CDF) of the standard 

normal distribution. 

The full log-likelihood includes both real and imaginary parts: 
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ℒ𝑌(𝑋) = ℒ𝑌𝑅(𝑋𝑅) + ℒ𝑌1 (𝑋1) (III.33) 

 

Because both components are concave, the overall function ℒ𝑌(X) is also concave, 

making it well-suited for convex optimization methods. 

approximation is determined by the gradient, this method selects a matrix 𝐷𝑡 

within ‖𝑋‖*≤ 𝛽 that maximizes the inner product ≪ 𝐷𝑡, ∇ℒ𝑌(𝑋𝑡) ≫ . The matrix 

𝐷𝑡 is simply the rank-one approxi-mation of the gradient ∇ℒ(𝑋𝑡). For a step size 

of 𝛾𝑡 , the optimization variable 𝑋𝑡 is incremented by 𝛾𝑡(𝐷𝑡 − 𝑋𝑡) to obtain 𝑋𝑡+1. 

A summary of the Franke-Wolfe technique to estimate G is given in Algorithm To 

achieve a low complexity implementation of Algorithm, we use the power method 

to compute the rank one- approximation of ∇ℒ𝑌(𝑋𝑡). Each iteration of the power 

method requires multiplying an N × N matrix with an N × 1 vector. With the power 

method-based implementation, the complexity of a single iteration of the Franke- 

Wolfe method is O (𝑁2) which is lower than that of the PGA algorithm [37] 

for t= 1 to 𝑇𝑚𝑎𝑥 do 

𝐷𝑡 ← Rank 1 approx. of ∇ℒ𝑌(𝑋𝑡) by power method 

𝛾𝑡 ← 2⁄( 𝑡 + 2) 

𝑋𝑡+1 = 𝑋𝑡 + 𝛾𝑡(𝐷𝑡 − 𝑋𝑡) (III.34) 

 

Stop if 0< ℒ𝑌(𝑋𝑡+1) − ℒ𝑌(𝑋𝑡) < 𝜖⃒⃒ℒ𝑌(𝑋𝑡)⃒ 

End for 

𝐺  = 𝑋𝑡+1 (III.35) 

 

 

 

III.3.3.3. Applications: 

The Frank-Wolfe algorithm appears in many different contexts. Here are some 

examples [38] 

• Structured SVM: 

Given n samples x = (𝑥1, .., 𝑥𝑛) and their corresponding labels y = (𝑦1, . ., 𝑦𝑛). 

Given a weight vector w, we would like to minimize 
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𝑗=1 

Min<𝜔, Φ𝑥 (𝑦) 
𝜆 

> +  ‖𝜔‖ 
2 

2 (III.36) 

y∈ {−1, +1}𝑛 

This objective function is a support function (of the convex hull conv 

{Φ𝑥(𝑦)⃓ 𝑦 ∈ {−1,1}𝑚}) plus a squared norm. The dual of it can be derived 

analogously to that of the Lovász ex- tension plus squared norm, and looks similar 

to the min-norm problem for submodular optimization. Applying the Frank-Wolfe 

algorithm to the dual is, according to our above reasoning, equivalent to applying 

a subgradient method to the primal (non-smooth) SVM problem. 

Frank-Wolfe method for the structured SVM, and derive a stochastic block 

coordinate descent method. This can be related to a stochastic gradient method in 

the primal. 

• Herding Problem: 

In the herding problem, we are are given a set of samples 𝑥1 ,. ., 𝑥𝑛 and are 

trying to ap-proximate a given mean (expectation of a feature function or 

sufficient statistic) 

𝜇 = 𝔼𝑝(𝑥)Φ(𝑥) (III.37) 

 

by the average of a few sample points. The original Herding method picks those 

greedily. This method can be viewed as a Frank-Wolfe method applied to the 

objective 

min ‖𝜔 − 𝜇‖2 (III.38) 

𝜔 ∈ 𝑐𝑜𝑛𝑣({𝑥}𝑛  ) 

With an appropriately chosen step size, we get 𝜔 = 
1

𝑡
∑ Φ(𝑥𝑗)

𝑡
𝑗=1 and hence the 

differ-ence between the empirical and the population mean 

 

                                  ‖ 
1

𝑡
∑ Φ(𝑥𝑗)

𝑡
𝑗=1 − 𝜇‖2                                                        (III.39) 

 

 
that is being minimized. 

The equivalence between Herding and Frank-Wolfe 

• Boosting: 
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Boosting too can be viewed as a Frank-Wolfe method. Details are discussed in . 

Suppose B is the convex hull of the set of all hypotheses. We aim to choose a 

weight function 𝜔(x) that minimizes 

 

Min 𝔼𝑥,𝑦𝑙𝑜𝑠𝑠(𝜔(𝑥), 𝑦). (III.40) 

𝜔(𝑥) ∈ ℬ 
 
 
 

III.3.4. Projected Gradient Ascent (PGA) 

Gradient ascent is an ubiquitous optimization algorithm used to train 

machine learning (ML) algorithms from simple linear regression models to 

sophisticated transformer architectures. ML researchers are typically introduced 

to unconstrained optimization problems. 

The key idea behind PGD is to project the current solution onto the feasible region 

at each iteration. This projection step involves mapping the updated parameter 

onto the closest point within the feasible region in case if lands outside of it, 

effectively “projecting” it onto the constraint boundaries. By doing so, PGD 

guarantees that the resulting parameters remain feasible throughout the 

optimization process [39] 

 

 

III.3.4.1. Projected Gradient Ascent working: 

The starting point is just an arbitrary point for us to evaluate the performance. 

From that starting point, we will find the derivative (or slope), and from there, we 

can use a tangent line to observe the steepness of the slope. The slope will inform 

the updates to the parameters. the weights and bias. The slope at the starting point 

will be steeper, but as new parameters are generated, the steepness should 

gradually reduce until it reaches the lowest point on the curve, known as the point 

of convergence. 

Similar to finding the line of best fit in linear regression, the goal of gradient 

ascent is to minimize the cost function, or the error between predicted and actual 

y. In order to do this, it requires two data pointsa direction and a learning rate. 

These factors determine the partial derivative calculations of future iterations, 

allowing it to gradually arrive at the local or global minimum (i.e. point of 

convergence. 
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Learning rate (also referred to as step size or the alpha): is the size of the steps 

that are taken to reach the minimum. This is typically a small value, and it is 

evaluated and updated based on the behavior of the cost function. High learning 

rates result in larger steps but risks overshooting the minimum. Conversely, a low 

learning rate has small step sizes. While it has the advantage of more precision, 

the number of iterations compromises overall efficiency as this takes more time 

and computations to reach the minimum [40] 

The cost (or loss): function measures the difference, or error, between actual y 

and predicted y at its current position. This improves the machine learning model's 

efficacy by providing feedback to the model so that it can adjust the parameters 

to minimize the error and find the local or global minimum. It continuously 

iterates, moving along the direction of steepest descent (or the negative gradient) 

until the cost function is close to or at zero. At this point, the model will stop 

learning. Additionally, while the terms, cost function and loss function, are 

considered synonymous, there is a slight difference between them. It’s worth 

noting that a loss function refers to the error of one training example, while a cost 

function calculates the average error across an entire training set [40] 

The “training” phase in machine learning usually involves numerical 

optimization. Minimizing a function f depending on d parameters w 

 

H= Min f (𝜔) (III.41) 

𝜔 ∈ ℝ𝑑 

For differentiable f, a prototypical method is gradient ascent 

 

𝜔𝑘+1 = 𝜔𝑘 − 𝛼𝑘𝛻𝑓(𝜔𝑘) (III.42) 

Cost of update is O(d) in terms. Guaranteed to decrease f for small enough step 

size 𝛼𝑘 [41] 

• Projected gradient ascent method to estimate 

For PGA algorithm, the learning process is based on gradient ascent, a similar 

learning algorithm to gradient descent with a positive addition of the gradient at 

each update. PGA includes a projection step at each iteration, assuming that the 

matrix H has lower rank r than N, r ≪ N, where N = 𝑀𝑡 = 𝑀𝑟 . Singular Value 

Decomposition (SVD) and simplex projection are used to find the closest low rank 

matrix to the updated estimation of H. For Franke-Wolfe algorithm, an additional 
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𝑡+1 

𝑡+1 

step is included to the basic gradient ascent learning, where we update the channel 

matrix differently: instead of adding a weighted gradient matrix, we compute the 

top singular vector of the gradient, then we soustract it from the gradient and 

update the channel matrix [28] 

We now explain PGA-based estimation of G from Y. For a step size of η, the 

ascent step in PGA shifts 𝑋𝑡 𝜂∇ℒ(𝑋𝑡) The matrix obtained after shifting 𝑋𝑡is 

defined as 𝑍𝑡+1It is important to note that 𝑍𝑡+1may not belong to the constraint 

set,∥ 𝑋 ∥∗≤ 𝛽, 𝑒𝑣𝑒𝑛 𝑤ℎ𝑒𝑛 𝑋𝑡satisfies the constraint. The projection step in PGA 

finds a matrix within the constraint set that is closest to 𝑍𝑡+1 . The projection, 

defined as 𝑋𝑡+1 , is derived using the singular value decomposition (SVD) of 

𝑍𝑡+1and a simplex projection. The PGA algorithm to estimate G is summarized 

in Algorithm. It can be noticed that the complexity of a gradient step, computing 

∇ℒ𝑌(𝑋), 𝑖𝑠 𝑂(𝑁2). The complexity of the SVD step in PGA, however, is𝑂(𝑁3). 

Therefore, every iteration of the PGA algorithm has a complexity of O(𝑁3).[37] 

For t = 1 to 𝑇𝑚𝑎𝑥 do 

𝑍𝑡+1= 𝑋𝑡 + 𝜂∇ℒ𝑌(𝑋𝑡) (III.43) 

 

Compute the SVD: 𝑍𝑡+1𝑑𝑖𝑎𝑔(𝑑𝑡+1)𝑉∗ 

𝜋𝑡+1 ← 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑡+1𝑜𝑛 {𝑑: 1𝑇𝑑 = 𝛽, 𝑑 ≥ 0} 

 
𝑋𝑡+1 = 𝑈𝑡+1𝑑𝑖𝑎𝑔(𝑑𝜋+1)𝑉∗ (III.44) 

Stop if 0 < ℒ𝑌(𝑋𝑡+1) − ℒ𝑌(𝑋𝑡) < 𝜖⃒⃒ℒ𝑌(𝑋𝑡)⃒ 

End for: 𝐺  = 𝑋𝑡+1 

III.3.4.2. Types of Projected Gradient Ascent 

There are three types of gradient descent learning algorithms: batch gradient 

descent, stochastic gradient descent and mini-batch gradient descent [40] 
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Figure III. 11: Types of Projected Gradient Ascent 

 

 

• Batch gradient descent : 

Batch gradient descent sums the error for each point in a training set, updating 

the model only after all training examples have been evaluated. This process 

referred to as a training epoch. 

While this batching provides computation efficiency, it can still have a long 

processing time for large training datasets as it still needs to store all of the data 

into memory. Batch gradient descent also usually produces a stable error gradient 

and convergence, but sometimes that convergence point isn’t the most ideal, 

finding the local minimum versus the global one. 

• Stochastic gradient descent : 

Stochastic gradient descent (SGD) runs a training epoch for each example 

within the dataset and it updates each training example's parameters one at a time. 

Since you only need to hold one training example, they are easier to store in 

memory. While these frequent updates can offer more detail and speed, it can 

result in losses in computational efficiency when compared to batch gradient 

descent. Its frequent updates can result in noisy gradients, but this can also be 

helpful in escaping the local minimum and finding the global one. 

• Mini-batch gradient descent : 

Mini-batch gradient descent combines concepts from both batch gradient 

descent and stochastic gradient descent. It splits the training dataset into 

small batch sizes and performs updates on each of those batches. This approach 
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strikes a balance between the computational efficiency of batch gradient 

descent and the speed of stochastic gradient descent. 

• Momentum Gradient Descent: 

Momentum GD adds a momentum term to the update rule, which helps to 

smooth out oscillations in the gradient descent path and accelerate convergence. 

The momentum term accumulates the gradient updates over time and helps the 

algorithm to move faster in the correct direction and avoid local optima. 

• Nesterov Accelerated Gradient Descent (NAG): 

Nesterov’s Accelerated Gradient Descent is a modification of momentum 

Gradient Descent that accounts for the next step’s momentum and improves 

convergence speed. NAG computes the gradient of the cost function after adding 

the momentum term to the current position, which provides a better estimate of 

the gradient and improves convergence speed. 

• Adagrad: 

Adagrad adapts the learning rate for each model parameter based on the history 

of gradients for that parameter. This approach helps to converge quickly on sparse 

features, making it useful for natural language processing and computer vision 

applications. 

• RMSprop: 

RMSprop (Root Mean Square Propagation) is a modification of Adagrad that 

normalizes the historical gradient sum. It helps to adapt more robustly to the 

changing gradient surface and prevents the learning rate from becoming too small. 

• Adam (Adaptive Moment Estimation): 

Adam combines the concepts of momentum and adaptive learning rates. It uses 

the first and second moments of the gradient to calculate the adaptive learning 

rate and momentum term. Adam is a popular optimization algorithm for training 

deep neural networks due to its effectiveness in converging quickly to the 

minimum. 

In general, selecting the appropriate Gradient Descent algorithm depends on the 

specific problem, dataset size, and model complexity. It is often beneficial to 

experiment with multiple algorithms and tune their hyperparameters to optimize 

convergence speed and accuracy [42] 
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III.3.4.3. Advantages of Projected Gradient ascent 

Projected Gradient ascent (PGA) offers several advantages in the realm of 

adversarial attacks: 

Robust Adversarial Examples: PGA is known for generating adversarial 

examples that are robust across various models, making it a potent tool for 

evaluating and enhancing model robustness. 

Transferability: Adversarial examples crafted using PGA on one model often 

transfer well to other models, demonstrating its effectiveness in generating 

universal perturbations. 

Stability: PGA attacks are less sensitive to the choice of hyperparameters, 

providing a stable and reliable method for crafting adversarial examples [43] 

 

 

III.3.4.4. Disadvantages of Projected Gradient Ascent (PGA) 

While PGD is a powerful technique, it comes with its own set of challenges and 

limitations: [42] 

Increased Computational Cost: PGA attacks involve multiple iterations of 

gradient ascent, leading to increased computational cost compared to single-step 

methods. 

Limited Understanding of Robustness: Despite its success, PGA does not 

necessarily provide a complete understanding of a model’s robustness, as it might 

not cover all possible types of adversarial attacks. 

Hyperparameter Sensitivity: Although less sensitive than some other methods, 

PGD’s performance can still be influenced by the choice of hyperparameters, 

requiring careful tuning [43] 
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III.4. Conclution 

Based on the discussions presented above, the conclusions, has been 

developed to enhance the wireless communications domain by offering a precise 

and adaptable platform various machine learning algorithms to estimate THz 

channel, including neural networks (NN), logistic regression (LR), and projected 

gradient ascent (PGA), Frank-Wolfe. We chose these specific algorithms as they 

proved good performance for similar problems 
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IV.1. Introduction: 

 
Simulation plays a vital role in understanding, analyzing, and optimizing 

complex systems across various scientific and engineering disciplines. As the 

development of sixth-generation (6G) wireless networks and terahertz (THz) 

communication systems accelerates, accurate channel modeling and estimation 

have become critical challenges in the field. 

In this context, this study focuses on the deterministic propagation of signals and 

the physical characteristics inherent to THz frequency bands, which are essential 

for enabling high-capacity and reliable wireless communication. The aim is to 

provide a deeper understanding of channel behavior in THz environments through 

precise and efficient simulation models [28] 

In this section we will use python as a main program for simulation. We use it to 

create a simple DNN model to use it as a tool for channel estimation 

 

 

IV.2. Python 

Python is an interpreted, object-oriented, high-level programming language 

with dynamic semantics. Its high-level built in data structures, combined with 

dynamic typing and dynamic binding, make it very attractive for Rapid 

Application Development, as well as for use as a scripting or glue language to 

connect existing components together. Python's simple, easy to learn syntax 

emphasizes readability and therefore reduces the cost of program maintenance. 

Python supports modules and packages, which encourages program modularity 

and code reuse. The Python interpreter and the extensive standard library are 

available in source or binary form without charge for all major platforms, and can 

be freely distributed. 

Often, programmers fall in love with Python because of the increased productivity 

it provides. Since there is no compilation step, the edit-test-debug cycle is 

incredibly fast. Debugging Python programs is easy: a bug or bad input will never 

cause a segmentation fault. Instead, when the interpreter discovers an error, it 

raises an exception. When the program doesn't catch the exception, the interpreter 

prints a stack trace. A source level debugger allows inspection of local and global 

variables, evaluation of arbitrary expressions, setting breakpoints, stepping 

through the code a line at a time, and so on. The debugger is written in Python 

itself, testifying to Python's introspective power. On the other hand, often the 
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Generate 

the data 

Split the data 80% 
for training 20% for 

test 

Create a model 

Model fit 

Model evaluation 

 

quickest way to debug a program is to add a few print statements to the source: 

the fast edit-test-debug cycle makes this simple approach very effective. 

 

 

IV.3. System Model: 

We create a model channel that pass by the following main steps: 

 

Figure IV. 1: Steps of our Model Diagram. 

 

 

IV.4. Simulation 

in the context of terahertz (THz) communication channels. This setup typically 

leverages Multiple Input Multiple Output (MIMO) techniques to enhance signal quality 

and data rates of the environment subject to it with creation of Thz wireless channel 

Where K is the Rician K-factor the channel matrix 𝐻 follows: 
 

 
 

 

𝐻 = √𝑃𝐿. (𝐾⁄𝐾 + 1). 𝐻𝐿𝑂𝑆 + 1⁄𝐾 + 1 . 𝐻𝑁𝐿𝑂𝑆 (IV.1) 



CHAPTER IV SIMULATION AND RESULTS 

66 

 

 

 

The aim of simulation is estimate a THz wireless channel based on ML technique. 

In the first we need to generate a realistic Terahertz (THz) wireless channel matrix 

for a 2×2 Multiple-Input Multiple-Output (MIMO) system operating at 300 GHz 

in a short-range indoor environment. The channel matrix must be stored in a 3D 

array of dimensions (200,000, 2, 2), where each of the 200,000 instances 

represents a different channel realization (e.g., time samples, spatial positions, or 

independent channel realizations). Each 2×2 matrix represents the complex 

channel gains between 2 transmit and 2 receive antennas. 
 

 

Parameter Values 

Frequency 300.0 GHz 

Wavelength 1.00 mm 

Antenna spacing 0.50 mm 

Rician K-factor 15 dB 

Distance range 1-5 m 

Data Set length 2 .000.000 

Mean channel gain -15.13 dB 

Std channel gain -15.14 dB 

Mean condition number 4.66 

Spatial correlation (TX) 0.001 

Spatial correlation (RX) 0.001 

Temperature 20°C = 293.15 K 

Humidity 0.45 = 45% 

Pressure 101325 Pa 

Environment Los 

Data type complex128 

Memory usage 122.1 MB 

Table IV.1: Parameters of Thz channel Model. 
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We used a model Deep Neural Networks (DNN) functional with different values 

of noise to evaluate our model, in parallel to the change 

With 5 hidden layer: 
 

 

 

 

Figure IV. 2: DNN Model With 5 Hidden Layers. 

 

 

IV.4.1. THz Channel Modeling Approach 

The THz channel model incorporates three main propagation effects: 

• Path Loss Model: Free-space path loss combined with atmospheric 

absorption 

o Free-space path loss: 𝐿𝑓𝑠 
= (4𝜋𝑑𝑓/𝑐)2 
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o Molecular absorption: Exponential decay based on ITU-R P.676 

recommendations 

• Molecular Absorption: Dominated by water vapor at 300 GHz 

o Absorption coefficient calculated using Van Vleck-Weisskopf line 

shape 

o Simplified model: 𝛾 ≈ 0.1𝑑𝐵/𝑚 at 300 GHz for standard conditions 

• Small-Scale Fading: Combination of LOS and NLOS components 

o Rician fading for dominant LOS path 

o Rayleigh fading for scattered components 

Spatial correlation based on antenna spacing 

 

IV.4.2. Explanation of Model Compilation 

This method configures the model for training with consideration 

parameters must be considered: 

 

• SGD (Stochastic Gradient Descent): The optimizer used in this model, 

which is a classical method for optimizing neural networks. It updates the 

model's weights during training to minimize the loss function. 

• The learning rate is set to 0.001: which controls the size of the steps taken 

during optimization. A smaller learning rate results in slower but more 

precise learning. 

• The momentum parameter: is set to 0.9, which helps accelerate the learning 

process in the correct direction and reduces oscillations by accumulating 

the effects of previous updates. 

• MeanSquaredError: is the loss function, which measures how close the 

model’s predictions are to the actual values by computing the average of 

the squared differences. This type of loss is commonly used in regression 

problems where the goal is to predict continuous numerical values such as 

signal strength, speed, or price. 

• Accuracy: is the metric used to evaluate the model's performance is 

accuracy, which calculates the proportion of correct predictions. However, 

it is important to note that accuracy is typically suited for classification 

tasks. 
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For SNR=30db: 

 

Figure IV. 3: Development of the Accuracy During Training. 

 

 

The graph shows in the Figure IV. 3 the model's training accuracy increases 

significantly during the initial epochs, starting at around 33% and reaching 

approximately 95%, indicating that the model is learning well from the training 

data. After the tenth epoch, the improvement begins to slow down, and the 

performance reaches a state of stability. Although the result indicates successful 

training 

 

With epochs 20 : 
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Figure IV. 4: NMSE and SNR for wireless THz channel estimation 

 

 

The graph shows the relationship between the Normalized Mean Squared 

Error (NMSE) and the Signal-to-Noise Ratio (SNR) for THz channel estimation, 

where the horizontal axis represents the SNR in decibels and the vertical axis 

shows the NMSE on a logarithmic scale. It is observed that the NMSE decreases 

significantly as the SNR increases from 0 to around 20 dB, indicating a noticeable 

improvement in estimation accuracy as noise impact is reduced. However, after 

20 dB, this improvement slows down and reaches a saturation point around an 

NMSE value of 10−2, suggesting that the limiting factors are no longer just noise 

but could include algorithmic constraints, modeling limitations, or numerical 
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precision issues. This indicates that the method used for channel estimation is 

effective at medium to high SNR values. 

 

 

 

With SNR 30db: 

With epochs 30: 

 

Figure IV. 5: Development of The Accuracy During Training. 

 

 

This graph shows the change in accuracy with the number of epochs during 

model training. As shown, the accuracy gradually improves from around 0.954 to 

approximately 0.970 as the number of epochs increases from 0 to 30, From the 

figure IV.5, we can easily notice that the performance of the channel estimation 

based on DNN is related to the number of epochs, i.e. when the number of epochs 

is more than 10 epochs. 
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Figure IV. 6: NMSE and SNR for wireless THz channel estimation 

The plot clearly shows that the THz channel estimation model heavily depends on 

the signal quality (SNR), where an increase in SNR leads to reduced error and 

improved estimation accuracy. This behavior is expected and desirable in 

estimation models for communication systems, reflecting the efficiency of the 

employed deep neural network. 
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IV.5 CONCLUSION 

 
In this study, we presented an estimation of wireless THz channel response 

to overcome the technical challenges and enhance the performance of 

communication systems, components using a dual-antenna system by creating a 

model Thz according to the appropriate environment. As newcomers to machine 

learning and deep learning, we used a Deep Neural Network (DNN) model for 

estimating a 2×2 MIMO flat-fading channel. From the resulting graphs, it can be 

observed that the model's performance begins to degrade as the Signal-to-Noise 

Ratio (SNR) decreases. Furthermore, the accuracy of the channel estimation is 

closely linked to the number of training epochs, with noticeable improvements 

occurring when the number of epochs exceeds 10. This highlights the importance 

of sufficient training time to achieve reliable estimation results. 
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GENERAL CONCLUSION 

 
Terahertz (THz) channel models serve as a fundamental pillar in driving 

the advancement of wireless communication networks, particularly by offering 

deep insights into the unique physical characteristics of signal propagation at high 

frequencies in sixth-generation (6G) systems. These models take into account 

critical factors such as severe power loss and atmospheric absorption, enabling 

accurate simulations and the optimization of THz wireless links. As research and 

technologies for 6G continue to evolve, these models will become indispensable 

tools for ensuring ultra-fast, reliable connectivity and enabling innovative 

applications across various domains from terabit-per-second data transmission to 

advanced sensing systems. 

To overcome the technical challenges and enhance the performance of 

communication systems, a set of machine learning algorithms has been proposed, 

specifically designed to handle the complex nature of THz channels. These 

include Neural Networks (NN), Logistic Regression (LR), Projected Gradient 

Ascent (PGA), and Frank-Wolfe techniques. The selection of these algorithms is 

based on their proven efficiency in similar channel estimation tasks. They are 

expected to play a significant role in developing intelligent and highly accurate 

solutions for THz channel estimation, making them well-suited to meet the 

advanced technical requirements of 6G systems. 

However, Deep Learning has recently gained prominence as a result of its 

superior accuracy when trained with large amounts of data, In this work, we 

presented the THz channel response, focusing on the components, using a simple 

Deep Neural Network (DNN) model developed for estimating a 2×2 MIMO flat- 

fading channel. It is important to note that the model's performance is closely 

related to both the accuracy of the channel estimation and the signal-to-noise ratio 

(SNR). As the number of training epochs increases, the accuracy of the model 

improves accordingly, highlighting the importance of sufficient training to 

achieve reliable channel estimation. 

Because of the short time that we had and the lack of a powerful calculator 

machine, we suggest as a future work to  make comparison between PGA ,LR 

,and NN THz channel estimation algorithms 
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