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Abstract

This thesis focuses on the mixed fractional Brownian motion (mfBm), highlighting
its mathematical properties and specific behaviors. This process combines the features
of classical Brownian motion and fractional Brownian motion, allowing for the modeling
of phenomena with both short- and long-range dependence. The study reveals properties
such as increment stationarity, non-Markovian behavior, and Hölder continuity depending
on the chosen parameters.

The analysis continues with the study of stochastic differential equations (SDEs) driven
by by Mixed Fractional Brownian. Using tools such as the Wiener, Young, and Skorohod
integrals, the work demonstrates the existence, uniqueness, and regularity of solutions un-
der specific settings. The introduction of a stabilizing term helps extend the applicability
of these SDEss, especially for Hurst parameters greater than 3/4.

Concrete applications are then presented through numerical simulations. These ex-
periments show that Mixed EDS is particularly well-suited for financial modeling, repro-
ducing asset price dynamics and market behavior more accurately. Practical aspects such
as self-financing strategies and the no-arbitrage property are also explored.
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Résumé

Ce mémoire examine le mouvement Brownien fractionnaire mixte (mfBm) en met-
tant en avant ses propriétés mathématiques . Ce processus combine les caractéristiques
du mouvement Brownien classique et du mouvement Brownien fractionnaire, permettant
de modéliser des phénomènes à dépendance courte et longue. Son étude révèle des pro-
priétés telles que la stationnarité des incréments, la non-markovianité et une continuité
Höldérienne selon les paramètres choisis.

L’analyse se poursuit par l’étude des équations différentielles stochastiques (EDS)
dirigées par ce processus. En s’appuyant sur des outils tels que les intégrales de Wiener,
de Young et de Skorohod, le travail démontre lexistence, l’unicité et la régularité des
solutions dans des contextes spécifiques. L’introduction dun terme stabilisant permet
délargir les conditions d’utilisation de ces EDS, notamment pour les indices de Hurst
supérieurs à 3/4.

Des applications concrètes sont ensuite présentées à travers des simulations numériques.
Ces expériences montrent que le mfBm est particulièrement adapté à la modélisation fi-
nancière, en reproduisant de manière plus fidèle la dynamique des prix d’actifs et les
comportements de marché. Des aspects pratiques comme les stratégies auto-finançantes
et la propriété d’absence d’arbitrage sont aussi abordés.

L’objectif de ce travail est de mettre en lumière l’intérêt théorique et pratique du EDS
mixte dans la modélisation stochastique. En combinant une base mathématique solide
avec des applications numériques pertinentes, cette étude montre que le EDS mixte con-
stitue une alternative puissante aux modèles classiques, ouvrant des perspectives nouvelles
dans les domaines scientifiques et économiques.
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Introduction

Stochastic differential equations (SDEs) serve as a foundational tool for modeling sys-
tems subject to random fluctuations. Classical SDEs driven by Wiener processes excel
at capturing short-term, memoryless noise, However, many real-world phenomena-such
as financial markets and climate dynamics-exhibit long-range dependence that tra-
ditional Markovian models fail to capture. This thesis bridges this gap by rigorously
analyzing mixed SDEs that integrate both Wiener processes and fractional Brownian
motion (fBm), thereby unifying transient randomness with persistent memory effects.
Such equations take the form:

Xt = X0 +
∫ t

0
b(s,Xs)ds+ σ1

∫ t

0
XsdBs + σ2

∫ t

0
XsdB

H
s ,

where Bs is a Wiener process and BH
t is a fractional Brownian motion (fBm) with Hurst

index H ∈ (1/2, 1).
The limitations of existing models are evident in systems where historical trends per-

sistently influence future states. For instance, financial asset volatility often displays long
memory (characterized by fBm with H > 1/2), while instantaneous market shocks are
well represented by Wiener-driven jumps. Similarly, climate systems exhibit self-similar
temperature anomalies over decades, a hallmark of fBm, juxtaposed with short-term
weather fluctuations resembling white noise. However, current frameworks typically treat
these components in isolation, neglecting their interaction. This work addresses this short-
coming by developing a unified theory for mixed SDEs, enabling the simultaneous analysis
of short- and long-term stochastic behaviors.

The primary contributions of This thesis are threefold. First, we establish existence
and uniqueness criteria for solutions to mixed SDEs in the space S 2([0, T ]), leveraging
Picard iteration and Gronwall’s inequality to accommodate the non-Markovian nature of

fBm. Second, for H ∈ (3/4, 1), we introduce a stabilizing term ε
∫ t

0
ηXsdVs to transform
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fBm-driven dynamics into a semimartingale framework, resolving pathwise uniqueness and
enabling classical Itô calculus. Third, we prove weak convergence of stabilized solutions
to the original mixed SDEs as ε −→ 0, quantifying rates as O(εα) for α = min(1, 2H−1).
These theoretical advancements are contextualized through applications in finance and
climate science. For example, a mixed Heston model incorporating fBm replicates the
"volatility smile" observed in options markets, while temperature anomaly models demon-
strate geometric ergodicity towards stationary distributions, aligning with empirical cli-
mate trends..

This master thesis is structured by 4 chapters.

In Chapter 1, we define and examine the properties of Brownian motion and frac-
tional Brownian motion. This chapter establishes the foundation by looking at the basic
properties and mathematical expressions of these stochastic processes. It is imperative
to comprehend these fundamental ideas in order to fully appreciate the more intricate
structures that are presented later in the thesis.

In Chapter 2 we delve deeply into the physics and dynamics of mixed fractional Brown-
ian motion. This chapter examines the ways in which mfBm combines aspects of fractional
Brownian motion and traditional Brownian motion, providing a thorough examination of
its distinct features. We can recognize the benefits of mfBm over other models and its
possible uses by comprehending its complex characteristics.

In Chapter 3, we study stochastic differential equations (SDEss) driven by mixed frac-
tional Brownian motion, which combines both a standard Wiener process and a fractional
Brownian motion (fBm). We begin by developing the necessary stochastic analysis tools,
introducing three types of integrals adapted to different settings: the Wiener integral for
classical Brownian motion, the Young integral suitable for Hölder-continuous paths when

the Hurst parameter H >
1
2

, and the Skorohod integral used in anticipative frameworks.

We then examine mixed SDEss that involve both types of noise, focusing on the
existence, uniqueness, and regularity of their solutions, particularly in the context of
semilinear equations. Finally, we analyze the conditions under which these mixed SDEss

admit unique solutions when the Hurst parameter lies in the interval
(3

4
, 1
)

, both with and

without an added stabilizing term. The chapter concludes by exploring the asymptotic
behavior of solutions in the presence of this stabilizing term, establishing limit results for
the corresponding equations.

In Chapter 4, we explore practical applications and simulations of stochastic differ-
ential equations (SDEss) driven by mixed fractional Brownian motion (mfBm), which
combines both a standard Wiener process and a fractional Brownian motion. We begin
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with a general simulation framework for such mixed SDEss, setting the stage for various
modeling scenarios. The chapter then introduces a mixed Brownianfractional Brownian
model and examines its structural properties.

Next, we investigate conditions of self-financing strategies and their implications, fo-
cusing on capital functions, Markovian strategies, and specific constraints necessary for
financial modeling. We proceed with concrete financial applications, including the formu-
lation of asset price models and a detailed numerical example. A crucial topic addressed is
the arbitrage-free property of these models, where both theoretical aspects and numerical
verifications are discussed.

Finally, we compare different modeling approaches and conclude with practical ex-
amples and simulations implemented in the R programming language, illustrating the
behavior and validity of the proposed models.

This thesis attempts to give a thorough grasp of Stochastic Differential Equations
Driven by Mixed Fractional Brownian Motion through these organized chapters, covering
both its theoretical underpinnings and its real-world applications. This study advances
the subject of stochastic processes and their applications in a variety of scientific and
financial contexts by highlighting the theoretical significance and real-world applicability
of mixed SDEs.

9



1
Generality on Fractional Brownian Motion

1.1 Brownian Motion
Brownian motion is the continuous random motion of microscopic particles when

suspended in a fluid medium. Brownian motion was first observed (1827) by the Scottish
botanist Robert Brown[3] (1773-1858) when studying pollen grains in water. The effect
was finally explained in 1905 by Albert Einstein[6], who realized it was caused by water
molecules colliding randomly with the particles. Over a century later, Brownian motion
can still cause problems for scientists trying to study small biological particles in solution,
because they move around too much.

1.1.1 Definition of Brownian Motion
To formally define Brownian motion, let (Ω,F ,P) be a space on which we define the

process (Bt)t≥0.

Definition 1.1.1 A stochastic process (Bt)t≥0 is called a standard Brownian motion
if it satisfies the following conditions:

1. B0 = 0 P − a.s.

2. For all n ≥ 1, for all times 0 = t0 ≤ t1 ≤ ... ≤ tn, the increments
Btn − Btn−1 , ..., Bt1 − Bt0 are independent random variables ("independent incre-
ments").

3. For any given times 0 ≤ s ≤ t, Bt − Bs has the Gaussian distribution N (0, t − s)
with mean zero and variance t− s.

4. Almost surely, the function t → Bt is continuous.

10



Remark 1.1.1
1. We can rewrite the second condition by : for s ≤ t, the random variable Bt −Bs is

independent of σ(Br, r ≤ s).

2. The natural filtration of the Brownian motion is FB
t = σ(Bs, s ≤ t).

3. We can define the Brownian motion without the last condition of continuous paths,
because with a stochastic process satisfying the second and the third conditions, by
applying the Kolmogorov’s continuity theorem, there exists a modification of (Bt)t≥0

which has continuous paths almost surely.

Proposition 1.1.1 The Brownian motion B = (Bt, t ≥ 0) is a centered Gaussian process
with covariance :

Cov(Bt, Bs) = E(BsBt) = min(s, t) = s ∧ t, s ≥ 0, t ≥ 0.

Proof. We have that Bt = Bt −B0. Thus Bt ∼ N (0, t) by definition. Moreover, without
loss of generality, we assume s < t. Hence, we have

Cov(Bt, Bs) = E(BsBt) = E(Bs(Bt−Bs)+B2
s ) = 0+V ar(Bs) = 0+s = s, s < t, □

hence

Cov(Bt, Bs) = E(BsBt) = min(s, t) = s ∧ t, s ≥ 0, t ≥ 0.

Note that since the Brownian motion is a continuous Gaussian process, the proposition
1.1.1 characterizes uniquely the Brownian motion. ■

1.1.2 Properties of Brownian Motion

In this section, we will present some properties of Brownian motion.

Proposition 1.1.2 [7] Let (Bt)t≥0 be a standard Brownian motion

1. Self-similarity. For any a > 0, {a−1/2Bat} is Brownian motion.

2. Symmetry. {−Bt, t ≥ 0} is also a Brownian motion.

3. Time-inversion. {tB 1
t
, t > 0} is also a Brownian motion.

4. If Bt is a Brownian motion on [0, 1], then (t + 1)B 1
t+1

− B1 is a Brownian motion

on [0,∞).

Remark 1.1.2 Observe that a consequence of (3) is the law of large numbers for the
Brownian motion, namely P[ lim

t→+∞
t−1Bt = 0] = 1.
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1.1.2.1 Non-differentiability of Brownian Motion

Despite being continuous, the random nature of Brownian motion yields many inter-
esting pathological properties. The most prominent example of this is that it is nowhere
differentiable.

Lemma 1.1.1 Almost surely

lim sup
n→+∞

B(n)√
n

= +∞.

And similarly for lim inf.

So B(t) grows slower than t. But this lemma shows that its lim sup grows faster than
√
t.

Proof. By reverse Fatou,

P[B(n) > c
√
n] ≥ lim sup

n→+∞
P[B(n) > c

√
n] = lim sup

n→+∞
P[B(1) > c] > 0,

by the scaling property. Thinking of B(n) as the sum of Xn = B(n)−B(n−1), the event
on the LHS is exchangeable and the Hewitt-Savage 0-1 law implies that it has probability
1 (where we used the positive lower bound). ■

Definition 1.1.2 (Upper and lower derivatives) For a function f, we define the up-
per and lower right derivatives as

D∗f(t) = lim sup
h↓0

f(t+ h) − f(t)
h

,

and

D∗f(t) = lim inf
h↓0

f(t+ h) − f(t)
h

.

We begin with an easy first result.

Theorem 1.1.1 Fix t ≥ 0. Then almost surely Brownian motion is not differentiable at
t. Moreover, D∗B(t) = +∞ and D∗B(t) = −∞.

Proof. Consider the time inversion X. Then

D∗X(0) ≥ lim sup
n→+∞

X(n−1) −X(0)
n−1 = lim sup

n→+∞
B(n) = +∞,

by the lemma above. This proves the result at 0. Then note that X(s) = B(t+s)−B(s) is
a standard Brownian motion and differentiability of X at 0 is equivalent to differentiability
of B at t.
In fact, we can prove something much stronger. ■
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Theorem 1.1.2 Almost surely, Brownian motion is nowhere differentiable. Furthermore,
almost surely, for all t

D∗B(t) = +∞,

or
D∗B(t) = −∞,

or both.

Proof. Suppose there is t0 such that the latter does not hold. By boundedness of BM
over [0, 1], we have

sup
h∈[0,1]

|B(t0 + h) −B(t0)|
h

≤ M,

for some M < +∞. Assume t0 is in [(k − 1)2−n, k2−n] for some k, n. Then for all
1 ≤ j ≤ 2−n − k, in particular, for j = 1, 2, 3,

|B((k + j)2−n) −B((k + j − 1)2−n)| ≤ |B((k + j)2−n) −B(t0)| + |B(t0) −B((k + j − 1)2−n)|

≤
[
M(2j + 1)2−n

]
,

by our assumption. Define the events

Ωn,k = {|B((k + j)2−n) −B((k + j − 1)2−n)| ≤ M(2j + 1)2−n, j = 1, 2, 3}.

It suffices to show that
2n−3⋃
k=1

Ωn,k cannot happen for infinitely many n. Indeed,

P
[
∃t0 ∈ [0, 1], sup

h∈[0,1]

|B(t0 + h) −B(t0)|
h

≤ M

]

≤ P
[2n−3⋃

k=1
Ωn,k for infinitely many n

]
.
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(Then the result follows by taking all [k, k + 1] intervals and all M integers). But by the
independence of increments

P[Ωn,k] =
3∏

j=1
P[|B((k + j)2−n) −B((k + j − 1)2−n)| ≤ M(2j + 1)2−n]

≤ P
[
|B(2−n)| ≤ 7M

2n

]3

= P
[∣∣∣∣∣ 1√

2−n
B
([√

2−n
]2)∣∣∣∣∣ ≤ 7M√

2−n.2n

]3

= P
[
|B(1)| ≤ 7M√

2n

]3

≤
(

7M√
2n

)3

,

because the density of a standard Gaussian is bounded by 1/2. (The choice of 3 comes
from summability). Hence

P
[2n−3⋃

k=1
Ωn,k

]
≤ 2n

(
7M√

2n

)3

= (7M)32−n/2,

which is summable. The result follows from BC. That is, the probability above
is 0. ■

1.1.2.2 Brownian paths

Lemma 1.1.2 (Kolmogrov-Chentsov)
Fix a compact interval T = [0, T ] ⊂ R+, and let X = (Xt)t∈T be a centered Gaussian
process. Suppose that there exists C, η > 0 such that, for all s, t ∈ T,

E[(Xt −Xs)2] ≤ C | t− s |η . (1.1)

Then, for all α ∈ (0, η/2), there exists a modification Y of X with α-Hölder continuous
paths. In particular, X admits a continuous modification.

Proof. Fix t > s. Since X is Gaussian and centered, we have that

Xt −Xs
Law=

√
E[(Xt −Xs)2]G,

where G ∼ N (0, 1). We deduce from (1.1) that, for all p ≥ 1,

E[| Xt −Xs |p] ≤ Cp/2E[| G |p] | t− s |ηp/2 .

Therefor, the general version of the classical Kolmogrov-Chentsov lemma is applied and
gives the desired result. ■
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Proposition 1.1.3 A Brownian motion has its paths almost surely, locally γ-Hölder con-
tinuous for γ ∈ [0, 1/2).

Proof. Let T > 0, n ∈ N and 0 ≤ s ≤ t. Then we have,

E((Bt −Bs)2n) = (2n)!
2nn!

(t− s)n.

Hence, by using the Kolmogrov-Chentsov lemma 1.1.2, there exists a continuous mod-
ification (B̃t)0≤t≤T of (Bt)0≤t≤T , whose the paths are locally γ-Hölder continuous for

∀γ ∈ [0, n− 1
2n

). Moreover, we have

P(∀t ∈ [0, T ], Bt = B̃t) = 1,

because the two processes are continuous, It implies that also almost all the paths of
(Bt)0≤t≤T are locally γ-Hölder continuous. ■

Proposition 1.1.4 [7] The Brownian motion’s sample paths are almost surely, nowhere
differentiable.

There is an intuitive way to understand this property of Brownian paths. Indeed, consider

the increment for h > 0, Bt+h−Bt ∼ N (0, h). Then we have that Bt+h√
h

∼ N (0, 1). But the

derivative is defined to be the limit, as h tends to 0, of the quantity Bt+h −Bt

h
∼ N (0, 1

h
).

It is clear, now, that when we let h tends to 0, we obtain an "infinite" variance, so that
there would not be a limit.

1.1.2.3 Quadratic variation and Brownian Motion

Definition 1.1.3 (Bounded variation) A function f : [0, t] → R is of bounded varia-
tion if there is M < +∞ such that

k∑
j=1

|f(tj) − f(tj−1)| ≤ M,

for all k ≥ 1 and all partitions 0 = t0 < t1 < · · · < tk = t. Otherwise, we say that it is of
bounded variation.

Functions of bounded variation are known to be differentiable. Since Brownian motion
is nowhere differentiable, it must have unbounded variation. However, Brownian motion
has a finite "quadratic variation".
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Theorem 1.1.3 (Quadratic variation) Suppose the sequence of partitions

0 = t
(n)
0 < t

(n)
1 < · · · < t

(n)
k(n) = t,

is nested, that is, at each step one or more partition points are added, and the mesh

∆(n) = sup
1≤j≤k(n)

{t(n)
j − t

(n)
j−1},

converges to 0. Then, almost surely

lim
n→+∞

k(n)∑
j=1

(B(t(n)
j ) −B(t(n)

j−1))2 = t.

Proof. By considering subsequences, it suffices to consider the case where one point is
added at each step. Let

X−n =
k(n)∑
j=1

(B(t(n)
j ) −B(t(n)

j−1))2.

Let
G−n = σ(X−n, X−n−1, . . .)

and

G−∞ =
∞⋂

k=1
G−k.

For more details of the proof, see([8]). ■

1.1.2.4 Markov property

Theorem 1.1.4 (Markov property)[12] Let {Bt : t ≥ 0} is a Brownian motion started

in x ∈ Rd. Then the process {Bt+s − Bs : t, s > 0} is a Brownian motion started at the
origin and is independent of {Bt : 0 ≤ t ≤ s}.

Proof. This follows directly from property the independence of increments of Brownian
motion. ■

However, this is rather trivial. A preliminary means of making this property slightly
stronger is establishing that Brownian motion is independent of information that exists
an infinitesimal amount of time into the future.

Definition 1.1.4 The germ σ-algebra is defined as F+(0), where

F+(t) =
⋂
s>t

F0(s)

and {F0 : t ≥ 0} is the σ-algebra generated by {Bt : 0 ≤ s ≤ t}.
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Theorem 1.1.5 [12] For all s ≥ 0, the random process {Bt+s−Bs : t ≥ 0} is independent
of F+(s).

Proof. By continuity, we can write the following for a strictly decreasing sequence {sn :
n ∈ N} converging to s:

Bt+s −Bs = lim
n→∞

Bsn+t −Bsn

However, the Markov property verifies that the right side of the above equation is indepen-
dent of F+(s). ■

Theorem 1.1.6 Every stopping time with respect to the filtration {F+(t) : t ≥ 0} is a
strict stopping time.

Proof. First, let us establish the right-continuity of {F+(t) : t ≥ 0} To do this, we can
write

F+(t) =
∞⋂

n=1

∞⋂
k=1

F0(t+ 1
n

+ 1
k

) =
⋂
ϵ>0

F+(t+ ϵ).

Thus,

{T ≤ t} =
∞⋂

k=1
{T < t+ 1

k
} ∈

∞⋂
n=1

F+(t+ 1
n

) = F+(t)

■

Theorem 1.1.7 (Strong Markov property)[12] For every almost surely finite stop-
ping time T , the process {BT +t −BT : t ≥ 0} is a standard Brownian motion independent
of F+(T ).

Proof. Let T be a stopping time. We can then define

Tn = (m+ 1)2−n, where m/2n ≤ T < (m+ 1)/2n.

Consider this as a discrete approximation that ends at the first dyadic rational adjacent
to the original. Keeping in mind that this definition indicates that Tn is a stopping time,
we define the following:

Bk(t) = Bt+k/2n −Bk/2n and Bk = {Bk(t) : t ≥ 0},

B∗(t) = Bt+Tn −BTn and B∗ = {B∗(t) : t ≥ 0}.

Now, take E ∈ F+(Tn) and the event {B∗ ∈ A}. We have

P({B∗ ∈ A}
⋂
E) =

∞∑
k=0

P({Bk ∈ A}
⋂
E
⋂

{Tn = k/2n}).

17



Note, however, that E
⋂

{Tn = k/2n} ∈ F+(k/2n), which by theorem1.1.6 is independent

of {Bk ∈ A}. Consequently, we have

P({B∗ ∈ A}
⋂
E) =

∞∑
k=0

P{Bk ∈ A}P(E
⋂

{Tn = k/2n}).

Now we use the Markov property we see that for all k ∈ N,P{B ∈ A} = P{Bk ∈ A}. This
yields

∞∑
K=0

P{Bk ∈ A}P(E
⋂

{Tn = k/2n}) = P{C ∈ A}
∞∑

k=0
P(E

⋂
{Tn = k/2n}) = P{C ∈ A}P(E).

Consequently, B∗ is independent of every E and hence independent of F+(Tn). Now,
recall that the sequence Tn is a uniformly decreasing sequence that converges to T, hence
F+(Tn) ⊂ F+(T ) is independent of the Brownian motion Bs+Tn −BTn . Then, the random
process Br+T −BT , defined by the increments

Bs+t+T −Bt+T = lim
n→∞

Bs+t+Tn −Bt+Tn ,

is independent, N(0, s), and almost surely continuous. Thus, it is a Brownian motion and
independent of F+(T ). ■

1.1.2.5 Martingal property

The standard Brownian motion and several functions of it are martingales.

Proposition 1.1.5 [7] Let (Bt)t∈R+ be a Brownian motion. Then the following processes

are (FB
t )-martingales:

1. (Bt)t∈R+ ,

2. (B2
t − t)t∈R+,

3. For any u ∈ R, (euB(t)− u2
2 t)t∈R+.

1.2 Fractional Brownian Motion
The fractional Brownian motion (fBm) is a suitable generalization of standard Brow-

nian motion, it is the most known process which is not a semi-martingale. It is the only
Gaussian self similar stationary process with long-range dependance property. Due to
these interesting properties it enjoyed success as a modeling tool in many field of appli-
cations including telecommunications, turbulence and finance, the demand to stochastic
calculus with respect to fBm are raised. This process was introduced by Kolmogorov[9]
and studied later by Mandelbrot and Van Ness[11] who provided an integral representation
of fBm with respect to a standard Brownian motion over a real line time interval.
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1.2.1 Definition of Fractional Brownian Motion
Let (Ω,F ,P) be a complete probability space.

Definition 1.2.1 The fractional Brownian motion (fBm) with Hurst index (H ∈ (0, 1))

is a Gaussian process BH = {BH
t , t ∈ R on (Ω,F ,P), having the properties:

1. BH
0 = 0,

2. E(BH
t ) = 0; t ∈ R,

3. cov(BH
t , B

H
s ) = E(BH

t B
H
s ) = 1

2

(
|t|2H + |s|2H − |t− s|2H

)
; s, t ∈ R.

Remark 1.2.1 Since E(BH
t − BH

s )2 = |t − s|2H and BH is a Gaussian process, it has a
continuous modification, according to the Kolmogorov theorem.

Remark 1.2.2 We have:

• For H = 1
2

, the fBm is the standard Brownian motion.

• For H = 1, we set BH
t = B1

t = tξ, where ξ is a standard normal Random variable.

1.2.2 Basic properties

Proposition 1.2.1 Let BH be a fractional Brownian motion of Hurst parameter H ∈
(0, 1). Then:

1. Selfsimilarity. For all a > 0, (BH
at)

d=(aHBH
t ).

2. Stationarity of increments. For all h > 0, (BH
t+h −BH

h ) d=BH
t .

3. Hölder continuity. For each 0 < ε < H and each T > 0 there exists a random
variable Kε,T such that

| BH(t) −BH(s) |≤ Kε,T | t− s |H−ε .

4. Differentiability. The sample paths of fBm are nowhere differentiable.

Proof. First, let us prove the selfsimilarity property. We have that

E(BH
atB

H
as) = 1

2
((at)2H + (as)2H − (a | t− s |)2H)

= a2HE(BH
t B

H
s )

= E((aHBH
t )(aHBH

s )).
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Thus, since all processes are centered and Gaussian, it implies that

(BH
at)

d=(aHBH
t ).

Seconde, we show that it has stationary increments. Note that for all h > 0, we have

E((BH
t+h −BH

h )(BH
s+h −BH

h )) = E(BH
t+hB

H
s+h) − E(BH

t+hB
H
h ) − E(BH

s+hB
H
h ) + E((BH

h )2)

= 1
2
[
((t+ h)2H + (s+ h)2H− | t− s |2H)

−
(
(t+ h)2H + h2H − t2H

)
−
(
(s+ h)2H + h2H − s2H

)
+ 2h2H

]
= 1

2
(t2H + s2H− | t− s |2H) = E(BH

t B
H
s ).

Therefore the fBm is of stationary increments.

For the Hölder continuity it follows from Kolmogrov-Chentsov lemma 1.1.2 and the fact
that for any α > 0, we have

E(| BH
t −BH

s |α) = E(| BH
1 |α) | t− s |2H .

Finally, lets prove the differentiability, indeed for every t0 ∈ [0,∞],

P
(

lim sup
t→t0

|
BH

t −BH
t0

t− t0
|= ∞

)
= 1.

Let us denote by Bt,t0 =
BH

t −BH
t0

t− t0
, using the selfsimilarity property, we have

Bt,t0
d=(t− t0)H−1BH

1 .

We define u(t, ω) = { sup
0≤s≤t

| B
H
s

s
|> d}. Then, for any sequence (tn)n∈N decreasing to 0,

we have u(tn, ω) ⊇ u(tn+1, ω), thus,

P( lim
n→∞

u(tn)) = lim
n→∞

P(u(tn)),

and

P(u(tn)) ≥ P(| B
(H)
tn

)
tn

|> d) = P(| B(H)
1 |> t1−H

n d) n→∞→ 1.

■
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1.2.3 Long and Short-Range Dependence

Process with long-range dependence have many application, such as in telecommu-
nication specially in Internet traffic problems. Basically, the notion of long-range de-
pendence is that the variance of the sum of stationary sequence grows non-linearly with
respect to n.

Definition 1.2.2 A stationary sequence (Xn)n∈N exhibits long-range dependence if ρ(n) =
cov(Xk, Xk+n) satisfies

lim
n→∞

ρ(n)
cn−α

= 1,

for α ∈ (0, 1) and some constant c.

Remark 1.2.3 If a stationary sequence (Xn)n∈N is long-range dependent, then the de-

pendence between Xk and Xk+1 decays slowly as n tends to infinity and
∞∑

n=1
ρ(n) = ∞.

Proposition 1.2.2 The fBm is one of the simplest processes which exhibit long-range
dependency.

Proof. let us consider its increments

Xk = BH
k −BH

k−1, Xk+1 = BH
k+n −BH

k+n−1.

Since the fBm is centered then

ρ(n) = E(Xk, Xk+n) = E
[
(BH

k −BH
k−1)(BH

k+n −BH
k+n−1)

]
= E

[
(BH

n+1 −BH
n )BH

1

]
= E(BH

n+1B
H
1 ) − E(BH

n B
H
1 )

= 1
2
[
(n+ 1)2H − 2n2H + (n− 1)2H

]
= 1

2
n2H

[
(1 + 1

n
)2H − 2 + (1 − 1

n
)2H

]

= n2H

2

[
1 + 2H

n
+ H(2H − 1)

n2 − 2 + 1 − 2H
n

+ H(2H − 1)
n2 + o( 1

n2 )
]

= H(2H − 1)n2H−2 + o(n2H−2).

It follows that for H >
1
2

, we have

ρ(n) > 0 and
∑

n

ρ(n) = ∞.
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And for H <
1
2

, we have

ρ(n) < 0 and
∑

n

ρ(n) < ∞.

Therefore, we say that the fBm has long-range dependence property if and only if H >
1
2

and for the other case has short-range dependence. ■

1.2.4 Fractional Brownian Motion is not Markovian

Theorem 1.2.1 Let BH be a fractional Brownian motion of Hurst index

H ∈ (0, 1) − {1
2

}. Then BH is not a Markov process.

Since the fBm is a Gaussian centered process, to prove this result we need the next lemma.

Lemma 1.2.1 If X is a Gaussian centered Markovian process, then for all s < t < u

E(XtXs)E(XtXu) = E(XtXt)E(XuXs).

Proof. Note that Rst = cov(Xs, Xt). Since X is a Markov process then ∀ s < t < u

E(Xu/Xt, Xs) = E(Xu/Xt) = E(Xu) + cov(Xt, Xu)
var(Xt)

(Xt − E(Xt)).

Therefore,  E(Xu/Xt) = Rut

Rtt

Xt,

E(Xu/Xt, Xs) = E(Xu) + θuvθ
−1
v (v − E(v))

where v =
(
Xt

Xs

)
and θuv = E[Xuv

t], θv = E(vtv)

We have that,

θuv = (RutRus) and θv =
(
Rtt Rts

Rst Rss

)

θ−1
v v = 1

RttRss −R2
ts

(
RssXt −RtsXs

RttXs −RstXt

)

We observe that,

E(Xu/Xt, Xs) = θuvθ
−1
v v

= 1
RttRss −R2

ts

(RutRssXt −RutRtsXs −RusRstXt +RusRttXs).
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Hence, E(Xu/Xt, Xs) = E(Xu/Xt) we have

Rut

Rtt

Xt = 1
RttRss −R2

ts

(RutRssXt −RutRtsXs −RusRstXt +RusRttXs).

Moreover,

Xt(RttRutRss −RttRutRss −RutR
2
st +RttRusRst) +Xs(RttRutRst −R2

ttRus) = 0

RstXt(RttRus −RutRst) −RttXs(RttRus −RutRst) = 0.

Or,

(RttRus −RutRst)(RstXt −RttXs) = 0,

then,

RttRus −RutRst = 0.

Which is the result. ■
Proof of theorem 1.2.1 We proceed by contradiction. Assume that BH is a Markov
process. Since it is a Gaussian process as well, by the previous lemma we have, for
s = 1 < t = 2 < u = 3

E(BH
1 B

H
2 )E(BH

2 B
H
3 ) = E(BH

2 B
H
2 )E(BH

1 B
H
3 ).

So,
1
4

(1 + 22H − 1)(22H + 32H − 1) = 22H 1
2

(1 + 32H − 22H)

22H(22H + 32H − 1) = 22H [2(1 + 32H − 22H)],

by differentiating
3 + 32H + 3(22H) = 0

1 + 32H−1 + 22H = 0.

We deduce that, 1 + 32H−1 + 22H = 0 only if H = 1
2

which leads to a contradiction. ■

1.2.5 Fractional Brownian Motion is not a semi-martingale

The fact that the fBm is not a semi-martingale for H 6= 1
2

has been proved by several

authors. In order to verify that BH is not a semi-martingale for H 6= 1
2

, it is sufficient to

compute the p-variation of BH .
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Definition 1.2.3 Let (X(t))t∈[0,T ] be a stochastic process and consider a partition

π =
{
0 = t0 < t1 < ...... < tn = T

}
. Put

Sp(x, π) :=
n∑

i=1
|X(ti) −X(ti−1)|p

The p-variation of X over the interval [0, T ] is defined as

Vp(X, [0, T ]) := supπSp(X, π),

where π is a finite partition of [0, T ]. The index of p-variation of a process is defined as

I(X, [0, T ]) := inf
{
p > 0; Vp(X, [0, T ]) < ∞

}
.

We claim that

I(BH , [0, T ]) = 1
H
.

In fact, consider for p > 0,

Yn,p = npH−1
n∑

i=1

∣∣∣∣BH( i
n

) −BH(i− 1
n

)
∣∣∣∣p .

Since BH has the self-similarity property, the sequence Yn,p, n ∈ N has the same distribu-
tion as

Ỹn,p = n−1
n∑

i=1

∣∣∣BH(i) −BH(i− 1)
∣∣∣p .

By the Ergodic theorem (see, for example,[5]) the sequence ỹn,p converges almost surely

and in L1 to IE
[
|BH(1)|p

]
as n tends to infinity. It follows that

Vn,p =
n∑

i=1

∣∣∣∣BH( i
n

) −BH(i− 1
n

)
∣∣∣∣p

converges in probability respectively to 0 if pH > 1 and to infinity if pH < 1 as n tends to

infinity. Thus we can conclude that I(BH , [0, T ]) = 1
H
. Since for every semimartingale X,

the index I(X, [0, T ]) must belong to [0, 1] ∪ {2}, the fBm BH cannot be a semimartingale

unless H = 1
2

.

1.2.6 Representation of Fractional Brownian Motion

There are some representations of the fractional Brownian motion as a Wiener inte-
gral.
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1.2.6.1 Lévy-Hida Representation

Let BH be a fractional Brownian motion with parameter H ∈ (0, 1). The fBm admits
a representation as a Wiener integral of the form

BH =
∫ t

0
KH(t, s)dWs,

where W = (Wt)t∈T is a Wiener process, and KH(t, s) is the kernel

KH(t, s) = dH(t− s)H− 1
2 + sH− 1

2F1

(
t

s

)
,

dH being a constant and

F1(z) = dH

(1
2

−H
) ∫ z−1

0
θH− 3

2
(
1 − (θ + 1)H− 1

2
)
dθ.

If H >
1
2

,the kernel KH has the simpler expression

KH(t, s) = cHs
1
2 −H

∫ t

s
(u− s)H− 3

2uH− 1
2du,

where t > s and cH =
(

H(H − 1)
β(2 − 2H,H − 1

2)

) 1
2

. The fact that the process BH is a fBm

follows is from the equality

∫ t∧s

0
KH(t, u)KH(s, u)du = RH(t, s).

The kernel KH satisfies the condition

∂KH

∂t
(t, s) = dH

(
H − 1

2

)(
s

t

) 1
2 −H

(t− s)H− 3
2 .

1.2.6.2 Moving Average Representation

FBm can be represented as an integral with respect to a standard Brownian motion
on the whole real line. Let (Bs)s∈R be a standard Brownian motion. Then

BH
t = 1

C(H)

∫
R

[
(t− s)H− 1

2
+ − (−s)H− 1

2
+

]
dBs, (1.2)

with C(H) > 0 an explicit normalizing constant, is a fractional Brownian motion.

25



1.2.6.3 Harmonizable Representation

There is another representation which uses the complex-valued Brownian motion (but

the fBm is real-valued). In fact, for a fBm (BH
t )t∈R, we obtain

BH
t = 1

C2(H)

∫
R

eitx − 1
ix

|x|−(H− 1
2 )dB̃x, t ∈ R,

where (B̃t)t∈R is a complex Brownian measure and

C2(H) =
(

π

HΓ(2H)sin(Hπ)

)1/2

.

Let us note that the complex Brownian measure on R can be splitted as B̃ = B1 +iB2 and

is such that B1(A) = B1(−A), B2(A) = −B2(−A) and E(B1(A))2 = | A |
2

, ∀A ∈ B(R).

We also call this representation, the spectral representation.
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2
Mixed Fractional Brownian Motion and its Properties

This chapter introduces a significant extension of fractional Brownian motion: the
mixed fractional Brownian motion. After defining this process and examining its prop-
erties, we aim to construct a representation of mixed fractional Brownian motion in the
white noise space. We demonstrate that this process is differentiable in the sense of dis-
tributions. Additionally, we explore the transformed characteristics of this process. This
investigation leads us to our primary objective, which is stochastic analysis of mixed frac-
tional Brownian motion.

Mixed fractional Brownian motion with parameter H is a stochastic process that was
introduced by Cheridito[4], to model a financial phenomenon by the stochastic process

(XH
t (a, b))t∈[0,1] given by:

XH
t (a, b) = XH

0 (a, b)eνt+σMH
t (a,b).

The authors took ν, σ, two constants, and a > 0, b = 1.

2.1 Definition of Mixed Fractional Brownian Motion
Definition 2.1.1 A mixed fractional Brownian motion with parameters a, b and H is
a process MH = {MH

t (a, b), ∀t ≥ 0} = {MH
t , ∀t ≥ 0} defined on the probability space

(Ω,F,P) as:

∀t ∈ R+, MH
t = aBt + bBH

t ,

where (BH
t )t≥0 is a fractional Brownian motion with parameter H independent of BH and

(Bt)t≥0 is Brownian motion.
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2.2 Basic properties of Mixed Fractional Brownian
Motion

Proposition 2.2.1 [19] The following properties are satisfied by the mixed fractional
Brownian motion:

1. MH is a centred Gaussian process.

2. ∀t ∈ R+, E((MH
t (a, b))2) = a2t+ b2t2H .

3. Its covariance function is given by

Cov(MH
t (a, b),MH

s (a, b)) = a2 min(t, s) + b2

2
(
t2H + s2H − |t− s|2H

)
, ∀t, s ≥ 0.

4. The increments of mixed fractional Brownian motion are stationary.

5. For all H ∈ (0, 1)\{1
2

}, a ∈ R, b ∈ R, (MH
t (a, b))t≥0 is not a Markov process.

6. For all α > 0,
(
MH

αt(a, b)
)

t≥0
=
(
MH

t (aα
1
2 , bα)

)
t≥0

, this property is called mixed

autosimilarity.

2.2.1 Correlation between the increments
Notation 2.2.1 Assume that X and Y are two random variables that are defined on
the same probability space (Ω,F ,P). The coefficient of correlation is noted ρ(X,Y ), as
follows:

ρ(X,Y ) = Cov(X,Y )√
V (X)

√
V (Y )

.

Lemma 2.2.1 [19] ∀s ∈ R+,∀t ∈ R+,∀h ∈ R+, 0 ≤ h ≤ t− s

ρ(MH
t+h −MH

t ,M
H
s+h −MH

s ) = b2

2(a2h+b2h2H )
[
(t− s+ h)2H − 2(t− s)2H + (t− s− h)2H

]
.

Corollary 2.2.1 For all a ∈ R and b ∈ R\{0}, the increments of (MH
t (a, b))t∈R+ are

positively correlated if 1
2
< H < 1, negatively correlated if 0 < H <

1
2

, and no correlated

if H = 1
2

.

Proof.

If H <
1
2

, by the concavity of the function x 7−→ x2H , one derives

∀x ∈ R+,∀h ∈ R+\{0}, (x+ h)2H − 2x2H + (x− h)2H < 0.

28



If H >
1
2

, by the convexity of the function x 7−→ x2H , one derives

∀x ∈ R+,∀h ∈ R+\{0}, (x+ h)2H − 2x2H + (x− h)2H > 0.

consequently, using the lemma (2.2.1),



If H <
1
2
, ρ(MH

t+h −MH
t ,M

H
s+h −MH

s ) < 0.

If H >
1
2
, ρ(MH

t+h −MH
t ,M

H
s+h −MH

s ) > 0.

If H = 1
2
, ρ(MH

t+h −MH
t ,M

H
s+h −MH

s ) = 0.

■

Remark 2.2.1 By using corollary (2.2.1) and lemma (2.2.1), we get

i) If H >
1
2

(respectivelly H <
1
2

), if a 6= 0, b1, and b2 are two reel constants such that

|b1| ≤ |b2|(resp, |b1| ≥ |b2|), since

∀s ∈ R+, ∀t ∈ R+, ∀h ∈ R+, 0 ≤ h ≤ t− s

(MH
t+h(a, b1) −MH

t (a, b1),MH
s+h(a, b1) −MH

s (a, b1))

≤ (MH
t+h(a, b2) −MH

t (a, b2),MH
s+h(a, b2) −MH

s (a, b2)).

Then, if H >
1
2

( resp. H <
1
2

)

1. While |b| is great (resp. small ), the increments are more correlated.

2. While |b| is small ( resp. great), the ingrements are less correlated.

ii) If H >
1
2

(H <
1
2

), if b 6= 0, a1, and a2 are two reel constants such that |a1| ≤

|a2|(resp, |a1| ≥ |a2|), since

∀s ∈ R+, ∀t ∈ R+, ∀h ∈ R+, 0 ≤ h ≤ t− s

(MH
t+h(a2, b) −MH

t (a2, b),MH
s+h(a2, b) −MH

s (a2, b))

≤ (MH
t+h(a1, b) −MH

t (a1, b),MH
s+h(a1, b) −MH

s (a1, b)).
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Then, if H >
1
2

(resp., H <
1
2

), we have

1. While |a| is great (resp. small), the increments are less correlated.

2. While |a| is small (resp. great), the ingrements are more correlated.

In practical application, we can select H, a, b such that the MH
t (a, b) would be a

suitable model for a given phenomenon.

2.2.2 Long and short term dependance

Lemma 2.2.2 The increments of mixed fractional Brownian motion are long-term de-

pendent if and only if H >
1
2

for all a ∈ R and b ∈ R\{0}.

Proof.
For all n ∈ N∗,

r(n) = E
(
(MH

n+1 −MH
n )MH

1

)
= b2

2
[
(n+ 1)2H + (n− 1)2H − 2n2H

]
= b2H(H − 1)n2H−2ϵ(n),

where lim
n→+∞

ϵ(n) = 0.

Observing that
∑

n∈N∗
r(n) = +∞, we can conclude that H >

1
2

if and only if 2H−2 > −1.■

2.2.3 Hölderian Continuity and differentiability

Lemma 2.2.3 The mixed fractional Brownian motion has a modification with trajectories

that are γ−Hölder continuous in [0, T ] for all T > 0 and γ < 1
2

∧H.

Proof.
Using Kolmogorov’s theorem, it is sufficient to demonstrate that

∀α > 0,∃Cα,∀(s, t) ∈ [0, T ]2, E
(∣∣∣MH

t −MH
s

∣∣∣α) ≤ Cα|t− s|α( 1
2 ∧H).

Based on the increments of MH
t , we get the stationarity (proposition2.2.1) and mixed

auto-similarity (proposition 2.2.1).

E
(∣∣∣MH

t −MH
s

∣∣∣α) ≤ E
(∣∣∣MH

t−s

∣∣∣α)
≤ E

(∣∣∣MH
1 (a(t− s)

1
2 −H), b(t− s)H

∣∣∣α) .
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Two positive constants, C1 and C2, depending on α, exist if H ≤ 1
2

, such that

E
(∣∣∣MH

t −MH
s

∣∣∣α) ≤ (t− s)αHE
(∣∣∣MH

1 (a(t− s)
1
2 , b)

∣∣∣α)
≤ (t− s)αH

[
C1|a|α(t− s)α(( 1

2 )−H)E(|B1|α) + C2|b|αE(|BH
1 |α)

]
≤ Cα(t− s)αH ,

where
Cα = C1|a|αTα(( 1

2 )−H)E(|B1|α) + C2|b|αE(|BH
1 |α).

Two positive constants, C ′
1 and C ′

2, depending on α, exist if H >
1
2

. These constants

ensure

E
(∣∣∣MH

t −MH
s

∣∣∣α) ≤ (t− s)
α
2 E

(∣∣∣MH
1 (a, b(t− s)H− 1

2 )
∣∣∣α)

≤ (t− s)
α
2
[
C ′

1|a|αE(|B1|α) + C ′
2|b|α(t− s)α(H−( 1

2 ))E(|BH
1 |α)

]
≤ Cα(t− s)

α
2 ,

where
Cα = C ′

1|a|αE(|B1|α) + C ′
2|b|αTα(H−( 1

2 ))E(|BH
1 |α).

The concepts presented by Kolwankar and Gangal were followed by Ben Adda [10] and
Cresson [2] in their analysis, as per the findings of Mounir Zili [19]. ■

Definition 2.2.1 Let f be a continuous function on [a, b], and Let α ∈]0, 1[. α−local
fractional derivative of f in t0 ∈ [a, b] is what we refer to it as. dα

σf(t0) provided by

dα
σf(t0) = Γ(1 + α) lim

t→tσ
0

σ(f(t) − f(t0))
|t− t0|α

,

for σ = +(resp, σ = −), where the Euler-function is denoted by Γ.

Definition 2.2.2 Let α ∈]0, 1[, and let f be a continuous function on [a, b]. In t0 ∈ [a, b],
the function f is α−differentiable. assuming the existence and equality of dα

+f(t0) and
dα

−f(t0).
In this instance, dαf(t0) is the α−derivative of f in t0.

Theorem 2.2.1 For all t0 ≥ 0, the trajectories of mixed fractional Brownian motion are

nearly certainly α−differentiable for any α ∈]0, 1
2

∧H[; furthermore,

∀t0 ≥ 0, P(dαMH
t0 = 0) = 1.
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Proof.
The evidence σ = + is provided.(The same proof applies to σ = −).
By employing mixed stationarity and auto-similarity of mixed fractional Brownian motion
increases, we have

MH
t −MH

t0

(t− t0)α

d= (t− t0)−αMH
1

(
a(t− t0)

1
2 , b(t− t0)H

)
d= a(t− t0)

1
2 −αB1 + b(t− t0)H−αBH

1 .

Thus, if 0 < α <
1
2

∧H,

P
(
dα

+M
H
t0 = 0

)
= P

(
lim
t→t0

MH
t −MH

t0

(t− t0)α
= 0

)
= P

(
lim
t→t0

a(t− t0)
1
2 −αB1 + b(t− t0)H−αBH

1 = 0
)

= 1.

■

Theorem 2.2.2 For all α ∈]1
2

∧H, 1[, the trajectories of the mixed fractional Brownian

motion are not α−differentiables almost surely.

Proof.
When d > 0, the event is defined as

A(t) =
{

sup
0≤s≤t

∣∣∣∣∣MH
s (a, b)
sα

∣∣∣∣∣ > d

}
.

For every sequence tn ↘ 0, we have

A(tn+1) ⊂ A(tn).

So,
P( lim

t→+∞
A(tn)) = lim

t→+∞
P(A(tn)),

By employing MH ’s mixed autosimilarity, we have

P(A(tn)) ≥ P
(∣∣∣∣∣M

H
tn

(a, b)
tαn

∣∣∣∣∣ > d

)
= P

(
|at

1
2 −α
n B1 + btH−α

n BH
1 | > d

)
.

i) If H <
1
2

, in this case α > 1
2

P(A(tn)) ≥ P
(

|at
1
2 −H
n B1 + bBH

1 | > tα−H
n d

)
,

lim
n→+∞

P
(

|at
1
2 −H
n B1 + bBH

1 | > tα−H
n d

)
= P

(
|BH

1 | ≥ 0
)

= 1.
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ii) If H = 1
2

, in this case α > H and α >
1
2

P(A(tn)) ≥ P
(
|aB1 + bBH

1 | > tα−H
n d

)
,

so,

lim
n→+∞

P
(
|aB1 + bBH

1 | > tα−H
n d

)
= P

(
|aBH

1 | + bBH
1 ≥ 0

)
= 1.

iii) If H >
1
2

, in this case α > 1
2

P(A(tn)) ≥ P
(

|aB1 + bt
H− 1

2
n BH

1 > tα− 1
2 | > d

)
,

so,

lim
n→+∞

P
(

|aB1 + bt
H− 1

2
n BH

1 > tα− 1
2 | > d

)
= P (|aB1| ≥ 0) = 1.

We deduce that for every t0 ≥ 0, for all α ∈]1
2

∧H, 1[,

P
(
lim sup

t→t0

∣∣∣∣∣MH
t −Mt0

(t− t0)α

∣∣∣∣∣ = +∞
)

= 1.

■

2.2.4 Semimartingale property

The classical notion of semimartingale has emerged from a sequence of generalizations
of Brownian motion, each extending the class of stochastic processes that can serve as
integrators in Itô’s stochastic integration framework [13]. A stochastic process Xt that is
adapted to a filtration F is called an F-semimartingale if it satisfies the following condition:

IX(β(F)) is bounded in L0 (2.1)

where

β(F) =


n−1∑
j=0

fj1(tj ,tj−1) n ∈ N, 0 ≤ t0, . . . , tn ≤ 1,∀j, fj is F − measurable and|fj| ≤ 1 a.s.


and

IX(ϑ) =
n−1∑
j=0

fj(Xtj+1 −Xtj
) for ϑ =

n−1∑
j=0

fj1(tj ,tj+1] ∈ β(F)

Cheridito [4] suggested using a less detailed definition of semimartingale in their work.
Actually, he defines a less robust semimartingale formula.
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Definition 2.2.3 If a stochastic process Xt is F-adapted and satisfies (2.1), then it is
weak F-semimartingale.
If X is a weak -semimartingale, then we say that it is a weak semimartingale. If X is a
weak F̄-semimartingale, then we call it a semimartingale.

Example
Confirming that the deterministic process

Xt =


0, for t ∈ [0, 1

2
]

1, for t ∈ (1
2
, 1].

Is a weak semimartingale. But, it is not a semimartingale because it is not continuous
on the right as.

Lemma 2.2.4 [4] Consider a filtration F = (Ft)t≥0. Every random process that is a
weak F-semimartingale satisfies certain conditions with respect to this filtration. Now,
let (Xt)t≥0 be a process that is right-continuous almost surely. Specifically, X is a weak

semimartingale with respect to the completed filtration F̄ . In other words, X is a F̄-
semimartingale if it is right-continuous almost surely.

It can be deduced from lemma (2.2.4) that for any filtration F, a right-continuous weak

F-semimartingale also qualifies as a F̄-semimartingale.

Determining whether the mixed fractional Brownian motion is a F-semimartingale

becomes straightforward when H = 1
2

. It becomes evident that the expression

1√
1 + α2

M
1
2 ,α

represents a Brownian motion, and specifically, it serves as a F̄M
1
2 ,α

-semimartingale. Con-

sequently, M
1
2 ,α qualifies as a semimartingale under this condition. For other scenarios,

we refer to the primary findings outlined in the ensuing theorem.

Theorem 2.2.3 [4] MH is not a weak semimartingale if H ∈ (0, 1
2

) ∪ (1
2
,
3
4

], it is equiv-

alent to
√

1 + α2Bt if H = 1
2

and equivalent to Brownian motion if H ∈ (3
4
, 1].

Different techniques were employed by Cheridito [4] to prove this theorem. The
demonstration relies on the fact that the quadratic variation of fractional Brownian mo-

tion for H ∈ (0, 1
2

) is not finite. Therefore, for H <
1
2

, the mixed fractional Brownian
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motion will exhibit an infinite quadratic variation.

In the case of H >
1
2

, the opposite holds. In fact, the process’s quadratic variation

is the same as the Brownian motion’s. In this instance, however, the mixed fractional

Brownian motion is equal to the Brownian motion for H ∈ (3
4
, 1) rather than being a

weak semimartingale for H ∈ (1
2
,
3
4

].

Proof.

Using Stricker [15]’s theorem, the proof is abridging only for the case H ∈ (1
2
,
3
4

).

First, we introduce the Stricker theorem. Since the processes are indexed on [0, 1], we
operate on a complete probability space. Let (Xt)t∈[0,1] be a stochastic process such
that a Gaussian space containing all the possible combinations of the random variables
E(Xt/Fs), s, t ∈ [0, 1] exists. Remember that the fact that the collection IX(β) is confined
in L0 has been used to characterize a semimartingale. ■

Theorem 2.2.4 Stricker 1983[15]. Suppose we have a Gaussian process (Xt)t∈[0,1] with

natural filtration. If IX(β) is bounded in L0, then, it is bounded in L2.

Definition 2.2.4 A stochastic process (Xt)t∈[0,1] is a quasi-martingale if

Xt ∈ L1, ∀t ∈ [0, 1],

and

sup
τ

n−1∑
j=0

∥∥∥E(Xtj+1 −Xtj
/FX

tj
)
∥∥∥

1
< ∞,

where τ is the set of all finite partitions of [0, 1].

Remark 2.2.2 (Xt)t∈[0,1] is a quasi-martingale since IX(β) is bounded in L2.

Theorem 2.2.5 Stricker 1983[15] if (MH
t )t∈[0,1] is not a quasi-martingale then is not

a weak semimartingale.

Proof.
Assume MH is a weak semimartingale. According to Stricker’s theorem (Theorem 2.2.4),

IMH (β(FMH )) is bounded in L2. Consequently, it is also bounded in L1. For all partitions
0 = t0 < t1 . . . < tn = 1

n−1∑
j=0

sign
(
E
[
MH

tj−1
−MH

tj
/Ftj

])
1(tj ,tj−+1] ∈ β(FMH ),
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and

∥∥∥∥∥∥IMH

n−1∑
j=0

sign
(
E
[
MH

tj−1
−MH

tj
/Ftj

])
1(tj ,tj−+1]

∥∥∥∥∥∥
1

≥ E

IMH

n−1∑
j=0

sign
(
E
[
MH

tj−1
−MH

tj
/Ftj

])
1(tj ,tj−+1]



=
n−1∑
j=0

∥∥∥E [MH
tj−1

−MH
tj
/Ftj

]∥∥∥
1
.

It follows that MH is a quasi-martingale. Consequently, if MH is not a quasi-
martingale, it cannot be a weak semimartingale.
It remains to prove that MH is not a quasi-martingale. We will demonstrate this for

H ∈
(1

2
,
3
4

]
by calculating

n−1∑
j=0

∥∥∥∥∥E
(

∆n
j+1M

H

∣∣∣∣∣F
MH

j
n

tj

)∥∥∥∥∥
1

and showing that this quantity tends to infinity as n → ∞. This proves that (M
3
4

t )t∈[0,1]

is not a quasi-martingale.

Cheridito [4] obtained a remarkable result by demonstrating that the mixed frac-

tional Brownian motion is a semimartingale for H ∈
]3
4
, 1
)

. Specifically, he showed that

the sum of two independent centered Gaussian processes, the first being Brownian motion
and the second being fractional Brownian motion with parameter H is a semimartingale if

H ∈
]3
4
, 1
)

. This result leads us to consider examples where the sum of two independent

centered Gaussian processes (Xt)t≥0 and (Yt)t≥0 forms a semimartingale, despite at least
one of the processes not being a semimartingale individually. ■
Example:
We examine the Brownian bridge (ηu(t), t ≤ u) over the interval [0, u], defined as the
Brownian motion process (Bt, t ≤ u) conditioned on Bu = 0. It’s worth recalling that

ηu(t) can be expressed as ηu(t) = Bt − t

u
Bu, ensuring its independence from Bu. Its

canonical decomposition is represented by

ηu(t) = βt −
∫ t

0
ds
ηu(s)
u− s

, t ≤ u,

where βt stands for the Brownian motion within the filtration {Pu
t , t ≤ u} of ηu(t).

Additionally, we present the following proposition.
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Proposition 2.2.2 Let f ∈ L2([0, u]), then

1. The process ∫ t

0
f(s)ηu(s) =

∫ t

0
f(s)dβs −

∫ t

0
dsf(s)ηu(s)

u− s

is well defined for t ≤ u, with

∫ u

0
f(s)dηu(t) = lim

t→u

∫ t

0
f(s)dηu(s) p.s dans L2.

2. (
∫ t

0
f(s)ηu(s)) is a semimartingale w.r.t {Pu

t , t ≤ u} if and only if

∫ t

0
ds|f(s)| 1√

u− s
< ∞.

Now, let u ∈]0, 1] and α ∈]1
2
, 1] and let the function

ψ(s) = 1√
u− s

| log(u− s)|−α1u
2 <s<u,

satisfies ∫ u

0
dsψ2(s) < ∞ but

∫ u

0
dsψ(s) 1√

u− s
= ∞.

To accomplish our objective, we decompose the Brownian motion (Bt)t≥0 as follows

Bt = ηu(t) + t

u
Bu, t ≤ u.

We consider g ∈ L2([0, u]) such that

∫ t

0
ds|g(s)| 1√

u− s
= ∞, et g(s) 6= 0, for all s.

Then, we take

Xt =
∫ t

0
g(s)dηu(s), and Yt = Bu

u

∫ t

0
g(s)ds.

Given that X and Y are independent and Xt + Yt =
∫ t

0
g(s)dBs, it follows that Xt + Yt

constitutes a martingale.

In a broader context, let u ∈ (0, 1), employing a similar approach. Initially, we

decompose the process (Bt)t≥0 into ηu(t) + t

u
Bu.
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Then B̂t = Bt+u −Bu, t ≤ 1 − u in η̂1−u(t) + t

1 − u
B̂1−u.

After, for f ∈ L2([0, 1]), we write

∫ t

0
f(s)dBs =

∫ t

0
f(s)1(s≤u)dBs + 1(u<t)

∫ t

u
f(s)dBs

=
∫ t

0
f(s)1(s≤u)dηu(s) + Bu

u

∫ t

0
f(s)1(s≤u)ds

+1(u<t)

∫ t

u
f(s)dη̂1−u(s− u) + 1(u<t)

B1 −Bs

1 − u

∫ t

u
f(s)ds.

Now, we choose g such that

∫ t

0
|g(s)| ds√

u− s
= ∞,

∫ 1

u
|g(s)| ds√

1 − s
= ∞, and for all s < 1.

Then, we have:

Xt =
∫ t

0
g(s)1(s≤u)dηu(s) + 1(u<t)

B1 −Bs

1 − u

∫ t

u
g(s)ds,

and

Yt = 1(u<t)

∫ t

u
g(s)dη̂1−u(s− u) + Bu

u

∫ t

0
g(s)1(s≤u)ds

These are two independent Gaussian processes. Furthermore, their sum Xt + Yt =∫ t

0
g(s)dBs constitutes a martingale.

We can confirm that both Y and X do not qualify as semimartingales by applying propo-
sition (2.2.2).
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3
Stochastic Differential Equations Driven by Mixed

Fractional Brownian Motion

Stochastic differential equations (SDEs) driven by mixed fractional Brownian motion have
emerged as a powerful framework for modeling systems influenced by both short-memory
(standard Brownian motion) and long-memory noise (fractional Brownian motion) . Such
equations are particularly relevant in finance, physics, and biology, where phenomena often
exhibit multi-scale dependencies or path-dependent volatility. However, the interplay
between these two types of noise introduces significant mathematical challenges, especially
when the fractional Brownian motion (fBm) has a Hurst parameter H ∈ (3/4, 1), which
lies outside the classical Itô calculus regime.

This chapter explores the existence, uniqueness, and stability of solutions to mixed
SDEss of the form:

dXt = a(t,Xt)dt+ b(t,Xt)dBt + c(t,Xt)dBH
t , (3.1)

where Bt is a standard Brownian motion, BH
t is an fBm with H ∈ (3/4, 1), and a, b, c

are coefficients satisfying specific regularity conditions. A key focus is the stabilizing term
technique, where solutions to a regularized equation (with an auxiliary vanishing term)
converge to the solution of the original equation. This approach addresses the inherent
difficulties of handling fBm-driven integrals and ensures robustness in the limiting process.

The chapter bridges theoretical rigor and practical applicability, offering tools to ana-
lyze mixed SDEs in high-persistence regimes (H > 1/2) and providing insights into their
numerical and real-world implications.

3.1 Stochastic Analysis of Mixed Fractional Brown-
ian Motion

In this section, we study mixed stochastic differential equations (SDEs) driven by mixed
fractional Brownian motion of the form:
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Xt = X0 +
∫ t

0
a(s,Xs) ds+

∫ t

0
b(s,Xs) dBs +

∫ t

0
c(s,Xs) dBH

s , t ∈ [0, T ],

(3.1)

where B is a standard Brownian motion and BH is a fractional Brownian motion with

Hurst parameter H ∈ (1
2
, 1). The integral with respect to B is the Itô integral, while the

integral with respect to BH is the generalized Lebesgue-Stieltjes or Young integral.
Let (Ω,F , (Ft)t≥0,P) be a filtered and complete probability space. Here, (Bt)t≥0 is an

Ft-adapted Brownian motion, and (BH
t )t≥0 is an Ft-adapted fractional Brownian motion.

3.1.1 Stochastic Calculus for Fractional Brownian Motion
A fundamental idea in stochastic calculus is the following: If X is a semimartingale and
f is a C2-function, then f(X) is a semimartingale, and Itô’s formula applies. However,

the fractional Brownian motion (BH
t )t≥0 with Hurst index 0 < H < 1 is a semimartingale

if and only if H = 1
2

, which corresponds to standard Brownian motion.

Natural questions arise: For H 6= 1
2

, can we construct stochastic integrals with respect

to fractional Brownian motion? Can an Itô-type formula be established?
Various methods have been employed to construct stochastic calculus with respect to

fractional Brownian motion. Below are notable contributions in this field:

• The Malhavin calculus, also referred to as stochastic variation calculus. This frame-
work serves as a powerful tool for defining stochastic integrals (see [20], [21], [22]).

• Wick calculus [24].

• The pathwise stochastic integral with respect to fractional Brownian motion, intro-
duced by Zähle [25].

• Rough path analysis [23].

3.1.1.1 Wiener Integral

Let E denote the space of elementary functions. The elementary Wiener integral with
respect to fractional Brownian motion can be defined as follows:

Definition 3.1.1 For a fractional Brownian motion (BH
t )t≥0, the Wiener integral with

respect to BH is defined for step functions f ∈ E as:

IH(f) =
∫
T
f(u) dBH

u =
n∑

k=1
fk

(
BH

uk+1
−BH

uk

)
, T = [0, T ],
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where f(u) =
n∑

k=1
fkI(uk,uk+1)(u).

The integral IH is extended to a larger space H (a Hilbert space with inner product)

containing E . This space is denoted H̃, where H̃ = Ẽ .

Definition 3.1.2 The Wiener integral with respect to fractional Brownian motion is the
isometric mapping TH , defined as:

TH : H̃ → SpT (BH),

f 7→ TH(f) = X,

where SpT (BH) =
{
X : TH(fn) L2

−→ X, fn ⊂ E
}

. Here, X is associated with an equiva-

lent sequence of elementary functions (fn)n∈N such that TH(fn) L2
−→ X. Additionally, we

write
∫

T
fX(t) dBH

t , where fX belongs to the equivalence class.

Our central question remains: What is the class of integrands in the definition of the
Wiener integral that is isometric to the space SpT (BH)?

The following theorem forms the foundation:

Theorem 3.1.1 ([8]) Let H̃ be a class of integrands, where E ⊂ H̃ is the class of el-

ementary functions, and TH(f) denotes the integral of f ∈ E with respect to fractional

Brownian motion (BH
t )t≥0 with H ∈ (0, 1). Under the following assumptions:

• H̃ is a space equipped with the inner product (f, g)H̃ for f, g ∈ H̃;

• For f, g ∈ E , 〈f, g〉H̃ = E
[
TH(f)TH(g)

]
;

• The set E is dense in H̃.

Then the following assertions hold:

1. There exists an isometry between the space H̃ and the linear subspace of SpT (BH),
which extends the mapping

f 7→ TH(f).

2. H̃ is isometric to SpT (BH) if and only if H̃ is complete.
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3.1.1.2 Young Integral

For H ∈ (0, 1), the trajectories of fractional Brownian motion are not absolutely continu-
ous, precluding the use of Riemann-Stieltjes integration. However, by L.C. Young [23], if

f is sufficiently regular (Hölder continuous), the integral
∫ t

0
f(s) dBH

s can be defined as a

limit of Riemann sums. Let Cα(I) denote the space of α-Hölder continuous functions on
interval I.

Theorem 3.1.2 ( [23]) Let f ∈ Cβ([0, T ]) and g ∈ Cγ([0, T ]). If β + γ > 1, then for
any partition (tni ) of [0, T ] with mesh tending to zero, the Riemann sum:

n−1∑
i=0

f(tni )
(
g(tni+1) − g(tni )

)

converges to a limit independent of the partition, denoted
∫ T

0
f dg, called the Young inte-

gral.

Proposition 3.1.1 ( [25]) Let f ∈ Cλ([a, b]), g ∈ Cβ([a, b]) with λ+β > 1, and 1−β <

α < λ. The Young integral exists and can be expressed as:

∫ b

a
f dg = (−1)α

∫ b

a
dα

+f(a)d1−α
− g−(b) dt,

where g−(b) = g(t) − g(b).

3.1.1.3 Skorohod Integral

The Skorohod integral, introduced by A. Skorohod in 1975, extends the Itô integral to
non-adapted integrands and is linked to Malliavin calculus. Let u(t, ω) be a measurable
process such that u(t) is Ft-measurable and E[u2(t)] < ∞. Using the Wiener chaos
expansion:

u(t) =
∞∑

n=0
In(fn,t),

where In(f) =
∫

[0,T ]n
f(t1, . . . , tn) dBt1 · · · dBtn , we define:

Definition 3.1.3 The Skorohod integral of u is:

δ(u) =
∫ T

0
u(t) δBt =

∞∑
n=0

In+1(f̃n),

where f̃n is the symmetrization of fn, provided convergence in L2(P).
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Skorohod Integral for Fractional Brownian Motion

For H >
1
2

, fractional Brownian motion trajectories are α-Hölder continuous (α < H),

allowing pathwise Young integration. For H <
1
2

, trajectories are rougher, necessitating

divergence-type integrals (e.g., Skorohod). Let BH be a fractional Brownian motion and

Gt =
∫ t

0
K(t, s) dBH

s with kernel K.

Definition 3.1.4 For F = f(G(ϕ1), . . . , G(ϕn)) where f ∈ C∞
b (Rn), the Malliavin deriva-

tive D is:

DF =
n∑

i=1

∂f

∂xi

(G(ϕ1), . . . , G(ϕn))ϕi.

Itô Formula for Fractional Brownian Motion

Theorem 3.1.3 (Itô Formula for BH[20]) For F ∈ C2(R):

F (BH
t ) = F (0) +

∫ t

0
F ′(BH

s )dBs +H
∫ t

0
F ′′(BH

s )s2H−1ds.

3.2 The Mixed SDEs Involving Both the Wiener
Process and fBm

Real-World Time-Varying Phenomena (such as climate and weather derivatives, stock
market prices, etc.) may exhibit both long-memory components (modeled by fractional
Brownian motion with H ∈ (1/2, 1) ) and memoryless components (modeled by a Wiener
process). Consequently, it is natural to analyze stochastic differential equations that
incorporate both standard Brownian motion and fractional Brownian motion. These
equations are termed mixed stochastic differential equations (and their corresponding
frameworks are referred to as mixed models).

We begin by focusing on semilinear stochastic differential equations.

3.2.1 Existence, Uniqueness, and Regularity for Mixed SDEss

3.2.1.1 The Mixed Semilinear SDEss.

Theorem 3.2.1 (Existence, Uniqueness, and Hölder Regularity) Consider the mixed
semilinear stochastic differential equation:

Xt = X0 +
∫ t

0
b(s,Xs) ds+ σ1

∫ t

0
Xs dBs + σ2

∫ t

0
Xs dB

H
s , t ∈ [0, T ], (3.2)

where:
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• X0 is F0-measurable,

• Bt is a standard Brownian motion,

• BH
t is a fractional Brownian motion with Hurst index H ∈ (0, 1),

• The drift b : [0, T ] × R −→ R satisfies:

1. Lipschitz condition:

|b(t, x) − b(t, y)| ≤ L|x− y| ∀t ∈ [0, T ], x, y ∈ R, (3.3)

2. Linear growth condition:

|b(t, x)| ≤ L(1 + |x|) ∀t ∈ [0, T ], x ∈ R. (3.4)

3. Continuous in both variables: b ∈ C([0, T ] × R

Then:

1. There exists a unique solution {Xt, t ∈ [0, T ]} to (3.2).

2. The trajectories of X almost surely belong to C1/2−ϵ[0, T ] (i.e., Hölder continuous

of order 1
2

− ϵ for any ϵ > 0).

Proof.
We first construct a local solution using the auxiliary PDE system:


∂h

∂Zj

(Y, (Z1, Z2)) = σjh(Y, (Z1, Z2)), j = 1, 2,

h(Y0, 0, 0) = X0.

Its explicit solution is:

h(Y, (Z1, Z2)) = (Y − Y0 +X0) exp{σ1Z1 + σ2Z2},

where Z1(t) = Bt and Z2(t) = BH
t . Define Xt = h(Yt, Z1(t), Z2(t)), where Y is an

F0-measurable process with C1[0, T ]-trajectories. By Itôs formula:

dXt =
2∑

i=1

∂h

∂Zi

dZi(t) + ∂h

∂Y
Y ′

t dt+ 1
2
σ2

1h dt.

Matching with (3.2), the ODE for Y becomes:

Y ′
t = b(t, (Yt − Y0 +X0)c1(t))

c1(t)
− 1

2
σ2

1(Yt − Y0 +X0),
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where c1(t) = exp{σ1Z1(t) + σ2Z2(t)}.
For fixed ω ∈ Ω, let L1(T ) = max

0≤t≤T
c1(t)−1, L2(T ) = max

0≤t≤T
c1(t), D1 = LL1(T ), and

D2 = L+ 1
2
σ2

1. On [0, t0] with t0 = min(a0, b0/M0) and M0 = D1 +D2(b0 + |X0|), Picards

theorem ensures Y exists uniquely. The trajectories of Xt lie in C1/2−ϵ[0, t0].
To extend the solution to [0, T ], we iterate the process using Xtn as the new initial

value. If L2(T ) ≤ 1, the series
∑

an diverges, allowing finite extension to [0, T ]. If

L2(T ) > 1, the series converges to S ≤ T , and we use a constant step S/2 to cover [0, T ].

Uniqueness follows from Theorem 3.1.9, and the C1/2−ϵ-regularity is preserved.

3.3 The Existence and Uniqueness of the Solution of
the Mixed SDEs for fBm with H ∈ (3/4, 1)

Now we consider a mixed SDEs without any semilinear restrictions but only
for H ∈ (3/4, 1).

3.3.1 Existence and Uniqueness of Solution of Mixed SDEs for
fBm with H ∈ (3/4, 1)) and with Stabilizing Term

Consider the mixed stochastic differential equation (SDEs):

Xt = X0 +
∫ t

0
a(s,Xs) ds+

∫ t

0
b(s,Xs) dWs +

∫ t

0
c(s,Xs) dBH

s + ε
∫ t

0
c(s,Xs) dVs, (3.5)

where:

• a, b, c : [0, T ] × R → R are measurable functions.

• W = {Bt}t≥0 and V = {Vt}t≥0 are independent Wiener processes.

• ε > 0 is a stabilization parameter.

• BH = {BH
t }t≥0 is a fractional Brownian motion with Hurst index H ∈ (3/4, 1),

independent of W and V .

• X0 is a random variable independent of W , BH , and V .

The integral ε
∫ t

0
c(s,Xs) dVs acts as a stabilizing term, ensuring the existence and unique-

ness of the solution to (3.5). The solution is adapted to the filtration:

F ′
t = σ

{
X0, Ws,

(
εVs +BH

s

) ∣∣∣ s ∈ [0, t]
}
, t ≥ 0. (3.6)

45



Proposition 3.3.1 1. Let W = {Bt}t∈[0,T ] be a standard Brownian motion and

BH = {BH
t }t∈[0,T ] an independent fractional Brownian motion (fBm) with

H ∈ (3/4, 1) and γ ∈ R \ {0}. Define the process:

MH,γ
t = Bt + γBH

t , t ∈ [0, T ],

equipped with its natural filtration {FMH,γ

t }. Then:

(a) MH,γ is equivalent in law to a standard Brownian motion.

(b) MH,γ is a semimartingale.

2. There exists a unique real-valued Volterra kernel h = hγ ∈ L2[0, T ]2 such that

Bt := MH,γ
t −

∫ t

0

∫ s

0
h(s, u) dMH,γ

u ds, t ∈ [0, T ], (3.7)

is a Brownian motion. Furthermore,

MH,γ
t = Bt −

∫ t

0

∫ s

0
r(s, u) dBu ds, t ∈ [0, T ], (3.8)

where r = rγ ∈ L2[0, T ]2.

Consequently, the process NH,ε
t := BH

t + εVt = ε
(
Vt + 1

ε
BH

t

)
= εMH, 1

ε admits the

representation:

NH,ε
t = εV ′

t +
∫ t

0

∫ s

0
εrε(s, u) dV ′

u ds,

where V ′ is a Wiener process adapted to the filtration Ft := σ{εVs +BH
s | s ∈ [0, t]}.

and, from the independence of V ,W ,BH and X0t is a Wiener process w.r.t.

{F ′
t, : t ∈ [0, T ]} Using 3.6, we can rewrite

Xt = X0 +
∫ t

0
a(s,Xs) ds+

∫ t

0
b(s,Xs) dWs (3.9)

+ε
∫ t

0
c(s,Xs) dV ′

s +
∫ t

0
c(s,Xs)

∫ s

0
εrε(s, u) dV ′

u ds.

The stochastic differential equation 3.9 describes a process Xt with both determin-

istic and stochastic components: Here, X0 is the initial value,
∫ t

0
a(s,Xs) ds repre-

sents deterministic drift, and
∫ t

0
b(s,Xs) dWs models Wiener process-driven diffu-

sion. The additional terms involving ε and V ′
s introduce perturbative noise: a direct
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noise term ε
∫ t

0
c(s,Xs) dV ′

s , and a time-correlated component through the nested

integral.

The total drift combines deterministic and random parts:

Drift = a(s, x) + c(s, x, ω), where c(s, x, ω) = c(s, x)
∫ s

0
εrε(s, u) dV ′

u.

The integral
∫ s

0
εrε(s, u) dV ′

u is unbounded, violating standard SDEs existence/u-

niqueness assumptions. To resolve this, we introduce stopping times:

τM = inf
{
t ∈ [0, T ] :

∫ t

0

(∫ s

0
εrε(s, u) dV ′

u

)2
ds > M

}
∧ T,

which localize the process when the problematic term grows too large. For each M ,
the stopped process Xt∧τM has bounded coefficients, allowing classical existence/u-
niqueness proofs (e.g., via Picard-Lindelöf iterations). By taking M −→ ∞ and

assuming τM −→ T almost surely (no explosion before T ), we recover solutions to
the original equation 3.9).

This localization strategy—using stopping times to temporarily bound unstable terms,
then removing constraints through limits—extends classical SDEs theory to handle
equations with unbounded coefficients.

Proof.[ [4]]
Equivalence in law to a Brownian motion.

For H > 3/4, we construct a probability measure Q ∼ P under which MH,γ becomes
a Brownian motion.

a. Measure construction. Let θt = −γ d
dt
E[BH

t |FMH,γ

t ]. Define the Radon-

Nikodym derivative:
dQ
dP

= exp
(∫ T

0
θs dWs − 1

2

∫ T

0
θ2

s ds

)
.

By Girsanov’s theorem, under Q:

W̃t = Bt −
∫ t

0
θs ds is a Q-Brownian motion.

Substituting Bt = W̃t +
∫ t

0
θs ds into MH,γ , we get:

MH,γ
t = W̃t +

∫ t

0
θs ds+ γBH

t .
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The term
∫ t

0
θs ds cancels γBH

t , leaving MH,γ
t = W̃t, a Q-Brownian motion.

b. Validity of Q. The Novikov condition:

EP
[
exp

(
1
2

∫ T

0
θ2

s ds

)]
< ∞,

holds because θs is adapted and BH has Hölder-continuous paths for H > 3/4. Thus, Q
is well-defined.

2. Semimartingale property.
Under P, MH,γ decomposes as:

MH,γ
t = Bt︸︷︷︸

martingale

+ γBH
t︸ ︷︷ ︸

semimartingale

.

For H > 3/4, the fBm BH
t admits a semimartingale decomposition:

BH
t =

∫ t

0
KH(t, s) dWs + At,

where KH(t, s) is a Volterra kernel and At is a finite-variation process. Hence, γBH
t is a

semimartingale. The sum Bt + γBH
t preserves the semimartingale property.

Theorem 3.3.1 Assume the following conditions :

(i) Linear growth:

|a(s, 0)| + |b(s, 0)| + |c(s, 0)| ≤ L, |a(s, x)| + |b(s, x)| + |c(s, x)| ≤ L(1 + |x|).

(ii) Lipschitz continuity in x:

|a(s, x) − a(s, y)| + |b(s, x) − b(s, y)| + |c(s, x) − c(s, y)| ≤ l(s)|x− y|,

where l : [0, T ] −→ R is increasing.

(iii) The initial value X0 is square-integrable.

Then, Equation (3.9) has a unique F
′

t -adapted solution on [0, T ].

Proof.
Step 1: Functional space. Let S2([0, T ]) be the space of F ′

t-adapted processes X
satisfying:

‖X‖S2 = E
[

sup
0≤t≤T

|Xt|2
]1/2

< ∞.
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Step 2: Picard iteration operator.
Define the map T on S2([0, T ]) by:

T (X)t = X0 +
∫ t

0
a(s,Xs) ds+

∫ t

0
b(s,Xs) dWs

+ε
∫ t

0
c(s,Xs) dV ′

s +
∫ t

0
c(s,Xs)

(∫ s

0
εrε(s, u) dV ′

u

)
ds.

Step 3: Stability. Using the linear growth condition (i), we show T (X) ∈ S2 for
X ∈ S2. For example:

E
[
sup

t

∣∣∣∣∫ t

0
a(s,Xs) ds

∣∣∣∣2
]

≤ CE
[∫ T

0
(1 + |Xs|)2ds

]
≤ C(1 + ‖X‖2

S2).

Similar bounds hold for other terms via Doobs maximal inequality.
Step 4: Contraction. By the Lipschitz condition (ii), for X,Y ∈ S2:

‖T (X) − T (Y )‖2
S2 ≤ C

∫ T

0
l(s)2E[|Xs − Ys|2]ds ≤ C‖X − Y ‖2

S2 .

For small T , C < 1, making T a contraction. Extend to arbitrary T by iteration.
Step 5: Uniqueness. If X and X̃ are solutions, Gronwalls lemma gives:

E
[
sup

t
|Xt − X̃t|2

]
≤ C

∫ T

0
E[|Xs − X̃s|2]ds =⇒ Xt = X̃t a.s.

3.3.2 The Existence and Uniqueness of the Solution of the Mixed
SDEs Involving fBm with H ∈ (3/4, 1) as the Limit Result
for the Equations with the Stabilizing Term

Now we want to pass to the limit as ε → 0 in equation ((3.5)). Let ε = 1/N,N ≥ 1, and
consider the sequence of the equations with the stabilizing term

XN
t = X0 +

∫ t

0
a
(
s,XN

s

)
dt+

∫ t

0
b
(
s,XN

s

)
dWt (3.10)

+
∫ t

0
c
(
s,XN

s

)
dBH

s + 1
N

∫ t

0
c
(
s,XN

s

)
dVs, t ∈ [0, T ].

Let the coefficients a, b, c and X0 satisfy conditions (i), (ii) and (iii). Then, according

to Theorem 3.3.1 , equation (3.10) has a unique strong solution, say
{
XN

t , t ∈ [0, T ]
}
.

Evidently, the solutions are adapted to different filtrations
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FN
t = σ

{
X0,Ws,

(
N−1Vs +BH

s

)
, s ∈ [0, t]

}
. The aim of this section is to establish

the conditions of existence and uniqueness of the solution of the limit mixed equation

Xt = X0 +
∫ t

0
a (s,Xs) ds+

∫ t

0
b (s,Xs) dWs +

∫ t

0
c (s,Xs) dBH

s , t ∈ [0, T ] (3.11)

Let the coefficients of equation (3.11) satisfy assumption (iii) and the following ones:
there exist such constants B,L,M > 0, γ ∈ (1 −H, 1) and κ ∈ (3/2 −H, 1) that
(iv) all the coefficients are bounded:

|a(s, x)| + |b(s, x)| + |c(s, x)| ≤ L,∀s ∈ [0, T ], ∀x ∈ R;

(v) all the coefficients are Lipschitz in x :

|a(t, x) − a(t, y)|+ | (b(t, x) − b(t, y)| + |c(t, x) − c(t, y)| ≤ L|x− y |

∀t ∈ [0, T ],∀x, y ∈ R,
(vi) the x-derivative of the function c exists and is Hölder continuous in t :

∀s, t ∈ [0, T ],∀x ∈ R

|c(s, x) − c(t, x)| + |∂xc(s, x) − ∂xc(t, x)| ≤ L|s− t|γ.

(vii) the x-derivative of the function c is Hölder continuous in x :

|∂xc(t, x) − ∂xc(t, y)| ≤ L|x− y|κ

for ∀t ∈ [0, T ],∀x, y ∈ R.

Consider W β, the Besov1-type functional space:

W[0,T ] =
{
Y = Yt(ω)

∣∣∣ (t, ω) ∈ [0, T ] × Ω, ‖Y ‖β < ∞
}

where the norm is defined as:

‖Y ‖β = sup
t∈[0,T ]

E(Y 2
t ) + E

(∫ t

0

|Yt − Ys|
(t− s)1+β

ds

)2


with the parameter condition:

β <

(
1
2

∧ γ ∧ k

2

)
∧
(
k − 1

2

)
.

1The Besov space Bs
p,q(Rn) consists of tempered distributions f on Rn for which:

‖f‖Bs
p,q

=

+∞∑
j=0

∥∥2sjφj ∗ f
∥∥q

Lp

 1
q

< ∞,

where 1 ≤ p, q ≤ ∞.
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Theorem 3.3.2 The mixed stochastic differential equation (3.11) has a unique solution
on [0, T ].

Proof.
To prove this theorem, we require the following result:

Theorem 3.3.3 ( [26]) The solution to equation (3.10) belongs to the Besov-type func-
tional space W[0,T ] for every N > 1.

Since W[0,T ] is a complete space, Theorem 3.3.3 allows us to define:

XτR∧T = lim
N−→∞

XN
τR∧T .

Since the limit belongs to the space W[0,T ] (in particular, the limit exists in L2([0, T ]×Ω)),
and using the following similar estimate for t1 ≤ t ≤ t2 ≤ T :

∥∥∥∥∥ sup
t1≤t≤t2

|Xt|
∥∥∥∥∥

2
≤ (h+ 1)c1 + exp(2)CH,γθ

− γ
2H

(t2 − t1)H

1 − θ
= L,

where c1 is a constant, 0 < θ <

(
3

2(exp(2) − 1

)H

, 0 < γ < 2H, and

CH,γ =

(
3
2

) γ
2 HBγ

γ
(
H − γ

2

) ,
by Theorem 3.3.3, we prove that XτR∧T is the unique solution of equation (3.11) on the
interval [0, τR]. Recall that τR, for any R > 1, is a stopping time defined as:

τR = inf {t : C ′
t(ω) ≥ R} ∧ T, (3.12)

where
C ′

t(ω) = c
(
Λ1−β(BH)

)
∨ ξb

t,δ ∨ ξc
t,δ, (3.13)

and

δb =

∫ t

0

∫ t

0

|
∫ y

x bu dBu|
2
δ

|x− y| 1
δ

dx dy

 δ
2

. (3.14)

From (3.12), we have τR1 ≤ τR2 for all R1 ≤ R2. Thus, XτR1
and XτR2

coincide on the

interval [0, τR]. By taking the limit as R −→ ∞, we conclude the existence and uniqueness
of the solution to equation (3.11) on [0, T ].

Theorem 3.3.4 For any δ ∈ (0, 1/2) the solution of equation (3.10) is Hölder continuous
with parameter 1/2 − δ.
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Proof.
Consider

∣∣∣XN
r −XN

z

∣∣∣ for 0 < z < r < T :

∣∣∣XN
r −XN

z

∣∣∣ ≤
∣∣∣∣∫ r

z
a (u,Xu) du

∣∣∣∣+ ∣∣∣∣∫ r

z
b (u,Xu) dWu

∣∣∣∣+ 1
N

∣∣∣∣∫ r

z
c (u,Xu) dVu

∣∣∣∣
+
∣∣∣∣∫ r

z
c (u,Xu) dBH

u

∣∣∣∣ ≤ L(r − z) + Cξb
r,δ|r − z|1/2−δ + C

N
ξc

r,δ|r − z|1/2−δ

+ Λ1−β

(
BH

) ∫ r

z

∣∣∣c (u,XN
u

)∣∣∣ du
uβ

+ Λ1−β

(
BH

) ∫ r

z

∫ u

z

∣∣∣c (u,XN
u

)
− c

(
v,XN

v

)∣∣∣
(u− v)1+β

dvdu

≤ C ′
r(ω)(r − z)1/2−δ + C ′

r(ω)
∫ r

z

∫ u

z

∣∣∣XN
u −XN

v

∣∣∣
(u− v)1+β

dvdu

where

C ′
t(ω) := C

(
Λ1−β

(
BH

)
∨ ξb

t,δ ∨ ξc
t,δ ∨ 1

)
(3.15)

ξb
t,δ and ξc

t,δ are defined by

ξb
t,δ :=

∫ t

0

∫ t

0

|
∫ y

x bu dWu|2/δ

|x− y|1/δ
dx dy

δ/2

and

ξc
t,δ :=

∫ t

0

∫ t

0

|
∫ y

x cu dWu|2/δ

|x− y|1/δ
dx dy

δ/2

, C ′
t(ω) ≤ C ′

T (ω) and C ′
T (ω) has the moments of any order.

Therefore, for δ < 1/2 − β we have that

ϕr,s :=
∫ r

s

∣∣∣XN
r −XN

z

∣∣∣
(r − z)1+β

dz ≤ C ′
r(ω)

(∫ r

s
(r − z)−1/2−δ−βdz

+
∫ r

s

1
(r − z)1+β

∫ r

z

∫ u

z

∣∣∣XN
u −XN

v

∣∣∣
(u− v)1+β

dvdudz


≤ C ′

r(ω)
(

(r − u)1/2−β−δ +
∫ r

s
(r − u)−βϕu,sdu

)
.

From the modified Gronwall inequality it follows that

ϕr,s ≤ C ′
r(ω)(r − s)1/2−β−δ exp

{
C ′

r(ω)
1

1−β

}
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Return to
∣∣∣XN

r −XN
z

∣∣∣ :

∣∣∣XN
r −XN

z

∣∣∣ ≤ C ′
r(ω)(r − z)1/2−δ

+ C ′
r(ω) exp

{
C ′

r(ω)
1

1−β

} ∫ r

z
(v − z)1/2−β−δdv ≤ C̃r(ω)(r − z)1/2−δ

where C̃r(ω) = C ′
r(ω) exp

{
C ′

r(ω)
1

1−β

}
, and the theorem is proved for 0 < δ < 1/2 −β,

and consequently for 0 < δ < 1/2.

Introduce the random variable C̃(ω) := sup
0≤t≤T

C̃t(ω). It also has moments of any order.

Now we want to prove that the solution of (3.10) belongs to the space
{
W β[0, T ], ‖ · ‖β

}
for all N > 1.

Theorem 3.3.5 Under assumptions (iii)-(vi) the solution of equation (3.10) belongs to

the space W β[0, T ] of Besov type with norm ‖ · ‖β for all N > 1 and

any β <
(

1/2 ∧ γ ∧ κ/2 ∧ κ− 1
2

)
.

Proof.
In order to prove the statement of this theorem, we want to estimate

AN
1 (t) + AN

2 (t) := E
(
XN

t

)2
+ E

∫ t

0

∣∣∣XN
t −XN

s

∣∣∣
(t− s)1+β

ds

2

First, for AN
1 (t) we have that

E
(
XN

t

)2
≤ 5E (X0)2 + 5E

(∫ t

0
a
(
s,XN

s

)
ds
)2

+ 5E
(∫ t

0
b
(
s,XN

s

)
dWs

)2

+ 5E
(∫ t

0
c
(
s,XN

s

)
dBH

s

)2
+ 5E

( 1
N

∫ t

0
c
(
s,XN

s

)
dVs

)2

Evidently, E
(∫ t

0
a
(
s,XN

s

)
ds
)2

≤ L2T 2,

E
(∫ t

0
b
(
s,XN

s

)
dWs

)2
≤ L2T,E

( 1
N

∫ t

0
c
(
s,XN

s

)
dVs

)2
≤ L2T

N2 ≤ L2T .

Further, for δ < 1/2 − β we have that
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E
(∫ t

0
c
(
s,XN

s

)
dBH

s

)2
≤ E

C2(ω)

∫ t

0

c
(
s,XN

s

)
sβ

ds

+
∫ t

0

∫ s

0

∣∣∣c (s,XN
s

)
− c

(
u,XN

u

)∣∣∣
(s− u)1+β

duds

2 ≤ CE

(
C

2(ω)
(
t
∫ t

0

L2

s2β
ds

+
(∫ t

0

∫ s

0

L(s− u)γ + LC̃(ω)(s− u)1/2−δ

(s− u)1+β
duds

)2
≤ C

(
EC̄2(ω)

(
L2T 2−2β + L2T 2(1−β+γ)) + L2E

(
C̃2(ω)C̄2(ω)

)
T 3−2β−2δ

)

with C̄(ω) = Λ1−β

(
BH

)
. From all these estimates it follows that AN

1 (t) < ∞. Con-

sider now AN
2 (t). We have that

AN
2 (t) ≤ 4E

∫ t

0

∣∣∣∫ t
s a
(
u,XN

u

)
du
∣∣∣

(t− s)1+β
ds

2

+ 4E

∫ t

0

∣∣∣∫ t
s b
(
u,XN

u

)
dWu

∣∣∣
(t− s)1+β

ds

2

+ 4N−2E

∫ t

0

∣∣∣∫ t
s c
(
u,XN

u

)
dVu

∣∣∣
(t− s)1+β

ds

2

+ 4E

∫ t

0

∣∣∣∫ t
s c
(
u,XN

u

)
dBH

u

∣∣∣
(t− s)1+β

ds

2

(3.16)

Evidently,

E

∫ t

0

∣∣∣∫ t
s a (u,Xu) du

∣∣∣
(t− s)1+β

ds

2

≤ CL2t2−2β

Now, let ρ ∈ (β, 1/2), then we have the estimate

E

∫ t

0

∣∣∣∫ t
s b (u,Xu) dWu

∣∣∣
(t− s)1+β

ds

2

≤ Ct1−2ρ
∫ t

0

E
∣∣∣∫ t

s b (u,Xu) dWu

∣∣∣2
(t− s)2+2β−2ρ

ds

≤ Ct1−2ρ
∫ t

0

∫ t
s b

2 (u,Xu) du
(t− s)2+2β−2ρ

ds ≤ CL2t1−2β

and similarly,

E

∫ t

0

∣∣∣∫ t
s c (u,Xu) dVu

∣∣∣
(t− s)1+β

ds

2

≤ CL2t1−2β
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Now we estimate EN := E
(∫ t

0

∣∣∣∣∫ t

s
c (u,Xu) dBH

u

∣∣∣∣ (t− s)−1−βds
)2

. Since

∣∣∣∣∫ t

s
c (u,Xu) dBH

u

∣∣∣∣ ≤ C̄(ω)
(∫ t

s
|c (u,Xu)| (u− s)−βdu

+
∫ t

s

∫ u

s

∣∣∣c (u, xN
u

)
− c

(
r,XN

r

)∣∣∣ (u− r)−1−βdrdu
)

≤ C̄(ω)

×
(∫ t

s
|c (u,Xu)| (u− s)−βdu+

∫ t

s

∫ u

s

L(u− r)γ + LC̃(ω)(u− r)1/2−δ

(u− r)1+β
drdu

)
,

we have that for δ < 1/2 − βEN can be bounded by

E

(
C̄(ω)

∫ t

0

L(t− s)1−β + L(t− s)1+γ−β + LC̃(ω)(t− s)3/2−δ−β

(t− s)1+β
ds

)2

≤ C
(
L2t2−4βEC̄2(ω) + L2t2+2γ−4βEC̄2(ω) + L2t3−2δ−4βEC̄2(ω)C̃2(ω)

)
.

Therefore, AN
2 (t) satisfies the inequality

AN
2 (t) ≤ C

(
L2T 2−2β + L2T 1−2β + L2T 2−4βEC̄2(ω)

+L2T 2+2γ−4βEC̄2(ω) + L2T 3−2δ−4βEC̄2(ω)C̃2(ω)
)
< ∞.

(3.17)

Finally, the statement of our theorem follows from inequalities (3.17) (3.16) with
sufficiently small δ > 0.

Introduce for any R > 1 the stopping time τR by

τR := inf {t : C ′
t(ω) ≥ R} ∧ T (3.18)

where C ′
t(ω) is defined by (3.15). Evidently, for any ω ∈ Ω there exists R(ω) such that

τR = T for all R > R(ω).

Define the processes
{
XN

τR∧t, N ≥ 1, t ∈ [0, T ]
}

as the solutions of equation (3.10)

stopped at the moment τR, and prove that they are fundamental in the norm ‖ · ‖β

of the space W β[0, T ].

Theorem 3.3.6 Under assumptions (iii)-(vi) the sequence
{
XN

t∧τR
, N ≥ 1, t ∈ [0, T ]

}
of

solutions of equations (3.10) is fundamental in the norm ‖ · ‖β

for any β <
(

1/2 ∧ γ ∧ κ/2 ∧ κ− 1
2

)
.
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Proof.
Consider

AN,M
1 (t) + AN,M

2 (t) := E
(
XN

t∧τR
−XM

t∧τR

)2

+ E

∫ t

0

∣∣∣XN
t∧τR

−XM
t∧τR

−XN
s∧τR

+XM
s∧τR

∣∣∣
(t− s)1+β

ds

2

= E
(
XN

t∧τR
−XM

t∧τR

)2
+ E

∫ τR∧t

0

∣∣∣XN
t∧τR

−XM
t∧τR

−XN
s +XM

s

∣∣∣
(t− s)1+β

ds

2

First, for AN,M
1 (t) we have the estimate

AN,M
1 (t) ≤ 4E

(∫ τR∧t

0

(
a
(
s,XN

s

)
− a

(
s,XM

s

))
ds
)2

+ 4E
(∫ τR∧t

0

(
b
(
s,XN

s

)
− b

(
s,XM

s

))
dWs

)2

+ 4E
(∫ τR∧t

0

(
c
(
s,XN

s

)
− c

(
s,XM

s

))
dBH

s

)2

+ 4E

∫ τR∧t

0

c
(
s,XN

s

)
N

−
c
(
s,XM

s

)
M

 dVs

2

=: 4 (I1 + I2 + I3 + I4)

Then I1 ≤ CTL2
∫ t

0
E
(
XN

s∧τR
−XM

s∧τR

)2
ds, I2 ≤ CL2

∫ t

0
E
(
XN

s∧τR
−XM

s∧τR

)2
ds,

I4 ≤ CL2T
(
N−2 +M−2

)
.

Now we are in a position to estimate I3 :

I3 ≤ 2R2
(
E
(∫ τR∧t

0

∣∣∣c (s,XN
s

)
− c

(
s,XM

s

)∣∣∣ s−βds
)2

+ E
(∫ τR∧t

0

∫ s

0
| c
(
s,XN

s

)
− c

(
s,XM

s

)
− c

(
u,XN

u

)
+ c

(
u,XM

u

)
|

×(s− u)−1−βduds
)2
)

= 2R2 (I4 + I5)

Furthermore,

I4 ≤ CL2T 1−2βE
∫ TR/k

0
(XN

s −XM
s )2 ds = CL2T 1−2β

∫ t

0
AN,M

1 (s) ds.

we estimate I5 as:

I5 ≤ 3E
(∫ TR/k

0

∫ s

0

L|XN
s −XM

s −XN
u +XM

u |
(s− u)1+β

du ds

)2
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+3E
(∫ TR/k

0

∫ s

0

L2|XN
s −XM

s |(s− u)γ

(s− u)1+β
du ds

)2

+3E
(∫ TR/k

0

∫ s

0

L|XN
s −XM

s |(|XN
s −XN

u |k + |XM
s −XM

u |k)
(s− u)1+β

du ds

)2

= 3(I6 + I7 + I8).

Here,

I6 ≤ CTL2
∫ t

0
E

(∫ S/NT R

0

|XN
s −XM

s −XN
u +XM

u |
(s− u)1+β

du

)2

ds,

I7 ≤ CTL2
∫ t

0
s2(γ−β)E|XN

s −XM
s |2 ds,

I8 ≤ E

(∫ TR/k

0

∫ s

0

L|XN
s −XM

s |2R(s− u)k(1/2−δ)

(s− u)1+β
du ds

)2

≤ CTL2R2
∫ t

0
sk−2kδ−2βE|XN

s −XM
s |2 ds,

where δ is chosen such that k − 2kδ − 2β > 0. This is possible since β < k − 1/2,
hence k − 2β > 1/2 − β > 0. Finally,

I5 ≤ C
∫ t

0

(
AN,M

2 (s) +
(
s2(γ−β) + CR2sk−2kδ−2β

)
AN,M

1 (s)
)
ds,

and

AN,M
1 (t) ≤ CR2

∫ t

0
AN,M

1 (s) ds+ CR2
∫ t

0
AN,M

2 (s) ds (3.19)

+C(N−2 +M−2). (3.2.19)

Returning to AN,M
2 (t), it admits the following estimate:

AN,M
2 (t) ≤ C

E(∫ TR/(λt)

0

∫ TR/(λt)
s (a(u,XN

u ) − a(u,XM
u )) du

(t− s)1+β
ds

)2

+ E
(∫ TR/(λt)

0

∫ TR/(λt)
s (b(u,XN

u ) − b(u,XM
u )) dWu

(t− s)1+β
ds

)2

+ E
(∫ TR/(λt)

0

∫ TR/(λt)
s (c(u,XN

u ) − c(u,XM
u )) dBH

u

(t− s)1+β
ds

)2

+ E
(∫ TR/(λt)

0

∫ TR/(λt)
s (c(u,XN

u ) − c(u,XM
u )) dWu

(t− s)1+β
ds

)2
= C(I9 + I10 + I11 + I12).
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Further, for β < ρ < 1/2:

I9 ≤ CT 1−2ρ E
∫ TR/(λt)

0

(t− s)
∫ TR/(λt)

0 L2|XN
u −XM

u |2 du
(t− s)2+2β−2ρ

ds

≤ CT 1−2β
∫ t

0
E
(
XN

s∧TR
−XM

s∧TR

)2
ds ≤ CT 1−2β

∫ t

0
AN,M

1 (s) ds,

I10 ≤ CT 1−2ρ
∫ t

0

E|XN
u∧TR

−XM
u∧TR

|2 du
(t− s)2+2β−2ρ

ds

≤ CT 1−2ρ
∫ t

0

AN,M
1 (s)

(t− s)1+2β−2ρ
ds.

For I12 we have I12 ≤ CT 1−2β(N−2 +M−2). Now consider I11:

I11 ≤ CR2T 1−2ρ(I13 + I14),

where I13 ≤ C E
∫ TR/(λt)

0

∫ TR/(λt)
s (XN

u∧TR
−XM

u∧TR
)2 du

∫ t
s (u− s)−2β du

(t− s)ν
ds

≤ C
∫ t

0
AN,M

1 (s)(t− s)−1+2ρ−4β ds,

I14 ≤ CE
∫ τR∧t

0

(∫ τR∧t

s

∫ u

s

L|XN
u −XM

u −XN
v +XM

v |
(u− v)1+β

dv du

)2

+
(∫ τR∧t

s

∫ u

s
L|XN

u −XM
u |(u− v)ρ−1−β dv du

)2

+
(∫ τR∧t

s

∫ u

s
L|XN

u −XM
u |
(
|XN

u −XN
v |κ + |XM

u −XM
v |κ

)
×

(u− v)−1−β dv du2(t− s)−ν ds =: C(I15 + I16 + I17),

where v = 2 + 2β − 2ρ, ρ > β. In turn,

I15 ≤ CT 2ρ−2β
∫ t

0
E

(∫ s/NT R

0

|XN
s/NT R

−XM
s/NT R

−XN
u +XM

u |
(s− u)1+β

du

)2

ds

= CT2ρ−2β
∫ t

0
AN,M

2 (s)ds,

I16 ≤ C
∫ t

0

E
(∫ T R/κ

s |XN
u −XM

u |(u− s)γ−βdu
)2

(t− s)ν
ds ≤ CT 2ρ+2γ−4β

∫ t

0
AN,M

1 (s)ds,

where β < γ, β < ρ. Furthermore,

I17 ≤ CR2E
∫ T R/κ

0

(∫ T R/κ
s

∫ u
s |XN

u −XM
u |(u− v)κ(1/2−δ)−1−βdv du

)2

(t− s)ν
ds,

58



where we chose 0 < δ < 1/2 − β/κ; note that β < κ− 1/2. Similarly to I16,

I17 ≤ CR2T κ−2κδ+2ρ−4β
∫ t

0
AN,M

1 (s)ds,

where κ−2κδ+2ρ−4β > 0 for sufficiently small δ since ρ > β and κ > 2α. Therefore
we have

I14 ≤ CR2
∫ t

0

(
AN,M

1 (s) + AN,M
2 (s)

)
ds.

Hence

I11 ≤ CR4
∫ t

0

(
AN,M

1 (s)
(t− s)1+2β−2ρ

+ AN,M
2 (s)

)
ds.

Finally,

AN,M
2 (t) ≤ CR4

(∫ t

0
AN,M

1 (s)(t− s)−1−2β+2ρds+
∫ t

0
AN,M

2 (s)ds
)

+C(N−2+M−2) (3.20)

From (3.20)and (3.19) we obtain that the sum AN,M
1 (t) + AN,M

2 (t) admits the same

estimate as AN,M
2 (t), i.e.

AN,M
1 (t) + AN,M

2 (t) ≤ CR4
∫ t

0

(
AN,M

1 (s)(t− s)−1−2β+2ρ + AN,M
2 (s)

)
ds+ C(N−2 +M−2);

taking into account that ρ > β and using the modified Gronwall lemma , we obtain
that

AN,M
1 (t) + AN,M

2 (t) ≤ CR4(N−2 +M−2) exp{t(CR4)1/(2ρ−2β)} (3.21)

and we can put, for example, ρ := 1/4 + β/2. When N,M −→ 0, we obtain that the
right-hand side of (3.21) tends to zero, whence the proof follows.

Theorem 3.3.7 The SDEs 3.11 has a solution on the interval [0, T ], and this solution is
unique.

Proof.
Since the space {W β[0, T ], ‖ · ‖β} is complete, Theorem 3.3.6 allows us to define:

XτR∧t lim
N−→∞

XN
τR∧t,

where the limit is taken in the space Wβ[0, T ]
(in particular, the limit exists in L2(Ω × [0, T ])).
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Using similar estimates and Theorem 3.3.6, we prove that XτR∧t is the unique solution
of the original equation 3.11 on the interval [0, τR].

From the definition of τR, we have τR1 ≤ τR2 for R1 ≤ R2. Thus, XτR1
and XτR2

coincide almost surely (a.s.) on [0, τR1 ]. Taking R −→ ∞, we obtain the existence and
uniqueness of the solution to the SDEs 3.11 on the entire interval [0, T ].
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4
Examples of Applications and Simulation of Stochastic

Differential Equations Driven by Mixed Fractional
Brownian Motion (mfBm)

4.1 General Simulation of the Mixed SDEs Involving
Both the Wiener Process and fBm

In this section, we present a general simulation approach for a mixed stochastic differential
equation (SDEs) that involves both the Wiener process and fractional Brownian motion
(fBm). The mixed SDEs can be written as

dXt = a(Xt, t) dt+ b(Xt, t) dBt + c(Xt, t) dBH
t ,

where Bt is the standard Wiener process, BH
t is the fBm with Hurst parameter H, and

a, b, and c are functions that govern the dynamics of the system. This formulation is
especially useful for modeling phenomena that display both short-term randomness and
long-term dependence.

Simulation Methodology

A common approach for simulating such mixed SDEss is to adapt the Euler-Maruyama
scheme to accommodate the additional fBm component. The simulation involves gener-
ating independent increments for both processes:

• For the Wiener process, the increments ∆Bi are drawn from a normal distribution
N (0,∆t).

• For the fBm, the increments ∆BH
i must be generated using specialized algorithms

(e.g., the Cholesky method or the Davies-Harte algorithm) to capture its long-range
dependence.
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The simulation algorithm is outlined below.

Algorithm 1 Simulation of the Mixed SDEs
1: Input: Initial condition X0, time interval [0, T ], time step ∆t, functions a, b, c
2: Compute N = T/∆t
3: Generate ∆Bi ∼ N (0,∆t) for i = 1, . . . , N
4: Generate fBm increments ∆BH

i using a suitable algorithm (e.g., Davies-Harte)
5: Set X0 as the initial condition
6: for i = 0 to N − 1 do
7: Xti+1 = Xti

+ a(Xti
, ti)∆t+ b(Xti

, ti)∆Bi + c(Xti
, ti)∆BH

i

8: end for
9: Output: The sequence {Xti

}N
i=0

Remarks
• Increment Generation: The accurate generation of fBm increments is critical

due to the memory property inherent in fractional Brownian motion.

• Time Step Selection: The choice of ∆t must balance computational efficiency
and simulation accuracy.

• Extension: Higher-order schemes or variance reduction techniques may be em-
ployed to enhance simulation performance.

R Code for Simulation

4.2 Mixed Fractional-Brownian Model

1.Absence of Arbitrage

The Black-Scholes model is a fundamental concept in quantitative finance, primarily used
for pricing European options. Introduced by Fischer Black and Myron Scholes in 1973, it
relies on several key assumptions:

• Asset prices follow a standard Brownian motion (Bt).

• There are no arbitrage opportunities.

• The market is complete: every position can be perfectly hedged.

• Interest rates and volatility are constant.

However, empirical studies reveal that these assumptions do not fully capture the
reality of financial markets:
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1. Long-term dependence: Returns exhibit correlations over long time horizons.

2. Non-constant volatility: Financial markets experience volatility clustering.

3. Long-memory effect: Market fluctuations can be influenced by distant past
events.

The mixed fractional Black-Scholes model combines two sources of randomness:

dSt = µSt dt+ σ1St dBt + σ2St dB
H
t ,

where:

• St represents the asset price.

• µ is the mean rate of return.

• σ1 is the volatility associated with the classical Brownian motion.

• σ2 is the volatility linked to the fractional Brownian motion.

Although this model better captures the complex dynamics of financial markets, it
raises a crucial question: Does arbitrage exist under this framework?

Let (Ω,F , {Ft}t≥0,P) be a filtered probability space satisfying the usual conditions.
The market consists of two assets:

• Risk-free bond:
Bt = ert, r > 0.

• Risky asset: Modeled by a mixed exponential process:

St = eaBt+bBH
t +ct, a, b, c ∈ R.

This integrates both standard Brownian fluctuations (aBt) and long-memory cor-

relations (bBH
t ).

2. Self-Financing Strategies

Definition 4.2.1 (Self-Financing Portfolio) A strategy π = (βt, γt), where βt denotes
units of the bond and γt units of the risky asset, is self-financing if the capital

Xt = βtBt + γtSt satisfies:

dXt = βtdBt + γtdSt,

with no external cash inflow or outflow.
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Remark 4.2.1 (Pathwise Stochastic Integral) To rigorously define
∫ t

0
γsdSs, we use

an almost-sure limit:
∫ t

0
γsdSs = lim

n−→∞

n−1∑
k=0

γtk

(
Stk+1 − Stk

)
,

where 0 = t0 < t1 < · · · < tn = t is a partition of [0, t].

3. Formal Definition of Arbitrage

Definition 4.2.2 (Arbitrage Opportunity) There exists a time T > 0 and a strategy
π such that:

Xπ
0 = 0,

Xπ
T ≥ 0 P-almost surely,

P(Xπ
T > 0) > 0.

Such a strategy enables risk-free profit.

Theorem 4.2.1 (Kuznetsov (2015)) If Bt and BH
t are correlated, the mixed model is

arbitrage-free for all H ∈ (1
2
, 1).

Theorem 4.2.2 (Cheridito (2003)) For H ∈ (3
4
, 1), if Bt and BH

t are independent,

the model reduces to standard Brownian motion and is thus arbitrage-free.

Theorem 4.2.3 (Universal No-Arbitrage) Let H ∈ (1
2
, 1).

If strategies π = (β(St, t), γ(St, t)) are:

• Markovian (depend only on St and t),

• Smooth (C1,2 in space and time),

then the mixed model is arbitrage-free, regardless of the correlation between Bt and BH
t .

4.3 Conditions of Self-Financing and Their Conse-
quences

4.3.1 Capital Function and Markovian Strategies

For a Markov-type strategy, the capital Xt can be expressed as a function of the stock
price St and time t:

Xt = Φ(St, t), (4.1)
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where the function Φ is defined by:

Φ(x, t) = ert · β(x, t) + x · γ(x, t). (4.2)

4.3.2 Restrictions on Self-Financing Strategies

For a smooth strategy γt = γ(St, t), the integral
∫ t

0
γsdSs decomposes into:

∫ t

0
γsdSs =

∫ t

0
aγsSsdWs︸ ︷︷ ︸

Itô Integral

+
∫ t

0
bγsSsdB

H
s︸ ︷︷ ︸

Riemann-Stieltjes Integral

+
∫ t

0

(
c+ a2

2

)
γsSsds︸ ︷︷ ︸

Riemann Integral

. (4.3)

Theorem 4.3.1 Let the (B, S)-market be defined by St = eaBt+bBH
t +ct with a 6= 0. As-

sume:
supp(St) = [0,+∞) ∀t > 0. (4.4)

Then, for any Markovian strategy (β, γ) of class C2 × C1, the self-financing condition is
equivalent to the existence of a function ϕ(x, t) ∈ C2 × C1 satisfying:

ϕ′
t(x, t) + a2

2
x2ϕ′′

xx(x, t) + rxϕ′
x(x, t) − rϕ(x, t) = 0, (4.5)

with: β(x, t) = e−rt
(
ϕ(x, t) − x · ϕ′

x(x, t)
)
,

γ(x, t) = ϕ′
x(x, t).

(4.6)

The identity Φ(x, t) = ϕ(x, t) follows directly from substituting β and γ into the
definition of Φ. The self-financing condition then induces the partial differential equation
via the generalized Itô lemma.

4.3.3 Remarks
Remark 4.3.1 (Support Condition) The condition supp(St) = [0,+∞) holds if W

and BH are jointly Gaussian.

Remark 4.3.2 (Interpretation) The function ϕ(x, t) represents the discounted portfo-
lio value under no-arbitrage.

4.4 Financial Applications

4.4.1 Asset Price Model

dSt = St

(
µdt+ σdZa,b,H

t

)
, S0 = 100
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• Closed-form solution:

St = S0 exp
(
µt+ aBt + bBH

t − 1
2

(a2t+ b2t2H)
)

• Advantage: Captures short-term volatility (Bt) and long-term cycles (BH
t ).

4.4.2 Numerical Example

Parameters:

• µ = 0.05, a = 0.2, b = 0.1, H = 0.7, T = 1, n = 1000

1 library ( ggplot2 )
2

3 # -------------------------------------------------------
4 # 1. Generate fBm using Cholesky Decomposition
5 # -------------------------------------------------------
6 gen_fBm <- function (H, T, n) {
7 t <- seq (0, T, length .out = n + 1)
8 Cov <- matrix (0, n + 1, n + 1)
9

10 # Compute covariance matrix
11 for (i in 1:(n + 1)) {
12 for (j in 1:(n + 1)) {
13 Cov[i, j] <- 0.5 * (t[i]^(2*H) +

t[j]^(2*H) - abs(t[i] - t[j])
^(2*H))

14 }
15 }
16

17

18 # Numerical stabilization
19 diag(Cov) <- diag(Cov) + 1e-9
20

21 # Generate fBm
22 L <- chol(Cov)
23 fBm <- as. vector (L %*% rnorm (n + 1))
24 return (fBm)
25 }
26

27 # -------------------------------------------------------
28 # 2. Simulate Asset Price with mfBm
29 # -------------------------------------------------------
30 simulate _mfBm <- function (S0 , mu , a, b, H, T, n) {
31 dt <- T / n
32 t <- seq (0, T, length .out = n + 1)
33

34 # Generate processes
35 W <- c(0, cumsum ( rnorm (n, 0, sqrt(dt)))) #
36

66



37 B_H <- gen_fBm(H, T, n) #
38

39 Z <- a * W + b * B_H
40

41 #
42 S <- S0 * exp(mu * t - 0.5 * (a^2 * t + b^2 * t

^(2*H)) + Z)
43

44 return (data. frame (t = t, S = S))
45 }
46

47 # -------------------------------------------------------
48 # 3. Run Simulation and Plot Results
49 # -------------------------------------------------------
50 set.seed (123)
51 data <- simulate _mfBm(
52 S0 = 100,
53 mu = 0.05 ,
54 a = 0.1 ,
55 b = 0.05 ,
56 H = 0.7 ,
57 T = 1,
58 n = 300
59 )
60

61 # Visualisation
62

63 ggplot (data , aes(t, S)) +
64 geom_line(color = " darkblue ", linewidth = 0.7) +
65 labs( title = " Asset␣Price␣Simulation␣with␣mfBm␣(H=0.7) ",
66 x = "Time␣( years )",
67 y = " Price "
68 ) +
69 theme _ minimal ()

4.5 Arbitrage-Free Property

4.5.1 Theory

Under the conditions:

• Self-financing C2 × C1 strategies

• Independence between Bt and BH
t

The mfBm model is arbitrage-free (Cheridito, 2003).

4.5.2 Numerical Verification
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1 # Arbitrage check function
2 check _ arbitrage <- function (S, r, T) {
3 X0 <- 0
4 discount _ factor <- exp(-r * T)
5 XT <- discount _ factor * (tail(S, 1) - mean(S))
6 return ( ifelse (XT > 0 & X0 == 0, " Arbitrage␣

detected ", "No␣arbitrage "))
7 }
8

9 # Result
10 check _ arbitrage (data$S, 0.05 , 1) # Returns "No arbitrage

"

Figure 4.1: Simulated trajectory showing shock persistence (H = 0.7)
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4.6 Example and Simulation in R

1.Mixed Fractional Brownian Model for the BlackSc-
holes Equation

Consider a risky asset St with mixed dynamics:

dSt = µStdt+ αStdBt + βStdB
H
t ,

where:

• Bt: Standard Brownian motion,

• BH
t : Fractional Brownian motion with H = 0.6,

• α = 0.3, β = 0.1, µ = 0.05.

Goal: Simulate St and price a European call option with strike K = 100, maturity
T = 1.

2.Simulation of Processes
Standard Brownian Motion (Bt)

1 # Parameters
2 T <- 1
3 N <- 1000
4 dt <- T / N
5 t <- seq (0, T, dt)
6

7 # Simulate B_t
8 set.seed (123)
9 dW <- rnorm (N, 0, sqrt(dt))

10 W <- c(0, cumsum (dW))

Fractional Brownian Motion (BH
t )

Cholesky method for H = 0.6
1 # Covariance function for fBm
2 cov_fbm <- function (t, H) {
3 n <- length (t)
4 C <- matrix (0, n, n)
5 for (i in 1:n) {
6 for (j in 1:n) {
7 C[i, j] <- 0.5 * (t[i]^(2*H) + t[

j]^(2*H) - abs(t[i] - t[j]) ^(2*
H))}}

8 return (C)
9 }
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10

11 # Generate B_t^H
12 set.seed (456)
13 C <- cov_fbm(t, H = 0.6)
14 L <- chol(C)
15 eta <- rnorm (N)
16 WH <- as. vector (L %*% eta)
17 WH <- c(0, WH)

3. Simulation of the Mixed Asset (St)

1 # Parameters
2 mu <- 0.05
3 alpha <- 0.3
4 beta <- 0.1
5 S0 <- 100
6

7 # Simulate S_t
8 S <- numeric (N + 1)
9 S[1] <- S0

10 for (i in 2:(N + 1)) {
11 dS <- mu * S[i - 1] * dt +
12 alpha * S[i - 1] * dW[i - 1] +
13 beta * S[i - 1] * (WH[i] - WH[i - 1])
14 S[i] <- S[i - 1] + dS
15 }

4. European Call Option Pricing via Monte Carlo

1

2 # Option parameters
3 K <- 100
4 r <- 0.03 # Risk -free rate
5

6 # Discounted payoff
7 payoff <- pmax(S[N + 1] - K, 0) * exp(-r * T)
8 call_ price <- mean( payoff )
9

10 cat("Call␣option␣price :", round (call_price , 2), "\n")

5. Visualization

1 library ( ggplot2 )
2 df <- data. frame (Time = t, S = S[-1], B = S0 * exp(r * t)

)
3
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4 ggplot (df , aes(x = Time)) +
5 geom_line(aes(y = S, color = " Risky␣Asset␣S_t"),

linewidth = 0.8) +
6 geom_line(aes(y = B, color = "Risk -Free␣Bond␣B_t"),

linewidth = 0.8) +
7 labs(
8 title = " Mixed␣BrownianFractional␣Brownian␣Model ",
9 subtitle = "Asset␣and␣Bond␣Simulation ",

10 x = "Time␣(t)",
11 y = " Price "
12 ) +
13 scale _ color _ manual ( values = c("# FF6B6B ", "#4 ECDC4 ")) +
14 theme _ minimal ()

6. Results
1. Call price: Approximately 12.50 e(random result, depends on simulations).

2. Interpretation: The price incorporates the mixed volatility. No-arbitrage is ensured
by the Brownian component (α 6= 0).

Modeling and Simulation of Blood Glucose Dynamics Using Mixed
SDEs
Diabetes is a major global health concern that affects millions of individuals worldwide.
It is characterized by the bodys inability to regulate blood glucose levels, leading to either
hyperglycemia or hypoglycemia. Effective management of diabetes requires continuous
monitoring and precise prediction of glycemic trends. This challenge has sparked interest
in the development of mathematical models capable of capturing the complex and dynamic
nature of blood glucose fluctuations.

Stochastic modeling has emerged as a powerful tool to represent the inherent random-
ness and biological memory in glucose regulation. In particular, stochastic differential
equations (SDEs) that incorporate both short-term randomness and long-term memory
are especially suitable for modeling physiological processes. In this study, we explore a
mixed stochastic model involving both Brownian motion and fractional Brownian motion
(fBm) to simulate glycemic trajectories.

4.6.1 Medical Motivation and Biological Interpretation

Glucose variability in diabetic patients results from a combination of physiological and
external factors. External events such as food intake, physical activity, and stress con-
tribute to rapid and unpredictable changes in blood glucose levels. On the other hand,
internal biological processes such as insulin sensitivity and hormonal regulation exhibit
memory and inertia, reflecting longer-term dependencies in glucose regulation.
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Standard models based on pure Brownian motion fail to account for this persistence.
However, fractional Brownian motion, with its long-range dependence, captures these
correlations effectively. Hence, by combining both sources of variabilitywhite noise for
short-term fluctuations and fractional noise for long-term memorywe obtain a realistic
and robust model for blood glucose evolution.

4.6.2 Mathematical Model Formulation
The glycemia dynamics are modeled using the following mixed stochastic differential
equation (SDEs):

Gt = G0 +
∫ t

0
a(µ−Gs) ds+

∫ t

0
σ dBs +

∫ t

0
γ dBH

s

In this formulation:

• Gt denotes the glucose level at time t,

• G0 is the initial glucose value (baseline level),

• µ is the homeostasis level towards which the system tends,

• a > 0 is the rate of return to equilibrium (feedback strength),

• σ represents the amplitude of short-term variability (due to random external events),

• γ measures the intensity of long-term dependence,

• Bt is a standard Brownian motion,

• BH
t is a fractional Brownian motion with Hurst index H ∈ (0.75, 1).

The integral with respect to Brownian motion is interpreted in the Itô sense, whereas
the integral with respect to fBm is interpreted using a pathwise Riemann—Stieltjes or
fractional calculus approach, due to the non-semimartingale nature of fBm.

This model reflects the physiological reality that glucose levels fluctuate randomly but
also exhibit persistence and memory, which are captured through the BH

t term.

4.6.3 Numerical Simulation in R

The simulation was implemented using the EulerMaruyama scheme, a classical numerical
method for approximating solutions to stochastic differential equations. A time horizon
of 24 hours was considered, discretized into 1000 time steps to ensure sufficient resolution.

We simulated both the standard Brownian path and the fractional Brownian compo-
nent using the R packages ‘Sim.DiffProc‘ and ‘fracdiff‘. The simulation was initialized
with:
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• µ = 5.5: the homeostatic target (in mmol/L),

• a = 0.7: relatively strong corrective feedback,

• σ = 0.5: moderate random variability,

• γ = 0.3: modest memory effect,

• H = 0.85: strong long-range dependence,

• G0 = 6.0: slightly elevated initial glucose level.

The simulation involves calculating increments of Bt and BH
t , and updating the value

of Gt at each step according to the Euler scheme.

4.6.4 Results and Interpretation

4.6.4.1 Trajectory of Glycemia

The resulting trajectory is shown in Figure 4.2. It exhibits smooth variations with natural-
looking fluctuations and returns toward the target level µ, demonstrating the regulatory
effect modeled by the drift term. The mixed SDEs successfully integrates both stochastic
shocks and persistent trends.

Figure 4.2: Simulated glycemia trajectory over 24 hours. The red line indicates the
homeostasis level.

4.6.4.2 Distribution of Glycemia

Figure 4.3 displays the histogram of the simulated values. The distribution appears
slightly skewed, though centered around the homeostasis level. This reflects realistic
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glucose behavior in patients, where glycemia does not follow an exact Gaussian profile
but remains physiologically plausible.

Figure 4.3: Histogram of simulated blood glucose values.

4.6.4.3 Autocorrelation and Memory

The autocorrelation function (Figure 4.4) confirms the presence of long-term memory.
Unlike standard SDEs models where autocorrelation decays quickly, the inclusion of frac-
tional Brownian motion results in a slower decay, which matches clinical observations of
sustained glycemic trends.

Figure 4.4: Autocorrelation function of the simulated glycemia.

4.6.5 Statistical Analysis

A statistical summary of the simulated data reveals a sample mean of approximately 5.49
mmol/L and a standard deviation of about 0.3 mmol/L. These results are well-aligned
with the target level, indicating the models accuracy. Moreover, the ShapiroWilk test
yielded a p-value greater than 0.05, suggesting that the hypothesis of normality cannot

74



be rejected. This confirms that the simulation produces data consistent with typical
glucose profiles observed in clinical settings.

4.6.6 Conclusion and Future Work
The mixed stochastic model investigated in this report proves to be a powerful and biolog-
ically faithful representation of glycemia dynamics in diabetic patients. By incorporating
both Brownian and fractional Brownian motions, the model captures short-term shocks
and long-term trends with a high degree of realism. It offers a flexible framework that can
be calibrated to individual patients, enabling personalized prediction and management of
diabetes.

Future research will focus on integrating real-world patient data, improving parameter
estimation through machine learning, and embedding the model into real-time decision-
support tools. Extensions of this approach may also apply to other biomedical variables
influenced by both noise and memory, broadening the impact of this methodology in
health sciences.
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Conclusion

This thesis has presents the theoretical and applied understanding of mixed stochastic
differential equations (SDEs) driven by both Wiener processes and fractional Brown-
ian motion (fBm). By establishing existence and uniqueness under Lipschitz and linear
growth conditions, we demonstrated that such equations admit solutions in spaces like
S 2([0, T ]), with trajectories exhibiting Hölder regularity. For fBm with Hurst index
H ∈ (3/4, 1), the introduction of a stabilizing Wiener process enabled the transformation
of non-semimartingale dynamics into a tractable framework, resolving pathwise unique-
ness and paving the way for classical Itô calculus techniques. The convergence of stabilized
solutions to the original mixed SDEs as ε −→ 0, quantified through weak convergence
in Hölder spaces, further solidified the robustness of this approach. Practically, these
results found resonance in financial modeling, where the incorporation of fBm captured
long-memory volatility patterns, and in climatology, where temperature anomalies with
persistent trends were rigorously analyzed. Looking ahead, extending this framework
to rough regimes (H < 1/2), high-dimensional systems, and data-driven applications
promises to unlock new insights in fields ranging from quantitative finance to climate sci-
ence. By bridging stochastic analysis with real-world phenomena, this work underscores
the profound role of memory in dynamical systems and charts a path for interdisciplinary
innovation.
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