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Chapter 1

General Introduction

In today’s data-driven world, non-parametric statistics has gained significant promi-

nence among researchers and practitioners across various fields. As data sets grow in

complexity and size, traditional parametric methods, which rely on strict assumptions

about data distributions, often fall short in accurately capturing the underlying patterns.

Non-parametric approaches offer a flexible solution, allowing for the analysis of a wide

array of data types without the limitations imposed by parametric constraints. This flex-

ibility makes it particularly valuable in modern research such as economics, healthy, and

environmental science. Among the various non-parametric methods gaining traction is the

double kernel method. This innovative approach is especially relevant for estimating de-

pendent and truncated data. So kernel estimation was widely investigated under different

notions of dependence to provide on a variety of results that in turn cover several ideas.

For independent samples, in the literature, several outcomes have been recorded that

study conditional models estimate. In fact, there are various popular models of weak

dependency, α- mixing Rosenblatt (1956)[31]. For a wide view on the different sorts of

mixing and examples the reader can refer to Doukhan (1994) [12]. Bisids, on recent works

by applying the small-ball probability theory, Farraty et al. (2005) [17] have studied the

almost complete convergence of a conditional density estimator and generalized this result

to the α-mixing case. In the same framework of mixing functional observations, Masry
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(2005) [28] has systematically showed the asymptotic normality of Ferraty and Vieu’s

(2004) [14] estimator for the regression function. After that Farraty et al. (2006) [16] have

constructed a double kernel estimator for a conditional distribution function and have

specified the almost complete convergence with rates of this estimator. Later Farraty et

al. (2006) [15] have treated the estimation of the conditional distribution function as a

preliminary study of conditional quantile estimate. More recently Bouadjemi (2014) [6]

has introduced a new nonparametric estimator of the conditional cumulative distribution

function of a scalar response variable Y given a functional random variable X. For re-

cursive nonparametric kernel estimation of the conditional quantile of a scalar response

variable Y but with ergodic hilbertian explanatory variable X, Benziadi (2016) [2] has

used two type of estimators. In the same framework of mixing functional observations,

Bouazza (2021) [8] has focused on building recursive estimators for nonparametric condi-

tional models, extending the works done before to deal with the issues recently discussed

in nonparametric statistics.

This work has been elaborated as a contribution to the recursive method and its statistical

applications. Especially in the case of incomplete and dependent data under α-mixing.

The outlines of this work are briefly presented as follows: After a brief reminder on the

basic concepts of survival data analysis. Censored and truncated observations are also

discussed as part of the issues about incomplete data. Then we delve into the notion of

dependence or α-mixing. After that a brief overview to the nonparametric estimation was

reviewed in the Chapter 1.

Chapter 2 introduce a new work about the recursive double kernel estimator of the con-

ditional distribution function (cdf) in the context of functional data analysis (i.e. X ∈ H

where H is an infinite dimensional space) and y ∈ R in the case of complete data. Our

objective is to study the nonparametric issues with recursive estimation method which

extends the classical one. In fact we explore the definition of the estimator, its properties,

present the main theoretical results on the estimation of the cdf such as almost sure con-

vergence under divers assumptions.

In Chapter 3 we also deal with the nonparametric recursive method but now in case of
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the left-truncated and dependent data of the cdf in the same context functional data,

working on the estimation when we have incomplete information with a vectorial random

variable of interest Y (with Y ∈ Rp). Furthermore we present the main theoretical results

such as the uniform almost sure consistency of cdf under adequate assumptions.

The last Chapter 4 evaluate the performance of the estimators by using simulated data.

The computational experiments demonstrate the applicability and effectiveness of the

methods. Also, we present some literature studies that compare the performance of both

classical and recursive double kernel estimators when faced with incomplete data. Finally,

a general conclusion on this study conclude the work.

1.1 Survival data analysis

The analysis of survival data is the study of the arisen, in time, of one precise event

for one or several groups of given individuals. This event, often called death (deaths), can

be as well the death of an individual as the arisen of a disease, the answer to a treatment

or the breakdown of a machine (generally it is a change of state), every observation is

defined by :

1.1.1 The origin date

It is the birth date of the subject, if we study the age of the subject when arises

the event or date of putting in touch with an infectious agent, if we study the duration

of incubation of an infectious disease. Every individual has a date of origin The measure

different on the calendar, but which interests us is the extension since this date. The date

of origin defined for every individual the time 0.

To allow for comparison of survival durations between the individuals, one precise defini-

tion of the event of interest is necessary. If it is the death caused by a disease, it should

be made sure that each death is indeed due to the disease studied, and not with other
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causes [20].

1.1.2 Life-time

We call life-time a positive random variable T , in general, is the time between two

events. This variable is observed in various fields, including reliability (duration of hard-

ware life, between two breakdowns of repairable), demography and healthy care (duration

of human life, between disease outbreak and recovery, between two births) or economics

and insurance (duration of an unemployment episode, life-time of a company, between

two claims, moment of default, etc.).

From this point we can say that the data are completely observed. But in life-time studies,

it may occur that we will not be able to observe the variable of interest, this is commonly

referred to as incomplete data.

1.1.3 Survival functions

Let T be a positive random variable corresponding to the duration of survival. The

probability law of T can be characterized by several functions, as shown by the following

definitions that can be founded in Ferraty and Vieu (2006) [15].

Definition 1.1.1. The probability density function, noted f(t) :

f(t) = lim
∆t→0+

P(t ≤ T ≤ t+ ∆t)
∆t

f(t)∆t + o(∆t) is thus the probability of knowing the event of interest between t and

t+ ∆t. The distribution function, noted F (t), satisfy :

F (t) = P(T ≤ t) =
∫ t

0
f(u)du

F (t) define the probability of knowing the event of interest between [0, t], this function is
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monotonous, and we have:

F (0) = 0 and lim
t→∞

F (t) = 1

Definition 1.1.2. [13] Given a sample Ti, 1 < i < n of the variable T of the repartition

function F where the data are actually observed, a natural estimator of F is then the

empirical estimator given by :

Fn(t) = 1
n

n∑
i=1

I{Ti≤t}

Definition 1.1.3. The survival function, denoted S(t), is defined as:

S(t) = P(T > t) = 1 − F (t)

The survival function is the probability that the time of death is later than some specified

time t. survival function S(t) is monotonically decreasing, such that:

S(0) = 1 and lim
t→∞

S(t) = 0

It also characterized the law of T .

Definition 1.1.4. The risk function, or fate function, or the immediate risk of change of

state noted h(t), is defined as being the immediate probability that a duration T of "stay"

in a state ends at the moment t+ ∆t knowing that we were at the moment t there, i.e. :

h(t) = lim
∆t→0+

P(t ≤ T ≤ t+ ∆t/T ≥ t)
∆t

We easily show that :
h(t) = f(t)

S(t)

= −d log(s(t))
d(t)

Thus a h(t)∆t represent, when ∆t is small, the probability "approached" for an individual
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to reach the event of interest before t+ ∆t, conditionally in the fact that it is still in the

previous state just before t. This function is also called immediate risk at the moment t.

We also notice that the function of risk characterizes the law of T (or S(t)).

Definition 1.1.5. The function of accumulated risk, noted H(t) defined by :

H(t) =
∫ t

0
h(u)du

Remark 1.1.1. By manipulation of the previous definitions, we find easily the following

relations :
f(t) = −dS(t)

dt

S(t) = exp
(

−
∫ t

0
h(u)du

)
S(t) = exp(−H(t))

f(t) = h(t) exp
(

−
∫ t

0
h(u)du

)
Thus, the accumulated risk function characterizes the law of T (or S(t)).

The distribution of the duration of survival T can be described by one of the

functions defined above. However, one of the most interesting is the risk function h(t)

because it is a probabilistic description of the immediate future of the subject "still with

risk" and reflects differences between the models, often less visible through the distribution

functions or survival functions. In epidemiology, in certain cases, it can be interpreted in

terms of incidence.

Note that if h(t) is constant (as is noted by λ), then,

S(t) = exp
(

−
∫ t

0
h(u)du

)
= e−λt

becomes the tail of a distribution of exponential law. That supposes that one can adopt

the Markovian model in two states to estimate survival and the problem becomes purely

parametric. However, in general, h(t) is not constant, which leaves one to deal with the

problem using functional statistics.
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1.2 Incomplete data

Incomplete data in statistical analysis refer to the case where data or measurements

are unavailable for one or more variables. Possibly caused by participant dropout, data

collection and sampling errors, or survey non-response. This situation leads to bias, power

loss, and misleading inferences if left untreated. for this purpose, several analytical meth-

ods are available to handle this.

1.2.1 Censored data

This phenomenon is commonly encountered in survival analysis. The variable of in-

terest T is not observed (the individual has not suffered the event), and is increased or

decreased by a variable or a censored value denoted C which, for its part, has been ob-

served. We consider a variable of interest T (a life-time, for example). Instead of observing

the variables T1, T2, ...Tn, which interest us, we observe Ti only when (Ti < C), otherwise

we only know that (Ti > C). We are then talking about right censoring, the most frequent

(see Figure 1.1).

Figure 1.1: Types of censored data [23]
.
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Remark 1.2.1. [13] If the subject has already experienced the event before being observed

(we have C instead of Ti), and we know that (Ti < C), it is left censoring. If an event

is only observed between two dates (C1 < Ti < C2), it is considered censored by interval.

If Y is the observed variable, use the notation Yi = Ti ∧ C = min(Ti;C) This form of

right-censoring is frequently seen in dependability (for the life-time of components created

within a given period), medicine (to assess the efficacy of a treatment), biology, etc.

1.2.2 Truncated data

Truncated data is another form of incomplete data. Truncations are distinct from

censures in that they concern the sampling itself (see Figure 1.2). An observation is

considered to be truncated if it is dependent on another occurrence. We say that the

lifetime variable T is truncated if T is observable only under a certain condition dependent

on the value of T . They are classified into three types, according to Hellal [20], as folows

:

① Left truncation

Definition 1.2.1. Let Y be an independent random variable; we say that there is a left

truncation when T is only observable if T > Y .

Example 1.2.1. If the lifetime of a population is studied using a random cohort in this

population, only the survival of subjects living at inclusion can be studied.

② Right truncation

Definition 1.2.2. Similarly, we have a right truncation where T is only observable if

T < Y .



1.2 Incomplete data 13

③ Interval truncation

Definition 1.2.3. When a duration is truncated to the right and left, we say it is truncated

by interval.

Example 1.2.2. while analyzing patients from a registry, we meet this form of truncation:

patients diagnosed before the register’s inception or listed after consulting the registry are

excluded from the study.

Figure 1.2: Truncation vs. Censoring [26]
.

It should be noted that the literature is much larger with regard to censoring than the

truncation which is more recent. Indeed, the estimator of the repartition function of Y in

this case, appears for the first time in the work of Lynden-Bell (1971)[27]. Since then

several articles have appeared interested on it including us, which is the framework of our

study.
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1.2.3 The randomly truncated framework

Since the truncation does not allow the application of ordinary statistical techniques,

we present a reminder of some basic structures based on bibliography corresponding to

this context.

We consider Y1, ..., YN a sequence of real random variables of interest that has a distribu-

tion function F . And T1, ..., TN a sequence of random variables of truncation, with T ∈

[0, aF ] and has an unknown distribution function G. From that, let (Y1, T1), ..., (YN , TN)

be the sample truly observed, with Tk are assumed to be independent of Yk.

We point out that for annotation, let Pn(·) = P (· | n) be the conditional probability.

Since independence is preserved we can write P (·) = P(· | Y ≥ T ). Basically this study

will be based mainly on the truncation probability defined for the two pairs of observable

variables Y and T , by :

τ := P[Y ≥ T ] =
∫
G(v)F (dv) > 0 (1.1)

To be able to continue the study, we assume, among the total number in the pooled sample

N , that the pairs (Yk, Tk), k = 1, ..., n can be observed, with the conventions n ≤ N (n is

known) and P [n/N → τ ] = 1. So since that, the construction of the distribution F (resp.

G) of Y (resp. T ) can be reformulated in terms of the size n, thus one must be aware that

their joint distribution is also changeful (see Stute (1993) [33]), such that :

H∗(y, t) = P(Y1 ≤ y, T1 ≤ t | Y1 ≥ T1)

= P (Y1 ≤ y, T1 ≤ t)

= τ−1
∫ y

−∞
G(t ∧ v)F (dv)

where t ∧ u = min(t, u).

with the marginal ones which depend on this latter, that generate the distribution of the

positive data Y and T respectively :

F ∗(y) := τ−1
∫ y

−∞
G(v)F (dv) and G∗(t) := τ−1

∫ ∞

−∞
G(t ∧ v)F (dv)
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and thus :

K(y) = G∗(y) − F ∗(y)

= P(T1 ≤ y ≤ Y1 | Y1 ≥ T1)

= τ−1G(y)F̄ (y)

with their empirical estimators defined by :

F ∗
n(y) = n−1

n∑
k=1

I(Yk≤y) and G∗
n(t) = n−1

n∑
k=1

I(Tk≤t)

and the consistent estimator of K(y) for aF ≤ y < +∞ given by:

Kn(y) = n−1
n∑
k=1

I(Tk≤y≤Yk)

where IA denotes the indicator function of the event A. Note that, the star notation (∗)

relates to any characteristic of the actually observed data.

For the random left-truncation model, similar to the nonparametric Kaplan-Meier es-

timator (NPKME) for censored data, the astrophysicist Lynden-Bell (1971) [27] has

proposed the unique nonparametric estimator (NPLBE) based on maximum likelihood

(ML) of the continuous functions F and G expressed as :

Fn(y) = 1 −
∏
s≤y

[
1 − F ∗

n(s)
Kn(s)

]
and Gn(t) = 1 −

∏
s>t

[
1 − G∗

n(s)
Kn(s)

]

Note that the KME and LBE always give a valid redistribution of the upper limits, though

the result may not be applicable in wider context. In addition, we will set the identifiability

conditions on the support of F and G:

aG ≤ aF ; bG ≤ bF and
∫ ∞

aF

1
G
dF < ∞

where aG, bG and aF , bF denote the extreme points of the supports of G and F respectively.

In which, the main asymptotic properties of the later estimates, including the weak and
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strong uniform convergence with rates of convergence, have been provided from the paper

of the statistician Woodroofe (1985) [35], such that :

sup
y≥aF

|Fn(y) − F (y)| P.a.s.−−−−→ 0 and sup
t≥aG

|Gn(t) −G(t)| P.a.s.−−−−→ 0

with a simpler form for the estimator of τ :

τ̂n := Gn(y)F̄n(y)
Kn(y) (1.2)

For this, in some references, Fn(y) and Gn(t) called the Lynden-Bell-Woodroofe estimators

(NPLBWE). Honda [22] proved that τ̂n does not depend on y and its value can then be

obtained for any y such that Kn(y) ̸= 0. Furthermore, she showed its P −a.s. consistency.

Remark 1.2.2. To be more precise, we note that the strong uniform consistency for the

improved product limit estimator of the distribution function F over [aF ,∞) was proved

under the only condition aF > aG. However, in complementary case (aF ≤ aG), the desired

asymptotic property does not achieved as described by Chen ad al (1995) [9].

1.3 Dependent data

In the context of nonparametric estimation, it is appropriate to model the depen-

dence between the random variables. The type of dependency "mixture" is largely used in

the literature.

Dependent observations are more adjusted to reality. There are many notions of depen-

dence. We are interested here in those that are expressed in terms of mixing coefficients

between tribes generated by the past and the future of the sequence of random variables

(Xn)n ≤ 1. Rosen-blatt (1956) [31] defined the α − mixing coefficients αn, measuring

the difference between the indicators of the events which belong respectively to the tribe

generated by the future of the variables after the instant n and that generated by the past

of the variables before the instant zero.

The concept of mixing is a set of conditions that are usual structures that model the
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dependence of a sequence of random variables, we will be interested in the notion of the

alpha-mixing sequences witch have a lot of interest [28], the linear processes are under cer-

tain mixing conditions, and their mixing coefficients have an explicit order of magnitude,

however it is not easy to evaluate them. It is defined as follows.

Definition 1.3.1. [8] We consider a sequence of random variables (Xk)k>0 defined on

probabilistic space (Ω,F ,P). Let us denote by F j
1 the σ-algebra generated by the Xk, 1 ≤

k ≤ j and F∞
n+j the ones generated by the Xk, n + j ≤ k < ∞. We define the associated

mixing coefficient between two σ-fields F∞
n+j and F j

1 to the sequence (Xk)k>0 by :

α(n) = sup
j≥1

sup
A,B

{
|P(A ∩B) − P(A)P(B)|;A ∈ F∞

n+j, B ∈ F j
1

}
(1.3)

we say that this sequence is α-mixing if :

α(n) → 0 when n → ∞

There are two types of strong mixing, such that :

Definition 1.3.2. [24] The sequence (Xk)k>0 is said arithmetically equivalently alge-

braically α-mixing with rate α > 0 if :

∃C > 0, α(n) ≤ Cn−α

it is called geometrically α-mixing if :

∃C > 0, ∃ρ ∈]0, 1[ α(n) ≤ Cρn.

There are various popular coefficients of mixing other than α-mixing [11], as quoted

below :

1. β(n) = sup
j≥1

sup
A,B

{
1
2

I∑
i=1

S∑
s=1

|P (Ai ∩Bs) − P (Ai)P (Bs)| ;Ai ∈ F∞
n+j, Bs ∈ F j

1

}
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2. ϕ(n) = sup
j≥1

sup
A,B

{
|P(B\A) − P(B)|;A ∈ F∞

n+j, B ∈ F j
1 and P(A) ̸= 0

}
3. ρ(n) = sup

j≥1
sup
A,B

{
|corr(X, Y )|;X ∈ L2(F∞

n+j), Y ∈ L2(F j
1)
}

These coefficients satisfy the following inequalities :

2α ≤ β ≤ ϕ,

4α ≤ ρ ≤ 2ϕ 1
2

Then,

ϕ−mixing ⇒ β −mixing ⇒ α−mixing

ϕ−mixing ⇒ ρ−mixing ⇒ α−mixing

The tool that will be used in a decisive way in almost sure convergence problems

is the Fuk-Nagaev exponential inequality [10].

Lemma 1.3.1. "Fuk-Nagaev type Inequality under algebraic mixing" Let {∆i, i ∈ N} be

a family of random variables valued in R, of algebraically mixing decreasing coefficient.

One pose :

s2
n =

n∑
i=1

n∑
j=1

|cov (∆i,∆j)| ,

∀i, ∥∆i∥∞ < ∞, then for all θ > 0 and any q > 1, we have:

P
(∣∣∣∣∣

n∑
i=1

∆i

∣∣∣∣∣ > 4θ
)

≤ 4
(

1 + θ2

qs2
n

)−q
2

+ 2ncq−1
(2q
θ

)a+1
(1.4)

We also use the following Lemma as a necessary tool [24] :

Lemma 1.3.2. We consider a family of random variables {∆i, i ∈ N} valued in R. If the

condition of strongly mixing is verified and if ∥∆i∥ < ∞ there are for all i ̸= j:

|cov (∆i,∆j)| ≤ 4α(|i− j|)
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1.4 Nonparametric recursive method

Nonparametric analysis aims at data examination procedures that do not rely on

parameterized distribution models, to achieve more flexibility with various types of data.

The procedure is most useful when traditional parametric assumptions, such as normal-

ity, might not be valid. Recursive models within this context enable analysts to refresh

models with emerging data, strengthening their result validity. This approach enhances

our understanding of models by uncovering trends and correlations in high-dimensional

datasets while minimizing bias from the peculiarities of the data.

The idea of recursive methods is to use the estimates calculated on the basis of the initial

data and to update them with only new observations arriving in the database. A major

advantage of these methods is that it is not necessary to restart all the calculations of the

model parameters whenever the data base is completed by new observations. In general,

the advantage of these methods is the ability to take into account the successive collection

of the data and to refine the implemented estimation algorithms, in addition to reducing

the computing time.

Historically, recursive estimation with rate was introduced by Wolverten and Wag-

ner (1969) [34]. Later, Roussas (1992) [32] has presented in his work the objective of

recursive kernel estimator of the cdf in case of functional data. After that Baltagi and

Li (1994) [1] proposed a simple recursive estimation method for linear regression models

with AR(p) disturbances.

At the beginning of the third millennium, the estimate of the cdf in a functional setting

has been introduced by Ferraty et al. (2006) [15]. The authors built a double kernel

estimator for the cdf and they established the almost complete convergence rate of the

estimator when observations are independent and identically distributed (i.i.d). The case

of α−mixing observations has been studied earlier by Ferraty et al. (2006) [16]. The first

uniforms results available in the literature on the estimation of the distribution function

conditionally to a functional variable were established in Ferraty et al. (2006) [18].

More recently, the asymptotic normality of the kernel estimator of the cdf was studied by
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Bouadjemi (2014) [6], the author introduced a new nonparametric estimator of the cdf

of a scalar response variable Y given a functional random variable X. Benziadi (2016)

[2] built a new estimator for the cdf , under certain terms and conditions, she proved

the asymptotic normality of the built model. In 2018 Keddani et al [25] proposed an

estimator of the cdf when the explanatory variable takes its values in a functional space.

Benziadi and Bouazza (2022) [3] studied the nonparametric recursive estimation of

cdf of a vectorial response valued variable Y explained by a Hilbertian random variable

X = x, based on the double-kernel approach.



Chapter 2

Conditional Distribution Function

Estimation under α-Mixing in

Complete Case

First of all, this chapter presents a new work that has been based on previous study,

which is interested to discuss the theoretical results obtained about the almost sure con-

vergence rate of the conditional distribution function under α-mixing in complete case

when using the recursive double kernal estimator. To support this work at the end we

present a simulation study.

2.1 Definition of the estimator

In order to simplify and give more flexibility for our framework and to focus on

the main interest of our study, let us consider the probability space (Ω,F ,P), and let

{(Xk, Yk) , k = 1, . . . , n} be a sample of n random pairs, each one distributed as (X, Y ),

where X is the random covariate taking its values in a distanced functional space (H, d),

Y is the interest random real variable. The conditional distribution function of Y given
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X, denote F , is defined for any y ∈ R and any x ∈ H by :

F x(y) = P(Y ≤ y | X = x)

To achieve the desired objective of this study, we based on the modification of Ferraty

et al. estimator (2006) [16] in the case of non-truncated data, witch has been introduced

by Benziadi et al. (2016) [4] to recursively estimate the nonparametric conditional dis-

tribution function, they proposed the following estimator:

F̈ x
n (y) =

n∑
k=1

L1
(
a−1
k dH (x,Xk)

)
L2
(
b−1
k (y − Yk)

)
n∑
k=1

L1
(
a−1
k dH (x,Xk)

) = Ψ̈n(x, y)
Ϋn(x)

(2.1)

where :

Ψ̈n(x, y) = 1
nψn (x, an)

n∑
k=1

L1
(
a−1
k dH (x,Xk)

)
L2
(
b−1
k (y − Yk)

)
and :

Ϋn(x) = 1
nψn (x, an)

n∑
k=1

L1
(
a−1
k dH (x,Xk)

)
with Ψ(·, ·) is the joint probability function assumed to be bounded, Υ(·) is the marginal

one and the functions L1 and L2 are kernels and ak, bk are two positive real numbers

tending to 0 as n goes to infinity. In addition to,

ψn (x, an) = E
[
L1
(
a−1
k dH (x,X1)

)]

2.2 Assumptions and main results

2.2.1 Assumptions

In order to achieve the desired results, let us start by proving that our estimate leads

to obtain asymptotic properties, for that we first use the notation often introduced in many



2.2 Assumptions and main results 23

studies, Bk σ-field generated by {(Xs, Ys) , (Xr) , 1 ≤ s < k; k ≤ r ≤ k + 1}. Thus, let I

be a compact set of R.

Then, to simplify the demonstration of our main results and their proofs, from now

on we assume that certain important assumptions are assumed to hold.

(H.1) On the functional variable: there is a ball B of radius ak > 0 centered at x such

that :

(i) ∀x ∈ S, 0 < ϕ (x, ak) ≤ P [X ∈ B (x, ak)] and ϕ (x, ak) → 0 as ak → 0;

(ii) The joint distribution exists, is bounded and satisfies :

0 < sup
k ̸=l

P [Xk ∈ B (x, ak) , Xl ∈ B (x, al)] = O

(ϕ (x, ak))
(1+a)

a

n
1
a


(H.2) (Xk, Yk)k∈N is a stationary sequence of α− dependent real-valued random variables

whose coefficients of mixture α(n) satisfy the condition :

∃a, c ∈ R∗
+ : ∀n ∈ N, α(n) = O

(
n−a

)

(H.3) On the nonparametric model: ∀ (y1, y2) ∈ I2,∀ (x1, x2) ∈ N 2
x , F

x(y) satisfies the

Lipschitz condition :

|F x1 (y1) − F x2 (y2)| ≤ C1 (dν1
H (x1, x2) + |y1 − y2|ν2) ,

with,

C1 > 0, ν1 > 0, ν2 > 0

.

(H.4) L1 is a function with support [0, 1], such that :

0 < C1 < L1 (t) ≤ C2 < ∞
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(H.5) L2 is an increasing, continuous and bounded distribution function satisfying:

∀ (y1, y2) ∈ I2, |L2 (y1) − L2 (y2)| ≤ C3 |y1 − y2|

where, ∫
L

(1)
2 (|t|) dt = 1, and

∫
|t|ν2L

(1)
2 (|t|) dt < ∞

(H.6) On the bandwidths: ak and bk satisfy the following conditions:

(i) lim
n→∞

an = lim
n→∞

bn = 0 and lim
n→∞

nrbn = ∞ for any r > 0

(ii)
n∑
k=1

ϕk (x, ak) = nψn (x, an) → ∞ and lim
n→∞

log n
nψn (x, an) = 0

2.2.2 Discussion on the assumptions

Commonly, in nonparametric classical and/ or recursive estimation for conditional

distribution functions in α-mixing context with dependent processes, which have been

adopted by Doukhan [12], all the assumptions used in this work are necessary.

The assumption (H.1)(i) is a standard condition for functional estimate. While, (H.1)(ii)

is the same as used in Ferraty et al. [17] among which the small-ball probability satisfies

:

sup
k ̸=l

P [Xk ∈ B (x, ak) , Xl ∈ B (x, al)]
P [X ∈ B (x, ak)]

= O


(
ϕ (x, ak)

n

) 1
a

 (2.2)

Compared with Theorem 4.1 in Hellal and O. Said [21] for the independent framework

in which they used the classical Bernstein exponential inequality for the classical kernel es-

timate. In the case of dependent observations, when the process (Xk, Yk) has algebraically

decreasing mixing coefficients α(n), we should to set the condition (H.2) in order to use

the adapted inequality (1.3.2), then, to study the consistency of the estimator. While,

statisticians see that the dependency structure is more complex than the previous one

and has many practical applications.

Now, we introduce the regularity condition (H.3), defining the Holderian property of the
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continuous conditional distribution which makes the proof’s steps easier and enables us

to obtain the rates of convergence.

Moreover, the hypotheses (H.4), (H.5) are considered as classical assumptions of kernel

estimation which are necessary, sufficient and always keep track of the above condition

(H.3) in terms of function’s class, as well as on the conditional distribution.

Furthermore, (H.6) is an important technical condition on the sequences an and bn, how-

ever, rather classic in recursive kernel estimation.

At this stage, we are finally in a position to state our main theoretical results.

2.2.3 Almost sure convergence rate of the conditional distribu-

tion function

In this section we recall some results since our estimator of the conditional distribution

function has been defined. Recall that, in the case of complete data, a well-known double-

kernel estimator is more appropriate in functional analysis. Then, we establish its almost

sure convergence rate 1, which is the object of the following theorem.

Theorem 2.2.1. Under the above hypotheses, and if the below condition posed by Ferraty

et al (2005) [18] :

∃η ∈ R∗, Cn
3−a
1+a

+η ≤ ϕ (x, ak) ≤ C ′n
1

1−a

holds with a > (5 +
√

17)/2, C and C ′ denote some generic constant in R∗+, we have:

sup
y∈I

∣∣∣F̈ x
n (y) − F x(y)

∣∣∣ = O

(
n∑
k=1

aν1
k +

n∑
k=1

bν2
k

)
+Oa.s

(
log n

nψn (x, an)

)1/2

(2.3)

Proof of Theorem 2.2.1 The proof techniques are based mainly on the following stan-
1Recall that the sequence (Xn)n∈N of random variables is said to converge almost surely to some

variable X, if [11]:
P
(

lim
n→∞

Xn = X
)

= 1 in short Xn
a.s.−−→ X.
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dard decomposition :

F̈ x
n (y) − F x(y) = B̈n(x, y)+R̈n(x, y)

Ϋn(x)
+ Q̈n(x, y)

Ϋn(x)

with,

B̈n(x, y) =
E
[
Ψ̈n(x, y)

]
E
[
Ϋn(x)

] − F x(y)

and,

R̈n(x, y) = −B̈n(x, y)
(
Ϋn(x) − E

[
Ϋn(x)

])
also,

Q̈n(x, y) =
(
Ψ̈n(x, y) − E

[
Ψ̈n(x, y)

])
− F x(y)

(
Ϋn(x) − E

[
Ϋn(x)

])
where,

Ψ̈n(x, y) = 1
nψn (x, an)

n∑
k=1

L1
(
a−1
k dH (x,Xk)

)
L2
(
b−1
k |y − Yk|

)
and,

Ϋn(x) = 1
nψn (x, an)

n∑
k=1

L1
(
a−1
k dH (x,Xk)

)
in addition to,

E
[
Ψ̈n(x, y)

]
= 1
nψn (x, an)

n∑
k=1

E
[
L1
(
a−1
k dH (x,Xk)

)
L2
(
b−1
k |y − Yk|

)]

and,

E
[
Ϋn(x)

]
= 1
nψn (x, an)

n∑
k=1

E
[
L1
(
a−1
k dH (x,Xk)

)]
Then, the proof of Theorem 2.2.1 is a direct consequence of the below Lemmas.

Lemma 2.2.1. Under Hypotheses (H1)-(H3) and (H5), we have :

sup
y∈I

∣∣∣B̈n(x, y)
∣∣∣ = O

(
n∑
k=1

aν1
k

)
+O

(
n∑
k=1

bν1
k

)
(2.4)
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Lemma 2.2.2. Under Hypotheses of Theorem 2.2.1, we have :

Ϋn(x) − E
[
Ϋn(x)

]
= Oa.s.

( log n
nψn (x, an)

)1/2
 (2.5)

Lemma 2.2.3. Under Hypotheses of Theorem 2.2.1, we have :

sup
y∈I

∣∣∣Ψ̈n(x, y) − E
[
Ψ̈n(x, y)

]∣∣∣ = Oa.s.

( log n
nψn (x, an)

)1/2
 (2.6)

2.2.4 Almost sure convergence rate of the conditional quantile

function

We contend that the accuracy of the conditional quantile estimator fundamentally

depends on the properties of the conditional distribution function estimator used in its

construction. In fact, we obtain the quantile estimate by inverting the estimated cdf .

Consequently, the uniform consistency of the conditional quantile estimator is intrinsically

related to cdf estimator. To ensure the existence and uniqueness of the conditional quantile

function, we explicitly assume that F x(·) is strictly increasing and continuous over its

domain. This assumption is crucial, as it guarantees a well-defined inverse and stabilizes

the estimation process, allowing for reliable inference of the conditional quantiles.

From that, we can easily estimate the conditional quantile qα(x) by :

q̈α,n(x) = F̈−1
n (α/x) = inf

{
y : F̈n(y/x) ≥ α

}
(2.7)

In that case, we have to introduce another hypothesis (H.7) as follow :

(H.7) For each fixed α ∈ (0, 1), the function qα(x) satisfies that, for any ϵ > 0 and ηα(x),

there exists a β > 0 such that qα(x) −ηα(x) ≥ ϵ implies that F x (qα(x)) −F x (ηα(x)) ≥ β.

The following Corollary gives the almost sure convergence rate of the estimate q̈α(x).

Corollary 2.2.1. Let the assumptions of Theorem 2.2.1 hold. In addition to (H.7), then,
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we have :

q̈α,n(x) − qα(x) = O

(
n∑
k=1

aν1
k +

n∑
k=1

bν2
k

)
+Oa.s

(
log n

nψn (x, an)

)1/2

(2.8)

Proof of Corollary 2.2.1 By following the same steps as for Theorem 2.2.1 we can proof

this result.

2.3 Technical proofs

Proof of Lemma 2.2.1 To prove this Lemma we go through the following steps,

consider now for all k = 1, ..., n the following notations:

L1.k(x) = L1
(
a−1
k dH (x,Xk)

)
, L2.k(y) = L2

(
b−1
k (y − Yk)

)

Than we write :

∣∣∣B̈n(x, y)
∣∣∣ =

∣∣∣∣∣ 1
nψn (x, an)E(Ϋn(x))

n∑
k=1

{E (L1.k(x)E [L2.k(y) | X]) − F x(y)E [L1.k(x)]}
∣∣∣∣∣

≤ 1
nψn (x, an)E(Ϋn(x))

n=1∑
k=1

{E (L1.k(x) |E [L2.k(y) | X] − F x(y)|)} .

Next, an integration by parts and a change of variable allow to get :

E (L2.k(y) | X) =
∫
R
L

(1)
2 (t)FX (y − bkt) dt.

Thus, we have :

|E [L2.k(y) | X] − F x(y)| ≤
∫
R
L

(1)
2 (t)

∣∣∣FX (y − bkt) − F x(y)
∣∣∣ dt

Moreover, it follows by (H5) that :

|E [L2.k(y) | X] − F x(y)| ≤ C
∫
R
L

(1)
2 (t) (aν1

k + |t|ν2bν2
k ) dt
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This last inequality is uniform on y which achieves the proof of lemma.

Proof of Lemma 2.2.2 : To deal with the proof requirements, we follow the same ideas

used by Ferraty ad al (2004) [14], the main point consists in using a pseudo-exponential

inequality taking into account the α-mixing structure. Witch allow as to start by writing

:

Ϋn(x) − E
[
Ϋn(x)

]
= 1
nE(L1.1(x))

n∑
k=1

∆k(x)

where,

∆k(x) = L1
(
a−1
k dH (x,Xk)

)
− E

(
L1
(
a−1
k dH (x,Xk)

))
.

The Fuk-Nagaev’s inequality allows one to get, for all θ > 0 and q > 1 :

P
(∣∣∣Ϋn(x) − E

[
Ϋn(x)

]∣∣∣ > 4θ
)

≤ C{n
q

(
q

θnE(L1.1(x))

)a+1

︸ ︷︷ ︸
Q1

+
(

1 + θ2n2 (E(L1.1(x)))2

qsn

)q/2

︸ ︷︷ ︸
Q2

}

where,

sn =
n∑
k=1

n∑
l=1

Cov (∆k(x),∆l(x))

By taking,

q = C(log n)2 and θ = θ0

√
nψn (x, an) log n
nE(L1.1(x)) , (2.9)

and by using the left part of (H.7), it follows that,

Q1 ≤ Cn−1−ν (2.10)

Before we focus on Q2, we have to study the asymptotic behaviour of :

sn =
∑
k ̸=l

Cov (∆k(x),∆l(x))
︸ ︷︷ ︸

soov
n

+
n∑
k=1

Var (∆k(x))︸ ︷︷ ︸
svar

n

(2.11)
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On one hand, by using successively (H1), (H2), (H4) and the right part of (H.7), we have

:

|Cov (∆k(x),∆l(x))| = O

(ψn (x, an)
n

)1/a

ψn (x, an)
 (2.12)

On the other hand, these covariances can be controlled by means of the usual Davydov’s

covariance inequality for mixing processes (see Rio, 2000) [30]. Together with (H.2), this

inequality leads to :

∀k ̸= l, |Cov (∆k(x),∆l(x))| ≤ C|k − l|−a (2.13)

Thus, by using the following classical technique (see Bosq, 1998) [5], we can write :

scov
n =

∑
0<|k−l|≤un

|Cov (∆k(x),∆l(x))| +
∑

|k−l|>un

|Cov (∆k(x),∆l(x))|

By putting un =
(
ψn(x,an)

n

)−1/a
, and using (2.12) (resp. (2.13)) to treat the first (resp.

second) covariance term, we get :

scovn = O (nψn (x, an)) (2.14)

The variance terms can be calculated by following the same arguments as those invoked

to obtain to get (2.12), and we arrive at :

Var (∆k(x)) = O (ψn (x, an)) (2.15)

Now, (2.14) and (2.15) lead directly to :

sn = O (nψn (x, an)) (2.16)

This is ample to study the quantity Q2, since (2.9) and (2.16) allow us to write that, for

n and θ0 large enough :

∃ν ′ > 0, Q2 ≤ Cn−1−ν′ (2.17)
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Finally, we put together (2.10) and (2.17) in addition to use (H.4) we achieve the proof

of Lemma.

Proof of Lemma 2.2.3. It proceeds along the same steps and by invoking the same

arguments, just changing the variables ∆k(x) into the following ones:

Γk(x) = L2.k(y)L1.k(x) − E [L2.k(y)L1.k(x)]

Due to the fact that L2 is a cumulative kernel, so L2.k(y) ≤ 1. Using this fact system-

atically to bound the variables L2.k, all the calculus made previously with the variables

∆k(x) remain valid with the variables Γk(x). Which completes the proof of Lemmas and,

therefore, the Theorem 2.2.1.



Chapter 3

Conditional Distribution Function

Estimation in case of Truncated and

Dependent Data

The main objective of this chapter is to discuss the results obtained related to this

study. Indeed, the sensitivity of the double kernal estimator in the case of truncated

data under α-mixing condition, which is a research topic encountered several times in

the literature for many conditional models, in particular the distribution and the quantile

functions.

3.1 The model and its estimate

In regard to treat our framework in this chapter, let us take the same proba-

bility space (Ω,F ,P), and consider an infinite stationary dependent random vectors

(Xk, Yk), k = 1, ..., n (n ≤ N) taken from the pair (X, Y ), where X is functional and

Y is the random vectorial variable of interest with a continuous distribution function F .

In addition, we consider for this case, the scenario in which the response variable Y is
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assumed to be subject to the truncation time T.

Therefore, the conditional distribution function of Y given the covariate X = x under the

truncation condition exists and is frequently defined by :

FY/X(y/x) = E
[
I(Y≤y)/X = x

]
,∀y ∈ Rp

With respect to the main objective of this research case, truncated data, our purpose

is to adapt the version of a semi recursive double kernel estimator of the model given

above denoted F̂ x
n (.) proposed by Benziadi et al. (2022) [3] witch is defined as follow,

taking into account that Gn as defined in section 1.2.3 :

F̂ x
n (y) =

n∑
k=1

G−1
n (Yk)L1

(
a−1
k dH (x,Xk)

)
L2
(
b−1
k ∥y − Yk∥Rp

)
n∑
k=1

G−1
n (Yk)L1

(
a−1
k dH (x,Xk)

) = Ψ̂n(x, y)
Υ̂n(x)

(3.2)

where,

Ψ̂n(x, y) = τ̂n
nψn (x, an)

n∑
k=1

1
Gn (Yk)

L1
(
a−1
k dH (x,Xk)

)
L2
(
b−1
k ∥y − Yk∥Rp

)

and,

Υ̂n(x) = τ̂n
nψn (x, an)

n∑
k=1

1
Gn (Yk)

L1
(
a−1
k dH (x,Xk)

)

3.2 Assumptions and main results

3.2.1 Assumptions

Firstly, to ensure that our estimate achieves the asymptotic properties, in this case

study we choose the notation often introduced in many studies, Bk the σ-field generated

by {(Xs, Ys) , (Xr) , 1 ≤ s < k; k ≤ r ≤ k + 1}. Thus, let S and I be, respectively, two

compact sets of H and Rp. Secondly, following Woodroofe (1985) [35] in addition to
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He and Yang (1998) [19], let us note for the distribution function L of Z, the lower and

upper limits of the support by :

aL = inf{z : L(z) > 0} and bL = sup{z : L(z) < 1}

Now, to make the steps of the main results and their proofs clearer, we point out that

the previous assumptions of the Theorem 2.2.1 from (H.1) to (H.6) remain valid taking

into consideration that Y ∈ Rp, in addition, we need to add the following assumptions as :

(H.5) (ii) There exists a continuous bounded function l∞(·) in the neighborhood of x

such that the conditional distribution of the couple (Yk, Yl) knowing (Xk, Xl)

exists and verifies :

max [F (yk/xk) , Fk,l (yk, yl/xk, xl)] ≤ l∞(x) < ∞

(H.6) (iii) ∃γ > 0; 1
nγ logn

n∑
k=1

b−1
k → 0 as n → ∞.

(H.7) The variables (Tk)k=1,...,n are independent of (Yk)k=1,...,n.

3.2.2 Discussion on the assumptions

Since, we are still concerned with nonparametric recursive estimation for conditional

distribution functions in functional α-mixing context, the previous assumptions from (H.1)

to (H.6) remain valid taking into consideration that Y ∈ Rp. We point out that (H.5)(ii)

introduce a continuous bounded function to drive uniform convergence rate, and to avoid

instabilities due to explosive behavior of conditional distributions near the boundaries.

Furthermore, we add (H.6)(iii) to ensure that we have enough smoothing of the estimator,

and consequently converge properly. Moreover, to deal with the difficulty of the problem

and to treat properties of the estimator when the sample contains truncated data, we

point out that the truncation mechanism would be examined by assumption (H.7) which
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is considered as a powerful tool in nonparametric truncation estimation in the sense it

gives a valid solution.

Now, we state our main theoretical results.

3.2.3 Uniform almost sure consistency of the conditional distri-

bution function

We first establish the rate of the uniform almost sure consistency2, which is the object

of the following theorem. Throughout the rest of this work, Ki (resp. Mi) for i = 1, . . . , 6

will be used to denote the positive constants whose values may vary, in addition to the

previous constants mentioned above.

Theorem 3.2.1. (Benziadi and Bouazza (2022)) [3]. Suppose that the assumptions

(H.1)-(H.7) hold true. For n large enough, we have :

lim sup
n→∞

sup
x∈S

sup
y∈I

∣∣∣F̂ x
n (y) − F x(y)

∣∣∣((
n∑
k=1

aν1
k +

n∑
k=1

bν2
k

)
+
(

logn
nψn(x,an)

)1/2
) ≤ K1 a.s.

The application of Theorem 3.2.1 is needed to obtain the following result.

3.2.4 Uniform almost sure consistency of the conditional quan-

tile function

Considering that the conditional quantile estimator depends on the construction of

the conditional distribution function estimator. Thus, its uniform consistency depends

basically on that of the previous ones. Normally, it is necessary to assume that F x(·) is
2A sequence of estimators X̂n is said to be uniformly almost surely consistent if:

sup
x∈S

|X̂n(x) − X(x)| a.s.−−→ 0 as n → ∞
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strictly increasing and continuous, in order to ensure the existence and the uniqueness of

the conditional quantile function. Now, we interest to the conditional quantile qα(x) that

naturally estimated by :

q̂α,n(x) = F̂−1
n (α/x) = inf

{
y : F̂n(y/x) ≥ α

}

then, we have to introduce additional condition

(H.8) For each fixed α ∈ (0, 1), the function qα(x) satisfies that, for any ϵ > 0

and ηα(x), there exists a β > 0 such that sup
x∈S

|qα(x) − ηα(x)| ≥ ϵ implies that

sup
x∈S

|F x (qα(x)) − F x (ηα(x))| ≥ β.

Corollary 3.2.1. (Benziadi and Bouazza (2022)).Let the assumptions of Theorem

3.2.1 hold. In addition to (H.8), one gets :

lim sup
n→∞

sup
x∈S

|q̂α,n(x) − qα(x)|((
n∑
k=1

aν1
k +

n∑
k=1

bν2
k

)
+
(

logn
nψn(x,an)

)1/2
) ≤ K2 a.s.

Proof of Theorem 3.2.1 The proof techniques based mainly on the following standard

decomposition :

F̂ x
n (y) − F x(y) − B̂n(x, y) = 1

ĥn(x)

{
Q̂n(x, y) − B̂n(x, y)

[(
Υ̂n(x) − Υ̃n(x)

)
+
(
Υ̃n(x) − E

[
Υ̃n(x)

])]}
with :

B̂n(x, y) :=
E
[
Ψ̃n(x, y)

]
− F x(y)E

[
Υ̃n(x)

]
E
[
Υ̃n(x)

]
and :

Q̂n(x, y) :=
[(

Ψ̂n(x, y) − Ψ̃n(x, y)
)

+
(
Ψ̃n(x, y) − E

[
Ψ̃n(x, y)

])]
− F x(y)

[(
Υ̂n(x) − Υ̃n(x)

)
+
(
Υ̃n(x) − E

[
Υ̃n(x)

])]
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where :

Ψ̃n(x, y) = τ

nψn (x, an)

n∑
k=1

1
G (Yk)

L1
(
a−1
k dH (x,Xk)

)
L2
(
b−1
k ∥y − Yk∥Rp

)

and :

Υ̃n(x) = τ

nψn (x, an)

n∑
k=1

1
G (Yk)

L1
(
a−1
k dH (x,Xk)

)
in addition to :

E
[
Ψ̃n(x, y)

]
= τ

nψn (x, an)

n∑
k=1

E
[

1
G (Yk)

L1
(
a−1
k dH (x,Xk)

)
L2
(
b−1
k ∥y − Yk∥Rp

)]

and :

E
[
Υ̃n(x)

]
= τ

nψn (x, an)

n∑
k=1

E
[

1
G (Yk)

L1
(
a−1
k dH (x,Xk)

)]

Then, the proof of Theorem 3.2.1 is a direct consequence of the fowling Lemmas

extending several results to the left-truncation setting.

Lemma 3.2.1. Under the assumptions (H.1), (H.2), (H.3) and (H.6), we have :

lim sup
n→∞

sup
x∈S

sup
y∈I

∣∣∣Ψ̃n(x, y) − E
[
Ψ̃n(x, y)

]∣∣∣(
logn

nψn(x,an)

)1/2 ≤ K3 a.s.

Lemma 3.2.2. Under the assumptions (H.2), (H.4), (H.5) and (H.7) one get :

lim sup
n→∞

sup
x∈S

sup
y∈I

∣∣∣Ψ̂n(x, y) − Ψ̃n(x, y)
∣∣∣

(n−1/2) ≤ K4

Lemma 3.2.3. Assume that (H.1) and (H.4) hold true, for any x ∈ S, we have :

lim sup
n→∞

sup
x∈S

∣∣∣Υ̃n(x) − E
[
Υ̃n(x)

]∣∣∣(
logn

nψn(x,an)

)1/2 ≤ K5 a.s.
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Lemma 3.2.4. Assume that (H.2), (H.4) and (H.7) hold true, for any x ∈ S, one get :

lim sup
n→∞

sup
x∈S

∣∣∣Υ̂n(x) − Υ̃n(x)
∣∣∣

(n−1/2) ≤ K6

Lemma 3.2.5. Under the assumptions (H.1), (H.3), (H.4) and (H.6), we have :

sup
x∈S

sup
y∈I

∣∣∣B̂n(x, y)
∣∣∣ = O

(
n∑
k=1

aν1
k

)
+O

(
n∑
k=1

bν1
k

)

Proof of Corollary 3.2.1 It is easy to see that this Corollary can be deduced from the

relation :

sup
x∈S

|F x (q̂α,n(x)) − F x (qα(x))| ≤ 2 sup
x∈S

sup
y∈I

∣∣∣F̂ x
n (y) − F x(y)

∣∣∣
which is based primarily on the decomposition (3.4).

3.3 Particular cases

3.3.1 The real case (p=1)

We have previously studied the strong consistency of our estimator when the random

variable of interest Y is of vector nature. It remains to treat the particular case where

this variable is real (i.e. p = 1 ). In this case, some current assumptions will be modified

to fit the situation considered, such as (H.3) and (H.5) becomes respectively (H.3) and

(H.5) of the previous Chapter 2.

In fact, we will not repeat here the proofs which are the same as for the previously studied

case and the result remains the same too, such that :

Corollary 3.3.1. (Benziadi and Bouazza (2022)). Based on the same assumptions
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used in Theorem 3.2.1, in addition to (H.3) and (H.5) used in Theorem 2.2.1, one have :

lim sup
n→∞

sup
x∈S

sup
y∈I

∣∣∣F̃ x
n (y) − F x(y)

∣∣∣((
n∑
k=1

aν1
k +

n∑
k=1

bν2
k

)
+
(

logn
nψn(x,an)

)1/2
) ≤ M1 a.s.

3.3.2 The L1 recursive estimate

For x ∈ H, the L1 estimator of the conditional probability distribution of Y given

X = x is given as follows :

F̄ x
n (y) =

n∑
k=1

G−1
n (Yk)L1

(
a−1
k dH (x,Xk)

)
I(−∞,y) (Yk)

n∑
k=1

G−1
n (Yk)L1

(
a−1
k dH (x,Xk)

) := Ψ̄n(x, y)
Ῡn(x)

(3.4)

where IA denotes the indicator function of the set A.

Theorem 3.3.1. (Benziadi and Bouazza (2022)) [3] Under the assumptions (H.1),

(H.4), (H.6) and (H.3 hold in Theorem 2.2.1), one have :

lim sup
n→∞

sup
x∈S

sup
y∈I

∣∣∣F̄ x
n (y) − F x(y)

∣∣∣((
n∑
k=1

aν1
k

)
+
(

logn
nψn(x,an)

)1/2
) ≤ M2 a.s.

The proof of this theorem is based on the main following results.

Lemma 3.3.1. Let assumptions of Theorem 3.2.1 hold true, then :

(i) lim sup
n→∞

sup
x∈S

sup
y∈I

∣∣∣Ψ̈n(x, y) − E
[
Ψ̈n(x, y)

]∣∣∣(
logn

nψn(x,an)

)1/2 ≤ M3 a.s.

(ii) lim sup
n→∞

sup
x∈S

sup
y∈I

∣∣∣Ψ̄n(x, y) − Ψ̈n(x, y)
∣∣∣

(n−1/2) ≤ M4

Lemma 3.3.2. Let the assumptions (H.1), (H.4) and (H.6) hold. Then, one have :
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(i) lim sup
n→∞

sup
x∈S

∣∣∣Ϋn(x) − E
[
Ϋn(x)

]∣∣∣(
logn

nψn(x,an)

)1/2 ≤ M5 a.s.

(ii) lim sup
n→∞

sup
x∈S

∣∣∣Ῡn(x) − Ϋn(x)
∣∣∣

(n−1/2) ≤ M6

Lemma 3.3.3. Under the same assumptions as those of Lemma 3.2.5. then, we have :

sup
x∈S

sup
y∈I

∣∣∣B̃n(x, y)
∣∣∣ = O

(
n∑
k=1

aν1
k

)

3.4 Technical proofs

In following, the proof of Theorem 3.2.1 is essentially based on the Fuk-Nagaev In-

equality showed in Lemma 1.3.1 and the following lemma adapted to the α-mixing context.

Lemma 3.4.1. (O. Said and Tatachak (2009)[29]). Under assumption (H.2) of mixing

random variables, we have :

|τ̂n − τ | = O
{
n−1/2 (log2 n)1/2

}

Proof of Lemma 3.2.1 We start by noting for all couple (x, y) ∈ S × I that :

Ψ̃n(x, y) − E
[
Ψ̃n(x, y)

]
= 1
n

n∑
k=1

τ

ψn (x, an)

{
1

G (Yk)
L1
(
a−1
k dH (x,Xk)

)
L2
(
b−1
k ∥y − Yk∥Rp

)

−E
[

1
G (Yk)

L1
(
a−1
k dH (x,Xk)

)
L2
(
b−1
k ∥y − Yk∥Rp

)]}

= 1
n

n∑
k=1

Zk,n(x, y).
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with :

Zk,n(x, y) = τ

ψn (x, an)

{
1

G (Yk)
L1
(
a−1
k dH (x,Xk)

)
L2
(
b−1
k ∥y − Yk∥Rp

)
−E

[
1

G (Yk)
L1
(
a−1
k dH (x,Xk)

)
L2
(
b−1
k ∥y − Yk∥Rp

)]}

The use of the boundedness of L1 from the assumption (H.4) ensures that for two

existent constants (c1, c2) ∈ R2
+, we would have :

0 < c1ϕ (x, ak) ≤ E
[
L1
(
a−1
k dH (x,Xk)

)]
≤ c2ϕ (x, ak) (3.5)

In view of the following quantity, since the condition I(Tk≤Yk) = 1 is always validated in

the left truncated model by definition of the probability τ . Then, by condition (3.5) and

applying the assumption (H.5)(ii), we can write it in its simplest form, thus :

∣∣∣∣∣E
[

1
G (Yk)

L1
(
a−1
k dH (x,Xk)

)
L2
(
b−1
k ∥y − Yk∥Rp

)]∣∣∣∣∣
=
∣∣∣∣∣E
[
E
[

1
G (Yk)

L2
(
b−1
k ∥y − Yk∥Rp

)
I(Tk≤Yk) | X

]
L1
(
a−1
k dH (x,Xk)

)]∣∣∣∣∣
≤ E

[
1

G (Yk)
E
[
L2
(
b−1
k ∥y − Yk∥Rp

)
| X

]
P [Tk ≤ Yk]L1

(
a−1
k dH (x,Xk)

)]

≤ l∞(x)E
[
L1
(
a−1
k dH (x,Xk)

)]
≤ l∞(x)c2ϕ (x, ak) .

and so, we employ the decomposition :

sup
x∈S

sup
y∈I

∣∣∣∣∣
n∑
k=1

Zk,n(x, y)
∣∣∣∣∣ ≤ sup

x∈S
sup
y∈I

∣∣∣∣∣
n∑
k=1

Z∗
k,n (xi, y)

∣∣∣∣∣︸ ︷︷ ︸
Q1

max
j∈{1,...,rn}

sup
x∈S

∣∣∣∣∣
n∑
k=1

Z̃k,n(x, y)
∣∣∣∣∣︸ ︷︷ ︸

Q2

+ max
i∈{1,...,hn}

max
j∈{1,...,rn}

∣∣∣∣∣
n∑
k=1

Zk,n (xi, yj)
∣∣∣∣∣︸ ︷︷ ︸

Q3

(3.6)

Therefore, the compactness property of the two subsets I and S help us to :
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write for any y1, y2, . . . , yrn and x1, x2, . . . , xhn ,

I ⊂
rn⋃
j=1

B (yj, sn) and S ⊂
hn⋃
i=1

B (xi, sn)

Thus, we can take for a constant M, sn ≤ Mn−β with (β > 0) and j(y) =

arg minj∈{1,...,rn} ∥y − yj∥Rp and h(x) = arg mini∈{1,...,hn} dH (x, xi).

For the first term of the decomposition (3.6), we have for any (x, y) ∈ S × I :

∣∣∣∣∣
n∑
k=1

Z∗
k,n (xi, y)

∣∣∣∣∣ ≤
∣∣∣Ψ̃n(x, y) − Ψ̃n (xi, y)

∣∣∣+ ∣∣∣E [Ψ̃n (xi, y)
]

− E
[
Ψ̃n(x, y)

]∣∣∣
≤ τ

ψn (x, an)

n∑
k=1

L2
(
b−1
k ∥y−Yk∥Rp

)
G (Yk)

∣∣∣∣∣∣ L1
(
a−1
k dH (x,Xk)

)
− L1

(
a−1
k dH (xi, Xk)

)
|

+ τ

ψn (x, an)

n∑
k=1

E

 L2
(
b−1
k ∥y − Yk∥Rp

)
G (Yk)

∣∣∣∣∣∣ L1
(
a−1
k dH (xi, Xk)

)
−L1

(
a−1
k dH (x,Xk)

)
|
]

Using the fact that the kernel L1 is of Lipschitz class. Then, one get :

Q1 ≤C2
τ

G (aF )ψn (x, an) sup
x∈S

sup
y∈I

n∑
k=1

dH (x, xi)
ak

∣∣∣L2
(
b−1
k ∥y−Yk∥Rp

)∣∣∣
+ C2

τ

G (aF )ψn (x, an) sup
x∈S

sup
y∈I

n∑
k=1

dH (xi, x)
ak

E
[
L2
(
b−1
k ∥y−Yk∥Rp

)]

and since for all sn = n−β, it follows that Q1 −→ 0 as n → ∞.

Then, for the study of Q2, we first write the following decomposition which leads to :

Q2 = max
j∈{1,...,rn}

sup
x∈S

∣∣∣Ψ̃n (xi, y) − Ψ̃n (xi, yj)
∣∣∣

+ max
j∈{1,...,rn}

sup
x∈S

∣∣∣E [Ψ̃n (xi, yj)
]

− E
[
Ψ̃n (xi, y)

]∣∣∣
≤ max

j∈{1,...,rn}
sup
x∈S

n∑
k=1

τ

ψn (x, an)

{
1

G (Yk)

∣∣∣∣∣ L1
(
a−1
k dH (xi, Xk)

)
L2
(
b−1
k ∥y − Yk∥Rp

)
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−L1
(
a−1
k dH (xi, Xk)

)
L2
(
b−1
k ∥yj − Yk∥Rp

)
|
}

+ max
j∈{1,...,rn}

sup
x∈S

n∑
k=1

τ

ψn (x, an)

{
E
[

1
G (Yk)

∣∣∣∣∣ L1
(
a−1
k dH (xi, Xk)

)
L2
(
b−1
k ∥yj − Yk∥Rp

)
−L1

(
a−1
k dH (xi, Xk)

)
L2
(
b−1
k ∥y − Yk∥Rp

)
|
]}

= Q
(1)
2 +Q

(2)
2

So that under the assumptions (H.5) and (H.6)(iii), we have :

Q
(1)
2 ≤ C3

∥y − yj∥Rp

ψn (x, an)

n∑
k=1

τ

bkG (Yk)
L1
(
a−1
k dH (xi, Xk)

)

≤ C3
τsn

G (aF )ψn (x, an)

n∑
k=1

L1
(
a−1
k dH (xi, Xk)

)
bk

≤ M1n
−γ

ψn (x, an)

n∑
k=1

b−1
k

≤ M1 log n
ψn (x, an)

1
nγ log n

n∑
k=1

b−1
k −→ 0 as n → ∞ (3.7)

For the second term of the decomposition, the same arguments as for Q(1)
2 with condition

(3.5) lead as n goes to infinity to :

Q
(2)
2 ≤ C3 [ψn (x, an)]−1

n∑
k=1

∥yj − y∥Rp

bk
E
[
L1
(
a−1
k dH (xi, Xk)

)]
−→ 0

We move now to the last term :

Q3 = max
i∈{1,...,hn}

max
j∈{1,...,rn}

∣∣∣∣∣
n∑
k=1

Zk,n (xi, yj)
∣∣∣∣∣

At first we calculate :

S2
n =

∑
k ̸=l

|Cov (Zk,n (xi, yj) , Zl,n (xi, yj))|︸ ︷︷ ︸
SCov

n

+
∑
k=l

|Cov (Zk,n (xi, yj) , Zk,n (xi, yj))|︸ ︷︷ ︸
SV ar

n

(3.8)

The definition of the probability τ and because of the boundedness of the kernels

L1 and L2, one can show that Zk,n really satisfies the condition |Zk,n (xi, yj)| < ∞. In
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particular, it is bounded ∀k ∈ N, such that :

|Zk,n (xi, yj)| ≤ τ

G (aF )ψn (x, an)

∣∣∣∣∣ L1
(
a−1
k dH (xi, Xk)

)
L2
(
b−1
k ∥yj − Yk∥Rp

)
− E

[
L1
(
a−1
k dH (xi, Xk)

)
L2
(
b−1
k ∥yj − Yk∥Rp

)]
|

≤C τ

G (aF )ψn (x, an)

=O
(

1
ϕ (x, ak)

)
.

Then, the linearity of the expectation with the standard Jensen inequality lead directly

to :

|E [Zk,n (xi, yj)]|

≤ 2E
[

τ

G (Yk)ψn (x, an)
∣∣∣L1

(
a−1
k dH (xi, Xk)

)
L2
(
b−1
k ∥yj − Yk∥Rp

)∣∣∣]

≤ 2 τ

G (aF )
1

ψn (x, an)E
[∣∣∣L1

(
a−1
k dH (xi, Xk)

)
L2
(
b−1
k ∥yj − Yk∥Rp

)∣∣∣]
= O(1) (3.9)

and,

E
[
Z2
k,n (xi, yj)

]
≤ C

1
G (aF )ψ2

n (x, an)E
[

τ

G (Yk)
L2

1

(
a−1
k dH (xi, Xk)

)
L2

2

(
b−1
k ∥yj − Yk∥Rp

)]

≤ C
1

G (aF )ψ2
n (x, an)E

[
L2

1

(
a−1
k dH (xi, Xk)

)
E
(
L2

2

(
b−1
k ∥yj − Yk∥Rp

)
| X

)]
≤ l∞(x) C

G (aF )
1

ϕ (x, ak)
≤ O

(
1

ϕ (x, ak)

)
. (3.10)
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furthermore,

|E [Zk,n (xi, yj) · Zl,n (xi, yj)]|

=
∣∣∣∣∣E
[

τ

G (Yk)G (Yl)ψ2
n (x, an)L1

(
a−1
k dH (xi, Xk)

)
L2
(
b−1
k ∥yj − Yk∥Rp

)
×L1

(
a−1
l dH (xi, Xl)

)
L2
(
b−1
l ∥yj − Yl∥Rp

)]
|

≤ C
τ

G2 (aF )ψ2
n (x, an)E

[(
L1
(
a−1
k dH (xi, Xk)

)
L1
(
a−1
l dH (xi, Xl)

))

×
∣∣∣E [L2

(
b−1
k ∥yj − Yk∥Rp

)
L2
(
b−1
l ∥yj − Yl∥Rp

)
| Xk, Xl

]∣∣∣]
≤ C

τ

G2 (aF )ψ2
n (x, an) l∞(x)E

[
L1
(
a−1
k dH (xi, Xk)

)
L1
(
a−1
l dH (xi, Xl)

)]
then, by assumptions (H.1)(ii), (H.4) and condition (3.3), one get :

|E [Zk,n (xi, yj) · Zl,n (xi, yj)]| ≤ C
τ

G2 (aF )ψ2
n (x, an) l∞(x)

(ϕ (x, ak))1+1/a

n1/a


≤ C

τ

G2 (aF ) l∞(x)
[
ϕ (x, ak)

n

]1/a

· 1
ϕ (x, ak)

(3.11)

in which we deduce on the one hand from (3.9) and (3.11)

|Cov (Zk,n (xi, yj) , Zl,n (xi, yj))|

≤ |E [Zk,n (xi, yj) · Zl,n (xi, yj)]| + (E (Zk,n (xi, yj)))2

= C


(
ϕ (x, ak)

n

)1/a

· 1
ϕ (x, ak)

+ 1. (3.12)

In the other hand, applying Lemma 1.3.2 the usual modified Davydov-Rio’s covari-

ance inequality for the mixing processes. ∀k ̸= l, we have :

|Cov (Zk,n (xi, yj) , Zl,n (xi, yj))| ≤ 4 ∥Zk,n (xi, yj)∥ ∥Zl,n (xi, yj)∥

≤ C|k − l|−a (3.13)
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It is therefore useful to set from now on the two subsets :

J1 = {(k, l); 0 < |k − l| ≤ µn} and J2 = {(k, l);µn < |k − l| ≤ n− 1}

A simply combination between (3.12) and (3.13) allows us to have the following :

SCovn =
∑∑

J1

|Cov (Zk,n (xi, yj) , Zl,n (xi, yj))| +
∑∑

J2

|Cov (Zk,n (xi, yj) , Zl,n (xi, yj))|

≤ Cnµn


(
ϕ (x, ak)

n

)1/a

· 1
ϕ (x, ak)

+ 1

+ Cn2µ−a
n (3.14)

For the variance term, we apply the general definition and we get :

|Var [Zk,n (xi, yj)]| ≤ E
[
Z2
k,n (xi, yj)

]
+ E [Zk,n (xi, yj)]2

= O

{
1

ϕ (x, ak)

}

thus :

SV arn = O

{
n

ϕ (x, ak)

}
(3.15)

It follows from (3.14) and (3.15) that :

S2
n = O

nµn
(ϕ (x, ak)

n

)1/a

· 1
ϕ (x, ak)

+ 1
+ n2µ−a

n

+O

{
n

ϕ (x, ak)

}
(3.16)

The complementarity of this proof depends primarily on the choice of the sequence

µn. We put µn =
(
ϕ(x,ak)

n

)−1/a
, thus, we will have S2

n = O
{

n
ϕ(x,ak)

}
.

At this stage of the proof, we use the Fuk-Nagaev inequality adapted to the α− mixing
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context for θ = θ0
(

logn
nψn(x,an)

)1/2
yields :

P
{∣∣∣∣∣

n∑
k=1

Zk,n (xi, yj)
∣∣∣∣∣ > 4

(
nθ

4

)}

≤ 4
(

1 + θ2

qS2
n

)−q/2

+ 2nc
q

(2q
θ

)a+1

≤ 4

1 +
n2θ2

0 logn
16nϕ(x,ak)

q n
ϕ(x,ak)


−q/2

+ 2nc
q


8q
(

logn
nϕ(x,ak)

)−1/2
)a+1

nθ0


−q/2

≤ 4
(

1 + θ2
0 log n
16q

)−q
+ 2nc

q

8q (ϕ (x, ak))1/2

θ0
√
n log n

a+1

= Q4 +Q5

We see here that the preferred choice of q is log2 n, such that the first term in the right

hand side is thus increased by :

Q4 ≤ cn−
θ2

0
32 −→ 0

moreover, for the second term and by the same choice of q we also find as n → ∞ the

following :

Q5 ≤ cn
−1

2(1−a)(−4a2+a+1) −→ 0

Hence, both (Q4) and (Q5) fall on the following result :

P
[
A3 > 4

(
nθ

4

)]
≤ rnhn max

i∈{1,...,hn}
max

j∈{1,...,rn}
P
[∣∣∣∣∣

n∑
k=1

Zk,n (xi, yj)
∣∣∣∣∣ > 4

(
nθ

4

)]

which give us for an appropriate choice of θ0 :

∑
n≥1

P
{

max
i∈{1,...,hn}

max
j∈{1,...,rn}

∣∣∣∣∣
n∑
k=1

Zk,n (xi, yj)
∣∣∣∣∣ > nθ

}
< ∞ (3.17)
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Proof of Lemma 3.2.2 We have form the definition of the estimators Ψ̂ and Ψ̃ :

Ψ̂n(x, y) − Ψ̃n(x, y)

= τ̂n
nψn (x, an)

n∑
k=1

1
Gn (Yk)

L1
(
a−1
k dH (x,Xk)

)
L2
(
b−1
k ∥y − Yk∥Rp

)
− τ

nψn (x, an)

n∑
k=1

1
G (Yk)

L1
(
a−1
k dH (x,Xk)

)
L2
(
b−1
k ∥y − Yk∥Rp

)
.

such that :

∣∣∣Ψ̂n(x, y) − Ψ̃n(x, y)
∣∣∣

≤ 1
nψn (x, an)

{
|τ̂n − τ |

n∑
k=1

1
Gn (Yk)

L1
(
a−1
k dH (x,Xk)

)
L2
(
b−1
k ∥y − Yk∥Rp

)

+τ
n∑
k=1

∣∣∣∣∣Gn (Yk) −G (Yk)
G (Yk)Gn (Yk)

∣∣∣∣∣L1
(
a−1
k dH (x,Xk)

)
L2
(
b−1
k ∥y − Yk∥Rp

)}

≤ 1
nψn (x, an)

{
|τ̂n − τ |
Gn (aF )

n∑
k=1

L1
(
a−1
k dH (x,Xk)

)
L2
(
b−1
k ∥y − Yk∥Rp

)

+ τ

Gn (aF )

∣∣∣∣∣Gn(y) −G(y)
G (aF )

∣∣∣∣∣
n∑
k=1

L1
(
a−1
k dH (x,Xk)

)
L2
(
b−1
k ∥y − Yk∥Rp

)}

Thus :

sup
x∈S

sup
y∈I

∣∣∣Ψ̂n(x, y) − Ψ̃n(x, y)
∣∣∣ ≤ 1

Gn (aF )

{
|τ̂n − τ | + τ

supy≥aF
|Gn(y) −G(y)|
G (aF )

}

sup
x∈S

sup
y∈I

|Ψ∗
n(x, y)|

with :

Ψ∗
n(x, y) = 1

nψn (x, an)

n∑
k=1

L1
(
a−1
k dH (x,Xk)

)
L2
(
b−1
k ∥y − Yk∥Rp

)
Recall the Lemma 3.4.1, when the process (Xk, Yk) has a decreasing mixing coefficients

α(n), such that :

|τ̂n − τ | = Oa.s.
{
n−1/2 (log2 n)1/2

}
and the direct application of Remark 6 in Woodroofe (1985)[35] which gives :

|Gn (aF ) −G (aF )| = O
{
n−1/2

}
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Thus, the result is an immediate consequence of what has already been mentioned.

Proof of Lemma 3.2.3 Keeping the same conditions concerning the compactness of S,

almost certainly identical as in Lemma 3.2.1 and we decompose the studied quantity as

follows :

P
{

sup
x∈S

∣∣∣Υ̃n(x) − E
[
Υ̃n(x)

]∣∣∣ > 3η
}

≤ P
{

sup
x∈S

∣∣∣Υ̃n(x) − Υ̃n (xi)
∣∣∣ > η

}
︸ ︷︷ ︸

I1

+P
{

sup
x∈S

∣∣∣Υ̃n (xi) − E
[
Υ̃n (xi)

]∣∣∣ > η

}
︸ ︷︷ ︸

I2

+ P
{

sup
x∈S

∣∣∣E [Υ̃n(x)
]

− E
[
Υ̃n (xi)

]∣∣∣ > η

}
︸ ︷︷ ︸

I3

(3.18)

For the first term of the decomposition (3.18), L1 being a Lipschitzian kernel. In addition,

sn = O
{
n−β

}
; implies that :

sup
x∈S

∣∣∣Υ̃n(x) − Υ̃n (xi)
∣∣∣

≤ sup
x∈S

n∑
k=1

τ

ψn (x, an)
1

G (Yk)
∣∣∣L1

(
a−1
k dH (x,Xk)

)
− L1

(
a−1
k dH (xi, Xk)

)∣∣∣
≤ τ

G (aF )ψn (x, an)

n∑
k=1

dH (x, xi)
ak

≤ M
sn

ψn (x, an)

n∑
k=1

1
ak

−→ 0 as n −→ ∞

and the same for I3 : I3 → 0 as n → ∞ and therefore we deal with :

I1
a.s= O


(

log n
nψn (x, an)

)1/2
 and I3

a.s= O


(

log n
nψn (x, an)

)1/2


We now move on to the second term I2, we appeal again to the Bernstein’s type inequality

adapted to this context of dependence by taking η = η0
(

logn
nψn(x,an)

)1/2
> 0
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I2 = P
{

sup
x∈S

∣∣∣Υ̃n (xi) − E
[
Υ̃n (xi)

]∣∣∣ > η

}

≤
hn∑
i=1

P
{∣∣∣Υ̃n (xi) − E

[
Υ̃n (xi)

]∣∣∣ > η
}

≤ hn max
1≤i≤hn

P
{∣∣∣Υ̃n (xi) − E

[
Υ̃n (xi)

]∣∣∣ > η
}

where, we have for all k ∈ N :

Υ̃n (xi) − E
[
Υ̃n (xi)

]
= 1
n

n∑
k=1

τ

ψn (x, an)

{
1

G (Yk)
L1
(
a−1
k dH (xi, Xk)

)

−E
[

1
G (Yk)

L1
(
a−1
k dH (xi, Xk)

)]}

= 1
n

n∑
k=1

Λk,n (xi)

with :
Λk,n (xi) = τ

ψn (x, an)

{
1

G (Yk)
L1
(
a−1
k dH (xi, Xk)

)
−E

[
1

G (Yk)
L1
(
a−1
k dH (xi, Xk)

)]}
.

For the reminder of this proof, the same steps as term (Q3) in the proof of Lemma 3.2.1 are

followed, in which under assumption (H.4), one can check that Λk,n satisfies the condition

of Lemma 1.3.1, such that

|Λk,n (xi)| ≤ M
τ

G (aF )ϕ (x, ak)
= O

{
1

ϕ (x, ak)

}

Furthermore, we deduce that :

|Cov (Λk,n (xi) ,Λl,n (xi))| ≤ |E [Λk,n (xi) Λl,n (xi)]| = O

(ϕ (x, ak))−1+1/a

n1/a

 (3.19)

and that :

|Var [Λk,n (xi)]| ≤
∣∣∣E [Λ2

k,n (xi)
]∣∣∣ = O

{
1

ϕ (x, ak)

}
(3.20)

Finally, combining (3.19) with (3.20) and following some additional classical calculations,

we get S2
n = O

{
n

ϕ(x,ak)

}
. Therefore, a direct application of Fuk-Nagaev exponential in-
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equality makes it possible to deduce the proof.

Proof of Lemma 3.2.4 Similarly to the proof of Lemma 3.2.2, one may follows the same

lines and arguments, such that :

sup
x∈S

∣∣∣Υ̂n(x) − Υ̃n(x)
∣∣∣ ≤ 1

nψn (x, an) sup
x∈S

{
τ̂n

n∑
k=1

1
Gn (Yk)

L1
(
a−1
k dH (x,Xk)

)

−τ
n∑
k=1

1
G (Yk)

L1
(
a−1
k dH (x,Xk)

)}

≤ 1
Gn (aF )

{
|τ̂n − τ | + τ

supy≥aF
|Gn(y) −G(y)|
G (aF )

}
sup
x∈S

|Υ∗
n(x)|

with,

Υ∗
n(x) = 1

nψn (x, an)

n∑
k=1

L1
(
a−1
k dH (x,Xk)

)
.

Again, a direct application of Lemma 3.4.1 with Remark 6 in Woodroofe (1985)[35]

complete the proof.

Proof of Lemma 3.2.5 According to the definition of the bias term B̂n(x, y) above,

which is not affected by the dependence condition. We use the fact that E
[
Υ̃n(x)

]
is

bounded. Then, we can rewrite it in the following form :

B̂n(x, y) =
E
[
E
(
Ψ̃n(x, y) − F x(y) | X

)
Υ̃n(x)

]
E
[
Υ̃n(x)

]
As we have already proved in previous steps the fact that this writing is satisfied by

definition of the probability of trancature :

E
[
Ψ̃n(x, y)

]
= τ

nψn (x, an)

n∑
k=1

E
[

1
G (Yk)

L1
(
a−1
k dH (x,Xk)

)
L2
(
b−1
k ∥y − Yk∥Rp

)]

= τ

nψn (x, an)

n∑
k=1

E
[
L1
(
a−1
k dH (x,Xk)

)
L2
(
b−1
k ∥y − Yk∥Rp

)]
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Therefore, by a conditioning to Xk we have :

∣∣∣E (Ψ̃n(x, y) − F x(y) | X = u
)∣∣∣ ≤ τ

nψn (x, an)

n∑
k=1

E
[
L1
(
a−1
k dH (x,Xk)

)
×
∣∣∣E [L2

(
b−1
k ∥y − Yk∥Rp

)
− F x(y) | X = u

]∣∣∣] .
Next, an integration by parts, a change of variable and because of condition (H.3), for

any u ∈ B (x, ak), we get :

| E
[
L2
(
b−1
k ∥y − Yk∥Rp

)
− F x(y) | X = u

]
|

≤
∫
Rp
L

(1)
2 (∥t∥Rp)

∣∣∣F (u) (y − bkt) − F (x)(y)
∣∣∣ dt

≤
∫
Rp
L

(1)
2 (∥t∥Rp)

∣∣∣F (u) (y − bkt) − F (u)(y)
∣∣∣ dt+

∣∣∣F (u)(y) − F (x)(y)
∣∣∣

≤ C1

∫
Rp
L

(1)
2 (∥t∥Rp) (aν1

k + |bk|ν2 ∥t∥ν2
Rp) dt

which completes the proof of this Lemma.



Chapter 4

Computational Study and

Conclusion

4.1 Computational study

This section presents a brief numerical study assessing the performance of the pro-

posed estimator. Firstly, we deal with simulated data to show how recursive estimator of

the conditional quantile function behaves in functional and dependent contexts, compar-

ing to the classical one. Secondly, we discuss about the sensitivity of a kernel estimator to

the presence of incomplete data especially when dealing with the truncated and censored

data.
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4.1.1 Simulated data

We point out that the primary goal is to compare the efficiency of the double-kernel

recursive method (RDKM) with the double-kernel approach (DKM) 3, based on the work

of Bouazza (2021) [8], we first introduce the following nonparametric model for all k =

1, . . . , n when n = 100 and 500.

Yk = R (Xk) + ϵk (4.1)

Where ϵk are r.v. independent of X and follow a normal mixture distribution, with λ

takes 0.1, 0.5 and 0.9 :

ϵk ∼ (1 − λ) ∗ N (0, 1) + λ ∗ N (4, 5) (4.2)

(Xk)k=1,...,n are the functional data which are considered as a sinusoidal basis with five

functional axes of the continuous functions from the interval [0, 1] to R, generated by

simul.far on R. Also, we fix the diagonal matrix (0.45, 0.9, 0.34, 0.45) to define the linear

operator with a perturbation coefficient equal to 0.05. The Xk’s curves are discretized in

the same grid which is composed of 100 points and are plotted in Figure 4.1

3Recall that the double kernel estimator F̂ x
n (.) of F x(.) is defined as follows [18]:

F̂ x
n (y) =

n∑
k=1

L1
(
a−1

n dH (x, Xk)
)

L2
(
b−1

n (y − Yk)
)

n∑
k=1

L1
(
a−1

n dH (x, Xk)
)

where L1 is a kernel function, L2 is a cumulative distribution function, and an (resp. bn) a sequence of
positive real numbers.
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Figure 4.1: A sample of 100 curves

Furthermore, the response variables Yk are obtained through the following operator:

R(x) = 5
∫ 1

0
exp(x(t))dt (4.3)

This model enables to have the determination of the theoretical quantile qα(x) such as

the conditional distribution of Y given X = x is explicitly given by the distribution of ϵk
shifted by R(x).

Besides, to a reasonable extent and compare the two methods, each is evaluated under

optimal conditions with specified parameters. As no automatic, data-driven bandwidth

selection method exists for estimating conditional quantiles with functional regressors,

we adopt a bandwidth selector similar to that used by Ferraty and Vieu (2006) [15].

Specifically, the bandwidths (ak, bk) in the recursive method are selected by the following

leave-out-one-curve cross-validation procedure on the k-nearest neighbors :

arg min
(ak,bk)∈An×Bn

n∑
j=1

(
Yj − q

[−j]
0.5 (Xj, ak, bk)

)2

where q
[−j]
0.5 (Xj, ak, bk) denotes the double-kernel recursive estimator of the conditional

median in the curve Xj.

As an aside, for the kernel method we adapt the R-routine named funopare.quantile.lcv.
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So the quadratic kernel chosen on [0, 1], is given by :

L1(u) = 3
2
(
1 − u2

)
I[0,1]

and the distribution function L2(.) is defined by

L2(u) =
∫ u

−∞

3
4
(
1 − t2

)
I[−1,1](t)dt

Then, we compute the errors to evaluate the performance of these estimators as follows:

✓ The case of classical double-kernel method, the mean squared error (MSE) is

MSE(DKM) = 1
n

n∑
k=1

(q̃αKM (Xk) − qα (Xk))2 .

✓ The case of recursive double-kernel method, the mean squared error (MSE) is

MSE(RDKM) = 1
n

n∑
k=1

(q̃α (Xk) − qα (Xk))2 .

Therefore, the obtained results of mean squared error are summarized in Table 4.1 and

Table 4.2 for the two sample sizes n = (100, 500), while, Figure 4.2 simultaneously plots

side by side, the estimated conditional quantiles by the RDKM and the ones estimated

by the DKM.

λ = 0.1 λ = 0.5 λ = 0.9
Q1 4.9110 6.9100 8.9010

MSE(DKM) Q2 2.4420 4.4401 6.4321
Q3 4.2511 6.2501 2.2002
Q1 2.1302 3.1340 4.1328

MSE(RDKM) Q2 1.6920 2.6955 3.6921
Q3 2.2924 3.2945 4.3421

Table 4.1: Mean Squared Error Results for n = 100
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λ = 0.1 λ = 0.5 λ = 0.9
Q1 4.3900 5.7991 8.3864

MSE(DKM) Q2 1.9210 3.9267 5.9101
Q3 3.7373 3.7333 1.6823
Q1 1.6101 2.6113 3.6753

MSE(RDKM) Q2 1.1702 2.1787 3.1702
Q3 1.7777 2.7768 3.8294

Table 4.2: Mean Squared Error Results for n = 500

Figure 4.2: Conditional quantiles (Q1, Q2 and Q3) estimation by RDKM (on
the left) versus DKM (on the right)

Results: Tables 4.1 and 4.2 present the Mean Squared Error (MSE) values for the

estimated quartiles Q1(α = 0.25), Q2(α = 0.5) and Q3(α = 0.75). The simulation results

support two key interpretations. First, both tables clearly demonstrate that the proposed

recursive double kernel method outperforms the classical one in most of the examined

scenarios, as also illustrated by Figure 4.2. Second, the MSE values tend to increase more

noticeably (with respect to the parameter λ), in the classical kernel method compared to

the recursive method. Additionally, the MSE decreases as the sample size n increases,

further favoring the recursive approach.
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4.1.2 Literature studies

Recognizing the prevalence of incomplete data and the need for reliable inference, a

significant research explores adaptive statistical techniques. To contribute to this under-

standing, we present several studies that compare the performance of both classical and

recursive double kernel estimators when faced with incomplete data, such as :

✓ Helal and Ould Said (2016)[21] provided significant simulation evidence for their

kernel conditional quantile estimator in functional spaces with varying truncation

levels. Their results clearly demonstrated that the mean squared error (MSE) de-

creased progressively with increasing sample size (n = 100, 300, 500), while the

accuracy of the estimate worsened as the truncation percentage (TR) increased

(0%, 12%, 32%, 66%).

✓ Bouazza et al (2021)[7] investigated the recursive estimator’s effectiveness with

incomplete (censored) dependent data in a semi-metric space for conditional mode

estimation. Their simulations showed that the MSE decreased with larger sam-

ple sizes (n = 200, 400, 600), indicating improved estimator quality. Furthermore,

they observed a slight decline in performance when censoring rates (CR) increased

(20%, 40%, 60%) compared to the complete data scenario.

4.2 Conclusion

In conducting this work, we acknowledge that the asymptotic properties of non-

parametric conditional models associated with the recursive kernel approach have con-

sistently been a focus of researchers; consequently, they occasionally presume that the

sample under investigation comprises functional α mixing observations.

In order to achieve this work, we started with Chapter 1 to review the key principles

and concepts related to statistics such as recursive method, dependent and incomplete

data, as well as other features required for the research, namely truncated data.
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The focus of Chapter 2 and 3 was then mostly on highlighting the challenges that

arise when we attempt to deal with issues in particular truncated and dependent data,

employing an estimator of the conditional distribution function and a quantile that is

based on the recursive technique. Firstly, we use the recursive double-kernel approach to

estimate the conditional distribution function for complete sample of random variables

when the variable of interest is real. Secondly, by using the same approach we tried to

estimate the conditional distribution function for an incomplete sample (truncated data)

of variables when the variable of interest is a vector. In the meantime of the both cases,

we performed the almost sure convergence with the estimators’ rates.

Finally, Chapter 4 came to verify the theoretical findings for an infinite sample size

and various truncation rates, we attempted to simulate at the end of this study in the

purpose to examining the numerical behavior of the estimators.
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