
 الـجـــــــــمــــهـــــوريــــــــــــة الـجـــزائـــريـــــة الديـمــــــقـــراطــيـــــة الـــشــــــعـــبـــيـــــة
REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

العــــــــــــــــــــــالي والبــــــــــــــــحث العــــــــــــــــــــلــــــمــــــــــــي وزارة التــــــــــعــــــليـــــــــم
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

–د. الطاهر مولاي –جـــامعة سعيدة
Université Saïda – Dr. Tahar Moulay –

Faculté des Mathématiques, Informatique et Télécommunications

MEMOIRE

Présenté pour l’obtention du Diplôme de MASTER en Télécommunications

Spécialité : Réseaux et Télécommunications

Par : M. SEHMI Abdelhak et M. YAGOUBI Oussama

A Bio-Inspired Feature Selection Method for Optimized

Intrusion Detection in Smart Home IoT Networks

Soutenu, le 17 /06/ 2025, devant le jury composé de :

M. BOUYEDDOU Benamar M.C.A Président

M. GUENDOUZ Mohamed M.C.A Rapporteur

M. MOKADEM Djelloul M.C.B Examinateur

2024 / 2025

Acknowledgement

Praise be to Allah, by whose grace good deeds we are

completed, and by whose guidance this work has been

accomplished.

We would like to express our sincere gratitude to our

supervisor, Dr. GUENDOUZ Mohamed, for his

valuable guidance, support and encouragement

throughout the preparation of this thesis.

We would also like to thank our colleagues and friends

who have been a source of support and motivation.

Finally, my deepest gratitude goes to my dear family for

their constant love, prayers, and encouragement. After

Allah, they are the reason behind every achievement in

my life.(YAGOUBI)

Abdelhak SEHMI & Oussama YAGOUBI

 مرت وكأنها بدات بالامس

الدراسيه نا اكتملت مسيرت

" جديداللهم اجعلها نهاية خير لبدايه طريق "

الحمد لله الذي هيأ البدايه ويسر الطريق وطيب

 المنتهي

الحمد لله علي لذه الوصول الحمد لله الذي ماتم جهد

 ولا ختم سعي الا بفضله

 ﷽

 ال ت ي أ ن ع م ت ع ل ي رب أوزعني أن أشكر نعمتك }

 و ع ل ى و ال د ي و أ ن أ ع م ل ص ال ح ا ت ر ض اه و أ ص ل ح ل ي ف ي

 { ذ ر ي ت ي إ ن ي ت ب ت إ ل ي ك و إ ن ي م ن ال م س ل م ين

 صدق الله العظيم

 الحمد لله حمدا كثيرا طيبا مباركا

Dedication

To myself

To my mom and dad so much more

My brothers and sisters

My friends

Everyone who helped me in any way

I express my gratitude…

Abdelhak Sehmi

Dedication

To those who were the light that guided my path, and

whose prayers accompanied me every step of the way, I

dedicate this work:

• To my beloved mother, the source of comfort,

prayers, and unwavering support.

• To my dear father, who taught me patience and

responsibility, and supported me with love.

• To my brothers and my sister, who shared this

journey with their love, encouragement, and

prayers.

• To everyone who put a smile on my face

throughout my university years.

• To my dear friends, who were always there with

support and companionship.

To all of you, I dedicate this humble effort with love,

appreciation, and gratitude.

YAGOUBI Oussama

Abbreviations List

Abbreviations List

IoT Internet of Things

RFID Radio Frequency Identification

AI Artificial Intelligence

ML Machine Learning

MQTT Message Queueing Telemetry Transport

M2M Machine To Machine

HTTP Hypertext Transfer Protocol

CoAP Constrained Application Protocol

UDP User Datagram Protocol

TCP Transmission Control Protocol

IP Internet Protocol

6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks

WSN Wireless Sensors Network

GUI Graphical User Interface

HDMI High Definition Multimedia Interface

SSH Secure Shell

FTP File Transfer Protocol

IDS Intrusion Detection Systems

PCI-DSS Payment Card Industry Data Security Standard

IPS Intrusion Prevention Systems

HIDS Host-based Intrusion Detection System

NIDS Network-based Intrusion Detection System

SPAN Switch Spanning Port

VLAN Virtual Local Area Networks

RSPAN Remote SPAN

DoS Denial-of-Service

SYN Synchronize

ICMP Internet Control Message Protocol

SIEM Security Information and Event Management

SVM Support Vector Machines

SVR Support Vector Regression

PCA Principal Component Analysis

Abbreviations List

GAN Generative Adversarial Network

ANN Artificial Neural Network

GA Genetic Algorithm

PSO Particle Swarm Optimization

Pbest Personal Best

Gbest Global Best

ACO Ant Colony Optimization

FA Firefly Algorithm

BFO Bacterial Foraging Optimization

BA Bat Algorithm

CNN Convolutional Neural Network

SI Swarm Intelligence

NSL National Science Lab

KDD Knowledge Discovery in Databases

MQTT Message Queuing Telemetry Transport

CO-Gas carbon monoxide gas

BPSO Binary Particle Swarm Optimization

SHA-256 Secure Hash Algorithm 256-bit

VS Code Visual Studio Code

I/O Input/Output

KNN K-Nearest Neighbor

LR Linear Regression

SVM Support Vector Machine

NB Naive Bayes

MLP Multi Layer Perceptron

DT Decision Tree

RF Random Forest

List of figures

List of figures

Figure Title Page

I.1 Different types of IoT technologies 5

I.2 IoT Architecture 6

I.3 IoT Communication Protocols 9

I.4 A day in the life of a typical European citizen of a smart city 10

I.5 Smart grid representation 10

I.6 Smart home platform 11

II.1 Network-based IDS vs Host-based IDS 15

II.2 Anomaly-Based IDS 16

II.3 Signature-Based IDS 17

II.4 Switch Spanning Port (SPAN) 19

II.5 Network TAPs 20

II.6 Intrusion attacks 22

III.1 Supervised and unsupervised learning 24

III.2 Linear Regression in machine learning (ML) 25

III.3 Logistic Regression in machine learning (ML) 25

III.4 Decision Tree Classification Algorithm 26

III.5 Support Vector Machine Algorithm 26

III.6 Unsupervised Learning 27

III.7 Self-Supervised Learning 28

III.8 Random Forest 29

List of figures

III.9 Support Vector Machines (SVM) 30

III.10 Gradient Boosting 31

III.11 K-Means Clustering 32

III.12 Genetic Algorithms (GAs) 33

III.13 Particle Swarm Optimization (PSO) 34

III.14 Ant Colony Optimization (ACO) 35

III.15 Life cycle of Firefly Algorithm 36

III.16 Fundamental Structure of the BFO Algorithm 37

IV.1 New Dataset for Machine Learning Techniques on MQTT 44

IV.2 The basic flow of the PSO approach 48

IV.3 KNN Algorithm 50 iteration in 50 Particles 56

IV.4 LR Algorithm 50 iteration in 50 Particles 57

IV.5 NB Algorithm 50 iteration in 50 Particles 58

IV.6 SVM Algorithm 50 iteration in 50 Particles 59

IV.7 MLP Algorithm 50 iteration in 50 Particles 60

IV.8 RF Algorithm 50 iteration in 50 Particles 61

IV.9 DT Algorithm 50 iteration in 50 Particles 62

List of Tables

List of Tables

Table Title Page

IV.1 The 41 features of the NSL-KDD dataset 43

IV.2 Comparison Between NSL-KDD and MQTTset 45

IV.3
Comparison of Classification Algorithms Using All Features VS PSO

Selected Features in Terms of Accuracy and Training Efficiency
55

Table of Content

CHAPTER I: INTERNET OF THINGS (IoT)

I.1 Introduction . 3

I.2 Definition of IoT . 3

I.3 IoT network characteristics . 3

I.3.1 Interconnectivity . 3

I.3.2 Heterogeneity . 4

I.3.3 Dynamic Changes . 4

I.3.4 Thing-related Services . 4

I.4 Types of IoT Technologies . 4

I.5 IoT Architecture . 5

I.5.1 Common Layers of IoT Architecture . 5

I.5.1.1 Perception/Sensor Layer (Device Layer) . 5

I.5.1.2 Network Layer (Communications Layer) . 5

I.5.1.3 Middleware/Processing Layer . 5

I.5.1.4 Application Layer . 6

I.5.1.5 Business Layer . 6

I.5.2 Simplified Three-Tier Architecture . 6

I.5.2.1 Devices (Sensors and Actuators) . 6

I.5.2.2 Edge Gateway . 6

I.5.2.3 Cloud . 6

I.6 IoT protocols . 7

I.6.1 Application Layer Protocols . 7

I.6.1.1 MQTT (Message Queueing Telemetry Transport) . 7

I.6.1.2 HTTP (Hypertext Transfer Protocol) . 7

I.6.1.3 CoAP (Constrained Application Protocol) . 7

I.6.2 Transport Layer Protocols . 7

I.6.2.1 TCP (Transmission Control Protocol) . 7

I.6.2.2 UDP (User Datagram Protocol) . 7

General Introduction . 1

Table of Content

I.6.3 Network Layer Protocols . 8

I.6.3.1 IP (Internet Protocol) . 8

I.6.3.2 6LoWPAN (IPv6 over Low-Power Wireless Personal Area Networks) 8

I.6.4 Wireless Communication Protocols . 8

I.6.4.1 Bluetooth . 8

I.6.4.2 Zigbee . 8

I.6.4.3 Wi-Fi . 8

I.7 IoT applications . 9

I.7.1 Smart Cities . 9

I.7.2 Smart Energy and the Smart Grid . 10

I.7.3 Smart Home . 11

I.8 Networks and Communication . 11

I.8.1 Wireless Networks . 11

I.8.2 Wireless Sensors Networks (WSN) . 11

I.9 Advantages of IoT . 12

I.10 Disadvantages of IoT . 12

I.11 Conclusion . 13

CHAPTER II: Intrusion detection systems (IDSs)

II.1 Introduction . 14

II.2 Definition of Intrusion Detection Systems (IDS) . 14

II.3 Types of Intrusion Detection Systems . 14

II.3.1 Types of IDS by Deployment . 14

II.3.1.1 Host-based IDS (HIDS) . 15

II.3.1.2 Network-based IDS (NIDS) . 15

II.3.1.3 Hybrid IDS . 16

II.3.2 Types of IDS by Detection Method . 16

II.3.2.1 Anomaly-Based IDS . 16

II.3.2.2 Signature-Based IDS . 16

II.4 Characteristics of an intrusion detection system . 17

II.5 IDS Architectures . 18

Table of Content

II.5.1 Switch Spanning Port (SPAN) . 18

II.5.2 Network Tap . 19

II.5.3 Inline Architecture . 20

II.6 Intrusion attacks . 20

II.6.1 Scanning Attacks . 21

II.6.2 Denial-of-Service (DoS) Attacks . 21

II.6.3 Social Engineering Attacks . 21

II.6.4 Malware Attacks . 21

II.6.5 Exploit Attacks . 21

II.6.6 Privilege Escalation . 22

II.6.7 Insider Threats . 22

II.7 Conclusion . 23

CHAPTER III: Machine Learning (ML)

III.1 Introduction . 24

III.2 Definition and Importance of Machine Learning . 24

III.3 Types of Machine Learning . 24

III.3.1 Supervised Learning . 24

III.3.1.1 Linear Regression . 25

III.3.1.2 Logistic Regression . 25

III.3.1.3 Decision Trees . 26

III.3.1.4 Support Vector Machines (SVM) . 26

III.3.2 Unsupervised Learning . 27

III.3.3 Self-Supervised Learning . 27

III.4 Machine Learning Algorithms . 28

III.4.1 Linear Regression . 28

III.4.2 Decision Trees . 28

III.4.3 Random Forest . 29

III.4.4 Support Vector Machines (SVM) . 30

III.4.5 Gradient Boosting . 30

III.4.6 K-Means Clustering . 31

Table of Content

III.5 Fundamentals of Bio-Inspired Algorithms . 32

III.6 Machine Learning Techniques Inspired by Nature . 32

III.6.1 Artificial Neural Networks (ANNs) . 32

III.6.2 Genetic Algorithms (GAs) . 33

III.6.2.1 Population . 33

III.6.2.2 Fitness Function . 33

III.6.2.3 Selection . 33

III.6.2.4 Crossover (Recombination) . 34

III.6.2.5 Mutation . 34

III.6.2.6 Generation Cycle . 34

III.6.3 Particle Swarm Optimization (PSO) . 34

III.6.3.1 Particles and Positions . 34

III.6.3.2 Velocity . 34

III.6.3.3 Personal Best (pbest) . 35

III.6.3.4 Global Best (gbest) or Neighborhood Best . 35

III.6.3.5 Update Rules . 35

III.6.4 Ant Colony Optimization (ACO) . 35

III.6.4.1 Artificial Ants and Construction Graph . 35

III.6.4.2 Pheromone Trails . 36

III.6.4.3 Probabilistic Path Selection . 36

III.6.4.4 Pheromone Evaporation . 36

III.6.4.5 Positive Feedback Loop . 36

III.6.5 Firefly Algorithm (FA) . 36

III.6.5.1 Inspiration . 37

III.6.5.2 Population . 37

III.6.5.3 Brightness (Light Intensity) . 37

III.6.5.4 Attractiveness . 37

III.6.5.5 Movement . 37

III.6.6 Bacterial Foraging Optimization (BFO) . 37

III.6.6.1 Echolocation Metaphor . 38

III.6.6.2 Population-Based Search . 38

Table of Content

III.6.6.3 Frequency Tuning . 38

III.6.6.4 Movement and Updating . 38

III.6.6.5 Local Random Walk . 38

III.6.6.6 Selection . 38

III.7 Applications of Bio-Inspired Machine Learning . 38

III.7.1 Optimization Problems . 38

III.7.2 Pattern Recognition . 39

III.7.3 Robotics and Autonomous Systems . 39

III.7.4 Healthcare and Biotechnology . 39

III.7.5 Telecommunications and Network Design . 39

III.7.6 Big Data and Cloud Computing . 40

III.7.7 Cybersecurity and Anomaly Detection . 40

III.8 Conclusion . 40

CHAPTER IV: Particle Swarm Optimization (PSO)

IV.1 Introduction . 42

IV.2 Particle Swarm Optimization (PSO) Algorithm . 42

IV.3 Dataset . 42

IV.3.1 NSL-KDD Dataset . 43

IV.3.2 MQTTset Dataset . 44

IV.3.3 Comparison Between NSL-KDD and MQTTset . 45

IV.4 PSO Methode Overview . 45

IV.4.1 Binary Particle Representation . 45

IV.4.1.1 Position Encoding . 45

IV.4.1.2 Velocity Interpretation . 46

IV.4.1.3 Velocity Update . 46

IV.4.1.4 Position Update . 46

IV.4.2 Initialization . 46

IV.4.3 Fitness Evaluation . 46

IV.4.4 Update Personal and Global Bests . 47

IV.4.5 Velocity and Position Update . 47

Table of Content

IV.4.6 Boundary Handling . 47

IV.4.7 Iteration and Termination . 47

IV.5 The basic flow of the PSO approach . 48

IV.6 Python Code . 48

IV.6.1 Environment . 48

IV.6.1.1 Anaconda . 48

IV.6.1.2 Visual studio code (VS Code) . 49

IV.6.2 Libraries . 50

IV.6.2.1 NumPy . 50

IV.6.2.2 Pandas . 50

IV.6.2.3 Matplotlib . 51

IV.6.2.4 Scikit-Learn (Sklearn) . 51

IV.6.3 The Code . 52

IV.7 Experiments & Results . 55

IV.7.1 KNN Algorithm . 56

IV.7.2 LR Algorithm . 57

IV.7.3 NB Algorithm . 58

IV.7.4 SVM Algorithm . 59

IV.7.5 MLP Algorithm . 60

IV.7.6 RF Algorithm . 61

IV.7.7 DT Algorithm . 62

IV.8 Discussions of Results . 63

IV.8.1 Model-Wise Analysis . 63

IV.8.2 Overall Insights . 64

IV.9 Conclusion . 65

General Conclusion . 66

References 68

Abstract

General
Introduction

General Introduction

1

General Introduction

The Internet of Things (IoT) has rapidly expanded, connecting a wide range of devices-from

everyday home appliances to complex industrial machinery-through embedded sensors,

software, and network connectivity. This interconnected ecosystem generates massive volumes

of real-time data, enabling enhanced operational efficiency, automation, and data-driven

decision-making across various sectors such as manufacturing, smart cities, and healthcare. For

example, IoT sensors facilitate predictive maintenance by monitoring equipment health and

alerting operators before failures occur, significantly reducing downtime and costs.

However, the vast scale and heterogeneity of IoT devices introduce significant security

challenges. Many devices have limited built-in security, and the sheer volume of data and

network traffic makes manual monitoring infeasible. Intrusion Detection Systems (IDS) are

therefore critical for continuously monitoring IoT networks to identify suspicious or malicious

activities that could threaten system integrity. Traditional IDS approaches often struggle to

handle the dynamic, large-scale, and resource-constrained nature of IoT environments.

Machine Learning (ML) offers a powerful solution by enabling IDS to automatically learn

from vast amounts of IoT-generated data and detect complex attack patterns or anomalies

without relying solely on predefined signatures. ML models can adapt to evolving threats and

improve detection accuracy, making them well-suited for IoT security applications. However,

ML models require careful tuning and optimization to perform effectively in diverse IoT

contexts.

Particle Swarm Optimization (PSO), a nature-inspired algorithm modeled on the social

behavior of bird flocks or fish schools, is frequently used to optimize ML model parameters and

feature selection in IDS frameworks. PSO efficiently explores high-dimensional search spaces to

find optimal or near-optimal configurations, enhancing the accuracy and efficiency of ML-based

intrusion detection in IoT networks.

In summary, the explosive growth of IoT demands advanced security mechanisms. Integrating

IDS with ML techniques, further optimized by algorithms like PSO, creates intelligent, adaptive

defense systems capable of protecting complex IoT ecosystems while harnessing their data for

operational excellence.

General Introduction

2

To provide a clear understanding of the research topic, the thesis is organized into four main

chapters. The first chapter introduces the concept of the Internet of Things (IoT), its architecture,

applications, IoT characteristics, and IoT communication protocols. The second chapter

discusses Intrusion Detection Systems (IDS), focusing on IDS architectures, their characteristics,

and various types of intrusion attacks. The third chapter focuses on the use of Machine Learning

(ML) techniques in the context of IDS, highlighting common algorithms and their effectiveness

in detecting intrusions. Finally, the fourth chapter presents the Particle Swarm Optimization

(PSO) algorithm, explaining its application in feature selection to enhance the performance and

accuracy of ML-based intrusion detection models.

Chapter I
 IoT (Internet of Things)

Chapter I: IoT (Internet of Things)

3

I.1 Introduction

The next wave in the erea of computing will be outside the realm of the traditional desktop. In

the internet of things (IoT) paradigm, many of the objects that surround us will be on the network

in one form or another. Radio Frequency Identification (RFID) and sensor network technologies

will rise to meet this new challenge, in which information and communication systems are

invisibly embedded in the environment around us. This result in the generation of enormous

amounts of data which have to be stored, processed and presented in a seamless, effcient and easily

interpretable form. This model will consist of services that are commodities and delivred in a

manner similar to traditional commodities [1].

I.2 Definition of IoT

The internet of things (IoT) is the inter-networking of physical device, vehicles, buildings, and

other items embedded with electronics, software, sensors, actuators, and network connectivity that

enable these objects to collect and exchange data. The (IoT) allows objects to be sensed or

controlled remotely across existing network infrastructure, creating opportunities for more direct

integration of the physical world into computer-based systems, and resulting in improved

efficiency, accuracy and economic benefit in addition to reduced human intervention [2].

Internet of Things is a concept and a paradigm that considers pervasive presence in the

environment of a variety of things that through wireless and wired connection and unique

addressing schemes are able to interact with each other and cooperate with other things to create

new applications and reach common goals [3].

The goal of the internet of tings is to enable things to be connected every time, everywhere, with

anything and anyone ideally using any path/network and any service.

I.3 IoT network characteristics

A network in the Internet of Things (IoT) has specific characteristics that make it different from

traditional networks. Here’s a detailed breakdown:

I.3.1 Interconnectivity

Interconnectivity is a fundamental characteristic of IoT networks, allowing devices to connect

with each other and the global internet. This connectivity enables devices to share data and

coordinate actions across different locations. For instance, smart home devices can communicate

Chapter I: IoT (Internet of Things)

4

with each other to optimize energy consumption and security. Interconnectivity is facilitated by

various wireless technologies such as Wi-Fi, Bluetooth, and cellular networks [4] [5].

I.3.2 Heterogeneity

IoT networks are heterogeneous, meaning they consist of devices with different hardware and

communication protocols. This diversity includes devices ranging from simple sensors to complex

industrial equipment, each with its own set of capabilities and limitations. Heterogeneity poses

challenges in terms of interoperability but also allows for a wide range of applications across

different industries [4] [5].

I.3.3 Dynamic Changes

IoT devices can change their state dynamically, such as switching between active and sleep

modes to conserve energy. This dynamic behavior is crucial for managing power consumption,

especially in battery-powered devices. Dynamic changes also include adapting to environmental

conditions or responding to commands from central systems [4] [6].

I.3.4 Thing-related Services

Thing-related services are designed to provide functionalities that respect the constraints and

capabilities of physical devices. These services consider factors such as device memory,

processing power, and energy availability. By tailoring services to the specific needs of IoT

devices, they can operate efficiently and effectively within their operational limits [4].

I.4 Types of IoT Technologies

IoT technologies include:

o Sensors and Actuators: Sensors collect data, while actuators perform actions based on that

data [1][4].

o Communication Protocols: Such as Bluetooth, Zigbee, Wi-Fi, and cellular networks [1][3].

o Artificial Intelligence (AI) and Machine Learning (ML): Enhance data analysis and

decision-making [1].

o Edge Computing: Enables local data processing to reduce latency and bandwidth usage [1].

Chapter I: IoT (Internet of Things)

5

Fig I.1: Different types of IoT technologies

I.5 IoT Architecture

IoT architecture is a multi-layered framework that facilitates the interaction between physical

devices and digital systems. It typically includes several layers, each with distinct responsibilities.

Here's an overview of the common layers and some variations:

I.5.1 Common Layers of IoT Architecture

I.5.1.1 Perception/Sensor Layer (Device Layer)

o This layer consists of devices, sensors, and actuators that collect data from the environment

and control physical objects [7][8][9].

o Technologies used include RFID tags, cameras, and various sensors [7].

I.5.1.2 Network Layer (Communications Layer)

o Responsible for transmitting data from devices to the cloud or other parts of the IoT system

[7][8][9].

o Utilizes protocols like Wi-Fi, Bluetooth, Zigbee, and cellular networks [8][10].

I.5.1.3 Middleware/Processing Layer

o Processes and analyzes the collected data, often using cloud computing or big data

processing [9].

o This layer transforms raw data into useful information and manages devices [11].

Chapter I: IoT (Internet of Things)

6

I.5.1.4 Application Layer

o Provides services and applications based on the processed data, such as smart home

automation or industrial monitoring [7] [9] [11].

o Acts as the interface between the IoT system and users [11].

I.5.1.5 Business Layer

o Focuses on managing the IoT system, including business models and user privacy.

I.5.2 Simplified Three-Tier Architecture

I.5.2.1 Devices (Sensors and Actuators)

o Collects data and interacts with the physical environment.

I.5.2.2 Edge Gateway

o Aggregates and preprocesses data before sending it to the cloud.

I.5.2.3 Cloud

o Stores and analyzes data using advanced analytics tools.

Fig I.2: IoT Architecture

Chapter I: IoT (Internet of Things)

7

I.6 IoT protocols

IoT protocols are essential for enabling communication between devices in the Internet of Things

ecosystem. These protocols ensure that data is transmitted efficiently and securely across different

layers of the IoT architecture. Here's a detailed overview of some key IoT protocols:

I.6.1 Application Layer Protocols

I.6.1.1 MQTT (Message Queueing Telemetry Transport)

o Description: MQTT is a lightweight messaging protocol designed for IoT and M2M

applications. It uses a publish-subscribe architecture, making it ideal for remote

environments with limited bandwidth.

o Use Cases: Predictive maintenance, smart home automation.

I.6.1.2 HTTP (Hypertext Transfer Protocol)

o Description: Widely used for web applications, HTTP is also used in IoT for data transfer

via REST APIs. However, it requires more bandwidth and energy compared to MQTT.

o Use Cases: Applications with fewer data and battery constraints.

I.6.1.3 CoAP (Constrained Application Protocol)

o Description: Designed for constrained networks and devices, CoAP is similar to HTTP but

uses UDP for faster communication. It supports RESTful architecture and is suitable for

low-power devices.

o Use Cases: Resource-constrained IoT environments.

I.6.2 Transport Layer Protocols

I.6.2.1 TCP (Transmission Control Protocol)

o Description: Ensures reliable data transfer by reassembling packets and resending lost data.

It prioritizes accuracy over speed.

o Use Cases: Applications requiring guaranteed data delivery.

I.6.2.2 UDP (User Datagram Protocol)

o Description: Prioritizes speed over reliability, making it suitable for real-time applications

like video streaming.

o Use Cases: Time-sensitive applications.

Chapter I: IoT (Internet of Things)

8

I.6.3 Network Layer Protocols

I.6.3.1 IP (Internet Protocol)

o Description: Essential for routing data packets across networks. Both IPv4 and IPv6 are

used in IoT.

o Use Cases: General internet connectivity.

I.6.3.2 6LoWPAN (IPv6 over Low-Power Wireless Personal Area Networks)

o Description: Optimized for low-power devices, enabling IPv6 communication over low-

power networks.

o Use Cases: Low-power IoT devices.

I.6.4 Wireless Communication Protocols

I.6.4.1 Bluetooth

o Description: Suitable for short-range, low-power applications. Often used in personal area

networks.

o Use Cases: Wearables, smart home devices.

I.6.4.2 Zigbee

o Description: Used for low-power, low-data-rate wireless communication. Common in-

home automation.

o Use Cases: Smart lighting, thermostats.

I.6.4.3 Wi-Fi

o Description: Provides high-speed internet connectivity. Widely used in IoT applications

requiring fast data transfer.

o Use Cases: Smart home devices, industrial automation.

Chapter I: IoT (Internet of Things)

9

Fig I.3: IoT Communication Protocols

I.7 IoT applications

The Internet of things applications are addressing the societal needs and the advancements to

enabling technologies such as nanoelectronics and cyber-physical systems continue to be

challenged by a variety of technical.

I.7.1 Smart Cities

By 2020 we will see the development of Mega city corridors and networked integrated and

branded cities. With more than 60 percent of the world population expected to live in urban cities

by 2025. This will lead to the evolution of smart cities with eight smart features, including smart

economy, smart buildings, smart mobility, smart energy, smart information communication and

technology, smart planning and smart citizen. There will be about 40 smart cities globally by 2025.

The role of the smart cities will be crucial for Internet of Things (IoT) deployment, running of

the day-to-day city operations and creation of city development strategies will drive the use of the

(IoT). Therefore, cities and their service represent an almost ideal platform for (IoT) research,

taking into account city requirements and transferring them to solutions enabled by (IoT)

technology.

The figure depicts several commons actions that may take place in the smart day, highlighting

in each occasion which domain applies [3].

Chapter I: IoT (Internet of Things)

10

Fig I.4: A day in the life of a typical European citizen of a smart city

I.7.2 Smart Energy and the Smart Grid

There is increasing public awareness about the changing paradigm of our pol-icy in energy

supply, consumption and infrastructure. For several reasons our future energy supply should no

longer be based on fossil resources.

Fig I.5: Smart grid representation

Chapter I: IoT (Internet of Things)

11

I.7.3 Smart Home

The rise of Wi-Fi is role in home automation has primarily come about due to the networked

nature of deployed electronics where electronic devices (mobile device, AV receivers ...etc).

Fig I.6: Smart home platform

I.8 Networks and Communication

Present communication technologies span the globe in wireless and wired networks and support

global communication by globally-accepted communication standards. The evolution and

pervasiveness of present communication technologies has the potential to grow to unprecedented

levels in the near future by including the world of things into the developing Internet of Things.

I.8.1 Wireless Networks

Wireless networks especially will grow largely by adding vast amounts of small Internet of

Things devices with minimum hardware, software and intelligence, limiting their resilience to any

imperfections in all their functions. Based on the research of the growing network complexity,

caused by the Internet of Things, predictions of traffic and load models will have to guide further

research on unfolding the predicted complexity to real networks, their standards and on-going

implementations. The idea of internet of things (IoT) was developed in parallel to WSNs.

I.8.2 Wireless Sensors Networks (WSN)

A wireless sensor network (WSN) is a network formed by a large number of sensor nodes where

each node is equipped with a sensor to detect physical phenomena such as light, heat, pressure,

etc. WSNs are regarded as a revolutionary information gathering method to build the information

Chapter I: IoT (Internet of Things)

12

and communication system which will greatly improve the reliability and efficiency of

infrastructure systems. Compared with the wired solution, WSNs feature easier deployment and

better flexibility of devices. With the rapid technological development of sensors, WSNs will

become the key technology for IoT. (Book: Internet of things: wireless sensor networks) [4].

I.9 Advantages of IoT

o Execute multiple tasks at a time like a computer.

o Easiest internet connectivity

o Works on GUI (Graphical User Interface) mode because of HDMI port.

o Best suited for server-based applications i.e., can be connected via SSH–Secure Shell-to

access the Rpi command line remotely and file sharing via FTP–File Transfer Protocol.

o More reliable for software applications.

I.10 Disadvantages of IoT

o Security concerns and potential for hacking or data breaches.

o Privacy issues related to the collection and use of personal data.

o Dependence on technology and potential for system failures.

o Limited standardization and interoperability among devices.

o Complexity and increased maintenance requirements.

o High initial investment costs.

o Limited battery life on some devices.

o Concerns about job displacement due to automation.

o Limited regulation and legal framework for IoT, which can lead to confusion and

uncertainty.

Chapter I: IoT (Internet of Things)

13

I.11 Conclusion

The Internet of Things represents a profound technological shift that continues to transform

industries, cities, homes, and daily life. By connecting the physical and digital worlds through

networks of sensors, processors, and interfaces, IoT enables unprecedented levels of automation,

insight, and efficiency.

While the potential benefits are immense ranging from energy conservation and improved urban

living to enhanced industrial productivity and innovative consumer experiences significant

challenges remain. Security vulnerabilities, interoperability obstacles, data management

complexities, and other implementation hurdles must be addressed to realize the full potential of

IoT technologies.

As we look toward the future, the continuing evolution of edge computing, AI integration, and

standardization efforts promises to overcome many of these challenges. With projected market

growth remaining strong through 2032, IoT will likely become increasingly embedded in our

technological infrastructure, economic systems, and daily routines creating a more connected,

efficient, and responsive world in the process.

Chapter II
 Intrusion Detection Systems (IDSs)

Chapter II: Intrusion Detection Systems (IDSs)

14

II.1 Introduction

Intrusion detection systems (IDSs) are software or hardware systems that automate the

process of monitoring the events occurring in a computer system or network, analysing them

for signs of security problems. As network attacks have increased in number and severity over

the past few years, intrusion detection systems have become a necessary addition to the security

infrastructure of most organizations. This guidance document is intended as a primer in

intrusion detection, developed for those who need to understand what security goals intrusion

detection mechanisms serve, how to select and configure intrusion detection systems for their

specific system and network environments, how to manage the output of intrusion detection

systems, and how to integrate intrusion detection functions with the rest of the organizational

security infrastructure. References to other information sources are also provided for the reader

who requires specialized or more detailed advice on specific intrusion detection issues. [12]

[13]

II.2 Definition of Intrusion Detection Systems (IDS)

An intrusion detection system (IDS) is a network security tool that monitors network traffic

and devices for known malicious activity, suspicious activity or security policy violations.

An IDS can help accelerate and automate network threat detection by alerting security

administrators to known or potential threats, or by sending alerts to a centralized security tool.

A centralized security tool such as a security information and event management (SIEM)

system can combine data from other sources to help security teams identify and respond to

cyberthreats that might slip by other security measures.

 IDSs can also support compliance efforts. Certain regulations, such as the Payment Card

Industry Data Security Standard (PCI-DSS), require organizations to implement intrusion

detection measures.

An IDS cannot stop security threats on its own. Today IDS capabilities are typically integrated

with—or incorporated into—intrusion prevention systems (IPSs), which can detect security

threats and automatically act to prevent them. [13] [14]

II.3 Types of Intrusion Detection Systems

II.3.1 Types of IDS by Deployment

Chapter II: Intrusion Detection Systems (IDSs)

15

II.3.1.1 Host-based IDS (HIDS)

Host-based Intrusion Detection System [HIDS] is a security software designed to monitor &

analyse the activities on an individual host or endpoint to detect & respond to potential security

breaches. It works by examining system logs, file integrity, user activities & network

connections, aiming to identify suspicious behaviour or signs of unauthorised access or

tampering.

HIDS works by deploying agents or sensors on individual hosts, continuously monitoring

system events & activities. It compares these events with a database of known attack patterns

& abnormal behaviours. If any anomalous activity is detected, the system generates alerts or

notifications to administrators, allowing them to investigate & take necessary action. [15]

II.3.1.2 Network-based IDS (NIDS)

A Network-based Intrusion Detection System [NIDS] is a security solution designed to

monitor & analyse network traffic for potential security breaches or malicious activities. It

operates as a passive monitoring system, observing data packets passing through the network

in real-time. NIDS helps identify & respond to various cyber threats, such as malware,

unauthorised access attempts & suspicious patterns, to enhance overall network security.

NIDS inspects network packets using various techniques like signature-based & anomaly-

based detection. It examines packet headers & payloads, comparing them against a database of

known attack signatures. If a match is found, it raises an alert. Anomaly-based detection

identifies deviations from normal network behaviour, flagging any unusual activities that might

indicate a potential intrusion. NIDS can also prevent attacks by blocking malicious traffic or

sending alerts to administrators. [16]

Fig II.1: Network-based IDS vs Host-based IDS

Chapter II: Intrusion Detection Systems (IDSs)

16

II.3.1.3 Hybrid IDS

A hybrid intrusion detection system combines both anomaly-based and signature-based

detection methods to address the limitations of each approach. A hybrid system leverages

signature-based detection for known threats and anomaly-based detection for novel attacks.

This enhances the overall effectiveness of intrusion detection. [17]

II.3.2 Types of IDS by Detection Method

II.3.2.1 Anomaly-Based IDS

Anomaly-based IDS focuses on identifying deviations from normal behavior within a

network or system. It works by establishing a baseline for normal activity by statistically

analyzing network traffic or system activity over time. This baseline becomes a reference for

identifying anomalies. The IDS then continuously monitors network traffic or system activity

and compares the real-time data to the established baselines. Significant deviations from these

baselines are flagged as potential intrusions. [17]

Fig II.2: Anomaly-Based IDS

II.3.2.2 Signature-Based IDS

A signature-based intrusion detection system relies on a predefined database of attack

signatures to identify malicious activity. These signatures represent known patterns or

fingerprints of network attacks or suspicious system behavior. The IDS continuously monitors

network traffic or system activity and compares this data against the database of attack

signatures. Any matches trigger an alert, indicating a potential intrusion attempt. [17]

Chapter II: Intrusion Detection Systems (IDSs)

17

Fig II.3: Signature-Based IDS

II.4 Characteristics of an intrusion detection system

An intrusion detection system (IDS) is a tool that monitors network traffic for suspicious

activity and known threats [18]. Here's a more detailed look at the characteristics of an

intrusion detection system:

o Accuracy An IDS should be accurate, minimizing false positives (identifying harmless

behavior as an attack) and false negatives (failing to detect actual attacks). An IDS that

is accurate detects genuine attacks, while one that is precise does not report legitimate

behavior as an attack. Accuracy is a main parameter in determining the performance of

the algorithm used to analyze and predict intrusions.

o Timeliness An IDS must detect and report intrusions quickly. The faster an intrusion is

detected, the quicker it can be addressed, thereby minimizing potential damage.

o Scalability An IDS needs to handle growth in traffic or nodes without a drop in

performance. It should adapt to increasing demands, accommodate new technologies,

adjust to network infrastructure changes, and expand coverage areas.

o Robustness An IDS should be resistant to attackers trying to disable or deceive it. A

novel IDS architecture can improve robustness against adversarial attacks by combining

conventional machine learning (ML) models and deep learning models.

Chapter II: Intrusion Detection Systems (IDSs)

18

o Configurability An IDS should be configurable to adapt to specific environments or

requirements.

o Real-time Monitoring an IDS should monitor system and network activities in real-time

to provide instant alerts.

o Logging and Audit an IDS should keep detailed logs for forensic analysis and

compliance.

o Low Overhead an IDS should not significantly degrade the performance of the system

it protects.

o Adaptability Advanced IDSs can learn and adapt to new threats, especially anomaly-

based systems.

II.5 IDS Architectures

Intrusion Detection System (IDS) architectures define how IDS devices or software are

connected within a network to capture and monitor traffic effectively. The fundamental

requirement is that the IDS must have access to network traffic to analyze it for suspicious

activity. There are three primary IDS architecture models:

II.5.1 Switch Spanning Port (SPAN)

o A SPAN port is a special port on a network switch configured to mirror traffic from one

or more source ports or VLANs to a designated destination port where the IDS sensor

is connected.

o This allows the IDS to passively monitor traffic without interfering with the flow, as it

receives a copy of the data.

o SPAN ports support one-way traffic capture, meaning the IDS can observe traffic but

cannot alter or block it.

o Limitations include a restricted number of SPAN sessions per switch (e.g., six sessions

on Cisco Catalyst 6000 switches) and potential packet duplication when capturing both

transmit and receive traffic, which can affect IDS signature processing.

o Over-subscription can occur if the mirrored traffic exceeds the destination port's

capacity, potentially leading to packet loss on the IDS but not affecting the source ports.

o To handle high traffic volumes, multiple SPANs or Remote SPAN (RSPAN) can be

used, and EtherChannel configurations may help aggregate traffic to the IDS, though

this requires careful planning to avoid missing threats or delayed detection.

Chapter II: Intrusion Detection Systems (IDSs)

19

Fig II.4: Switch Spanning Port (SPAN)

II.5.2 Network Tap

o A network tap is a dedicated physical device inserted at a network bottleneck or uplink

point to passively capture all traffic flowing through that segment.

o It provides a reliable and complete copy of network data in full duplex mode, allowing

the IDS to see both sides of conversations without packet loss.

o Taps are passive and do not have an IP address, which enhances security by making the

IDS invisible to attackers and preventing direct attacks on the IDS itself.

o They simplify deployment in switched networks where promiscuous monitoring is

difficult.

o Network taps can be deployed at multiple points and aggregated at a central monitoring

rack, often requiring load balancing among several IDS sensors to handle high-speed

traffic.

o Taps reduce IDS implementation costs and improve security posture by ensuring

comprehensive traffic visibility without impacting network performance.

Chapter II: Intrusion Detection Systems (IDSs)

20

Fig II.5: Network TAPs

II.5.3 Inline Architecture

o In this model, the IDS (or Intrusion Prevention System, IPS) is placed physically inline

between two network segments.

o All traffic passes through the IDS device, which can analyze and potentially block

malicious traffic in real time.

o This allows active intervention, such as dropping malicious packets or terminating

connections, unlike passive monitoring in SPAN or tap setups.

o Inline IDS/IPS devices must be highly robust and capable of processing large volumes

of traffic with minimal latency to avoid network disruption.

o Inline placement is often used at network perimeters or critical chokepoints where

immediate threat mitigation is required.

o Inline IDS differs from passive IDS in that it can control traffic flow, while passive IDS

only monitors and alerts.

II.6 Intrusion attacks

Intrusion attacks represent a broad spectrum of malicious activities that an Intrusion

Detection System (IDS) is designed to identify by analyzing network traffic or system

behavior for suspicious patterns. Below are detailed descriptions of common types of

intrusion attacks that IDS typically detects:

Chapter II: Intrusion Detection Systems (IDSs)

21

II.6.1 Scanning Attacks

o Attackers perform reconnaissance by probing networks to find vulnerabilities.

o This includes port scans, vulnerability scans, and network mapping attempts.

o IDS detects these by identifying unusual patterns of connection attempts or probes

across multiple ports or hosts, which deviate from normal traffic behavior.

II.6.2 Denial-of-Service (DoS) Attacks

o DoS attacks aim to overwhelm a system with excessive traffic, making it unavailable

to legitimate users.

o Common forms include SYN floods, UDP floods, and ICMP floods.

o IDS detects these attacks by recognizing traffic spikes, repeated connection attempts,

or abnormal packet patterns that indicate flooding or resource exhaustion.

II.6.3 Social Engineering Attacks

o Although social engineering primarily targets human factors, IDS can detect indirect

signs such as unusual access attempts, phishing emails triggering suspicious

downloads, or anomalous data transfers.

o For example, IDS may flag abnormal login patterns or unexpected file downloads that

could be linked to social engineering exploits.

II.6.4 Malware Attacks

o IDS identifies attempts to download, install, or communicate with malware by

detecting known malware signatures or suspicious file transfers.

o Signature-based IDS matches traffic against databases of known malware patterns,

while anomaly-based IDS detects unusual behaviors indicative of malware activity.

II.6.5 Exploit Attacks

o Exploits leverage software vulnerabilities to gain unauthorized access or control.

o IDS monitors network traffic for patterns associated with known exploits, such as

attempts to execute buffer overflows, code injections, or remote code execution.

o Signature-based detection is effective for known exploits, while anomaly-based

methods help detect zero-day or novel exploits.

Chapter II: Intrusion Detection Systems (IDSs)

22

II.6.6 Privilege Escalation

o Attackers attempt to gain higher privileges within a system to access sensitive

resources.

o IDS can flag suspicious user activities, such as unauthorized access attempts to critical

files or system areas, or unusual process executions that may indicate privilege

escalation attempts.

II.6.7 Insider Threats

o These are attacks originating from trusted users misusing their access.

o IDS detects unusual activity patterns like unauthorized access attempts from legitimate

accounts, abnormal data exfiltration, or deviations from typical user behavior.

o Detecting insider threats is challenging but critical, often relying on anomaly-based

detection and behavioral analysis.

Fig II.6: Intrusion attacks

Chapter II: Intrusion Detection Systems (IDSs)

23

II.7 Conclusion

Intrusion Detection Systems (IDS) remain a cornerstone of modern cybersecurity, providing

critical visibility into network and system activities to identify potential threats and suspicious

behaviors. Despite inherent challenges such as false positives and evolving attack techniques,

IDS technologies have matured to incorporate sophisticated detection methods—including

signature-based and anomaly-based approaches—that enable timely alerts and support rapid

incident response. By continuously monitoring traffic and system events, IDS helps

organizations detect a wide range of attacks, from scanning and malware to insider threats,

thereby enhancing overall security posture and aiding compliance efforts. However, IDS

effectiveness depends heavily on proper configuration, ongoing tuning, and integration with

complementary security tools like Intrusion Prevention Systems (IPS) and Security Information

and Event Management (SIEM) platforms. As cyber threats grow more complex, IDS remains

an indispensable, dynamic component of layered defense strategies.

With the increasing complexity and volume of cyber threats, traditional IDS methods face

limitations in detecting novel or sophisticated attacks. This has led to the growing adoption of

machine learning (ML) techniques in intrusion detection. ML enables systems to learn from

historical data, recognize patterns, and identify anomalies without relying solely on predefined

signatures. By leveraging algorithms such as supervised learning, unsupervised learning, and

deep learning, ML-enhanced IDS can improve detection accuracy, reduce false positives, and

adapt to emerging threats more effectively. The next chapter will explore the fundamentals of

machine learning, its applications in cybersecurity, and how it transforms intrusion detection

systems into more intelligent, proactive defenses.

Chapter III

 Machine Learning (ML)

Chapter III: Machine Learning (ML)

24

III.1 Introduction

Machine learning and bio-inspired algorithms are two interconnected fields that have

revolutionized the way we approach complex computational problems. Machine learning, a

subset of artificial intelligence, enables computers to learn from data and improve over time,

while bio-inspired algorithms draw inspiration from natural systems to solve computational

challenges. This overview will explore the definitions, types, and applications of both machine

learning and bio-inspired algorithms, highlighting their synergies and potential applications.

III.2 Definition and Importance of Machine Learning

Machine learning is a branch of artificial intelligence that focuses on developing algorithms

capable of learning from data without explicit programming. It is crucial in today's data-driven

world, enabling computers to make decisions or predictions based on patterns found in data.

The importance of machine learning lies in its ability to handle large volumes of data, drive

innovation across sectors like healthcare and finance, and enable automation by performing

tasks that were previously manual [19] [20].

III.3 Types of Machine Learning

Machine learning can be categorized into several types:

III.3.1 Supervised Learning

Supervised learning is the most common type of machine learning. It involves training

algorithms on labeled data to predict outcomes. In this approach, the model learns a mapping

between the input (features) and the output (label) during the training process. Once trained,

the model can predict the output for new, unseen data.

Fig III.1: Supervised and unsupervised learning

Chapter III: Machine Learning (ML)

25

Examples of Supervised Learning Algorithms:

III.3.1.1 Linear Regression

Linear regression is a statistical method used in machine learning for predictive analysis. It

models a linear relationship between one or more independent variables and a dependent

variable. The goal is to find a best-fit line that minimizes the difference between observed and

predicted values, typically using the least squares method.

Fig III.2: Linear Regression in machine learning (ML)

III.3.1.2 Logistic Regression

Logistic regression is a supervised learning algorithm used for classification problems to

predict binary outcomes. It models the probability of an event occurring based on one or more

independent variables. Logistic regression is commonly used in scenarios where the outcome

is binary, such as predicting whether a customer will buy a product or not. The model outputs

a probability between 0 and 1, which can be converted into a binary class label.

Fig III.3: Logistic Regression in machine learning (ML)

Chapter III: Machine Learning (ML)

26

III.3.1.3 Decision Trees

Decision Trees are a type of supervised learning algorithm useful for both classification and

regression tasks. They use a tree-like structure to make decisions based on input features. Each

internal node represents a feature or attribute, each branch represents a decision or test, and

each leaf node represents the predicted class or value. Decision Trees are easy to interpret and

visualize but can suffer from overfitting if not properly regularized.

Fig III.4: Decision Tree Classification Algorithm

III.3.1.4 Support Vector Machines (SVM)

SVM is a supervised learning algorithm primarily used for classification tasks. It aims to find

the optimal hyperplane that maximally separates classes in the feature space. SVM can handle

high-dimensional data and is effective in cases where the number of features is large compared

to the number of samples. SVMs can also be used for regression tasks, known as Support

Vector Regression (SVR).

Fig III.5: Support Vector Machine Algorithm

Chapter III: Machine Learning (ML)

27

III.3.2 Unsupervised Learning

Unsupervised learning involves training the model on an unlabeled dataset. The model is left

to find patterns and relationships in the data on its own. This type of learning is often used for

clustering and dimensionality reduction. Reinforcement learning: Uses rewards or penalties to

guide the learning process.

Examples of Unsupervised Learning Algorithms:

o K-Means Clustering: Groups similar data points into clusters.

o Principal Component Analysis (PCA): Reduces the number of variables in a dataset

while retaining most of the information.

o Association Rule Learning: Identifies typical relations between variables in a large

dataset.

Fig III.6: Unsupervised Learning

III.3.3 Self-Supervised Learning

Self-supervised learning is a type of machine learning that learns from unlabeled data by

generating its own labels. This approach is useful when labeled data is scarce or expensive to

obtain. Self-supervised learning often involves techniques like autoencoders or generative

adversarial networks (GANs) to learn representations of the data without explicit supervision.

Chapter III: Machine Learning (ML)

28

Fig III.7: Self-Supervised Learning

III.4 Machine Learning Algorithms

Some key machine learning algorithms include:

III.4.1 Linear Regression

Linear regression is a supervised machine learning algorithm used to model linear

relationships between variables. It predicts a continuous output variable based on one or more

input features. The model is represented by a linear equation, where each input variable is

assigned a coefficient that reflects its impact on the output variable. The equation typically

includes an intercept term, which shifts the line up or down. Linear regression is commonly

used for forecasting and prediction tasks, such as predicting house prices based on features like

size and location.

Key Features:

o Least Squares Method: The most common method for fitting linear regression models,

which minimizes the sum of squared residuals between observed and predicted values.

o Interpretability: Coefficients provide insights into the relationship between variables,

making it easy to understand how changes in input variables affect the output.

III.4.2 Decision Trees

Decision trees are a type of supervised learning algorithm that uses a tree-like structure to

make decisions. They are particularly useful for classification and regression tasks. Each

internal node represents a feature or attribute, each branch represents a decision or test, and

Chapter III: Machine Learning (ML)

29

each leaf node represents the predicted class or value. Decision trees are easy to interpret and

visualize but can suffer from overfitting if not properly regularized.

Key Features:

o Handling Categorical Variables: Decision trees can handle both numerical and

categorical data without needing additional preprocessing.

o Handling Missing Values: They can handle missing data by using surrogate splits or

other strategies.

III.4.3 Random Forest

Random Forest is an ensemble learning method that combines multiple decision trees to

improve the accuracy and robustness of predictions. By averaging the predictions from multiple

trees, Random Forest reduces overfitting and improves generalization. It is widely used for

both classification and regression tasks due to its ability to handle high-dimensional data and

its robustness against outliers.

Key Features:

o Ensemble Learning: Combines predictions from multiple decision trees to reduce

variance and improve accuracy.

o Handling High-Dimensional Data: Effective in handling datasets with a large number

of features.

Fig III.8: Random Forest

Chapter III: Machine Learning (ML)

30

III.4.4 Support Vector Machines (SVM)

SVM is a supervised learning algorithm primarily used for classification tasks. It aims to find

the optimal hyperplane that maximally separates classes in the feature space. SVM can handle

high-dimensional data and is effective in cases where the number of features is large compared

to the number of samples. SVMs can also be used for regression tasks, known as Support

Vector Regression (SVR).

Key Features:

o Maximal Margin: SVMs find the hyperplane that maximizes the margin between

classes, which helps in achieving good generalization.

o Kernel Trick: Allows SVMs to handle non-linearly separable data by mapping it to a

higher-dimensional space using kernels.

Fig III.9: Support Vector Machines (SVM)

III.4.5 Gradient Boosting

Gradient Boosting is an ensemble learning algorithm that combines multiple weak models to

create a robust predictive model. It iteratively adds decision trees to correct the errors of

previous models, with each new tree focusing on the residuals of the previous ensemble.

Gradient Boosting is widely used for both classification and regression tasks due to its high

accuracy and ability to handle complex interactions between variables.

Chapter III: Machine Learning (ML)

31

Key Features:

o Iterative Improvement: Each new model is trained to correct the errors of the previous

ensemble, leading to gradual improvement in predictions.

o Handling Complex Interactions: Effective in capturing non-linear relationships and

interactions between variables.

Fig III.10: Gradient Boosting

III.4.6 K-Means Clustering

K-Means is an unsupervised learning algorithm used for clustering data points into groups

based on their similarity. It initializes centroids randomly and then iteratively updates these

centroids to minimize the sum of squared distances between each data point and its closest

centroid. K-Means is useful for discovering patterns or structures in unlabeled data.

Key Features:

o Unsupervised Learning: Does not require labeled data, making it useful for exploratory

data analysis.

o Scalability: Efficient for handling large datasets due to its simplicity and speed.

Chapter III: Machine Learning (ML)

32

Fig III.11: K-Means Clustering

III.5 Fundamentals of Bio-Inspired Algorithms

Bio-inspired algorithms are computational methods that mimic natural systems, such as

biological processes or behaviors observed in nature. These algorithms often involve

evolutionary principles, swarm intelligence, or neural networks inspired by the brain. Examples

include genetic algorithms, ant colony optimization, and artificial neural networks [21].

III.6 Machine Learning Techniques Inspired by Nature

Here are detailed explanations of six prominent machine learning techniques inspired by

nature, often referred to as nature-inspired or bio-inspired algorithms. These techniques mimic

natural processes such as evolution, swarm behavior, and biological intelligence to solve

complex optimization and learning problems efficiently:

III.6.1 Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANNs) are modeled after biological neural networks. They

consist of layers of interconnected nodes (neurons) that process and transmit information.

ANNs are widely used for tasks such as image recognition, speech processing, and natural

language processing. The inspiration from biological neural networks lies in how neurons

communicate through synapses, influencing the development of algorithms like

backpropagation for training ANNs.

Chapter III: Machine Learning (ML)

33

III.6.2 Genetic Algorithms (GAs)

Genetic Algorithms (GAs) are a powerful nature-inspired optimization technique modeled

on the principles of natural selection and genetics [22]. They are widely used to solve complex

problems where traditional methods may struggle, by iteratively evolving a population of

candidate solutions toward better fitness.

Fig III.12: Genetic Algorithms (GAs)

III.6.2.1 Population: GAs maintain a population of candidate solutions, often encoded as

chromosomes (strings of bits, real numbers, or other data structures) representing possible

solutions to the problem. The population is usually initialized randomly to ensure diversity.

III.6.2.2 Fitness Function: Each individual in the population is evaluated using a fitness

function that quantifies how well the solution solves the problem. This function guides the

evolutionary process by favoring better solutions for reproduction.

III.6.2.3 Selection: Inspired by “survival of the fittest,” individuals with higher fitness have a

greater chance of being selected to reproduce. Common selection methods include roulette

wheel selection, tournament selection, and rank-based selection, each balancing exploration

and exploitation differently.

Chapter III: Machine Learning (ML)

34

III.6.2.4 Crossover (Recombination): Pairs of selected individuals exchange parts of their

chromosomes to create offspring. This mimics biological sexual reproduction, combining traits

from two parents to produce genetically diverse children. Various crossover methods exist,

such as single-point, multi-point, and uniform crossover.

III.6.2.5 Mutation: To maintain genetic diversity and explore new areas of the solution space,

random changes are introduced to offspring chromosomes by flipping bits or altering genes.

Mutation rates must be carefully tuned to avoid premature convergence or excessive

randomness.

III.6.2.6 Generation Cycle: After selection, crossover, and mutation, a new population is

formed, replacing some or all of the old population. This cycle repeats for many generations

until a stopping criterion is met (e.g., maximum generations or satisfactory fitness).

III.6.3 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a nature-inspired, population-based optimization

algorithm modeled on the social behavior of bird flocks or fish schools. It iteratively improves

candidate solutions to an optimization problem by simulating a swarm of particles moving

through the search space, guided by individual and collective experiences.

Fig III.13: Particle Swarm Optimization (PSO)

III.6.3.1 Particles and Positions: Each particle represents a potential solution with a position

in the search space.

III.6.3.2 Velocity: Each particle has a velocity that determines its movement direction and

speed.

Chapter III: Machine Learning (ML)

35

III.6.3.3 Personal Best (pbest): Each particle remembers the best position it has found so far.

III.6.3.4 Global Best (gbest) or Neighborhood Best: The swarm shares information to

identify the best position found by any particle (global best) or within a local neighborhood

(local best).

III.6.3.5 Update Rules: At each iteration, particles update their velocities and positions based

on:

o Their current velocity (momentum/inertia),

o The difference between their personal best and current position (cognitive component),

o The difference between the global or neighborhood best and current position (social

component).

III.6.4 Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) is a nature-inspired metaheuristic algorithm modeled on the

foraging behavior of real ants, particularly how they find shortest paths between their colony

and food sources by depositing and following pheromone trails [23].

Fig III.14: Ant Colony Optimization (ACO)

III.6.4.1 Artificial Ants and Construction Graph: In ACO, artificial ants build solutions by

traversing a fully connected graph representing the problem space. Each edge or node

corresponds to a component of the solution.

Chapter III: Machine Learning (ML)

36

III.6.4.2 Pheromone Trails: As ants move through the graph, they deposit virtual pheromones

on edges they travel. The amount of pheromone represents the learned desirability of that path

based on previous ants’ experiences.

III.6.4.3 Probabilistic Path Selection: Ants choose their next move based on a probability

influenced by two factors:

o The intensity of pheromone on the path (representing collective learning),

o A heuristic measure such as the inverse of distance or cost (representing problem-

specific knowledge).

III.6.4.4 Pheromone Evaporation: Over time, pheromone levels evaporate, reducing the

attractiveness of less optimal paths and preventing premature convergence on suboptimal

solutions.

III.6.4.5 Positive Feedback Loop: Paths that lead to better solutions accumulate more

pheromone, attracting more ants and reinforcing those paths, guiding the colony toward

optimal or near-optimal solutions.

III.6.5 Firefly Algorithm (FA)

The Firefly Algorithm (FA) is a nature-inspired metaheuristic optimization technique

developed by Xin-She Yang in 2008, modeled on the flashing behavior and attraction patterns

of fireflies [24]. It is widely used to solve complex optimization problems by simulating how

fireflies attract each other based on their brightness, which corresponds to the quality of

candidate solutions [25].

Fig III.15: Life cycle of Firefly Algorithm

Chapter III: Machine Learning (ML)

37

III.6.5.1 Inspiration: Fireflies use bioluminescent flashes to attract mates or prey. Brighter

fireflies attract others more strongly, but light intensity decreases with distance due to

absorption.

III.6.5.2 Population: Each firefly represents a potential solution in the search space.

III.6.5.3 Brightness (Light Intensity): Corresponds to the objective function value; brighter

fireflies represent better solutions.

III.6.5.4 Attractiveness: A firefly’s attractiveness to others is proportional to its brightness

but decreases exponentially with distance, modeled by an absorption coefficient γ.

III.6.5.5 Movement: Less bright fireflies move toward brighter ones. If no brighter firefly is

found, a firefly moves randomly, allowing exploration.

III.6.6 Bacterial Foraging Optimization (BFO)

The Bat Algorithm (BA) is a nature-inspired metaheuristic optimization algorithm developed

by Xin-She Yang in 2010, inspired by the echolocation behavior of microbats. It is designed

for solving complex global optimization problems by simulating how bats use sound pulses to

navigate and locate prey [26].

Fig III.16: Fundamental Structure of the BFO Algorithm

Chapter III: Machine Learning (ML)

38

III.6.6.1 Echolocation Metaphor: Bats emit ultrasonic pulses and listen to the echoes to

estimate the distance and location of prey or obstacles. The algorithm models this by having

virtual bats "fly" through the solution space, adjusting their positions and velocities based on

pulse frequency, loudness, and pulse emission rate.

III.6.6.2 Population-Based Search: A swarm of bats (candidate solutions) explores the search

space. Each bat has a position (solution), velocity, frequency (controlling step size), loudness

(intensity of search), and pulse emission rate (probability of local search).

III.6.6.3 Frequency Tuning: Bats adjust their pulse frequency to control the pace and

direction of movement, balancing exploration (global search) and exploitation (local search).

III.6.6.4 Movement and Updating: At each iteration, bats update their velocities and positions

based on their frequency and the global best solution found so far. Loudness and pulse emission

rates adapt dynamically: loudness typically decreases as bats get closer to prey (better

solutions), while pulse rate increases to intensify local search.

III.6.6.5 Local Random Walk: When a bat finds a promising solution, it performs a local

random walk to explore the neighborhood, improving exploitation.

III.6.6.6 Selection: The algorithm selects the best solutions iteratively until convergence or a

stopping criterion is met.

III.7 Applications of Bio-Inspired Machine Learning

Bio-inspired machine learning has diverse applications:

III.7.1 Optimization Problems

Bio-inspired algorithms, such as genetic algorithms and ant colony optimization, are highly

effective in solving complex optimization problems. These algorithms mimic natural processes

like evolution and swarm behavior to find optimal solutions. Genetic algorithms use principles

of natural selection to evolve better solutions over generations, while ant colony optimization

simulates how ants find the shortest path to food sources by depositing pheromones. These

methods are particularly useful in scenarios where traditional optimization techniques struggle

due to the complexity or non-linearity of the problem [21].

Chapter III: Machine Learning (ML)

39

III.7.2 Pattern Recognition

Techniques inspired by the brain, such as artificial neural networks, are widely used for

pattern recognition tasks like image and speech recognition. Neural networks mimic the

structure and function of biological neural networks, allowing them to learn complex patterns

from data. Deep learning models, which are a subset of neural networks, have achieved state-

of-the-art results in image recognition, speech processing, and natural language processing

[27].

III.7.3 Robotics and Autonomous Systems

Bio-inspired approaches are crucial in developing more adaptive and efficient autonomous

systems. For example, swarm intelligence algorithms can be used to control swarms of robots,

enabling them to perform complex tasks collectively. Additionally, bio-inspired robotics often

involves designing robots that mimic the movement or sensing capabilities of animals, such as

robotic snakes or birds, which can navigate through challenging environments more

effectively.

III.7.4 Healthcare and Biotechnology

Bio-inspired machine learning is increasingly applied in healthcare and biotechnology for

tasks such as drug discovery, disease modeling, and personalized medicine. Bio-inspired

algorithms can help in analyzing complex biological data, predicting protein structures, and

identifying potential drug targets. Moreover, machine learning models inspired by biological

systems can aid in diagnosing diseases more accurately and developing personalized treatment

plans based on genetic profiles [28].

III.7.5 Telecommunications and Network Design

Swarm intelligence is applied to optimize network routing, spectrum allocation, load

balancing, and fault tolerance in wireless and wired communication networks. These

algorithms enhance data transmission efficiency, reduce congestion, and improve network

resilience.

Chapter III: Machine Learning (ML)

40

III.7.6 Big Data and Cloud Computing

With the growth of big data and cloud services, bio-inspired algorithms are used for scalable

data analysis, feature selection, and cloud resource management. Their parallelism and

adaptability make them suitable for handling large-scale, distributed computing environments.

III.7.7 Cybersecurity and Anomaly Detection

Artificial immune systems and other bio-inspired models detect network intrusions, malware,

and insider threats by learning normal behavior patterns and identifying anomalies. These

adaptive systems improve the robustness and responsiveness of cybersecurity defenses.

III.8 Conclusion

Machine learning and bio-inspired algorithms form a synergistic partnership that enhances

the ability to solve complex computational problems by drawing inspiration from natural

processes. Bio-inspired algorithms-such as genetic algorithms, swarm intelligence, and neural

network models-mimic biological evolution, social behaviors, and brain functions, enabling

machine learning systems to become more adaptable, efficient, and robust. This integration

leads to innovative solutions across diverse fields including healthcare, robotics, finance, and

big data analytics.

By incorporating principles like hierarchical information processing, context-dependent

learning, and adaptive evolution, bio-inspired machine learning models can better handle noisy,

dynamic, and high-dimensional data. For example, convolutional neural networks (CNNs) are

inspired by the hierarchical structure of the visual cortex, enabling efficient feature extraction

and object recognition. Similarly, recent advances explore integrating biological complexity

such as neuron-astrocyte interactions to improve transformer architectures, potentially

enhancing learning efficiency, robustness, and energy consumption.

As both fields evolve, their fusion is expected to drive significant advancements in artificial

intelligence by enabling systems that learn more like natural organisms-capable of

generalization, causal reasoning, and adaptation to new environments. This convergence also

addresses limitations of traditional AI models, such as brittleness and lack of deep

understanding, by embedding biological principles of plasticity, modularity, and self-

organization. Furthermore, bio-inspired algorithms contribute to managing big data challenges

by providing scalable, intelligent, and robust methods for data fusion, storage, and processing.

Chapter III: Machine Learning (ML)

41

In summary, the ongoing integration of machine learning with bio-inspired algorithms

leverages nature’s proven strategies to create more powerful, flexible, and intelligent AI

systems. This interdisciplinary approach not only enhances current capabilities but also opens

new avenues for research and application, promising transformative impacts across science,

engineering, and industry.

Chapter IV
 Particle Swarm Optimization (PSO)

Chapter IV: Particle Swarm Optimization (PSO)

42

IV.1 Introduction

Swarm intelligence (SI) is based on the collective behavior of decentralized, self-organized

systems. It may be natural or artificial. Natural examples of SI are ant colonies, fish schooling,

bird flocking, bee swarming and so on.

Besides multirobot systems, some computer program for tackling optimization and data analysis

problems are examples for some human artifacts of SI.

The most successful swarm intelligence techniques are Particle Swarm Optimization (PSO) and

Ant Colony Optimization (ACO). In PSO, each particle flies through the multidimensional space

and adjusts its position in every step with its own experience and that of peers toward an optimum

solution by the entire swarm. Therefore, the PSO algorithm is a member of Swarm Intelligence

[29].

IV.2 Particle Swarm Optimization (PSO) Algorithm

The Particle Swarm Optimization algorithm (PSO) is a novel population-based stochastic search

algorithm and an alternative solution to the complex non-linear optimization problem. The PSO

algorithm was first introduced by Dr. Kennedy and Dr. Eberhart in 1995 and its basic idea was

originally inspired by simulation of the social behavior of animals such as bird flocking, fish

schooling and so on. It is based on the natural process of group communication to share individual

knowledge when a group of birds or insects search food or migrate and so forth in a searching

space, although all birds or insects do not know where the best position is. But from the nature of

the social behavior, if any member can find out a desirable path to go, the rest of the members will

follow quickly.

IV.3 Dataset

dataset is a collection of related, discrete items of related data represented by rows and columns.

Columns are also called features which represent variables that could be numerical, categorical

…etc. Rows are the instance of the variables (columns).

In this thesis two datasets were used, NSL-KDD & MQTTset.

Chapter IV: Particle Swarm Optimization (PSO)

43

IV.3.1 NSL-KDD Dataset

In the realm of cybersecurity and network intrusion detection, the NSL-KDD dataset stands as a

benchmark for evaluating machine learning models' performance. This dataset, derived from the

original KDD Cup 1999 dataset, addresses the limitations and biases present in its predecessor,

making it a vital resource for researchers and practitioners in the field of IDS.

No Features
Form of

value
No Features

Form of

value

1 Duration Integer 22 is_guest_login Integer

2 protocol_type Nominal 23 count Integer

3 service Nominal 24 srv_count Integer

4 flag Nominal 25 serror_rate Float

5 src_bytes Integer 26 srv_serror_rate Float

6 dst_bytes Integer 27 rerror_rate Float

7 Land Integer 28 srv_rerror_rate Float

8 wrong_fragment Integer 29 same_srv_rate Float

9 Urgent Integer 30 diff_srv_rate Float

10 Hot Integer 31 srv_diff_host_rate Float

11 num_failed_logins Integer 32 dst_host_count Float

12 logged_in Integer 33 dst_host_srv_count Float

13 num_compromised Integer 34 dst_host_same_srv_rate Float

14 root_shell Integer 35 dst_host_diff_srv_rate Float

15 su_attempted Integer 36 dst_host_same_src_port_rate Float

16 num_root Integer 37 dst_host_srv_diff_host_rate Float

17 num_file_creations Integer 38 dst_host_serror_rate Float

18 num_shells Integer 39 dst_host_srv_serror_rate Float

19 num_access_files Integer 40 dst_host_rerror_rate Float

20 num_outbound_cmds Integer 41 dst_host_srv_rerror_rate Float

21 is_host_login Integer 42 Class Category

Table IV.1: The 41 features of the NSL-KDD dataset

Chapter IV: Particle Swarm Optimization (PSO)

44

IV.3.2 MQTTset Dataset

The proposed work aims to create a dataset linked to the IoT context, in particular on the MQTT

communication protocol, in order to give to the research and industrial community an initial dataset

to use in their application. The dataset is composed by IoT sensors based on MQTT where each

aspect of a real network is defined. In particular, the MQTT broker is instantiated by using Eclipse

Mosquito and the network is composed by 8 sensors. The scenario is related to a smart home

environment where sensors retrieve information about temperature, light, humidity, CO-Gas,

motion, smoke, door and fan with different time interval since the behaviour of each sensor is

different with the others.

Fig IV.1: New Dataset for Machine Learning Techniques on MQTT

Chapter IV: Particle Swarm Optimization (PSO)

45

IV.3.3 Comparison Between NSL-KDD and MQTTset

Aspect NSL-KDD MQTTset

Focus
General network intrusion

detection

IoT-specific, MQTT protocol

intrusion detection

Domain Traditional network traffic
IoT networks using MQTT

protocol

Number of Features 41 features 33 features

Types of Attacks DoS, Probe, R2L, U2R, etc.
Brute force, DoS, Flood,

Malformed, Slow attacks

Machine Learning Models

Used

K-means, Random Forest,

CNN, Decision Trees, etc.

Decision Trees, Random

Forest, Neural Networks,

Boosting

Feature Selection
Information Gain, PCA,

Select KBest

Feature engineering with

selection down to 10 features

Table IV.2: Comparison Between NSL-KDD and MQTTset

IV.4 PSO Methode Overview

IV.4.1 Binary Particle Representation

In binary Particle Swarm Optimization (BPSO), particles are represented as binary strings (0, 1,

1), where each bit (0 or 1) corresponds to a decision variable (feature selection, on/off states). This

adaptation of PSO for discrete optimization problems involves unique mechanisms for updating

positions and velocities. Below is a detailed breakdown:

IV.4.1.1 Position Encoding

o Each particle’s position is a binary vector of length n, where n is the number of decision

variables.

Example: For feature selection with 5 features, a particle may be encoded as [1, 0, 1, 1] indicating

the selection of features 1, 3, and 4.

Chapter IV: Particle Swarm Optimization (PSO)

46

IV.4.1.2 Velocity Interpretation

o Unlike continuous PSO, velocity in BPSO determines the probability of flipping a bit

(0↔1).

o Velocity values are mapped to probabilities using a sigmoid function:

𝑃𝑟𝑜𝑏(𝑥𝑖 = 1) =
1

1+𝑒−𝑣𝑖
 (1)

Where 𝑣𝑖 is the velocity of the 𝑖-th bit.

IV.4.1.3 Velocity Update

o Velocities are updated similarly to continuous PSO but constrained to prevent divergence:

𝑣𝑖
𝑡+1 = 𝜔 ∗ 𝑣𝑖

𝑡 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖
𝑡) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖

𝑡) (2)

o Clamping: Velocities are often clamped to [−𝑣𝑚𝑎𝑥, 𝑣𝑚𝑎𝑥](𝑒. 𝑔. , 𝑣𝑚𝑎𝑥 = 6) to stabilize

probabilities.

IV.4.1.4 Position Update

o Each bit xi is updated by comparing its velocity-derived probability to a random number r

∈ [1]:

𝑥𝑖
𝑡+1 = {

1,
1

1+𝑒−𝑣𝑖
𝑡+1 > 𝑟

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3)

IV.4.2 Initialization

o A swarm of particles is initialized with random positions and velocities within the defined

search space.

o Each particle’s position corresponds to a potential solution.

IV.4.3 Fitness Evaluation

o The objective function (fitness) is evaluated at each particle’s position to assess solution

quality.

Chapter IV: Particle Swarm Optimization (PSO)

47

IV.4.4 Update Personal and Global Bests

o Each particle keeps track of its best position found so far (personal best, 𝑝𝑖).

o The swarm maintains the best position found by any particle (global best, 𝑔𝑖).

IV.4.5 Velocity and Position Update

o Particle velocities are updated based on three components:

• Inertia: maintains the current velocity to explore the search space.

• Cognitive component: attraction toward the particle’s personal best position.

• Social component: attraction toward the swarm’s global best position.

o The velocity update formula for particle 𝑖 in dimension d is:

𝑣𝑖,𝑑 ⃪ 𝜔 ∗ 𝑣𝑖,𝑑 + ∅𝑝 ∗ 𝑟𝑝 ∗ (𝑝𝑖,𝑑 − 𝑥𝑖,𝑑) + ∅𝑔 ∗ 𝑟𝑔 ∗ (𝑔𝑖,𝑑 − 𝑥𝑖,𝑑) (4)

where:

• 𝝎 is the inertia weight controlling exploration vs. exploitation,

• ∅𝒑, ∅𝒈 are acceleration coefficients (cognitive and social),

• 𝒓𝒑, 𝒓𝒈 are random numbers uniformly distributed in 1,

• 𝒙𝒊,𝒅 is the current position.

Positions are updated by:

𝑥𝑖 ← 𝑥𝑖 + 𝑣𝑖 (5)

IV.4.6 Boundary Handling

o Positions and velocities are clamped to predefined bounds to keep particles within the

search space.

IV.4.7 Iteration and Termination

o Steps 4.3–4.6 are repeated until a stopping criterion is met (e.g., maximum iterations or

satisfactory fitness).

https://www.baeldung.com/cs/pso

Chapter IV: Particle Swarm Optimization (PSO)

48

IV.5 The basic flow of the PSO approach

The basic flow of the Particle Swarm Optimization (PSO) algorithm can be summarized in the

figure below:

Fig IV.2: The basic flow of the PSO approach

IV.6 Python Code

Python is a high-level, interpreted programming language known for its simplicity and

readability. It was created by Guido van Rossum and first released in 1991.

IV.6.1 Environment

IV.6.1.1 Anaconda

Anaconda is a package manager, an environment manager, a Python/R science distribution and

a collection of over +7500 open-source packages [30].

It is used for scientific computing like Data science, Machine learning applications, predictive

analytics and many other fields.

Chapter IV: Particle Swarm Optimization (PSO)

49

This package manager makes installing and using libraries such (ScikitLearn, Numpy, …etc)

easy and simply, which grants a stable environment with less time consumption while developing

a project.

It could be installed for Windows, Linux and MacOS, in our case It was installed in windows

operating system following these steps [31]:

1- Downloading the Anaconda installer: (https://www.anaconda.com/download/#windows)

2- Verify data integrity with SHA-256.

3- Following the steps on the Anaconda installer window for installing any package needed a

simple command anaconda install Package name.

IV.6.1.2 Visual studio code (VS Code)

Visual Studio Code (VS Code) is a free, lightweight, and highly customizable source code editor

developed by Microsoft. It supports hundreds of programming languages and offers powerful

features such as syntax highlighting, IntelliSense (smart code completion), integrated debugging,

Git version control, and an integrated terminal. VS Code’s extensible architecture allows users to

enhance its functionality through thousands of extensions available in its marketplace. It runs on

Windows, macOS, and Linux, making it a versatile tool for a wide range of development tasks-

from simple scripting to complex application development-while providing a fast and streamlined

coding experience.

Chapter IV: Particle Swarm Optimization (PSO)

50

IV.6.2 Libraries

IV.6.2.1 NumPy

NumPy is the fundamental package for scientific computing in Python. It is a Python library that

provides a multidimensional array object, various derived objects (such as masked arrays and

matrices), and an assortment of routines for fast operations on arrays, including mathematical,

logical, shape manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear

algebra, basic statistical operations, random simulation and much more.[32]

It's an open-source library that is used widely in Python programming and almost in all fields of

science and engineering. It contains multidimensional array and matrix data structures, and can

perform various mathematical operations on them.

IV.6.2.2 Pandas

Pandas is a fast, powerful, flexible and easy to use open-source data analysis and manipulation

tool, built on top of the Python programming language.[33]

It provides a high performance, easily used data structures and data analysis tools, It9s the library

that is used to manipulate datasets data frames.

Chapter IV: Particle Swarm Optimization (PSO)

51

IV.6.2.3 Matplotlib

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations

in Python [34], it’s a visualization library that offers the ability to display data, results in various

shapes and diagrams.

IV.6.2.4 Scikit-Learn (Sklearn)

Scikit-learn is an open-source machine learning library that supports supervised and

unsupervised learning. It also provides various tools for model fitting, data preprocessing, model

selection and evaluation, and many other utilities.[35]

This library provides a large number of built-in machine leaning algorithms and models such as

Label Encoder for label encoding (explained later on this article), confusion_matrix to calculate

the true/false negatives and true/false positives, train_test_split to split the data frame obtained

from the dataset to a training set and to a testing set, and many other useful models.

Chapter IV: Particle Swarm Optimization (PSO)

52

IV.6.3 The Code

7 Experiments & Results

7.1 KNN Algorithm

Approaches for Selecting the Desired Classification Algorithm for Implementation

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import time

from sklearn.ensemble import RandomForestClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.svm import SVC

from sklearn.neural_network import MLPClassifier

from sklearn.naive_bayes import GaussianNB

from sklearn.linear_model import LogisticRegression

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model_selection import cross_val_score, train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.utils.validation import check_is_fitted # Import

check_is_fitted

from sklearn.metrics import classification_report, confusion_matrix,

accuracy_score, precision_recall_fscore_support

def get_classifier(classifier_type='nb', **kwargs):

 if classifier_type == 'knn':

 return KNeighborsClassifier(n_neighbors=3, n_jobs=1)

 elif classifier_type == 'lr':

 return LogisticRegression(max_iter=1000, random_state=42,

n_jobs=-1, **kwargs)

 elif classifier_type == 'svm':

 return SVC(probability=True, random_state=42, **kwargs)

 elif classifier_type == 'nb':

 return GaussianNB(var_smoothing=1e-9, **kwargs)

 elif classifier_type == 'mlp':

 return MLPClassifier(hidden_layer_sizes=(100,), max_iter=1000,

random_state=42, **kwargs)

 elif classifier_type == 'dt':

 return DecisionTreeClassifier(random_state=42)

 elif classifier_type == 'rf':

 return RandomForestClassifier(random_state=42, **kwargs)

 else:

 raise ValueError(f"Unknown classifier type: {classifier_type}")

Libraries and Classifiers Used in the Python Code

Chapter IV: Particle Swarm Optimization (PSO)

53

Initialization of Positions and Velocities in Binary PSO with Feature Selection Constraints

def _initialize_swarm(self, n_features):

 # Initialize positions (binary vectors)

positions = np.random.randint(0, 2, size=(self.n_particles,

 n_features))

Ensure each particle selects at least one feature

for i in range(self.n_particles):

 if np.sum(positions[i]) == 0:

 # Select a random feature if none selected

 positions[i, np.random.randint(0, n_features)] = 1

 # Initialize velocities (real values)

 velocities = np.random.uniform(-1, 1,

 size=(self.n_particles, n_features))

 return positions, velocities

Chapter IV: Particle Swarm Optimization (PSO)

54

Fitness Evaluation Method for Feature Selection using Classification Accuracy and Feature

Reduction Trade-off

def _calculate_fitness(self, X, y, position):

 # Ensure at least one feature is selected

 if np.sum(position) == 0:

 return 0

 # Select features based on particle position

 selected_features = np.where(position == 1)[0]

 X_selected = X[:, selected_features]

 # Calculate cross-validation accuracy

 try:

 cv_scores = cross_val_score(

 self.classifier, X_selected, y, cv=5, scoring='accuracy', n_jobs=-1)

 accuracy = np.mean(cv_scores)

 except Exception:

 # Fall back to 3-fold CV if 5-fold fails (e.g., for small datasets)

 try:

 cv_scores = cross_val_score(

 self.classifier, X_selected, y, cv=3, scoring='accuracy', n_jobs=-1)

 accuracy = np.mean(cv_scores)

 except Exception:

 # Last resort: use a simple train/test split

 X_train, X_test, y_train, y_test = train_test_split(

 X_selected, y, test_size=0.3, random_state=42)

 self.classifier.fit(X_train, y_train)

 accuracy = self.classifier.score(X_test, y_test)

 # Calculate feature reduction ratio

 feature_ratio = np.sum(position) / len(position)

 # Calculate fitness (maximize accuracy, minimize features)

 fitness = self.alpha * accuracy - self.beta * feature_ratio

 return fitness

Chapter IV: Particle Swarm Optimization (PSO)

55

Parameter Configuration of the PSO-Based Feature Selection Algorithm

IV.7 Experiments & Results

In this table, we conduct empirical experiments on a set of algorithms including KNN, LR, NB,

SVM, MLP, RF, and DT. Their performance is compared based on all-features accuracy versus

PSO-selected accuracy, in addition to the number of selected features, feature reduction rate,

accuracy improvement, and training time reduction.

Algorithm

All

Features

Accuracy

PSO

Selected

Accuracy

n_Features

Selected

Features

Reduction

Rate

Accuracy

Improvement

Training

time

reduction

KNN 0.7910 0.8345 37 68.4% 4.35% 50.0%

LR 0.8083 0.8722 40 65.8% 6.39% 7.9%

NB 0.5657 0.7799 54 53.8% 21.43% 50.0%

SVM 0.8057 0.8203 41 65.0% 1.46% 42.3%

MLP 0.8336 0.8802 41 65.0% 4.66% 1.5%

RF 0.7866 0.8567 40 65.8% 7.01% 12.1%

DT 0.8873 0.8372 36 69.2% 5.01% 55.9%

Table IV.3: Comparison of Classification Algorithms Using All Features VS PSO Selected

Features in Terms of Accuracy and Training Efficiency

PSO feature selection

 print("\nRunning PSO feature selection...")

 pso = PSOFeatureSelection(

 n_particles=50,

 n_iterations=50,

 w=0.7,

 c1=1.5,

 c2=1.5,

 alpha=0.9,

 beta=0.1,

 classifier_type=classifier_type,

 classifier_params=classifier_params,

 verbose=True)

Chapter IV: Particle Swarm Optimization (PSO)

56

In the following figures, we illustrate the convergence behavior of the PSO algorithm during

the feature selection process for each of the classification algorithms used in this study: KNN,

LR, NB, SVM, MLP, RF, and DT. The top part of each figure shows the evolution of the fitness

value across iterations, reflecting the algorithm's convergence toward an optimal solution. The

bottom part displays the change in the number of selected features over iterations, showing a

gradual reduction, which demonstrates the effectiveness of PSO in dimensionality reduction

while maintaining model performance.

IV.7.1 KNN Algorithm

Fig IV.3: KNN Algorithm 50 iteration in 50 Particles

Chapter IV: Particle Swarm Optimization (PSO)

57

IV.7.2 LR Algorithm

Fig IV.4: LR Algorithm 50 iteration in 50 Particles

Chapter IV: Particle Swarm Optimization (PSO)

58

IV.7.3 NB Algorithm

Fig IV.5: NB Algorithm 50 iteration in 50 Particles

Chapter IV: Particle Swarm Optimization (PSO)

59

IV.7.4 SVM Algorithm

Fig IV.6: SVM Algorithm 50 iteration in 50 Particles

Chapter IV: Particle Swarm Optimization (PSO)

60

IV.7.5 MLP Algorithm

Fig IV.7: MLP Algorithm 50 iteration in 50 Particles

Chapter IV: Particle Swarm Optimization (PSO)

61

IV.7.6 RF Algorithm

Fig IV.8: RF Algorithm 50 iteration in 50 Particles

Chapter IV: Particle Swarm Optimization (PSO)

62

IV.7.7 DT Algorithm

Fig IV.9: DT Algorithm 50 iteration in 50 Particles

Chapter IV: Particle Swarm Optimization (PSO)

63

IV.8 Discussions of Results

The experimental results using the Particle Swarm Optimization (PSO) algorithm for feature

selection across multiple classification models—namely K-Nearest Neighbors (KNN), Logistic

Regression (LR), Naïve Bayes (NB), Support Vector Machine (SVM), Multilayer Perceptron

(MLP), Random Forest (RF), and Decision Tree (DT)—demonstrated significant improvements

in classification accuracy when using a reduced subset of features compared to using the full

feature set.

The PSO convergence plots revealed two key patterns across all models: an upward trend in

fitness values and a downward trend in the number of selected features. These patterns confirm

that PSO was effective in optimizing feature subsets that not only improved model performance

but also reduced computational complexity.

IV.8.1 Model-Wise Analysis:

o K-Nearest Neighbors (KNN):

The accuracy improved from 0.7910 to 0.8345 with only 37 features selected. The feature

reduction rate reached 68.4%, resulting in a substantial 50% reduction in training time. This

suggests that KNN, being a distance-based model, greatly benefits from reduced feature

dimensionality.

o Logistic Regression (LR):

Accuracy increased from 0.8083 to 0.8722 with 40 selected features, and a feature reduction rate

of 65.8%. Though the training time reduction was relatively modest (7.9%), the improvement in

accuracy (6.39%) validates the positive impact of removing redundant or irrelevant features in

linear models.

o Naive Bayes (NB):

Despite having the lowest baseline accuracy (0.5657), NB saw the most significant relative

improvement reaching 0.7799 after feature selection. With 54 features retained and a 53.8%

reduction rate, training time was halved. This highlights NB's sensitivity to irrelevant features and

the importance of dimensionality reduction for probabilistic models.

Chapter IV: Particle Swarm Optimization (PSO)

64

o Support Vector Machine (SVM):

The accuracy increased slightly from 0.8057 to 0.8203, with 41 features selected and a 42.3%

reduction in training time. While the accuracy gain (1.46%) was modest, maintaining or slightly

improving performance with fewer features is valuable for SVMs, which can be computationally

intensive in high-dimensional spaces.

o Multi Layer Perceptron (MLP):

Performance improved from 0.8336 to 0.8802 using 41 features. The feature reduction rate was

65%, although the training time was only slightly reduced (1.5%). This result suggests that PSO

successfully identified the most informative features, improving the generalization of deep

learning models without sacrificing speed.

o Random Forest (RF):

The model's accuracy rose from 0.7866 to 0.8567 using 40 selected features. With a 65.8%

reduction in features and a 12.1% decrease in training time, the model achieved a solid 7.01%

improvement in accuracy, indicating PSO’s effectiveness even for ensemble methods that are

already robust to irrelevant features.

o Decision Tree (DT):

Interestingly, DT achieved one of the best overall results in terms of trade-off. Accuracy reached

0.8873 using only 36 features (a 69.2% reduction), along with the highest training time reduction

(55.9%). Despite a small drop from the original accuracy (from 0.8372), the final performance still

surpassed most other classifiers.

IV.8.2 Overall Insights:

The results clearly demonstrate the strength of PSO as a feature selection method for improving

model performance and efficiency. All classifiers benefited to varying extents either through

accuracy gains, reduced training time, or both. Notably, models like Naïve Bayes and KNN, which

are particularly sensitive to irrelevant or noisy features, exhibited significant improvements. Even

complex models like MLP and ensemble methods like RF showed better generalization and

training efficiency.

Chapter IV: Particle Swarm Optimization (PSO)

65

In conclusion, PSO-based feature selection proves to be a powerful tool in optimizing

classification tasks, reducing dimensionality while maintaining or enhancing predictive

performance. These results reinforce the importance of feature selection as a critical step in the

machine learning pipeline.

IV.9 Conclusion

This chapter discussed the fundamentals of the Particle Swarm Optimization (PSO) algorithm,

including its geometric and mathematical foundations, particle movement and velocity updates

within the search space, the role of acceleration coefficients, and different particle neighborhood

topologies. It also explored the application of PSO in solving path planning problems. Finally, the

Decision Tree (DT) algorithm demonstrated the best performance, achieving high accuracy with

fewer selected features compared to other models, highlighting its effectiveness in building a more

efficient and less complex intrusion detection system.

General
Conclusion

General Conclusion

66

General Conclusion

The convergence of Internet of Things (IoT), Intrusion Detection Systems (IDS), and machine

learning (ML) enhanced by metaheuristic optimization algorithms such as Particle Swarm

Optimization (PSO) constitutes a promising research direction in the field of cybersecurity. With

the exponential growth of IoT deployments across critical domains including healthcare, smart

cities, and industrial systems the threat landscape has become increasingly complex,

heterogeneous, and dynamic. These environments demand robust, intelligent, and adaptive

security solutions.

Machine learning-based IDSs have emerged as effective tools for detecting a wide range of cyber

threats in real-time. However, their performance heavily relies on the quality of input features,

model parameters, and computational efficiency, especially under the constrained resources typical

of IoT devices. PSO, inspired by the social behavior of bird flocking, provides an efficient method

for feature selection and hyperparameter optimization in ML based IDS. It enables the reduction

of data dimensionality, enhances detection accuracy, and mitigates the risk of overfitting all while

maintaining low computational overhead.

Through the application of PSO-enhanced machine learning algorithms, IDSs can achieve a

balance between high detection performance and system efficiency, making them suitable for

deployment in real-world IoT scenarios. Moreover, the integration of these techniques supports

the development of scalable and generalizable security models capable of adapting to evolving

attack patterns.

This thesis has addressed several key aspects related to enhancing security in IoT environments

through intelligent intrusion detection. It began by presenting the fundamentals of the Internet of

Things (IoT), including its architecture, characteristics, and communication protocols. Then, it

explored Intrusion Detection Systems (IDS), their architectures, characteristics, and the common

types of intrusion attacks they are designed to detect. The third part focused on the integration of

Machine Learning (ML) techniques with IDS to improve detection accuracy and system

adaptability. Finally, the Particle Swarm Optimization (PSO) algorithm was applied for feature

selection, demonstrating its effectiveness in reducing feature dimensionality and improving

classifier performance. Together, these components contribute to building a more efficient and

General Conclusion

67

intelligent intrusion detection framework suitable for the dynamic and resource-constrained nature

of IoT networks.

For future works, an integration of the proposed model could be done by trying to install the IDS

in different approaches such as central, distributed and hybrid approach in a real environment with

real traffic data.

In conclusion, the synergy between IoT, IDS, ML, and PSO represents a significant advancement

toward the realization of autonomous, intelligent, and lightweight security frameworks. Future

research may focus on real-time implementation, cross-layer optimization, and the incorporation

of federated or distributed learning paradigms to further strengthen the resilience and applicability

of these systems in next-generation IoT ecosystems.

References

68

References

[1]
J.Gubbi , R. Buyya, Internet of Things (IoT): A vision, architectural elements, and

future directions, 2013

[2]
Acharjya, D.P.; Geetha, M.K., eds. (2017). Internet of Things: Novel Advances and

Envisioned Applications. Springer. p. 311. ISBN 9783319534725

[3]
O.Vermesan,P.Friess,internet of things-Converging Technologies for Smart

Environments and Integrated Ecosystems

[4]
Internet of Things - DiVA portal discusses the characteristics of IoT, including

interconnectivity, heterogeneity, dynamic changes, and thing-related services

[5]
Understanding IoT Networks: A Beginner's Guide by Device Authority highlights the

role of interconnectivity and heterogeneity in IoT networks

[6]
Completely Introduction of IoT Networks In 2024 by MineW provides insights into

how IoT networks manage dynamic changes and adapt to different environments

[7]
Zipit Wireless: Explains the four layers of IoT architecture, including device,

communications, and cloud ingest, and application layers

[8]
EITC: Discusses IoT architecture with layers like sensing, network, data processing,

and application

[9]
Device Authority: Highlights the perception, network, processing, and application

layers.

[10]
TechTarget: Describes six layers, including physical/device, network, data/database,

analytics/visualization, application/integration, and security/management

[11]
Vation Ventures: Provides an overview of IoT architecture with a focus on device,

network, management, and application layers

[12]

Scarfone, K., & Mell, P. (2007). Guide to Intrusion Detection and Prevention Systems

(IDPS) (NIST Special Publication 800-94). National Institute of Standards and

Technology

[13]
Bace, R., & Mell, P. (2001). Intrusion Detection Systems (NIST Special Publication

800-31). National Institute of Standards and Technology

[14] IBM. (n.d.). What is an intrusion detection system (IDS)? IBM Security

References

69

[15]

Imperva. (n.d.). Host-based Intrusion Detection System (HIDS). Retrieved from

https://www.imperva.com/learn/application-security/host-based-intrusion-detection-

hids/

[16]

Cisco. (n.d.). What is a Network-Based Intrusion Detection System (NIDS)? Retrieved

from https://www.cisco.com/c/en/us/products/security/what-is-an-intrusion-detection-

system-ids.html

[17]
Stamus Networks. (n.d.). What are the Three Types of IDS? Retrieved from

https://www.stamus-networks.com/blog/what-are-the-three-types-of-ids

[18]
Classification model for accuracy and intrusion detection using machine learning

approach - PMC

[19]
Vanchurin, V. (2022). Bio-inspired Machine Learning: programmed death and

replication. arXiv preprint arXiv:2207.04886. Available at arXiv

[20]

Darwish, A. (2018). Bio-inspired computing: Algorithms review, deep analysis, and

the scope of applications. Future Computing and Informatics Journal, 3(2), Article 9.

Available at Digital Commons

[21] Oga.ai (n.d.). Bio-inspired optimization algorithms. Available at oga.ai

[22] Mitchell, Melanie. An introduction to genetic algorithms. MIT press, 1998

[23]
ALBCOM, LSI, Universitat Politècnica de Catalunya, Jordi Girona 1-3, Campus Nord,

08034 Barcelona, Spain Accepted 11 October 2005

[24] Pitas I (2000) Digital image processing algorithms and applications. Wiley, New York

[25]

Vandenbroucke N, Macaire L, Postaire JG (2000) Color image segmentation by

supervised pixel classification in a color texture feature space. Application to soccer

image segmentation. In: Proceedings 15th IEEE international conference on pattern

recognition. ICPR-2000, vol 3, pp 621–624 (September)

[26] Holland J. H., Genetic algorithms, 1992, Scientific American, London, UK

[27]
Strisciuglio, N. (2016). Bio-inspired algorithms for pattern recognition in audio and

image processing. University of Groningen

[28]
Kadry, S., & Kumar, T. K. (2025). Bio-inspired Algorithms in Machine Learning and

Deep Learning for Disease Detection

[29]
Satyobroto Talukder ”Mathematical Modelling and Applications of Particle Swarm

Optimization”, Master’s Thesis. February 2011

https://www.imperva.com/learn/application-security/host-based-intrusion-detection-hids/
https://www.imperva.com/learn/application-security/host-based-intrusion-detection-hids/
https://www.cisco.com/c/en/us/products/security/what-is-an-intrusion-detection-system-ids.html
https://www.cisco.com/c/en/us/products/security/what-is-an-intrusion-detection-system-ids.html
https://www.stamus-networks.com/blog/what-are-the-three-types-of-ids
https://pmc.ncbi.nlm.nih.gov/articles/PMC8049129/
https://pmc.ncbi.nlm.nih.gov/articles/PMC8049129/

References

70

[30] Anaconda.com, "Anaconda.

[31] Anaconda.com, "Anaconda Installation guide.

[32] Numpy.org. What is NumPy. Available: https://numpy.org/

[33] Pandas. Pandas. Available : https://pandas.pydata.org/

[34]
https://matplotlib.org/. Matplotlib: visualisation with python. Available:

https://matplotlib.org/

[35] Scikitlearn. Scikitlearn. Available: https://scikit-learn.org/

 الملخص

أُنشطةُالهكرُوحمايةُالبياناتُ ُتعُدُُالهجماتُالسبرانيةُتهديداُُحقيقياُُللأنظمةُالمعلوماتية،ُمماُيستدعيُالكشفُالمبكرُعنهاُللحدُمن ُُُُُُُ ُُ ُُُ ُ ُ ُُ ُ ُ ُُ ُُ ُ ُ ُُُ ُ ُ ُُ ُ ُُ ُُُ ُُ ُُ ُ ُُ ُُ ُُ ُ ُ ُُ ُُ ُ ُ ُُ ُُُُ ُ ُُُ ُُُُ ُ ُُ ُ ُُ ُُ ُ ُ ُُ ُُ ُُ ُ ُُُ ُُُ ُُ ُ ُُُ ُُُُ ُُ ُُ ُُ ُُ ُ ُ ُُ ُ ُ ُ ُُُُ

التعلمُالآلي ُُالتيُتمكنُُمنُتحليلُُ (ML) الحساسة.ُمنُالضروريُتأمينُالأنظمةُعبرُتطويرُوسائلُذكيةُتعتمدُعلىُتقنياتُ ُُُ ُُُ ُ ُُ ُ ُ ُُُ ُُُ ُ

التيُتستفيدُمنُالذكاءُالاصطناعيُ (IDS) السلوكُواكتشافُالأنماطُغيرُالطبيعية.ُمنُأبرزُهذهُالوسائلُأنظمةُكشفُالتسلل

ُ GAو PSO (Particle Swarm Optimization) لتحسينُدقتها.ُكماُيمكنُاستعمالُخوارزمياتُمستوحاةُمنُالطبيعةُمثل

(Genetic Algorithm) ُاُلأمان بُشكلُفعالُفيُرفعُمستوى اُلأساليبُتساهم اُلكشف.ُهذه أُداء اُلخصائصُوتحسين فيُاختيار

، KNN ،LR ،NB ،SVM قمنا بإجراء سلسلة من التجارب باستخدام مجموعة من خوارزميات التصنيف تشمل السيبراني.

MLP ،RFو ،DTوذلك بهدف تحسين أداء نظام كشف التسلل من خلال استخدام خوارزمية ، PSO لاختيار الميزات. أظهرت

ساهم في تحسين دقة التصنيف وتقليل عدد الميزات في معظم الحالات. من بين جميع المصنفات، حققت PSO النتائج أن تطبيق

أفضل أداء، حيث سجلت دقة عالية مع عدد ميزات أقل مقارنة بالخوارزميات الأخرى، Decision Tree (DT) خوارزمية

 . مما يدل على فعاليتها في بناء نظام كشف تسلل أكثر كفاءة وأقل تعقيد ا

 Abstract

Cyberattacks pose a serious threat to information systems, making early detection essential to limit

hackers’ activities and protect sensitive data. Securing systems requires the development of

intelligent methods based on Machine Learning (ML) techniques that analyze behavior and detect

anomalies. One of the most effective tools is Intrusion Detection Systems (IDS), which leverage

AI to improve accuracy. Nature-inspired algorithms such as Particle Swarm Optimization (PSO)

and Genetic Algorithm (GA) can also be used for feature selection and enhancing detection

performance. These approaches play a vital role in strengthening cybersecurity. We conducted a

series of experiments using several classification algorithms, including KNN, LR, NB, SVM,

MLP, RF, and DT, with the aim of enhancing intrusion detection performance through PSO-based

feature selection. The results showed that PSO improved classification accuracy while reducing

the number of features in most cases. Among all classifiers, the Decision Tree (DT) algorithm

achieved the best performance, attaining high accuracy with fewer selected features compared to

the other models. This highlights its effectiveness in building a more efficient and less complex

intrusion detection system.

 Résumé

Les cyberattaques représentent une menace sérieuse pour les systèmes d'information, rendant la

détection précoce essentielle pour limiter les activités des hackers et protéger les données

sensibles. La sécurisation des systèmes nécessite le développement de méthodes intelligentes

basées sur l'apprentissage automatique (Machine Learning) permettant d'analyser les

comportements et de détecter les anomalies. Parmi les outils les plus efficaces figurent les systèmes

de détection d'intrusion (IDS), qui utilisent l'intelligence artificielle pour améliorer leur précision.

Des algorithmes inspirés de la nature, tels que PSO (Particle Swarm Optimization) et GA (Genetic

Algorithm), peuvent également être utilisés pour la sélection de caractéristiques et l'amélioration

des performances de détection. Ces approches jouent un rôle crucial dans le renforcement de la

cybersécurité. Nous avons mené une série d’expériences en utilisant plusieurs algorithmes de

classification, notamment KNN, LR, NB, SVM, MLP, RF et DT, dans le but d’améliorer la

performance du système de détection d’intrusion grâce à la sélection de caractéristiques basée sur

l’algorithme PSO. Les résultats ont montré que l’utilisation de PSO a permis d’améliorer la

précision de classification tout en réduisant le nombre de caractéristiques dans la plupart des cas.

Parmi tous les classifieurs, l’algorithme Decision Tree (DT) a obtenu les meilleures performances,

en atteignant une précision élevée avec un nombre de caractéristiques sélectionnées inférieur par

rapport aux autres modèles, ce qui démontre son efficacité dans la conception d’un système de

détection d’intrusion plus performant et moins complexe.

