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General Introduction 

The Internet of Things (IoT) has rapidly expanded, connecting a wide range of devices-from 

everyday home appliances to complex industrial machinery-through embedded sensors, 

software, and network connectivity. This interconnected ecosystem generates massive volumes 

of real-time data, enabling enhanced operational efficiency, automation, and data-driven 

decision-making across various sectors such as manufacturing, smart cities, and healthcare. For 

example, IoT sensors facilitate predictive maintenance by monitoring equipment health and 

alerting operators before failures occur, significantly reducing downtime and costs. 

However, the vast scale and heterogeneity of IoT devices introduce significant security 

challenges. Many devices have limited built-in security, and the sheer volume of data and 

network traffic makes manual monitoring infeasible. Intrusion Detection Systems (IDS) are 

therefore critical for continuously monitoring IoT networks to identify suspicious or malicious 

activities that could threaten system integrity. Traditional IDS approaches often struggle to 

handle the dynamic, large-scale, and resource-constrained nature of IoT environments. 

Machine Learning (ML) offers a powerful solution by enabling IDS to automatically learn 

from vast amounts of IoT-generated data and detect complex attack patterns or anomalies 

without relying solely on predefined signatures. ML models can adapt to evolving threats and 

improve detection accuracy, making them well-suited for IoT security applications. However, 

ML models require careful tuning and optimization to perform effectively in diverse IoT 

contexts. 

Particle Swarm Optimization (PSO), a nature-inspired algorithm modeled on the social 

behavior of bird flocks or fish schools, is frequently used to optimize ML model parameters and 

feature selection in IDS frameworks. PSO efficiently explores high-dimensional search spaces to 

find optimal or near-optimal configurations, enhancing the accuracy and efficiency of ML-based 

intrusion detection in IoT networks. 

In summary, the explosive growth of IoT demands advanced security mechanisms. Integrating 

IDS with ML techniques, further optimized by algorithms like PSO, creates intelligent, adaptive 

defense systems capable of protecting complex IoT ecosystems while harnessing their data for 

operational excellence. 
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To provide a clear understanding of the research topic, the thesis is organized into four main 

chapters. The first chapter introduces the concept of the Internet of Things (IoT), its architecture, 

applications, IoT characteristics, and IoT communication protocols. The second chapter 

discusses Intrusion Detection Systems (IDS), focusing on IDS architectures, their characteristics, 

and various types of intrusion attacks. The third chapter focuses on the use of Machine Learning 

(ML) techniques in the context of IDS, highlighting common algorithms and their effectiveness 

in detecting intrusions. Finally, the fourth chapter presents the Particle Swarm Optimization 

(PSO) algorithm, explaining its application in feature selection to enhance the performance and 

accuracy of ML-based intrusion detection models. 
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I.1 Introduction 

The next wave in the erea of computing will be outside the realm of the traditional desktop. In 

the internet of things (IoT) paradigm, many of the objects that surround us will be on the network 

in one form or another. Radio Frequency Identification (RFID) and sensor network technologies 

will rise to meet this new challenge, in which information and communication systems are 

invisibly embedded in the environment around us. This result in the generation of enormous 

amounts of data which have to be stored, processed and presented in a seamless, effcient and easily 

interpretable form. This model will consist of services that are commodities and delivred in a 

manner similar to traditional commodities [1]. 

I.2 Definition of IoT 

The internet of things (IoT) is the inter-networking of physical device, vehicles, buildings, and 

other items embedded with electronics, software, sensors, actuators, and network connectivity that 

enable these objects to collect and exchange data. The (IoT) allows objects to be sensed or 

controlled remotely across existing network infrastructure, creating opportunities for more direct 

integration of the physical world into computer-based systems, and resulting in improved 

efficiency, accuracy and economic benefit in addition to reduced human intervention [2]. 

Internet of Things is a concept and a paradigm that considers pervasive presence in the 

environment of a variety of things that through wireless and wired connection and unique 

addressing schemes are able to interact with each other and cooperate with other things to create 

new applications and reach common goals [3]. 

The goal of the internet of tings is to enable things to be connected every time, everywhere, with 

anything and anyone ideally using any path/network and any service.  

I.3 IoT network characteristics 

A network in the Internet of Things (IoT) has specific characteristics that make it different from 

traditional networks. Here’s a detailed breakdown: 

I.3.1 Interconnectivity 

Interconnectivity is a fundamental characteristic of IoT networks, allowing devices to connect 

with each other and the global internet. This connectivity enables devices to share data and 

coordinate actions across different locations. For instance, smart home devices can communicate 
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with each other to optimize energy consumption and security. Interconnectivity is facilitated by 

various wireless technologies such as Wi-Fi, Bluetooth, and cellular networks [4] [5]. 

I.3.2 Heterogeneity 

IoT networks are heterogeneous, meaning they consist of devices with different hardware and 

communication protocols. This diversity includes devices ranging from simple sensors to complex 

industrial equipment, each with its own set of capabilities and limitations. Heterogeneity poses 

challenges in terms of interoperability but also allows for a wide range of applications across 

different industries [4] [5]. 

I.3.3 Dynamic Changes 

IoT devices can change their state dynamically, such as switching between active and sleep 

modes to conserve energy. This dynamic behavior is crucial for managing power consumption, 

especially in battery-powered devices. Dynamic changes also include adapting to environmental 

conditions or responding to commands from central systems [4] [6]. 

I.3.4 Thing-related Services 

Thing-related services are designed to provide functionalities that respect the constraints and 

capabilities of physical devices. These services consider factors such as device memory, 

processing power, and energy availability. By tailoring services to the specific needs of IoT 

devices, they can operate efficiently and effectively within their operational limits [4]. 

I.4 Types of IoT Technologies 

IoT technologies include: 

o Sensors and Actuators: Sensors collect data, while actuators perform actions based on that 

data [1][4]. 

o Communication Protocols: Such as Bluetooth, Zigbee, Wi-Fi, and cellular networks [1][3]. 

o Artificial Intelligence (AI) and Machine Learning (ML): Enhance data analysis and 

decision-making [1]. 

o Edge Computing: Enables local data processing to reduce latency and bandwidth usage [1]. 
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Fig I.1: Different types of IoT technologies 

 

I.5 IoT Architecture 

IoT architecture is a multi-layered framework that facilitates the interaction between physical 

devices and digital systems. It typically includes several layers, each with distinct responsibilities. 

Here's an overview of the common layers and some variations: 

I.5.1 Common Layers of IoT Architecture 

I.5.1.1 Perception/Sensor Layer (Device Layer) 

o This layer consists of devices, sensors, and actuators that collect data from the environment 

and control physical objects [7][8][9]. 

o Technologies used include RFID tags, cameras, and various sensors [7]. 

I.5.1.2 Network Layer (Communications Layer) 

o Responsible for transmitting data from devices to the cloud or other parts of the IoT system 

[7][8][9]. 

o Utilizes protocols like Wi-Fi, Bluetooth, Zigbee, and cellular networks [8][10]. 

I.5.1.3 Middleware/Processing Layer 

o Processes and analyzes the collected data, often using cloud computing or big data 

processing [9]. 

o This layer transforms raw data into useful information and manages devices [11]. 
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I.5.1.4 Application Layer 

o Provides services and applications based on the processed data, such as smart home 

automation or industrial monitoring [7] [9] [11]. 

o Acts as the interface between the IoT system and users [11]. 

I.5.1.5 Business Layer 

o Focuses on managing the IoT system, including business models and user privacy. 

I.5.2 Simplified Three-Tier Architecture 

I.5.2.1 Devices (Sensors and Actuators) 

o Collects data and interacts with the physical environment. 

I.5.2.2 Edge Gateway 

o Aggregates and preprocesses data before sending it to the cloud. 

I.5.2.3 Cloud 

o Stores and analyzes data using advanced analytics tools. 

 

Fig I.2: IoT Architecture 
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I.6 IoT protocols 

IoT protocols are essential for enabling communication between devices in the Internet of Things 

ecosystem. These protocols ensure that data is transmitted efficiently and securely across different 

layers of the IoT architecture. Here's a detailed overview of some key IoT protocols: 

I.6.1 Application Layer Protocols 

I.6.1.1 MQTT (Message Queueing Telemetry Transport) 

o Description: MQTT is a lightweight messaging protocol designed for IoT and M2M 

applications. It uses a publish-subscribe architecture, making it ideal for remote 

environments with limited bandwidth. 

o Use Cases: Predictive maintenance, smart home automation. 

I.6.1.2 HTTP (Hypertext Transfer Protocol) 

o Description: Widely used for web applications, HTTP is also used in IoT for data transfer 

via REST APIs. However, it requires more bandwidth and energy compared to MQTT. 

o Use Cases: Applications with fewer data and battery constraints. 

I.6.1.3 CoAP (Constrained Application Protocol) 

o Description: Designed for constrained networks and devices, CoAP is similar to HTTP but 

uses UDP for faster communication. It supports RESTful architecture and is suitable for 

low-power devices. 

o Use Cases: Resource-constrained IoT environments. 

I.6.2 Transport Layer Protocols 

I.6.2.1 TCP (Transmission Control Protocol) 

o Description: Ensures reliable data transfer by reassembling packets and resending lost data. 

It prioritizes accuracy over speed. 

o Use Cases: Applications requiring guaranteed data delivery. 

I.6.2.2 UDP (User Datagram Protocol) 

o Description: Prioritizes speed over reliability, making it suitable for real-time applications 

like video streaming. 

o Use Cases: Time-sensitive applications. 
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I.6.3 Network Layer Protocols 

I.6.3.1 IP (Internet Protocol) 

o Description: Essential for routing data packets across networks. Both IPv4 and IPv6 are 

used in IoT. 

o Use Cases: General internet connectivity. 

I.6.3.2 6LoWPAN (IPv6 over Low-Power Wireless Personal Area Networks) 

o Description: Optimized for low-power devices, enabling IPv6 communication over low-

power networks. 

o Use Cases: Low-power IoT devices. 

I.6.4 Wireless Communication Protocols 

I.6.4.1 Bluetooth 

o Description: Suitable for short-range, low-power applications. Often used in personal area 

networks. 

o Use Cases: Wearables, smart home devices. 

I.6.4.2 Zigbee 

o Description: Used for low-power, low-data-rate wireless communication. Common in-

home automation. 

o Use Cases: Smart lighting, thermostats. 

I.6.4.3 Wi-Fi 

o Description: Provides high-speed internet connectivity. Widely used in IoT applications 

requiring fast data transfer. 

o Use Cases: Smart home devices, industrial automation. 
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Fig I.3: IoT Communication Protocols 

I.7 IoT applications 

The Internet of things applications are addressing the societal needs and the advancements to 

enabling technologies such as nanoelectronics and cyber-physical systems continue to be 

challenged by a variety of technical. 

I.7.1 Smart Cities 

By 2020 we will see the development of Mega city corridors and networked integrated and 

branded cities. With more than 60 percent of the world population expected to live in urban cities 

by 2025. This will lead to the evolution of smart cities with eight smart features, including smart 

economy, smart buildings, smart mobility, smart energy, smart information communication and 

technology, smart planning and smart citizen. There will be about 40 smart cities globally by 2025. 

The role of the smart cities will be crucial for Internet of Things (IoT) deployment, running of 

the day-to-day city operations and creation of city development strategies will drive the use of the 

(IoT). Therefore, cities and their service represent an almost ideal platform for (IoT) research, 

taking into account city requirements and transferring them to solutions enabled by (IoT) 

technology. 

The figure depicts several commons actions that may take place in the smart day, highlighting 

in each occasion which domain applies [3]. 
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Fig I.4: A day in the life of a typical European citizen of a smart city 

I.7.2 Smart Energy and the Smart Grid 

There is increasing public awareness about the changing paradigm of our pol-icy in energy 

supply, consumption and infrastructure. For several reasons our future energy supply should no 

longer be based on fossil resources. 

 

Fig I.5: Smart grid representation 
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I.7.3 Smart Home 

The rise of Wi-Fi is role in home automation has primarily come about due to the networked 

nature of deployed electronics where electronic devices (mobile device, AV receivers ...etc). 

 

Fig I.6: Smart home platform 

I.8 Networks and Communication 

Present communication technologies span the globe in wireless and wired networks and support 

global communication by globally-accepted communication standards. The evolution and 

pervasiveness of present communication technologies has the potential to grow to unprecedented 

levels in the near future by including the world of things into the developing Internet of Things. 

I.8.1 Wireless Networks 

Wireless networks especially will grow largely by adding vast amounts of small Internet of 

Things devices with minimum hardware, software and intelligence, limiting their resilience to any 

imperfections in all their functions. Based on the research of the growing network complexity, 

caused by the Internet of Things, predictions of traffic and load models will have to guide further 

research on unfolding the predicted complexity to real networks, their standards and on-going 

implementations. The idea of internet of things (IoT) was developed in parallel to WSNs. 

I.8.2 Wireless Sensors Networks (WSN) 

A wireless sensor network (WSN) is a network formed by a large number of sensor nodes where 

each node is equipped with a sensor to detect physical phenomena such as light, heat, pressure, 

etc. WSNs are regarded as a revolutionary information gathering method to build the information 
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and communication system which will greatly improve the reliability and efficiency of 

infrastructure systems. Compared with the wired solution, WSNs feature easier deployment and 

better flexibility of devices. With the rapid technological development of sensors, WSNs will 

become the key technology for IoT. (Book: Internet of things: wireless sensor networks) [4]. 

I.9 Advantages of IoT 

o Execute multiple tasks at a time like a computer. 

o Easiest internet connectivity 

o Works on GUI (Graphical User Interface) mode because of HDMI port. 

o Best suited for server-based applications i.e., can be connected via SSH–Secure Shell-to 

access the Rpi command line remotely and file sharing via FTP–File Transfer Protocol. 

o More reliable for software applications. 

I.10 Disadvantages of IoT 

o Security concerns and potential for hacking or data breaches. 

o Privacy issues related to the collection and use of personal data. 

o Dependence on technology and potential for system failures. 

o Limited standardization and interoperability among devices. 

o Complexity and increased maintenance requirements. 

o High initial investment costs. 

o Limited battery life on some devices. 

o Concerns about job displacement due to automation. 

o Limited regulation and legal framework for IoT, which can lead to confusion and 

uncertainty. 

 

 

 

 

 



Chapter I: IoT (Internet of Things) 

13 
 

I.11 Conclusion 

The Internet of Things represents a profound technological shift that continues to transform 

industries, cities, homes, and daily life. By connecting the physical and digital worlds through 

networks of sensors, processors, and interfaces, IoT enables unprecedented levels of automation, 

insight, and efficiency. 

While the potential benefits are immense ranging from energy conservation and improved urban 

living to enhanced industrial productivity and innovative consumer experiences significant 

challenges remain. Security vulnerabilities, interoperability obstacles, data management 

complexities, and other implementation hurdles must be addressed to realize the full potential of 

IoT technologies. 

As we look toward the future, the continuing evolution of edge computing, AI integration, and 

standardization efforts promises to overcome many of these challenges. With projected market 

growth remaining strong through 2032, IoT will likely become increasingly embedded in our 

technological infrastructure, economic systems, and daily routines creating a more connected, 

efficient, and responsive world in the process. 
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II.1 Introduction 

Intrusion detection systems (IDSs) are software or hardware systems that automate the 

process of monitoring the events occurring in a computer system or network, analysing them 

for signs of security problems. As network attacks have increased in number and severity over 

the past few years, intrusion detection systems have become a necessary addition to the security 

infrastructure of most organizations. This guidance document is intended as a primer in 

intrusion detection, developed for those who need to understand what security goals intrusion 

detection mechanisms serve, how to select and configure intrusion detection systems for their 

specific system and network environments, how to manage the output of intrusion detection 

systems, and how to integrate intrusion detection functions with the rest of the organizational 

security infrastructure. References to other information sources are also provided for the reader 

who requires specialized or more detailed advice on specific intrusion detection issues. [12] 

[13] 

II.2 Definition of Intrusion Detection Systems (IDS) 

An intrusion detection system (IDS) is a network security tool that monitors network traffic 

and devices for known malicious activity, suspicious activity or security policy violations. 

An IDS can help accelerate and automate network threat detection by alerting security 

administrators to known or potential threats, or by sending alerts to a centralized security tool. 

A centralized security tool such as a security information and event management (SIEM) 

system can combine data from other sources to help security teams identify and respond to 

cyberthreats that might slip by other security measures. 

 IDSs can also support compliance efforts. Certain regulations, such as the Payment Card 

Industry Data Security Standard (PCI-DSS), require organizations to implement intrusion 

detection measures. 

An IDS cannot stop security threats on its own. Today IDS capabilities are typically integrated 

with—or incorporated into—intrusion prevention systems (IPSs), which can detect security 

threats and automatically act to prevent them. [13] [14] 

II.3 Types of Intrusion Detection Systems 

II.3.1 Types of IDS by Deployment 
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II.3.1.1 Host-based IDS (HIDS) 

Host-based Intrusion Detection System [HIDS] is a security software designed to monitor & 

analyse the activities on an individual host or endpoint to detect & respond to potential security 

breaches. It works by examining system logs, file integrity, user activities & network 

connections, aiming to identify suspicious behaviour or signs of unauthorised access or 

tampering. 

HIDS works by deploying agents or sensors on individual hosts, continuously monitoring 

system events & activities. It compares these events with a database of known attack patterns 

& abnormal behaviours. If any anomalous activity is detected, the system generates alerts or 

notifications to administrators, allowing them to investigate & take necessary action. [15] 

II.3.1.2 Network-based IDS (NIDS) 

A Network-based Intrusion Detection System [NIDS] is a security solution designed to 

monitor & analyse network traffic for potential security breaches or malicious activities. It 

operates as a passive monitoring system, observing data packets passing through the network 

in real-time. NIDS helps identify & respond to various cyber threats, such as malware, 

unauthorised access attempts & suspicious patterns, to enhance overall network security. 

NIDS inspects network packets using various techniques like signature-based & anomaly-

based detection. It examines packet headers & payloads, comparing them against a database of 

known attack signatures. If a match is found, it raises an alert. Anomaly-based detection 

identifies deviations from normal network behaviour, flagging any unusual activities that might 

indicate a potential intrusion. NIDS can also prevent attacks by blocking malicious traffic or 

sending alerts to administrators. [16] 

 

Fig II.1: Network-based IDS vs Host-based IDS 
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II.3.1.3 Hybrid IDS 

A hybrid intrusion detection system combines both anomaly-based and signature-based 

detection methods to address the limitations of each approach. A hybrid system leverages 

signature-based detection for known threats and anomaly-based detection for novel attacks. 

This enhances the overall effectiveness of intrusion detection. [17] 

II.3.2 Types of IDS by Detection Method  

II.3.2.1 Anomaly-Based IDS 

Anomaly-based IDS focuses on identifying deviations from normal behavior within a 

network or system. It works by establishing a baseline for normal activity by statistically 

analyzing network traffic or system activity over time. This baseline becomes a reference for 

identifying anomalies. The IDS then continuously monitors network traffic or system activity 

and compares the real-time data to the established baselines. Significant deviations from these 

baselines are flagged as potential intrusions. [17] 

 

Fig II.2: Anomaly-Based IDS 

II.3.2.2 Signature-Based IDS 

A signature-based intrusion detection system relies on a predefined database of attack 

signatures to identify malicious activity. These signatures represent known patterns or 

fingerprints of network attacks or suspicious system behavior. The IDS continuously monitors 

network traffic or system activity and compares this data against the database of attack 

signatures. Any matches trigger an alert, indicating a potential intrusion attempt. [17] 



Chapter II: Intrusion Detection Systems (IDSs) 

17 
 

 

Fig II.3: Signature-Based IDS 

 

II.4 Characteristics of an intrusion detection system 

An intrusion detection system (IDS) is a tool that monitors network traffic for suspicious 

activity and known threats [18]. Here's a more detailed look at the characteristics of an 

intrusion detection system: 

o Accuracy An IDS should be accurate, minimizing false positives (identifying harmless 

behavior as an attack) and false negatives (failing to detect actual attacks). An IDS that 

is accurate detects genuine attacks, while one that is precise does not report legitimate 

behavior as an attack. Accuracy is a main parameter in determining the performance of 

the algorithm used to analyze and predict intrusions. 

o Timeliness An IDS must detect and report intrusions quickly. The faster an intrusion is 

detected, the quicker it can be addressed, thereby minimizing potential damage. 

o Scalability An IDS needs to handle growth in traffic or nodes without a drop in 

performance. It should adapt to increasing demands, accommodate new technologies, 

adjust to network infrastructure changes, and expand coverage areas. 

o Robustness An IDS should be resistant to attackers trying to disable or deceive it. A 

novel IDS architecture can improve robustness against adversarial attacks by combining 

conventional machine learning (ML) models and deep learning models. 
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o Configurability An IDS should be configurable to adapt to specific environments or 

requirements. 

o Real-time Monitoring an IDS should monitor system and network activities in real-time 

to provide instant alerts. 

o Logging and Audit an IDS should keep detailed logs for forensic analysis and 

compliance. 

o Low Overhead an IDS should not significantly degrade the performance of the system 

it protects. 

o Adaptability Advanced IDSs can learn and adapt to new threats, especially anomaly-

based systems. 

II.5 IDS Architectures 

Intrusion Detection System (IDS) architectures define how IDS devices or software are 

connected within a network to capture and monitor traffic effectively. The fundamental 

requirement is that the IDS must have access to network traffic to analyze it for suspicious 

activity. There are three primary IDS architecture models: 

II.5.1 Switch Spanning Port (SPAN) 

o A SPAN port is a special port on a network switch configured to mirror traffic from one 

or more source ports or VLANs to a designated destination port where the IDS sensor 

is connected. 

o This allows the IDS to passively monitor traffic without interfering with the flow, as it 

receives a copy of the data. 

o SPAN ports support one-way traffic capture, meaning the IDS can observe traffic but 

cannot alter or block it. 

o Limitations include a restricted number of SPAN sessions per switch (e.g., six sessions 

on Cisco Catalyst 6000 switches) and potential packet duplication when capturing both 

transmit and receive traffic, which can affect IDS signature processing. 

o Over-subscription can occur if the mirrored traffic exceeds the destination port's 

capacity, potentially leading to packet loss on the IDS but not affecting the source ports. 

o To handle high traffic volumes, multiple SPANs or Remote SPAN (RSPAN) can be 

used, and EtherChannel configurations may help aggregate traffic to the IDS, though 

this requires careful planning to avoid missing threats or delayed detection. 
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Fig II.4: Switch Spanning Port (SPAN) 

II.5.2 Network Tap 

o A network tap is a dedicated physical device inserted at a network bottleneck or uplink 

point to passively capture all traffic flowing through that segment. 

o It provides a reliable and complete copy of network data in full duplex mode, allowing 

the IDS to see both sides of conversations without packet loss. 

o Taps are passive and do not have an IP address, which enhances security by making the 

IDS invisible to attackers and preventing direct attacks on the IDS itself. 

o They simplify deployment in switched networks where promiscuous monitoring is 

difficult. 

o Network taps can be deployed at multiple points and aggregated at a central monitoring 

rack, often requiring load balancing among several IDS sensors to handle high-speed 

traffic. 

o Taps reduce IDS implementation costs and improve security posture by ensuring 

comprehensive traffic visibility without impacting network performance. 
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Fig II.5: Network TAPs 

II.5.3 Inline Architecture 

o In this model, the IDS (or Intrusion Prevention System, IPS) is placed physically inline 

between two network segments. 

o All traffic passes through the IDS device, which can analyze and potentially block 

malicious traffic in real time. 

o This allows active intervention, such as dropping malicious packets or terminating 

connections, unlike passive monitoring in SPAN or tap setups. 

o Inline IDS/IPS devices must be highly robust and capable of processing large volumes 

of traffic with minimal latency to avoid network disruption. 

o Inline placement is often used at network perimeters or critical chokepoints where 

immediate threat mitigation is required. 

o Inline IDS differs from passive IDS in that it can control traffic flow, while passive IDS 

only monitors and alerts. 

II.6 Intrusion attacks 

Intrusion attacks represent a broad spectrum of malicious activities that an Intrusion 

Detection System (IDS) is designed to identify by analyzing network traffic or system 

behavior for suspicious patterns. Below are detailed descriptions of common types of 

intrusion attacks that IDS typically detects: 

 



Chapter II: Intrusion Detection Systems (IDSs) 

21 
 

II.6.1 Scanning Attacks 

o Attackers perform reconnaissance by probing networks to find vulnerabilities. 

o This includes port scans, vulnerability scans, and network mapping attempts. 

o IDS detects these by identifying unusual patterns of connection attempts or probes 

across multiple ports or hosts, which deviate from normal traffic behavior. 

II.6.2 Denial-of-Service (DoS) Attacks 

o DoS attacks aim to overwhelm a system with excessive traffic, making it unavailable 

to legitimate users. 

o Common forms include SYN floods, UDP floods, and ICMP floods. 

o IDS detects these attacks by recognizing traffic spikes, repeated connection attempts, 

or abnormal packet patterns that indicate flooding or resource exhaustion. 

II.6.3 Social Engineering Attacks 

o Although social engineering primarily targets human factors, IDS can detect indirect 

signs such as unusual access attempts, phishing emails triggering suspicious 

downloads, or anomalous data transfers. 

o For example, IDS may flag abnormal login patterns or unexpected file downloads that 

could be linked to social engineering exploits. 

II.6.4 Malware Attacks 

o IDS identifies attempts to download, install, or communicate with malware by 

detecting known malware signatures or suspicious file transfers. 

o Signature-based IDS matches traffic against databases of known malware patterns, 

while anomaly-based IDS detects unusual behaviors indicative of malware activity. 

II.6.5 Exploit Attacks 

o Exploits leverage software vulnerabilities to gain unauthorized access or control. 

o IDS monitors network traffic for patterns associated with known exploits, such as 

attempts to execute buffer overflows, code injections, or remote code execution. 

o Signature-based detection is effective for known exploits, while anomaly-based 

methods help detect zero-day or novel exploits. 
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II.6.6 Privilege Escalation 

o Attackers attempt to gain higher privileges within a system to access sensitive 

resources. 

o IDS can flag suspicious user activities, such as unauthorized access attempts to critical 

files or system areas, or unusual process executions that may indicate privilege 

escalation attempts. 

II.6.7 Insider Threats 

o These are attacks originating from trusted users misusing their access. 

o IDS detects unusual activity patterns like unauthorized access attempts from legitimate 

accounts, abnormal data exfiltration, or deviations from typical user behavior. 

o Detecting insider threats is challenging but critical, often relying on anomaly-based 

detection and behavioral analysis. 

 

Fig II.6: Intrusion attacks 
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II.7 Conclusion 

Intrusion Detection Systems (IDS) remain a cornerstone of modern cybersecurity, providing 

critical visibility into network and system activities to identify potential threats and suspicious 

behaviors. Despite inherent challenges such as false positives and evolving attack techniques, 

IDS technologies have matured to incorporate sophisticated detection methods—including 

signature-based and anomaly-based approaches—that enable timely alerts and support rapid 

incident response. By continuously monitoring traffic and system events, IDS helps 

organizations detect a wide range of attacks, from scanning and malware to insider threats, 

thereby enhancing overall security posture and aiding compliance efforts. However, IDS 

effectiveness depends heavily on proper configuration, ongoing tuning, and integration with 

complementary security tools like Intrusion Prevention Systems (IPS) and Security Information 

and Event Management (SIEM) platforms. As cyber threats grow more complex, IDS remains 

an indispensable, dynamic component of layered defense strategies. 

With the increasing complexity and volume of cyber threats, traditional IDS methods face 

limitations in detecting novel or sophisticated attacks. This has led to the growing adoption of 

machine learning (ML) techniques in intrusion detection. ML enables systems to learn from 

historical data, recognize patterns, and identify anomalies without relying solely on predefined 

signatures. By leveraging algorithms such as supervised learning, unsupervised learning, and 

deep learning, ML-enhanced IDS can improve detection accuracy, reduce false positives, and 

adapt to emerging threats more effectively. The next chapter will explore the fundamentals of 

machine learning, its applications in cybersecurity, and how it transforms intrusion detection 

systems into more intelligent, proactive defenses. 
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III.1 Introduction 

Machine learning and bio-inspired algorithms are two interconnected fields that have 

revolutionized the way we approach complex computational problems. Machine learning, a 

subset of artificial intelligence, enables computers to learn from data and improve over time, 

while bio-inspired algorithms draw inspiration from natural systems to solve computational 

challenges. This overview will explore the definitions, types, and applications of both machine 

learning and bio-inspired algorithms, highlighting their synergies and potential applications. 

III.2 Definition and Importance of Machine Learning 

Machine learning is a branch of artificial intelligence that focuses on developing algorithms 

capable of learning from data without explicit programming. It is crucial in today's data-driven 

world, enabling computers to make decisions or predictions based on patterns found in data. 

The importance of machine learning lies in its ability to handle large volumes of data, drive 

innovation across sectors like healthcare and finance, and enable automation by performing 

tasks that were previously manual [19] [20]. 

III.3 Types of Machine Learning 

Machine learning can be categorized into several types: 

III.3.1 Supervised Learning 

Supervised learning is the most common type of machine learning. It involves training 

algorithms on labeled data to predict outcomes. In this approach, the model learns a mapping 

between the input (features) and the output (label) during the training process. Once trained, 

the model can predict the output for new, unseen data. 

 

Fig III.1: Supervised and unsupervised learning 
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Examples of Supervised Learning Algorithms: 

III.3.1.1 Linear Regression 

Linear regression is a statistical method used in machine learning for predictive analysis. It 

models a linear relationship between one or more independent variables and a dependent 

variable. The goal is to find a best-fit line that minimizes the difference between observed and 

predicted values, typically using the least squares method. 

 

Fig III.2: Linear Regression in machine learning (ML) 

III.3.1.2 Logistic Regression 

Logistic regression is a supervised learning algorithm used for classification problems to 

predict binary outcomes. It models the probability of an event occurring based on one or more 

independent variables. Logistic regression is commonly used in scenarios where the outcome 

is binary, such as predicting whether a customer will buy a product or not. The model outputs 

a probability between 0 and 1, which can be converted into a binary class label. 

 

Fig III.3: Logistic Regression in machine learning (ML) 
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III.3.1.3 Decision Trees 

Decision Trees are a type of supervised learning algorithm useful for both classification and 

regression tasks. They use a tree-like structure to make decisions based on input features. Each 

internal node represents a feature or attribute, each branch represents a decision or test, and 

each leaf node represents the predicted class or value. Decision Trees are easy to interpret and 

visualize but can suffer from overfitting if not properly regularized. 

 

Fig III.4: Decision Tree Classification Algorithm 

III.3.1.4 Support Vector Machines (SVM) 

SVM is a supervised learning algorithm primarily used for classification tasks. It aims to find 

the optimal hyperplane that maximally separates classes in the feature space. SVM can handle 

high-dimensional data and is effective in cases where the number of features is large compared 

to the number of samples. SVMs can also be used for regression tasks, known as Support 

Vector Regression (SVR). 

 

Fig III.5: Support Vector Machine Algorithm 
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III.3.2 Unsupervised Learning 

Unsupervised learning involves training the model on an unlabeled dataset. The model is left 

to find patterns and relationships in the data on its own. This type of learning is often used for 

clustering and dimensionality reduction. Reinforcement learning: Uses rewards or penalties to 

guide the learning process. 

Examples of Unsupervised Learning Algorithms: 

o K-Means Clustering: Groups similar data points into clusters. 

o Principal Component Analysis (PCA): Reduces the number of variables in a dataset 

while retaining most of the information. 

o Association Rule Learning: Identifies typical relations between variables in a large 

dataset. 

 

Fig III.6: Unsupervised Learning 

III.3.3 Self-Supervised Learning 

Self-supervised learning is a type of machine learning that learns from unlabeled data by 

generating its own labels. This approach is useful when labeled data is scarce or expensive to 

obtain. Self-supervised learning often involves techniques like autoencoders or generative 

adversarial networks (GANs) to learn representations of the data without explicit supervision. 
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Fig III.7: Self-Supervised Learning 

III.4 Machine Learning Algorithms 

Some key machine learning algorithms include: 

III.4.1 Linear Regression 

Linear regression is a supervised machine learning algorithm used to model linear 

relationships between variables. It predicts a continuous output variable based on one or more 

input features. The model is represented by a linear equation, where each input variable is 

assigned a coefficient that reflects its impact on the output variable. The equation typically 

includes an intercept term, which shifts the line up or down. Linear regression is commonly 

used for forecasting and prediction tasks, such as predicting house prices based on features like 

size and location. 

Key Features: 

o Least Squares Method: The most common method for fitting linear regression models, 

which minimizes the sum of squared residuals between observed and predicted values. 

o Interpretability: Coefficients provide insights into the relationship between variables, 

making it easy to understand how changes in input variables affect the output. 

III.4.2 Decision Trees 

Decision trees are a type of supervised learning algorithm that uses a tree-like structure to 

make decisions. They are particularly useful for classification and regression tasks. Each 

internal node represents a feature or attribute, each branch represents a decision or test, and 
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each leaf node represents the predicted class or value. Decision trees are easy to interpret and 

visualize but can suffer from overfitting if not properly regularized. 

Key Features: 

o Handling Categorical Variables: Decision trees can handle both numerical and 

categorical data without needing additional preprocessing. 

o Handling Missing Values: They can handle missing data by using surrogate splits or 

other strategies. 

III.4.3 Random Forest 

Random Forest is an ensemble learning method that combines multiple decision trees to 

improve the accuracy and robustness of predictions. By averaging the predictions from multiple 

trees, Random Forest reduces overfitting and improves generalization. It is widely used for 

both classification and regression tasks due to its ability to handle high-dimensional data and 

its robustness against outliers. 

Key Features: 

o Ensemble Learning: Combines predictions from multiple decision trees to reduce 

variance and improve accuracy. 

o Handling High-Dimensional Data: Effective in handling datasets with a large number 

of features. 

 

Fig III.8: Random Forest 
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III.4.4 Support Vector Machines (SVM) 

SVM is a supervised learning algorithm primarily used for classification tasks. It aims to find 

the optimal hyperplane that maximally separates classes in the feature space. SVM can handle 

high-dimensional data and is effective in cases where the number of features is large compared 

to the number of samples. SVMs can also be used for regression tasks, known as Support 

Vector Regression (SVR). 

Key Features: 

o Maximal Margin: SVMs find the hyperplane that maximizes the margin between 

classes, which helps in achieving good generalization. 

o Kernel Trick: Allows SVMs to handle non-linearly separable data by mapping it to a 

higher-dimensional space using kernels. 

 

Fig III.9: Support Vector Machines (SVM) 

III.4.5 Gradient Boosting 

Gradient Boosting is an ensemble learning algorithm that combines multiple weak models to 

create a robust predictive model. It iteratively adds decision trees to correct the errors of 

previous models, with each new tree focusing on the residuals of the previous ensemble. 

Gradient Boosting is widely used for both classification and regression tasks due to its high 

accuracy and ability to handle complex interactions between variables. 
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Key Features: 

o Iterative Improvement: Each new model is trained to correct the errors of the previous 

ensemble, leading to gradual improvement in predictions. 

o Handling Complex Interactions: Effective in capturing non-linear relationships and 

interactions between variables. 

 

Fig III.10: Gradient Boosting 

III.4.6 K-Means Clustering 

K-Means is an unsupervised learning algorithm used for clustering data points into groups 

based on their similarity. It initializes centroids randomly and then iteratively updates these 

centroids to minimize the sum of squared distances between each data point and its closest 

centroid. K-Means is useful for discovering patterns or structures in unlabeled data. 

Key Features: 

o Unsupervised Learning: Does not require labeled data, making it useful for exploratory 

data analysis. 

o Scalability: Efficient for handling large datasets due to its simplicity and speed. 
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Fig III.11: K-Means Clustering 

III.5 Fundamentals of Bio-Inspired Algorithms 

Bio-inspired algorithms are computational methods that mimic natural systems, such as 

biological processes or behaviors observed in nature. These algorithms often involve 

evolutionary principles, swarm intelligence, or neural networks inspired by the brain. Examples 

include genetic algorithms, ant colony optimization, and artificial neural networks [21]. 

III.6 Machine Learning Techniques Inspired by Nature 

Here are detailed explanations of six prominent machine learning techniques inspired by 

nature, often referred to as nature-inspired or bio-inspired algorithms. These techniques mimic 

natural processes such as evolution, swarm behavior, and biological intelligence to solve 

complex optimization and learning problems efficiently: 

III.6.1 Artificial Neural Networks (ANNs) 

Artificial Neural Networks (ANNs) are modeled after biological neural networks. They 

consist of layers of interconnected nodes (neurons) that process and transmit information. 

ANNs are widely used for tasks such as image recognition, speech processing, and natural 

language processing. The inspiration from biological neural networks lies in how neurons 

communicate through synapses, influencing the development of algorithms like 

backpropagation for training ANNs. 
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III.6.2 Genetic Algorithms (GAs) 

Genetic Algorithms (GAs) are a powerful nature-inspired optimization technique modeled 

on the principles of natural selection and genetics [22]. They are widely used to solve complex 

problems where traditional methods may struggle, by iteratively evolving a population of 

candidate solutions toward better fitness. 

 

Fig III.12: Genetic Algorithms (GAs) 

III.6.2.1 Population: GAs maintain a population of candidate solutions, often encoded as 

chromosomes (strings of bits, real numbers, or other data structures) representing possible 

solutions to the problem. The population is usually initialized randomly to ensure diversity. 

III.6.2.2 Fitness Function: Each individual in the population is evaluated using a fitness 

function that quantifies how well the solution solves the problem. This function guides the 

evolutionary process by favoring better solutions for reproduction. 

III.6.2.3 Selection: Inspired by “survival of the fittest,” individuals with higher fitness have a 

greater chance of being selected to reproduce. Common selection methods include roulette 

wheel selection, tournament selection, and rank-based selection, each balancing exploration 

and exploitation differently. 
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III.6.2.4 Crossover (Recombination): Pairs of selected individuals exchange parts of their 

chromosomes to create offspring. This mimics biological sexual reproduction, combining traits 

from two parents to produce genetically diverse children. Various crossover methods exist, 

such as single-point, multi-point, and uniform crossover. 

III.6.2.5 Mutation: To maintain genetic diversity and explore new areas of the solution space, 

random changes are introduced to offspring chromosomes by flipping bits or altering genes. 

Mutation rates must be carefully tuned to avoid premature convergence or excessive 

randomness. 

III.6.2.6 Generation Cycle: After selection, crossover, and mutation, a new population is 

formed, replacing some or all of the old population. This cycle repeats for many generations 

until a stopping criterion is met (e.g., maximum generations or satisfactory fitness). 

III.6.3 Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) is a nature-inspired, population-based optimization 

algorithm modeled on the social behavior of bird flocks or fish schools. It iteratively improves 

candidate solutions to an optimization problem by simulating a swarm of particles moving 

through the search space, guided by individual and collective experiences. 

 

Fig III.13: Particle Swarm Optimization (PSO) 

III.6.3.1 Particles and Positions: Each particle represents a potential solution with a position 

in the search space. 

III.6.3.2 Velocity: Each particle has a velocity that determines its movement direction and 

speed. 
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III.6.3.3 Personal Best (pbest): Each particle remembers the best position it has found so far. 

III.6.3.4 Global Best (gbest) or Neighborhood Best: The swarm shares information to 

identify the best position found by any particle (global best) or within a local neighborhood 

(local best). 

III.6.3.5 Update Rules: At each iteration, particles update their velocities and positions based 

on: 

o Their current velocity (momentum/inertia), 

o The difference between their personal best and current position (cognitive component), 

o The difference between the global or neighborhood best and current position (social 

component). 

III.6.4 Ant Colony Optimization (ACO) 

Ant Colony Optimization (ACO) is a nature-inspired metaheuristic algorithm modeled on the 

foraging behavior of real ants, particularly how they find shortest paths between their colony 

and food sources by depositing and following pheromone trails [23]. 

 

Fig III.14: Ant Colony Optimization (ACO) 

III.6.4.1 Artificial Ants and Construction Graph: In ACO, artificial ants build solutions by 

traversing a fully connected graph representing the problem space. Each edge or node 

corresponds to a component of the solution. 
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III.6.4.2 Pheromone Trails: As ants move through the graph, they deposit virtual pheromones 

on edges they travel. The amount of pheromone represents the learned desirability of that path 

based on previous ants’ experiences. 

III.6.4.3 Probabilistic Path Selection: Ants choose their next move based on a probability 

influenced by two factors: 

o The intensity of pheromone on the path (representing collective learning), 

o A heuristic measure such as the inverse of distance or cost (representing problem-

specific knowledge). 

III.6.4.4 Pheromone Evaporation: Over time, pheromone levels evaporate, reducing the 

attractiveness of less optimal paths and preventing premature convergence on suboptimal 

solutions. 

III.6.4.5 Positive Feedback Loop: Paths that lead to better solutions accumulate more 

pheromone, attracting more ants and reinforcing those paths, guiding the colony toward 

optimal or near-optimal solutions. 

III.6.5 Firefly Algorithm (FA) 

The Firefly Algorithm (FA) is a nature-inspired metaheuristic optimization technique 

developed by Xin-She Yang in 2008, modeled on the flashing behavior and attraction patterns 

of fireflies [24]. It is widely used to solve complex optimization problems by simulating how 

fireflies attract each other based on their brightness, which corresponds to the quality of 

candidate solutions [25]. 

 

Fig III.15: Life cycle of Firefly Algorithm 
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III.6.5.1 Inspiration: Fireflies use bioluminescent flashes to attract mates or prey. Brighter 

fireflies attract others more strongly, but light intensity decreases with distance due to 

absorption. 

III.6.5.2 Population: Each firefly represents a potential solution in the search space. 

III.6.5.3 Brightness (Light Intensity): Corresponds to the objective function value; brighter 

fireflies represent better solutions. 

III.6.5.4 Attractiveness: A firefly’s attractiveness to others is proportional to its brightness 

but decreases exponentially with distance, modeled by an absorption coefficient γ. 

III.6.5.5 Movement: Less bright fireflies move toward brighter ones. If no brighter firefly is 

found, a firefly moves randomly, allowing exploration. 

III.6.6 Bacterial Foraging Optimization (BFO) 

The Bat Algorithm (BA) is a nature-inspired metaheuristic optimization algorithm developed 

by Xin-She Yang in 2010, inspired by the echolocation behavior of microbats. It is designed 

for solving complex global optimization problems by simulating how bats use sound pulses to 

navigate and locate prey [26]. 

 

Fig III.16: Fundamental Structure of the BFO Algorithm 



Chapter III: Machine Learning (ML) 

 

38 
 

III.6.6.1 Echolocation Metaphor: Bats emit ultrasonic pulses and listen to the echoes to 

estimate the distance and location of prey or obstacles. The algorithm models this by having 

virtual bats "fly" through the solution space, adjusting their positions and velocities based on 

pulse frequency, loudness, and pulse emission rate. 

III.6.6.2 Population-Based Search: A swarm of bats (candidate solutions) explores the search 

space. Each bat has a position (solution), velocity, frequency (controlling step size), loudness 

(intensity of search), and pulse emission rate (probability of local search). 

III.6.6.3 Frequency Tuning: Bats adjust their pulse frequency to control the pace and 

direction of movement, balancing exploration (global search) and exploitation (local search). 

III.6.6.4 Movement and Updating: At each iteration, bats update their velocities and positions 

based on their frequency and the global best solution found so far. Loudness and pulse emission 

rates adapt dynamically: loudness typically decreases as bats get closer to prey (better 

solutions), while pulse rate increases to intensify local search. 

III.6.6.5 Local Random Walk: When a bat finds a promising solution, it performs a local 

random walk to explore the neighborhood, improving exploitation. 

III.6.6.6 Selection: The algorithm selects the best solutions iteratively until convergence or a 

stopping criterion is met. 

III.7 Applications of Bio-Inspired Machine Learning 

Bio-inspired machine learning has diverse applications: 

III.7.1 Optimization Problems 

Bio-inspired algorithms, such as genetic algorithms and ant colony optimization, are highly 

effective in solving complex optimization problems. These algorithms mimic natural processes 

like evolution and swarm behavior to find optimal solutions. Genetic algorithms use principles 

of natural selection to evolve better solutions over generations, while ant colony optimization 

simulates how ants find the shortest path to food sources by depositing pheromones. These 

methods are particularly useful in scenarios where traditional optimization techniques struggle 

due to the complexity or non-linearity of the problem [21]. 
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III.7.2 Pattern Recognition 

Techniques inspired by the brain, such as artificial neural networks, are widely used for 

pattern recognition tasks like image and speech recognition. Neural networks mimic the 

structure and function of biological neural networks, allowing them to learn complex patterns 

from data. Deep learning models, which are a subset of neural networks, have achieved state-

of-the-art results in image recognition, speech processing, and natural language processing 

[27]. 

III.7.3 Robotics and Autonomous Systems 

Bio-inspired approaches are crucial in developing more adaptive and efficient autonomous 

systems. For example, swarm intelligence algorithms can be used to control swarms of robots, 

enabling them to perform complex tasks collectively. Additionally, bio-inspired robotics often 

involves designing robots that mimic the movement or sensing capabilities of animals, such as 

robotic snakes or birds, which can navigate through challenging environments more 

effectively. 

III.7.4 Healthcare and Biotechnology 

Bio-inspired machine learning is increasingly applied in healthcare and biotechnology for 

tasks such as drug discovery, disease modeling, and personalized medicine. Bio-inspired 

algorithms can help in analyzing complex biological data, predicting protein structures, and 

identifying potential drug targets. Moreover, machine learning models inspired by biological 

systems can aid in diagnosing diseases more accurately and developing personalized treatment 

plans based on genetic profiles [28]. 

III.7.5 Telecommunications and Network Design 

Swarm intelligence is applied to optimize network routing, spectrum allocation, load 

balancing, and fault tolerance in wireless and wired communication networks. These 

algorithms enhance data transmission efficiency, reduce congestion, and improve network 

resilience. 
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III.7.6 Big Data and Cloud Computing 

With the growth of big data and cloud services, bio-inspired algorithms are used for scalable 

data analysis, feature selection, and cloud resource management. Their parallelism and 

adaptability make them suitable for handling large-scale, distributed computing environments. 

III.7.7 Cybersecurity and Anomaly Detection 

Artificial immune systems and other bio-inspired models detect network intrusions, malware, 

and insider threats by learning normal behavior patterns and identifying anomalies. These 

adaptive systems improve the robustness and responsiveness of cybersecurity defenses. 

III.8 Conclusion 

Machine learning and bio-inspired algorithms form a synergistic partnership that enhances 

the ability to solve complex computational problems by drawing inspiration from natural 

processes. Bio-inspired algorithms-such as genetic algorithms, swarm intelligence, and neural 

network models-mimic biological evolution, social behaviors, and brain functions, enabling 

machine learning systems to become more adaptable, efficient, and robust. This integration 

leads to innovative solutions across diverse fields including healthcare, robotics, finance, and 

big data analytics. 

By incorporating principles like hierarchical information processing, context-dependent 

learning, and adaptive evolution, bio-inspired machine learning models can better handle noisy, 

dynamic, and high-dimensional data. For example, convolutional neural networks (CNNs) are 

inspired by the hierarchical structure of the visual cortex, enabling efficient feature extraction 

and object recognition. Similarly, recent advances explore integrating biological complexity 

such as neuron-astrocyte interactions to improve transformer architectures, potentially 

enhancing learning efficiency, robustness, and energy consumption. 

As both fields evolve, their fusion is expected to drive significant advancements in artificial 

intelligence by enabling systems that learn more like natural organisms-capable of 

generalization, causal reasoning, and adaptation to new environments. This convergence also 

addresses limitations of traditional AI models, such as brittleness and lack of deep 

understanding, by embedding biological principles of plasticity, modularity, and self-

organization. Furthermore, bio-inspired algorithms contribute to managing big data challenges 

by providing scalable, intelligent, and robust methods for data fusion, storage, and processing. 
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In summary, the ongoing integration of machine learning with bio-inspired algorithms 

leverages nature’s proven strategies to create more powerful, flexible, and intelligent AI 

systems. This interdisciplinary approach not only enhances current capabilities but also opens 

new avenues for research and application, promising transformative impacts across science, 

engineering, and industry. 
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IV.1 Introduction 

Swarm intelligence (SI) is based on the collective behavior of decentralized, self-organized 

systems. It may be natural or artificial. Natural examples of SI are ant colonies, fish schooling, 

bird flocking, bee swarming and so on. 

Besides multirobot systems, some computer program for tackling optimization and data analysis 

problems are examples for some human artifacts of SI. 

The most successful swarm intelligence techniques are Particle Swarm Optimization (PSO) and 

Ant Colony Optimization (ACO). In PSO, each particle flies through the multidimensional space 

and adjusts its position in every step with its own experience and that of peers toward an optimum 

solution by the entire swarm. Therefore, the PSO algorithm is a member of Swarm Intelligence 

[29]. 

IV.2 Particle Swarm Optimization (PSO) Algorithm 

The Particle Swarm Optimization algorithm (PSO) is a novel population-based stochastic search 

algorithm and an alternative solution to the complex non-linear optimization problem. The PSO 

algorithm was first introduced by Dr. Kennedy and Dr. Eberhart in 1995 and its basic idea was 

originally inspired by simulation of the social behavior of animals such as bird flocking, fish 

schooling and so on. It is based on the natural process of group communication to share individual 

knowledge when a group of birds or insects search food or migrate and so forth in a searching 

space, although all birds or insects do not know where the best position is. But from the nature of 

the social behavior, if any member can find out a desirable path to go, the rest of the members will 

follow quickly. 

IV.3 Dataset 

dataset is a collection of related, discrete items of related data represented by rows and columns. 

Columns are also called features which represent variables that could be numerical, categorical 

…etc. Rows are the instance of the variables (columns). 

In this thesis two datasets were used, NSL-KDD & MQTTset. 
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IV.3.1 NSL-KDD Dataset 

In the realm of cybersecurity and network intrusion detection, the NSL-KDD dataset stands as a 

benchmark for evaluating machine learning models' performance. This dataset, derived from the 

original KDD Cup 1999 dataset, addresses the limitations and biases present in its predecessor, 

making it a vital resource for researchers and practitioners in the field of IDS. 

No Features 
Form of 

value 
No Features 

Form of 

value 

1 Duration Integer 22 is_guest_login Integer 

2 protocol_type Nominal 23 count Integer 

3 service Nominal 24 srv_count Integer 

4 flag Nominal 25 serror_rate Float 

5 src_bytes Integer 26 srv_serror_rate Float 

6 dst_bytes Integer 27 rerror_rate Float 

7 Land Integer 28 srv_rerror_rate Float 

8 wrong_fragment Integer 29 same_srv_rate Float 

9 Urgent Integer 30 diff_srv_rate Float 

10 Hot Integer 31 srv_diff_host_rate Float 

11 num_failed_logins Integer 32 dst_host_count Float 

12 logged_in Integer 33 dst_host_srv_count Float 

13 num_compromised Integer 34 dst_host_same_srv_rate Float 

14 root_shell Integer 35 dst_host_diff_srv_rate Float 

15 su_attempted Integer 36 dst_host_same_src_port_rate Float 

16 num_root Integer 37 dst_host_srv_diff_host_rate Float 

17 num_file_creations Integer 38 dst_host_serror_rate Float 

18 num_shells Integer 39 dst_host_srv_serror_rate Float 

19 num_access_files Integer 40 dst_host_rerror_rate Float 

20 num_outbound_cmds Integer 41 dst_host_srv_rerror_rate Float 

21 is_host_login Integer 42 Class Category 

Table IV.1: The 41 features of the NSL-KDD dataset 
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IV.3.2 MQTTset Dataset 

The proposed work aims to create a dataset linked to the IoT context, in particular on the MQTT 

communication protocol, in order to give to the research and industrial community an initial dataset 

to use in their application. The dataset is composed by IoT sensors based on MQTT where each 

aspect of a real network is defined. In particular, the MQTT broker is instantiated by using Eclipse 

Mosquito and the network is composed by 8 sensors. The scenario is related to a smart home 

environment where sensors retrieve information about temperature, light, humidity, CO-Gas, 

motion, smoke, door and fan with different time interval since the behaviour of each sensor is 

different with the others. 

 

 

Fig IV.1: New Dataset for Machine Learning Techniques on MQTT 

 

 

 

 

 

 



Chapter IV: Particle Swarm Optimization (PSO) 

45 
 

IV.3.3 Comparison Between NSL-KDD and MQTTset 

Aspect NSL-KDD MQTTset 

Focus 
General network intrusion 

detection 

IoT-specific, MQTT protocol 

intrusion detection 

Domain Traditional network traffic 
IoT networks using MQTT 

protocol 

Number of Features 41 features 33 features 

Types of Attacks DoS, Probe, R2L, U2R, etc. 
Brute force, DoS, Flood, 

Malformed, Slow attacks 

Machine Learning Models 

Used 

K-means, Random Forest, 

CNN, Decision Trees, etc. 

Decision Trees, Random 

Forest, Neural Networks, 

Boosting 

Feature Selection 
Information Gain, PCA, 

Select KBest 

Feature engineering with 

selection down to 10 features 

Table IV.2: Comparison Between NSL-KDD and MQTTset 

IV.4 PSO Methode Overview 

IV.4.1 Binary Particle Representation 

In binary Particle Swarm Optimization (BPSO), particles are represented as binary strings (0, 1, 

1), where each bit (0 or 1) corresponds to a decision variable (feature selection, on/off states). This 

adaptation of PSO for discrete optimization problems involves unique mechanisms for updating 

positions and velocities. Below is a detailed breakdown: 

IV.4.1.1 Position Encoding 

o Each particle’s position is a binary vector of length n, where n is the number of decision 

variables. 

Example: For feature selection with 5 features, a particle may be encoded as [1, 0, 1, 1] indicating 

the selection of features 1, 3, and 4. 
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IV.4.1.2 Velocity Interpretation 

o Unlike continuous PSO, velocity in BPSO determines the probability of flipping a bit 

(0↔1). 

o Velocity values are mapped to probabilities using a sigmoid function: 

𝑃𝑟𝑜𝑏(𝑥𝑖 = 1) =
1

1+𝑒−𝑣𝑖
                                                   (1) 

Where 𝑣𝑖 is the velocity of the 𝑖-th bit. 

IV.4.1.3 Velocity Update 

o Velocities are updated similarly to continuous PSO but constrained to prevent divergence: 

𝑣𝑖
𝑡+1 = 𝜔 ∗ 𝑣𝑖

𝑡 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖
𝑡) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖

𝑡)                                (2) 

o Clamping: Velocities are often clamped to [−𝑣𝑚𝑎𝑥, 𝑣𝑚𝑎𝑥](𝑒. 𝑔. , 𝑣𝑚𝑎𝑥 = 6) to stabilize 

probabilities. 

IV.4.1.4 Position Update 

o Each bit xi is updated by comparing its velocity-derived probability to a random number r 

∈ [1]: 

𝑥𝑖
𝑡+1 = {

1,
1

1+𝑒−𝑣𝑖
𝑡+1 > 𝑟

0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                             (3) 

IV.4.2 Initialization 

o A swarm of particles is initialized with random positions and velocities within the defined 

search space. 

o Each particle’s position corresponds to a potential solution. 

IV.4.3 Fitness Evaluation 

o The objective function (fitness) is evaluated at each particle’s position to assess solution 

quality. 
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IV.4.4 Update Personal and Global Bests 

o Each particle keeps track of its best position found so far (personal best, 𝑝𝑖). 

o The swarm maintains the best position found by any particle (global best, 𝑔𝑖). 

IV.4.5 Velocity and Position Update 

o Particle velocities are updated based on three components: 

• Inertia: maintains the current velocity to explore the search space. 

• Cognitive component: attraction toward the particle’s personal best position. 

• Social component: attraction toward the swarm’s global best position. 

o The velocity update formula for particle 𝑖 in dimension d is: 

𝑣𝑖,𝑑 ⃪ 𝜔 ∗ 𝑣𝑖,𝑑 + ∅𝑝 ∗ 𝑟𝑝 ∗ (𝑝𝑖,𝑑 − 𝑥𝑖,𝑑) + ∅𝑔 ∗ 𝑟𝑔 ∗ (𝑔𝑖,𝑑 − 𝑥𝑖,𝑑)                     (4) 

where: 

• 𝝎 is the inertia weight controlling exploration vs. exploitation, 

• ∅𝒑, ∅𝒈 are acceleration coefficients (cognitive and social), 

• 𝒓𝒑, 𝒓𝒈 are random numbers uniformly distributed in 1, 

• 𝒙𝒊,𝒅 is the current position. 

Positions are updated by: 

𝑥𝑖 ← 𝑥𝑖 + 𝑣𝑖                                                               (5) 

IV.4.6 Boundary Handling 

o Positions and velocities are clamped to predefined bounds to keep particles within the 

search space. 

IV.4.7 Iteration and Termination 

o Steps 4.3–4.6 are repeated until a stopping criterion is met (e.g., maximum iterations or 

satisfactory fitness). 

https://www.baeldung.com/cs/pso
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IV.5 The basic flow of the PSO approach 

The basic flow of the Particle Swarm Optimization (PSO) algorithm can be summarized in the 

figure below: 

 

Fig IV.2: The basic flow of the PSO approach 

IV.6 Python Code 

Python is a high-level, interpreted programming language known for its simplicity and 

readability. It was created by Guido van Rossum and first released in 1991. 

IV.6.1 Environment 

IV.6.1.1 Anaconda 

Anaconda is a package manager, an environment manager, a Python/R science distribution and 

a collection of over +7500 open-source packages [30]. 

It is used for scientific computing like Data science, Machine learning applications, predictive 

analytics and many other fields. 
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This package manager makes installing and using libraries such (ScikitLearn, Numpy, …etc) 

easy and simply, which grants a stable environment with less time consumption while developing 

a project. 

It could be installed for Windows, Linux and MacOS, in our case It was installed in windows 

operating system following these steps [31]: 

1- Downloading the Anaconda installer: (https://www.anaconda.com/download/#windows) 

2- Verify data integrity with SHA-256. 

3- Following the steps on the Anaconda installer window for installing any package needed a 

simple command anaconda install Package name. 

IV.6.1.2 Visual studio code (VS Code) 

Visual Studio Code (VS Code) is a free, lightweight, and highly customizable source code editor 

developed by Microsoft. It supports hundreds of programming languages and offers powerful 

features such as syntax highlighting, IntelliSense (smart code completion), integrated debugging, 

Git version control, and an integrated terminal. VS Code’s extensible architecture allows users to 

enhance its functionality through thousands of extensions available in its marketplace. It runs on 

Windows, macOS, and Linux, making it a versatile tool for a wide range of development tasks-

from simple scripting to complex application development-while providing a fast and streamlined 

coding experience. 
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IV.6.2 Libraries 

IV.6.2.1 NumPy 

NumPy is the fundamental package for scientific computing in Python. It is a Python library that 

provides a multidimensional array object, various derived objects (such as masked arrays and 

matrices), and an assortment of routines for fast operations on arrays, including mathematical, 

logical, shape manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear 

algebra, basic statistical operations, random simulation and much more.[32] 

It's an open-source library that is used widely in Python programming and almost in all fields of 

science and engineering. It contains multidimensional array and matrix data structures, and can 

perform various mathematical operations on them. 

 

 

IV.6.2.2 Pandas 

Pandas is a fast, powerful, flexible and easy to use open-source data analysis and manipulation 

tool, built on top of the Python programming language.[33] 

It provides a high performance, easily used data structures and data analysis tools, It9s the library 

that is used to manipulate datasets data frames. 
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IV.6.2.3 Matplotlib 

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations 

in Python [34], it’s a visualization library that offers the ability to display data, results in various 

shapes and diagrams. 

 

IV.6.2.4 Scikit-Learn (Sklearn) 

Scikit-learn is an open-source machine learning library that supports supervised and 

unsupervised learning. It also provides various tools for model fitting, data preprocessing, model 

selection and evaluation, and many other utilities.[35] 

This library provides a large number of built-in machine leaning algorithms and models such as 

Label Encoder for label encoding (explained later on this article), confusion_matrix to calculate 

the true/false negatives and true/false positives, train_test_split to split the data frame obtained 

from the dataset to a training set and to a testing set, and many other useful models. 
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IV.6.3 The Code 

 

 

 

 

 

 

 

7 Experiments & Results 

7.1 KNN Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

Approaches for Selecting the Desired Classification Algorithm for Implementation 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import time 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.svm import SVC 

from sklearn.neural_network import MLPClassifier 

from sklearn.naive_bayes import GaussianNB 

from sklearn.linear_model import LogisticRegression 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.model_selection import cross_val_score, train_test_split 

from sklearn.preprocessing import StandardScaler 

from sklearn.utils.validation import check_is_fitted # Import 

check_is_fitted 

from sklearn.metrics import classification_report, confusion_matrix, 

accuracy_score, precision_recall_fscore_support 

 

def get_classifier(classifier_type='nb', **kwargs): 

    if classifier_type == 'knn': 

   return KNeighborsClassifier(n_neighbors=3, n_jobs=1) 

    elif classifier_type == 'lr': 

   return LogisticRegression(max_iter=1000, random_state=42,                         

n_jobs=-1, **kwargs) 

    elif classifier_type == 'svm': 

   return SVC(probability=True, random_state=42, **kwargs) 

    elif classifier_type == 'nb': 

   return GaussianNB(var_smoothing=1e-9, **kwargs) 

    elif classifier_type == 'mlp': 

        return MLPClassifier(hidden_layer_sizes=(100,), max_iter=1000,  

random_state=42, **kwargs) 

    elif classifier_type == 'dt': 

   return DecisionTreeClassifier(random_state=42) 

    elif classifier_type == 'rf': 

   return RandomForestClassifier(random_state=42, **kwargs) 

    else: 

   raise ValueError(f"Unknown classifier type: {classifier_type}") 

Libraries and Classifiers Used in the Python Code 
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Initialization of Positions and Velocities in Binary PSO with Feature Selection Constraints 

 

 

 

 

 

 

 

 

 

 

 

 

def _initialize_swarm(self, n_features): 

     # Initialize positions (binary vectors) 

positions = np.random.randint(0, 2, size=(self.n_particles,   

                                           n_features)) 

 

# Ensure each particle selects at least one feature 

for i in range(self.n_particles): 

    if np.sum(positions[i]) == 0: 

        # Select a random feature if none selected 

        positions[i, np.random.randint(0, n_features)] = 1 

 

        # Initialize velocities (real values) 

        velocities = np.random.uniform(-1, 1,  

                                size=(self.n_particles, n_features)) 

 

        return positions, velocities 
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Fitness Evaluation Method for Feature Selection using Classification Accuracy and Feature 

Reduction Trade-off 

def _calculate_fitness(self, X, y, position): 

        # Ensure at least one feature is selected 

         if np.sum(position) == 0: 

 return 0 

 

         # Select features based on particle position 

         selected_features = np.where(position == 1)[0] 

         X_selected = X[:, selected_features] 

 

        # Calculate cross-validation accuracy 

        try: 

   cv_scores = cross_val_score( 

           self.classifier, X_selected, y, cv=5, scoring='accuracy', n_jobs=-1) 

   accuracy = np.mean(cv_scores) 

         except Exception: 

      # Fall back to 3-fold CV if 5-fold fails (e.g., for small datasets) 

       try: 

              cv_scores = cross_val_score( 

                    self.classifier, X_selected, y, cv=3, scoring='accuracy', n_jobs=-1) 

              accuracy = np.mean(cv_scores) 

       except Exception: 

 

        # Last resort: use a simple train/test split 

        X_train, X_test, y_train, y_test = train_test_split( 

                  X_selected, y, test_size=0.3, random_state=42) 

         self.classifier.fit(X_train, y_train) 

          accuracy = self.classifier.score(X_test, y_test) 

 

          # Calculate feature reduction ratio 

          feature_ratio = np.sum(position) / len(position) 

 

          # Calculate fitness (maximize accuracy, minimize features) 

           fitness = self.alpha * accuracy - self.beta * feature_ratio 

 

           return fitness 
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Parameter Configuration of the PSO-Based Feature Selection Algorithm 

IV.7 Experiments & Results 

In this table, we conduct empirical experiments on a set of algorithms including KNN, LR, NB, 

SVM, MLP, RF, and DT. Their performance is compared based on all-features accuracy versus 

PSO-selected accuracy, in addition to the number of selected features, feature reduction rate, 

accuracy improvement, and training time reduction. 

Algorithm 

All 

Features 

Accuracy 

PSO 

Selected 

Accuracy 

n_Features 

Selected 

Features 

Reduction 

Rate 

Accuracy 

Improvement 

Training 

time 

reduction 

KNN 0.7910 0.8345 37 68.4% 4.35% 50.0% 

LR 0.8083 0.8722 40 65.8% 6.39% 7.9% 

NB 0.5657 0.7799 54 53.8% 21.43% 50.0% 

SVM 0.8057 0.8203 41 65.0% 1.46% 42.3% 

MLP 0.8336 0.8802 41 65.0% 4.66% 1.5% 

RF 0.7866 0.8567 40 65.8% 7.01% 12.1% 

DT 0.8873 0.8372 36 69.2% 5.01% 55.9% 

Table IV.3: Comparison of Classification Algorithms Using All Features VS PSO Selected 

Features in Terms of Accuracy and Training Efficiency 

# PSO feature selection 

    print("\nRunning PSO feature selection...") 

    pso = PSOFeatureSelection( 

        n_particles=50, 

        n_iterations=50, 

        w=0.7, 

        c1=1.5, 

        c2=1.5, 

        alpha=0.9, 

        beta=0.1, 

        classifier_type=classifier_type, 

        classifier_params=classifier_params, 

        verbose=True) 
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In the following figures, we illustrate the convergence behavior of the PSO algorithm during 

the feature selection process for each of the classification algorithms used in this study: KNN, 

LR, NB, SVM, MLP, RF, and DT. The top part of each figure shows the evolution of the fitness 

value across iterations, reflecting the algorithm's convergence toward an optimal solution. The 

bottom part displays the change in the number of selected features over iterations, showing a 

gradual reduction, which demonstrates the effectiveness of PSO in dimensionality reduction 

while maintaining model performance. 

IV.7.1 KNN Algorithm 

 

Fig IV.3: KNN Algorithm 50 iteration in 50 Particles 
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IV.7.2 LR Algorithm 

 

Fig IV.4: LR Algorithm 50 iteration in 50 Particles 

 

 

 

 

 

 

 

 

 



Chapter IV: Particle Swarm Optimization (PSO) 

58 
 

IV.7.3 NB Algorithm 

 

Fig IV.5: NB Algorithm 50 iteration in 50 Particles 
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IV.7.4 SVM Algorithm 

 

Fig IV.6: SVM Algorithm 50 iteration in 50 Particles 
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IV.7.5 MLP Algorithm 

 

Fig IV.7: MLP Algorithm 50 iteration in 50 Particles 
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IV.7.6 RF Algorithm 

 

Fig IV.8: RF Algorithm 50 iteration in 50 Particles 
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IV.7.7 DT Algorithm 

 

Fig IV.9: DT Algorithm 50 iteration in 50 Particles 
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IV.8 Discussions of Results 

The experimental results using the Particle Swarm Optimization (PSO) algorithm for feature 

selection across multiple classification models—namely K-Nearest Neighbors (KNN), Logistic 

Regression (LR), Naïve Bayes (NB), Support Vector Machine (SVM), Multilayer Perceptron 

(MLP), Random Forest (RF), and Decision Tree (DT)—demonstrated significant improvements 

in classification accuracy when using a reduced subset of features compared to using the full 

feature set. 

The PSO convergence plots revealed two key patterns across all models: an upward trend in 

fitness values and a downward trend in the number of selected features. These patterns confirm 

that PSO was effective in optimizing feature subsets that not only improved model performance 

but also reduced computational complexity. 

IV.8.1 Model-Wise Analysis: 

o K-Nearest Neighbors (KNN): 

The accuracy improved from 0.7910 to 0.8345 with only 37 features selected. The feature 

reduction rate reached 68.4%, resulting in a substantial 50% reduction in training time. This 

suggests that KNN, being a distance-based model, greatly benefits from reduced feature 

dimensionality. 

o Logistic Regression (LR): 

Accuracy increased from 0.8083 to 0.8722 with 40 selected features, and a feature reduction rate 

of 65.8%. Though the training time reduction was relatively modest (7.9%), the improvement in 

accuracy (6.39%) validates the positive impact of removing redundant or irrelevant features in 

linear models. 

o Naive Bayes (NB): 

Despite having the lowest baseline accuracy (0.5657), NB saw the most significant relative 

improvement reaching 0.7799 after feature selection. With 54 features retained and a 53.8% 

reduction rate, training time was halved. This highlights NB's sensitivity to irrelevant features and 

the importance of dimensionality reduction for probabilistic models. 
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o Support Vector Machine (SVM): 

The accuracy increased slightly from 0.8057 to 0.8203, with 41 features selected and a 42.3% 

reduction in training time. While the accuracy gain (1.46%) was modest, maintaining or slightly 

improving performance with fewer features is valuable for SVMs, which can be computationally 

intensive in high-dimensional spaces. 

o Multi Layer Perceptron (MLP): 

Performance improved from 0.8336 to 0.8802 using 41 features. The feature reduction rate was 

65%, although the training time was only slightly reduced (1.5%). This result suggests that PSO 

successfully identified the most informative features, improving the generalization of deep 

learning models without sacrificing speed. 

o Random Forest (RF): 

The model's accuracy rose from 0.7866 to 0.8567 using 40 selected features. With a 65.8% 

reduction in features and a 12.1% decrease in training time, the model achieved a solid 7.01% 

improvement in accuracy, indicating PSO’s effectiveness even for ensemble methods that are 

already robust to irrelevant features. 

o Decision Tree (DT): 

Interestingly, DT achieved one of the best overall results in terms of trade-off. Accuracy reached 

0.8873 using only 36 features (a 69.2% reduction), along with the highest training time reduction 

(55.9%). Despite a small drop from the original accuracy (from 0.8372), the final performance still 

surpassed most other classifiers. 

IV.8.2 Overall Insights: 

The results clearly demonstrate the strength of PSO as a feature selection method for improving 

model performance and efficiency. All classifiers benefited to varying extents either through 

accuracy gains, reduced training time, or both. Notably, models like Naïve Bayes and KNN, which 

are particularly sensitive to irrelevant or noisy features, exhibited significant improvements. Even 

complex models like MLP and ensemble methods like RF showed better generalization and 

training efficiency. 
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In conclusion, PSO-based feature selection proves to be a powerful tool in optimizing 

classification tasks, reducing dimensionality while maintaining or enhancing predictive 

performance. These results reinforce the importance of feature selection as a critical step in the 

machine learning pipeline. 

IV.9 Conclusion 

This chapter discussed the fundamentals of the Particle Swarm Optimization (PSO) algorithm, 

including its geometric and mathematical foundations, particle movement and velocity updates 

within the search space, the role of acceleration coefficients, and different particle neighborhood 

topologies. It also explored the application of PSO in solving path planning problems. Finally, the 

Decision Tree (DT) algorithm demonstrated the best performance, achieving high accuracy with 

fewer selected features compared to other models, highlighting its effectiveness in building a more 

efficient and less complex intrusion detection system. 
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General Conclusion 

The convergence of Internet of Things (IoT), Intrusion Detection Systems (IDS), and machine 

learning (ML) enhanced by metaheuristic optimization algorithms such as Particle Swarm 

Optimization (PSO) constitutes a promising research direction in the field of cybersecurity. With 

the exponential growth of IoT deployments across critical domains including healthcare, smart 

cities, and industrial systems the threat landscape has become increasingly complex, 

heterogeneous, and dynamic. These environments demand robust, intelligent, and adaptive 

security solutions. 

Machine learning-based IDSs have emerged as effective tools for detecting a wide range of cyber 

threats in real-time. However, their performance heavily relies on the quality of input features, 

model parameters, and computational efficiency, especially under the constrained resources typical 

of IoT devices. PSO, inspired by the social behavior of bird flocking, provides an efficient method 

for feature selection and hyperparameter optimization in ML based IDS. It enables the reduction 

of data dimensionality, enhances detection accuracy, and mitigates the risk of overfitting all while 

maintaining low computational overhead. 

Through the application of PSO-enhanced machine learning algorithms, IDSs can achieve a 

balance between high detection performance and system efficiency, making them suitable for 

deployment in real-world IoT scenarios. Moreover, the integration of these techniques supports 

the development of scalable and generalizable security models capable of adapting to evolving 

attack patterns. 

This thesis has addressed several key aspects related to enhancing security in IoT environments 

through intelligent intrusion detection. It began by presenting the fundamentals of the Internet of 

Things (IoT), including its architecture, characteristics, and communication protocols. Then, it 

explored Intrusion Detection Systems (IDS), their architectures, characteristics, and the common 

types of intrusion attacks they are designed to detect. The third part focused on the integration of 

Machine Learning (ML) techniques with IDS to improve detection accuracy and system 

adaptability. Finally, the Particle Swarm Optimization (PSO) algorithm was applied for feature 

selection, demonstrating its effectiveness in reducing feature dimensionality and improving 

classifier performance. Together, these components contribute to building a more efficient and 
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intelligent intrusion detection framework suitable for the dynamic and resource-constrained nature 

of IoT networks. 

For future works, an integration of the proposed model could be done by trying to install the IDS 

in different approaches such as central, distributed and hybrid approach in a real environment with 

real traffic data. 

In conclusion, the synergy between IoT, IDS, ML, and PSO represents a significant advancement 

toward the realization of autonomous, intelligent, and lightweight security frameworks. Future 

research may focus on real-time implementation, cross-layer optimization, and the incorporation 

of federated or distributed learning paradigms to further strengthen the resilience and applicability 

of these systems in next-generation IoT ecosystems. 
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 الملخص 

أُنشطةُالهكرُوحمايةُالبياناتُ ُتعُدُُالهجماتُالسبرانيةُتهديداُُحقيقياُُللأنظمةُالمعلوماتية،ُمماُيستدعيُالكشفُالمبكرُعنهاُللحدُمن ُُُُُُُ ُُ ُُُ ُ ُ ُُ ُ ُ ُُ ُُ ُ ُ ُُُ ُ ُ ُُ ُ ُُ ُُُ ُُ ُُ ُ ُُ ُُ ُُ ُ ُ ُُ ُُ ُ ُ ُُ ُُُُ ُ ُُُ ُُُُ ُ ُُ ُ ُُ ُُ ُ ُ ُُ ُُ ُُ ُ ُُُ ُُُ  ُُ ُ ُُُ ُُُُ ُُ ُُ ُُ ُُ ُ ُ ُُ ُ  ُ ُ  ُُُُ

التعلمُالآلي ُُالتيُتمكنُُمنُتحليلُُ (ML) الحساسة.ُمنُالضروريُتأمينُالأنظمةُعبرُتطويرُوسائلُذكيةُتعتمدُعلىُتقنياتُ ُُُ ُُُ ُ ُُ ُ ُ ُُُ ُُُ ُ

التيُتستفيدُمنُالذكاءُالاصطناعيُ (IDS) السلوكُواكتشافُالأنماطُغيرُالطبيعية.ُمنُأبرزُهذهُالوسائلُأنظمةُكشفُالتسلل

ُ GAو PSO (Particle Swarm Optimization) لتحسينُدقتها.ُكماُيمكنُاستعمالُخوارزمياتُمستوحاةُمنُالطبيعةُمثل

(Genetic Algorithm)    ُاُلأمان بُشكلُفعالُفيُرفعُمستوى اُلأساليبُتساهم اُلكشف.ُهذه أُداء اُلخصائصُوتحسين فيُاختيار

، KNN  ،LR  ،NB  ،SVM قمنا بإجراء سلسلة من التجارب باستخدام مجموعة من خوارزميات التصنيف تشمل السيبراني.

MLP  ،RFو ،DTوذلك بهدف تحسين أداء نظام كشف التسلل من خلال استخدام خوارزمية ، PSO   لاختيار الميزات. أظهرت

ساهم في تحسين دقة التصنيف وتقليل عدد الميزات في معظم الحالات. من بين جميع المصنفات، حققت   PSO النتائج أن تطبيق

أفضل أداء، حيث سجلت دقة عالية مع عدد ميزات أقل مقارنة بالخوارزميات الأخرى،  Decision Tree (DT) خوارزمية

 .                                                                   مما يدل على فعاليتها في بناء نظام كشف تسلل أكثر كفاءة وأقل تعقيد ا

 Abstract 

Cyberattacks pose a serious threat to information systems, making early detection essential to limit 

hackers’ activities and protect sensitive data. Securing systems requires the development of 

intelligent methods based on Machine Learning (ML) techniques that analyze behavior and detect 

anomalies. One of the most effective tools is Intrusion Detection Systems (IDS), which leverage 

AI to improve accuracy. Nature-inspired algorithms such as Particle Swarm Optimization (PSO) 

and Genetic Algorithm (GA) can also be used for feature selection and enhancing detection 

performance. These approaches play a vital role in strengthening cybersecurity. We conducted a 

series of experiments using several classification algorithms, including KNN, LR, NB, SVM, 

MLP, RF, and DT, with the aim of enhancing intrusion detection performance through PSO-based 

feature selection. The results showed that PSO improved classification accuracy while reducing 

the number of features in most cases. Among all classifiers, the Decision Tree (DT) algorithm 

achieved the best performance, attaining high accuracy with fewer selected features compared to 

the other models. This highlights its effectiveness in building a more efficient and less complex 

intrusion detection system. 

 Résumé 

Les cyberattaques représentent une menace sérieuse pour les systèmes d'information, rendant la 

détection précoce essentielle pour limiter les activités des hackers et protéger les données 

sensibles. La sécurisation des systèmes nécessite le développement de méthodes intelligentes 

basées sur l'apprentissage automatique (Machine Learning) permettant d'analyser les 

comportements et de détecter les anomalies. Parmi les outils les plus efficaces figurent les systèmes 

de détection d'intrusion (IDS), qui utilisent l'intelligence artificielle pour améliorer leur précision. 

Des algorithmes inspirés de la nature, tels que PSO (Particle Swarm Optimization) et GA (Genetic 

Algorithm), peuvent également être utilisés pour la sélection de caractéristiques et l'amélioration 

des performances de détection. Ces approches jouent un rôle crucial dans le renforcement de la 

cybersécurité. Nous avons mené une série d’expériences en utilisant plusieurs algorithmes de 



classification, notamment KNN, LR, NB, SVM, MLP, RF et DT, dans le but d’améliorer la 

performance du système de détection d’intrusion grâce à la sélection de caractéristiques basée sur 

l’algorithme PSO. Les résultats ont montré que l’utilisation de PSO a permis d’améliorer la 

précision de classification tout en réduisant le nombre de caractéristiques dans la plupart des cas. 

Parmi tous les classifieurs, l’algorithme Decision Tree (DT) a obtenu les meilleures performances, 

en atteignant une précision élevée avec un nombre de caractéristiques sélectionnées inférieur par 

rapport aux autres modèles, ce qui démontre son efficacité dans la conception d’un système de 

détection d’intrusion plus performant et moins complexe. 

 


