
Algerian People’s Democratic Republic

Ministry of Higher Education and Scientific Research

University of Saida - Dr. Moulay Tahar

Faculty of MIT

Department of Mathematics

Dissertation submitted for the degree of

Master of Science

Field: MATHEMATICS

Specialization: Stochastic Statistical Analysis of

Processes and Applications

by

EL Keurti Hibat Allah Wisal1

Under the supervision of

Dr. F. Mokhtari

Dissertation:

Artificial Intelligence for Time Series Forecasting

Defended on 14/06/2024 before the jury composed of

Dr. F. Benziadi University of Saida Dr. Moulay Tahar President

Dr. F. Mokhtari University of Saida Dr. Moulay Tahar Supervisor

Dr. R. Rouane University of Saida Dr. Moulay Tahar Examiner

Academic Year: 2024/2025

1email: elkeurtihiba@gmail.com



2

Acknowledgments

In the name of Allah, the Most Gracious, the Most Merciful. All praise is due to Allah

alone. May peace and blessings be upon His noble Prophet Muhammad (peace be upon him).

I wish to express my profound gratitude to Allah Almighty for bestowing upon me the

strength, perseverance, and guidance during my academic journey. The completion of this

thesis would not have been achievable without His mercy and support.

I would like to convey my heartfelt appreciation to my supervisor, Dr. Fatiha Mokhtari, for

her unwavering guidance, insightful feedback, and genuine encouragement. Her expertise and

patience have been invaluable sources of motivation and support throughout this endeavour.

My sincere gratitude is also extended to all my esteemed professors, including Dr. F. Ben-

ziadi, Dr. R. Rouane, Mr. K. Chouaf, a supervisor at Sonalgaz, and Mr. Saadli, who provided

me with the opportunity for an internship at Sonalgaz, along with others, whose knowledge and

mentorship have made a significant impact on both my academic and personal development.

May Allah reward abundantly all those who have contributed to my journey, whether di-

rectly or indirectly.



3

Dedication

I would like to express my profound gratitude to God, Almighty, for granting me the courage,

determination, and health necessary to complete this endeavour. Throughout my life, I have

consistently appreciated the individuals who hold great significance in my journey. Today, I

am pleased to present this work as a gesture of appreciation for their unwavering support and

efforts in helping me achieve success.

I dedicate this work to:

My esteemed parents Abd ELkrim and Fatiha, especially my mother, who has been my

mentor, sister, friend, and guiding teacher, I express my profound gratitude for your sacrifices,

steadfast love, kindness, support, and prayers throughout my academic journey. I wish you a

life filled with happiness and good health.

My dear brothers, Mohamed Bahaa Eddin and Salah Eddin, for their support and

encouragement.

My late grandfather Youssef and grandmother Fatma, may God have mercy on their souls, and

to my living grandparents Meriem and Khelifa, may God grant them long lives.

To all my family without exception.

I would like to express my sincere gratitude to all my friends, particularly Karima, for their

invaluable support and companionship throughout my academic journey.



Contents

Acknowledgments 2

Dedication 3

Introduction 9

1 Introduction to Time Series and Artificial Intelligence 12

1.1 What is a Time Series? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Time series applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.1 Astronomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.2 Weather forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.3 Economics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.4 Medicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Characteristics of time series . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.1 Long-term movements of the values (trend) . . . . . . . . . . . . . . . 16

1.3.2 Seasonal variations (seasonality) . . . . . . . . . . . . . . . . . . . . . 16

1.3.3 Cyclical fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.4 Random movements . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Describing vs. Predicting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.1 Time series analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.2 Time series forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Introduction to Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . 19

1.5.1 What is artificial intelligence? . . . . . . . . . . . . . . . . . . . . . . 19

1.5.2 AI subfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4



CONTENTS 5

1.5.3 The applications of AI . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Machine Learning 24

2.1 What is Machine Learning? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Types of Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Unsupervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.3 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Machine Learning for Time Series . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Decision tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.2 Bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.3 Definition of Random Forest . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.4 Random Forest applications . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.5 Random Forest for time series forecasting . . . . . . . . . . . . . . . . 33

2.4.6 Applications to real data . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.7 Benefits and challenges of Random Forest . . . . . . . . . . . . . . . . 39

2.5 XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.2 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.3 Gradient boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.4 Mechanisms and working principles of XGBoost . . . . . . . . . . . . 43

2.5.5 Advantages of XGBoost for time series forecasting . . . . . . . . . . . 45

2.5.6 Applying XGBoost to time series forecasting . . . . . . . . . . . . . . 46

2.5.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Deep Learning 53

3.1 Definition and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Fundamentals of Artificial Neural Networks . . . . . . . . . . . . . . . . . . . 54

3.3 Components of Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.2 Synapses and weights . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.3 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



CONTENTS 6

3.3.4 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 ANN Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Types of Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Recurrent Neural Network (RNN) . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.1 Types of RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6.2 The Architecture of RNNs . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7 Long Short-Term Memory (LSTM) networks . . . . . . . . . . . . . . . . . . 69

3.7.1 The architecture of LSTM . . . . . . . . . . . . . . . . . . . . . . . . 69

3.7.2 Input gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.7.3 Output gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.7.4 LSTM memory cell summary . . . . . . . . . . . . . . . . . . . . . . 76

3.7.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.7.6 The Relationship between AI, machine learning, and deep learning . . 82

3.8 Comparing forecasting methods . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.8.1 AirPassengers data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.8.2 Saida temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.8.3 Data on the electricity consumption of regular customers in Saida . . . 92



List of Figures

1.1 The AirPassengers time series data . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 GISS surface temperature analysis from 1880 to 2019 . . . . . . . . . . . . . . 14

1.3 Components of time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Artificial intelligence subfields . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Unsupervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Decision tree terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 The bagging method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Random Forest forecasting for AirPassengers . . . . . . . . . . . . . . . . . . 37

2.8 Random Forest forecasting for temperature in Saida . . . . . . . . . . . . . . . 39

2.9 The boosting method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.10 Tree-based algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.11 XGBoost forecasting for AirPassengers . . . . . . . . . . . . . . . . . . . . . 49

2.12 XGBoost forecasting for temperature in Saida . . . . . . . . . . . . . . . . . . 52

3.1 Artificial Neural Network v/s Biological Neural Network . . . . . . . . . . . . 54

3.2 Components of a neural network . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Neural network with bias neurons . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Activation functions for artificial neural networks . . . . . . . . . . . . . . . . 57

3.5 Multilayer perceptron neural network architecture . . . . . . . . . . . . . . . 58

3.6 Basic recurrent neural network (RNN) flow . . . . . . . . . . . . . . . . . . . 61

3.7 Types of recurrent neural networks (RNNs) . . . . . . . . . . . . . . . . . . . 62

3.8 The architecture of recurrent neural networks . . . . . . . . . . . . . . . . . . 63

7



LIST OF FIGURES 8

3.9 Inside architecture of a recurrent neural network (RNN) . . . . . . . . . . . . . 63

3.10 RNN forecasting for AirPassengers data . . . . . . . . . . . . . . . . . . . . . 66

3.11 RNN forecasting for temperature in Saida . . . . . . . . . . . . . . . . . . . . 69

3.12 The architecture of LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.13 Cell state (Ct) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.14 Forget gate in LSTM cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.15 Input gate in the LSTM cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.16 Output gate in the LSTM cell . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.17 LSTM memory cell summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.18 LSTM forecasting for AirPassengers . . . . . . . . . . . . . . . . . . . . . . 79

3.19 LSTM forecasting for temperature in Saida . . . . . . . . . . . . . . . . . . . 82

3.20 AI, machine learning, and deep learning relationship . . . . . . . . . . . . . . 83

3.21 AirPassengers data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.22 Saida temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.23 Saida electricity consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.24 Data on electricity consumption of regular customers in Saida . . . . . . . . . 96



LIST OF FIGURES 9

Introduction

In recent years, Artificial Intelligence (AI) has experienced a remarkable surge in interest,

largely due to advancements in Machine Learning (ML) and Deep Learning. These technologies

have significantly enhanced computers ability to process, analyse, and learn from sequential

data capabilities that are fundamental to time series forecasting, a crucial field in many areas

such as finance, meteorology, energy, healthcare, and economics.

The history of time series analysis dates back over a century. In the early 20th century. It

began as a way to analyse sequential data collected over time and it is a fundamental statistical

method used for investigating data collected at regular time intervals. Time series are distin-

guished by their long-term trends, seasonal fluctuations, cyclical patterns, and unpredictable

variations.

Time series models have been used in forecasting for several decades and are widely used

in logistics for sales or demand forecasting, see, e.g., [15], [22] and the references cited therein.

A grasp of temporal relationships is vital for making precise forecasts. Foundational statistical

techniques were developed, such as moving averages and exponential smoothing, which pro-

vided simple yet effective tools for trend and seasonality analysis. A major leap occurred in

the 1970s with the introduction of the ARIMA (AutoRegressive Integrated Moving Average)

model by Box and Jenkins. ARIMA and its variants became standard methods due to their ef-

fectiveness in modelling linear patterns in time series data. During the 1980s and 1990s, more

advanced statistical models like ARCH and GARCH revolutionized financial econometrics by

effectively modelling volatility in financial data.

However, as data grew more complex and nonlinear, these classical approaches showed

limitations. This led to the emergence of neural network based models in the late 1990s and

early 2000s, such as Recurrent Neural Networks (RNNs). These models offered more flexibility

but were often difficult to train and limited by issues like vanishing gradients.

A breakthrough in deep learning came with the development of the Long Short-Term Mem-

ory (LSTM) network in 1997 by Hochreiter and Schmidhuber [11]. LSTMs addressed the

limitations of RNNs and became widely adopted for time series prediction due to their ability

to capture long-term dependencies.

In parallel, ensemble learning methods like Random Forest, introduced by Breiman in 2001,
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and XGBoost (Extreme Gradient Boosting), developed by Chen and Guestrin in 2016 [8],

gained popularity. Although not originally designed for time series forecasting, these models

have been effectively adapted for it using feature engineering techniques such as lag variables,

rolling statistics, and time based cross validation. They are particularly valued for their robust-

ness, ability to model nonlinear relationships, and high predictive accuracy in structured data

settings. XGBoost, in particular, has become a go to model in many data science competitions

and real world forecasting applications.

Several studies have shown that ML methods such as neural networks, support vector re-

gression, and Random Forests can outperform traditional time series models for specific de-

mand forecasting problems. For example, a study by [10] compared the prediction power of

more than ten different forecasting models, including classical methods such as ARIMA and

ML techniques such as long short-term memory (LSTM) and convolution neural networks, us-

ing a single data set containing the sales history of furniture in a retail store. The results showed

that the LSTM outperformed the other models in terms of prediction performance. Another

study by [14] also compared the forecasting power of ARIMA and neural networks using a

single commodity prices data set.

Today, AI driven time series forecasting combines large datasets, sophisticated models, and

high computational power to deliver predictions with unprecedented precision. These models

not only identify complex temporal patterns but also adapt to changing dynamics in real time,

making them indispensable tools in both research and industry. This evolution from statistical

modelling to ensemble learning and deep learning reflects the broader transformation of time

series forecasting into a more intelligent, adaptive, and data driven discipline.

This dissertation delves into time series analysis through the lens of artificial intelligence,

spotlighting machine learning methods like Random Forest and XGBoost and deep learning

like RNNs and LSTM networks.

The initial chapter lays out the groundwork for understanding time series forecasting and

gives an introduction to artificial intelligence. It explores essential methods, modelling tech-

niques, and practical uses. Key aspects covered include defining time series, showcasing their

applications in various sectors, and elaborating on their defining features. Furthermore, the

chapter provides also an overview of artificial intelligence (AI), beginning with an explana-

tion of what AI is and its fundamental concepts. It explores the various subfields within AI,

highlighting their roles and functionalities.
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The subsequent chapter moves into the area of machine learning, with a particular empha-

sis on a few algorithms that are useful for time series analysis. This chapter starts by defining

machine learning and moves into explaining different learning paradigms. Central to this chap-

ter is the use of machine learning in the context of time series, dedicating sections to Random

Forest and XGBoost. These sections delve into the mechanisms, advantages, and real-world

applications of these techniques by employing them on the Saida temperature data and the Air-

Passengers dataset through Python.

The third chapter concludes with an investigation of deep learning and neural networks. The

exploration then advances into deep learning, detailing various neural network architectures

such as Recurrent Neural Networks and Long Short-Term Memory (LSTM) models and their

powerful capabilities for sequence prediction. To demonstrate their application on real data,

we have applied these methods to Saida temperature data and AirPassengers data. The chapter

wraps up with an analysis of data provided during my internship at Sonalgaz of Saida, where

we compared different forecasting methods using Root Mean Squared Errors (RMSE) as the

evaluation metric.



Chapter 1

Introduction to Time Series and Artificial

Intelligence

A time series refers to a series of data points collected in time sequence, typically at regular

intervals such as daily, monthly, or yearly. Highlighted areas of application include astronomy,

weather forecasting, economics, medicine, engineering, and environmental science. Under-

standing temporal relationships in the data is essential for accurate predictions and informed

decisions. This chapter presents an overview of time series and the concept of artificial intelli-

gence, detailing its scope, main subfields, and real-world applications. This provides a strong

basis for incorporating AI methodologies into time series forecasting, which will be expanded

upon in later chapters.

1.1 What is a Time Series?

1.1.1 Definition

Time series are datasets in which observations are recorded sequentially over time, following

chronological order. These observations can represent measurements of a single feature or

multiple features, depending on the context. Another way to define a time series is as the

outcome of a stochastic process, which is a mathematical model that describes the evolution of

random variables over time.

In mathematical terms, a time series can be expressed as a collection of random variables

12
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indexed by time. This is often represented using the notation:

{Xt}t∈T (1.1)

Here, the symbol X(t) or Xt refers to the value of the random variable X at a specific time

point t. The index set T typically represents the time points at which the observations are made,

which could be discrete or continuous depending on the nature of the data.

Time series analysis involves studying these sequences of data points to identify patterns,

trends, or dependencies over time.

1.1.2 Examples

Many disciplines, including finance, public administration, macroeconomics, energy, retail, and

healthcare, are dominated by time series data. Here are a few examples of such data:

• Daily closing values of a stock index

• Number of weekly infections of a disease

• Weekly series of train accidents

• Rainfall per day

• Sensor data such as temperature measurements per hour

• Population growth per year

• Quarterly earnings of a company over a number of years

• Air Passengers dataset, time series that contains the monthly total number of airline pas-

sengers (in thousands) from 1949 to 1960.
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Figure 1.1: The AirPassengers time series data

• Global surface temperature changes over the last 100 years from the GISS (Goddard

Institute for Space Studies).

Figure 1.2: GISS surface temperature analysis from 1880 to 2019

These are just a few examples. Any data tracking changes over time is a time series.

1.2 Time series applications

Time series analysis and forecasting have a wide range of applications in various fields, in-

cluding astronomy, economics, medicine, weather forecasting, and politics. Below are some
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examples.

1.2.1 Astronomy

The prediction of meteors and space movements, along with their impact on Earth, is based on

astrophysics.

1.2.2 Weather forecasting

Weather forecasting relies on time series analysis to predict atmospheric conditions based on

historical and real-time data. Meteorologists use models to analyse temperature, humidity, wind

speed, and pressure patterns to improve accuracy and provide reliable forecasts.

1.2.3 Economics

Stock market prediction involves analysing historical data to forecast future stock prices, help-

ing investors make informed decisions. Similarly, exchange rate forecasting examines currency

trends to predict fluctuations in foreign exchange markets. Additionally, economic indicators

such as inflation rates and interest rates are modelled using time series analysis to assess eco-

nomic health.

1.2.4 Medicine

Some laboratories use time series datasets to make new discoveries and to develop an under-

standing of disease progression and clinical trajectories in a wide variety of conditions, includ-

ing cancer, cystic fibrosis, Alzheimer’s, cardiovascular disease, and COVID-19.

1.3 Characteristics of time series

The data of a time series are under the influence of various factors, and they record some fluc-

tuations depending on the effects of the factors in different directions and intensities. In time

series models, it is assumed that these fluctuations are due to the simultaneous and combined

effects of four different types of movements. These movements, called components (elements)

of the time series:
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• Long-term movements of the values (trend)

• Seasonal variations (seasonality)

• Cyclical fluctuations

• Random movements

1.3.1 Long-term movements of the values (trend)

A trend Tt represents the long-term evolution of the time series. It reflects the ’average’ be-

haviour of the series. It is most often modelled by a linear or polynomial function of time, for

example:

• Linear trend: Tt = a+ bt

• Quadratic trend: Tt = a+ bt+ ct2

• Logarithmic trend: Tt = log(t)

1.3.2 Seasonal variations (seasonality)

St corresponds to a phenomenon that repeats at regular time intervals (periodic). Generally,

this is a seasonal phenomenon, hence the term seasonal variations. They linked to the rhythm

imposed by weather seasons (agricultural production, gas consumption, sales of sun creams,

etc.) or by economic and social activities (festivals, holidays, sales, etc.). St is a phenomenon

that reproduces in an analogous manner across each successive time interval.

1.3.3 Cyclical fluctuations

These are the constantly recurring fluctuations in the value of the variable, observed at equal

periodic intervals, occurring with the economic conjuncture. The value reaches a maximum

with an improvement, then regresses and reaches a minimum, then increases again and reaches

a maximum. These fluctuations are repeated periodically
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1.3.4 Random movements

These are irregular fluctuations that do not occur continuously. They can be caused by natural

events such as earthquakes or social events such as wars. They are difficult to predict. We

typically consider white noise, that is, a sequence of random variables (εt) such that the expec-

tation E[εt] = 0 and the variance is constant, meaning Var(εt) does not depend on t, and such

that Cov(εt, εt+h) = 0 for h ̸= 0. If the variables are Gaussian, the white noise is said to be

Gaussian, and in this case, the εt are also independent.

Figure 1.3 represents the different components of time series.

Figure 1.3: Components of time series

1.4 Describing vs. Predicting

We have different goals depending on whether we are interested in understanding a dataset or

making predictions. Understanding a dataset, called time series analysis, can help to make

better predictions but is not required and can result in a large technical investment in time and

expertise not directly aligned with the desired outcome, which is forecasting the future.
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1.4.1 Time series analysis

Time series analysis studies data patterns over time to uncover trends, seasonal variations, and

causes of fluctuations using statistical methods. It aims to model and explain observed be-

haviour.

1.4.2 Time series forecasting

Time series forecasting utilizes historical data to predict future trends, based on the assumption

that past patterns will continue.

The accuracy of a time series forecasting model is determined by its ability to predict future

outcomes. However, this often comes at the expense of explaining why a specific prediction was

made, determining confidence intervals, and gaining a deeper understanding of the underlying

causes of the problem.

A popular approach for predicting time series data is Holt-Winters exponential smoothing

technique; it is characterized by both trends and seasonal fluctuations. This method enhances

simple exponential smoothing by including components that account for level, trend, and sea-

sonality. Holt-Winters methods can be categorized into two primary types: additive and multi-

plicative, based on the approach used to model seasonality.

Additive Holt-Winters model

The additive model is suitable when the seasonal variations are roughly constant over time. The

components are updated as follows:

Lt = α(Xt − St−m) + (1− α)(Lt−1 + Tt−1)

Tt = β(Lt − Lt−1) + (1− β)Tt−1

St = γ(Xt − Lt) + (1− γ)St−m

X̂t+h = Lt + hTt + S(t−m+h) mod m

where:

• Xt is the observed value at time t,

• Lt is the level component,

• Tt is the trend component,
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• St is the seasonal component,

• m is the seasonal period (e.g., 12 for monthly data with yearly seasonality),

• α, β, γ (0 < α, β, γ < 1) are smoothing parameters.

Multiplicative Holt-Winters Model

The multiplicative model is appropriate when seasonal variations change proportionally with

the level of the series:

Lt = α
Xt

St−m

+ (1− α)(Lt−1 + Tt−1) (1.2)

Tt = β(Lt − Lt−1) + (1− β)Tt−1 (1.3)

St = γ
Xt

Lt

+ (1− γ)St−m (1.4)

X̂t+h = (Lt + hTt)× S(t−m+h) mod m (1.5)

Proper initialization of L0, T0, and Sj (j = 0, 1, . . . ,m−1) is critical for model performance

and can be done by:

• Level L0: the average of the first season’s observations or a weighted average.

• Trend T0: estimated as the average difference between points in the first two seasons

divided by m:

T0 =
1

m

(∑m
j=1(Xj+m −Xj)

m

)
• Seasonal components Sj: computed as deviations from the average level for each season:

Sj = Xj − L0 (additive) or Sj =
Xj

L0

(multiplicative)

for j = 1, . . . ,m.

1.5 Introduction to Artificial Intelligence

1.5.1 What is artificial intelligence?

Artificial intelligence (AI) is a branch of technology focused on the study and development of

theories, methodologies, technologies, and application systems designed to emulate, enhance,
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and elevate human intelligence. Fundamentally, AI aims to enable machines to reason, think,

and mimic intelligent behaviour akin to human capabilities. Originally defined by John Mc-

Carthy during the 1956 Dartmouth Conference, AI was framed as the project of creating ma-

chines with the capability to replicate human intelligence as accurately as possible. Drawing

from the theory of multiple intelligences, which divides human intelligence into categories such

as linguistic, logical-mathematical, spatial, bodily-kinaesthetic, musical, interpersonal, and in-

trapersonal intelligences, AI seeks to mirror or augment these varied dimensions of human in-

tellect. Presently, AI has grown into an interdisciplinary domain that merges computer science,

cognitive science, and various other fields, continually advancing to develop more sophisticated

and proficient machines.

1.5.2 AI subfields

Artificial intelligence is an attempt to imitate human intelligence; humans can see and analyse

scenes, inspiring the development of computer vision. They can learn and interact with their

environment, leading to the creation of robotics. They also make decisions in complex situa-

tions, which gave rise to planning, scheduling, and optimization. The ability to speak inspired

the development of speech technologies, while reading and writing led to Natural Language

Processing (NLP). Faced with the challenge of extracting patterns from large datasets in a short

time, we turned to machines, giving birth to machine learning. The complexity of the human

brain, composed of interconnected neurons responsible for understanding, memory, and learn-

ing, inspired Neural Networks. When these networks are built with multiple layers, they enable

powerful analysis, marking the rise of deep learning.

In the 1970s and 1980s, researchers aimed to store expert knowledge in computers to make

it accessible to non specialists. This led to the emergence of expert systems.

The following figure illustrates the various subfields of AI.
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Figure 1.4: Artificial intelligence subfields

1.5.3 The applications of AI

Smart healthcare

We can enable AI to learn professional medical knowledge, memorize a lot of health records,

and analyse medical images with computer vision to provide doctors with reliable and efficient

assistance. For example, for the medical imaging widely used today, AI can build models based

on historical data to analyse medical images and quickly detect lesions, thus improving the

efficiency of consultation.

Smart Retail

AI will also revolutionize the retail industry. A typical case is the unmanned supermarket. At

Amazon Go, the shopping experience begins by opening the Amazon Go app on your phone

and scanning the QR code at the store entrance to enter. Once inside, you can freely browse

and pick up the products you want, such as a bag of chips or a bottle of juice. During this

process, cameras and sensors record every movement and automatically update your "virtual

shopping cart". If you return an item to the shelf, it is removed from the cart. When you are

done shopping, you simply leave the store without waiting in checkout lines. Your purchases

are automatically calculated, and the amount is deducted from the card linked to your Amazon

Prime account. You also receive an electronic receipt through the app. This seamless process

relies on artificial intelligence and deep learning algorithms to ensure an accurate and efficient

shopping experience.
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Unmanned supermarkets face several significant challenges. One major challenge is ensur-

ing accuracy in billing, as the system must accurately record every instance of picking up or

returning products. Any errors in this process could lead to incorrect billing for customers or

financial losses for the store. In addition, handling multiple customers simultaneously presents

another difficulty. When a large number of customers are moving throughout the store, it be-

comes challenging for the system to differentiate between each customer’s behaviour. Fur-

thermore, preventing product theft is crucial, especially in the absence of human intervention.

Stores must implement advanced systems to detect and record unauthorized activities accurately

to avoid potential losses.

Smart security

The application of AI in the field of security is relatively mature due to the availability of mas-

sive amounts of security-related image and video data, which provide a solid foundation for

training AI algorithms and models. AI security applications can be classified into civilian and

police use. For civilian use, AI is employed in facial recognition, early warning of potential

dangers, and home defensive systems, enhancing the safety and security of individuals and

properties. For police use, AI is used to identify suspicious targets, analyse vehicles, track

suspects, search for and compare criminal suspects in databases, and manage access to key su-

pervised areas. These advancements allow for real time analysis, more efficient threat detection,

and improved crime prevention, making AI a critical tool in modern security operations.

Smart home

Smart home refers to a IoT (the Internet of Things) technology-based home ecosystem of hard-

ware, software, and cloud platforms, which provides users with customized life services and a

more convenient, comfortable, and safe living environment in a home. The smart housewares

are designed to be controlled by voice processing technology, such as adjusting the temperature

of the air conditioner, opening the curtains, and controlling the lighting system. Home security

relies on computer vision technology, such as unlocking through facial or fingerprint recogni-

tion, real time smart camera monitoring, and detection of illegal intrusion into the residence.

With the help of machine learning and deep learning, the smart home can build user portraits

and make recommendations based on the historical records stored in smart speakers and smart

TVs.

Smart driving

The Society of Automotive Engineers (SAE) defines six levels of driving automation, ranging
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from level 0 (no automation) to level 5 (full automation). At level 0, vehicles require complete

driver control. Levels 1 and 2 introduce driver assistance features, such as adaptive cruise con-

trol and lane-keeping assistance. Level 3 allows for conditional automation, where the vehicle

can handle certain driving tasks but requires the driver to be ready to intervene. Levels 4 and

5 represent high and full automation, respectively, with Level 5 vehicles capable of operating

without any human intervention under all conditions.

As of 2024, only a limited number of commercial passenger vehicles, such as the Audi A8,

Tesla models, and Cadillac vehicles, are equipped with level 2 and level 3 Advanced Driver-

Assistance Systems (ADAS). The year 2020 marked the emergence of more level 3 models,

thanks to advancements in sensors and onboard processors. Vehicles with level 4 and level 5

autonomous driving systems are expected to first be deployed in commercial vehicle platforms

within enclosed industrial parks. However, for high-level autonomous driving on passenger

vehicle platforms, further optimization in technology, relevant policies, and infrastructure de-

velopment is required. It is estimated that such passenger vehicles will not be in use on common

roads until 2025.



Chapter 2

Machine Learning

Machine learning has become a cornerstone of modern time series forecasting, enabling sys-

tems to analyse complex data patterns and generate accurate predictions with minimal explicit

programming.

The chapter further delves into the application of machine learning techniques in time series

forecasting, with a particular focus on two powerful ensemble methods: Random Forest and

XGBoost. For each method, it discusses core concepts such as decision trees, bagging, and

boosting and their specific advantages and limitations in forecasting contexts. Supported by

empirical examples, the chapter offers both foundational theories and practical strategies for

implementing these advanced models. Overall, it aims to provide a comprehensive overview of

how machine learning can enhance time series analysis and predictive accuracy. In summary,

this chapter offers both theoretical perspectives and practical recommendations for utilizing

machine learning in sophisticated time series modelling and forecasting endeavours.

2.1 What is Machine Learning?

Arthur Samuel, an early American leader in the field of computer gaming and artificial in-

telligence, coined the term "Machine Learning" in 1959 while at IBM. He defined machine

learning as the field of study that gives computers the ability to learn without being explicitly

programmed. However, there is no universally accepted definition for machine learning, as

different authors define the term in various ways.

Machine learning (including its branch, deep learning) is the study of "learning algorithms."

In another sense, machine learning refers to programming computers to optimize a performance

24
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criterion using example data or past experience. We have a model defined up to some param-

eters, and learning is the execution of a computer program to optimize the parameters of the

model using training data or past experience. The model may be predictive (making future

predictions) or descriptive (gaining insights from data), or it can serve both purposes.

The term "learning" here refers to the process of learning from experience (E) in relation to

a specific class of tasks (T) and a performance measure (P), such that performance on tasks (T),

as measured by (P), improves with experience (E).

Example: A Robot Driving Learning Problem:

• Task (T): Driving on highways using vision sensors.

• Performance Measure (P): Average distance travelled before an error.

• Training Experience (E): A sequence of images and steering commands recorded while

observing a human driver.

2.2 Types of Machine Learning

What is training data in machine learning? It all depends on the type of machine learning model

used. Broadly speaking, there are three types of models used in machine learning.

2.2.1 Supervised learning

Supervised learning is a machine learning model that uses labelled training data (structured

data) to map a specific feature to a label. In supervised learning, the output is known (e.g.,

recognizing an image of an apple), and the model is trained on the data from these results. In

other words, to train the algorithm to recognize images of apples, it must be provided with

images labelled as apples.

The most commonly used supervised learning algorithms today are:

• Linear regression

• Polynomial regression

• K nearest neighbours

• Naive Bayes
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• Decision trees

Figure 2.1: Supervised learning

2.2.2 Unsupervised learning

Unsupervised learning is a machine learning model that uses unlabelled data (unstructured data)

to learn patterns. Unlike supervised learning, the accuracy of the output is not known in ad-

vance. The algorithm learns from the data without human intervention (and therefore unsuper-

vised) and classifies it into groups based on attributes. For example, if the algorithm is given

images of apples and bananas, it will work on its own to classify the images that correspond

to apples and bananas. Unsupervised learning is effective for descriptive modelling and estab-

lishing pattern matching. The most commonly used unsupervised learning algorithms today

are:

• Partial averages

• K-means partitioning

• Hierarchical Clustering

• Partial least squares

There is also a mixed approach to machine learning, called "partially supervised learning,"

in which only some of the data is labelled. In partially supervised learning, the algorithm must

figure out how to organize and structure the data to get a known result. For example, the machine

learning model is told that the result is a pear, but only some of the training data is labelled as a
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pear.

Figure 2.2: Unsupervised learning

2.2.3 Reinforcement learning

Reinforcement learning is a machine learning model that can be described as "learning by do-

ing" through a series of trials and errors. An "agent" learns to perform an empirically defined

task (feedback loop) until its performance falls within a desired range. The agent receives pos-

itive reinforcement when it performs the task well and negative reinforcement when it gets it

wrong. For example, Google researchers taught a reinforcement learning algorithm to play the

game of Go. The model had no prior knowledge of the rules of Go. It simply moved pieces

randomly and "learned" the best moves. The algorithm was trained.
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Figure 2.3: Reinforcement learning

2.3 Machine Learning for Time Series

Machine learning offers robust methodologies for modelling and forecasting time series data. In

contrast to traditional statistical techniques, machine learning models adeptly capture complex,

non-linear relationships and interactions among variables. Within this framework, two promi-

nent models are Random Forest and XGBoost (Extreme Gradient Boosting). However, prior to

delving into these specific models, it is essential to comprehend several foundational concepts.

2.4 Random Forest

2.4.1 Decision tree

Decision trees are a technique used in statistics, data mining, and machine learning, and they fall

under the category of supervised learning. A decision tree models decision making processes

that often resemble human reasoning, making it intuitive and easy to understand.

A decision tree is composed of decision nodes, leaf nodes, and a root node.

• Root node: This is the starting point of the tree and represents the entire dataset. From

here, the data is split into two or more subsets based on specific features or criteria.

• Decision nodes: These are intermediate nodes where the data is further divided based on

certain conditions.
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• Leaf nodes: These represent the final output or prediction. Once the tree reaches a leaf

node, no further splitting occurs.

Key processes involved in decision trees include:

• Splitting: The process of dividing a node (either the root or a decision node) into two or

more sub nodes based on specific criteria or attributes.

• Pruning: The process of removing unnecessary branches from the tree. This helps reduce

complexity, prevents overfitting, and speeds up decision making by focusing only on the

most relevant paths.

Decision trees are widely appreciated for their simplicity, interpretability, and effectiveness

in solving both classification and regression problems.

Figure 2.4: Decision tree terminology
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Classification trees

Classification trees are a specific kind of decision tree that can handle discrete values for the

target variable. The decision tree is based on a categorical variable, with the possible value being

"yes" at the first position. It eliminates the outcome following the evaluation of the provided

data. A classification or judgment tree is an example of a tree structure that has two or more

branches, each dependent on a distinct set of values. An illustration of a rating tree may be seen

in a dataset that assesses the decision of playing golf based on the prevailing weather conditions.

The forecast serves as a decision node, which is then categorized into three branches: sunny,

overcast, and rainy. In this context, a leaf node is activated when specific circumstances are

met, and it determines whether the answer is "Yes" or "No" by traversing the tree.

Regression trees

Regression trees are a specific kind of decision tree that can handle target variables with con-

tinuous values. The decision tree is designed to handle continuous variables, where the values

can be represented as real numbers. The outcome of the tree can consist of numerical values,

such as 246. Typically, the creation of a regression tree includes utilizing inputs that consist of a

mixture of continuous and discrete variables. Every decision node examines the input to evalu-

ate the value of the variable. The regression tree utilizes a binary recursive division method. At

each iteration, the data is divided into parts, which are then further divided into smaller groups

when ascending the branch.

A regression tree is capable of predicting the sale values of houses. The outcome of this

example is a continuous dependent variable, where multiple constraining factors can include

the size of the house in square feet, which remains constant. Additionally, there may exist cat-

egorical variables, such as the architectural style of the house, geographical region or location,

and others.

2.4.2 Bagging

The bagging method’s goal is to reduce the model’s large variance. The decision trees are poor

in variation and have a low bias. Subsamples are taken from the large dataset. The multiple

decision trees are constructed using the training data from each subsample. By slamming the

subsampled data into the various decision trees, the risk of each decision tree becoming over-fit
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with training data is minimized. To increase the model’s productivity, each of the individual de-

cision trees is grown deep using subsampled training data. To comprehend the final forecast, the

outcomes of each decision tree are aggregated. The volatility in aggregated results decreases.

The precision of the model’s estimation in the bagging process is proportional to the number

of decision trees used. With substitution, the different sub samples of a sample data set are

randomly selected. Each tree’s production is highly correlated.

Figure 2.5: The bagging method

2.4.3 Definition of Random Forest

Definition: What is a Random Forest?

Random Forest is a powerful and versatile supervised machine learning algorithm that builds

and combines multiple decision trees to form a "forest." It can be applied to both classification

and regression problems using programming languages like R and Python. Random Forest is

widely used among data scientists, and for good reason, as it offers several advantages over

many other algorithms.

The key concept here is the "forest," which signifies that the algorithm relies on an ensemble

of decision trees. These trees are created by drawing random samples from the dataset through a
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technique called bootstrap sampling and by selecting random subsets of features when building

each tree. Each individual tree in the forest functions as a simple decision tree.

Figure 2.6: Random Forest

2.4.4 Random Forest applications

Some of the applications of the random forest may include:

• Banking: Random Forest is used in banking to predict the creditworthiness of a loan

applicant. This helps the lending institution make a good decision on whether to give

the customer the loan or not. Banks also use the Random Forest algorithm to detect

fraudsters.

• Health care: Health professionals use Random Forest systems to diagnose patients. Pa-

tients are diagnosed by assessing their previous medical history. Past medical records are

reviewed to establish the right dosage for the patients.

• Stock market: Financial analysts use it to identify potential markets for stocks. It also

enables them to identify the behaviour of stocks.

• E-commerce: Through Random Forest algorithms, e-commerce vendors can predict the

preferences of customers based on past consumption behaviour.
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• Time Series: Random Forest can be applied in time series forecasting to predict future

values of a variable based on historical data. For instance, it is used in predicting elec-

tricity demand, weather conditions, and sales forecasting by modelling temporal patterns

and trends.

2.4.5 Random Forest for time series forecasting

To make forecasting for time series, the general process involves several key steps:

Data preparation

• Convert your time series data into a suitable format. In Python, the pandas library is

commonly used to handle time series data efficiently.

• Create lag features to capture temporal patterns. Lag features represent previous values

of the time series and are used as predictor variables in the model.

Data splitting

• Divide the data into training and testing sets. The training set consists of historical data,

while the testing set includes future data you aim to forecast.

• Ensure that the chronological order of the data is preserved to prevent data leakage and

maintain the integrity of the time-dependent structure.

Model building

• Fit a Random Forest model to the training data using the RandomForestRegressor

class from the sklearn.ensemble module.

• Specify the target variable (the value to be forecasted) and the predictor variables,

which include lag features and any other relevant information.

• Random Forest is an ensemble method that combines multiple decision trees to make

robust predictions. Each tree is trained on a bootstrapped sample of the data and a

random subset of predictors.
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Prediction

• Use the trained Random Forest model to make predictions on the testing data.

• The model will generate forecasts for future time points based on historical patterns cap-

tured during training.

Model evaluation

• Evaluate the model’s performance using metrics such as:

– Mean Absolute Error (MAE)

– Mean Squared Error (MSE)

– Root Mean Squared Error (RMSE)

• These metrics are available in the sklearn.metrics module and help assess the ac-

curacy and reliability of the forecasts.

Visualization

• Visualize the original time series data alongside the forecasted values.

• Use the matplotlib or seaborn libraries to plot the actual and predicted values on

the same graph. This provides insight into the model’s accuracy and how well it captures

trends and seasonality.

2.4.6 Applications to real data

Example 01

One of the most widely used datasets for such analysis is the Air Passengers dataset, which

records the monthly number of international airline passengers from January 1949 to December

1960.

In this study, we apply machine learning techniques, specifically the Random Forest algorithm,

to model and forecast passenger traffic.

import pandas as pd

import numpy as np

from sklearn.ensemble import RandomForestRegressor
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from sklearn.metrics import mean_squared_error

import matplotlib.pyplot as plt

# --- Load AirPassengers Data ---

data = {

’Month’: pd.date_range(start=’1949-01’, periods=144, freq=’MS’),

’Passengers’: [

112, 118, 132, 129, 121, 135, 148, 148, 136, 119, 104, 118,

115, 126, 141, 135, 125, 149, 170, 170, 158, 133, 114, 140,

145, 150, 178, 163, 172, 178, 199, 199, 184, 162, 146, 166,

171, 180, 193, 181, 183, 218, 230, 242, 209, 191, 172, 194,

196, 196, 236, 235, 229, 243, 264, 272, 237, 211, 180, 201,

204, 188, 235, 227, 234, 264, 302, 293, 259, 229, 203, 229,

242, 233, 267, 269, 270, 315, 364, 347, 312, 274, 237, 278,

284, 277, 317, 313, 318, 374, 413, 405, 355, 306, 271, 306,

315, 301, 356, 348, 355, 422, 465, 467, 404, 347, 305, 336,

340, 318, 362, 348, 363, 435, 491, 505, 404, 359, 310, 337,

360, 342, 406, 396, 420, 472, 548, 559, 463, 407, 362, 405,

417, 391, 419, 461, 472, 535, 622, 606, 508, 461, 390, 432

]

}

df = pd.DataFrame(data)

df.set_index(’Month’, inplace=True)

# --- Create Lag Features ---

lags = 12

for lag in range(1, lags + 1):

df[f’lag_{lag}’] = df[’Passengers’].shift(lag)

df.dropna(inplace=True)

# --- Split Data into Train/Test ---

train_size = int(len(df) * 0.8)

train, test = df[:train_size], df[train_size:]
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# Features and Target

X_train = train.drop(columns=[’Passengers’])

y_train = train[’Passengers’]

X_test = test.drop(columns=[’Passengers’])

y_test = test[’Passengers’]

# --- Train Random Forest ---

rf = RandomForestRegressor(n_estimators=100, random_state=42)

rf.fit(X_train, y_train)

# --- Predict ---

predictions = rf.predict(X_test)

# --- Evaluation ---

rmse = np.sqrt(mean_squared_error(y_test, predictions))

print(f’RMSE: {rmse:.2f}’)

# --- Plot Actual vs Forecast ---

plt.figure(figsize=(12, 6))

plt.plot(df.index, df[’Passengers’], label=’Original’, color=’blue’)

plt.plot(test.index, predictions, label=’Forecast’, color=’red’)

plt.title(’Random Forest Forecasting - AirPassengers’)

plt.xlabel(’Date’)

plt.ylabel(’Number of Passengers’)

plt.legend()

plt.grid(True)

plt.show()
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Figure 2.7: Random Forest forecasting for AirPassengers

Example 02

This study focuses on forecasting the temperature patterns in Saida, Algeria, using its historical

data.

import pandas as pd

import numpy as np

from sklearn.ensemble import RandomForestRegressor

from sklearn.metrics import mean_absolute_error, mean_squared_error

import matplotlib.pyplot as plt

# Load the dataset

df = pd.read_csv("/kaggle/input/correc/corrected_temperature_data.csv

", parse_dates=[’Datetime’])

df.sort_values(’Datetime’, inplace=True)

df.set_index(’Datetime’, inplace=True)

# Create lag features (e.g., Lag 1, Lag 2, Lag 3)

df[’Lag_1’] = df[’Temperature’].shift(1)

df[’Lag_2’] = df[’Temperature’].shift(2)

df[’Lag_3’] = df[’Temperature’].shift(3)

df.dropna(inplace=True)

# --- Split Data into Train/Test ---
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train_size = int(len(df) * 0.8)

train, test = df[:train_size], df[train_size:]

X_train = train[[’Lag_1’, ’Lag_2’, ’Lag_3’]]

y_train = train[’Temperature’]

X_test = test[[’Lag_1’, ’Lag_2’, ’Lag_3’]]

y_test = test[’Temperature’]

# Model Building

model = RandomForestRegressor(n_estimators=100, random_state=42)

model.fit(X_train, y_train)

# Prediction

predictions = model.predict(X_test)

test[’Predicted’] = prediction

# Model Evaluation

mae = mean_absolute_error(y_test, predictions)

mse = mean_squared_error(y_test, predictions)

rmse = np.sqrt(mse)

# --- Plot Actual vs Forecast ---

plt.figure(figsize=(12, 6))

plt.plot(df.index, df[’Temperature’], label=’Original’, color=’blue’)

plt.plot(test.index, test[’Predicted’], label=’Forecast’, color=’red’

)

plt.title(’Random Forest Forecasting - Temperature in Saida, Algeria

’)

plt.xlabel(’Date’)

plt.ylabel(’Temperature (ÂřC)’)

plt.legend()

plt.grid(True)

plt.show()
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Figure 2.8: Random Forest forecasting for temperature in Saida

2.4.7 Benefits and challenges of Random Forest

Random Forests mitigate the issue of overfitting by training several decision trees on random

subsets of data, hence enhancing their ability to generalize to novel data. Random Forests are

highly regarded as one of the most efficient and potent techniques in the domain of machine

learning. They find extensive use in various applications such as automatic categorization, data

forecasting, and supervisory learning.

One advantage of the Random Forest algorithm is its versatility. This approach is applicable

to both regression and classification issues. The algorithm might be deemed advantageous as it

yields superior outcomes even in the absence of hyperparameter adjustment. Furthermore, they

possess a high level of clarity, making them easily comprehensible. Additionally, their number

is quite limited.

The primary constraint of Random Forests is the extensive number of trees, resulting in a

pro-longed training time that renders it sluggish and inefficient for real-time predictions. Typ-

ically, these algorithms exhibit rapid training speed but significantly slower prediction speed

after training. While the Random Forest algorithm is often efficient in real-world applications,

there may be situations where runtime performance is crucial and alternative approaches may

be more desirable.
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2.5 XGBoost

2.5.1 Definition

XGBoost is an ensemble ML (Machine Learning) algorithm that is dependent on decision trees

and employs a gradient boosting method. The XGBoost algorithm was created at the University

of Washington as part of a research project. It was introduced in 2016 by Tianqi Chen and Carlos

Guestrin. It is commonly used for its ability to model newer attributes and classify marks. The

XGBoost algorithm’s use has exploded in popularity due to its implementations in tabular and

structured datasets.

2.5.2 Boosting

The trees are constructed sequentially, with each following tree attempting to minimize the

errors of the preceding tree. Each tree builds on the knowledge gained by its predecessors and

updates the residual errors. As a result, the tree that follows will benefit from a modified version

of the residuals. In boosting, the foundation learners are weak learners with a strong bias and

predictive ability that is only a tad stronger than random guessing. Each of these weak learners

contributes critical knowledge for estimation, allowing the boosting technique to successfully

combine these weak learners to create a strong learner. The final powerful learner reduces both

bias and variation.

Figure 2.9: The boosting method
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2.5.3 Gradient boosting

Boosting algorithms combine weak learners, i.e., learners slightly better than random, into a

strong learner in an iterative way. Gradient boosting is a boosting-like algorithm for regression.

Given a training dataset D = {xi, yi}Ni=1

1. Initialize model with a constant value:

F0(x) = argmin
γ

n∑
i=1

L(yi, γ)

where yi refers to the observed values and γ refers to the predicted values.

The first step is creating an initial constant value prediction F0. L is the loss function, and

it is squared loss in our regression case.

L(yi, γ) = (yi − γ)2

We want to find the value of γ that minimizes the total loss:

n∑
i=1

(yi − γ)2

Differentiate with respect to γ:

d

dγ

n∑
i=1

(yi − γ)2 =
n∑

i=1

−2(yi − γ) = −2
n∑

i=1

(yi − γ)

Set the derivative to zero:

n∑
i=1

(yi − γ) = 0 ⇒
∑

yi − nγ = 0 ⇒ γ =
1

n

n∑
i=1

yi

Thus, for squared loss, the minimizing value is the mean of the yi’s:

γ =
1

n

n∑
i=1

yi

2. for m = 1 to M :

The whole step 2 processes from a to d are iterated M times. M denotes the number of

trees we are creating, and the small m represents the index of each tree.
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(a) Compute residuals rim:

rim = −
[
∂L(yi, F (xi))

∂F (xi)

]
F=Fm−1(x)

for i = 1, . . . , n

We are calculating residuals rim by taking a derivative of the loss function with

respect to the previous prediction Fm−1 and multiplying it by 1. rim is computed for

each single sample i.

(b) Train regression tree with features x against r and create terminal node reasons Rjm

for j = 1, . . . , Jm.

j represents a terminal node (i.e. leave) in the tree, m denotes the tree index, and

capital J means the total number of leaves.

(c) Compute

γjm = argmin
γ

∑
xi∈Rjm

L(yi, Fm−1(xi) + γ)

We are searching for γjm that minimizes the loss function on each terminal node j.

Let’s plug-in the loss function into the equation.

γjm = argmin
γ

∑
xi∈Rjm

L(yi, Fm−1(xi) + γ)

= argmin
γ

∑
xi∈Rjm

(yi − Fm−1(xi)− γ)2

∂

∂γ

∑
xi∈Rjm

(yi − Fm−1(xi)− γ)2 = 0

−2
∑

xi∈Rjm

(yi − Fm−1(xi)− γ) = 0

njγ =
∑

xi∈Rjm

(yi − Fm−1(xi))

γ =
1

nj

∑
xi∈Rjm

rim

(d) Update the model:

Fm(x) = Fm−1(x) + ν
Jm∑
j=1

γjm1(x∈Rjm)
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The learning rate ν ∈ (0, 1] controls how much each new tree γ contributes to the

model’s prediction Fm. The effects of smaller ν is slower and more stable learning,

reduces the risk of overfitting and requires more boosting iterations (more trees).

2.5.4 Mechanisms and working principles of XGBoost

• Given data and initial predictions:

We are given input features (X) and a target feature (Y). Now we start with a default set

of predictions (by default set to 0.5 in regression, but you can start from other values as

well).

• Calculating pseudo residuals:

Calculate the (pseudo) residuals by subtracting Y from default initial predictions.

• Building XGBoost trees:

Each tree starts out as a single leaf

– Start with all residuals in the same leaf.

– Calculate the similarity score using the following formula:

Similarity Score =
(
∑n

i=1 ri)
2

n+ λ

where:

a) ri are the residuals,

b) n length of residuals,

c) λ is the regularization parameter.

– Finding the best splitting feature and values:

a) Iterate through each input feature.

b) Sort feature values in ascending order.

c) For every pair of consecutive values, compute the midpoint:

Threshold =
v1 + v2

2

d) Use the threshold to split the samples:

· Samples with values less than the threshold go to the left node.
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· Samples with values greater than or equal to the threshold go to the right

node.

e) Repeat this for all features and all value pairs.

– Calculating Gain:

For each split, compute the gain as:

Gain = Similarityleft + Similarityright − Similarityparent

Choose the split with the highest gain, as it most effectively improves the model.

– Creating the Tree:

We continue repeating Step 3 (Splitting) and Step 4 (Calculating Gain) recursively

on the child nodes of the tree. This process is repeated until one of the stopping con-

ditions is met. These conditions include reaching the maximum tree depth, which by

default is set to 6, or encountering a leaf node that contains too few residuals, with

the default minimum being 1. Additionally, another stopping condition is based on

a threshold for residuals determined by a concept called cover, which will be dis-

cussed in a later section. Once one of these stopping criteria is met, the construction

of the decision tree is complete, resulting in the final tree structure.

– Pruning the Tree:

a) We use the hyperparameter γ (gamma) to prune the tree.

b) Pruning is performed in a bottom-up manner.

c) For each parent node:

· If the gain of the node is less than gamma (gain − γ < 0), we prune its

children.

· If pruning happens, we continue checking upward.

· If pruning does not happen at a node, we stop going further up from there.

d) Note: Setting γ = 0 does not turn off pruning entirely because some nodes can

still have negative gain values, leading to pruning where gain − γ < 0.

– Calculating the Output Value:

a) After building and pruning the tree, we compute the final prediction values at

each leaf node.
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b) For regression, the output value for a leaf node is given by the formula:

Output Value =

∑
residuals
n+ λ

where:

·
∑

residuals: sum of residuals in the node

· n: number of samples in the node

· λ: regularization parameter

c) We compute this value for every terminal (leaf) node to produce the predictions.

• Updating the residuals and getting the output:

Now that we have a tree capable of predicting residuals, we can update our initial default

vector originally set to 0.5 predictions by adding these residuals to it (multiplied by a

learning rate, of course). We avoid directly jumping to the final prediction to prevent

overfitting.

2.5.5 Advantages of XGBoost for time series forecasting

XGBoost offers several advantages that make it an excellent choice for time series forecasting:

• Handling non-linear relationships:

XGBoost can capture complex non-linear relationships between input features and the

target variable, making it suitable for time-series data with intricate patterns.

• Feature importance:

XGBoost provides insights into the importance of different features, allowing analysts to

identify the most influential factors in the time-series data.

• Regularization:

XGBoost incorporates regularization techniques to prevent overfitting, ensuring that the

model generalizes well to unseen data.

• Handling missing values and outliers:

XGBoost can handle missing values and outliers in the data, reducing the need for exten-

sive data preprocessing.
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2.5.6 Applying XGBoost to time series forecasting

• Data Preparation

– Formatting: Use the pandas library to organize the time series data into a super-

vised learning format.

– Lag features: Create lag features (e.g., yt−1, yt−2, . . . ) to use previous values as

inputs to predict future values.

– Date features: Extract date components such as day of the week, month, or hour to

capture seasonality or trends.

• Data splitting

– Chronological split: Split the dataset into training and testing sets while preserving

the order of time.

– Avoid leakage: Ensure future data is not used to predict past data.

• Model building

– Use XGBRegressor from the xgboost Python library.

– Input features should include lagged variables and date-based features.

– Configure hyperparameters such as max_depth, learning_rate, and n_estimators.

– XGBoost automatically handles missing values and applies regularization to reduce

overfitting.

• Prediction

– Use the trained model to predict future values on the test set.

– For multi-step forecasting, use a recursive strategy or extend the feature set dynam-

ically.

• Model evaluation

– Use metrics such as:

a) Mean Absolute Error (MAE)

b) Mean Squared Error (MSE)
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c) Root Mean Squared Error (RMSE)

– These are available in the sklearn.metrics module.

• Visualization

– Plot actual vs. predicted values using matplotlib or seaborn.

– Visualization helps identify how well the model captures trends and anomalies.

The following figure gives a summary about the tree-based algorithms.

Figure 2.10: Tree-based algorithms

2.5.7 Applications

The dataset from the earlier phase is retained for this step to preserve consistency in data pro-

cessing and model evaluation.

Example 1: AirPassengers data

import pandas as pd

import numpy as np

import xgboost as xgb

from sklearn.metrics import mean_squared_error

import matplotlib.pyplot as plt

# Load the dataset
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date_range = pd.date_range(start=’1949-01’, periods=len(data), freq=’

MS’)

df = pd.DataFrame({’Month’: date_range, ’Passengers’: data})

df.set_index(’Month’, inplace=True)

# Create lag features

lags = 12

for lag in range(1, lags + 1):

df[f’lag_{lag}’] = df[’Passengers’].shift(lag)

df.dropna(inplace=True)

# Split into training and testing sets

train_size = int(len(df) * 0.8)

train, test = df[:train_size], df[train_size:]

X_train = train.drop(columns=[’Passengers’])

y_train = train[’Passengers’]

X_test = test.drop(columns=[’Passengers’])

y_test = test[’Passengers’]

# Model training

model = xgb.XGBRegressor(

n_estimators=1000,

learning_rate=0.01,

max_depth=5,

objective=’reg:squarederror’,

early_stopping_rounds=50,

eval_metric=’rmse’)

model.fit(

X_train, y_train,

eval_set=[(X_train, y_train), (X_test, y_test)],

verbose=100)

# Prediction

predictions = model.predict(X_test)
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# Evaluation

rmse = np.sqrt(mean_squared_error(y_test, predictions))

print(f’RMSE: {rmse:.2f}’)

# --- Plot Actual vs Forecast ---

plt.figure(figsize=(12, 6))

plt.plot(df.index, df[’Passengers’], label=’Original’, color=’blue’)

plt.plot(test.index, predictions, label=’Forecast’, color=’red’)

plt.title(’XGBoost Forecast - AirPassengers’)

plt.xlabel(’Date’)

plt.ylabel(’Number of Passengers’)

plt.legend()

plt.grid(True)

plt.show()

Figure 2.11: XGBoost forecasting for AirPassengers

Example 2: Saida temperature data

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
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import seaborn as sns

import xgboost as xgb

from sklearn.metrics import mean_squared_error

color_pal = sns.color_palette()

plt.style.use(’fivethirtyeight’)

# Load the dataset

df =pd.read_csv(’../input/correc/corrected_temperature_data.csv’)

df = df.set_index(’Datetime’)

df.index = pd.to_datetime(df.index)

df.dropna(inplace=True)

# Create lag features

def create_features(df):

df = df.copy()

df[’dayofweek’] = df.index.dayofweek

df[’month’] = df.index.month

df[’dayofyear’] = df.index.dayofyear

return df

df = create_features(df)

def add_lags(df, target_col=’Temperature’):

target_map = df[target_col].to_dict()

df[’lag1’] = (df.index - pd.Timedelta(days=1)).map(target_map)

df[’lag2’] = (df.index - pd.Timedelta(days=2)).map(target_map)

df[’lag3’] = (df.index - pd.Timedelta(days=3)).map(target_map)

return df

df = add_lags(df)

# Split into training and testing sets

train_size = int(len(df) * 0.8)

train, test = df[:train_size], df[train_size:]

FEATURES = [’dayofweek’, ’month’, ’dayofyear’, ’lag1’, ’lag2’, ’lag3’

]

TARGET = ’Temperature’
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X_train = train[FEATURES]

y_train = train[TARGET]

X_test = test[FEATURES]

y_test = test[TARGET]

# Model training

model = xgb.XGBRegressor(

n_estimators=1000,

learning_rate=0.01,

max_depth=5,

objective=’reg:squarederror’,

early_stopping_rounds=50,

eval_metric=’rmse’

)

model.fit(

X_train, y_train,

eval_set=[(X_train, y_train), (X_test, y_test)],

verbose=100

)

#Prediction

y_pred = model.predict(X_test)

#Evaluation

rmse = np.sqrt(mean_squared_error(y_test, y_pred))

print(f"Test RMSE: {rmse:.2f}")

# --- Plot Actual vs Forecast ---

plt.figure(figsize=(20, 6))

plt.plot(df.index, df[’Temperature’], label=’Original’, color=’blue’)

plt.plot(test.index,y_pred, label=’Forecast’, color=’red’)

plt.title(’XGBoost Forecast -Temperature in Saida, Algeria’)

plt.xlabel(’Date’)

plt.ylabel(’Temperature (C)’)

plt.legend()
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plt.grid(True)

plt.show()

Figure 2.12: XGBoost forecasting for temperature in Saida



Chapter 3

Deep Learning

In this third chapter, the foundations of deep learning are presented with an emphasis on its

structure, components, and importance in time series forecasting. The chapter begins by defin-

ing deep learning and elucidating its core mechanism through artificial neural networks (ANNs).

It subsequently elaborates on the essential building blocks of neural networks, which include

neurons, synapses with associated weights, biases, and activation functions, all of which are

crucial for enabling networks to learn from data.

The discourse extends to various ANN architectures and the distinct types of neural net-

works, such as Feed Forward Neural Networks (FFNs), Generative Adversarial Networks (GANs),

Convolutional Neural Networks (CNNs), Autoencoders, Recurrent Neural Networks (RNNs),

and Long Short-Term Memory (LSTM) networks.

Particular emphasis is placed on RNNs and LSTMs, detailing their architectures, types,

functional gates (input and output), and their capability to manage sequential and temporal

data, highlighting their efficacy in time series forecasting tasks. Additionally, their real-world

applications are discussed.

The chapter concludes with a comparison of deep learning forecasting techniques against

traditional statistical models, such as Holt Winters, as well as machine learning methods like

Random Forest and XGBoost, utilizing real datasets including AirPassengers, Saida tempera-

ture, and Sonalgas Saida data. This analysis underscores the superior predictive capabilities,

adaptability, and practical significance of deep learning models in capturing intricate patterns

within time-dependent data.

53
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3.1 Definition and Overview

Deep learning is a subset of machine learning that employs deep neural networks models com-

posed of multiple layers of artificial neurons to learn complex patterns and representations from

data. Unlike traditional machine learning techniques that rely on manually engineered features,

deep learning utilizes representation learning, allowing models to extract features automatically

from raw inputs such as images, audio, or text. This method is inspired by the architecture of

the human brain, particularly the way neurons connect and communicate. Originally rooted

in early neuroscientific studies by Santiago Ramon y Cajal, modern deep learning has driven

major advances in speech recognition, computer vision, and natural language processing. A

notable example of its capabilities is AlphaGo, a program developed by DeepMind, which used

deep learning to defeat a world champion in the game of Go in 2016 (Silver et al., 2016). Deep

learning is typically unsupervised or semi-supervised, and it excels with large scale datasets. It

continues to be a key driver of innovation in fields such as autonomous driving, healthcare, and

language translation.

Figure 3.1: Artificial Neural Network v/s Biological Neural Network

3.2 Fundamentals of Artificial Neural Networks

Artificial Neural Networks (ANNs) are powerful computing techniques that mimic functions

of the human brain to solve complex problems arising from big and messy data. it consists of

neurons and synapses organized into layers.

ANN can have millions of neurons connected into one system or many hidden layers (Deep
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ANN) which makes it extremely successful at analysing and even memorizing various informa-

tion.

3.3 Components of Neural Networks

While neural networks exhibit diverse architectures, they consistently comprise a core set of

elements: neurons, synapses, weights, biases, and activation functions.

Figure 3.2: Components of a neural network

3.3.1 Neurons

A neuron, also known as a node, is the basic unit of a neural network. It receives information

from other neurons or the external environment, performs a simple mathematical operation on

the input, and then passes the result forward to other neurons. Neurons in a neural network

are typically divided into three groups: input neurons receive data from the outside world,

such as image pixels or numerical values; hidden neurons are responsible for processing this

information through multiple layers, learning patterns and features in the data; finally, output

neurons generate the final result or prediction based on the information processed by the hidden

layers.
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In large neural networks, neurons are arranged in a layered structure called the network ar-

chitecture. This architecture includes an input layer that takes in the data, one or more hidden

layers that perform computations and learn patterns, and an output layer that produces the re-

sult. Each neuron in a layer is usually connected to many others in the next layer, and these

connections are associated with weights that influence how much one neuron’s output affects

another.

3.3.2 Synapses and weights

In neural networks, a synapse represents the connection between two neurons, similar to an

electrical cable that transmits signals. Each synapse is associated with a weight, which deter-

mines the importance or strength of the signal it carries. These weights play a critical role in

adjusting how input information is transformed as it passes from one neuron to the next. When

multiple inputs are fed into a neuron, those with higher weights have a stronger influence on the

neuron’s output. In contrast, inputs with lower weights may have little to no impact. Therefore,

the behaviour of the entire network is heavily influenced by the matrix of weights, which essen-

tially governs how the network learns and makes decisions. During training, these weights are

adjusted to minimize the difference between the predicted and actual outputs, a process known

as optimization.

3.3.3 Bias

Bias is a small but important value added to the weighted sum of inputs before the result is

passed through the activation function. Its purpose is to give the neuron more flexibility in

learning. Without a bias, the neuron’s output would always be zero when all inputs are zero,

which can limit the network’s ability to learn certain patterns. The bias allows the model to

shift the activation function left or right, enabling it to better fit the data. In simple terms,

just as weights determine how much influence each input has, the bias determines whether the

neuron should activate even when inputs are weak. During training, the bias, like the weights,

is adjusted to help minimize the loss function and improve the model’s performance.
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Figure 3.3: Neural network with bias neurons

3.3.4 Activation functions

In deep learning, activation functions play a crucial role in determining the output of neural

network layers. They introduce non-linearity into the network, allowing it to learn and perform

complex tasks. The figure represents four common activation functions: Sigmoid, Tanh, ReLU,

and leaky ReLU.

Figure 3.4: Activation functions for artificial neural networks
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3.4 ANN Architectures

Feed forward multilayer perceptron MLP is the most used in ANN architectures. Figure below

demonstrates the architecture of a simple feedforward MLP where P identifies the input layer,

next one or more hidden layers, which is followed by the output layer containing the fitted val-

ues. The feed forward MLP networks is evaluated in two stages.

First, in the feedforward stage information comes from the left and each unit evaluates its acti-

vation function f. The results (output) are transmitted to the units connected to the right.

The second stage involves the backpropagation (BP) step and is used for training the neural

network using gradient descent algorithm in which the network parameters are moved along the

negative of the gradient of the performance function. The process consists of running the whole

network backward and adjusting the weights (and error) in the hidden layer. The feedforward

and backward steps are repeated several times, called epochs. The algorithm stops when the

value of the loss (error) function has become sufficiently small.

Figure 3.5: Multilayer perceptron neural network architecture

3.5 Types of Neural Networks

Generally speaking, in terms of network architectures, ANNs tend to be classified into two

different classes, feedforward and recurrent ANNs, each may have several subclasses. and this
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is some kinds of neural networks: Feed Forward Neural Networks (FFNs) This is the simplest

neural network algorithm. A feed-forward network doesn’t have any memory. That is, there is

no going back in a feed-forward network. In many tasks, this approach is not very applicable.

For example, when we work with text, the words form a certain sequence, and we want the

machine to understand it.

Feedforward neural networks can be applied in supervised learning when the data that you

work with is not sequential or time-dependent. You can also use it if you don’t know how

the output should be structured but want to build a relatively fast and easy NN. Generative

Adversarial Networks (GANs) are from a different breed of networks, they are twins: two

networks working together. GANs consist of any two networks (although often a combination

of FFs and CNNs), with one tasked to generate content and the other to judge content. The

discriminating network receives either training data or generated content from the generative

network. How well the discriminating network was able to correctly predict the data source is

then used as part of the error for the generating network. This creates a form of competition

where the discriminator is getting better at distinguishing real data from generated data and

the generator is learning to become less predictable to the discriminator. This works well in

part because even quite complex noise-like patterns are eventually predictable, but generated

content similar in features to the input data is harder to learn to distinguish. GANs can be quite

difficult to train, as you don’t just have to train two networks (either of which can pose its own

problems), but their dynamics need to be balanced as well. If prediction or generation becomes

too good compared to the other, a GAN won’t converge as there is intrinsic divergence.

GANs are powerful tools used to generate realistic human faces, enhance image resolution,

create images from text descriptions, and power DeepFake technologies. Convolutional Neu-

ral Networks (CNNs) Convolutional Neural Networks (CNNs) are different from other types

of neural networks and are mainly used for image processing, though they can also handle other

types of data such as audio. Instead of feeding the entire image into the network at once, CNNs

use a kind of "scanner" to read small parts of the image (e.g., 20*20 pixels) step by step.

CNNs operate through convolutional layers, where each neuron is only connected to nearby

data, not the entire input. As the network goes deeper, these layers typically shrink in size, often

by divisible numbers like 32 or 16. Pooling layers (such as max pooling) are also used to reduce

less important details and focus on the most relevant features.

CNNs can also be used with audio by dividing the sound wave into segments and analyzing
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them one by one. Autoencoders Autoencoders are a type of neural network designed to au-

tomatically compress and reconstruct data, which is where the name "autoencoder" comes

from (encoding as in compression, not encryption).

The structure of an autoencoder typically looks like an hourglass, where the input layer

gradually narrows down through smaller hidden layers until it reaches a central bottleneck layer,

the most compressed representation of the input. Then, the network expands again through

symmetrical layers back to the output, aiming to reconstruct the original input as closely as

possible. The network is divided into three main parts:

• Encoder: the layers leading up to the bottleneck that compress the input.

• Code: the bottleneck layer where the data is most condensed.

• Decoder: the layers after the bottleneck that attempt to reconstruct the original input.

Training is typically done using backpropagation, where the model is trained to minimize

the difference between the original input and the reconstructed output. Some autoencoders are

also designed with tied weights, meaning the weights used in the encoder are the same as those

in the decoder, just reversed, ensuring a more compact and efficient model.

Autoencoders are employed for various purposes, including dimensionality reduction, im-

age denoising, anomaly detection, data compression, and the generation or reconstruction of

images. Recurrent Neural Networks (RNN) Recurrent Neural Networks are specifically de-

signed to process sequential data, such as speech and time series. They are widely employed

in applications like language translation and speech recognition. Long Short-Term Memory

(LSTM) The long short term memory network is a specialized variant of RNN that is adept at

managing long-term dependencies more effectively.

Given that both RNNs and LSTMs are specifically designed to process sequential data, we

aim to explore their application in time series forecasting. We will examine these models in

greater detail.

3.6 Recurrent Neural Network (RNN)

Recurrent Neural Network (RNN) is a type of artificial neural network designed specifically

for processing sequential data (e.g., time series, text, audio). Unlike traditional feedforward
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neural networks, RNNs have connections that form directed cycles, allowing information to

persist across time steps. This structure gives RNNs a kind of memory, enabling them to model

temporal dependencies and patterns over time. another way to think about RNNs is that a

recurrent neural network has multiple copies of the same network, each passing a message to

a successor. The information in recurrent neural networks cycles through a loop to the middle

hidden layer.

Figure 3.6: Basic recurrent neural network (RNN) flow
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3.6.1 Types of RNN

RNN architecture can vary depending on the problem you’re trying to solve. It can range from

those with a single input and output to those with many.

In other words, the main reason that the recurrent nets are more exciting is that they allow us

to operate over sequences of vectors: Sequence in the input, the output, or in the most general

case, both. A few examples may this more concrete:

Figure 3.7: Types of recurrent neural networks (RNNs)

1. One-to-One:

This architecture is commonly referred to as Plain Neural Networks. It operates with a fixed-

size input corresponding to a fixed-size output, where the two are independent of any preceding

information or output.

2. One-to-Many:

This structure takes a fixed-size input and produces a sequence of output data.

3. Many-to-One: This configuration receives a sequence of input information and generates a

fixed-size output.

4. Many-to-Many: This model processes a sequence of input information and recurrently out-

puts a sequence of data.

5. Bidirectional Many-to-Many: This approach involves synchronized sequence inputs and

outputs. It is noteworthy that in all these cases, there are no pre specified constraints on the

lengths of the sequences, as the recurrent transformation is consistent and can be applied itera-

tively as needed.
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3.6.2 The Architecture of RNNs

Recurrent Neural Networks (RNNs) represent a class of neural networks characterized by the

incorporation of hidden states, enabling the utilization of prior outputs as inputs. Their operation

typically follows this structure: For each time step t, the activation a⟨t⟩ and the output y⟨t⟩ are

Figure 3.8: The architecture of recurrent neural networks

Figure 3.9: Inside architecture of a recurrent neural network (RNN)

expressed as follows:

a⟨t⟩ = g1(Waaa
⟨t−1⟩ +Waxx

⟨t⟩ + ba) and y⟨t⟩ = g2(Wyaa
⟨t⟩ + by)

where Wax,Waa,Wya, ba, by are coefficients that are shared temporally and g1, g2 are acti-

vation functions.
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3.6.3 Applications

The dataset from the earlier phase is retained for this step to preserve consistency in data pro-

cessing and model evaluation.

Example 1: AirPassengers data

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.preprocessing import MinMaxScaler

from sklearn.metrics import mean_squared_error

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import SimpleRNN, Dense

# --- Load Data ---

date_range = pd.date_range(start=’1949-01’, periods=len(data), freq=

’MS’)

df = pd.DataFrame({’Month’: date_range, ’Passengers’: data})

df.set_index(’Month’, inplace=True)

# --- Normalize data ---

scaler = MinMaxScaler()

df[’Passengers_scaled’] = scaler.fit_transform(df[[’Passengers’]])

# --- Create sequences (lags) ---

def create_sequences(series, window):

X, y = [], []

for i in range(window, len(series)):

X.append(series[i - window:i])

y.append(series[i])

return np.array(X), np.array(y)

WINDOW_SIZE = 12

series = df[’Passengers_scaled’].values
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X, y = create_sequences(series, WINDOW_SIZE)

# --- Train/test split ---

split_index = int(len(X) * 0.8)

X_train, y_train = X[:split_index], y[:split_index]

X_test, y_test = X[split_index:], y[split_index:]

# --- Reshape for RNN ---

X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], 1))

X_test = X_test.reshape((X_test.shape[0], X_test.shape[1], 1))

# --- Build SimpleRNN model ---

model = Sequential([

SimpleRNN(64, activation=’relu’, input_shape=(WINDOW_SIZE, 1)),

Dense(1)

])

model.compile(optimizer=’adam’, loss=’mse’)

model.summary()

# --- Train ---

history = model.fit(X_train, y_train, epochs=100, batch_size=16,

validation_data=(X_test, y_test), verbose=1)

# --- Predict ---

y_pred = model.predict(X_test)

# --- Inverse transform predictions ---

y_test_inv = scaler.inverse_transform(y_test.reshape(-1, 1))

y_pred_inv = scaler.inverse_transform(y_pred)

# --- Evaluation ---

rmse = np.sqrt(mean_squared_error(y_test_inv, y_pred_inv))

print(f’RMSE: {rmse:.2f}’)
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# --- Plot results ---

test_index = df.index[WINDOW_SIZE + split_index:]

plt.figure(figsize=(12, 6))

plt.plot(df.index, df[’Passengers’], label=’Original’)

plt.plot(test_index, y_pred_inv, label=’SimpleRNN Forecast’, color=’

red’)

plt.title(’SimpleRNN - AirPassengers Forecast’)

plt.xlabel(’Date’)

plt.ylabel(’Number of Passengers’)

plt.legend()

plt.grid(True)

plt.show()

Figure 3.10: RNN forecasting for AirPassengers data

Example 2: Saida temperature data

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.preprocessing import MinMaxScaler

from sklearn.metrics import mean_squared_error
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from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import SimpleRNN, Dense

# --- Load & prepare data ---

df = pd.read_csv(’../input/correc/corrected_temperature_data.csv’)

df = df.set_index(’Datetime’)

df.index = pd.to_datetime(df.index)

df.dropna(inplace=True)

temperature_data = df[[’Temperature’]]

# --- Normalize data ---

scaler = MinMaxScaler()

temperature_scaled = scaler.fit_transform(temperature_data)

# --- Create sequences ---

def create_sequences(data, seq_length=10):

X, y = [], []

for i in range(len(data) - seq_length):

X.append(data[i:i + seq_length])

y.append(data[i + seq_length])

return np.array(X), np.array(y)

SEQ_LENGTH = 10

X, y = create_sequences(temperature_scaled, SEQ_LENGTH)

# --- Split data ---

train_size = int(len(X) * 0.8)

X_train, X_test = X[:train_size], X[train_size:]

y_train, y_test = y[:train_size], y[train_size:]

# --- Fix input shape ---

X_train = X_train.reshape((X_train.shape[0], SEQ_LENGTH, 1))

X_test = X_test.reshape((X_test.shape[0], SEQ_LENGTH, 1))
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# --- Build model ---

model = Sequential([

SimpleRNN(64, activation=’relu’, input_shape=(SEQ_LENGTH, 1)),

Dense(1)

])

model.compile(optimizer=’adam’, loss=’mse’)

model.summary()

# --- Train model ---

history = model.fit(X_train, y_train, epochs=100, batch_size=16,

validation_data=(X_test, y_test), verbose=1)

# --- Predict ---

y_pred = model.predict(X_test)

# --- Inverse scaling ---

y_test_inv = scaler.inverse_transform(y_test.reshape(-1, 1))

y_pred_inv = scaler.inverse_transform(y_pred)

# --- Evaluation ---

rmse = np.sqrt(mean_squared_error(y_test_inv, y_pred_inv))

print(f"SimpleRNN Test RMSE: {rmse:.2f}")

# --- Set prediction dates ---

prediction_dates = df.index[-len(y_test_inv):]

# --- Plot ---

plt.figure(figsize=(20, 6))

df_2024 = df[(df.index >= ’2024-01-01’) & (df.index < ’2025-01-01’)]

plt.plot(df_2024.index, df_2024[’Temperature’], label=’Actual

Temperature 2024’, color=’blue’)

plt.plot(prediction_dates, y_pred_inv, label=’Predicted Temperature (

Nov-Dec 2024)’, color=’red’)
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plt.title(’Temperature in SaÃŕda, Algeria (Actual 2024 + Predicted

Nov-Dec)’)

plt.xlabel(’Date’)

plt.ylabel(’Temperature (ÂřC)’)

plt.legend()

plt.grid(True)

plt.axvline(pd.to_datetime(’2024-10-30’), color=’black’, ls=’--’)

plt.tight_layout()

plt.show()

Figure 3.11: RNN forecasting for temperature in Saida

3.7 Long Short-Term Memory (LSTM) networks

Long Short-Term Memory (LSTM) networks represent a distinct class of Recurrent Neural

Networks (RNNs) specifically designed to learn long-term dependencies in data. Initially intro-

duced by Hochreiter and Schmidhuber in 1997, LSTMs have undergone extensive refinement

and have been popularized by numerous researchers in the field. Their efficacy has been demon-

strated across a diverse array of applications, leading to their widespread adoption in practical

scenarios. LSTM networks were developed to address the inherent limitations of traditional

RNNs, particularly the challenges associated with learning long-term dependencies, which of-

ten arise from the vanishing and exploding gradient problems.

3.7.1 The architecture of LSTM

The neural network architecture for an LSTM block, as shown in Figure below, demonstrates

that the LSTM network extends the memory capabilities of a traditional RNN. It can selectively
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remember or forget information through specialized structures known as the cell state and three

types of gates.

Thus, in addition to the hidden state found in standard RNNs, an LSTM block typically

includes four additional components. These are:

• the cell state (Ct),

• the input gate (it),

• the output gate (ot), and

• the forget gate (ft).

Each of these layers interacts with the others in a carefully designed manner to regulate the

flow of information and effectively learn patterns from the training data.

Figure 3.12: The architecture of LSTM

Cell state (Ct):

The cell state is a fundamental component of LSTM networks and serves as the memory of the

system. the flow of the cell state can be likened to a conveyor belt or a production line, where

information moves through the sequence mostly unchanged, unless altered by simple operations
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such as multiplication and addition. in this setup, information flows smoothly along the chain,

and if there are no interactions, it remains unchanged. however, the LSTM block has the ability

to add or remove information from the cell state through mechanisms known as gates. These

gates allow selective information to pass into or out of the cell state, depending on what the

network learns during training. This selective control is what enables LSTM networks to retain

or forget information as needed, unlike traditional RNNs.

Figure 3.13: Cell state (Ct)

Forget gate (ft)

The Forget Gate (ft) determines what information should be discarded or retained from the cell

state. This process is implemented using a sigmoid activation function, which outputs values in

the range of 0 to 1. The output depends on the current input pt, the previous hidden state ht−1,

a weight matrix W (f), and a bias vector b(f).

The forget gate is defined by the following equation:

ft = σ
(
W (f) · [pt, ht−1] + b(f)

)
(3.1)

Here, σ denotes the sigmoid activation function, defined as:
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σ(x) =
1

1 + e−x
(3.2)

In this context:

• W (f) is the weight matrix for the forget gate.

• b(f) is the bias vector.

• [pt, ht−1] is the concatenation of the current input and the previous hidden state.

The forget gate output ft determines the extent to which the values in the previous cell state

are retained or forgotten. A value close to 0 means the information is forgotten, while a value

close to 1 means the information is retained.

Figure 3.14: Forget gate in LSTM cell

3.7.2 Input gate

(it) The input-update gate decides what new information should be stored in the cell state, which

has two parts: A sigmoid layer and a hyperbolic tangent (tanh) layer. The sigmoid layer is called

the "input gate layer" because it decides which values should be updated. The tanh layer is a

vector of new candidate values C̃t that could be added to the cell state.
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Mathematically, the input gate is defined as:

it = σ
(
W (i) · [pt, ht−1] + b(i)

)
=

1

1 + e−(W
(i)·[pt,ht−1]+b(i))

(3.3)

Where:

• W (i) is the weight matrix associated with the input gate.

• b(i) is the bias vector.

• pt is the input at the current time step t.

• ht−1 is the hidden state from the previous time step.

• σ(x) is the sigmoid function: σ(x) = 1
1+e−x .

Just like in the forget gate, the parameters W (i) and b(i) are learned during training. At each time

step, the model uses the input pt and the previous hidden state ht−1 to determine how much new

information to write to the memory cell, before calculating the candidate cell state.

Next, a vector of new candidate values C̃t is computed. This candidate represents potential new

information that may be added to the cell state. The computation process is similar to that used

in the forget and input gates, but instead of a sigmoid activation, it uses the hyperbolic tangent

(tanh) activation function, which outputs values in the range (−1, 1). The formula is given by:

C̃t = tanh
(
W (c) · [pt, ht−1] + b(c)

)
=

ex − e−x

ex + e−x
, where x = W (c) · [pt, ht−1] + b(c) (3.4)

Where:

• W (c) is the weight matrix for the candidate cell state.

• b(c) is the bias vector.

• pt is the input at the current time step.

• ht−1 is the hidden state from the previous time step.

• tanh(x) is the hyperbolic tangent function:

tanh(x) =
ex − e−x

ex + e−x
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Figure 3.15: Input gate in the LSTM cell

In the next step, the values from the input gate and the candidate cell state are combined to

create and update the memory cell. This process is represented by Equation(1). It involves a

linear combination of two elements:

• The forget gate (ft), which determines how much of the previous cell state (Ct−1) should

be retained.

• The input gate (it), which decides how much of the newly generated candidate state (C̃t)

should be added.

The update is done using element-wise (Hadamard) multiplication, denoted by ◦. The re-

sulting updated cell state Ct is given by:

Ct = ft ◦ Ct−1 + it ◦ C̃t (1)

This equation allows the LSTM to maintain long-term dependencies by carefully deciding

what information to preserve from the past and what new data to incorporate, enabling effective

memory control throughout the sequence.
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3.7.3 Output gate

The output gate (ot) controls which information to reveal from the updated cell state (Ct) to the

output in a single time step. In other words, the output gate determines what the value of the

next hidden state should be in each time step. After updating the cell state, the LSTM computes

the output gate ot. The output gate uses a sigmoid activation function applied to the previous

hidden state and the current input:

ot = σ
(
W (o) · [ht−1, pt] + b(o)

)
=

1

1 + e−(W
(o)·[ht−1,pt]+b(o))

(3.5)

Where:

• W (o), b(o) are the weight matrix and bias for the output gate.

• ht−1 is the previous hidden state.

• pt is the current input.

• σ(x) is the sigmoid function.

Figure 3.16: Output gate in the LSTM cell
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The current hidden state ht is then computed by applying the output gate ot to the hyperbolic

tangent of the updated cell state Ct:

ht = ot ◦ tanh(Ct) = ot ◦
ex − e−x

ex + e−x
, where x = ft ◦ Ct−1 + it ◦ C̃t (3.6)

This allows the network to filter what part of the updated cell state should influence the

current hidden state.

The final predicted output ŷt is computed by passing the hidden state through another sigmoid

activation:

ŷt = σ
(
W (y) · ht + b(y)

)
=

1

1 + e−(W
(y)·ht+b(y))

(3.7)

Where:

• W (y) and b(y) are the weight matrix and bias for the output layer.

• ŷt is the model’s predicted output at time t.

3.7.4 LSTM memory cell summary

Figure 3.17: LSTM memory cell summary
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3.7.5 Applications

The dataset from the earlier phase is retained for this step to preserve consistency in data pro-

cessing and model evaluation.

Example 1: AirPassengers data

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.preprocessing import MinMaxScaler

from sklearn.metrics import mean_squared_error

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, Dense

# --- Load Data ---

date_range = pd.date_range(start=’1949-01’, periods=len(data), freq=’

MS’)

df = pd.DataFrame({’Month’: date_range, ’Passengers’: data})

df.set_index(’Month’, inplace=True)

# --- Normalize data ---

scaler = MinMaxScaler()

df[’Passengers_scaled’] = scaler.fit_transform(df[[’Passengers’]])

# --- Create sequences (lags) for LSTM ---

def create_sequences(series, window):

X, y = [], []

for i in range(window, len(series)):

X.append(series[i - window:i])

y.append(series[i])

return np.array(X), np.array(y)

WINDOW_SIZE = 12

series = df[’Passengers_scaled’].values

X, y = create_sequences(series, WINDOW_SIZE)
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# --- Split into train/test ---

split_index = int(len(X) * 0.8)

X_train, y_train = X[:split_index], y[:split_index]

X_test, y_test = X[split_index:], y[split_index:]

# Reshape for LSTM: [samples, time_steps, features]

X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], 1))

X_test = X_test.reshape((X_test.shape[0], X_test.shape[1], 1))

# --- Build LSTM model ---

model = Sequential([

LSTM(64, activation=’relu’, input_shape=(WINDOW_SIZE, 1)),

Dense(1)

])

model.compile(optimizer=’adam’, loss=’mse’)

model.summary()

# --- Train ---

history = model.fit(X_train, y_train, epochs=100, batch_size=16,

validation_data=(X_test, y_test), verbose=1)

# --- Predict ---

y_pred = model.predict(X_test)

# --- Inverse scale predictions ---

y_test_inv = scaler.inverse_transform(y_test.reshape(-1, 1))

y_pred_inv = scaler.inverse_transform(y_pred)

# --- Evaluation ---

rmse = np.sqrt(mean_squared_error(y_test_inv, y_pred_inv))

print(f’RMSE: {rmse:.2f}’)

# --- Plot results ---
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test_index = df.index[WINDOW_SIZE + split_index:]

plt.figure(figsize=(12, 6))

plt.plot(df.index, df[’Passengers’], label=’Original’)

plt.plot(test_index, y_pred_inv, label=’LSTM Forecast’, color=’red’)

plt.title(’LSTM - AirPassengers Forecast’)

plt.xlabel(’Date’)

plt.ylabel(’Number of Passengers’)

plt.legend()

plt.grid(True)

plt.show()

# --- Show Predictions vs Actual ---

comparison = pd.DataFrame({

’Actual’: y_test_inv.flatten(),

’Predicted’: y_pred_inv.flatten()

}, index=test_index)

print(comparison.head(15))

Figure 3.18: LSTM forecasting for AirPassengers

Example 2: Saida temperature data

import pandas as pd



3.7.5 Applications 80

import numpy as np

import matplotlib.pyplot as plt

from sklearn.preprocessing import MinMaxScaler

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, Dense

from sklearn.metrics import mean_squared_error

# --- Load Data ---

df = pd.read_csv(’../input/correc/corrected_temperature_data.csv’)

df = df.set_index(’Datetime’)

df.index = pd.to_datetime(df.index)

df.dropna(inplace=True)

temperature_data = df[[’Temperature’]]

# --- Normalize data ---

scaler = MinMaxScaler()

temperature_scaled = scaler.fit_transform(temperature_data)

# --- Create sequences (lags) for LSTM ---

def create_sequences(data, seq_length=10):

X, y = [], []

for i in range(len(data) - seq_length):

X.append(data[i:i + seq_length])

y.append(data[i + seq_length])

return np.array(X), np.array(y)

SEQ_LENGTH = 10

X, y = create_sequences(temperature_scaled, SEQ_LENGTH)

# --- Split into train/test ---

train_size = int(len(X) * 0.8)

X_train, X_test = X[:train_size], X[train_size:]

y_train, y_test = y[:train_size], y[train_size:]

# --- Build LSTM model ---

model = Sequential()

model.add(LSTM(64, activation=’relu’, input_shape=(SEQ_LENGTH, 1)))

model.add(Dense(1))

model.compile(optimizer=’adam’, loss=’mse’)
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# --- Train ---

history = model.fit(X_train, y_train, epochs=30, batch_size=32,

validation_split=0.1, verbose=1)

# --- Predict ---

y_pred = model.predict(X_test)

# --- Inverse scale predictions ---

y_test_inv = scaler.inverse_transform(y_test)

y_pred_inv = scaler.inverse_transform(y_pred)

# --- Evaluation ---

rmse # --- Evaluation ---= np.sqrt(mean_squared_error(y_test_inv,

y_pred_inv))

print(f"LSTM Test RMSE: {rmse:.2f}")

# --- Plot results ---

prediction_dates = df.index[-len(y_test_inv):]

plt.figure(figsize=(20, 6))

df_2024 = df[(df.index >= ’2024-01-01’) & (df.index < ’2025-01-01’)]

plt.plot(df_2024.index, df_2024[’Temperature’], label=’Actual

Temperature 2024’, color=’blue’)

plt.plot(prediction_dates, y_pred_inv, label=’Predicted Temperature (

Nov-Dec 2024)’, color=’red’)

plt.title(’Temperature in SaÃŕda, Algeria (Actual 2024 + Predicted

Nov-Dec)’)

plt.xlabel(’Date’)

plt.ylabel(’Temperature (ÂřC)’)

plt.legend()

plt.grid(True)

plt.tight_layout()

plt.axvline(pd.to_datetime(’2024-10-30’), color=’black’, ls=’--’)

plt.show()
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Figure 3.19: LSTM forecasting for temperature in Saida

3.7.6 The Relationship between AI, machine learning, and deep learning

Although artificial intelligence (AI) and machine learning (ML) are often used synonymously,

they are not interchangeable terms.

Artificial intelligence is an area of computer science that concerns building computers and

machines that can reason, learn, and act in a way resembling human intelligence, or systems

that involve data whose scale exceeds what humans can analyse. The field includes many dif-

ferent disciplines including data analytics, statistics, hardware and software engineering, neu-

roscience, and even philosophy.

Whereas artificial intelligence is a broad category of computer science, machine learning is

an application of AI that involves training machines to execute a task without being specifically

programmed for it. Machine learning is used more explicitly as a means to extract knowledge

from data using techniques such as neural networks, supervised and unsupervised learning,

decision trees, and linear regression. Like machine learning is a subset of artificial intelligence,

deep learning is a subset of machine learning.

Deep learning works by training neural networks on sets of data. A neural network is a

model that uses a system of artificial neurons that are computational nodes used to classify

and analyse data. Data are fed into the first layer of a neural network, with each node making

a decision, and then passing that information onto multiple nodes in the next layer. Training

models with more than three layers are referred to as deep neural networks or deep learning.

Some modern neural networks have hundreds or thousands of layers.
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Figure 3.20: AI, machine learning, and deep learning relationship

3.8 Comparing forecasting methods

In this section, we will conduct a comparative analysis between a traditional forecasting method,

specifically the Holt-Winters technique, and various artificial intelligence methods, including

Random Forest, XGBoost, Long Short-Term Memory (LSTM), and Recurrent Neural Networks

(RNN).

3.8.1 AirPassengers data

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from statsmodels.tsa.holtwinters import ExponentialSmoothing

from sklearn.metrics import mean_squared_error

from sklearn.ensemble import RandomForestRegressor

import xgboost as xgb

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, SimpleRNN, Dense

from tensorflow.keras.callbacks import EarlyStopping

# --- Load AirPassengers Data ---

data = [

145, 150, 178, 163, 172, 178, 199, 199, 184, 162, 146, 166,

171, 180, 193, 181, 183, 218, 230, 242, 209, 191, 172, 194,
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196, 196, 236, 235, 229, 243, 264, 272, 237, 211, 180, 201,

204, 188, 235, 227, 234, 264, 302, 293, 259, 229, 203, 229,

242, 233, 267, 269, 270, 315, 364, 347, 312, 274, 237, 278,

284, 277, 317, 313, 318, 374, 413, 405, 355, 306, 271, 306,

315, 301, 356, 348, 355, 422, 465, 467, 404, 347, 305, 336,

340, 318, 362, 348, 363, 435, 491, 505, 404, 359, 310, 337,

360, 342, 406, 396, 420, 472, 548, 559, 463, 407, 362, 405,

417, 391, 419, 461, 472, 535, 622, 606, 508, 461, 390, 432

]

date_range = pd.date_range(start=’1949-01’, periods=len(data), freq=’

MS’)

df = pd.DataFrame({’Month’: date_range, ’Passengers’: data})

df.set_index(’Month’, inplace=True)

# --- Holt-Winters Forecast ---

split_index = int(len(df) * 0.8)

train = df.iloc[:split_index]

test = df.iloc[split_index:]

hw_model = ExponentialSmoothing(train[’Passengers’], trend=’mul’,

seasonal=’mul’, seasonal_periods=12)

hw_fit = hw_model.fit()

hw_forecast = hw_fit.forecast(steps=len(test))

hw_rmse = np.sqrt(mean_squared_error(test[’Passengers’], hw_forecast)

)

print(f"Holt-Winters RMSE: {hw_rmse:.2f}")

# --- Create Lag Features ---

def create_lag_features(data, lags=12):

df_lag = data.copy()

for i in range(1, lags + 1):

df_lag[f’lag_{i}’] = df_lag[’Passengers’].shift(i)

df_lag.dropna(inplace=True)

return df_lag
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lags = 12

df_lagged = create_lag_features(df[[’Passengers’]], lags)

# --- Split for ML and RNN/LSTM ---

split_idx = int(len(df_lagged) * 0.8)

train_ml = df_lagged.iloc[:split_idx]

test_ml = df_lagged.iloc[split_idx:]

X_train = train_ml.drop(’Passengers’, axis=1).values

y_train = train_ml[’Passengers’].values

X_test = test_ml.drop(’Passengers’, axis=1).values

y_test = test_ml[’Passengers’].values

# --- Random Forest ---

rf_model = RandomForestRegressor(n_estimators=100, random_state=42)

rf_model.fit(X_train, y_train)

rf_pred = rf_model.predict(X_test)

rf_rmse = np.sqrt(mean_squared_error(y_test, rf_pred))

print(f"Random Forest RMSE: {rf_rmse:.2f}")

# --- XGBoost ---

xgb_model = xgb.XGBRegressor(objective=’reg:squarederror’,

n_estimators=100)

xgb_model.fit(X_train, y_train)

xgb_pred = xgb_model.predict(X_test)

xgb_rmse = np.sqrt(mean_squared_error(y_test, xgb_pred))

print(f"XGBoost RMSE: {xgb_rmse:.2f}")

# --- Prepare for LSTM and RNN ---

X_train_rnn = X_train.reshape((X_train.shape[0], lags, 1))

X_test_rnn = X_test.reshape((X_test.shape[0], lags, 1))

# --- LSTM ---

lstm_model = Sequential([

LSTM(50, activation=’relu’, input_shape=(lags, 1)),
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Dense(1)

])

lstm_model.compile(optimizer=’adam’, loss=’mse’)

early_stop = EarlyStopping(monitor=’val_loss’, patience=10,

restore_best_weights=True)

lstm_model.fit(X_train_rnn, y_train, epochs=100, batch_size=8,

validation_split=0.1, callbacks=[early_stop], verbose

=0)

lstm_pred = lstm_model.predict(X_test_rnn).flatten()

lstm_rmse = np.sqrt(mean_squared_error(y_test, lstm_pred))

print(f"LSTM RMSE: {lstm_rmse:.2f}")

# --- Simple RNN ---

rnn_model = Sequential([

SimpleRNN(50, activation=’relu’, input_shape=(lags, 1)),

Dense(1)

])

rnn_model.compile(optimizer=’adam’, loss=’mse’)

rnn_model.fit(X_train_rnn, y_train, epochs=100, batch_size=8,

validation_split=0.1, callbacks=[early_stop], verbose

=0)

rnn_pred = rnn_model.predict(X_test_rnn).flatten()

rnn_rmse = np.sqrt(mean_squared_error(y_test, rnn_pred))

print(f"Simple RNN RMSE: {rnn_rmse:.2f}")

# --- Plot ---

plt.figure(figsize=(14, 6))

plt.plot(test.index, test[’Passengers’], label=’Actual’, color=’green

’)

plt.plot(test.index, hw_forecast, label=f’Holt-Winters (RMSE={hw_rmse

:.2f})’, color=’red’)

plt.plot(test_ml.index, rf_pred, label=f’Random Forest (RMSE={rf_rmse

:.2f})’, color=’purple’, linestyle=’--’)
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Figure 3.21: AirPassengers data

plt.plot(test_ml.index, xgb_pred, label=f’XGBoost (RMSE={xgb_rmse:.2f

})’, color=’orange’, linestyle=’--’)

plt.plot(test_ml.index, lstm_pred, label=f’LSTM (RMSE={lstm_rmse:.2f

})’, color=’magenta’, linestyle=’-.’)

plt.plot(test_ml.index, rnn_pred, label=f’Simple RNN (RMSE={rnn_rmse

:.2f})’, color=’brown’, linestyle=’-.’)

plt.title(’AirPassengers Forecasting: HW vs ML vs LSTM/RNN’)

plt.xlabel(’Date’)

plt.ylabel(’Passengers’)

plt.legend()

plt.grid(True)

plt.tight_layout()

plt.show()

3.8.2 Saida temperature

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from statsmodels.tsa.holtwinters import ExponentialSmoothing

from sklearn.metrics import mean_squared_error

from sklearn.ensemble import RandomForestRegressor

import xgboost as xgb
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import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, LSTM, SimpleRNN

from tensorflow.keras.callbacks import EarlyStopping

# --- Load and prepare data ---

df = pd.read_csv(’../input/correc/corrected_temperature_data.csv’)

df[’Datetime’] = pd.to_datetime(df[’Datetime’])

df.set_index(’Datetime’, inplace=True)

df = df[~df.index.duplicated(keep=’first’)]

df = df.asfreq(’D’)

df = df.fillna(method=’ffill’)

# --- Feature Engineering ---

def create_lag_features(data, lags=7):

df_lag = data.copy()

for i in range(1, lags + 1):

df_lag[f’lag_{i}’] = df_lag[’Temperature’].shift(i)

df_lag.dropna(inplace=True)

return df_lag

lags = 7

df_features = create_lag_features(df[[’Temperature’]], lags=lags)

# --- Train-Test Split ---

split_idx = int(len(df_features) * 0.8)

train = df_features.iloc[:split_idx]

test = df_features.iloc[split_idx:]

X_train = train.drop(’Temperature’, axis=1).values

y_train = train[’Temperature’].values

X_test = test.drop(’Temperature’, axis=1).values

y_test = test[’Temperature’].values

# --- Holt-Winters ---
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hw_model = ExponentialSmoothing(train[’Temperature’], trend=’mul’,

seasonal=’add’, seasonal_periods=29)

hw_fit = hw_model.fit()

hw_forecast = hw_fit.forecast(steps=len(test))

hw_rmse = np.sqrt(mean_squared_error(y_test, hw_forecast))

print(f"Holt-Winters RMSE: {hw_rmse:.2f}")

# --- XGBoost ---

xgb_model = xgb.XGBRegressor(objective=’reg:squarederror’,

n_estimators=100)

xgb_model.fit(X_train, y_train)

xgb_pred = xgb_model.predict(X_test)

xgb_rmse = np.sqrt(mean_squared_error(y_test, xgb_pred))

print(f"XGBoost RMSE: {xgb_rmse:.2f}")

# --- Random Forest ---

rf_model = RandomForestRegressor(n_estimators=100, random_state=42)

rf_model.fit(X_train, y_train)

rf_pred = rf_model.predict(X_test)

rf_rmse = np.sqrt(mean_squared_error(y_test, rf_pred))

print(f"Random Forest RMSE: {rf_rmse:.2f}")

# --- Prepare data for LSTM and RNN ---

X_train_rnn = X_train.reshape((X_train.shape[0], lags, 1))

X_test_rnn = X_test.reshape((X_test.shape[0], lags, 1))

# --- LSTM Model ---

lstm_model = Sequential([

LSTM(50, activation=’relu’, input_shape=(lags, 1)),

Dense(1)

])

lstm_model.compile(optimizer=’adam’, loss=’mse’)

early_stop = EarlyStopping(monitor=’val_loss’, patience=10,

restore_best_weights=True)
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lstm_model.fit(X_train_rnn, y_train, epochs=100, batch_size=16,

validation_split=0.1, callbacks=[early_stop], verbose

=0)

lstm_pred = lstm_model.predict(X_test_rnn).flatten()

lstm_rmse = np.sqrt(mean_squared_error(y_test, lstm_pred))

print(f"LSTM RMSE: {lstm_rmse:.2f}")

# --- Simple RNN Model ---

rnn_model = Sequential([

SimpleRNN(50, activation=’relu’, input_shape=(lags,1)),

Dense(1)

])

rnn_model.compile(optimizer=’adam’, loss=’mse’)

rnn_model.fit(X_train_rnn, y_train, epochs=100, batch_size=16,

validation_split=0.1, callbacks=[early_stop], verbose

=0)

rnn_pred = rnn_model.predict(X_test_rnn).flatten()

rnn_rmse = np.sqrt(mean_squared_error(y_test, rnn_pred))

print(f"Simple RNN RMSE: {rnn_rmse:.2f}")

# --- Plotting ---

plt.figure(figsize=(14, 6))

plt.plot(test.index, y_test, label=’Actual Temperature’, color=’green

’)

plt.plot(test.index, hw_forecast, label=f’Holt-Winters (RMSE={hw_rmse

:.2f})’, color=’red’)

plt.plot(test.index, xgb_pred, label=f’XGBoost (RMSE={xgb_rmse:.2f})’

, color=’orange’, linestyle=’--’)

plt.plot(test.index, rf_pred, label=f’Random Forest (RMSE={rf_rmse:.2

f})’, color=’purple’, linestyle=’--’)
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plt.plot(test.index, lstm_pred, label=f’LSTM (RMSE={lstm_rmse:.2f})’,

color=’magenta’, linestyle=’-.’)

plt.plot(test.index, rnn_pred, label=f’Simple RNN (RMSE={rnn_rmse:.2f

})’, color=’brown’, linestyle=’-.’)

plt.title(’Forecasting Comparison on Test Data’)

plt.xlabel(’Date’)

plt.ylabel(’Temperature (ÂřC)’)

plt.legend()

plt.grid(True)

plt.tight_layout()

plt.show()

Figure 3.22: Saida temperature
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3.8.3 Data on the electricity consumption of regular customers in Saida

Sonelgaz: or the Algerian Electricity and Gas Company, was established in 1969. Its main

missions are the transportation and distribution of electricity, as well as the transportation and

distribution of natural gas through pipelines within the national market.

Energy Types

The trading company, produces and purchases high-intensity energy, then gradually reduces it

to reach consumers at medium or low intensity.

The electricity consumption data collected from Sonalgaz Saida is illustrated in the figure

below.

Figure 3.23: Saida electricity consumption

Where AO (Abonnés ordinaires) value represents the electricity consumption of ordinary

customers in low intensity, FSM (Facture Sur Mémoire) is the electricity consumption of the

entities, MT is medium intensity, and HTB is the consumption of high intensity electricity. We

have chosen to work with the AO data.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from statsmodels.tsa.holtwinters import ExponentialSmoothing

from sklearn.metrics import mean_squared_error

from sklearn.ensemble import RandomForestRegressor

import xgboost as xgb

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, SimpleRNN, Dense

from tensorflow.keras.callbacks import EarlyStopping
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import seaborn as sns

# --- Load Data ---

data = [

17.364768,18.883886,13.888631,18.304709,17.344866,14.761669,

66.68407,34.417864,66.866398,68.183489,60.708418,10.948368,

47.88,47.85,43.58,84.78,83.49,48.45,34.99,40.36,88.05,34.84,

84.88,44.84,30.53685,31.884858,16.016538,33.058448,36.450818,

18.583518,33.545853,45.188536,38.31588,33.645545,33.568655,

11.881155

]

date_range = pd.date_range(start=’2022-01’, periods=len(data), freq=’

MS’)

df = pd.DataFrame({’Month’: date_range, ’GWH’: data})

df.set_index(’Month’, inplace=True)

color_pal = sns.color_palette()

plt.style.use(’fivethirtyeight’)

print(df)

df.plot(

figsize=(15, 5),

color=color_pal[0],

title=’GWH’)

plt.show()

# --- Holt-Winters Forecast ---

split_index = int(len(df) * 0.8)

train = df.iloc[:split_index]

test = df.iloc[split_index:]

hw_model = ExponentialSmoothing(train[’GWH’], trend=’mul’, seasonal=’

mul’, seasonal_periods=12)

hw_fit = hw_model.fit()

hw_forecast = hw_fit.forecast(steps=len(test))

hw_rmse = np.sqrt(mean_squared_error(test[’GWH’], hw_forecast))

print(f"Holt-Winters RMSE: {hw_rmse:.2f}")

# --- Create Lag Features ---
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def create_lag_features(data, lags=12):

df_lag = data.copy()

for i in range(1, lags + 1):

df_lag[f’lag_{i}’] = df_lag[’GWH’].shift(i)

df_lag.dropna(inplace=True)

return df_lag

lags = 12

df_lagged = create_lag_features(df[[’GWH’]], lags)

# --- Split for ML and RNN/LSTM ---

split_idx = int(len(df_lagged) * 0.8)

train_ml = df_lagged.iloc[:split_idx]

test_ml = df_lagged.iloc[split_idx:]

X_train = train_ml.drop(’GWH’, axis=1).values

y_train = train_ml[’GWH’].values

X_test = test_ml.drop(’GWH’, axis=1).values

y_test = test_ml[’GWH’].values

# --- Random Forest ---

rf_model = RandomForestRegressor(n_estimators=100, random_state=42)

rf_model.fit(X_train, y_train)

rf_pred = rf_model.predict(X_test)

rf_rmse = np.sqrt(mean_squared_error(y_test, rf_pred))

print(f"Random Forest RMSE: {rf_rmse:.2f}")

# --- XGBoost ---

xgb_model = xgb.XGBRegressor(objective=’reg:squarederror’,

n_estimators=100)

xgb_model.fit(X_train, y_train)

xgb_pred = xgb_model.predict(X_test)

xgb_rmse = np.sqrt(mean_squared_error(y_test, xgb_pred))

print(f"XGBoost RMSE: {xgb_rmse:.2f}")

# --- Prepare for LSTM and RNN ---
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X_train_rnn = X_train.reshape((X_train.shape[0], lags, 1))

X_test_rnn = X_test.reshape((X_test.shape[0], lags, 1))

# --- LSTM ---

lstm_model = Sequential([

LSTM(50, activation=’relu’, input_shape=(lags, 1)),

Dense(1)

])

lstm_model.compile(optimizer=’adam’, loss=’mse’)

early_stop = EarlyStopping(monitor=’val_loss’, patience=10,

restore_best_weights=True)

lstm_model.fit(X_train_rnn, y_train, epochs=100, batch_size=8,

validation_split=0.1, callbacks=[early_stop], verbose

=0)

lstm_pred = lstm_model.predict(X_test_rnn).flatten()

lstm_rmse = np.sqrt(mean_squared_error(y_test, lstm_pred))

print(f"LSTM RMSE: {lstm_rmse:.2f}")

# --- Simple RNN ---

rnn_model = Sequential([

SimpleRNN(50, activation=’relu’, input_shape=(lags, 1)),

Dense(1)

])

rnn_model.compile(optimizer=’adam’, loss=’mse’)

rnn_model.fit(X_train_rnn, y_train, epochs=100, batch_size=8,

validation_split=0.1, callbacks=[early_stop], verbose

=0)

rnn_pred = rnn_model.predict(X_test_rnn).flatten()

rnn_rmse = np.sqrt(mean_squared_error(y_test, rnn_pred))

print(f"Simple RNN RMSE: {rnn_rmse:.2f}")

plt.figure(figsize=(14, 6))

# Plot the entire actual data (train + test)

plt.plot(df.index, df[’GWH’], color=color_pal[0])
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# Forecasts

plt.plot(test.index, hw_forecast, label=f’Holt-Winters (RMSE={hw_rmse

:.2f})’, color=’red’)

plt.plot(test_ml.index, rf_pred, label=f’Random Forest (RMSE={rf_rmse

:.2f})’, color=’purple’)

plt.plot(test_ml.index, xgb_pred, label=f’XGBoost (RMSE={xgb_rmse:.2f

})’, color=’orange’)

plt.plot(test_ml.index, lstm_pred, label=f’LSTM (RMSE={lstm_rmse:.2f

})’, color=’magenta’)

plt.plot(test_ml.index, rnn_pred, label=f’Simple RNN (RMSE={rnn_rmse

:.2f})’, color=’brown’)

plt.title(’Forecasting: Train + Test vs HW vs ML vs LSTM/RNN’)

plt.xlabel(’Date’)

plt.ylabel(’GWH’)

plt.legend()

plt.grid(True)

plt.tight_layout()

plt.show()

Figure 3.24: Data on electricity consumption of regular customers in Saida

From the comparative results of different forecasting methods, it is evident that AI tech-

niques consistently demonstrate superior performance in time series forecasting. Numerous

studies and empirical comparisons have shown the same thing, that machine learning models,

particularly deep learning architectures such as multilayer perceptrons, outperform traditional
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statistical methods like ARIMA in handling complex, non-stationary data patterns. Unlike clas-

sical approaches, AI models adapt flexibly to large, high-dimensional datasets and capture long-

term dependencies more effectively, which enhances their predictive accuracy and robustness.
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