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Abstract

In today’s data-driven landscape, manual invoice processing remains a time-consuming
and error-prone task for many Algerian businesses. This project presents Doc-IN, an
AI-powered smart invoice reader designed to automatically extract and structure data
from scanned Algerian invoices. By leveraging computer vision and machine learning
techniques, Doc-IN significantly reduces human intervention in the invoice management
process.

The system operates through a lightweight software agent that processes invoice
images, detects key fields such as supplier information, dates, product lines, quantities,
and tax details, and inserts the structured data into a connected database. Doc-IN has
been developed with adaptability in mind, making it compatible with commonly used
relational database systems such as MySQL and PostgreSQL, widely adopted across
Algerian enterprises. Additionally, Doc-IN is easy to integrate through its SDK with
any stock management system, enabling seamless automation across existing workflows.

Targeted at retail stores, warehouses, pharmacies, and similar institutions, Doc-IN
addresses a critical need for automation in administrative tasks. The project integrates
multiple disciplines, including computer vision, backend development, and intelligent
system design, under the guidance of an academic supervisor.

Ultimately, Doc-IN aims to enhance productivity, improve data accuracy, and mod-
ernize invoice handling practices across Algeria.
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Keywords and Concepts

• OCR (Optical Character Recognition): Technology for converting printed
or handwritten text in scanned images into machine-readable text.

• PaddleOCR: An open-source OCR system developed by Baidu, used in Doc-IN
for fast and accurate text recognition.

• Document AI: AI systems designed to understand and process documents such
as invoices, receipts, and forms.

• Layout Analysis: Identifying and segmenting structural components of a doc-
ument layout, such as headers, tables, and totals.

• Knowledge Distillation: Compressing a large, pre-trained model’s capabilities
into a smaller model to optimize performance.

• Line Item Detection: Automatically extracting rows of itemized data (e.g.,
product name, quantity, unit price) from invoices.

• Synthetic Dataset: Artificially generated invoices used to augment or simulate
real-world data for training and evaluation.

• LayoutLMv3: A vision-language transformer model for document understand-
ing, used to align text, layout, and visual features.

• Fine-tuning: Training a pre-existing model on a specific dataset (e.g., Algerian
invoices) to specialize it for a particular task.

• Software Development Kit (SDK): A packaged set of tools, libraries, APIs,
and documentation to help developers integrate Doc-IN features easily.

• API Layer: The part of an SDK that exposes the core functionality to devel-
opers, typically through functions, methods, or endpoints.

• CI/CD: Continuous Integration and Continuous Deployment processes that au-
tomate testing and delivery of the SDK.
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Chapter 1

General Introduction

1.1 Context

Processing invoices is a routine but important task in many businesses. These doc-
uments often arrive in different formats, with varying layouts and languages, which
makes automatic handling challenging. Most companies still rely on manual entry or
semi-automated systems that require a lot of human supervision. This not only slows
things down but also introduces errors.

Recently, there has been significant progress in AI technologies, especially in doc-
ument understanding. Tools like OCR engines, layout-based models, and transformer
architectures have shown that it’s now possible to go beyond simple text extraction
and actually understand the structure of complex documents like invoices.

This project, called Doc-IN, was developed to address this exact problem. It
combines OCR, and transformer models such as LayoutLMv3 to extract relevant infor-
mation from invoices and insert it into databases. The system also includes a custom
SDK to make integration easier and more adaptable. The goal is to reduce the need
for manual work and help businesses process documents faster and more accurately.

1.2 Problematic and Motivation

Despite all the progress in document automation, processing invoices remains a difficult
and repetitive task for many businesses. Invoices often come in different formats, with
varying layouts, fonts. This makes it hard for generic OCR tools or prebuilt models to
extract accurate data without some form of manual correction or review. As a result,
businesses still spend time checking and editing extracted fields to avoid costly errors
[10].

Manual data entry also comes with significant operational costs. It requires dedi-
cated human resources, increases the risk of input mistakes, and slows down financial
workflows such as payment processing or tax reporting.

Another issue is the lack of flexibility in most available tools. Many invoice extrac-
tion solutions don’t allow customization, or they hide their logic behind closed systems.

6



CHAPTER 1. GENERAL INTRODUCTION 7

This creates problems when the system needs to handle regional invoice formats, adapt
to new templates, or integrate with other platforms. In some cases, these tools simply
fail silently or miss important information without giving clear reasons [10].

This project, Doc-IN, was motivated by the need for something more adaptable
and transparent. We wanted to build a tool that could actually work in real-world
conditions, not just ideal ones. By combining OCR, layout-aware transformer-based
models like LayoutLMv3, we aimed to create a system that understands the structure
of invoices more deeply. Modern OCR engines can now handle documents with diverse
font styles and formats, making them more suitable for real-world invoice variability.

We also focused on making the system reusable and easy to integrate, by designing
a custom SDK. The idea was not just to automate invoice reading, but to give users
more control, reliability, and long-term usefulness.

1.3 Objectives

The main goal of this project is to build a solution that actually works in real conditions,
not just in controlled or ideal test cases. Our focus was on creating a system that can
extract key information from invoices and insert it into a structured database, while
handling the kinds of problems that come up in practice—especially in places like
Algeria.

One of the main challenges we noticed early on was the lack of available datasets
that represent how invoices actually look here. Most public datasets come from other
countries and don’t match the local formats. In Algeria, the structure can vary a lot
between different companies. This makes it harder for standard models to work well
out of the box.

To deal with that, our objective was to design a flexible pipeline that could adapt to
different layouts and document types. We used OCR tools combined with layout-aware
transformer models, and we also created a custom SDK so the system can be reused
or integrated into other platforms.

In short, our main objectives were:

• Build a working pipeline that can extract invoice data and insert it into a
database.

• Handle local challenges like varied layouts, and inconsistent formatting.

• Compensate for the lack of Algerian datasets using synthetic data and data aug-
mentation.

• Create an SDK to make the solution easier to reuse and maintain.
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• Make sure the system performs well in realistic, everyday use cases.



Chapter 2

Background and Theoretical Foun-
dations

2.1 Artificial Intelligence (AI)

Artificial Intelligence (AI) is a multidisciplinary field within computer science concerned
with building systems capable of performing tasks typically requiring human intelli-
gence. These tasks include reasoning, learning, perception, language understanding,
and decision-making. AI combines elements from logic, probability theory, optimiza-
tion, and neuroscience to model intelligent behavior [17].

2.1.1 Core Modules of AI

AI systems are typically composed of several interconnected modules, each responsible
for a specific dimension of intelligence [17]:

• Knowledge Representation: This module is concerned with encoding infor-
mation about the world in a format that a computer system can utilize to solve
complex tasks such as diagnosing a medical condition or planning a route. Com-
mon approaches include:

– Propositional and First-order Logic: For formal reasoning.

– Semantic Networks, Frames, and Ontologies: Used in expert systems and
the Semantic Web [1].

Knowledge graphs (e.g., Google’s Knowledge Graph) are a modern extension of
these concepts.

• Search and Planning: AI systems often operate in large or infinite state spaces
and must decide how to act. Search algorithms explore these spaces efficiently.
Examples include:

– Uninformed Search: Breadth-first, depth-first.

9
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– Informed Search: A*, greedy search.

– Game Trees: Minimax and Alpha-Beta pruning in adversarial environments.

– Planning: STRIPS, PDDL-based planners, and heuristic-based systems for
robotic movement and logistics [6].

• Reasoning Systems: These enable inference—drawing conclusions from known
information. There are three major forms:

– Deductive Reasoning: From general rules to innovation.

– Inductive Reasoning: Deriving general principles from observations.

– Probabilistic Reasoning: Using Bayesian networks, Markov logic networks,
and fuzzy logic to deal with uncertainty.

Applications include expert systems, autonomous agents, and diagnostic engines.

• Learning Mechanisms: Learning from data is central to modern AI. This
includes:

– Supervised Learning: Learning from labeled datasets.

– Unsupervised Learning: Pattern discovery in unlabeled data.

– Reinforcement Learning (RL): Learning via interaction with an environment
(e.g., AlphaGo) [19].

These are often implemented through machine learning models like decision trees,
neural networks, and support vector machines.

• Perception Modules: These allow AI to interpret sensory inputs like vision,
sound, and touch. Examples include:

– Computer Vision: For interpreting images and videos (e.g., object detection,
scene understanding).

– Speech Recognition: Converting spoken language to text (e.g., Siri, Alexa).

– Sensor Fusion: Combining data from multiple sensors in robotics.

• Natural Language Processing (NLP): NLP enables machines to understand,
interpret, and generate human language. This includes:

– Syntax and Semantic Analysis: Parsing and meaning extraction.

– Named Entity Recognition (NER), Machine Translation, and Sentiment Anal-
ysis.

– Large Language Models: Like BERT, GPT, and T5 for state-of-the-art per-
formance in a variety of tasks.
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2.2 Machine Learning (ML)

Machine Learning (ML) is a subfield of Artificial Intelligence focused on the devel-
opment of algorithms that enable systems to learn from data and make predictions
or decisions without being explicitly programmed. ML techniques have become foun-
dational in numerous domains such as computer vision, natural language processing,
bioinformatics, and finance [2, 3].

2.2.1 Core Modules of ML

A typical machine learning pipeline consists of several critical components, each con-
tributing to the effectiveness and robustness of the final model:

• Data Collection and Cleaning: The first step involves gathering relevant data
from various sources such as sensors, APIs, web scraping, or databases. Raw data
is often noisy or incomplete, so preprocessing techniques such as:

– Missing value imputation,

– Outlier detection,

– Normalization and scaling,

– Encoding categorical variables

are applied to improve data quality and ensure model compatibility.

• Feature Engineering: Features are the measurable properties or characteristics
used for learning. Feature engineering includes:

– Feature selection: Identifying the most relevant inputs (e.g., using correla-
tion, mutual information).

– Feature extraction: Transforming data into new representations (e.g., PCA,
TF-IDF, embeddings).

– Domain-specific transformations: Applying log transforms, interaction terms,
etc.

Good features often determine model success more than the algorithm choice
itself [14].

• Model Selection: Depending on the problem type—classification, regression,
clustering, etc.—different algorithms may be considered [2]:

– Linear Models: Logistic regression, linear regression.
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– Tree-based Models: Decision trees, Random Forests, Gradient Boosting (e.g.,
XGBoost).

– Kernel Methods: Support Vector Machines (SVMs).

– Neural Networks: Especially for deep learning tasks.

Cross-validation and hyperparameter tuning help determine the best-performing
model.

• Training and Validation: Models are trained by minimizing a loss function
over the training data (e.g., cross-entropy, mean squared error). Key practices
include:

– Batch training vs online learning,

– Regularization: L1/L2 penalties to avoid overfitting,

– Validation Split: Separating validation data to tune parameters without
leakage.

Techniques like early stopping, dropout, and data augmentation also improve
generalization.

• Evaluation: Performance is assessed using appropriate metrics based on the
problem [14]:

– Accuracy, Precision, Recall, F1-score, ROC-AUC (for classification),

– MSE, RMSE, MAE (for regression),

– Silhouette score, Davies–Bouldin index (for clustering).

Confusion matrices and learning curves are often used for deeper diagnostic anal-
ysis.

• Deployment: After achieving satisfactory performance, the model must be in-
tegrated into real-world applications. This involves:

– Model serialization: Using formats like ONNX, Pickle, or TensorFlow Saved-
Model,

– API wrapping: Exposing the model through REST or gRPC endpoints,

– Monitoring: Ensuring ongoing performance with tools like Prometheus or
custom logging,

– Retraining pipelines: For model updating in dynamic environments (e.g.,
data drift).
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2.3 Deep Learning (DL)

Deep Learning (DL) is a specialized subfield of Machine Learning that focuses on
algorithms inspired by the structure and function of the brain’s neural networks [15].
It enables automatic learning of hierarchical feature representations through multiple
layers of abstraction, making it particularly effective in complex tasks such as image
classification, natural language understanding, and speech recognition [7].

2.3.1 Core Modules of DL

A typical deep learning pipeline incorporates several core components that collectively
enable end-to-end learning from raw data:

• Neural Architectures: Deep learning models are composed of layers of inter-
connected nodes (neurons) [7]. Different architectures are designed for different
data types and tasks:

– Convolutional Neural Networks (CNNs): Primarily used for image and spa-
tial data processing [13]. They utilize filters for local feature extraction and
pooling layers for dimensionality reduction.

– Recurrent Neural Networks (RNNs) and LSTMs: Suitable for sequential
data such as time series and natural language. LSTMs mitigate the vanish-
ing gradient problem in long sequences [8].

– Transformers: Leverage attention mechanisms to model long-range depen-
dencies in sequences [20, 4]. Widely used in NLP (e.g., BERT, GPT) and
vision (e.g., Vision Transformers).

• Activation Functions: These functions introduce non-linearity into the net-
work, allowing it to learn complex mappings. Common examples include:

– ReLU (Rectified Linear Unit): Popular for its computational efficiency and
performance.

– Sigmoid and Tanh: Historically used, especially in early networks, though
susceptible to vanishing gradients.

– Softmax: Often used in the final layer for classification tasks to produce
probability distributions.

• Loss Functions: Loss functions measure the discrepancy between predicted and
true values, guiding the optimization process:

– Cross-Entropy Loss: Used for classification tasks.



CHAPTER 2. BACKGROUND AND THEORETICAL FOUNDATIONS 14

– Mean Squared Error (MSE): Commonly used in regression tasks.

– Huber Loss: Combines MSE and MAE for robustness to outliers.

• Optimization: Training involves adjusting weights to minimize the loss function
using algorithms such as:

– Stochastic Gradient Descent (SGD): A widely used baseline method.

– Adam (Adaptive Moment Estimation): Combines momentum and adaptive
learning rates.

– RMSprop: Designed for non-stationary objectives, often used in RNN train-
ing.

The backpropagation algorithm computes gradients of the loss function with
respect to model parameters, enabling learning through iterative updates.

• Regularization: Deep networks can easily overfit, especially with small datasets.
Regularization techniques are employed to improve generalization:

– Dropout: Randomly deactivates neurons during training to prevent co-
adaptation [18].

– Weight Decay (L2 Regularization): Penalizes large weights to encourage
simpler models.

– Batch Normalization: Normalizes inputs to each layer, accelerating training
and improving stability.

• Transfer Learning: Transfer learning leverages pretrained models (e.g., ResNet,
BERT) trained on large-scale datasets like ImageNet or Wikipedia [16]. The pre-
trained weights are fine-tuned on domain-specific tasks with limited data, signif-
icantly reducing computational cost and training time.

2.4 Computer Vision (CV)

Computer Vision (CV) is a field of Artificial Intelligence (AI) that enables machines
to interpret and understand visual information from the world. It emulates the human
visual system to some extent, aiming to automate tasks that require visual cognition,
such as image classification, object detection, and scene understanding.

2.4.1 Core Modules of CV

The computer vision pipeline generally consists of several key modules, each responsible
for a specific transformation or interpretation of visual data:
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• Image Acquisition: This is the first step involving the collection of visual data
using devices such as CCD/CMOS cameras, scanners, or even smartphones. The
quality and resolution of acquisition significantly influence downstream perfor-
mance.

• Preprocessing: Raw images are rarely ready for direct analysis. Preprocessing
enhances image quality and prepares it for further steps. Common operations
include:

– Noise Reduction: Using filters like Gaussian blur or median filtering.

– Grayscale Conversion: Reduces complexity by converting color images to
shades of gray.

– Resizing and Normalization: Standardizes image dimensions and pixel val-
ues for neural networks.

• Feature Extraction: This step transforms images into a set of numerical de-
scriptors capturing essential patterns. Traditional techniques include:

– SIFT (Scale-Invariant Feature Transform): Detects scale- and rotation-
invariant keypoints.

– HOG (Histogram of Oriented Gradients): Captures edge orientations, useful
for pedestrian detection.

In deep learning, convolutional neural networks (CNNs) learn these features au-
tomatically during training [13].

• Object Detection & Recognition: The goal is to localize and categorize
objects in the image. Prominent models include:

– YOLO (You Only Look Once): Real-time object detection in a single neural
network pass.

– Faster R-CNN: Combines region proposal and classification in a two-stage
detector.

• Segmentation: This involves dividing the image into coherent regions for anal-
ysis. Two major types exist:

– Semantic Segmentation: Classifies each pixel into a category (e.g., road, car,
sky).

– Instance Segmentation: Differentiates between distinct objects of the same
class (e.g., two people).
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Notable architectures include U-Net, Mask R-CNN, and DeepLab.

• OCR (Optical Character Recognition): Extracts text from images, a vital
component in document analysis. Modern OCR uses CNN-LSTM hybrids or
Transformer-based models (e.g., TrOCR, Donut) for handling printed and hand-
written text with high accuracy.

2.5 Building Software Development Kits (SDKs)

A Software Development Kit (SDK) is a comprehensive set of tools, libraries, documen-
tation, and best practices designed to help developers integrate and utilize a specific
service or product. SDKs abstract away low-level implementation details and expose
clean interfaces, thereby accelerating development and ensuring consistency across ap-
plications [5].

2.5.1 Core Modules of SDK Design

A well-designed SDK is modular, secure, easy to use, and maintainable. The following
components are typically involved:

• API Layer: This is the main interface exposed to developers. It typically
consists of:

– Function calls or class methods wrapping the business logic.

– REST or gRPC client interfaces in web-based SDKs.

– Error objects and response handlers for consistent behavior across platforms.

Good SDKs offer a developer-friendly abstraction that hides the complexity of
remote calls, retries, and data formatting.

• Request Handling: This layer processes incoming input and prepares it for
execution or transmission. Core responsibilities include:

– Input validation and type-checking,

– Serialization and deserialization (e.g., JSON, Protobuf),

– Error handling and response parsing.

This ensures robustness and reduces integration errors in client code.

• Authentication: Secure interaction with APIs or resources is vital. SDKs typ-
ically implement:
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– API Key headers or tokens,

– OAuth 2.0 flows for user authorization,

– JWT (JSON Web Tokens) for secure session management.

Security should be baked into the SDK, not left for the developer to implement
manually.

• Documentation: High-quality documentation is critical for adoption and us-
ability. It includes:

– Quickstart guides and tutorials,

– Inline comments and docstrings,

– Code examples, FAQs, and use-case references.

Tools like Sphinx (Python), JSDoc (JavaScript), or Typedoc (TypeScript) are
commonly used to generate API docs.

• Versioning and Packaging: To ensure long-term maintainability and easy
distribution:

– Semantic Versioning (SemVer) helps track breaking changes.

– Packaging tools like pip, npm, maven, or cargo distribute SDKs.

– Release notes, changelogs, and migration guides are essential for developer
trust.

• Testing and CI/CD: Quality assurance is enforced via:

– Unit and integration tests using frameworks like Pytest, Mocha, or JUnit,

– Mocking/stubbing APIs to simulate external services,

– CI/CD pipelines for automatic testing, packaging, and publishing (e.g.,
GitHub Actions, GitLab CI, CircleCI).

These practices ensure reliability and speed up the release cycle without intro-
ducing regressions.

2.6 Document Understanding in AI

Understanding documents is a foundational challenge in artificial intelligence, espe-
cially in domains like business automation, healthcare, and legal technology, where
unstructured or semi-structured documents are ubiquitous. Document Understand-
ing (DU) refers to the process of extracting, interpreting, and structuring information
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from diverse document types — including scanned invoices, PDFs, handwritten forms,
or printed reports. Unlike plain text processing, DU must deal with a combination of
textual, visual, and spatial information simultaneously.

Early efforts in document understanding focused on rule-based systems, where lay-
out templates and regular expressions were used to locate fields in specific positions
[12]. These approaches, while effective in constrained settings, were brittle and unable
to handle real-world variability in layout, language, or design. As digitization accel-
erated, the need for models that could generalize across document styles and formats
became increasingly urgent.

Modern DU systems benefit greatly from advances in deep learning, particularly
the development of transformer-based models capable of understanding both text and
layout. These models treat documents not just as sequences of words but as visual
objects with structural hierarchies. This is especially important for semi-structured
documents like invoices or forms, where information is organized spatially rather than
in natural language order.

The combination of computer vision and natural language processing (NLP) has also
enabled multimodal models that process both text and layout features. For example,
models like LayoutLM and its successors incorporate bounding box coordinates and
visual embeddings alongside word tokens, allowing them to better capture the semantics
of complex layouts [22].

Despite these advances, challenges remain. Noisy data, poor scan quality, and di-
verse regional formats can significantly impact extraction accuracy. Therefore, DU
research continues to explore methods to improve robustness, interpretability, and
adaptability of these models to new domains.

Document understanding is not only a technical challenge but also a practical neces-
sity for enabling intelligent automation in the enterprise — especially for high-volume
tasks like invoice processing, which demand accuracy, and efficiency.

Algerian invoices often lack any standard layout, with key information appearing
in unpredictable positions and formats. This irregularity, along with elements like
stamps, and dense tables, makes them particularly difficult to process automatically.
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Figure 2.1: Examples of Algerian invoices.

2.7 OCR Techniques

Optical Character Recognition (OCR) is a core component in document understanding
systems. It enables the automatic detection and conversion of text from scanned im-
ages, PDFs, or photographs into machine-readable formats. OCR is especially critical
in the context of invoices, where key information such as item descriptions, prices, and
totals often appear in various fonts, orientations, or layouts.

Early OCR systems relied on simple pattern matching and template-based ap-
proaches, which made them fast but highly sensitive to noise, font variability, and im-
age quality. These classical methods struggled with real-world documents, particularly
those containing non-standard fonts, multilingual text, or handwritten annotations.

Modern OCR techniques have seen significant advances with the integration of
deep learning and computer vision. State-of-the-art systems now employ convolu-
tional neural networks (CNNs), recurrent layers, and attention mechanisms to improve
character-level recognition across diverse inputs. Frameworks like Tesseract (Google),
PaddleOCR (Baidu), and EasyOCR have become widely used in academic and indus-
trial applications. These systems are trained on large-scale datasets and are capable
of handling multiple languages, irregular layouts, and even rotated or distorted text.

PaddleOCR, in particular, stands out for its combination of detection and recogni-
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tion modules, support for multilingual text, and a modular architecture that integrates
well into larger pipelines. It performs robustly even on noisy scans and supports text
detection in complex layouts—making it a strong candidate for invoice processing sys-
tems. EasyOCR, while lightweight and easy to deploy, sometimes sacrifices accuracy
for speed. Meanwhile, Tesseract remains a popular open-source solution, especially af-
ter its LSTM-based improvements in version 4, but it can struggle with layout-sensitive
tasks and non-standard fonts.

One of the key challenges in OCR for invoices is that documents often include varied
typography, table-like structures, and non-text elements like logos or stamps. These
factors can confuse OCR models that are not layout-aware. To overcome this, hybrid
approaches combine OCR output with layout models such as LayoutLMv3, which help
contextualize recognized tokens based on their spatial positions in the document.

In summary, OCR is indispensable for transforming raw invoice images into usable
text, but it is most effective when paired with models that understand structure. Se-
lecting the right OCR engine depends heavily on the document’s complexity, language,
and layout characteristics.

Figure 2.2: PaddleOCR pipeline architecture.

2.8 Layout Analysis with LayoutLMv3

LayoutLMv3 is a powerful model designed to enhance document understanding by
jointly learning from text, layout, and visual features [21]. This makes it especially
effective for structured documents like invoices. Below are the key contributions and
reasons for its adoption in our project:

• Multimodal Fusion: LayoutLMv3 simultaneously incorporates textual, spatial
(layout), and visual information, enabling it to understand not just what the
words are.

• 2D Positional Embeddings: Unlike traditional models that process text lin-
early, LayoutLMv3 uses two-dimensional embeddings that capture the exact
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placement of tokens, making it better suited for understanding tables, columns,
and key-value relationships.

• Visual Backbone Integration: It uses a visual encoder (e.g., ResNet or Swin
Transformer) to extract image-level features [4]. This helps in identifying non-
textual elements such as lines, boxes, and logos that structure the document but
are invisible to OCR.

• Better Performance on Noisy Layouts: The model is robust to variations
in fonts, orientations, and alignment—common issues in real-world invoices that
often degrade the accuracy of plain OCR systems.

• Pre-training on Document Datasets: LayoutLMv3 is pre-trained on large-
scale document datasets, enabling it to generalize well across different formats
and languages without requiring massive labeled datasets.

• Effective for Key Information Extraction: In our use case, LayoutLMv3
significantly improved the recognition and alignment of fields like total amounts,
company names, and dates—especially when paired with OCR engines.

• Challenges and Limitations: LayoutLMv3 is a powerful model, no doubt —
but like anything, it comes with trade-offs. One of the main challenges is that it
needs quite a bit of computing power to run, especially during training or real-
time use. So, if you’re trying to deploy it on something lightweight — like an
edge device or in a live system — that could be a problem but this is not our use
case.

Another thing to keep in mind is the built-in OCR. While it’s handy to have OCR
integrated, it doesn’t always match the performance of more specialized tools like
PaddleOCR. In practice, PaddleOCR often does a better job with tricky fonts,
low-quality images, or documents in different languages. So, depending on your
use case, it might actually make sense to combine LayoutLMv3 with an external
OCR engine to get the best of both worlds.

These capabilities make LayoutLMv3 a solid foundation for building invoice au-
tomation systems that are layout-sensitive, adaptable, and more reliable than tradi-
tional pipeline-based approaches.
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Figure 2.3: Overview of the LayoutLMv3 architecture.

2.9 Transformers for Document Processing

Transformer-based models have significantly advanced the field of document process-
ing, thanks to their ability to capture contextual relationships across large text se-
quences [20]. In this project, we experimented with Mistral, an open-weight trans-
former model, to evaluate its capabilities in extracting structured information from
invoices. Below is a breakdown of our rationale, process, and findings:

• Why Transformers for Documents? Transformers have become the foun-
dation of modern NLP due to their scalability and attention mechanisms, which
allow them to model long-range dependencies—crucial for understanding full doc-
uments.

• About Mistral: Mistral is a modern decoder-style transformer model optimized
for efficient inference and competitive performance on a range of tasks [11]. It
was a strong candidate for experimenting with personalized, domain-specific fine-
tuning due to its lightweight architecture and open accessibility.

• Initial Motivation: Our goal was to fine-tune Mistral to understand and extract
key fields from invoices in French (and optionally Arabic), using synthetic data
generated from Algerian invoice formats. We hoped that Mistral’s autoregressive
capacity could adapt to these structured formats through targeted training.
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• Main Limitation Encountered: Despite our efforts, the main bottleneck was
the lack of sufficient domain-specific data required for effective fine-tuning
or knowledge distillation. Unlike generic NLP tasks, document extraction tasks
need detailed, annotated examples—and generating high-quality labeled invoice
data at scale proved challenging.

• Impact on Results: Without enough real or well-annotated synthetic examples,
Mistral struggled to learn field-specific patterns such as totals, TVA values, or
nested product tables. Its outputs lacked precision, and often misinterpreted
structural elements.

• Comparison with Layout-Aware Models: In contrast, models like Lay-
outLMv3—designed with spatial awareness—performed better out of the box,
even with less supervision. This reinforced our understanding that language-only
models like Mistral are not ideal for purely layout-driven tasks.

• Key Takeaway: Mistral can be valuable in downstream tasks (e.g., explaining or
validating extracted data in natural language), but its effectiveness in structured
field extraction remains limited without significant investment in training data.
This insight shaped our decision to rely on hybrid pipelines combining OCR,
layout-based vision models, and rule-based post-processing.

• Future Possibility: With access to richer datasets or domain-specific pretrain-
ing, Mistral—or similar decoder-based models—could play a stronger role in end-
to-end invoice automation.

2.10 Existing Solutions and Their Limitations

Several tools and platforms have been developed to tackle invoice information extrac-
tion, each with varying degrees of accuracy, flexibility, and transparency [10]. While
these systems have made strides in automating document workflows, they are not
without significant limitations—especially when applied on non common formats of
invoices.

• Closed-Source Commercial Solutions (e.g., Docparser, Rossum, Ko-
fax):

– Provide relatively good accuracy on common English invoice templates.

– Often underperform on non-standard layouts, multilingual formats, or low-
resource regions like North Africa.

– Require expensive subscriptions and limit scalability for smaller businesses.
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• Modern Layout-Aware AI Models (e.g., LayoutLM, Donut):

– Offer better performance on complex document tasks by combining visual,
textual, and layout signals.

– Require large amounts of annotated training data, which is often unavailable
for specialized domains like Algerian invoices.

– May still struggle with generalization to unseen layouts or noisy scans.

– High computational costs during training and inference can be a barrier for
practical deployment.

• End-to-End Systems (e.g., Google Document AI, Azure Form Recog-
nizer):

– Provide APIs that work well for common invoices formats.

– Offer limited flexibility for schema customization or user-defined fields.

– Depend on cloud infrastructure—raising privacy, latency, and cost concerns.

• Key Limitation Across the Board:

– Most systems are built and trained using Western or standardized invoice
formats.

– Many top-performing models require intricate dependency chains and cus-
tom environments, making “plug-and-play” integration difficult.

These limitations highlighted the need for a more flexible, open, and modular solu-
tion—one that could be tailored to regional business practices and integrated directly
into custom platforms. Doc-IN was designed to address these gaps by combining
layout-aware vision models, OCR, and a developer-friendly SDK architecture.



Chapter 3

Invoice Information Extraction: Prob-
lem Space

3.1 Why Invoices? Importance and Challenges

Invoices serve as the primary record of a transaction between a buyer and a seller,
carrying both financial and legal significance. They are used for accounting, auditing,
tax reporting, and cash flow management, making accurate data capture critical for
business operations and regulatory compliance. Manual invoice processing, however,
is time-consuming and error-prone—errors can lead to payment delays, incorrect tax
filings, and strained supplier relationships [10].

Key challenges that make invoice processing difficult include:

• Semi-structured Format: Invoices are neither fully structured (like databases)
nor purely free text; their layouts vary widely across vendors and regions, hin-
dering generic parsing methods.

• Visual Variability: Differences in fonts, logos, color schemes, and graphical
separators (lines, boxes) add noise, making text detection and segmentation more
complex.

• Document Quality Issues: Scanned or photographed invoices can suffer from
skew, blur, low contrast, or uneven illumination, all of which degrade OCR per-
formance.

• Data Validation Needs: Beyond text extraction, invoices require validation of
relationships (e.g., sum of line items equals total amount) to ensure data integrity
and trigger human review when discrepancies arise.
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3.2 Invoice Structure and Key Fields

Invoices serve as essential financial documents that formally record transactions be-
tween sellers and buyers. For automated information extraction systems, understand-
ing the typical structure and expected key fields within an invoice is a foundational
step. Although there is no universally enforced layout, certain elements are commonly
present across most invoice formats, providing a semi-structured framework for AI
models to learn from.

1. Document Header
The top section of most invoices contains administrative metadata that uniquely iden-
tifies the document and sets its temporal context. Key elements include:

• Invoice Number – A unique alphanumeric or numeric identifier.

2. Supplier and Client Information
Below or alongside the header, this section outlines the parties involved in the trans-
action. These fields are essential for legal and auditing purposes:

• Supplier (Issuer) – Name, logo, address, tax identification number, and some-
times commercial registry codes.

• Client (Buyer) – Name, address, and client reference codes.

This information may be organized in blocks or aligned side-by-side depending on
template design.

3. Line Items (Product Table)
The body of the invoice typically contains a tabular structure listing the individual
items being billed. It is the most content-heavy section and often the most error-prone
in extraction tasks. Typical fields per row include:

• Description of Product – May contain free-form text, which varies greatly in
length and format.

• Quantity and Unit of Measure – E.g., “2 pcs”, “1.5 kg”.

• Unit Price – Can appear with or without currency symbols.

• Tax (TVA) – Sometimes embedded in total, sometimes listed separately.

• Total Line Amount – Computed as Quantity × Unit Price (plus tax if appli-
cable).
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4. Totals Section
Near the bottom of the invoice, this section summarizes the financials:

• Subtotal (HT) – Sum of all line items before taxes.

• Tax Amount (TVA) – Can vary by product or be applied globally.

• Discounts – Sometimes listed as separate line.

• Total Amount Due (TTC) – Final payment amount, which must be correctly
parsed for billing systems.

Visual indicators like bold fonts, boxed totals, or larger font sizes are often used here,
and can assist layout-aware models.

Key Extraction Challenges:

• Inconsistent Layouts: Some vendors use Excel-generated invoices, others use
scanned paper forms. This affects readability and extraction.

• Non-standard Labels: The same field might be labeled “TVA”, “Taxe”, “VAT”,
or even just “T.”, depending on the business.

• Spelling Errors and Text Inconsistencies: Invoices often contain misspelled
or inconsistent terms, such as "grek 100gram" instead of "Greec-100g", due to
human error or OCR inaccuracies. These variations complicate reliable data ex-
traction and require fuzzy matching or correction mechanisms to ensure accurate
results.

• Currency and Format Variability: Numbers might use commas or dots as
decimal separators; currencies might be implicit or indicated with symbols.

• Structural Ambiguities in Tabular Invoice Data: In Algerian invoices,
structural inconsistencies can pose significant challenges for extraction models.
Some line items show a quantity of zero and a total of zero. These are usually not
real purchases but mistakes from invoice templates or internal system exports.
Additionally, some invoices contain redundant entries, such as repeated item
names or duplicated amounts across different rows. Although these elements
may appear structurally valid, they introduce semantic noise that can lead to
incorrect or duplicated extraction. Handling such ambiguities is essential for
reliable information retrieval in local invoice formats.

Why Structure-Aware Models Matter:
Traditional OCR systems process text linearly, often ignoring the spatial context that is
critical in invoices. Layout-aware transformers like LayoutLMv3 represent a significant
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advancement by integrating textual, visual, and positional information. This allows
them to infer relationships between elements like “TVA” and the number beside it, or
to associate column headers with their corresponding data rows.

3.3 Review of Tools and Approaches (OCR, Layout
Models, Transformers)

The problem of extracting structured data from invoices has been tackled using a
variety of tools and approaches that combine optical character recognition (OCR),
layout-aware models, and deep learning-based transformers. Each category of tools
plays a unique role, and understanding their advantages and limitations is critical for
designing a robust pipeline.

1. Optical Character Recognition (OCR)

OCR is the foundational step in document processing. It converts scanned images or
PDFs into machine-readable text.

• Tesseract OCR: An open-source OCR engine developed by Google, known for
its robustness in recognizing printed English text. However, it struggles with
complex layouts or multilingual documents (especially Arabic script).

• EasyOCR: A lightweight, Python-based OCR library that supports over 80 lan-
guages, including Arabic and French. While easier to use, it sometimes misaligns
text blocks when working with low-resolution documents.

• PaddleOCR: Developed by Baidu, this library supports multilingual detection
and includes layout analysis capabilities. It performs well on noisy images and
mixed-language documents, making it a strong choice for real-world invoice pro-
cessing.

• Limitations: Traditional OCR engines treat documents as linear text and of-
ten fail to preserve spatial relationships, which are essential for understanding
structured documents like invoices.

2. Layout-Aware Models

To address OCR’s limitations in layout understanding, a new family of models inte-
grates both textual and spatial information:
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• LayoutLM and LayoutLMv2: These models introduced the concept of em-
bedding spatial coordinates into the attention mechanism of transformers [22].
They learn how words are placed in relation to one another, which improves
extraction in structured formats like tables and forms.

• LayoutLMv3: The latest version improves performance by integrating vision
transformers (ViTs) to process raw pixels alongside text and layout [21]. It shows
significant gains in complex document tasks (e.g., FUNSD, CORD, and invoice
parsing).

• Donut: A document-understanding model that skips OCR altogether by directly
learning from raw images using an encoder-decoder vision transformer. While
promising, it requires large-scale training and is sensitive to domain shifts.

• Limitations: Layout models require annotated spatial data and large GPU
resources to fine-tune effectively. They are also sensitive to misalignments in
OCR outputs or document noise.

3. Transformer-Based Language Models

Transformers revolutionized NLP by introducing attention mechanisms that allow mod-
els to learn long-range dependencies across text.

• BERT, RoBERTa, and DeBERTa: These pre-trained transformers are widely
used for token classification and named entity recognition. However, they lack
layout awareness and are not directly suitable for document parsing tasks.

• Mistral: A high-performance, decoder-only transformer optimized for generation
tasks [11]. In our case, we experimented with Mistral for invoice field generation,
but due to limited labeled data, fine-tuning or knowledge distillation didn’t work
very well.
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4. Hybrid Pipelines and SDK Approaches

Modern systems combine multiple tools into cohesive pipelines:

• OCR is used for initial text recognition.

• Layout models (like LayoutLMv3) add spatial intelligence.

• Transformers handle contextual understanding and field classification.

• A custom SDK allows the system to be packaged, deployed, and integrated easily
across platforms.

Conclusion:
While great progress has been made, no single approach solves all document processing
challenges. Real-world deployments must balance accuracy, speed and flexibility factors
we considered deeply when designing the Doc-IN pipeline.

3.4 Our Vision for Doc-IN

• Built for Real-World Use: Doc-IN is designed to function in realistic condi-
tions, particularly in Algeria where invoices vary in layout and structure.

• Hybrid Intelligence Approach: Combines OCR with layout-aware models
like LayoutLMv3 to understand the spatial arrangement of invoice elements, im-
proving field detection accuracy.

• Custom SDK Architecture: Includes a reusable, modular SDK that sepa-
rates components (OCR, model, postprocessing), allowing customization, easier
debugging, and platform integration.

• Future Vision: Plans include a mobile scanner app, offline capability, and
multilingual support, especially tailored for underrepresented regions like North
Africa.
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Data Preparation and Methodology

In this chapter, we first review the theoretical foundations of transfer learning—including
fine-tuning and knowledge distillation—then describe our concrete experiments with
Donut, Mistral and LayoutLMv3. Finally, we present the methodology we chose, with
a comparative table of all approaches tried.

4.1 Data Collection Selection and Annotation

• Absence of Public Datasets: One of the first challenges encountered was
the complete lack of open, labeled datasets representing Algerian invoices across
different formats and vendors.

• Collection from Real World: We gathered a small sample of real invoices
from local businesses (with permissions), covering a range of industries, layouts
and formats.

• Privacy Considerations: To ensure compliance with data privacy norms, all
sensitive personal or business information was anonymized or synthetically re-
placed before use in training.

• Manual Labeling: These real invoices were annotated manually using labeling
tools such as Label Studio, defining fields like Client, Total TTC, TVA, Date,
and Produit.

• Layout Diversity: Due to limited access to large-scale annotated datasets and
the time-consumption of manual data labeling, we focused on carefully selecting
a smaller yet diverse set of invoice samples. This strategic curation was intended
to maximize variability and support better generalization during model training.

• Format Standardization: All collected documents were converted to a uniform
input format (e.g., PNG), and associated labels, tokens and bounding boxes were
stored in JSON following a strict schema in order to train LayoutLMv3.
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• Evaluation-Ready Splits: The dataset was divided into training and test sets
using holdout approach, ensuring layout variety in each split to better evaluate
model generalization.

4.2 Data Augmentation and Synthetic Data Gen-
eration

A significant challenge in training document understanding systems, especially for
domain-specific tasks like invoice extraction, is the scarcity of labeled data. This is
particularly true in regions like Algeria, where publicly available, annotated invoice
datasets are virtually nonexistent. To overcome this limitation, our project incorpo-
rated extensive data augmentation and synthetic data generation strategies.

• Synthetic Invoice Generation: To scale our dataset, we built a custom script
to generate hundreds of synthetic invoices. These documents simulate different
real-world scenarios, fonts, templates, and noise.

• Template-Based Synthetic Generation: We created multiple invoice samples
simulating real-world formats using various layouts, fonts (product names, prices,
company names, etc.). Synthetic invoices were employed solely for model training
to simulate layout and content variability. For testing, however, we relied on
real-world invoice data to ensure that the evaluation metrics accurately reflect
the model’s performance.

• Data Augmentation: Using image processing techniques, we introduced dis-
tortions, noise, blur and skewing to provide larger dataset and help the model to
generalize better.

• Use of Generation Tools: Tools such as Faker and OpenCV were combined
with Python scripts to automate large-scale generation of synthetic invoices,
paired with ground-truth JSON annotations.

Through these methods, we generated over 500 synthetic annotated invoices, which
served as the foundation for model training and fine-tuning. This approach not only
compensated for the lack of Algerian datasets but also provided a scalable way to
continuously expand and adapt the dataset as the system evolves.
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4.3 Dataset Schema Definition

A well-defined notation and schema are critical to ensure that extracted invoice data
can be validated, stored, and consumed reliably by downstream applications. In Doc-
IN, we represent each invoice as an image I and an associated JSON document D,
following these conventions:

• Data Preparation: To train the LayoutLMv3 model, we first constructed a set
of JSON annotation files associated with each invoice image. These JSON files
followed a consistent and structured format, where each token was annotated
with its corresponding bounding box and class number.

• Token and Bounding Box Encoding: Each token extracted from the invoice
was paired with a bounding box representing its spatial position on the image.
This spatial information is essential for LayoutLMv3, which leverages both tex-
tual and layout features.

• NER Tagging: The semantic class of each token was encoded as a numerical
NER tag. These tags represent the various fields of interest (e.g., invoice number,
date, total amount) in the document.

• Label Mapping: After the training phase, a label-to-ID mapping (label2id)
was applied to associate each numerical class ID with its corresponding human-
readable label. This step ensured that the model’s output could be interpreted
clearly by human readers and aligned with the original annotation schema.

Figure 4.1: Labeling studio.



CHAPTER 4. DATA PREPARATION AND METHODOLOGY 34

4.4 Theoretical Foundations

4.4.1 Transfer Learning via Fine-Tuning

Transfer learning enables leveraging models pre-trained on extensive, heterogeneous
data to jump-start performance on a novel, task-specific domain [16]. By fine-tuning,
we continue training the pre-existing weights on labeled examples from our target
dataset, adjusting the model’s internal representations toward invoice understanding
without discarding its foundational knowledge [9].

Key considerations in fine-tuning include:

• Learning Rate Scheduling: A low initial learning rate (e.g., 1e−5 to 5e−6) en-
sures gradual adaptation, preserving generalizable features while refining domain-
specific patterns. We employ cosine annealing or linear decay schedulers to reduce
the rate over epochs.

• Layer Freezing: Early layers capture basic visual or linguistic constructs (edges,
grammar) and can be frozen to reduce overfitting. We selectively unfreeze higher
layers or fusion blocks to focus optimization on invoice-relevant features.

• Batch Size and Accumulation: With limited samples (500–1,000 invoices),
we balance batch size (8–16) and gradient accumulation steps to stabilize updates
and maintain effective batch statistics for normalization layers.

• Regularization: Techniques such as dropout (0.1–0.3) and weight decay (1e-2
to 1e-4) mitigate overfitting, especially critical when training on modest datasets
[18].

By fine-tuning under these best practices, we achieve a balance between retaining
the model’s broad capabilities and tailoring it to the specific quirks of Algerian invoices,
such as multilingual fields, tabular line items, and local tax notation.

4.4.2 Knowledge Distillation

Knowledge distillation is a model-compression technique in which a large, high-capacity
“teacher” network transfers its learned representations to a smaller “student” network.
This process retains much of the teacher’s performance while significantly reducing
inference cost and memory footprint—crucial for deployment on resource-constrained
devices.

Key elements of our distillation pipeline include:
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• Soft Targets and Temperature Scaling: Rather than training solely on hard
labels, the student also matches the teacher’s soft logits, which encode nuanced
inter-class similarities (often called “dark knowledge”). We apply a temperature
parameter T > 1 to soften the teacher’s output distribution:

p
(soft)
i =

exp
(

zi/T
)

∑
j exp

(
zj/T

) ,

where zi is the teacher’s logit for class i. Higher T values reveal finer-grained
relationships between classes (e.g., subtle differences between date formats or tax
codes).

• Student Architecture: Our student model is a lightweight transformer with
fewer layers and reduced hidden dimensions compared to the teacher. This com-
pact design strikes a balance between representational power and computational
efficiency, enabling sub-second inference on standard CPUs.

• Loss Function Composition: We optimize a weighted sum of the distillation
loss and the conventional cross-entropy loss on ground-truth labels:
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where α ∈ [0, 1] balances the emphasis between mimicking the teacher and fitting
the true annotations. We found α = 0.7 and T = 2 to work well with our 500-
invoice corpus.

• Training Strategy: To stabilize learning, we adopt a two-phase regimen:

1. Distillation Phase: Train the student for several epochs using only the KL
divergence to the teacher’s soft targets, allowing it to capture the teacher’s
broad patterns.

2. Fine-Tuning Phase: Continue training with the combined loss, gradually
shifting weight toward the cross-entropy term to hone precise field extrac-
tion.

• Regularization and Optimization: We use a modest dropout rate (0.1) and
weight decay (1e-4) to guard against overfitting, coupled with AdamW optimiza-
tion and a small learning rate schedule (starting at 5e−5 with linear decay).
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Figure 4.3: Overview of the Knowledge Distillation Pipeline.

By distilling Mistral into a streamlined student, we capture essential invoice under-
standing—layout patterns, multilingual text nuances, and tax code distinctions—while
achieving inference speeds up to three times faster on CPUs. This human-centered ap-
proach ensures Doc-IN remains both accurate and accessible for Algerian businesses
without high-end hardware.

4.5 Empirical Experiments

4.5.1 Fine-Tuning Trials

• Donut (vision–language fusion): We froze the early convolutional backbone
and fine-tuned the fusion layers on 500 annotated invoice crops. Despite its
theoretical appeal, the model tended to overfit and exhibited moderate extraction
accuracy.

• Mistral (7B-parameter LLM): Initialized from general language pre-training,
we fine-tuned Mistral on invoice text sequences with gradient accumulation and
a low learning rate [11]. Convergence was unstable and costly in GPU memory,
leading to inconsistent results.

• LayoutLMv3 (document transformer): Exploiting joint text–layout model-
ing, we fine-tuned LayoutLMv3 on full invoice pages with token-level BIO tag-
ging. Light augmentations (rotation, brightness jitter) improved generalization,
and training remained stable, achieving the highest extraction accuracy among
fine-tuned models.

4.5.2 Knowledge Distillation in Mistral

We distilled the fine-tuned Mistral into a smaller student transformer:
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1. Teacher Inference: Generate softened logits from Mistral (temperature T = 2).

2. Student Architecture: A 4-layer transformer with reduced hidden size.

3. Loss: Combine KL-divergence to teacher logits with standard cross-entropy on
ground-truth labels.

With only 500 invoices, the student captured some teacher patterns but fell short of
LayoutLMv3’s accuracy.

4.6 Chosen Methodology

Based on accuracy, stability, and deployment constraints, we selected fine-tuning
LayoutLMv3 as Doc-IN’s core:

• Data Efficiency: Robust field extraction with 500 invoices.

• Training Stability: Smooth convergence under small learning rates and early
stopping.

• Inference Cost: Moderate GPU/memory footprint suitable for on-premise servers.

• Accuracy: Superior to both large-model fine-tuning and distilled variants.

Method Accuracy (%) Data Req. (#) Stability Inference Cost
Donut Fine-Tuning 45 500 Low Medium
Mistral Fine-Tuning 68 500 Medium Very High
LayoutLMv3 Fine-Tuning 91 500 High Medium
Mistral → Student 62 500 Medium Medium

Table 4.1: Comparison of all approaches tried
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Figure 4.2: Data annotation.



Chapter 5

System Design and Implementation

In this chapter, we present the overall architecture and implementation details of the
Doc-IN model and the Doc-IN SDK. We begin by outlining the model pipeline, followed
by the SDK conception and architecture, and conclude with a description of the SDK
implementation, including its APIs and modules. A system-level pipeline diagram is
provided at the end of the chapter.

5.1 Doc-IN Model Pipeline Overview

The Doc-IN model processes raw invoice images and produces structured, semantically
rich outputs suitable for downstream applications. Figure 5.1 summarizes the main
stages:

1. Input Handling: The system accepts high-resolution scanned or photographed
invoice images. Preprocessing steps include resizing, denoising, and contrast
enhancement to improve OCR accuracy.

2. OCR Module: In the final version, we employ PaddleOCR to extract tex-
tual tokens and their bounding boxes from the preprocessed images. The mod-
ule outputs a sequence of tokens {ti} along with associated spatial coordinates
{(xi1, yi1, xi2, yi2)}.

3. LayoutLMv3 Integration: The token sequence and bounding boxes are fed
into the fine-tuned LayoutLMv3 model [21]. This transformer-based architecture
captures both textual and layout information to produce labeled regions (e.g.,
dates, amounts, vendor names) and hierarchical document structure.

4. Structured Information Extraction: The model outputs key fields and line
items in a JSON format, including field names, values, and confidence scores.
This structured representation serves as the input for the SDK.

39
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Figure 5.1: Overview of the Doc-IN Model Pipeline.

5.2 SDK Conception and Architecture

The Doc-IN SDK provides a unified interface to the Doc-IN model outputs, enabling
integration into diverse applications [5]. We developed both Python and Java imple-
mentations, supporting MySQL and PostgreSQL backends for persistent storage.

5.2.1 Data Flow and Storage

Upon receiving the structured JSON from the Doc-IN model, the SDK performs the
following steps:

• Post-Processing and Error Correction: Applies business rules such as cor-
recting zero-amount entries, normalizing common vendor name typos (e.g., ‘grek’
→ ‘greek’), and flagging anomalies for manual review.

• Product Lookup and Matching: Retrieves existing product master data from
the database and applies a fuzzy-matching algorithm to align extracted line items
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with known SKUs. This matching step ensures consistency in product references
and prevents duplicate or conflicting entries during database insertion.

• Database Ingestion: Inserts records in the relational database (MySQL/Post-
greSQL) using an ORM layer (SQLAlchemy for Python, Hibernate for Java).

5.2.2 External Interfaces

To cater to different deployment scenarios, the SDK exposes:

• RESTful API: Endpoints for submitting invoice data, querying processed re-
sults, and managing reference data. Implements token-based authentication and
adheres to OpenAPI v3 specifications.

• Command-Line Interface (CLI): A lightweight tool for batch processing from
the terminal, supporting JSON input files and configurable output formats (CSV,
JSON, XML).

Figure 5.2: Overview of the Doc-IN SDK Pipeline.
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5.3 SDK Implementation: APIs and Modules

The SDK is structured into modular components to enhance maintainability and ex-
tensibility:

Doc-IN SDK Module Structure

• core/ — Contains the primary business logic for parsing model outputs.

• db/ — Implements database connections, ORM models, and migration
scripts.

• postprocessing/ — Houses functions for error correction, normalization,
and anomaly detection.

• api/ — Defines RESTful endpoints, request/response schemas, and con-
trollers.

• cli/ — Implements command-line commands and argument parsing.

• utils/ — Utility functions such as logging, configuration loading, and com-
mon helpers.

Conclusion

In this chapter, we detailed the end-to-end design and implementation of the Doc-
IN model and the supporting Dok-iN SDK. By combining OCR and transformer-
based layout analysis with robust backend services and flexible interfaces, the proposed
system delivers accurate and extensible invoice-processing capabilities.



Chapter 6

Experimentation and Results

6.1 Dataset Overview

To assess Doc-IN’s real-world robustness, we assembled an Algerian invoice dataset
comprising 500 annotated samples. It includes both actual invoices from consenting
small and medium enterprises (retail, logistics, services) and synthetically generated
documents that capture local formatting variations (diverse fonts, field placements).
Annotations (via Label Studio → LayoutLMv3 JSON) covered key fields: Nom du
client, N° Facture, Date, Produits, Quantité, Prix unitaire, TVA, Total.

Key dataset statistics:

• Total invoices: 500

• Avg. fields/invoice: 11

• Avg. tokens/invoice: 220

Challenges: High layout variability and mixed fonts, All real samples were anonymized
to respect privacy and local data-consent regulations.

6.2 Evaluation Metrics

We measure extraction both at the token level and in terms of usable output:

• Precision (%): Correctly predicted fields among all predictions.

• Recall (%): Correctly predicted fields among all ground-truth.

• F1-Score (%): Harmonic mean of Precision and Recall.

• Entity Accuracy (%): Correctness of full field (label+value).

• JSON Validity Rate (%): Proportion of valid JSON outputs.

• Field Completeness Rate (%): Mandatory fields successfully extracted.
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Metric Precision Recall F1-Score Entity Acc. JSON Validity
Values (%) 91.2 89.5 90.3 86.7 97.4

Table 6.1: Overall Extraction Performance on Test Set

6.3 Results: PaddleOCR + LayoutLMv3 + Dockin
Matching

We evaluated two setups:

1. Baseline: PaddleOCR → LayoutLMv3

2. Dockin Enhanced: PaddleOCR → LayoutLMv3 → Dockin matching

Setup F1-Score (%) Entity Acc. (%) JSON Validity (%)
Baseline 89.1 84.7 96.8
Dockin Enhanced 92.3 88.5 98.2

Table 6.2: Impact of Dockin Matching on Key Metrics

6.4 Analysis and Discussion

The experiments confirm several points:

• OCR as Foundation: PaddleOCR delivered cleaner text, particularly in mixed
French/Arabic contexts, directly benefiting LayoutLMv3’s spatial reasoning.

• Layout-Aware Gains: LayoutLMv3 adeptly handled multi-column, irregular
invoice templates, boosting JSON validity above 96%.

• Dockin Matching Uplift: Integrating our Dockin matching algorithm further
refines field linking, improving F1-Score by 3.2pp and entity accuracy by 3.8pp.

From a humanized perspective, it’s like teaching a novice reader (LayoutLMv3)
not only to see words but to recognize which pieces belong together—then giving a
librarian (Dockin) the power to double-check every citation for perfect alignment. The
resulting reliability (JSON validity>98%) ensures downstream systems ingest clean,
complete data.

Future Work: To push accuracy even further, we recommend:

• Curating additional domain-specific training invoices.
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• Exploring hybrid rule-based fallbacks for rare corner cases.

• Fine-tuning LayoutLMv3 jointly with Dockin signals for end-to-end learning.



Chapter 7

General Conclusion and Future Work

7.1 Summary of Contributions

This dissertation addressed the challenge of automated invoice information extraction
in the Algerian context, where diverse invoice formats, multilingual content, and in-
consistent layouts pose significant barriers to traditional document processing systems.
Our contributions span both the theoretical foundations and the practical implemen-
tation of a robust, modular, and reusable pipeline for real-world use.

The key contributions of this work are summarized below:

• Design and Implementation of Doc-IN: We proposed a novel document
understanding pipeline tailored for invoice processing, integrating OCR, layout-
aware transformer models (LayoutLMv3), and fine-tuned language models for
key information extraction.

• Development of a Custom SDK: A core outcome of this project is a soft-
ware development kit (SDK) designed to be integrated into various invoice work-
flows. The SDK is modular, database-agnostic, and supports output in structured
JSON, making it easy to plug into ERP and stock management systems.

• OCR Benchmarking and Selection: Through empirical evaluation, we bench-
marked popular OCR engines (PaddleOCR, EasyOCR, PyTesseract) and selected
the most effective tool for handling multi-language and noisy invoice images in
our context.

• Layout-Aware and Transformer-Based Integration: We demonstrated the
benefit of combining visual layout understanding (via LayoutLMv3) with transformer-
based models. Although we explored Mistral, limitations in data availability pre-
vented optimal performance, offering a valuable insight into the requirements for
successful fine-tuning.

• Synthetic Data Generation: In the absence of large labeled datasets for Al-
gerian invoices, we created a synthetic dataset that reflects real-world variations.
This served as training data for testing and validating our pipeline.
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• Real-World Integration Scenarios: We validated our pipeline through inte-
gration with common SGBDs used in Algeria, namely MySQL and PostgreSQL,
ensuring its practical value in stock management and finance applications.

• Evaluation and Results: We defined and applied meaningful evaluation met-
rics—such as F1-score, entity a

7.2 Future Work Directions

While this project has made significant progress toward building a practical and
adaptable invoice information extraction system, several areas remain open for
further exploration and improvement. The following directions outline potential
future enhancements, both in terms of research and system development:

– Advanced Fine-Tuning with Larger Datasets: One of the primary lim-
itations we encountered was the lack of high-quality annotated invoice data,
especially in the Algerian context. Future work could focus on collecting a
larger and more diverse dataset to improve model performance, especially
for transformer-based models like Mistral.

– Knowledge Distillation and Lightweight Models: To improve infer-
ence speed and make the system more suitable for deployment on edge
devices or mobile apps, future efforts can explore model compression tech-
niques such as knowledge distillation, quantization, or pruning without sac-
rificing accuracy.

– Multi-Language and RTL Text Support: Although the current system
handles French invoices effectively, there is growing demand for Arabic-
language and bilingual invoice processing in the region. Enhancing the OCR
engine and training the model to support right-to-left (RTL) scripts would
be a valuable extension.

– Mobile and Offline Capability: Building a lightweight version of Doc-
IN capable of running on Android or iOS without requiring internet access
would increase its usability in remote or infrastructure-limited settings.

– User Feedback and Active Learning Loop: Integrating user corrections
back into the training pipeline through active learning could help improve
model performance continuously over time. This would also allow the system
to adapt to new invoice templates more quickly.

– Expanded Use Cases Beyond Invoices: The architecture of Doc-IN
can be extended to other document types such as receipts, delivery notes,
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contracts, or purchase orders. Adapting the pipeline to support broader
document understanding would enhance the SDK’s value.

– Security, Privacy, and GDPR Compliance: As the system handles
sensitive financial data, future work should prioritize the implementation of
privacy-preserving features such as data anonymization, encryption-at-rest,
and compliance with regional data protection regulations.

– Community Collaboration and Open Source: Finally, releasing parts
of the SDK as an open-source toolkit could promote community-driven im-
provements, faster bug resolution, and increased adoption in academia and
industry.

These future directions aim to reinforce the long-term relevance, accessibility,
and intelligence of the Doc-IN system, aligning it more closely with the evolving
needs of users and institutions in Algeria and beyond.
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