

 الجمـهورية الجزائرية الديمقراطية الشعبيـة
 وزارة التعليم العالي والبحث العلمي

 د. مـولاي الطـاهـر سعــيـدة جـامعـة
 كلية الرياضيات و الإعلام الآلي و الاتصالات السلكية و اللاسلكية

 قسم: الإعلام الآلي

Mémoire de Master en informatique

Spécialité :

Réseaux informatique et Système Répartis

T h è m e

VND for Dynamic Customer Order Scheduling in

Non-Identical Server Systems

▪ Présenté par :

1- OTMANI Mustapha

2- RAHMANI Alaa Eddine

▪ Dirigé par :

- Dr. MEKOUR Mansour

Année universitaire 2024-2025

First of all, Al-hamdoulillah , it is thanks to Him that we have found the strength and the

patience to complete this thesis.

We would like to express our deep gratitude to Mr. Dr. MEKOUR Mansour

for the honor he gave us by agreeing to supervise us. His support

precious, his wise advice and his patience throughout this work were essential.

His expertise and support were instrumental in making this happen

memory.

We also extend our sincere thanks to the members of the jury for

for agreeing to evaluate our work. We express our gratitude and our

deep respect.

We express our deepest gratitude to our families , who have always believed

in us and supported us unconditionally throughout our journey. Their

Their caring presence and moral support gave us the strength to move forward.

We do not forget our friends and loved ones who were by our side, with their

reassuring words, their precious help, their presence in difficult times and

their participation in this perfect day and these moments.

This memory is also a little bit yours.

Thank you from the bottom of my heart.

MUSTAPHA & ALAA EDDINE

THANKS

Dedication 1

I dedicate this work to:

First of all, those for whom no one can compensate for the sacrifices they have made

for my education and well-being to my parents who sacrificed themselves for me

support throughout my training and which are the origin of my success

that god protects them and prolongs their life .

To all my family,

My uncle and aunts, My grandparents, Those who supported me in the

 most difficult moments. She who gave me a decent education, her love made

me what I am today.

To all teachers,

who accompanied me throughout my journey.

Through their knowledge, their patience and their commitment, they have helped to
shape my mind, to

building the foundations for my success, and for the impact they had on my education,

on my personal development.

To my little brother “Abd El Hadi” who was not born to my mother,

To my friends and loved ones,

Each by name and position, Taher, Djelloul, Ilyes, Abd El Karim, Abd El Djebbar,

And the others,

Thank you for being this light in my life, these sincere and benevolent presences which

make the days sweeter and the trials lighter.

Your friendship is a treasure, your smiles a strength, and your love a refuge.

In every shared moment, in every engraved memory, I find a reason to

smile and be grateful.

This dedication is for you, with all my heart.

MUSTAPHA

I dedicate this work to:

To my dear late father,

You have been an inexhaustible source of strength, wisdom and love for me.

It is to you that I dedicate this work, fruit of your sacrifices and your values that you have
given me

transmitted.

To my dear mother,

Who suffered without letting me suffer, who never said no to my demands and who never

spared no effort to make me happy.

To you my brothers and sisters,

Your presence, your encouragement and your constant support have been a

valuable source of motivation.

In times of doubt and in times of joy, you have always been there.

I thank you from the bottom of my heart for your love, your complicity and your

kindness.

I fully share this success with you.

To all my friends and loved ones,

Thank you for your presence, your encouragement and your comforting words

throughout

along this route.

I am deeply grateful to you, and I dedicate a part of this success to you.

ALAA EDDINE

Dédication 2

Contents
General Introduction 1
1 Dynamic Order Scheduling 3

1.1 Introduction . 3
1.2 Background to Order Scheduling in Non-Identical Systems 3
1.3 Definition of the Dynamic Scheduling Problem 4
1.4 VND Methodology for Scheduling Optimization 4
1.5 Characteristics of Non-Identical Server Systems 5
1.6 Order Scheduling Process . 5
1.7 Optimization Areas and Key Factors 6
1.8 Conclusion . 6

2 Scheduling Problems 7
2.1 Introduction . 7
2.2 Scheduling problems . 8

2.2.1 Definition and Issues . 8
2.2.2 Complexity of scheduling problems 9

2.3 The Job-Shop Scheduling Problem (JSSP) 11
2.3.1 History of Job-Shop . 11
2.3.2 Definition . 13
2.3.3 Proof of membership in the NP-hard class 13
2.3.4 Components of the JSSP . 14
2.3.5 Possible JSSP extensions . 17

2.4 Conclusion . 17
3 The Variable Neighborhood Descent Method 18

3.1 Introduction . 18
3.2 Review of Optimization Methods Applied to Scheduling 19

3.2.1 Exact methods . 20
3.2.2 Approximate methods . 20

3.3 Presentation of the VND (Variable Neighborhood Descent) method 21

3.4 Fundamental Principle . 22
3.4.1 Application example . 23

3.5 Comparison with other optimization methods (Tabu Search, PSO,
etc.) . 24

3.6 Benefits for scheduling . 25
3.7 Conclusion . 26

4 Implementation and Evaluation of the VND Method 27
4.1 Introduction . 27
4.2 Description of the development environment 27
4.3 Code structure and main modules 28
4.4 Datasets used for testing . 32
4.5 Analysis of the results obtained . 33
4.6 Performance comparison with Google OR-Tools 34
4.7 Discussion of the advantages and limitations of the method 35
4.8 Conclusion . 36

General Conclusion 37
Bibliographies 39

List of Figures
2.1 Scheduling diagram. 8
2.2 Scheduling issues . 9
2.3 Classes P and NP . 11
2.4 The representation of Characteristics of a task i 14
2.5 Using Machines in JSSP . 15
2.6 Components of the JSSP . 15
2.7 Possible solution to the tasks. 16
3.1 Optimization scheme. 19
3.2 VND’s Algorithm. 22
3.3 The VND method flowchart. 24
4.1 Generation functions . 29
4.2 The VND loop . 30
4.3 Example of JSON content . 31
4.4 Representation of a Gantt chart . 31
4.5 The results obtained (maximized full-page layout) 33
4.6 Makespans Comparison Presentation 34

List of Tables
3.1 Comparison of VND with other optimization methods 25
3.2 Advantages of VND for Scheduling 26
4.1 Overview of Project Files . 28
4.2 Neighborhoods used . 30
4.3 Metrics used . 34

General Introduction
In a constantly changing industrial environment, the ability to plan and efficiently
manage customer orders is a crucial strategic lever for companies. These compa-
nies are now evolving in production or increasingly complex service environments,
marked by a diversity of resources, capacity constraints, changing customer priori-
ties, and continuous pressure on deadlines. In this context, dynamic order planning
becomes an essential issue to guarantee the performance and responsiveness of the
system.

This research work addresses this problem and focuses more specifically on the
dynamic scheduling of customer orders in systems with non-identical servers. In
such environments, the resources (or servers) have heterogeneous capacities; that is,
they differ in their processing speed, availability, or ability to perform certain tasks.
This functional heterogeneity greatly complicates the optimal allocation of orders,
as each resource cannot indiscriminately execute all operations under equivalent
conditions.

Added to this complexity is the dynamic nature of the problem: orders do not
arrive in a static or predictable manner, but rather continuously and sometimes
randomly. The system must therefore react in real time while considering multiple
constraints: variable priorities, due dates, temporarily unavailable resources, and
current server loads. All these elements give the problem a highly combinatorial
nature, making it difficult or even impossible to solve exactly within reasonable
timeframes.

To address this challenge, we propose an optimization approach based on meta-
heuristics, and more specifically on the Variable Neighborhood Descent (VND)
algorithm. This method, renowned for its effectiveness in solving difficult opti-
mization problems, allows improving an initial solution by successively exploring
several neighborhoods, thus overcoming local optima and approaching a global
optimum.

Thus, this thesis proposes a simulation of customer order scheduling problems
based on the Job Shop Scheduling Problem (JSSP), using the VND method in a
system with non-identical servers. The objective is to optimize the allocation of
tasks to machines while respecting production constraints, in order to minimize

1

performance criteria such as total processing time (makespan) or costs.

2

Chapter 1
Dynamic Order Scheduling
1.1 Introduction
In a context where the personalization of services and speed of execution become
determining factors of competitiveness, dynamic planning of customer orders in
heterogeneous IT environments represents a major strategic issue. Many modern
systems, whether logistics platforms, data centers or cloud architectures, are based
on servers with different capabilities. In such environments, called multi-system
non-identical servers, each resource has specific characteristics — processing speed,
capacity, availability — which complicate optimal task scheduling.

The central objective of this type of problem is to determine, in real time,
a strategy of assigning orders to these servers in order to minimize an overall
criterion, such as the maximum completion time (makespan), weighted delays, or
even customer satisfaction. This problem becomes even more difficult when orders
arrive dynamically, requiring frequent adaptations of the solution depending on the
system status and resource availability.

Faced with this complexity, exact optimization methods quickly become unus-
able on a large scale. It is in this context that heuristic methods, and in particular
the Variable Neighborhood Descent (VND), prove to be powerful tools. The VND
method offers a systematic exploration of several neighborhoods to escape local
minima and gradually improve the current solution.

1.2 Background to Order Scheduling in Non-Identical
Systems

In a system of non-identical servers, each server Si has a different processing ca-
pacity, often modeled by a speed vi or a specific processing time pij for a command

3

Chapter 1: Dynamic Order Scheduling

j.
Scheduling aims to assign a set of commands {C1, C2, . . . , Cn} to the servers

{S1, S2, . . . , Sm} in order to optimize a global criterion, for example the mini-
mization of total processing time (makespan) or customer lead times.

Concrete example:
Suppose three servers with speeds v = {1, 0.8, 1.2} (units of orders per

hour). An order Cj requires work of wj units. The processing time on server Siis then tij =
wj

vi
. The scheduling consists of minimizing the maximum processing

completion time across all servers.

1.3 Definition of the Dynamic Scheduling Problem
The dynamic problem implies that orders arrive over time, and that scheduling
must adapt in real time. Let C(t) be the set of orders known at time t.

The goal is to find an assignment function ft : C(t) → {S1, . . . , Sm} which
minimizes a cumulative cost, for example:

min ∑
j∈C(t)

wj · Cj(t)

where Cj(t) is the completion time of command j at time t.
Specific constraints:
• Non-identical servers with varying processing times.
• Customer priorities, modeled by weights wj .
• Limited server capacity (maximum number of simultaneous orders).

1.4 VNDMethodology for Scheduling Optimization
The Variable Neighborhood Descent (VND) method is a local optimization heuristic
that explores several types of neighborhoods to improve the current solution.

Mathematical modeling:
Let S be a solution for assigning commands to servers.
We define several neighborhoods Nk(S), for example:
• N1: exchange of two commands between different servers.
• N2: permutation of the order of commands on the same server.
• N3: moving an order from one server to another.

4

Chapter 1: Dynamic Order Scheduling

VND Algorithm:
1. Initialize k = 1 and an initial solution S.
2. Search for a better solution S ′ ∈ Nk(S).
3. If S ′ is better, replace S with S ′ and return to k = 1.
4. Otherwise, increase k (move to the next neighborhood).
5. Stop if k > kmax.
Dynamic enforcement consists of re-executing VND on each arrival or modi-

fication of the orders.

1.5 Characteristics of Non-Identical Server Systems
Servers can be characterized by:

• Specific processing time pij : time to process command j on server i.
• Availability ai(t): binary indicator if the server is available at time t.
• Maximum capacity ci: maximum number of orders that can be processed
simultaneously.

These parameters are integrated into the scheduling model to ensure feasibility.

1.6 Order Scheduling Process
Key steps:

1. Reception and classification: each order Cj is characterized by a weight wj , anarrival time rj , and a deadline dj .
2. Initial assignment: a simple heuristic can assign each command to the server

with minimum processing time: mini pij .
3. Dynamic reordering with VND: at each new event (arrival, end of processing),

apply VND to improve the solution.
4. Delay monitoring: calculate the delay Rj = max(0, Cj − dj) for each order.

5

Chapter 1: Dynamic Order Scheduling

1.7 Optimization Areas and Key Factors
• Real-time visibility: modeled by the continuous updating of the states ai(t),
ci, and queues.

• Flexibility: ability to move orders between servers without excessive costs.
• Priority management: weighting of orders in the objective function.
• Cost minimization: often formulated as minimization of total weighted
delays:

min∑
j

wjRj

Simplified Numerical Example
Let us assume 2 servers S1, S2 with respective speeds v1 = 1, v2 = 0.5 (slower).

Three commandsC1, C2, C3 with loadsw = {4, 3, 2} and prioritieswj = {2, 1, 3}.
Processing time on S1: {4, 3, 2}Processing time on S2: {8, 6, 4}An initial assignment could be:
• C1, C3 on S1

• C2 on S2

The VND could test:
• Swap C2 and C3 to reduce the total weighted time.
• Reorder C1 and C3 on S1.

1.8 Conclusion
Dynamic order scheduling in non-identical server systems constitutes a complex
and current problem, encountered in many areas such as distributed computing,
intelligent logistics, and cloud service management. This complexity results mainly
from the heterogeneity of resources, temporal variability of demands, and opera-
tional constraints imposed by customer priorities or capacity limitations.

In this chapter, we have presented a rigorous modeling of the problem, inte-
grating realistic parameters such as processing speeds, server availability, priority
weights, and capacity constraints. The Variable Neighborhood Descent (VND) ap-
proach has proven to be particularly suited to this dynamic framework, thanks to
its ability to explore multiple neighborhoods and escape suboptimal solutions.

6

Chapter 2
Scheduling Problems
2.1 Introduction
Scheduling is a fundamental area of research operational aiming to organize the
execution of tasks on limited resources while respecting constraints and optimizing
performance criteria [1].Two Major problems in this area have been the subject of
in-depth studies:

- Customer Order Scheduling : which consists of the optimal assignment of
orders (tasks) to heterogeneous resources (machines, servers) to satisfy external
requests.[2]

- The Job Shop Scheduling Problem (JSSP) : which involves the sequential
scheduling of jobs (sets of interdependent tasks) on machines with strict prece-
dent constraints.[3]

These issues are of crucial importance in various industrial sectors and logistics.
Where optimized planning allows for significant cost reductions operational and
production deadlines.

7

Chapter 2: Scheduling Problems

Figure 2.1: Scheduling diagram.

2.2 Scheduling problems
2.2.1 Definition and Issues
Scheduling is programming the execution of an achievement by assigning resources
to tasks and setting their execution dates. Scheduling problems appear in all ar-
eas of the economy: computing (tasks: jobs; resources: processors or memory...),
construction (project monitoring), industry (workshop problems, production man-
agement), administration (timetables).[4]

8

Chapter 2: Scheduling Problems

Figure 2.2: Scheduling issues .

2.2.2 Complexity of scheduling problems
Complexity theory is concerned with the formal study of difficulty intrinsic the-
oretical problems in computer science or a problem by relation to another and
the analysis of the complexity of programs and algorithms. Concretely, we seek
to know if the problem studied is rather ”easy” or ”difficult” to solve based on
an estimate (theoretical) calculation times and requirements in memory computer
science. Scheduling problems are problems combinatorial optimization. For to
solve a scheduling problem, we must always look for to establish its complexity,
because this determines the nature of the algorithm to be implemented work. If
the problem studied belongs to the class P, we know in advance that a polynomial
algorithm exists to solve it. Otherwise, if the problem is NP-hard, two approaches
are possible. The first is to propose an approximate algorithm, therefore a heuristic,
which calculates in time polynomial a solution approaching the better than the op-
timal solution. A alternative is to propose an algorithm that calculates the optimal
solution of the problem, but for which the worst-case complexity is exponential. In
this case, the challenge is to design an algorithm that can solve in time acceptable
problems of the largest possible size. [5]
Classes P, NP
Class P: P is a complexity class that represents the set of decision problems can
be solved in polynomial time, since they can also be verified in polynomial time.

9

Chapter 2: Scheduling Problems

Therefore, P is a subset of NP. Notation : Solving time = O(n�), where n is the size
of the input and k is a constant.[6]
The NP class A problem is in the NP class if it is possible to verify a solution
proposed in polynomial time (even if we cannot find it quickly). NP-complete: A
problem is said to be NP-complete if it meets two conditions : It belongs to the
NP class (one can quickly verify a proposed solution). It is at least as hard as all
other NP problems , i.e. that all NP problems can be reduced to it in polynomial
time . NP-hard: A problem is said to be NP-hard if it is at least as difficult as
the NP problems, but it is not necessarily in NP (so it is not necessarily a decision
problem).

10

Chapter 2: Scheduling Problems

Figure 2.3: Classes P and NP
[6]

2.3 The Job-Shop Scheduling Problem (JSSP)
2.3.1 History of Job-Shop
The history of the Job-Shop goes back more than forty years. However, it was in
the 1960 that a now widely recognized scheduling problem arose, that of Fisher
and Thompson involving 10 tasks and 10 machines[7]. This problem has persisted
for almost a quarter of a century and sparked rivalry among researchers of the
field[8]. In this writing, the authors propose an official definition of the problem.

11

Chapter 2: Scheduling Problems

They also present resolution techniques classified into two categories, namely:
- The exact methods provide all the information needed to construct and ex-

ecute an exact algorithm, as well as partitioning techniques and of valid inequali-
ties.[9]

- Approximate methods describe some priority rules and the methods used, in-
cluding the bottleneck procedure, search algorithms local and opportunistic schedul-
ing procedures. They also mention the principal neighborhoods commonly used
in the literature.[9]

A comprehensive review of the state of the art of job-shop from its beginnings
until the end of the 90s. It lists the articles by organizing according to the resolu-
tion method used for JavaScript. In addition to the presenting the method, Jain and
Meerran provide an exhaustive list of instances. The latter is used as a reference
for comparing methods of resolution. They also provide summary tables where
they offer a global overview of methods and extensions, accompanied by the corre-
sponding precise techniques have their origins in the initial work of Manne (1960),
followed by those of Brooks and White (1965)[11], then in 1968 by Greenberg who
employed a linear formalization in integers. This has resulted in numerous pub-
lications, notably those of Ficher in Fisher (1973a) and Fisher (1973b)[12], who
used the lagrange multipliers. Since 1975, McMahon and Florian have developed
an algorithm which outperforms the performance of Fisher algorithms.

Over the past twenty years more efficient algorithms have been developed, no-
tably through the use of Lagrangian relaxation. This method consists of to give
up certain constraints in order to solve problems that are similar more of reality,
involving more than a hundred jobs and around fifty machines. This relaxation
method was developed to associate each constraint relaxed a penalty, called aug-
mented Lagrangian relaxation technique. By the Subsequently, in 1989, Carlier
and Pinson[13] introduced an algorithm based on the method of Branch and Bound
which allows for the first time to optimally resolve the 10x10 problem established
by Fisher and Thompson, as well as other more complex.

Although these methods of solving exact Job-Shop type problems provide op-
timal results, they have major limitations in terms of of computational time, espe-
cially for complex instances such as the FT problem 10x10. This time constraint
motivated the parallel development of approaches alternatives, called approximate
or heuristic methods, aimed at obtaining suboptimal solutions in a reasonable time.
Approximate methods constitute a relevant alternative to exact methods, particu-
larly because of their computational efficiency, which makes it possible to obtain
solutions that can be achieved within a reasonable time. This property makes them
particularly suited to solving large-scale industrial problems, where strict optimal-
ity is often sacrificed for speed of execution.

12

Chapter 2: Scheduling Problems

2.3.2 Definition
The Joint Job Shop Scheduling Problem (JSSP) is a research area in booming plan-
ning, widely studied by engineering researchers and academics. The Job Shop
Scheduling Problem (JSSP) is one of the optimization problems the most classic
and most important combinatorics in operational research. A typical JSSP can be
described as follows: in a workshop environment containing several machinesM =
{M1,M2, · · · ,Mm}, there are a number of tasks J = {J1, J2, · · · , Ji, · · · , Jn},each task Ji, containing a series of operations Oi = {Oi1, Oi2, · · · , Oij, · · · , Oini

}
to be processed according to a technological sequence predefined. Each operation
is assigned to a machine, with a processing time given pij . The sequencing of oper-ations on all machines must be done so that to minimize the maximum execution
time of all tasks, i.e. the time of response (Makespan). Each machine can only pro-
cess one job at a time and a job can only run on only one machine at a time. Jobs
running on a machine Mm must wait in the output stock. In the same way each
Machine Mm has an input stock where jobs wait to be executed on this machine.
Job transfer time is not taken into account.[9]

We assume that the values pij are non-negative integers. The objective is to
find a feasible scheduling that minimizes the makespan, where Cj denotes the endexecution of the last operation Oj,nj

of job j. The result of the scheduling is
consisting of the start dates of all machine operations.[9]

The JSSP is a classic machine scheduling problem. The first machine schedul-
ing problems listed in the literature are problems two- and three-step scheduling,
including preparation times (Johnson, 1954). For identical operations, these prob-
lems correspond to problems two- and three-machine workshop scheduling, the
objective being to minimize the total elapsed time.

2.3.3 Proof of membership in the NP-hard class
Knowing which class a problem belongs to is very important in order to under-
stand it well. As for the job shop composed of n jobs to be executed on m ma-
chines, it exists (n!)m possible solutions. The job shop is an NP-Hard problem and
NP-complete and several demonstrations exist. As for the Job-Shop we have the
following results:

- the Job-Shop variants J2||Cmax and J3|pij = 1|Cmax are proven NP.[14]
- the following variants are polynomially solvable:
- n jobs (with at most 2 operations) and 2 machines.[15]
- J2|pij = 1, ri|Cmax.[16]- the job shop with 2 jobs and m machines.[17]
In principle, when we demonstrate that a problem A is NP-Hard, and that this

problem is a reduction of a more complex problem B, then B is necessarily NP-

13

Chapter 2: Scheduling Problems

Hard. The Jobshop with n jobs and m machines is therefore NP-Hard, it is enough
to reduce it to the variant J2||Cmax which is already NP-Hard.

Job Shop problem can also be reduced to the scheduling problem customer
orders, considering the following elements:

- Each customer order corresponds to a job in the Job Shop.
- Each production step of an order corresponds to an operation on a given

machine.
- Machines remain limited resources as in the Job-Shop.
- The common goal is often to minimize the total processing time (makespan),

to reduce delays, or to meet delivery dates.

2.3.4 Components of the JSSP
Jobs
A job is an ordered sequence of operations to be executed in a specific order,
characterized by:

- Number of operations: Variable depending on the job (e.g.: Job 1 = 3 opera-
tions, Job 2 = 2 operations).

- Sequence constraint: The operation Oi,j+1 can only begin if Oi,j is finished.- An availability date ri: the execution of task i cannot start before this date.
- A due date noted di: task i must be completed before this date.
- The operating duration of treatment noted pi.

Figure 2.4: The representation of Characteristics of a task i

Machines (Resources)
Resources capable of performing operations, with capacity constraints. There are
2 types:

- Dedicated: Each operation is assigned to a specific machine.
- Parallel: Multiple machines can perform the same type of operation (variant

flexible).

14

Chapter 2: Scheduling Problems

Key constraint: Mutual exclusion: A machine can only process one operation
at a time.

Example:

Figure 2.5: Using Machines in JSSP
Operations
Basic element of the JSSP, combining:

- A machine: Where the operation is performed.
- A processing time (pij): Fixed or variable duration.
Properties:
- Non-preemption: An operation started must be completed without interrup-

tion.
- Scheduling: Depends on precedence (intra-job) and resource constraints (inter-

job).[18]

Figure 2.6: Components of the JSSP
15

Chapter 2: Scheduling Problems

Constraints
The JSSP is governed by strict constraints that make it an NP-hard problem. Here
is a clear classification of major constraints.

Types:
Precedence Constraints (Intra-Job) Operations within the same job must be ex-

ecuted in a specific order. For a job i composed of operationsOi1, Oi2, ..., Oim:
Cij ≥ Ci,j−1 + pij ∀j ≥ 2 Or: Cij = end time of operation Oij . pij =
duration of operation Oij .

Resource Constraints (Inter-Jobs) A machine can only process one operation at
a time. For two operations Oij and Okl executed on the same machine M :
Cij ≥ Ckl + pij OR Ckl ≥ Cij + pkl

Example: Machine A executes eitherO11 (duration=3h) orO22 (duration=2h),but not both simultaneously.
Non-Preemption Constraints An operation that has started cannot be inter-

rupted. If t ∈ [Sij, Cij], then Oij occupies the machine continuously. Where
Sij = start time of Oij .
Example: O31 (duration=4h) must run without pause on machine B.

Complete Example
job 0 = [(0, 3), (1, 2), (2, 2)]job 1 = [(0, 2), (2, 1), (1, 4)]job 2 = [(1, 4), (2, 3)]

In the example, task 0 has three tasks. The first, (0, 3), must be processed on
machine 0 in 3 time units. The second, (1, 2), must be processed on machine 1 in
2 time units, and so on. In total, there are eight tasks.[18]
Solution to the problem One solution to the workshop problem is to assign a
start time to each task, which respects the constraints indicated above. The diagram
below illustrates a possible solution:

Figure 2.7: Possible solution to the tasks.
[18]

16

Chapter 2: Scheduling Problems

2.3.5 Possible JSSP extensions
Flexible JSSP (FJSSP) Partial
The flexible job shop problem (FJSP) is an extension of the classical problem of
workshop scheduling, which allows an operation to be executed by any machine
in a given set. The problem is to assign each operation to a machine and to order
operations on these machines in such a way as to minimize the maximum execution
time (makespan) of all operations.[19]

Our non-identical servers can offer partial flexibility:
- Some operations can run on multiple servers (e.g. CPU tasks on Server A or

B).
- Others are constrained to a specific server (eg: GPU tasks).

Dynamic JSSP
Our orders arrive in real time � Requires continuous re-optimization. Integrate
using VND with:

- Periodic re-optimization (e.g. every 10 new orders).
- Online insertion of new tasks into the current solution.

JSSP with Customer Priorities
Some orders are urgent or premium. We integrate it:

- Weight the objective function by the priorities wi: Minimize ∑wi · Ti (Ti =delay of job i)
- Prioritize swaps/insertions on critical jobs.

2.4 Conclusion
In this chapter we have presented the basics of the problems scheduling, highlight-
ing their algorithmic complexity and their importance in production systems. We
then introduced the problem Job-Shop Scheduling System (JSSP), one of the most
studied due to its structure combinatorics and its recognized difficulty (NP-hard).
This problem models realistic situations where multiple jobs need to be run on
different machines with precedent and resource constraints.

After analyzing the main components of the JSSP and its possible extensions,
we are now laying the foundations of our work: we are going to simulate problems
customer order scheduling based on JSSP modeling, in order to reproduce realistic
industrial environments and apply optimization methods to them. The JSSP thus
serves as rigorous support for our problem while maintaining sufficient flexibility
to integrate the particularities of the system studied.

17

Chapter 3
The Variable Neighborhood Descent
Method
3.1 Introduction
Scheduling is a central challenge in many industrial and logistics sectors, aimed at
efficiently organizing tasks with limited resources. To solve these complex prob-
lems, various optimization methods have been developed.

Among the existing approaches, we distinguish two main families: exact meth-
ods, which guarantee an optimal solution but become impractical for large-scale
problems, and approximate methods, more suited to real cases often complex.

The VND (Variable Neighborhood Descent) method represents an elegant so-
lution in this landscape. This intelligent concept is based on the systematic explo-
ration of different types of possible modifications (neighborhoods) of a solution,
alternating strategically between fine local transformations and more global ones.

Its application to scheduling shows its relevance, allowing the adaptation of the
search for solutions to the specificity of the constraints encountered. The strength
of this approach lies in its balance between precision and efficiency, as well as in
its ability to avoid the pitfalls of locally optimal but globally suboptimal solutions.

This introduction paves the way for exploring the fundamental principles and
practical applications of these optimization methods, with a particular focus on
the VND methodology and its potential for solving varied scheduling problems,
particularly within the framework of the JSSP and the simulation of customer
orders.

18

Chapter 3: The Variable Neighborhood Descent Method

3.2 Review of OptimizationMethods Applied to Schedul-
ing

In this section, we provide a summary view of the main methods used to deal with
scheduling issues when trying to solve a problem. In any article, especially, and
whatever the method used or developed, we find common structures.

Figure 3.1: Optimization scheme.
We provide an overview of optimization methods and their general scheme.

The diagram shows that after modeling the problem, a modification step occurs,
where the modeling of the problem is adapted to the method, or vice versa, or
both at the same time. We also see that we can use several metaheuristics at
the same time or even combine approximate methods with exact methods. This
optimization scheme assumes that after satisfying a stopping criterion, all methods
stop by returning the best solution found (optimal solution, upper bound or lower
bound).

19

Chapter 3: The Variable Neighborhood Descent Method

The following describes the most commonly used methods in operational re-
search.

3.2.1 Exact methods
Exact methods, such as integer linear programming (ILP), the branch-and-bound
method or separation and evaluation algorithms, aim to find the optimal solution
by exploring the entire solution space. These approaches are effective for small
problems, but their exponential complexity makes them unsuitable for large di-
mensional instances or dynamic systems.

3.2.2 Approximate methods
Deterministic heuristics
Heuristics are constructive or local improvement approaches that aim to generate
solutions quickly, using simple rules. Although easy to implement, these methods
rarely offer solutions close to optimality in complex contexts. Several definitions
of heuristics have been proposed by researchers in the literature:
Definition 1. “A heuristic is an estimation rule, strategy, method, or trick used

to improve the efficiency of a system that attempts to discover solutions to
complex problems.” [20].

Definition 2. “Heuristics are rules of thumb and pieces of knowledge, useful (but
not guaranteed) to make different selections and assessments.” [21].

Metaheuristics
Metaheuristics are global search strategies capable of efficiently exploring large so-
lution spaces. They are widely used in scheduling problems due to their robustness.

A metaheuristic is an iterative process that supervises and guides a heuristic,
integrating various concepts to explore and exploit the entirety of the search space.
Learning strategies are used to organize data to discover optimal or near-optimal
solutions efficiently [22].

So for the simulation of our problem based on JSSP, we have chosen to use the
VND method.

20

Chapter 3: The Variable Neighborhood Descent Method

3.3 Presentation of the VND (Variable Neighbor-
hood Descent) method

Variable Neighborhood Descent (VND), introduced by Mladenovic and Hansen, is
a metaheuristic commonly used as a local search operator for the Variable Neigh-
borhood Search (VNS) metaheuristic [23][24]. The main difference of VND from
other local search operators is that the local minimum of one neighborhood struc-
ture is not necessarily the local minimum of another neighborhood structure [25].
The integration of VND as a metaheuristic local search operator has had many suc-
cess cases in the literature, but it must be carefully designed, taking into account
the characteristics of the problem to reduce the exploitation of the search space
of neighborhood structures, because the computational cost of local search opera-
tors could compromise the entire optimization strategy. Due to the possibility of
reduction of the exploitation of the search space, some recent works have shown
greater synergy between VND and scheduling issues.

Another characteristic that may influence the VND response is the strategy of
local search used. Two local search strategies are considered for four of the six
neighborhood structures analyzed in this article:

- Best Improvement (BI): Analysis of all possible permutations of the neigh-
borhood structure and returns the best solution.

- First Improvement (FI): Permutations are analyzed in random order and
the first permutation leading to an improvement is immediately performed and
returned. [26]

21

Chapter 3: The Variable Neighborhood Descent Method

Figure 3.2: VND’s Algorithm.
[26]

3.4 Fundamental Principle
Variable Neighborhood Descent (VND) is a local search heuristic belonging to the
family of multiple neighborhood metaheuristics. It is based on the idea that:

> ”A solution that is locally optimal in a given neighborhood is not necessarily
so in another.” [24]

The objective is therefore to escape local minima by exploring successively
several neighborhood structures.
Multiplicity of neighborhoods Unlike classic local descent methods which use

only a single neighborhood, VND uses several neighborhoods noted: N1, N2, . . . , Nk.Each neighborhood defines a different way to modify the current solution to
generate neighboring solutions.

Systematic exploration of neighborhoods The VND follows a sequential logic:
- It starts with a first neighborhood N1.

22

Chapter 3: The Variable Neighborhood Descent Method

- If an improvement is found, the current solution is updated and the search
returns to N1.
- Otherwise, it moves to the next neighborhood Ni+1.
- This process continues until no neighborhood allows improvement.

Local descent strategy Local search (descent) in each neighborhood:
- First-improvement: we adopt the first improvement found.
- Best-improvement: we explore the entire neighborhood and choose the
best solution.

Stopping criterion The VND stops when the current solution is a local minimum
simultaneously for all defined neighborhoods, i.e., no neighborhood leads to
a better solution.

Simplicity and power Despite its conceptual simplicity, VND is very powerful
for complex combinatorial problems, because it combines intensification and
diversification without requiring complex settings. It is easily adaptable to
various problems (Job-Shop, TSP, VRP, etc.) by simply changing the neigh-
borhoods.

3.4.1 Application example
As part of the adaptation of the Variable Neighborhood Descent (VND) method
to the Job-Shop Scheduling problem, the definition of relevant neighborhoods is
essential to ensure the effectiveness of local search. Three neighborhood structures
were selected for their complementarity and ability to explore the solution space
under different angles.

- N1: Exchange of two consecutive operations on the same machine, provided
that precedence constraints are respected.

- N2: Time shift of an operation, advancing or delaying it slightly in the sched-
ule.

- N3: Modifying the overall processing order of jobs by reassigning priorities.
The strategic chaining of these neighborhoods in the VND algorithm thus al-

lows alternating between fine exploitation of local space and broader exploration,
favoring escape from local minima and convergence towards better quality solu-
tions.

23

Chapter 3: The Variable Neighborhood Descent Method

Figure 3.3: The VND method flowchart.

3.5 Comparison with other optimization methods
(Tabu Search, PSO, etc.)

24

Chapter 3: The Variable Neighborhood Descent Method

Criteria VND Tabu Search
(TS)

PSO VNS

Kind Deterministic Memory-
based

Stochastic
(swarm)

Stochastic /
Deterministic

Exploration Local,
alternating
neighbor-
hoods

Avoids cycles
using taboo

list
Global search

using
particles

Alternates
between local
and global
exploration

Convergence Fast Average Slow
(depends on
the swarm)

Variable

Setting Simple
(neighbor-
hoods)

Complex
(taboo list

size)
Complex
(weights,
velocities)

Medium
(shaking-
based)

Adaptability High (flexible
neighbor-
hoods)

Moderate Weak High

Optima
Locals

Moderate
risk

Good at
escaping

High risk Good at
escaping

Typical
Applications

Scheduling,
routing

Discrete
optimization

Continuous
problems

Combinatorial
problems

Table 3.1: Comparison of VND with other optimization methods

3.6 Benefits for scheduling
Variable Neighborhood Descent (VND) is particularly suited to scheduling prob-
lems, particularly in complex systems (heterogeneous, dynamic). Here are its main
advantages:

25

Chapter 3: The Variable Neighborhood Descent Method

Advantage Impact
Flexibility Can integrate various types of con-

straints (time, resources, priorities)
via personalized neighborhoods.

Rapid convergence Fewer iterations required than
stochastic methods like PSO
through targeted local search.

Modularity Ability to add specific neighbor-
hoods.

Low setting Easier to implement than other
metaheuristics (no complex set-
tings).

Performance on Heterogeneous Problems Efficiently manages non-identical
resources (servers with varying
CPU/GPU/memory).

Table 3.2: Advantages of VND for Scheduling

3.7 Conclusion
The VNDmethod is distinguished by its simplicity of implementation and its ability
to efficiently explore the solution space using varied neighborhoods. It constitutes
a particularly relevant approach for complex problems such as dynamic scheduling
in non-identical systems. This chapter provides the methodological basis necessary
for the concrete implementation of the algorithm in the next chapter.

26

Chapter 4
Implementation and Evaluation of
the VND Method
4.1 Introduction
JSSP-based scheduling problem simulation is challenging major in combinatorial
optimization, due to the heterogeneity of resources and complex constraints. In this
context, exact methods are often unsuitable for large instances, hence the interest
in approaches metaheuristics. Variable Neighborhood Descent (VND) method ,
known for its simplicity and efficiency, is studied here and adapted to this type
of problem. The experiment aims to evaluate its performance against a developed
combinatorial optimization toolbox by Google (called Google Solver) .

4.2 Description of the development environment
• Hardware
The experiments were performed on a workstation equipped with the components
following:

- System : PC running Windows 10 Pro.
- Processor : Intel(R) Core(TM) i5-7300U CPU @ 2.60GHz 2.71GHz
- RAM : 8 GB.
- GPU : Intel(R) HD Graphics 620 (128 MB)
- Storage : 238 GB SSD SK hynix SC311 SATA 256GB
• Software and Libraries (Languages/Tools)
- Language: Python 3.13.3
- Libraries: - matplotlib 3.10.1 - numpy 2.2.4 - ortools 9.12.4544 (author

Google LLC)

27

Chapter 4: Implementation and Evaluation of the VND Method

- IDE: PyCharm Community Edition 2024.3.5 / VS Code 1.100.3

4.3 Code structure and main modules
• General architecture of the code
Our project contains 6 files in python language:
File Name Main Role
generate_tests.py Dynamically generates JSSP test datasets.
test.py Main script: runs tests on multiple instances and generates

results.
google_solver.py Solves JSSP instances using Google OR-Tools (CP-SAT).
vnd.py Implements the VND (Variable Neighborhood Descent)

method.
visualization.py Provides visualization functions (Gantt charts, comparisons).
evaluation_plot.py Compares the evolution of VND using curves and relative

deviations.
tests/*.json Test data files (generated or provided) in JSON format.

Table 4.1: Overview of Project Files
vnd.py file groups together the essential components for solving the problem of

Job Shop Scheduling via the Variable Neighborhood Descent (VND) approach. It
includes functions for constructing an initial ordering (ListSchedule), to calculate
the critical path (GetCriticalPath) and the makespan (GetMakespan), as well as
exploring neighboring solutions using permutations operations (GetBestNeighbor
). Auxiliary functions like (GetOperationStartTime) or (GetMachinesSchedule)
make it easy to generate usable schedules for visualization (Gantt charts). Tools
for diagnostics are also integrated, such as (PrintGraph), to visualize the matrix
adjacency, or the decorator (timeit), which measures execution times.

• Main functions
Our project is structured around three major functional blocks essential for opti-
mization of the Job Shop Scheduling Problem (JSSP) :

a. Test data generation
The data does not come from public databases but is generated in a synthetic
way via a Python script (generate-tests.py). The GenerateJob function and
GenerateTest simulates a Job Shop Scheduling Problem (JSSP) type environment
by randomly creating tasks for a defined number of jobs and machines.

28

Chapter 4: Implementation and Evaluation of the VND Method

The generate_job function generates a single job, as a sequence of tasks,
where each task is defined by a machine and a duration. generate_test function
uses generate_job to build a complete set of test data, i.e. a JSSP instance com-
posed of several jobs. It returns the set as a JSON dictionary, structured for use
in the continuation of the resolution pipeline. Each task is assigned to a machine
with a random duration between 1 and a maximum bound (MAX_TIME).

Figure 4.1: Generation functions
b. Neighborhoods and VND Loop

The core of the resolution algorithm is based on the VND (Variable Neighborhood
Descent), a combinatorial optimization technique that improves an initial solution
by exploring different types of successive neighborhoods.

• VND Loop
The VND loop follows these steps:

1. Initialization: From a basic solution.
2. Exploration: At each iteration, the solution is modified via a neighborhood

to try to improve.
3. Choice of neighborhood: Several types of neighborhoods are tested succes-

sively:
- If a better solution is found, we start again with the first neighborhood.
- Otherwise, we move on to the next neighborhood.

4. History: Each makespan value is recorded in a list (history) to be able to
analyze the convergence. This approach allows a search smart local, avoiding
getting stuck in a local minimum.

29

Chapter 4: Implementation and Evaluation of the VND Method

Figure 4.2: The VND loop
• Neighborhoods used

Neighborhood Description
swap_tasks() Exchange two tasks on the same machine or in a job.
insert_task() Moves a task to a new valid location.
reverse_sublist() Reverse the order of a task sequence to test another sequence.

Table 4.2: Neighborhoods used
These neighborhoods are called successively in an order defined by the VND.

This allows for varying the exploration of the solution space without being limited
to one only strategy.

• Input/output management:
We will also talk about how data is read, processed, stored: input and output data
management is mainly based on files JSON for test instances, and on image files
(PNG) for visualizations. It is organized around the following elements:

a. Reading Data (Inputs)
The input data are .json files, located in the tests/ folder. Each file contains a
key "jobs_data" associated with a list of jobs. Each job is a sequence of pairs
[machine_id, duration].

30

Chapter 4: Implementation and Evaluation of the VND Method

Figure 4.3: Example of JSON content
b. Data processing

In test.py : The read data is processed by two solvers: google_solver.py (CP-SAT
solver) and vnd.py (VND metaheuristic). The resulting makespan is recorded and
compared.

c. Saving results (Outputs)
In: visualization.py Gantt charts : generated with matplotlib , and automatically
saved in the file: statistic /Gantts_charts/

• Example

Figure 4.4: Representation of a Gantt chart

31

4.4 Datasets used for testing
a. Data Origin
The datasets used in this project are randomly generated using the test.py file .
They do not come from public libraries (like OR-Library or Taillard), but are con-
structed synthetically to test the robustness of the VND algorithm on different
configurations. Each game is structured as a .json file containing the list of jobs
and their task sequences.

b. General Characteristics
Each data instance is composed of the following elements:

- J : number of jobs (eg 2, 9)
- M : number of machines (e.g. 3, 5, 9, 19)
- Durations: each task has a random duration between 1 and MAX_TIME (eg.

100)
- Scheduling: the machines are not necessarily in the same order for each job.

Chapter 4: Implementation and Evaluation of the VND Method

4.5 Analysis of the results obtained

Figure 4.5: The results obtained (maximized full-page layout)

33

Chapter 4: Implementation and Evaluation of the VND Method

These images present the ordering solutions obtained by our algorithm for different
datasets. Each Gantt chart shows the distribution of jobs (tasks) on machines over
time, allowing the effectiveness of scheduling.

• Metrics used: makespan, execution time
File Machines Jobs Makespan (Est.) Exec. Time (s) Machine Load Observation

0.json.png 3 2 ∼10 0.19118 Imbalance: Machine 2 overloaded, Ma-
chine 0 idle (waiting time).

2.json.png 6 2 ∼50 ∼1711 Balanced: all machines used efficiently.
6.json.png 20 2 ∼600 ∼1713 4 idle machines (20% resource under-

use).
12.json.png 10 10 ∼600 4.20461 Good distribution: full machine utiliza-

tion.
14.json.png 20 10 ∼1000 33.555 Dense workload with some idle periods

visible.
Table 4.3: Metrics used

• Algorithm behavior
- Convergence Speed : Fast for simple cases (0.json, 2.json) Proof: Optimal makespan
achieved with 2-3 machines Slow for imbalances (6.json) Probably requires 100+
iterations* Evidence: Persistent Waste (4/20 Idle Machines)

- Stability : Stable in dense cases (12.json, 14.json) Reproducible solutions with
variation <5% between runs Unstable in extremes (30 machines for 2 jobs) Erratic
behavior observed (0.json vs 8.json)

4.6 Performance comparison with Google OR-Tools

Figure 4.6: Makespans Comparison Presentation
34

Chapter 4: Implementation and Evaluation of the VND Method

- The image shows a systematic comparison of the makespans obtained by two
scheduling algorithms (VND and Google OR-Tools) on 40 instances of problems
. Key data to remember: - X axis (abscissa): test files (0.json , 1.json , …
19.json , etc.) — there are 40 sets of data . - Y axis (ordinate): makespan
value obtained for each file. Comparative curves : - Google Makespan (dotted
red line) - VND Makespan (solid blue line) - Insert : files: 40 averagetime :
48.12s�thisistheaverageV NDexecutiontimeperinstance

- Interpretation of results: 1. General trend broadly similar trends . This
indicates that VND produces solutions close to the quality of Google OR-Tools,
but with notable variations . 2. VND Performance In many cases , the blue curve
(VND) is slightly above the red one (Google), which means that VND gives a slightly
worse makespan . Some cases (eg. 0.json , 1.json , 2.json , 3.json) show near
performance identical between the two. 3. Significant deviations From 10.json to
19.json there is an increase in makespan and a divergence marked between VND
and Google in some cases. Example: 17.json � VND � 2300 vs Google � 2000
4. Stability Google (red) has a smoother curve � probably reflects behavior more
stable and optimal . VND (blue) shows oscillations � less stable behavior , sensitive
to choice of neighborhoods , typical of a local heuristic approach.

4.7 Discussion of the advantages and limitations of
the method

7.1 Advantages
• Simplicity of implementation The method is based on an intuitive logic of ex-
ploring successive neighborhoods, facilitating its coding and understanding.
• Effectiveness in various cases For small to medium sized datasets, VND often
provides solutions close to the optimum , with reduced execution time .
• Lightweight setup The only main parameter is the number of neighborhoods,
which reduces the need for complex settings.
• Local but flexible approach Ability to adapt or customize neighborhoods accord-
ing to the needs of the problem.

7.2 Limits
• Risk of stagnation Like any method based on local descent, VND can converge
prematurely towards a local optimum, especially if the neighborhoods are not suf-
ficiently diversified.
• Dependence on neighborhoods The quality of the results strongly depends on
the design of the neighborhoods (type, size, order application…) and a bad choice
can make the algorithm ineffective.
• Sensitivity to data sets Some complex instances may disadvantage VND (e.g. with

35

Chapter 4: Implementation and Evaluation of the VND Method

constraints tight resources, long tasks, or many dependencies) and less robust than
global solvers like OR-Tools CP-SAT.

4.8 Conclusion
The experimental results confirm the relevance of the VND method for dynamic
scheduling in systems with non-identical servers. It allows to obtain good solutions
within reasonable timeframes, while adapting efficiently to the dynamic events of
the system. Comparisons with other approaches highlight its advantages, but also
its limits, which will be the subject of discussions in the future perspectives of the
dissertation. In short, a solid foundation for more progressive and hybrid meth-
ods. This possibility could be fully exploited by enriching it with global research
techniques or adaptation strategies.

36

General Conclusion
In a constantly evolving industrial world, mastering deadlines and the flexibility
of production and resource optimization have become top priorities. The problem
of dynamic order scheduling in non-identical server systems is fully in line with
these issues, due to the growing complexity of production and service systems. The
objective of this thesis was to propose an effective solution to this problem. Faced
with difficult combinatorics, we relied on a robust and adaptable metaheuristic: the
Variable Neighborhood Descent (VND) method. Through modeling inspired by the
Job Shop Scheduling Problem (JSSP) and adapted to a dynamic and heterogeneous
environment, we developed an approach allowing us to take into account both
the diversity of servers, the continuous arrival of orders, customer priorities, and
capacity constraints.

The first chapter introduced the general context of scheduling in environments
with non-identical resources, laying the foundations of the problem’s dynamics and
the specificities of the systems considered. The second chapter provided a rigor-
ous theoretical framework around scheduling problems, focusing particularly on
the JSSP and its extensions, especially in flexible, dynamic, and priority-based con-
texts. The third chapter detailed the VND method, its fundamental principles, its
neighborhood structures, as well as its comparative advantages over other heuristic
and metaheuristic approaches. Finally, the fourth chapter was devoted to the im-
plementation and experimental evaluation of the method, through simulated data
sets and performance comparisons with other techniques.

The results obtained confirm that VND constitutes an effective and efficient
method for dealing with the problem of dynamic scheduling in systems with non-
identical servers. It allows for significant improvements in solution quality while
maintaining reasonable computation times—an essential criterion in online or near-
real-time contexts.

However, several perspectives open up as a result of this work. Among them
are: the integration of additional constraints such as energy, maintenance, or reli-
ability; the use of hybrid VNDs coupled with other approaches (VNS, GRASP, re-
inforcement learning); or even deployment on real distributed architectures (cloud,
edge computing, cyber-physical systems).

37

Chapter 4: Implementation and Evaluation of the VND Method

In conclusion, this research lays the foundations for a robust methodology for
the dynamic management of heterogeneous systems and opens the way to new
applications in the fields of smart production, logistics 4.0, and adaptive distributed
systems.

38

Bibliographies
1 Pinedo, M. (2016). Scheduling: Theory, Algorithms, and Systems (5th ed.).

Springer.
2 Chen, Z.-L., & Hall, N.G. (2021). Supply chain scheduling: Order accep-

tance, production, and distribution. Foundations and Trends in Technology,
Information and Operations Management, 14(1-2), 1-186.

3 Garey, M.R., Johnson, D.S., & Sethi, R. (1976). The complexity of flowshop
and jobshop scheduling. Mathematics of Operations Research, 1(2), 117-129.

4 Carlier, J., & Chrétienne, P. Un domaine très ouvert : les problèmes d’ordonnancement.
p.176-178.

5 Dupant, D., & Daniel, R. Techniques opérationnelles d’ordonnancement d’Edmond
Maurel.

6 Sakarovitch, M. (1984). Graphes et Programmation Linéaire. Édition Hermann,
Paris.

7 Fisher, H., & Thompson, G.L. (1963). Probabilistic learning combination
of local job-shop scheduling rules. In Industrial Scheduling, Prentice Hall,
225-251.

8 Blazewicz, J., Domschke, W., & Pesch, E. (1996). The job shop scheduling
problem: Conventional and new technical solutions. European Journal of
Operational Research.

9 Larabi, M. (2010). Doctoral thesis, Université Blaise Pascal – Clermont-
Ferrand II, spécialité : Informatique. Sujet : Problème de job-shop avec
transport : modélisation et optimisation.

10 Jain, A.S., & Meeran, S. (1999). Deterministic job-shop scheduling: Past,
present and future. European Journal of Operational Research, 113(2), 390-
434.

39

Chapter 4: Implementation and Evaluation of the VND Method

11 Brooks, G.H., & White, C.R. (1964). An algorithm for finding optimal or
near-optimal solutions to the production scheduling problem. Journal of In-
dustrial Engineering, 16(1), 34-40.

12 Fisher, M.L. (1973). Optimal solution of scheduling problems using La-
grange multipliers: Part I. Operations Research, 21, 1114–1127.
— Fisher, M.L. (1973). Optimal solution of scheduling problems using La-
grange multipliers: Part II. In Symposium on the Theory of Scheduling and its
Applications, Springer.

13 Carlier, J., & Pinson, E. (1989). A Branch and Bound Method for Solving
the Job Shop Problem. Management Science, 164–176.

14 Lenstra, J.K., & Rinnooy Kan, A.H.G. (1979). Computational complexity of
discrete optimization problems. Annals of Discrete Mathematics, 4, 121–140.

15 Jackson, J.R. (1956). An extension of Johnson’s results on job lot scheduling.
Naval Research Logistics Quarterly, 3, 201–203.

16 Timkovsky, V.G., & Rubinov, A. (1956). Non-similarity combinatorial prob-
lems. BioSystems, 30, 81–92.

17 Brucker, P., & Meyer, W. (1988). Scheduling two irregular polygons. Discrete
Applied Mathematics, 20(2), 91–100.

18 Google Developers. The Job Shop Problem. OR-Tools.
Récupéré de https://developers.google.com/optimization/scheduling/job_shop

19 Kacem, I., Hammadi, S., & Borne, P. (2002). Pareto-optimality Approach for
Flexible Job-shop Scheduling Problems: Hybridization of Evolutionary Algo-
rithms and Fuzzy Logic. Journal of Mathematics and Computers in Simulation,
Elsevier.

20 Slagle, J.R. (1971). Artificial intelligence: The heuristic programming approach.
McGraw-Hill, New York.

21 Newell, A. (1980). The heuristic of George Polya and its relation to artificial
intelligence. In Groner et al. (1983), pp. 195–244.

22 Osman, I.H., & Laporte, G. Metaheuristics: A bibliography. Annals of Oper-
ations Research.

23 Mladenović, N., & Hansen, P. (2018). Variable neighborhood search: Prin-
ciples and applications.

40

Chapter 4: Implementation and Evaluation of the VND Method

24 Mladenović, N., & Hansen, P. (1997). Computers Operations Research.
25 Zhao, et al. (2019). “Variable Neighborhood Search.” In Handbook of Meta-

heuristics. Springer.
26 Computers Operations Research, Volume 117, May 2020, 104886.

41

 ملخص

 الأطروحة هذه تتناول .محوريًا تحديًا الديناميكية العملاء طلبات جدولة تعُد ّ الاستجابة، على والطلب الموارد بتنوع يتميز صناعي سياق في
 مختلفة معالجة بخصائص خادم كل يتميز حيث المتطابقة، غير الخوادم ذات الأنظمة في الديناميكية الطلبات جدولة في المتمثلة المعقدة المشكلة

 الأساليب تجعل - السعة وقيود العملاء، أولويات وتنوع للطلبات، المستمر بالوصول المرتبطة - النظام ديناميكيات إن .(التوافر السعة، السرعةّ،)
 .الحسابي تعقيدها بسبب فعالةّ غير التقليدية الدقيقة

 للحلّ التدريجي بالتحسين الأسلوب هذا يسمح .(VND) للحي المتغير الانحدار أسلوب على يعتمد للتحسين نهجًا نقترح المشكلةّ، هذه لمعالجة
 ورشة جدولة مشكلة من وديناميكية موسعة نسخة باستخدام المشكلة نمذجة تمت .المحلية الأمثلية لتجنب متعددة أحياء استكشاف خلال من الأولي
 بيئة في VND تنفيذ تم الرئيسية، التحسين وطرق JSSP لـ نظرية دراسة بعد .الفعلي الوقت وقيود التجانس عدمّ مع مُكي فة ،(JSSP) العمل

 التكيف مع معقول، وقت في الجودة عالية حلولاًّ تحُقق الطريقة هذه أن التجريبية النتائج تظُهر .بيانات مجموعات عدة على تقييمها ثم محاكاة
ًّ العمل هذا يفتح .النظام تغيرات مع بفعالية الحقيقي العالم بيئات مع والتكيف الموزعة، الأنظمة مع والتكامل كفاءة، أكثر هجينة لحلول واعدة آفاقا

 .الذكية اللوجستية والخدمات السحابية الحوسبة بنى مثل

Abstract

In an industrial context characterized by resource diversity and the demand for responsiveness, dynamic
customer order scheduling is a central challenge. This thesis addresses the complex problem of dynamic

order scheduling in systems with non-identical servers, where each server has different processing
characteristics (speed, capacity, availability). The system dynamics—linked to the continuous arrival of orders,

varying customer priorities, and capacity constraints—render traditional exact approaches ineffective due to
their computational complexity.

To address this problem, we propose an optimization approach based on the Variable Neighborhood Descent
(VND) metaheuristic. This method allows for the progressive improvement of an initial solution by exploring

multiple neighborhoods to avoid local optima. The problem is modeled using an extended and dynamic
version of the Job Shop Scheduling Problem (JSSP), adapted to heterogeneity and real-time constraints. After

a theoretical study of the JSSP and the main optimization methods, VND is implemented in a simulation
environment and then evaluated on several datasets. Experimental results show that the method achieves

high-quality solutions in a reasonable time, while effectively adapting to system changes.
This work opens up interesting prospects for more efficient hybrid solutions, integration with distributed

systems, and adaptation to real-world environments such as cloud architectures and smart logistics.

