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General introduction

M issing data are a common and challenging problem that complicates the statistical analysis
of data collected in almost every discipline, including biology, psychology, sociology, and

medicine. it arising when a sampled unit does not respond to the entire survey (unit nonresponse)
or to a particular question (item nonresponse).No matter how carefully an investigator tries to
have all questions fully responded to in a survey, or how well designed, any dataset frequently
results in missing data.

This issue that dates back to the earliest known statistical operations, such as censuses in
ancient empires. The first recorded census was conducted by the Babylonians around 3800
BC. Historical records indicate it was conducted every six or seven years and accounted for the
number of people and livestock, as well as quantities of butter, milk, wool, and vegetables (see
Kuhrt, 1995[18]). However, awareness of the problems caused by missing data has only emerged
recently. Galton (1888)[11] was among the pioneers to study situations involving missing data. He
encountered cases of incomplete measurements in his anthropometric work. His study was based on
data (such as forearm length, hand length, palm, and palm width) from 350 men, but Galton noted
that the exact number of 350 was not maintained throughout the study, as injuries to limbs reduced
the number of individuals by 1, 2, or 3 in different cases. Later, Galton (1898)[12] considered a
truncated distribution, specifically a right-truncated normal distribution, while analyzing data
from Wallace’s Year Book. This data included qualification times for runners who had to complete
a mile in no more than 2 minutes and 30 seconds. Times for the slower runners were not recorded
and thus excluded, with their number remaining unknown. He estimated the mean and identified
quartiles to assess dispersion using the interquartile range. In 1931, British statistician R. A.
Fisher revisited this problem using the maximum likelihood method, which was later used by
Wilks (1932)[48] to estimate a covariance matrix in the presence of missing data for two variables.
Twenty years later, Lord (1955)[28] extended this approach to three variables.

During the cholera outbreaks, while studying the distribution of households with 0, 1, 2, 3, or 4
cholera cases in an Indian village, McKendrick (1926)[30], a pioneer in mathematical epidemiology,
found an unexpectedly high number of zeros for a Poisson distribution, while the true number of
affected households and infected individuals was unknown.

Fisher (1934)[10] addressed the problem of albinism, noting the difficulty in distinguishing
between families genetically capable of having albino children but who had none, and families
incapable of having albino children.

During World War II, based on observations of bullet impacts on returning planes, Abraham
Wald recommended reinforcing bombers everywhere, especially on the engines. The planes that
returned had not been hit in the engine, while those that had been were missing. More details
can be found in the works of Mangel and Samaniego (1984)[29], Wainer (2011)[47], and Ellenberg
(2014)[6], with Ellenberg (2018)[7] being a French translation.

To analyze measurements of human skeletons from Jebel Moya in Sudan, Rao (1985)[38] used
results from an archaeological study (Mukherjee and Rao, 1955[32]) on a sample of skulls. Some
skulls were in good condition, described by four variables (capacity, length, width, and height),
while other skulls were fractured, making certain measurements impossible.
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"Missing data refers to a data value that should have been recorded but, for some reason, was not,
Day (1999)[4]" .

When confronted with missing data, researchers employed conventional such as complete
case analysis or available analysis, and noval methods such as multiple imputation or maximum
likelyhood imputation, or Expectisation Maximization algorithm(EM algorithm). The majority
of statistical research operates under the assumption that the data being analyzed are devoid of
missing values. Often, the simplistic approach taken is to eliminate individuals with missing data.

"We find ourselves surrounded by missing data. The challenges they pose in statistical analysis
have long been overlooked" (Van Buuren, 2018[45]).

However, this method of simply deleting missing data can significantly distort the outcomes of
the statistical study.

"Missing data represent unobserved values that would hold significance in analysis if observed;
essentially, a missing value conceals meaningful information" (Little and Rubin, 2020[26]).

Imputation involves filling in the dataset (i.e., predicting estimated values for the unobserved
data). Numerous methods for imputing missing values have emerged, categorized into two
branches: simple imputation and multiple imputation. The practical utilization of these techniques
is increasingly widespread, with recent contributions from Van Buuren (2007)[44] and He et al.
(2022)[16].

The essence of simple imputation lies in replacing missing values of survey variables with
plausible substitutes. Following imputation, analyses proceed using these substituted values.

At times, considering multiple imputations of the same dataset proves beneficial. Known
as multiple imputation (MI), pioneered by Rubin (1987)[41], as its name suggests, MI involves
imputing missing values multiple times (N times with N > 1), generating several complete datasets
to amalgamate results and minimize imputation errors.

Another novel approach for approaching missing data was proposed by Orchard and Woodbury
(1972)[5] using what is commonly referred to as an expectation maximization (EM) algorithm to
produce unbiased estimates when the data are missing at random (MAR). ML and EM algorithms
were also discussed in Dempster et al.’s (1977)[14] work.

Graham et al. (1997)[22] discussed using the EM algorithm to estimate means and covariance
matrices from incomplete data. Papers from Little (1995)[23] and Little and Rubin (1989)[40]
extended the concept of ML estimation in dealing data.

It is important to distinguish between two characteristics that describe the nature of missing
data: one is called the "pattern," and the other relates to the process or mechanism behind the
occurrence of missing data.

Rubin (1976)[24] was the first who study the mechanisms behind the presence of missing data.
According to Rubin (1976)[24] and Little and Rubin (2002)[20], there are three major types of
missing mechanisms that are This research has been supported in part by generally accepted and
used in modern statistics: (a) missing completely at random (denoted as MCAR), if missingness
does not depend on the data, missing or observed; (b) missing at random (denoted as MAR),
if missingness depends only on the observed data, but not on the missing data, there another
mechanism called covariate dependent missigness (denoted CDM), it’s a secial case of MAR; (c)
missing not at random (denoted as MNAR), if missingness depends on the missing data. Knowing
the type of missing mechanisms is important for adopting the appropriate statistical procedure
for the analysis of incomplete data. Many missing data methods, such as complete case analysis
and available case analysis, as well as mean imputation methods generally require the MCAR
assumption. If such procedures were used for the other two missing mechanisms, it would usually
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cause biased inference. Therefore, it is necessary to test whether the MCAR assumption is satisfied
before applying those procedures.

Little (1988)[19] first proposed a test of MCAR for incomplete multivariate data by testing the
homogeneity of means across different missing pattern groups. The test is based on the likelihood
ratio test assuming the normality for the data. Little (1988)[19] also mentioned a likelihood ratio
test for testing homogeneity of both means and covariances across different missing pattern groups
as another possible test of MCAR.

In this work, we present a non parametric test, a chis-quared test for testing MCAR mechanism
for multivariate quantitative data proposed by Little (1988)[19], and a straightforward extension
of Little’s MCAR test for CDM assumption, highlighting their advantages, limitations.

This master memory falls into three chapters.

In chapter 1, we delve into the complex issue of missing data, aiming to provide a comprehensive
understanding of its patterns, mechanisms, and methods for handling.

In chapter 2, we introduces the notation we use for Little’s test for incomplete multivariate
data and discusses the hypothesis testing problem corresponding to the test of MCAR. Also we
present a straightforward extension of Little’s MCAR test for CDM assumption.

In chapter 3, we report simulation studies for Little’s test for MCAR and CDM mechanisms
proposed by Little 1988[20] and Li 2014[19], respectivelly, to evaluate the performance of our
proposed procedure, highliting the limitations of this test.
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Chapter 1

Introduction to Missing Data

Missing data (or missing values) is defined as the data value that is not stored for a variable
in the observation of interest. The problem of missing data is relatively common in almost all
research and can have a significant effect on the conclusions that can be drawn from the data.

In this chapter, we delve into the complex issue of missing data, aiming to provide a compre-
hensive understanding of its patterns, mechanisms, and the methods for handling.

1.1 Missing Data: Reasons, Challenges, and Examples.

1.1.1 Reasons for Missing Data

The reason for the missing data is important to consider, because it helps you determine the
type of missing data and what you need to do about it.
These three reasons tend to cover the largest areas of missing data in the data mining process:

➤ Random errors : such as equipment failures like malfunctioning sensors, instruments, or
data collection devices, can result in missing data. Similarly, human errors, like mistakes
during data entry or data processing, can lead to missing values.[3]

➤ Refusal of response : Some respondents may find certain questions in the survey offensive
or be personally sensitive to certain questions. For example, some respondents may not have
an opinion on certain issues, such as political or religious affiliation. In questions relating to
level of education education, income, age or weight may be considered too private for some
respondents to answer. In addition, respondents may simply not have sufficient knowledge
to particular questions . Students or inexperienced people may have insufficient insufficient
knowledge to answer certain questions. When they are asked about their future goals or
career choices, they may not have time to study certain aspects of their of their career choice
(such as salaries in different regions of the country, retirement retirement options, insurance
choices,..., etc).[3]

➤ Unworkable answers : Sometimes questions are left blank simply because they apply
apply to a more general population rather than to an individual respondent. If a subset of
questions in a questionnaire questionnaire does not apply to the individual respondent, data
may be be missing for a particular group within a data set. For example, many graduate
students graduates may choose not to answer questions about social activities for which
they simply for which they simply don’t have the time. Similarly, adults who have never
been married, or who are widowed or widowed or divorced are unlikely to answer a question
about the number of years years of marriage.[3]
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1.1.2 Problems with Missing Data

The existence of missing values may have significant influence on the analysis of the data and
therefore on the conclusion of the data analysis. When missing data are present, we may have the
following issues:

➤ Power and variability: With more missing data, we will have smaller sample size, which
means we will have less statistical power for the analysis. And often since the extreme cases
are more likely to be missing, we will have loss of data variability and the confidence interval
will be forced to be narrower.

➤ Bias: For some circumstances, such as the situation where the participated interviewees in
a survey are not a random sample of the population of interest, the bias issue exists. Bias is
one of the worst effects that missingness brings. It also brings the issue of comparability of
different groups and representativeness of the observed sample to the target population, as
in some retrospective studies or observational studies.

1.1.3 Examples

Example 1: Income Nonresponse in the Current Population Survey

The Current Population Survey (CPS) is a crucial monthly survey conducted by the Census
Bureau to gather diverse information from households. Specifically, in March of each year, the
CPS includes a supplement to collect detailed income data. However, there’s a challenge: not
all individuals are willing to report their incomes. As a result, approximately 20% of surveyed
individuals have missing data on one or more income items.

Moreover, the CPS encounters another issue: a small number of households fail to provide
interviews at all. Income nonresponse not only reduces the efficiency of data analysis but also
introduces biases because nonrespondents tend to differ from respondents. For instance, individuals
with higher incomes are less likely to respond compared to those with middle incomes.

The consequence of these challenges is significant. Without adjusting for the differences
between nonrespondents and respondents, analyzing CPS data can lead to biased conclusions.
This is problematic given the importance of CPS data, as it serves as a key source for government
figures on employment and income, and it’s widely utilized by economists, social scientists, and
various other professionals.

Therefore, despite the issue of income nonresponse, it’s imperative for CPS databases to
provide realistic answers for data analysts. This entails implementing methods to account for
nonresponse biases and ensure the reliability and validity of the data for informed decision-making
and policy formulation.[27]

Example 2: Nonresponse in the Fatal Accident Reporting System

The Fatal Accident Reporting System (FARS), administered by the National Highway Traffic
Safety Administration, provides a publicly accessible database for analysis. This dataset contains
comprehensive information on fatal accidents, including details such as accident location, vehicle
involvement, and driver characteristics like age, sex, driving history, seatbelt usage, and blood
alcohol content (BAC). However, critical variables like seatbelt use and BAC are often missing for
many cases.

To address the issue of missing data, the National Highway Traffic Safety Administration has
two primary objectives. Firstly, they aim to create a data file where missing values are filled in,
enabling standard analytical methods designed for complete datasets to be applied. Secondly,
they strive to equip analysts with tools to accurately estimate standard errors, which reflect the
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information loss due to nonresponse. This approach ensures that analysts can conduct robust
analyses and properly account for missing data in their interpretations.[27]

Example 3: The comparability of occupation codes across different time periods

In each decennial census, individuals provide details about their jobs through open-ended
descriptions of occupations. These descriptions are then translated into standardized occupation
codes by the Census Bureau. However, with every census, the system for classifying occupations
is updated to reflect changes in job categories and economic trends.

A significant revision to this system occurred during the 1980 census, resulting in the introduc-
tion of new occupation codes. Consequently, the occupation codes in public-use datasets from the
1980 census cannot be directly compared to those from earlier censuses, such as the 1970 census.
This lack of code comparability presents challenges for researchers interested in analyzing trends
in occupation mobility and labor force composition over time by demographic characteristics.

The public-use datasets from the 1970 census are extensive, containing over one million records,
making it impractical and costly to update them with the new 1980 codes. However, a subset
of the 1970 census data, consisting of 120,000 units, has been coded with both 1980 and 1970
occupation codes.

This issue of occupation code comparability across different census years can be seen as a
missing-data problem. While a small portion of the 1970 dataset contains both the 1970 and 1980
occupation codes, the majority of cases only have the old codes. Managing this discrepancy is
essential for accurate longitudinal analysis and interpretation of trends over time.[27]

1.2 Basic concepts

1.2.1 Unit versus Item Nonresponse
In survey contexts, two types of missing data are commonly distinguished: unit nonresponse,

where entire questionnaires are missing due to the inability to contact or interview a sampled
individual, and item nonresponse, where specific questions are missing within an interview,
either due to refusal to answer, interviewer errors, or deletion of inconsistent responses during the
editing process.

Unit nonresponse often leads to a situation where survey variables are missing for nonre-
spondent units, while survey design variables (such as geographical information) are still available.
This issue is often addressed through weighting adjustments, where nonrespondent units are
excluded from the dataset, and weights are assigned to respondent units to correct for potential
biases resulting from systematic differences between respondents and nonrespondents. On the
other hand, item nonresponse is typically handled by imputing missing items or marking them
with a code to indicate their absence.[27]

1.2.2 Notation

Suppose that if the data were complete, they could be arranged in an (n × p) data matrix
Y = yij, such that yij is the value of the jth variable for the ith unit, i = 1, ..., n; j = 1, ..., p. Let
M = mij denote an (n× p) missing-data indicator matrix, such that :

M =
{

0 si yij missing
1 si yij observed

We write Y = (Yobs,Ymis), where Yobs represents the observed part of Y and Ymis denotes the
missing part. Let P(M | Y, ψ) denote the conditional distribution of M given Y and ψ, where ψ
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is a set of unknown parameters (the parameter vector governing the model for the missingness
mechanism).
Let X = xij, such that xij is the value of the kth variable for the ith unit, be the (n × q) data
matrix of covariate variables, i = 1, ..., n; k = 1, ..., q.

1.2.3 Missing Data Patterns
A missing data pattern refers to the configuration of observed and missing values in a data

set. This term should not be confused with a missing data mechanism, which describes possible
relationships between the data and one’s propensity for missing values. Roughly speaking, patterns
describe where the holes are in the data, whereas mechanisms describe why the values are missing.
Figure 1.1 shows four prototypical missing data patterns, with shaded areas representing the
location of the observed values.
Here the matrix M describes the pattern of missing data. It is useful when discussing missing
data analysis to treat M as a stochastic matrix.

the most commonly considered pattern is univariate nonresponse, where (possibly after
rearrangement of the rows and columns), yij is observed for i = 1, . . . , n and j = 1, . . . , p− 1, and
yip is observed for i = 1, . . . , no and missing for i = no + 1, . . . , n0 + n1 = n. Thus, with univariate
nonresponse, missing data are confined to variable p.

The multivariate pattern is obtained when the single incomplete variable Yp in Figure 1.1(a)
is replaced by a set of variables Yj+1, . . . , Yp, all observed or missing on the same set of units (see
Figure 1.1(b)).

Univariate nonresponse (Patterns (a)) and multivariate nonresponse (patterns (b)) is a
special case of monotone missing data (see Figure 1.1(c)) , where (perhaps after rearranging
columns), the variable Yj is observed whenever Yj+1 is observed, for j = 1, . . . , p− 1. Thus, for
any i, mij = 1 implies that mij′ = 1 for all j ′

< j . In other words, the first variable in Y is at
least as missing as the second variable, which is at least as missing as the third variable, and so
on. Such a pattern of missingness, or a close approximation to it, is not uncommon in practice.
Monotone patterns often arise in repeated-measures or longitudinal data sets, because if a unit
drops out of the study in one time period, then the data will typically be missing in all subsequent
time periods. Sometimes a nonmonotone missing-data pattern can be made monotone, or nearly
so, by reordering the variables according to their missingness rates.

A general pattern is perhaps the most common configuration of missing values. As seen in
Figure 1.1(d)), a general pattern has missing values scattered throughout the entire data matrix
in a haphazard fashion.[8]
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Fig. 1.1: Examples of missing-data patterns.

1.2.4 Missing Data Mechanisms

Rubin (1976)[40] first introduced a classification system for missing data problems that is widely
used in the literature today. This work has generated three so-called missing data mechanisms
that describe how the probability of a missing value relates to the data, if at all. In general, there
are four types of missing data according to the mechanisms of missingness.

➤ Missing completely at random .

➤ Missing at random .

➤ Missing not at random .

Missing Completly At Random

A Missing Completely at Random (MCAR) mechanism states that the probability of missing
values is unrelated to both the observed and missing parts of the data. This process is considered
purely random missingness by researchers. Rubin’s 1976[40] formal definitions involve the condi-
tional distribution of the indicator variables in M given the observed data Yobs and the missing
data Ymis. The distribution for an MCAR process is:

P(M | Yobs,Ymis, ψ) = P(M | ψ) (1.1)

The left side of the equation, which encompasses all possible associations between the indicators
and the data, indicates that the probability of a missing value depends on both the observed and
missing parts of the data, as well as some parameters governing missingness. The MCAR process
on the right side of the equation (1.1) simplifies by removing all dependence on the realized data.
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In other words, the equation (1.1) suggests that all participants have the same chance of having
missing values.

For example, consider a scenario when a glass slide with biopsy material from a patient
is accidentally broken such that pathology and histology tests cannot be performed, or when
individuals had no blood pressure measured as the equipment was broken. Thus, under MCAR,
missing data do not depend on either observed data or missing data. In this case, the glass slide
of any patient can be broken.[9]

the statistical advantage of data that are MCAR is that the analysis remains unbiased. Power
may be lost in the design, but the estimated parameters are not biased by the absence of the data.

Missing At Random

A Missing At Random (MAR) mechanism implies that the probability of missing values is
related to the observed data but not to the missing data. The formal definition is given by:

P(M | Yobs,Ymis, ψ) = P(M | Yobs, ψ) (1.2)

This equation (1.2) means that the potential values in Ymis do not provide any additional
information about the missingness beyond what is already contained in the observed data. The
term MAR is often misunderstood, as it suggests a random process rather than a systematic one.
However, it actually means that missingness is random after accounting for the observed data.
Data are considered MAR if they are missing because of some potentially observable, nonrandom,
systematic process.[9]

Covariate Dependent Missingness

Note that here M is also independent of covariates Y, as suggested by Little (1995)[22]. This
means that under the MCAR assumption, the missingness should be totally independent of any
observed variables. Instead, if M only depends on covariates X

P(M | YobsYmis,X, ψ) = P(M | X, ψ). (1.3)

Then Little (1995)[22] suggested that equation (1.3) be referred to as "covariate-dependent
missingnes" (CDM). It is important to highlight that as per the definition, CDM is a special case
of MAR since covariates x are always fully observed.

In longitudinal studies, researchers often include covariates in their analysis to help understand
the relationships and interactions between different factors and the primary outcome, and to
explain the missingness in the data, these covariates must be completely observed. For example,
blood pressure outcome data could be CDM if missingness in blood pressure measurement depends
on covariates (e.g. age, gender or weight), but given these, not on the blood pressure measurement
itself. CDM is an example of a MAR mechanism when covariates are fully observed.

Missing Not At Random

A missing not at random mechanism (also referred to as a not missing at random process)
states that the probability of missing values is related to the observed and missing parts of the
data. The formal definition of this mechanism is as follows.

P(M | Yobs,Ymis,X, ψ). (1.4)

Unlike the previous expressions, the conditional distribution of the missing data indicators doesn’t
simplify and features two distinct determinants of missingness.
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For example, overweight or underweight individuals may be more likely to have their weight
measured than individuals with normal weight, even after age is accounted for. Thus, the reason
for missingness is related to unobserved characteristics of the individual, and thereby, data are
MNAR. Another example is when data on income are missing, the probability of missingness may
be related to the level of income; for instance, those with very low or high income might refuse to
report their income.[9]

Example

To illustrate, let’s examine the small dataset provided in Table 1.1. These data were crafted
to simulate a scenario in employee selection by Enders (2010)[8], where candidates undergo an
IQ ( intelligence quotient ) test during their job interviews, and later, their job performance is
evaluated by a supervisor after a 6-month probationary period.

For the MCAR column, there is no relationship between IQ and the job performance ratings.
A case with a lower IQ is just as likely to be missing as a case with a higher IQ.
Notably, in Table 1.1[8], the job performance ratings in the MAR column are absent for candidates
with the lowest IQ scores. As a result, the likelihood of a missing job performance rating is solely
determined by IQ scores and bears no relation to an individual’s actual job performance.
The job performance ratings in the MNAR column are missing for the applicants with the lowest
job performance ratings. Consequently, the probability of a missing job performance rating is
dependent on one’s job performance.[8]

Tab. 1.1: Job Performance Ratings with MCAR, MAR, and MNAR Missing Values

IQ Job Performance Ratings

Complete MCAR MAR MNAR

78 9 - - 9
84 13 13 - 13
84 10 - - 10
85 8 8 - -
87 7 7 - -
91 7 7 7 -
92 9 9 9 9
94 9 9 9 9
94 11 11 11 11
96 7 - 7 -
99 7 7 7 -
105 10 10 10 10
105 11 11 11 11
106 15 15 15 15
108 10 10 10 10
112 10 - 10 10
113 12 12 12 12
115 14 14 14 14
118 16 16 16 16
134 12 - 12 12
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1.2.5 Ignorable and Nonignorable Missingness
The terms ignorable and nonignorable missingness are commonly used to refer to MAR

(missing at random) and MNAR (missing not at random) processes, respectively. However, these
terms have a broader definition, though the difference is often negligible in practice. Rubin’s
classification scheme involves two models: the focal analysis model, which you would estimate if
the data were complete, and the missingness mechanism model. These models have parameters
θ and ϕ, respectively. Usually interest is in the parameters θ, with ϕ are considered nuisances
because they are not related to the main research goals. For example, the rows of Y may be
assumed to have independent multivariate normal distributions with mean µ, covariance matrix
Σ, and θ = (µ,Σ), so here we interest in the parameters θ. The key question is when can we
estimate θ from the observed data without needing to model the missingness mechanism or its
parameters ϕ? This is the essence of ignorability.

Rubins 1976[40] shows that the missingness model is considered ignorable if:
(1) the missing values follow a MAR process, which is the important condition.
(2) the nuisance parameters in ϕ provide no information about the parameters in θ, the parameters
θ and ψ are distinct, in the sense that the joint parameter space (θ, ψ), say Ωθ,ψ, is the product of
the parameter space Ωθ of θ and the parameter space Ωψ of ψ, that is Ωθ,ψ = Ωθ × Ωψ.

The expression on the left of the equation represents a compact notation for the joint (multi-
variate) distribution of both the observed data and the indicators for missing data.

f(Yobs,M | θ, ϕ) = f(M | Yobs, ϕ) × f(Yobs | θ) (1.5)

Rubin’s argument states that when θ and ϕ are independent, we can factorize the joint
distribution as the right side of the equation (1.5). The missingness model is ignorable in this case
because f(M | Yobs, ϕ) acts as a constant, and estimating the focal model parameters from the
observed data yields the same results with or without this term. Conversely, the missingness model
is nonignorable if the missing values follow an MNAR process or if ϕ provides information about
θ. In such cases, valid estimates of θ require pairing the focal analysis model with an additional
model for missingness.[9]

1.3 Methods for Dealing with Missing Data

Several statistical approaches have been developed for dealing with missing data. The most
common methods can be classified into one of the following groups:

➤ Traditionnal methods:

– Deletion methods : complete-case analyses, available case analysis.
– Single imputation methods: mean imputation, hot deck imutation, regression imputa-

tion, and stochastic regression imputation.

➤ Advanced methods:

– Multiple Imputation (MI).
– Maximum Likelyhood method (ML).
– Expectation Maximization algorithm (EM).
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1.3.1 Conventional Methods

Complete Case Analysis

The most common method for handling missing data is complete case analysis, also known as
listwise deletion. This method simply deletes observations that have missing data on any variables
in the model of interest. Only complete cases are used.

Advantages

Listwise deletion has two big and obvious attractions:

• It is easy and can be used with any statistical method. Furthermore, if the data are MCAR,
listwise deletion will not introduce any bias into estimates. That is because, under MCAR,
the subsample of complete cases is effectively a simple random sample from the original
sample, and it is well known that simple random sampling does not introduce bias.

• Last, and quite important, listwise deletion produces estimated standard errors that consis-
tently estimate the true standard errors. Thus, unlike conventional imputation methods,
listwise deletion is “honest”: it does not assume that one has more or better data than are
actually available.

Disadvantages

Listwise deletion has two problems:

• The obvious downside of listwise deletion is that, quite often, it discards a great deal of
potentially useful information. As a consequence, the true standard errors may be much
higher than necessary, implying unnecessarily wide confidence intervals and high p-values.

• A second undesirable feature of listwise deletion is that parameter estimates may be biased
if the data are MAR but not MCAR. For example, if men are less likely to report income
than women, estimates of mean income for the whole population are likely to be biased
downward. Violation of MCAR does not always result in biased estimates under listwise
deletion, however. In fact, when predictor variables in regression analysis (either linear or
logistic) have missing data, listwise deletion yields unbiased estimates of coefficients even
when the data are not missing at random . Thus, even if high income people are less likely to
report their income, coefficients for income as a predictor are not biased by listwise deletion.
But deletion of what may be a large number of cases may still result in a loss of power.

Example

Diastolic blood pressure was measured for six patients; the results are presented in Table 1.2.

Tab. 1.2: Diastolic blood pressure (mm Hg) for six patients

Subject Diastolic blood pressure (mm Hg)
1 75
2 ?
3 90
4 92
5 ?
6 80
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In the complete case analysis, subjects with any missing observations are excluded. As a result,
the final dataset for analysis would include only subjects 1, 3, 4, and 6, as shown in Table 1.3.

Tab. 1.3: Diastolic blood pressure (mm Hg) for six patients

Subject Diastolic blood pressure (mm Hg)
1 75
3 90
4 92
6 80

Available Case Analysis

Available case analysis, or pairwise deletion, uses all available data to estimate parameters of
the model. When a researcher looks at univariate descriptive statistics of a data set with missing
observations, he or she is using available case analysis, examining the means and variances of the
variables observed throughout the data set. When interest focuses on bivariate or multivariate
relationships, the potential problems increase. Figure 1.2[36] illustrates a simple two-variable data
matrix with only one variable subject to nonresponse. In pairwise deletion, all cases would be
used to estimate the mean of Y1, but only the complete cases would contribute to an estimate of
Y2, and the correlation between Y1 and Y2. Different sets of cases are used to estimate parameters
of interest in the data:
Ȳ1 = ∑n

i=1 yi1

Ȳ2 = ∑m
i=1 yi2

s2
1 =

∑n
i=1(yi1 − Ȳ1)2

n− 1

s2
2 =

∑m
i=1(yi2 − Ȳ2)2

m− 1

r2
xy =

∑m
i=1(yi1 − Ȳ1)(yi2 − Ȳ2)

s1(m)s2

Fig. 1.2: Illustration of missing data restricted to one variable
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where Ȳ1, Ȳ2, s2
1, s2

2, and r2
xy, are, the mean of Y1 , the mean of Y2, the variance of Y1, the

variance of Y2, correlation coefficient between variables Y1 and Y2.
The estimates can be improved by using available cases instead of complete cases, but there

are problems with this procedure.[36]

Advantages

While this method has some advantages, such as using all available data and maintaining
sample size, it also has several significant problems and limitations:

• Little (1992)[21] shows that available case analysis provides consistent estimates, when
variables are moderately correlated in regression models. When variables are highly correlated,
available case analysis provides estimates that are inferior to complete case; Another difficulty
is that available case analysis can produce estimated covariance matrices that are implausible,
such as estimating correlations outside of the range of -1.0 to 1.0.

• Errors in estimation occur because of the differing numbers of observations used to estimate
components of the covariance matrix. The relative performance of complete-case analysis
and available case analysis, with MCAR data, depends on the correlation between the
variables; available case analysis will provide consistent estimates only when variables are
weakly correlated. The major difficulty with available case analysis lies in the fact that one
cannot predict when available case analysis will provide adequate results, and is thus not
useful as a general method.[36]

Mean Imputation

In a mean substitution, the mean value of a variable is used in place of the missing data values
for that same variable. Let yij be the jth value of Yj for ith unit. The estimate of missing values
yij is Ȳj, the mean of the recorded values of Yj:

Ȳj =
∑r
i=1 yij
r

where r the number of the observed values for the jth variable.

Disadvantages

Little (1992)[21] points out that while mean imputation results in overall means that are
equal to the complete case values, the variance of these same variables is underestimated. This
underestimation derives from two sources:

• First, filling in the missing values with the same mean value does not account for the variation
that would likely be present if the variables were observed. The true values probably vary
from the mean.

• Second, the smaller standard errors due to the increased sample size do not adequately reect
the uncertainty that does exist in the data. A researcher does not have the same amount of
information present when some cases are missing important variables as he or she would
have with completely observed data. Bias in the estimation of variances and standard errors
are compounded when estimating multivariate parameters such as regression coeffcients.
Under no circumstances does mean imputation produce unbiased results.
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Example

Six patients were measured to find out their height and weight. The resulting measurements
are presented in Table 1.4 below.

Tab. 1.4: Measured height and weight with missing values

Subject Height (cm) Weight (kg)
1 170 72
2 ? 60
3 160 ?
4 196 112
5 ? 58
6 180 79

As can be seen from Table 1.4, one subject (subject number 3) is missing his/her weight and
another one (subject number 5) his/her height. For the mean imputation method, the mean for
height

170 + 160 + 196 + 180
4 = 176.5 cm

and the mean for weight
72 + 60 + 112 + 58 + 79

5 = 76.2 kg

are calculated based on the available data. Imputing the means for missing values leads to the
following data set (Table 1.5).

Tab. 1.5: Measured height and weight with missing values

Subject Height (cm) Weight (kg)
1 170 72
2 176.5 60
3 160 76.2
4 196 112
5 176.5 58
6 180 79

The Hot Deck Imputation

The hot deck procedure involves imputing a participant’s missing values using theoretically
similar variables that are observed for another participant. A participant’s missing values are
imputed using the values from a participant with similar observed values.

Myers[31] suggested that the hot deck procedure can be performed under the following
conditions: (a) up to 20% for data that is MCAR or MAR, and (b) up to 10% for data that is
MNAR. Although, to address MNAR, counseling researchers will likely want to consider more
robust methods for handling missing data, such as MI procedures , which are discussed in the
following section 1.3.2.[31]

Advantages

The hot deck method of handling missing data offers several advantages over listwise and
pairwise deletion. Primarily, hot deck procedures allow for retention of the complete sample of
individuals, avoiding the loss of incomplete cases and the subsequent declines in statistical power
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that are incurred as a result. Siddique and Belin (2008)[43] argue that the benefits of hot deck
imputation include:
1) imputations tend to be realistic since they are based on values observed else where .
2) imputations will not be outside the range of possible values .

In the comparison of various techniques of handling missing data, the researchers found that
hot deck imputation to be over 80 times more effective than listwise deletion and that hot deck
imputation also outperformed pairwise deletion and mean substitution.

Furthermore, users of hot deck imputation are in good company, as many prominent large-scale
surveys implement hot deck procedures to deal with missing data, including the U.S. and British
censuses, the Current Population Survey, the Canadian Census of Construction, the U.S. Annual
Survey of Manufacturers, and the U.S. National Medical Care Utilization and Expenditure Survey.
Hot deck imputation is recommended by Roth (1994)[39] for all missing data scenarios, except
those where the data are MNAR and constitute greater than 10% of the sample (in which case ML,
MI, and EM techniques are recommended; see Figure 1.3[31]). Finally, the relative simplicity of
the hot deck technique in comparison to model based techniques makes it an attractive alternative
to listwise deletion and has the potential to facilitate wide use and application.[31]

Disadvantages

Despite the advantages of this method ,the use of the hot deck imputation does have several
limitations. The first is that unique cases, that is, cases that are dissimilar to all others in the
data set on the combination of sorting variables so that no “deck match” can be found, produce a
Thus, there would be no “donor” available. This situation occurs more often in small data sets,
when many sorting variables are used, when decks are defined by continuous variables, or when
decks are defined by variables with many unique values. It is optimal to balance the size of the file
with the number of sorting variables. A larger file can support the use of more sorting variables
than a smaller file. Another problem noted by Siddique and Belin (2008)[?] is that single hot deck
proceduresfail to account for the uncertainty due to the fact that the analyst does not know the
values that might have been observed).[31]

Fig. 1.3: Range of Hot Deck Applicability
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Example

From the data set in Table1.6[3], it is noted that case three is missing data for item four. In
this example, case one, two, and four are examined. Using hot deck imputation, each of the other
cases with complete data is examined and the value for the most similar case is substituted for
the missing data value. Case four is easily eliminated, as it has nothing in common with case
three. Case one and two both have similarities with case three. Case one has one item in common
whereas case two has two items in common. Therefore, case two is the most similar to case three.

Once the most similar case has been identified, hot deck imputation substitutes the most
similar complete case’s value for the missing value. Table1.7[3] provides the revised data set and
displays the hot deck imputation results. Since case two contains the value of 13 for item four, a
value of 13 replaces the missing data point for case three.[3]

Tab. 1.6: Illustration of hot deck imputation: incomplete data set

Case Item 1 Item 2 Item 3 Item 4

1 10 2 3 5
2 13 10 3 13
3 11 10 3 ???
4 2 5 10 2

Tab. 1.7: Illustration of hot deck imputation: imputed data set

Case Item 1 Item 2 Item 3 Item 4

1 10 2 3 5
2 13 10 3 13
3 11 10 3 13
4 2 5 10 2

Regression Imputation:

This approche involves to replace the missing values for a unit by their predicted values from
a regression of the missing variable on variables observed, usually calculated from units with both
variables observed.

Disadvantages

Although regression imputation is useful for simple estimates, it has several inherent disadvan-
tages:

• This method reinforces relationships that already exist within the data. As this method is
utilized more often, the resulting data becomes more reflective of the sample and becomes
less generalizable to the universe it represents.

• The variance of the distribution is understated.

• The assumption is implied that the variable being estimated has a substantial correlation to
other attributes within the data set.

• The estimated value is not constrained and therefore may fall outside predetermined bound-
aries for the given variable. An additional adjustment may necessary.
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Example

Consider univariate nonresponse, with Y1, Y2 fully observed and Y3 observed for the first m
units and missing for the last n-m units. Regression imputation computes the regression of Y3
on Y1, Y2 based on the m complete units and then fills in the missing values as predictions from
the regression. Table 1.8[3] displays an example of regression imputation. From the table, 20
cases with three variables (income, age, and years of college education) are listed. Income contains
missing data and is identified as the dependent variable while age and years of college education
are identified as the independent variables. The following regression equation is produced for the
example :

Y ∗
3 = 33912.14 + 300.87(age) + 1554.25(years of college education)

Predictions of income can be made using the regression equation and the right-most column

Tab. 1.8: Illustration of regression imputation

Case Income($) Age Years of college
education

Regression
prediction($)

1 45,251.25 26 4 47,951.79
2 62,498.27 45 6 56,776.85
3 49,350.32 28 5 50,107.78
4 46,424.92 28 4 48,553.54
5 56,077.27 46 4 53,969.22
6 51,776.24 38 4 51,562.25
7 51,410.97 35 4 50,659.64
8 64,102.33 50 6 58,281.20
9 45,953.96 45 3 52,114.10
10 50,818.87 52 5 57,328.70
11 49,078.98 30 0 42,938.29
12 61,657.42 50 6 58,281.20
13 54,479.90 46 6 57,077.72
14 64,035.71 48 6 57,679.46
15 51,651.50 50 6 58,281.20
16 46,326.93 31 3 47,901.90
17 53,742.71 50 4 55,172.71
18 ??? 55 6 59,785.56
19 ??? 35 4 50,659.64
20 ??? 39 5 53,417.37

of the table displays these predictions. For cases 18, 19,and 20 ,income is predicted to be
59, 785.56$, 50, 659.64$, and 53, 417.37$, respectivelly.[3]

Stochastic Regression Imputation

Stochastic regression imputation also uses regression equations to predict incomplete variables
from complete variables, but it takes the additional step of augmenting each predicted score with
a random noise term from a normal distribution. Adding these residuals to the predicted values
restores lost variability to the data and effectively eliminates the biases associated with standard
regression imputation schemes. In fact, stochastic regression imputation is the only procedure in
this section that is generally capable of producing unbiased parameter estimates when scores are
MAR.
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1.3.2 Novel Methods

Multiple Imputation

Multiple imputation is another useful strategy for handling the missing data. In a multiple
imputation, instead of substituting a single value for each missing data, the missing values are
replaced with N values for each missing item and creating N completed data sets, but the missing
values are filled in with different imputations to reflect the natural variability and uncertainty of
the right values.

This approach begin with a prediction of the missing data using the existing data from other
variables . The missing values are then replaced with the predicted values, and a full data set
called the imputed data set is created. This process iterates the repeatability and makes multiple
imputed data sets (hence the term "multiple imputation"). Each multiple imputed data set
produced is then analyzed using the standard statistical analysis procedures for complete data,
and gives multiple analysis results. Subsequently, by combining these analysis results, a single
overall analysis result is produced.

The benefit of the multiple imputation is that in addition to restoring the natural variability
of the missing values, it incorporates the uncertainty due to the missing data, which results in a
valid statistical inference. Restoring the natural variability of the missing data can be achieved
by replacing the missing data with the imputed values which are predicted using the variables
correlated with the missing data.

Incorporating uncertainty is made by producing different versions of the missing data and
observing the variability between the imputed data sets. Multiple imputation has been shown to
produce valid statistical inference that reflects the uncertainty associated with the estimation of
the missing data. Furthermore, multiple imputation turns out to be robust to the violation of the
normality assumptions and produces appropriate results even in the presence of a small sample size
or a high number of missing data. With the development of novel statistical software, although
the statistical principles of multiple imputation may be difficult to understand, the approach may
be utilized easily.

Example

Suppose a data set has three variables, Y1, Y2 , and Y3. Suppose Y1 and Y2 are fully observed,
but Y3 has missing data for, say, 20% of the cases. To impute the missing values for Y3, a regression
of Y3 on Y1 and Y2 for the cases with no missing data yields the imputation equation(1.6)

Ŷ3 = b0 + b1Y1 + b2Y2 (1.6)

Conventional imputation would simply plug in values of Y1 and Y2 for the cases with missing
data and calculate predicted values of Y3. But this imputed values have too small a variance. To
correct this problem, we instead use the imputation equation(1.7)

Ŷ3 = b0 + b1Y1 + b2Y2 + sE (1.7)

where E is a random draw from a standard normal distribution (with a mean of 0 and a standard
deviation of 1) and s is the estimated standard deviation of the error term in the regression (the
root mean squared error). Adding this random draw raises the variance of the imputed values to
approximately what it should be and, hence, avoids the biases that usually occur with conventional
imputation.

If parameter bias were the only issue, imputation of a single data set with random draws would
be sufficient. Standard error estimates would still be too low, however, because conventional
software cannot take account of the fact that some data are imputed. Moreover, the resulting
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parameter estimates would not be fully efficient (in the statistical sense), because the added
random variation introduces additional sampling variability.

The solution is to produce several data sets, each with different imputed values based on
different random draws of E. The desired model is estimated on each dataset, and the parameter
estimates are simply averaged across the multiple runs. This yields much more stable parameter
estimates that approach full efficiency.

With multiple data sets we can also solve the standard error problem, by calculating the
variance of each parameter estimate across the several data sets. This “between” variance is an
estimate of the additional sampling variability produced by the imputation process. The “within”
variance is the mean of the squared standard errors from the separate analyses of the several data
sets. The standard error adjusted for imputation is the square root of the sum of the within and
between variances (applying a small correction factor to the latter). The formula (Rubin, 1987[41])
is as follows: √√√√ 1

N

N∑
i=1

s2
i +

(
1 + 1

N

)( 1
N − 1

) N∑
i=1

(ai − ā)2 (1.8)

In this formula, N is the number of data sets, si is the standard error in the ith data set, ai is
the parameter estimate in the ith data set, and ā is the mean of the parameter estimates. The
factor (1 + (1/N)) corrects for the fact that the number of data sets is finite. How many data sets
are needed? With moderate amounts of missing data, five are usually enough to produce parameter
estimates that are more than 90 percent efficient. More may be needed for good estimates of
standard errors and associated statistics, however, especially when the fraction of missing data is
large.[2]

Maximum Likelihood for General Patterns of Missing Data: with Ignorable Nonre-
sponse

In this section, we discuss the theory and implementation of maximum likelihood (ML)
estimation for general patterns of missing data, under the assumption that the missing data
mechanism is ignorable. The ML approach provides a unified and theoretically sound framework
for handling missing data and is applicable to a wide range of models and data structures.

Let Y = (yij), i = 1, . . . , n, j = 1, . . . , p denote the data matrix if there were no missing values,
with yij ∈ Ωij, its sample space. We can model the density of the joint distribution of Y and M
using the "selection model" factorization (defined by Little and Rubin 2002[24])

P(Y,M | θ, ψ) = f(Y | θ)f(M | Y, ψ), (1.9)

where f(Y | θ) represents the distribution of the data matrix Y assuming no missing values,
f(M | Y, ψ) represents the model for the missing-data mechanism, as we denote before θ is the
parameter vector governing the data model, and ψ is the parameter vector governing the model
for the missingness mechanism. The full likelihood based on the observed values (yobs,m) and the
assumed model (1.9) is defined to be

Lfull(θ, ψ | Yobs,m) =
∫
f(Yobs,Ymis | θ)f(M | Yobs,Ymis, ψ) dYmis, (1.10)

considered as a function of the parameters (θ, ψ). The likelihood of θ ignoring the missingness
mechanism is defined to be

Lign(θ | Yobs) =
∫
f(Yobs,Ymis | θ)dYmis, (1.11)

which does not involve the model for M. The term "ignorable likelihood" is sometimes used
for equation (1.11), hence the notation Lign.
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Maximum-likelihood ignoring the missing-data mechanism means maximizing (1.11) rather
than the full likelihood (1.10).

ML estimates can be found by solving the likelihood equation

Dℓ(θ | Yobs) ≡ ∂ lnL(θ | Yobs)
∂θ

= 0. (1.12)

When a closed-form solution of (1.12) cannot be found, iterative methods can be applied, like
the EM algorithm.[26]

EM Algorithm

The EM algorithm ( Expectation-Maximization ) is a general iterative algorithm for ML
estimation in incomplete-data problems. It provides a structured approach to dealing with missing
data, a concept previously introduced in the precedent sections. This method involves the following
steps:

i) substituting missing values with estimated values,

ii) estimating parameters,

iii) recalculating missing values based on the updated parameter estimates,

iv) reestimating parameters, and continuing this iterative process until convergence is reached.

Each iteration of EM consists of an expectation step (E step) and a maximization step (M step).
The E step finds the conditional expectation of the “missing data” given the observed data and
current estimated parameters, and then substitutes these expectations for the missing data.

Let θ(t) be the current estimate of the parameter θ. The E step of EM finds the expected
complete-data loglikelihood, evaluated at θ=θ(t):

Q(θ | θ(t)) =
∫
ℓ(θ | Y )f(Yobs | Ymis, θ = θ(t)) dYobs.

The M step of EM determines θ(t+1) by maximizing this expected complete-data loglikelihood:

Q(θ(t+1) | θ(t)) ≥ Q(θ | θ(t)), for all θ.

The new estimate θ(t+1) then replaces θ(t) in the next iteration. Also, under quite general conditions,
EM converges to the maximum of this function. In particular, if a unique finite ML estimate of θ
exists, EM will find it.[26]

Convergence Properties of EM

The distribution of the complete data Y can be factored as follows:

f(Y | θ) = f(Yobs,Ymis | θ) = f(Yobs | θ)f(Ymis | Yobs, θ),

where f(Yobs | θ) is the density of the observed data Yobs and f(Ymis | Yobs, θ) is the density of
the missing data given the observed data. The corresponding decomposition of the log-likelihood
is

ℓ(θ | Y) = ℓ(θ | Yobs,Ymis) = ℓ(θ | Yobs) + ln f(Ymis | Yobs, θ).
The objective is to estimate θ by maximizing the incomplete-data log-likelihood ℓ(θ | Yobs)

with respect to θ for fixed observed Yobs; this task, however, can be difficult to accomplish directly.
First, write

ℓ(θ | Yobs) = ℓ(θ | Y) − ln f(Ymis | Ymis, θ), (1.13)
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where ℓ(θ | Ymis) is the observed log-likelihood to be maximized, ℓ(θ | Y) is the complete-data
log-likelihood, which we assume is relatively easy to maximize, and ln f(Ymis | Yobs, θ) can be
viewed as the missing part of the complete-data log-likelihood.

The expectation of both sides of equation(2.14) over the distribution of the missing data Ymis,
given the observed data Yobs and a current estimate of θ, say θ(t), is

ℓ(θ | Yobs) = Q(θ | θ(t)) −H(θ | θ(t)), (1.14)

where
Q(θ | θ(t)) =

∫
[ℓ(θ | Yobs,Ymis)] f(Ymis | Yobs, θ

(t)) dY (1), (1.15)

and
H(θ | θ(t)) =

∫
[ln f(Ymis | Yobs, θ)] f(Ymis | Yobs, θ

(t)) dYmis, (1.16)

Note that
H(θ | θ(t)) ≤ H(θ(t) | θ(t)), (1.17)

by Jensen’s inequality (see Rao 1972[37]).
Let θ(0) be an initial estimate of θ in its parameter space, may be based on a naive methods,

for example, an estimate based on the completely case analysis, hot deck imutation, or mean
imputation after the missing data Ymis have been filled in by some approximations. Let θ(t) be
the estimate at the tth iteration. Consider a sequence of iterates (θ(0), θ(1), θ(2), . . .). The difference
in values of ℓ(θ | Yobs) at successive iterates is given by

ℓ(θ(t+1) | Yobs) − ℓ(θ(t) | Yobs) =
[
Q(θ(t+1) | θ(t)) −Q(θ(t) | θ(t))

]
−
[
H(θ(t+1) | θ(t)) −H(θ(t) | θ(t))

]
. (1.18)

An EM algorithm chooses θ(t+1) to maximize Q(θ | θ(t)) with respect to θ. EM algorithm
chooses θ(t+1) so that Q(θ(t+1) | θ(t)) is greater than Q(θ(t) | θ(t)). Hence, the difference of Q
functions in (1.18) is positive for EM algorithm. Furthermore, note that the difference in the H
functions in (1.18) is negative by (1.17). Hence, for any EM algorithm, the change from θ(t) to
θ(t+1) increases the log-likelihood.[26]

Example

The previous description of EM is conceptual in nature and omits many of the mathematical
details of the procedure. This section expands the previous ideas and gives a more precise
explanation of the E-step and the M-step. To illustrate the mechanics of EM, Enders 2010 [8] use
a bivariate analysis example where one of the variables is incomplete. Throughout this section,
He use Y1 to denote the complete variable (e.g., IQ scores) and Y2 to represent the incomplete
variable (e.g., job performance ratings). This is a relatively simple estimation problem, but the
basic ideas readily extend to multivariate analyses with general patterns of missing data.

With complete data, the following formulas generate the maximum likelihood estimates of the
mean, the variance, and the covariance.

µ̂Y = 1
n

∑
Y (1.19)

σ̂2
Y = 1

n

(∑
Y 2 − (∑Y )2

n

)
(1.20)
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σ̂Y1Y2 = 1
n

(∑
Y1Y2 −

∑
Y1
∑
Y2

n

)
(1.21)

Notice that the sum of the scores (i.e., ∑Y1 and ∑Y2), the sum of the squared scores (i.e., ∑Y 2
1

and ∑Y 2
2 ), and the sum of the cross product terms (i.e., ∑Y1Y2) are the basic building blocks of

the previous equations. Collectively, these quantities are known as sufficient statistics because
they contain all of the necessary information to estimate the mean vector and the covariance
matrix. As you will see, these sufficient statistics play an important role in the E-step.

The purpose of the E-step is to “fill in” the missing values so that the M-step can use Equations
(1.19) through (1.21) to generate parameter estimates. More accurately, the E-step fills in each
case’s contribution to the sufficient statistics. The E-step uses the elements in the mean vector and
the covariance matrix to build a set of regression equations that predict the incomplete variables
from the observed variables. In a bivariate data set with missing value on Y2, the necessary
equations are:

β̂21 = σ̂12

σ̂11
(1.22)

β̂0 = µ̂2 − β̂21µ̂1 (1.23)

σ̂22.1 = σ̂22 − β̂2
21σ̂11 (1.24)

Ŷi2 = β̂0 + β̂21Yi1 (1.25)

where β̂0 and β̂21 are the intercept and slope coefficients, respectively, σ̂22.1 is the residual
variance from the regression of Y2 on Y1, and Ŷi2 is the predicted Y2 score for a given value of Y1.
The means, variances, and covariances that appear on the right side of the equations are elements
from the mean vector and the covariance matrix.

The missing data complicate an otherwise straightforward analysis because the incomplete
cases have nothing to contribute to ∑Y2 , ∑Y 2

2 , and ∑
Y1Y2. The E-step replaces the missing

components of these sufficient statistics with their expected values (i.e., long-run averages). EM
borrows information from other variables, so the algorithm actually uses so-called conditional
expectations to replace the missing components of the formulas. To illustrate, consider the sum
of the scores and the sum of the cross product terms (i.e., ∑Y2 and ∑Y1Y2, respectively). The
expected value of Y2 is the predicted score from Equation (1.25), so the E-step replaces the missing
components of ∑Y and ∑

Y1Y2 with Ŷi2. Next, consider the sum of the squared scores, ∑Y 2
2 .

The expected value of a squared variable is Ŷ 2
i2 + σ̂22.1, where Ŷ 2

i2 is the squared predicted score,
and σ̂22.1 is the residual variance from the regression of Y2 on Y1. The E-step replaces the missing
components of ∑Y 2

2 with this expectation.
Notice that the E-step does not actually impute the raw data. Rather, it fills in the computa-

tional building blocks for the mean, the variance, and the covariance (i.e., the sufficient statistics).
Once this process is complete, the M-step becomes a straightforward estimation problem that
uses the filled-in sufficient statistics to compute Equations (1.19) through (1.21). The resulting
parameter estimates carry forward to the next E-step, where the process begins anew.[8]

1.3.3 Comparison
Single imputation techniques involve filling in each missing datum with a "good guess" as

to what the missing datum should be. Fortunately, single imputation techniques are much less
popular now than they once were. Common examples of single imputation are: (a) mean (across
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persons) imputation: replacing each missing datum with the group mean for the corresponding
variable, (b) hot deck imputation: replacing each missing datum with a value from a "donor" who
has similar scores on other variables (which can be more error prone than listwise deletion , and (c)
regression imputation: replacing each missing datum with a predicted value based on a multiple
regression equation derived from observed cases.

Single imputation suffers two major drawbacks. First, most single imputation techniques
are biased under MCAR. For example, because mean imputation imputes a constant mean for
each missing value (see Figure 1.4a[33]), the resulting sample estimates of the variance and the
correlation will be downwardly biased—even if the missingness mechanism is completely random
(MCAR). As another example, regression imputation leads to underestimation of the variance and
overestimation of the correlation (because imputed values fall exactly on the regression line; see
Figure 1.4b[33] )—even if the missingness mechanism is MCAR! It is possible to improve regression
imputation methods, however, by adding a random error term to the imputed values (i.e., stochastic
regression imputation; see Figure 1.4c[33]). Stochastic regression imputation works to remove
the missing data bias in regression imputation (described above) that previously underestimated
the variance and overestimated the correlation (i.e., stochastic regression imputation is unbiased
under both the MCAR and MAR missingness mechanisms). Nonetheless, even when considering
stochastic regression imputation (which is unbiased under MAR), the researchers still do not
recommend single imputation, for the following reason.

The second major drawback is that single imputation suffers the inability to calculate accurate
SEs for hypothesis testing (i.e., there is usually no single value of n that corresponds well to all
the parameter estimates). This problem is coupled with the real and common danger that many
researchers tend to use the maximum n (treating the partially imputed data set as though it were
a complete data set), which naturally leads to deflated SEs and creates Type I errors of inference
(a.k.a., mirages, where incorrect hypotheses are falsely supported). As described in the following,
multiple imputation solves this problem.

Overall, the main reason to place a moratorium on single imputation is because multiple
imputation has all of the advantages of single imputation, but none of its major drawbacks. Thus,
for typical data-analytic applications (e.g., involving correlation, regression), single imputation
should be forbidden.[33]
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(a) Mean Imputaon:
Underesmated Variance and Correlation,Overesmated
Sample Size (Inaccurate SEs)

(b) Regression Imputaon:
Underesmated Variance,Overesmated Correlaon and
Sample Size (Inaccurate SEs)

(c) Stochasc Regression Imputaon:
Unbiased Variance and Correlation, Overesmated Sample
Size (Inaccurate SEs)

(d) Mulple Imputaon:
Unbiased Variance and Correlation, Accurate SEs

Fig. 1.4: Missing Data Bias



Chapter 2

Non Parametric Test for Missing
Completely At Random

In this chapter, I will introduce Little’s test as a key tool for assessing MCAR assumption and
CDM assumption, describe the methodology of Little’s test and its interpretation.

2.1 statistical Methods

In this section we introduce some basic statistical methods, ANOVA test and likelyhood ratio
statistic, which will be useful later.

2.1.1 Analyse of Variance (ANOVA)

Analysis of variance (ANOVA) is a statistical test for detecting differences in group means
when there is one parametric dependent variable and one or more independent variables. The
independent variables are called factors and the measured quantities are the dependent variables.
For example, consider a clinical trial in which three different diagnostic imaging modalities are
used on both men and women in different centers. The three elements used for classifications
(center, sex, and treatment) identify the source of variation of each datum and are called factors.
The individual classes of the classifications are the levels of the factor (e.g., the three different
treatments T1, T2, and T3 are the three levels of the factor treatment). Male and female are the
two levels of the factor sex, and center1, center2, center3 are the three levels of the factor center.
A subset of the data present for a “combination” of one level of each factor under investigation
is considered a cell of the data. In this example we have, three factors: center (3 levels), sex (2
levels), and treatment (3 levels). The specific type of ANOVA used is determined by the number
of independent variables (factors) in the study, there are three types : one way ANOVA, two way
ANOVA, and factorial ANOVA.

In this chapter we interest about One way ANOVA, which is the most simple form testing
differences between three or more groups based on one independent variable. For example,
comparing the sales performance of different stores in a retail chain.

ANOVA test relies on three main assumptions that must be met for the test results to be valid:

➤ Normally distributed data within each group: it follows that a fundamental assumption of
parametric ANOVA is that each group of data (each level) be normally distributed.

➤ Homogeneity of variance within each group: referring again to the notion that ANOVA
compares normal distribution curves of data sets, these curves need to be similar to each
other in shape and width for the comparison to be valid. In other words, the amount of
data dispersion (variance) needs to be similar between groups.



38 CH. 2. Non Parametric Test for Missing Completely At Random

➤ Independent Observations: a general assumption of parametric analysis is that the value of
each observation for each subject is independent of (i.e., not related to or influenced by) the
value of any other observation.

One Way ANOVA

Suppose that yij , i = 1, . . . , ni , j = 1, . . . , p represents a random sample of i normal populations
with means µ1 , µ2 ,µ3, . . . , µp and common variance σ2. The data point yij denotes the ith
observation on the jth population of size nj and its value assumed to follow a normal distribution:
yij ∼ N(µi, σ2).

In ANOVA (Analysis Of Variance), the null hypothesis (H0) states that there is no significant
difference among the means of the groups being compared. In other words:

H0 : µ1 = µ2 = µ3 = ... = µp

The alternative hypothesis (H1) in ANOVA (Analysis of Variance) states that there is a significant
difference among the means of the groups being compared. In other words: at least one of the
population means differs from the others.Symbolically, this can be represented as:

H1 : µ1 ̸= µ2 ̸= µ3 ̸= ... ̸= µp

The Mechanics of Calculating a One Way ANOVA

Let us suppose that there are p groups of scores where first group has n1 scores, second has n2
scores, and so on, and pth group has np scores. If yij represents the ith score in the jth group
(i = 1, 2, . . . , ni; j = 1, 2, . . . , p), then these scores can be shown as follows:

Here, n = n1 + n2 + . . . np, the total of all the scores
The total variability among the above-mentioned n scores can be attributed due to the

variability between groups and variability within groups. Thus, the total variability can be broken
into the following two components:

Total variability = Variability between groups + Variability withinGroups

or
TSS = SSB + SSW

This is known as one-way ANOVA model where it is assumed that the variability among
the scores may be due to the groups. After developing the model, the significance of the group
variability is tested by comparing the variability between groups with that of variability within
groups by using the F-test. The null hypothesis which is being tested in this case is that whether
variability between groups (SSB) and variability within the groups (SSW) are the same or not. If
the null hypothesis is rejected, it is concluded that the variability due to groups is significant, and
it is inferred that means of all the groups are not same. On the other hand, if the null hypothesis
is not rejected, one may draw the inference that group means do not differ significantly. Thus, if
p groups are required to be compared on some criterion variable, then the null hypothesis can be
tested by following the below mentioned steps:
a) Hypothesis construction: The following null hypothesis is tested H0 against the alternative
hypothesis that at least one mean differs.
b) Level of significance: The level of significance may be chosen beforehand. Usually it is taken
as 0.05 or 0.01.
c) Statistical test: The F-test is used to test the above mentioned hypothesis. If F-value
is significant, it indicates that the variability between groups is significantly higher than the
variability within groups; in that case, the null hypothesis of no difference between the group
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means is rejected.
F-value is obtained by computing the sum of squares between groups (SSB), and sum of squares
within groups (SSW):

➤ Sum of squares between groups (SSB): The sum of squares between groups can be
defined as the variation of group around the grand mean of the data set. In other words, it
is the measure of variation between the group means and is usually denoted by SSB. This is
also known as the variation due to assignable causes. The sum of squares between groups is
computed as

SSB =
p∑
j=1

nj(ȳj − ȳ)2

Since p samples are involved in one way ANOVA, the degrees of freedom for between groups
is p− 1.
Thus, mean sum of squares for between groups MSB is obtained by dividing SSB by its
degrees of freedom k − 1, where :

MSB = SSB
dfB

=
∑p
j=1 nj(ȳj − ȳ)2

p− 1

➤ Sum of squares within groups (SSW): The sum of squares within groups is the residual
variation and is referred as variation due to non-assignable causes. It is the average variation
within the groups and is usually denoted by SSW:

SSW =
p∑
j=1

nj∑
i=1

(yij − ȳj)2 =
p∑
j=1

(nj − 1)s2
j

The degrees of freedom for the sum of squares within groups is given by n− p, and, therefore,
mean sum of squares for within groups MSW is obtained by dividing SSW by n− p.

MSW = SSW
dfW

=
∑p
j=1

∑nj

i=1(yij − ȳj)2

n− p

➤ ANOVA table: After computing all sum of squares, these values are used in the analysis
of variance(ANOVA) table 2.1 [46] for computing F-value as shown below.

➤ F-statistic: Under the normality assumptions, the F-value obtained in the above table,
that is,

F = MSB
MSW

follows an F-distribution with (p− 1, n− p) degrees of freedom.This test statistic F is used
to test the null hypothesis of no difference among the group means.

d) Decision criteria: The tabulated value of F at 0.05 and 0.01 level of significance with
(p− 1, n− p) degrees of freedom may be obtained from F-distribution Tables. If calculated value
of F is greater than tabulated F, the null hypothesis is rejected. And in that case it is concluded
that at least one of the means will be different.
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Tab. 2.1: ANOVA table

Sources of variation SS df MS F-value

Between groups SSB p− 1 MSB= SSB
p− 1 F= MSB

MSW

Within groups SSW n− p MSW = SSW
n− p

Total TSS n− 1 TSS
n− 1 = s2

Application of One Way ANOVA

An audio company predicts that students learn more effectively with a constant low-tune
melodious music in background, as opposed to an irregular loud orchestra or no music at all. To
verify this hypothesis, a study was planned by dividing 30 students into three groups of ten each.
Students were assigned to these three groups in a random fashion, and all of them were given a
comprehension to read for 20 min. Students in group 1 were asked to study the comprehension
with low-tune melodious music at a constant volume in the background. Whereas the students
in group 2 were exposed to loud orchestra and group 3 to no music at all while reading the
comprehension. After reading the comprehension, they were asked to solve few questions. The
marks obtained are shown in the Table 2.2[46]. Do these data confirm that learning is more
effective in particular background music Test your hypothesis at 5% level.
Solution Following steps shall be taken to test the required hypothesis:
a) Hypotheses construction: The researcher is interested in testing the following null hypothesis:
H0 : µMusic = µOrchestra = µWithout Music against the alternative hypothesis that at least one mean is
different.
b) Level of significance: 0.05.
c) Statistical test: One-way ANOVA shall be used to test the null hypothesis.
In order to complete the ANOVA table, first, all the sum of squares are computed. We have:
Number of groups = p = 3
Sample size in each groupni = 10
Total number of scores n=30
The computation of group total, group means, and grand total has to be computed first which is
shown in Table 2.3[46]

➤ Sum of squares between groups:
SSB = ∑p

j=1 nj(ȳj − ȳ)2 = 10((6.4 − 4.5) + (4 − 4.5) + (3.1 − 4.5)) = 58.2

➤ Sum of square within groups:
SSW = ∑3

j=1
∑nj

i=1(yij − ȳj)2 = (8 − 6.4)2 + (4 − 6.4)2 + (8 − 6.4)2 + (6 − 6.4)2 + (6 − 6.4)2 +
(7−6.4)2 +(3−6.4)2 +(7−6.4)2 +(9−6.4)2 +(6−6.4)2 +(4−4)2 +(6−4)2 +(3−4)2 +(4−
4)2 +(3−4)2 +(8−4)2 +(3−4)2 +(2−4)2 +(4−4)2 +(3−4)2 +(3−3.1)2 +(4−3.1)2 +(6−
3.1)2 +(2−3.1)2 +(1−3.1)2 +(2−3.1)2 +(6−3.1)2 +(4−3.1)2 +(1−3.1)2 +(2−3.1)2 = 89.3

d) Decision criteria: From F-distribution Tables, F0.05(2, 27) = 4.22.
Since calculated F(=8.79) > F0.05(2, 27), the null hypothesis may be rejected. It is therefore
concluded that learning efficiency in all the three experimental groups is not same.
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Tab. 2.2: Comprehension scores of the students under three different environments

Music Orchestra Without music
8 4 3
4 6 4
8 3 6
6 4 2
6 3 1
7 8 2
3 3 6
7 2 4
9 4 1
6 3 2

Tab. 2.3: ANOVA table for the data on comprehension test

Sources of variation SS df MS F-value

Between groups 58.2 n− 1 = 2 29.5 8.79

Within groups 89.3 n− p = 27 3.31

Total 147.5 29

2.1.2 Complete Data LRTs

In complete data sets, an LRT(Likelyhood Ratio Test) is performed by comparing two models
with respect to the log-likelihood of the data, l(θ) = log f(Y |θ), given a set of model parameters θ.
Specifically, the LRT is performed by calculating

d = 2[l(θ̂0 − l(θ̂)], (2.1)

where θ̂ denotes the estimated parameters under the full model, and θ̂0 denotes the estimated
parameters under a restricted (or null) model. The LRT statistic (also known as the deviance)
is typically compared with a distribution with k degrees of freedom, where k is the number of
parameters being tested, that is, the number of restricted elements in θ0.

2.2 Little’s Test

In the first chapter, Rubin’s (1976)[40] definition of MCAR requires that the probability of a
value from data being missing is the same for all the observations. In orher words, the observed
data are a simple random sample of the hypothetically complete data set. This implies that the
cases with missing data belong to the same population (and thus share the same mean vector and
covariance matrix) as the cases with complete data. One way to test for homogeneity of means
is to separate the missing and the complete cases on a particular variable and examine group
mean differences on other variables in the data set. Finding that the missing data patterns share
a common mean vector and a common covariance matrix provides evidence that the data are
MCAR, whereas group differences in the means or the covariances provide evidence that the data
are not MCAR.

For example, suppose that a psychologist is studying quality of life in a group of cancer patients
and finds that patients who refused the quality of life questionnaire have a higher average age and
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a lower average education than the patients who completed the survey. These mean differences
provide compelling evidence that the data are not MCAR and suggest a possible relationship
between the demographic variables and the probability of missing data.[9]

Little (1988)[20] first proposed a test of MCAR for incomplete multivariate data by testing
the homogeneity of means across different missing-pattern groups.

2.2.1 Notations
Introduce an index of notations to be used throughout this chapter and in subsequent sections.

Let:"

• Y = yij be a (n×p) dimensional multivariate normal data with mean vector µ and covariance
matrix Σ, with part of the components in yis missing.

• mi be a (1 × p) vector of missing data indicators for case i.

• J = number of distinct missing data patterns mi in the data set. Fully observed cases, if
present, count as a pattern.

• Sj be a set of cases with missing-data pattern j(j = 1, ..., J).

• rj number of cases in Sj ; ∑ rj = n .

• pj be the number of observed variables for cases in Sj.

• Rj be a (p× pj) matrix indicating which variables are observed for pattern j. The matrix
has one column for each variable present, consisting of p− 1 Os and one 1 corresponding to
the variable identified.

• yobs.j be a (1 × pj) vector of values of observed variables in case i.

• ȳobs.j = m−1
j

∑
i∈Sj

yobs.i is (1 × pj) is the observed sample average for the jth missing
pattern.

• µ̂, Σ̂, be the ML estimates of µ and Σ, assuming the yi are iid normal and the missing-data
mechanism is ignorable.

• Σ̃ = nΣ̂/(n− 1), be the ML estimate of Σ with a correction for degrees of freedom.

• Let µobs.j = µRj be a (1 × pj)-dimensional mean vector of only the observed components
for jth missing pattern.

• Σobs.j = RT
j ΣRj be a (pj × pj) covariance matrix of only the observed components for jth

missing pattern.

2.2.2 Little’s MCAR Test

The Test Statistic, When µ and Σ are Known

To motivate the test statistic, Little first consider the (unrealistic) case When µ and Σ are
Known. Assuming the missing data are ignorable. The Little’s χ2 test statistic for MCAR takes
the following form:

d2
0 =

J∑
j=1

rj(ȳobs.j − µobs.j)Σ−1
obs.j(ȳobs.j − µobs.j)T (2.2)
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if the data are MCAR, then conditional on the missing indicator mi , the following null
hypothesis holds

H0 : (yobs.j|mi) ∼ N(µobs.j,Σobs.j) if i ∈ Sj, 1 ≤ j ≤ J (2.3)

Instead, if (2.3) is not true, then conditional on the missing indicator mi, the means of the
observed y’s are expected to vary across different patterns, which implies

H1 : (yobs.j|mi) ∼ N(νobs.j,Σobs.j) if i ∈ Sj, 1 ≤ j ≤ J (2.4)

where νobs.j , j = 1, 2..., J are mean vectors of each pattern j and can be distinct. Rejecting
(2.3) is sufficient for rejecting the MCAR assumption (1.1), but not necessary.

Little (1988)[20] proved that the statistic (2.2) is the likelihood ratio statistic for testing (2.3)
against (2.4). If the normality assumption holds, then d2

0 follows a chis-quared distribution with
f = ∑J

j=1 pj − p df. If yi’s are not multivariate normal but has the same mean µ and covariance
matrix Σ, then by the multivariate central limit theorem (see part (c) of the lemma in Little
(1988)[20], under the null assumption of MCAR, d2

0 follows a χ2 distribution asymptotically.

The Test Statistic, When µ and Σ are Unknown

In practice, since µ and Σ are usually unknown, Little (1988)[20] proposed to replace µ and
Σ in (2.2) with the unbiased estimators with the µ̂ and Σ̃, Σ̃obs it’s a submatrix of Σ̂, Which give

d2
0 =

J∑
j=1

rj(ȳobs.j − µ̂obs.j)Σ̃
−1
obs.j(ȳobs.j − µ̂obs.j)T (2.5)

Asymptotically, d2
0 follows a chis-quared distribution with f = ∑J

j=1 pj − p df, and (2.3) is rejected
if d2

0 > χ2
df(1 − α) where α is the significance level.µ̂ and Σ̂ can be obtained from EM algorithm

using the observed data yobs (Little and Rubin 1987 [25], for more details see section1.3.2).

The Test Statistic for Monotone Missing Data

The small sample null distribution of d2
0 is extremely complex for a general pattern of missing

data, but simplifies for particular missing-data patterns. Consider first the special case of p = 2
variables Y1, and Y2, where Y1, is observed for all n cases and Y2, is observed for n2 < n cases, say
i = 1, ..., n2. There are J = 2 patterns:
Pattern 1 denotes cases with Y1, and Y2, present and pattern 2 denotes cases with only Y1 present.
Then, yobs.i = (yi1, yi2) for yobs.i = (yi1, yi2) i = 1, ..., n2 and yobs.i = Yi1, for i = n2 + 1, ..., n;
ȳobs.i = (ȳ1, ȳ2), the sample means of Y1, and Y2, based on the first n2 cases; ȳobs.2 = ȳ∗

1, the sample
mean of Y1, based on the last n− n2 cases; Σ̃obs.1 = Σ̃; and Σ̃obs.2 = σ̃1. The covariance matrix
for (Y1, Y2) is given by:

Σ̃ =
(
σ̃11 σ̃12
σ̃21 σ̃22

)

The inverse of the covariance matrix is:

Σ̃−1 = 1
det(Σ̃)

(
σ̃22 −σ̃12

−σ̃21 σ̃11

)
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where
det(Σ̃) = σ̃11σ̃22 − σ̃12σ̃21

Thus (2.5) becomes

d2
0 = n2

(
ȳ1 − µ1
ȳ2 − µ2

)T
Σ̃−1

(
ȳ1 − µ1
ȳ2 − µ2

)
+ (n− n2)(ȳ∗

1 − µ̂1)2/σ̃11, (2.6)

This simplifies to:

d2
0 = n2

det(Σ̃)
[
σ̃22(ȳ1 − µ̂1)2 − 2σ̃12(ȳ1 − µ̂1)(ȳ2 − µ̂2) + σ̃11(ȳ2 − µ̂2)2

]
,

We have this from section 1.3.2:
σ̃22.1 = σ̃22 − σ̃12σ̃21

σ̃11

and
β̃21.1 = σ̃21

σ̃11

Substitute σ̃22.1 into the test statistic:

d2
0 = n2

σ̃11σ̃22.1

[
σ̃22(ȳ1 − µ̂1)2 − 2σ̃12(ȳ1 − µ̂1)(ȳ2 − µ̂2) + σ̃11(ȳ2 − µ̂2)2

]
+ (n− n2)(ȳ∗

1 − µ̂1)2

σ̃11
,

which can written as:

d2
0 = n2

σ̃11σ̃22.1

[
(σ̃22.1 + σ̃2

12
σ̃11

)(ȳ1 − µ̂1)2 − 2σ̃12(ȳ1 − µ̂1)(ȳ2 − µ̂2) + σ̃11(ȳ2 − µ̂2)2
]

+ (n− n2)(ȳ∗
1 − µ̂1)2

σ̃11
,

d2
0 = n2

[
((ȳ1 − µ̂1)2

σ̃11
) +

(
σ̃2

12
σ̃2

11σ̃22.1
(ȳ1 − µ̂1)2 − 2σ̃12(ȳ1 − µ̂1)(ȳ2 − µ̂2) + σ̃11(ȳ2 − µ̂2)2

)]

+ (n− n2)(ȳ∗
1 − µ̂1)2

σ̃11
,

This can be rearranged to:

d2
0 = n2

[
(ȳ1 − µ̂1)2

σ̃11
+ (ȳ2 − µ̂2 − β̃21.1(ȳ1 − µ̂1))2

σ̃22.1

]
+ (n− n2)(ȳ∗

1 − µ̂1)2

σ̃11
,

which can written as

n2(ȳ1 − µ̂1)2

σ̃11
+ n2[ȳ2 − µ̂2 − β̂21.1(ȳ1 − µ̂1)]2

σ̃22.1
+ (n− n2)(ȳ∗

1 − µ̂1)2

σ̃11
, (2.7)

Explicit ML estimates of the parameters are available for this problem (for more details see
Anderson 1957 [1]):µ̂2 = ȳ2 + β̂21.1(µ̂1 − ȳ1. Substituting these in (1.16) yields, after a little algebra,

d2
0 = [n2(ȳ1 − µ̂1)2 + (n− n2)(ȳ∗

1 − µ̂1)2]/σ̃11, (2.8)
= SSB1/MST1 = (n− 1)F/(n− 2 + F ). (2.9)

where SSB1,MST1, and F are, respectively, the between groups sum of squares, the total mean
square, and the F statistic from the analysis of variance (ANOVA) of Y1 on the missing-data
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pattern. Since there are two patterns here, F = t2, where t is t statistic for comparing pattern.
Hence the test based on d2

0 is equivalent to the t test. Under the null hypothesis of MCAR and
assuming that the values of Y1 are normal, F has an F distribution with 1 and n− 2 df. More
generally, suppose that the data can be arranged in a monotone pattern, where variable Yq, is
more observed than Yq−1, for q = 1, ..., p− 1. Then, if nq, is the number of cases for which Yq is
observed, n = n1 ≥ n2 ≥ ... ≥ np. A generalization of the previous analysis yields

d2 = SSB1/MST1 + SSB2.1/MST2.1 + ...

+SSBp−1.12...p−2/MSTp−1.12...p−2

= ∑p−1
q=1(nq − 1)(kq − 1)Fq.12...q−1

÷na − ka + (ka − 1)Fa.12...a−1, (2.10)

where nq, is the number of cases with Yq observed; kq is the number of patterns with Yq observed;
SSB1,MST1, and F1 are, respectively, the between-groups sum of squares, total mean square,
and F statistic from the ANOVA of Y1 on all k2 patterns (see section 2.1.1).
SSB2.1,MST2.1, and F2.1 are the between- groups sum of squares, total mean square, and F
statistic from the analysis of covariance of Y2 on all k2 patterns with Y2 observed, adjusting
for Y1 and the remaining terms are defined similarly. Under normality and MCAR, each of
the contributions in (2.10) is independent, so the small sample null distribution of d2 is a sum
of functions of independent F statistics. In large samples, these functions become chi-squared
distributed, and d2 has the asymptotic chi-squared distribution discussed in section2.2.2 (d2 like
d2

0 is chi-squared distribution with f df).[20]

2.2.3 Little’s CDM Test

A natural extension of Little’s test of MCAR is to test the CDM assumption (1.3) of yi
conditional on xi when covariates xi’s are present. For simplicity, we assume that xi contains the
constant term 1 as one of its components. If yi depends linearly on xi, then the model becomes

y = Bx + ϵ

where B is a p × q matrix of coefficients and ϵ ∼ N(0,Σ). Under homoscedasticity assump-
tion(homogeneity of covariances), Σ does not depend on x. Compared with the model without
covariates, we need to replace every unconditional mean of y with the conditional mean of y given
x, and test whether the coefficient matrix B varies among different missing patterns. The χ2 test
statistic (2.2) now becomes

d2
0 =

J∑
j=1

∑
i∈Sj

(B̃obs.jxi − Bobs.jxi)Σ−1
obs.j(B̃obs.jxi − Bobs.jxi)T

=
J∑
j=1

∑
i∈Sj

xi(B̃obs.j − Bobs.j)Σ−1
obs.j(B̃obs.j − Bobs.j)xT

i (2.11)

where Bobs.j is a pj × q submatrix of B, whose rows correspond to the jth missing pattern,
and B̃obs.j is the OLS (Ordinary Least Squares ) estimator of Bobs.j using the observed data from
pattern j. It is straightforward to see that d2

0 in (2.2) is a special case of d2
0 in (2.11) when x only

contains the constant component 1. Accordingly, we are now testing the null hypothesis

H0 : (yobs.i|mi,xi) ∼ N(Bobs.jxi,Σobs.j) if i ∈ Sj, 1 ≤ j ≤ J (2.12)
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versus
H1 : (yobs.i|mi,xi) ∼ N(Dobs.jxi,Σobs.j) if i ∈ Sj, 1 ≤ j ≤ J (2.13)

where under H1, the CDM assumption does not hold and yobs.j = Dobs.jx + ϵ for pattern j,
with Dobs.j potentially different among all patterns, but the error terms still sharing the same
multivariate distribution N(0,Σ).

In practice, we replace B and Σ in (2.11) with unbiased estimators B̂ and Σ̃ = nΣ̂/(n− q)
where B̂ and Σ̂ are the maximum likelihood estimators using all data under H0, and calculate

d2 =
J∑
j=1

∑
i∈Sj

xi(B̃obs.j − B̂obs.j)Σ̃
−1
obs.j(B̃obs.j − B̂obs.j)xT

i (2.14)

which asymptotically follows χ2 distribution with degrees of freedom df = q(∑J
j=1 pj − p), and

(2.12) is rejected if d2 > χ2
df(1 − α) where α is the significance level. Again, when there are no

covariates, and x only contains the constant component 1 with q = 1, then df = ∑J
j=1 pj − p,

which coincides with the degrees of freedom in the test of MCAR.[19]

2.2.4 Adjustment for Unequal Variances

A important limitation of d2 in (2.5) and (2.14) is that the covariance matrix of observed y (or
observed y conditional on x) is still the same for all missing-value patterns even in the alternative
hypotheses (2.4) and (2.13). This assumption may not be satisfied in general, especially when the
number of missing patterns is large. Therefore, we can relax this limitation on covariance matrices
and replace the alternative hypothesis (2.4) and (2.13) with (2.15) (2.16) respectively

H1 : (yobs.i|mi) ∼ N(νobs.j,Γobs.j) if i ∈ Sj, 1 ≤ j ≤ J (2.15)
H1 : (yobs.i|mi,xi) ∼ N(Dobs.jxi,Γobs.j) if i ∈ Sj, 1 ≤ j ≤ J (2.16)

where the covariance matrices Γobs.j, like the means, νobs.j, contain distinct parameters for each
pattern j. To test (2.12) against (2.13) (or to test (2.3) against (2.4), we can derive the following
likelihood ratio statistic as in Little (1988)[20]

d2
aug = d2 +

J∑
j=1

rj{(Sobs.jΣ̂
−1
obs.j) − pj − log |Sobs.j| + log |Σ̂obs.j|} (2.17)

where d2 is the same as in (2.5) without covariates or (2.14) with covariates, Sobs.j is the sample
covariance matrix of the observations with pattern j in (2.15), and Sobs.j is the estimated covariance
matrix of residuals from the regression of observed yobs.j on x in pattern j in (2.16), and Σ̂obs.j is
the same as in (2.5) and (2.14). aug stands for "augmented" since more parameters need to be
estimated for covariance matrices in the new test. Asymptotically, d2

aug follows χ2 distribution
with degrees of freedom

df = q(∑J
j=1 pj − p) +∑J

j=1
pj(pj − p)

2 − p(p+ 1)
2 ,

when there are no covariates, and x only contains the constant component 1 with q = 1, then,

df = (∑J
j=1

pj(pj + 3)
2 − p(p+ 3)

2 ,
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and (2.3) or (2.12) is rejected if d2 > χ2
df(1−α) where α is the significance level. This augmented

test using d2
aug tends to have higher power than the test using d2 for large sample sizes. On the

other hand, d2
aug may not be applicable if some patterns have too small sample sizes such that

rj < pj + q, since Sobs.j will then be singular; thus log |Sobs.j| in the expression of d2
aug cannot be

computed.
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Chapter 3

Simulation study

In this chapter, we delve into a comprehensive simulation study to evaluate the performance
of Little’s chi-square test for the Missing Completely at Random (MCAR) assumption and the
Conditional Missing Data Mechanism (CDM) assumption using the mcartest command (it’s
available in SATA software).

3.1 The mcartest Command

3.1.1 Description

mcartest performs Little’s chi-square test for the MCAR assumption, and accommodates
arbitrary missing-value patterns. depvars contains a list of variables with missing values to be
tested. depvars requires at least two variables. indepvars contains a list of covariates. When
indepvars are specified, mcartest tests the CDM assumption for depvars conditional on indepvars.
The test statistic uses multivariate normal estimates from the EM algorithm . The unequal option
performs Little’s augmented chi-square test which allows unequal variances between missing-value
patterns. To install the Stata user-written program, mcartest (Li 2013), in Stata, type "search
mcartest, all", click on "st0318", and then install or type:
net install st0318.pkg, replace.[19]

3.1.2 Syntax

Test for MCAR
mcartest depvars [if ] [in] [ , noconstant unequal emoutput em_options ]
Test for CDM
mcartest depvars= indepvars [if ] [in] [ , noconstant unequal emoutput em_options ]

3.1.3 Options

noconstant suppresses constant term.
unequal specifies to allow unequal variances between missing-value patterns.
By default, the test assumes equal variances between different missing value patterns.
emoutput specifies to display intermediate output from EM estimation.
em_options specifies the options in EM algorithm.
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3.2 Application

Cheng Li(2013)[19] demonstrate the use of the mcartest command with an example. The
fictional dataset in question comprises blood test results from a study on obesity, featuring 371
observations and 11 variables: cholesterol level, triglycerides level, diastolic blood pressure, systolic
blood pressure, age, gender, height, weight, exercise time per week, alcohol consumption, and
smoking habits. Let’s focus on the first four variables, labeled as chol, trig, diasbp, and sysbp,
while using the remaining seven as auxiliary variables, labeled as age, female, height, weight,
exercise, alcohol, and smoking.The descriptions of these variables are presented in Table 3.1.

Tab. 3.1: Descriptions of the variables

Variable Type Description

chol Continuous Cholesterol level
trig Continuous Triglycerides level
diasbp Continuous Diastolic blood pressure
sysbp Continuous Systolic blood pressure
age Categorical 1 if 21-30, 2 if 31-40, 3 if 41-50, 4 if above 50
female Categorical 1 if female, 0 if male
height Continuous Height in inches
weight Continuous Weight in lbs
exercise Discrete Exercise in hours per week
alcohol Categorical 1 if drinking alcohol, 0 if not
smoking Categorical 1 if smoking, 0 if not

After loading the data, we can examine the patterns of missing values using the misstable
command.

. use bloodtest
(fictional blood test data)
. misstable summarize

Obs<.

Unique
Variable Obs=. Obs>. Obs<. values Min Max

chol 90 281 265 187.73 224.57
trig 70 301 280 103.22 136.21

diasbp 34 337 24 66 90
sysbp 73 298 32 106 138

. misstable pattern, freq
Missing-value patterns

(1 means complete)
Pattern

Frequency 1 2 3 4

122 1 1 1 1

72 1 1 1 0
70 1 0 1 1
55 1 1 0 1
34 0 1 1 1
18 1 1 0 0

371
Variables are (1) diasbp (2) trig (3) sysbp (4) chol
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The results suggest that the dataset contains missing values in the first four variables, but all
the other variables are completely observed. 122 observations out of the 371 in total are complete,
while over 2/3 of the observations contain missing values, with six missing-value patterns in total
that are not monotone.

3.2.1 Little’s MCAR Test for Bloodtest Data:

Now, let’s determine if the data are missing completely at random (MCAR) using the mcartest
command. Initially, we will not include any auxiliary variables in the analysis. Instead, we will
apply Little’s MCAR test to the variables chol, trig, diasbp, and sysbp. We will perform both
the regular MCAR test and the test that accounts for unequal variances.

. mcartest chol trig diasbp sysbp, emoutput nolog
Expectation-maximization estimation Number obs = 371

Number missing = 267
Number patterns = 6

Prior: uniform Obs per pattern: min = 18
avg = 61.83333
max = 122

Observed log likelihood = -2623.2645 at iteration 17

chol trig diasbp sysbp

Coef
_cons 206.2264 120.5829 78.8161 121.196

Sigma
chol 41.91012 22.33289 3.762825 3.48862
trig 22.33289 42.08035 6.622086 10.69249

diasbp 3.762825 6.622086 18.45518 14.37273
sysbp 3.48862 10.69249 14.37273 35.92427

Little´s MCAR test
Number of obs = 371
Chi-square distance = 25.7412
Degrees of freedom = 14
Prob > chi-square = 0.0279

We specified the emoutput option to display the EM estimates and also suppressed the log
using the nolog option within the em options. If the EM algorithm does not converge, mcartest
will generate a warning message in blue, similar to what mi impute mvn does. In this case, the
EM algorithm has converged. The regular Little’s MCAR test gives a χ2 distance of 25.74 with 14
degrees of freedom and a p-value of 0.0279. This result provides evidence that the missing data in
the four variables of interest are not MCAR at the 0.05 significance level.

We can also specify the unequal option to run the test with unequal variances.

. mcartest chol trig diasbp sysbp, unequal
Little´s MCAR test with unequal variances
Number of obs = 371
Chi-square distance = 56.7101
Degrees of freedom = 41
Prob > chi-square = 0.0522

This test gives a χ2 distance of 56.71 with 41 degrees of freedom and a p-value of 0.0522. The
p-value is only slightly larger than 0.05, suggesting that although the evidence against MCAR is
not strong, the power of the test could be relatively low. Both tests raise doubts about the MCAR
assumption.
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3.2.2 Little’s CDM Test for Bloodtest Data:
To examine the CDM assumption, we incorporate auxiliary variables as covariates in the test.

age is categorized into four brackets, and female has two categories, so we use the factor variables
i.age and i.female in the test. Additionally, we specify the emoutput option to display the EM
estimates of the linear regression coefficients.

. mcartest chol trig diasbp sysbp = weight i.age i.female, emoutput nolog
Expectation-maximization estimation Number obs = 371

Number missing = 267
Number patterns = 6

Prior: uniform Obs per pattern: min = 18
avg = 61.83333
max = 122

Observed log likelihood = -2477.8319 at iteration 24

chol trig diasbp sysbp

Coef
weight .0898433 .1155952 .0035606 .0315919
1b.age 0 0 0 0
2.age -.0790635 -.598354 .0120911 -.6006885
3.age -.3147961 -.6971391 -.4392923 -1.07614
4.age -2.220313 -2.172395 .4254206 -.582046

0b.female 0 0 0 0
1.female 2.10565 -4.386112 -4.315367 -2.971464

_cons 191.5976 103.5614 79.32499 117.3274

Sigma
chol 38.04902 15.04927 2.537881 1.435059
trig 15.04927 21.60197 -.5490975 1.695223

diasbp 2.537881 -.5490975 14.83308 10.89443
sysbp 1.435059 1.695223 10.89443 32.07185

Little´s CDM test
Number of obs = 371
Chi-square distance = 89.4992
Degrees of freedom = 84
Prob > chi-square = 0.3204

This CDM test results in a χ2 distance of 89.50 with 84 degrees of freedom and a p-value of
0.3204. For this dataset, incorporating age, female, and weight as covariates successfully passes
the CDM test. The EM outputs in the table provide the EM estimates for the multivariate
linear regression of chol, trig, diasbp, and sysbp on weight, age, and female, including the
regression coefficients (Coef) and the covariance matrix of the errors (Sigma). For comparison, we
also conduct the test using all seven auxiliary variables as covariates.

. mcartest chol trig diasbp sysbp = weight height exercise i.age i.female i.alcohol i.smoking
Little´s CDM test
Number of obs = 371
Chi-square distance = 141.1465
Degrees of freedom = 140
Prob > chi-square = 0.4569

This CDM test results in a χ2 distance of 141.15 with 140 degrees of freedom and a p-value
of 0.4569. Both CDM tests are highly nonsignificant, suggesting that even though chol, trig,
diasbp, and sysbp are not MCAR, the missing data mechanism can be reasonably considered
CDM given the auxiliary variables age, female, and weight. Consequently, for this dataset, any
analysis of chol, trig, diasbp, and sysbp using only the 122 completely observed samples without
adjusting for the effect of the auxiliary variables is invalid because the MCAR assumption is
violated. The means of these four variables differ significantly between the 122 completely observed
samples and the samples with missing values. However, the plausible CDM assumption implies
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that the means of these four variables change linearly with the auxiliary variables. For instance,
the mean cholesterol level varies linearly with the subject’s weight, age, and gender, as shown
by the linear regression coefficients in the EM estimates. Since CDM is a special case of MAR,
as mentioned in Section 2.1, this example also indicates that simple methods like complete case
analysis may not be effective under the broader MAR assumption.[19]

3.3 Simulation Study

Cheng Li(2013)[19] evaluate the performance of Little’s chi-square test of MCAR and CDM
through simulation studies. In general, when the true missing data mechanism is MCAR, the
empirical rejection probability of Little’s test of MCAR fits well with the nominal significance
level, with a stable performance even for small samples, different proportions of missing values,
and different numbers of variables with missing values, as was found in Little (1988).

In this simulation, in order to evaluate the relative performance of the various test statistics
under null conditions, a series of simulated experiments was conducted. In each of those experiments,
10000 samples were generated from a specific population under known conditions: (i) number of
covariates for Little’s CDM test, (ii) sample size, and iii) the mechanism that we have MCAR or
MAR or MNAR . The various proposed Little’s tests were then computed in each sample. The
performance of these tests across all samples was then evaluated empirically and calculte the
empirical rejection rate1 for each scenario. This process was then repeated 10000 times under
different conditions.

3.3.1 Little’s MCAR Test Simulation

In this section we interest to compare the performance of Little’s MCAR test statistic d2

with that of the augmented test statistic d2
aug when the covariance matrices vary among different

missing-value patterns. Li (2013)[19] simulated the following simple model without covariates(
y1
y2

)
∼ N

{(
0
0

)
,

(
1 0.5

0.5 1

)}
(3.1)

where y2 remains complete across all observations, and y1 is missing with a probability of 0.5
based on the mechanisms described below. We can compare both the rejection probabilities when
the null hypothesis (2.3) or (2.12) is satisfied by the true model and the power of these tests when
the null hypothesis is violated. The alternative hypothesis could be either (2.4) or (2.13), and
will be examined in the 5 cases below. In the following, Φ(.) denotes the cumulative distribution
function of the standard normal distribution, and Φ−1(.) is its inverse.

1. (MCAR) y1 is missing completely at random with probability 0.5.

2. (MAR) y1 is missing if and only if Φ−1(0.1) ≤ y2 ≤ 0 or y2 ≥ Φ−1(0.9).

3. (MAR) y1 is missing if and only if |y2| ≥ Φ−1(0.75).

4. (MNAR) y1 is missing if and only if Φ−1(0.2) ≤ y1 ≤ 0 or y1 ≥ Φ−1(0.8).

5. (MNAR) y1 is missing if and only if |y1| ≥ Φ−1(0.75).

Note that y1 is missing with a probability of 0.5 in all 5 cases, resulting in 2 missing-value
patterns. We always test the full vector of y = (y1, y2)T . Consequently, the true missing data
mechanism for Case 1 corresponds to MCAR. Cases 2 and 3 are MAR, while Cases 4 and 5 are

1The proportion of times that the null hypothesis is rejected when it is true.
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MNAR. The covariance structures of the 2 missing-value patterns are the same in Cases 1, 2,
and 4 due to symmetry, but differ in Cases 3 and 5. Under the null hypothesis (2.3), d2 in (2.5)
asymptotically follows a χ2 distribution with 1 degree of freedom, and d2

aug in (2.17) asymptotically
follows a χ2 distribution with 2 degrees of freedom. The empirical rejection rates of both tests at
a significance level of α = 0.05 are reported using sample sizes of 100, 250, 500, and 1000, based
on 10,000 Monte Carlo replications for each of the 5 missing data mechanisms. The results are
summarized in Table 3.2[19].

Tab. 3.2: Empirical rejection rates when α = 0.05 for d2 and d2
aug

Missingness Test stat Sample size

of y1 100 250 500 1000
Case 1 (MCAR) d2 0.051 0.043 0.050 0.048

d2
aug 0.053 0.048 0.050 0.050

Case 2 (MAR) d2 0.182 0.346 0.566 0.851
d2

aug 0.184 0.303 0.490 0.780
Case 3 (MAR) d2 0.052 0.051 0.051 0.050

d2
aug 1.000 1.000 1.000 1.000

Case 4 (MNAR) d2 0.363 0.728 0.953 0.999
d2

aug 0.292 0.626 0.916 0.998
Case 5 (MNAR) d2 0.050 0.053 0.048 0.052

d2
aug 0.261 0.572 0.882 0.996

We can compare the results of d2 and d2
aug in Table 3. In Case 1, where y1 is MCAR, the

empirical rejection rates for both d2 and d2
aug are close to the nominal level. In Case 2 (MAR)

and Case 4 (MNAR), both tests also perform similarly, although d2 seems to have slightly higher
power than d2

aug. This is expected because, in the true model, the covariance matrices of the two
missing patterns are exactly the same, and d2

aug is less efficient as it estimates two covariance
matrices separately.

However, in Case 3 (MAR), where y1 is missing if |y2| ≥ Φ−1(0.75), or in Case 5 (MNAR),
where y1 is missing if |y1| ≥ Φ−1(0.75), the missing data and the observed data have the same
mean (zero) but different variances. As a result, the empirical rejection rates for d2 are very
low, indicating weak power of Little’s test in these situations. The power of d2 does not improve
significantly even with a sample size of 1000. Conversely, after adjusting for unequal variances,
d2

aug shows much higher power, increasing to 1 as the sample size grows from 100 to 1000. This
implies that d2 may not be reliable when differences between missing-value patterns do not lie
in their means, whereas d2

aug can overcome this weakness when the covariance structure varies
significantly across different missing-value patterns.

Although the augmented test for unequal variances demonstrates better power in some situa-
tions, such as Case 3 and Case 5, it may be too conservative with small sample sizes and complex
missing-value patterns. In extreme cases, according to formula (2.17), d2

aug cannot be computed
when some missing-value patterns contain too few observations.

In the following, Cheng Li(2013)[19] simulate the same sample from Little (1988)[20] and
compare the finite sample performance of d2 and d2

aug with more complicated missing-value patterns.
Little (1988)[20] considered a multivariate normal model with 4 variables y = (y1, y2, y3, y4)T ,
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generated by

y1 = z1

y2 = z1
√

0.9 + z2
√

0.1

y3 = z1
√

0.2 + z2
√

0.1 + z3
√

0.7

y4 = z1
√

0.6 + z2
√

0.25 + z3
√

0.1 + z4
√

0.05

where z1, z2, z3, z4 are independent standard normal random variables. We only observe
y1, y2, y3, y4 but not z1, z2, z3, z4, and the missing data mechanism of y1, y2, y3, y4 is MCAR.
For y = (y1, y2, y3, y4)T , Little (1988)[?] considered 7 missing-value patterns in total, which can
be represented by the missing indicator vector r = 1111, 1110, 1100, 1101, 1001, 1011, 1010. For
example, r = 1110 means that y1, y2, y3 are observed and y4 is missing. The proportions of the
7 missing-value patterns in the sample are 0.4, 0.1, 0.1, 0.1, 0.1, 0.1 and 0.1 respectively. We
examine the empirical rejection rates of d2 and d2

aug with the sample size ranging from 100, 250,
500, 1000 to 2000, based on 10,000 Monte Carlo replications. The results are summarized in Table
3.3[19] and the Monte Carlo standard errors are displayed in the parentheses. The results are
summarized in Table 3.3: Given these 7 missing-value patterns, the chi-square degrees of freedom

Tab. 3.3: Empirical rejection rates when α = 0.05 for d2 and d2
aug

Test stat Sample Size

100 250 500 1000 2000

d2 0.043 0.047 0.054 0.051 0.049
d2

aug 0.213 0.096 0.070 0.060 0.053

for d2 and d2
aug are 15 and 42 respectively.

The results in Table 4 suggest that with too many parameters in the covariance matrices
to estimate, the empirical rejection rates for d2

aug are too conservative and only get close to the
nominal level 0.05 when the sample size is 2000. In comparison, d2 has already achieved acceptable
accuracy when the sample size is 250. This implies that d2

aug not perform as well as d2 in small
samples when the missing-value patterns become more complicated. Moreover, as pointed out
in Little (1988)[20], d2

aug may be sensitive to departure from the normality assumption as d2
aug

involves the comparison of variances, while simulation results in Little (1988)[20] suggest that d2 is
relatively robust to non-normality of the data. Therefore the augmented test works best for nearly
multivariate normal data when the covariance structure differs significantly among missing-value
patterns and a sufficient number of observations are available in each pattern.

3.3.2 Little’s CDM Test Simulation

For Little’s test of CDM, the natural extension of MCAR test, it remains unclear whether
increasing the number of covariates has an impact on its finite sample performance. Cheng
Li(2013)[19] explored this by simulating the following model

(
y1
y2

)
= B


x1
x2
.
.
xq

+
(
ϵ1
ϵ2

)
(3.2)
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where B is a p × (q) matrix of all 1’s, x1, x2, ..., xq−1 are independent N(0, 1) variables, and
the error terms follow (

ϵ1
ϵ2

)
∼ N

{(
0
0

)
,

(
1 0.5

0.5 1

)}
(3.3)

y1 is missing completely at random with probability 0.5 and y2 is always completely observed,
yielding 2 missing value patterns. y = (y1, y2)T is tested for CDM with auxiliary variables
(covariates) x = (x1, ..., xq−1)T . The number of covariates q− 1 (constant term not included) varies
among 0, 1, 2, 5, 10, and 20, and the sample size increases from 100, 250, 500 to 1000. For each
scenario, 10,000 Monte Carlo replications are used. Under the null hypothesis (2.12), d2 in (2.14)
asymptotically follows χ2 distribution with df = q. At significance level α = 0.05, Li(2013)[19]
report the empirical rejection probability of the CDM test in Table 3.4[19].

Tab. 3.4: Empirical rejection rates of the CDM test with α = 0.05

Covariates χ2 Sample Size

100 250 500 1000

0 1 0.051 0.043 0.050 0.048
1 2 0.051 0.052 0.050 0.052
2 3 0.044 0.049 0.049 0.048
5 6 0.045 0.049 0.050 0.051
10 11 0.036 0.045 0.046 0.047
20 21 0.023 0.039 0.045 0.046

Table 3.4 illustrates that in this model, with a small number of covariates, the empirical
rejection rate of Little’s CDM test is close to the nominal level of 0.05 with sample sizes of 100 or
250. However, as the number of covariates increases to 10 and 20, the empirical rejection rate falls
significantly below the nominal level of 0.05 for these smaller sample sizes. Therefore, in small
samples, the CDM test becomes more conservative as the number of covariates increases.



Conclusion

In this work, firstly, we present a comprehensive introduction to the problem of missing data, I
outlined the primary mechanisms through which data can be missing and the different patterns, I
explore both conventional and novel methods for handling missing data, examining their strengths,
limitations, and practical implications in statistical analysis. By understanding the characteristics
and applications of these methods.

We have discussed Little’s test for MCAR for multivariate quantitative data proposed by
Little (1988), which tests whether there exists significant difference between the means of different
missing-value patterns. The test statistic takes a similar form to the likelihood ratio statistic for
multivariate normal data and is asymptotically chi-square distributed under the null hypothesis
that there are no differences between the means of different missing-value patterns. Rejection of
the null provides sufficient evidence to indicate that the data are not MCAR. This indication is
vital for analysts because it guides them in choosing the right methods for dealing with missing
data. If data are not MCAR, methods like multiple imputation or ML approaches may be more
appropriate than simple techniques like Complete Case Analysis.

Also, We present Li’s mcartest command 2014 [19] that implements Little’s chisquare test of
the MCAR assumption or the CDM assumption. The methodology is mainly based on Little
(1988) and can be extended to testing the CDM assumption when covariates are included in
the test. The command also allows adjustment for unequal variances via the unequal option.
We demonstrated how to use this command and the caveats of choosing covariates through an
example. Finally I examined the performance of the MCAR/CDM test, compared the strengths
and weaknesses of the regular test and the test with unequal variances by simulation and provided
some suggestions for how to use them in practice.
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