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Abstract

Numerous processes, both natural and man-made, entail the dispersion of small par-

ticles that move in chaotic or random ways. The so-called anomalous-diffusion regimes

are possible in addition to normal diffusion, which is defined by a Gaussian probability

density function whose variance increases linearly with time. A variance rising slower

(subdiffusive) or faster (superdiffusive) than typical characterizes them.

In order to replace normal diffusion by anomalous diffusion, -path properties- must

be present. Brownian motion is intimately associated with normal diffusion. Likewise,

many different underlying processes can lead to anomalous diffusion, such as Fractional

Brownian motion, continuous random walks and fractional Itô motion.

In this work we recapitulate the state of art in the study of properties for some popular

anomalous diffusion processes. Whith regard to their significance in real life we discuss

an example of application using basis from fractional calculus theory.
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List Of Notations And Symbols &
Acronyms

Throughout this master thesis we will use the following terminology and notation:

N = The set of natural numbers.

R = The set of all real numbers.

[a, b] = The set of all real numbers between a and b.

β > 0 = All positive real values of β.

β ∈ [a, b] = All real values of β between a and b .

d
= = Equality in distribution (equality of all finite-dimensional distributions).

7



CONTENTS 8

a.s. = Almost surely

iff = If, and only if

m.s. = Mean-square

psd = Power spectral density

r.m.s = Root mean-square

r.v. = Random variable

w.r.t. = With respect to

MSD = mean squared displacement

H-ss = Self-similar with index H ≥ 0

H-sssi = H-ss with stationary increments

MSD = Mean squred displacement

CTRW = Continuous Time Random Walk

iid = Identically distributed and independent

pdf = probability density function

FIM = Fractional Itô motion

gBm = Grey Brownian motion

ggBm = Generalized grey Brownian motion

MR = Magnetic Resonance



Introduction

The world in our surrounding moves. No matter its scale, objects move in exception-

ally specific ways, driven by their properties and their interaction with the envirodynamics

of particles in atomic experiments, their speed: how fast or slowing down they’renment.

From the motion of black holes in the middle of our galaxy to the going, direction and

acceleration, among others, are widely used to understand their nature. Indeed, numerous

hypotheses and theories have been created to study such systems just by looking at their

motion.

Since Albert Einstein provided a theoretical foundation for Robert Brown’s observation

of the movement of microscopic granules contained in pollen grains, significant deviations

from the laws of Brownian motion have been uncovered in an impressively wide variety

of animate and inanimate systems, from biology to the stock market [13]. Anomalous

diffusion, as it has come to be called, extends the concept of Brownian motion and is

connected to disordered systems, non-equilibrium phenomena, flows of energy and infor-

mation, and transport in living systems. In theoretical terms, anomalous diffusion has a

well-developed framework, able to explain most of the current experimental observations.

However, it has been usually focused in describing the systems in terms of its macroscopic

behaviour. This means that the processes are described by means of general models, able

to predict the average or collective features; such as ergodicity, Gaussianity, or ageing are

now crucial for in the understanding of diffusion processes, well beyond Brownian motion.

Anomalous diffusion took off in 1973 when Scher and Lax discussed [23] transport pro-

cesses in disordered systems and in particular carrier diffusion in amorphous semicon-

ductor films. Using recent estimates from 1973 by Montroll and Scher [23] and 1974 by

Shlesinger [6], Scher and Montroll proposed a success model based on continuous-time

random walk (CTRW) in 1975. The extraordinary spread proved too much during the

years 1973-1975. Subsequently, new applications of diffusion theory began to require new

modeling methods and through several other applications like physics [6], living systems

[23] and finance [8].

Simultaneously, the field of fractional calculus that generalizes the concept of a derivative

operator of integer order to a derivative operator of arbitrary order (real or complex), has

found its great application in modeling anomalous diffusion thanks to the fractional time

9
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generalization of the diffusion equation. This connection between anomalous diffusion and

fractional differential calculus is demonstrated by the so-called memory effect that gov-

erns diffusion and is encoded in the power-law kernel of the differential operators. The

history of fractional models for anomalous diffusion began in 1986 with Nigmatullin[13],

who modeled diffusion in porous media using comb-shaped fractal structures and derived

the diffusion equation fractional dispersion over time, see the reference [6, 16, 23] for

other pioneering applications of the fraction calculus. The work presented in this master

thesis has the goal of explore models to understand anomalous diffusion. It is organized

as follows.

In Chapter 1, various results and techniques from the theory of stochastic processes are

presented, we will first give some preliminary definitions, results and notion of stochastic

processes such as self-similarity, Mean squared displacement, then some of their prop-

erties, second we will discuss some useful mathematical definitions that are inextricably

linked to fractional calculus.

In Chapter 2, we will survey the topic of stochastic anomalous diffusion processes, defined

as stochastic processes that deviate from Brownian motion, with mean squared displace-

ment not linearly related to time. First we will present different behaviors those follow

a power law and manifest in sub-diffusion, super-diffusion, ballistic motion, and hyper-

ballistic motion. Second some important stochastic processes lead to anomalous diffusion

are discussed like the fractional Brownian motion (fBm), grey Brownian motion (gBm),

continuous random walks and the fractional Itô motion (FIM). A visual comparisons that

examine profound differences between fBm and FIM is considered at the end of this chap-

ter.

In Chapter 3, the subject of fractional anomalous diffusion is discussed, we will first in-

troduce the basic notions of fractional calculus. The area of mathematics that allows

non-integer order integrals and derivatives. Then due to the importance of fractional cal-

culus in real life, an example of application using basis from fractional calculus theory is

presented. Where a novel model to analyzing anomalous diffusion in human brain tissues

in vivo at high b-values up to 4700sec/mm2 have been applied. This model is based on

solutions of fractionalized Bloch-Torrey differential equation.



Chapter 1
Concepts in Diffusion and Stochastic

Processes

This chapter presents various results and techniques from the theory of stochastic pro-

cesses that are useful in the study of stochastic problems in the natural sciences. [22, 15, 5]

1.1 Preliminary Background

For the sake of clarity, in this section we introduce notations, definitions, and prelimi-

nary facts that will be used.

1.1.1 Stochastic Processes

The stochastic processes serve as useful concepts for modeling random changes in time

with stochastic differential equations, similar to the use of ordinary differential equations

to model deterministic (non-stochastic) problems.

Definition 1.1.1. Stochastic Processes.

A real-valued stochastic process, defined on a probabilistic space (Ω,F ,P), is a family of

random variables denoted X := (X(t), t ∈ I), (or(Xt)t∈I or (X(t))t∈I), where I is a part

of R+.

X is therefore a function of two variables which associates to (t, ω) ∈ I × Ω, the image

Xt(ω) ∈ R.

• If I is a part of N, we speak of a discrete-time stochastic process.

• If I is an interval of R+ we speak of a continuous-time stochastic process.

11
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• At a fixed time t, the random function ω → Xt(ω) is a random variables.

• At a fixed individual ω, the deterministic function t → Xt(ω) is said to be the

trajectory of the process.

• X is said to be continuous when for any ω, the trajectories t → Xt(ω) are continuous.

Definition 1.1.2. Finite-dimensional distributions.

For any natural number k ∈ N and a "time" sequence {ti}i=1,...,k ∈ I, the finite-dimensional

distributions of the real valued stochastic process Xt = {Xt}t∈I are the measures µt1,...,tk ,

defined on Rk, such that

µt1,...,tk(A1 × · · · × Ak) = P({Xt1 ∈ A1, · · · , Xtk ∈ Ak}),

where {A1, . . . , Ak} are Borel sets on R.

Definition 1.1.3. We say that two processes Xt and Yt are equivalent if they have same

finite-dimensional distributions.

1.1.2 Gaussian Stochastic Processes

A very important class of continuous-time processes is that of Gaussian processes, which

arise in many applications.

Definition 1.1.4. A one-dimensional continuous-time Gaussian process is a stochastic

process for which E = R and all the finite-dimensional distributions are Gaussian.

Remark. A Gaussian process x(t) is characterized by its mean

m(t) := E(X(t))

and the covariance (or auto-correlation) matrix

C(t, s) = E ((X(t)−m(t))× (X(s)−m(s))) .

Thus, the first two moments of a Gaussian process are sufficient for a complete charac-

terization of the process.
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1.1.3 Stationary Processes

The statistics of a large number of stochastic processes that arise in applications are

time-invariant. We refer to such stochastic processes as stationary.

Definition 1.1.5. A stochastic process is called stationary if all finite-dimensional dis-

tributions are invariant under time translation: for every integer k and for all times ti ∈ T ,

the distribution of (X(t1), X(t2), ..., X(tk)) is equal to that of (X(s+ t1), X(s+ t2), ..., X(s+ tk))

for every s such that s+ ti ∈ T for all i ∈ 1, ..., k. In other words,

{Xt1 , Xt2 , ...., Xtk}
d
= {Xs+t1 , Xs+t2 , ..., Xs+tk}.

Definition 1.1.6. A stochastic process {Xt}t≥0 is said a stationary increment process,

shortly si, if for all t ≥ 0 and for any h ≥ 0 :

{Xt+h −Xh}t≥0
d
= {Xt −X0}t≥0.

1.1.4 Self-similarity

Self-similar objects in mathematics resemble a portion of itself precisely or roughly,

with the whole having the same shape as one or more parts. Real-world phenomena, like

coastlines, exhibit statistical self-similarity, with scale invariance being a precise type.

Self-similarity occurs when the numerical value of an observable quantity changes but the

corresponding dimensionless quantity remains unchanged.

Figure 1.1: An image of the Barnsley fern which exhibits affine self-similarity

Self-similar processes

Self-similar processes (shortly ss) are stochastic processes that are invariant in distri-

bution under suitable scaling of time and space. These processes also enter naturally in
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the analysis of random phenomena (in time) exhibiting certain forms of long-range depen-

dence. In the last few years there has been an explosive growth in the study of self-similar

processes.

Definition 1.1.7. Self-similar processes.

A real valued stochastic process X = {Xt}t≥0 is said self-similar with index H ≥ 0, shortly

H-ss, if for all t ≥ 0 and for any a > 0

{Xat}t≥0
d
= {aHXt}t≥0.

Remark. Observe that, if X is an H-ss process, then all the finite-dimensional distri-

butions of X in [0,∞[ are completely determined by the distribution in any finite real

interval.

Corollary 1.1.1. For H > 0, a H − ss process starts at 0 a.s.

Proof. We have ∀a that X0 = Xa0
d∼ aHX0. Then, letting a → 0, we obtain the result.

Proposition 1.1.1. Let X = {Xt}t≥0 be a non-degenerate1 stationary process, then X

can not be an H-ss process.

Proof. Indeed, for any a > 0:

Xt
d
= Xat

d
= aHXt,

by stationarity and self-similarity of the process X. Let a −→ ∞. Then the family

of random variables on the right diverge with positive probability, whereas the random

variable on the left is finite with probability one, leading to a contradiction.

Nevertheless, there is an important connection between self-similar and stationary

processes.

Proposition 1.1.2. Let {Xt}t≥0 be an H-ss process; then the process

Y (t) = e−tHX(et), t ∈ R (1.1.1)

is stationary. We have the converse, in the sense that if (Yt)t∈R is stationary, then

Xt = tHY (ln(t)), t ≥ 0 (1.1.2)

is H−ss.
1A process {Xt}t≥0 is said to be degenerate if for any t ≥ 0, Xt = 0 almost surely.
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Proof. Let θ1, ....θd be real numbers. If {X(t), 0 < t < ∞} is H-ss, then for any

t1, ...., td ∈ R1 and h > 0,

d∑
j=1

θjY (tj + h) =
d∑

j=1

θje
−tjHe−hHX(ehetj)

d
=

d∑
j=1

θje
−tjHX(etj)

=
d∑

j=1

θjY (tj)

proving that {Y (t), t ∈ R} is stationary.

Conversely, if {Y (t), t ∈ R} is stationary, then for t1, ...., td > 0 and a > 0

d∑
j=1

θjX(atj) =
d∑

j=1

θja
HtHj Y (ln(a) + ln(tj))

d
=

d∑
j=1

θja
HtHj Y (ln(tj))

=
d∑

j=1

θja
HX(tj)

proving that {X(t), t > 0} is H-ss. The transformation defined by Eq. (1.1.1) is called

the Lamperti transformation

1.1.5 H-sssi processes

Definition 1.1.8. A stochastic process X = {Xt}t∈I , F -adapted, which is H-ss with

stationary increments, is said H-sssi process with exponent H.

In the following we always suppose that E(X2
t ) < ∞, t ∈ I. let X = {Xt}t∈I .

F -adapted, be an H-sssi process with finite variance 2, the following properties hold:

1. X0 = 0 almost surely.
2We always consider finite variance H-sssi process because it have many interesting properties.
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2. If H ̸= 1, then for any t ≥ 0, E(Xt) = 0.

3. One has:

X(−t)
d
= −X(t),

it follows from the first property and the stationarity of the increments:

X(−t)
a.s.
= X(−t)−X(0)

d
= X(0)−X(t)

a.s.
= −X(t).

The above property allows us to extend the definition of an H-sssi process to the

whole real line: {Xt}t∈R.

4. Let σ2 = E(X2
1 ). Then,

E(X2
t ) = |t|2Hσ2. (1.1.3)

Indeed, from the third property and the self-similarity:

EX(t)2 = EX2(|t|sign(t)) = |t|2HEX2(sign(t)) = |t|2HE(X2
1 ) = |t|2Hσ2.

5. The autocovariance function of an H-sssi process 3 X, with E(X2
1 ) = σ2, turns out

to be:

γH
s,t =

σ2

2
(|t|2H + |s|2H − |t− s|2H). (1.1.4)

It follows from the fourth property and the stationarity of the increments

E(XsXt) =
1

2
(EX2

s + EX2
t − E(Xt −Xs)

2).

6. If X = {Xt}t∈I is an H-sssi process, then one must have H ≤ 1.

The constraint of the scaling exponent follows directly from the stationarity of the

increments:

2HE|X1| = E|X2| = E|X2 −X1 +X1| ≤ E|X2 −X1|+ E|X1| = 2E|X1|,

therefore, 2H ≤ 2 ⇐⇒ H ≤ 1.

1.1.6 Brownian Motion (BM)

Brownian motion and the diffusion processes derived from it play a central role in the

theory of stochastic processes. They provide simple models for a wide range of applica-

tions. Brownian motion takes its name from the botanist Robert Brown, who in 1827

observed the movement of fine particles (pollen) suspended in a fluid.
3Sometimes, we refer to the H-sssi process {Xt}t∈I with the word standard if σ2 = 1
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Definition 1.1.9. Brownian motion.

A stochastic process {B(t), t ≥ 0} is said to be a Brownian motion if

(i) B(0) = 0.

(ii) (Independent increments.) For each 0 ≤ t1 < t2 < . . . < tm,

B(t1), B(t2)−B(t1), . . . , B(tm)−B(tm−1),

are independent r.v.’s.

(iii) (Stationary increments.) For each 0 ≤ s < t,B(t)−B(s) has a normal distribution

with mean zero and variance σ2 = t− s.

(iv) (Continuity of paths.) {B(t)}t≥0 are continuous functions of t.

Figure 1.2: Brownian sample paths

Remark.

• Notice that the natural filtration of the Brownian motion is FB
t = σ(Bs, s ≤ t).

• If σ2 = 1, we said that {B(t) : t ≥ 0} is a standard Brownian motion.

1.7.1.1 Properties of Brownian motion

1- Martingale property

A martingale is a very special type of stochastic process.

Lemma 1.1.1. An Ft-Wiener process Bt is an Ft-martingale.

Proof.

We need to prove that E(Bt|Fs) = Bs for any t > s. But as Bs is Fs-measurable (by

adeptness) this is equivalent to E(Bt−Bs|Fs) = 0, and this is clearly true by the definition

of the Wiener process (as Bt −Bs has zero mean and is independent of Fs) .
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2- Markov property

The reason why Markov processes are so important comes from the fact that they are

fundamental class of stochastic processes, with many applications in real life problems

outside mathematics.

Definition 1.1.10. An Ft adapted process Xt is called an Ft-Markov process if we have

E(f(Xt)|Fs) = E(f(Xt)|Xs) for all t ≥ s and all bounded measurable functions f . When

the filtration is not specified, the natural filtration FX
t is implied.

Lemma 1.1.2. [15] An Ft-Wiener process Bt is an Ft-Markov process.

3- Self-similarity

Theorem 1.1.1. B is a H-ss process with H = 1/2.

Proof. It is enough to show that for every a > 0, {a1/2B(t)} is also Brownian motion.

Conditions (i), (ii) and (iv) follow from the same conditions for {B(t)}. As to (iii),

Gaussianity and mean-zero property also follow from the properties of {B(t)}.

As to the variance, E
[(
a1/2B(t)2

)]
= t. And for all t1, t2 ∈ R, the autocovariance function

E [(B(at1)B(at2))] = min(at1, at2) = amin(t1, t2) = E
[(
a1/2B(t1)a

1/2B(t2)
)]

.

Thus {a1/2B(t)} is a Brownian motion.

4- Non-differentiability

Theorem 1.1.2. [15] For any t almost all trajectories of Brownian motion are not differ-

entiable at t.

5- Hölder continuity

Proposition 1.1.3. [15] Brownian motion paths are a.s. locally γ-Hölder continuous for

γ ∈ [0, 1/2).

6- Quadratic variation

Definition 1.1.11. The quadratic variation of Brownian motion B(t) is defined as

[B,B](t) = [B,B]([0, t]) = lim
n→∞

n∑
i=1

∣∣∣∣Btni
−Btni−1

∣∣∣∣2,
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where for each n, {tni , 0 ≤ i ≤ n} is a partition of [0, t], and the limit is taken over all

partitions with δn = max
i

(tni+1 − tni ) → 0 as n → ∞, and in the sense of convergence in

probability.

Theorem 1.1.3. [15] Quadratic variation of a Brownian motion over [0, t] is t.

1.1.7 Mean squared displacement (MSD)

MSD is a fundamental metric for understanding particle dynamics, especially in Brow-

nian motion and random walk scenarios, providing insights into diffusion coefficients and

mechanical properties of the medium in which particles move.

Definition 1.1.12. Mean squared displacement (MSD).

An averaged quantity that is often calculated is called the mean-squared displacement.

Its generic formula is given by:

MSD(τ) =

〈
x2(τ)

〉
=

〈
[x(t+ τ)− x(t)]2

〉
where x(τ) is is the position of the particle at time t, and τ is the lag time between

the two positions taken by the particle used to calculate the displacement

∆x(τ) = x(t+ τ)− x(t).

The average < ., . > designates a time-average over t and/or an ensemble-average over

several trajectories.

Remark. MSDs can be computed from the following expression, known as the Einstein

formula:

MSD(xd) =

〈
1

N

N∑
i=1

|xd(t)− xd(t0)|2
〉

1.1.8 Special Functions

In this section we will discuss some useful mathematical definitions that are inextricably

linked to fractional calculus. These include the Gamma function, the Beta function and

the Mittag-Leffler function.

3.1.1.1 The Gamma Function

The most basic interpretation of the Gamma function is simply the generalization of

the factorial for all real numbers.
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Definition 1.1.13.

Γ (x) =

∫ ∞

0

e−ttx−1dt, x ∈ R+.

The Gamma function has some properties.

Γ (x+ 1) = xΓ (x), x ∈ R+.

Γ (x) = (x− 1)!, x ∈ R+.

Example 1.1.1.

Γ (1) = Γ (2) = 1.

Γ (1/2) =
√
π.

Γ (n+ 1/2) =

√
π

2n
(2n− 1)!, n ∈ N.

3.1.1.2 The Beta Function

Like the Gamma function, the Beta function is defined by a definite integral.

Definition 1.1.14. It’s given by:

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt, x, y ∈ R+

The Beta function can also be defined in terms of the Gamma function:

B(x, y) =
Γ (x)Γ (y)

Γ (x+ y)
, x, y ∈ R+ (1.1.5)

3.1.1.3 The Mittag-Leffler Function

The Mittag-Leffler function named after a Swedish mathematician who defined and

studied it in 1903, is a direct generalization of the exponential function.

Definition 1.1.15. The standard definition of the Mittag-Leffler is given by :

Eα(x) =
∞∑
k=0

xk

Γ (αk + 1)
, α > 0

The Mittag-Leffler function with two parameters α and β, is defined as:

Eα,β(x) =
∞∑
k=0

xk

Γ (αk + β)
, β > 0 α > 0 (1.1.6)
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As a result of the definition given in Eq. (1.1.6), the following relations hold:

Eα,β(x) =
1

Γ (β)
+ xEα,α+β(x).

and

Eα,β(x) = βEα,β+1(x) + αx
d

dx
Eα,β+1(x).

Example 1.1.2.

Eα,β(0) = 1.

E1,1(x) =
∞∑
k=0

xk

Γ (k + 1)
=

∞∑
k=0

xk

k!
= ex.

E1,2(x) =
∞∑
k=0

xk

Γ (k + 2)
=

1

x

∞∑
k=0

xk+1

(k + 1)!
=

ex − 1

x
.



Chapter 2
Anomalous diffusion processes.

Anomalous diffusion processes deviate from Brownian motion, with mean squared dis-

placement not linearly related to time. These complex behaviors follow a power law

and manifest in sub-diffusion, super-diffusion, ballistic motion, and hyper-ballistic mo-

tion. Examples of anomalous diffusion stochastic processes are discussed in this chapter,

this include fractional Brownian motion, continuous-time random walks, grey Brownian

motion and fractional Itô motion. The main references for this chapter are [1, 3, 4, 13, 20].

2.1 Classes of anomalous diffusion

In recent years many processes have been observed that deviated from the normal

diffusion. Such processes are described by anomalous diffusion for which MSD scales as

a power law

⟨x2(τ)⟩ = Kατ
α

where Kα is the so-called generalized diffusion coefficient and τ is the elapsed time. The

main classes of anomalous diffusion’s are classified as follows:

• α < 1 : Subdiffusion.

• α = 1 : Brownian motion.

• 1 < α < 2 : Superdiffusion.

• α = 2 : Ballistic motion.

• α > 2 : Hyperballistic.

22
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2.2 Models of anomalous diffusion

There are many possible ways to mathematically define a stochastic process which then

has the right kind of power law. Currently the most studied types of anomalous diffusion

processes are those involving the following: Generalizations of Brownian motion, such

as the fractional Brownian motion and Grey Brownian motion, Continuous time random

walks.

Definition 2.2.1. Embedding Principle for anomalous diffusion. Anomalous diffusion

process can be represented as time-changed Brownian motion if and only if it is a semi-

martingale.

2.2.1 Fractional Brownian Motion (fBm)

The fractional Brownian motion is one of the most widely used anomalous diffusion

processes. It was formulated in 1968 by Mandelbrot and van Ness as a family of Gaussian

random functions. We note that a similar process was introduced by Kolmogorov in 1940.

For instance, it is a standard model for stock market dynamics. Moreover, it is commonly

used to model single particle diffusion experiments in living cells.

Definition 2.2.2. The fractional B rownian motion (fBm) with Hurst index (H ∈ (0, 1))

is a Gaussian process BH = {BH
t , t ∈ R} on (Ω,F ,P), having the properties:

1. BH
0 = 0,

2. E[BH
t ] = 0; t ∈ R,

3. E[BH
t BH

s ] =
1

2

(
|t|2H + |s|2H − |t− s|2H

)
; s, t ∈ R.

Remark. Since E[BH
t −BH

s ]2 = |t−s|2H and BH is a Gaussian process, it has a continuous

modification, according to the Kolmogorov theorem.

Remark. For H = 1, we set BH
t = B1

t = tξ, where ξ is a standard normal Random

variable.

For H =
1

2
, the characteristic function has the form

ϕλ(t) = E
[
exp(i

n∑
k=1

λkB
H
tk
)
]
= exp

(
−1

2
(Ctλ, λ)

)
,

where Ct = (E[BH
tK
BH

ti
])1≤i,k≤n and (., .) is the inner product on Rn.
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Proposition 2.2.1. (fBm characterization). Let X = {Xt}t≥0 be a stochastic process

defined on the probability space (Ω,F ,P), such that:

• P(X0 = 0) = 1.

• X is a zero-mean Gaussian process such that, for any t > 0,E(X2
t ) = σ2tα for some

σ > 0 and 0 < α < 2.

• X is a si-process.

Then, {Xt}t>0 is a (one-sided) fractional Brownian motion of order H = α/2.

Proof. Since X is a zero-mean Gaussian process, its finite-dimensional distributions

are completely characterized by its autocovariance function. Given that, for any t > 0 :

E(X2
t ) = σ2|t|α

and X has stationary increments, it follows that the autocovariance function is given by

Eq. (2.2.2), which is the autocovariance of a fBm with H = α/2.

Corollary 2.2.1. [18] Let X = {Xt}t≥0 be a stochastic process defined on the probability

space (Ω,F ,P). Let 0 < H < 1 and σ2 = E(X2
1 ). The following statements are equivalent:

1. X is an H-sssi Gaussian process.

2. X is a (one-sided) fractional Brownian motion with scaling exponent H.

Fractional Brownian motion proprieties

1-Selfsimilarity.

There is an other classic definition of the fBm using selfsimilar properties, which we give

as a theorem.

Theorem 2.2.1. For H ∈ (0, 1), the fBm (BH
t )t∈R+ is a gaussian H−sssi process.

Proof. First, let us prove the selfsimilarity property. We have that

E
(
B

(H)
at B(H)

as

)
=

1

2

(
(at)2H + (as)2H − (a|t− s|)2H

)
= a2HE

(
B

(H)
t B(H)

s

)
= E

(
(aHB

(H)
t )(aHB(H)

s )
)
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Thus, since all processes are centered and gaussian, it implies that(
B

(H)
at

)
d
=
(
aHB

(H)
t

)
.

Second, we show that it has stationary increments. Note that if, for h > 0, we have

E
(
(B

(H)
t+h −B

(H)
h )(B

(H)
s+h −B

(H)
h )

)
= E

(
B

(H)
t B(H)

s

)
, (2.2.1)

we conclude that (B
(H)
t+h −B

(H)
h )

d
= B

(H)
t . We have,

E
(
(B

(H)
t+h −B

(H)
h )(B

(H)
s+h −B

(H)
h )

)
= E

(
(B

(H)
t+hB

(H)
s+h)

)
− E

(
(B

(H)
t+hB

(H)
h )

)
− E

(
(B

(H)
s+hB

(H)
h )

)
+ E

(
(B

(H)
h )2

)
=

1

2

(
((t+ h)2H + (s+ h)2H − |t− s|2H)

− ((t+ h)2H + h2H − t2H)

− ((s+ h)2H + h2H − s2H) + 2h2H

)
=

1

2
(t2H + s2H − |t− s|2H)

= E
(
B

(H)
t B(H)

s

)
.

Therefore the fBm is a H-sssi process.

2-Markovian property.

Proposition 2.2.2. [1] Fractional Brownian motion is non-Markovian provided that

H ̸= 1/2.

3- Hölder continuity

Theorem 2.2.2. [1] (Kolmogorov continuity theorem). A stochastic process {Xt}t∈I
has a version with continuous trajectories if there exist: p ≥ 1 and η > 1 and a constant

c, such that, for any t1, t2 ∈ I :

E|Xt2 −Xt1|p ≤ c|t2 − t1|η. (2.2.2)

Theorem 2.2.3. Let H ∈ (0, 1). The fBm B(H) admits a version whose sample paths

are almost surely Hölder continuous of order strictly less than H.

Proof. We recall that a function f : R −→ R is Hölder continuous of order α,

0 < α ≤ 1 and write f ∈ Cα(R), if there exists M > 0 such that

|f(t)− f(s)| ≤ M |t− s|α,
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for every s, t ∈ R. For any α > 0 we have

E
[
|BH(t)−BH(s)|α

]
= E

[
|BH(1)|α

]
|t− s|αH ;

hence, by the Kolmogorov criterion we get that the sample paths of BH are almost

everywhere Hölder continuous of order strictly less than H. Moreover, by ([1]) we have

lim sup
t−→0+

|B(H)(t)|
tH
√

log(log(t−1))
= cH

with probability one, where cH is a suitable constant. Hence BH can not have sample

paths with Hölder continuity’s order greater than H.

4- Differentiability

By ([14]) we also obtain that the process BH does not have differentiable sample paths.

Proposition 2.2.3. Let H ∈ (0, 1). The fBm sample path BH(.) is not differentiable. In

fact, for every t0 ∈ [0,∞)

lim
t→t0

sup

∣∣∣∣BH(t)−BH(t0)

t− t0

∣∣∣∣ = ∞

with probability one.

Proof. Here we recall the proof of ([14]). Note that we assume BH(0) = 0. The result

is proved by exploiting the self-similarity of BH . Consider the random variable

Rt,t0 :=
BH(t)−BH(t0)

t− t0

that represents the incremental ratio of BH . Since BH is self-similar (see[1]), we have

that the law of Rt,t0 is the same of (t− t0)
H−1BH(1). If one considers the event

A(t, w) :=

{
sup
0≤s≤t

∣∣∣∣BH(s)

s

∣∣∣∣ > d

}
,

then for any sequence (tn)n∈N decreasing to 0, we have

A(tn, w) ⊇ A(tn+1, w),

and

A (tn, w) ⊇
(
|B

H(tn)

tn
| > d

)
=
(
|BH(1)| > t1−H

n d
)
.

But,

lim
n−→∞

(
|BH(1)| > t1−H

n d
)

Since this is true for any d, it must be the case that the derivative does not exist at any

point along any sample path of BH(t).
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5- Non semi-martingale property

The definition of the Itô integral is a direct consequence of the martingale property of

Brownian motion. But fBm does not exhibit this property.

Definition 2.2.3. The p-variation of a stochastic process (X(t))t∈[0,T ] is defined as

Vp(X, [0, T ]) := supπ

n∑
i=1

|X(ti)−X(ti−1)|p, (2.2.3)

where π is a finite partition of [0, T ]. The index of p-variation of a process is defined to

be

I(X, [0, T ]) := inf
{
p > 0;Vp(X, [0, T ]) < ∞

}
. (2.2.4)

Lemma 2.2.1. I(BH , [0, T ]) =
1

H
Moreover, Vp(B

H(t), [0, T ]) = 0 when pH > 1 and

Vp(B
H(t), [0, T ]) = ∞ when pH < 1.

Proof. A proof can be found in [1].

Theorem 2.2.4. {BH(t) : t ≥ 0}, for H ̸= 1/2, is not semimartingale.

Proof. A process {X(t),Ft, t ≥ 0} is called a semimartingale if it admits the Doob-

Meyer decomposition X(t) = X(0) +M(t) + A(t), where M(t) is an Ft local martingale

with M(0) = 0, A(t) is a càdlàg adapted process of locally bounded variation and X(0) is

F0-measurable. Moreover, any semimartingale has locally bounded quadratic variation[1].

Now, let X(t) = BH(t). If H ∈ (0, 1/2), then BH(t) cannot even be a martingale since

it has infinite quadratic variation, hence, it is not a semimartingale.

If H ∈ (1/2, 1) then the quadratic variation of BH(t) is zero. So, let’s suppose that it is

a semimartingale. Then, M(t) = BH(t)−A(t) has quadratic variation equal to zero. So,

from [12], M(t) = 0 for all t a.s. Then that would mean that BH(t) = A(t), but this can’t

be the case since BH(t) has unbounded variation. Hence BH(t) is not a semimartingale

for any H ̸= 1/2.

6- Long-Range Dependence

Note also that the fBm is one of the simplest process which exhibits long-range depen-

dency.
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Define X(n) = BH(n+1)−BH(n), n ≥ 1. Then clearly X(n) is a Gaussian stationary

sequence with unit variance. Moreover the covariance function of X(t) is

rH(n) = E[X(0)X(n)] = 1/2((n+ 1)2H − 2n2H + (n− 1)2H).

If H = 1/2 then we get that r(n) = 0 implying that the increments of X(n) are uncorre-

lated.

But, if H ̸= 1/2, we get that as n tends to infinity rH(n) ∽ H(2H − 1)n2H−2. Thus

we get

• If 0 < H < 1/2 then
∞∑
n=0

|rH(n)| < ∞.

• If 1/2 < H < 1 then
∞∑
n=0

|rH(n)| = ∞, in this case the process BH is a long memory

process.

Depending on the qualitative behavior of the fBm trajectories, it is common the

following fBm partitioning, which can be actually used to characterize any H−sssi process:

1. If 0 < H < 1/2, the fBm is termed anti-persistent.

2. If H = 1/2, the fBm is termed purely random, or chaotic.

3. If 1/2 < H < 1, the fBm is termed persistent.

This division is due to the behavior of the autocovariance function

2.2.2 Generalized Grey Brownian Motion (ggBm)

Grey Brownian motion (gBm) was introduced by W. Schneider as a model for slow

anomalous diffusions, i.e., the marginal density function of the gBm is the fundamental

solution of the time-fractional diffusion equation. This is a class {Bβ(t), t ≥ 0, 0 < β ≤ 1}

of processes which are self-similar with stationary increments. More recently, this class

was extended to the, so called "generalized" grey Brownian motion (ggBm) to include slow

and fast anomalous diffusions which contain either Gaussian or non-Gaussian processes

e.g., fBm, gBm and others. In this chapter we will not reproduce the all construction

of the ggBm, but we will refer to the mention of the latter and some of its properties

and then recall the differential equations driven by it, the interested reader can find it in

[17],[16] and references therein.
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Grey Brownian Motion

We begin by introducing some basic concepts and facts

Definition 2.2.4. (Schwartz space) The space S(Rn) is the space of all the functions

f ∈ C∞(Rn), such that for any multi-indices j = (j1, j2, . . . , jn) and k = (k1, k2, ..., kn) :

sup
x∈Rn

|xjDkf(x)| < ∞. (2.2.5)

Definition 2.2.5. (Tempred distribution) The space of all tempered distributions on

R, denoted S ′(Rn), is the dual space of S(Rn). That is, it is the set of all functions that

are linear and continuous .

Definition 2.2.6. (Completely monotonic function) A function f with domain (0,∞)

is said to be completely monotonic (c.m.), if it possesses derivatives f (n)(x) for all

n = 0, 1, 2,. .. and if

(−1)nf (n)(x) ≥ 0

for all x > 0

The limit f (n)(0) = lim
x→0+

f (n)(x), finite or infinite,exists.

Definition 2.2.7. A continuous map Φ : X −→ C is called a characteristic functional on

X if it is:

1. Normalized: Φ(0) = 1,

2. Positive defined:
m∑

i,j=1

ciΦ(ξi − ξj)cj ≥ 0, m ∈ Z, {ci}i=1,....,m ∈ C, {ξi}i=1,...,m ∈ X

Proposition 2.2.4. [16] Let F be a completely monotonic function defined on the posi-

tive real line.Therefore, there exists a unique characteristic functional, defined on a real

separable Hilbert space H, such that:

Φ(ξ) = F (∥ξ∥2), ξ ∈ H.

Definition 2.2.8. (Nuclear space) A topological vector space X, with the topology

defined by a family of Hilbert norms, is said a nuclear space if for any Hilbert norm

∥ · ∥p there exists a larger norm ∥ · ∥q such that the inclusion map Xq ↪→ Xp is an

Hilbert−Schmidt operator.
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Remark. Nuclear spaces have many of the good properties of the finite-dimensional

Euclidean spaces Rd. For example, a subset of a nuclear space is compact if and only if is

bounded and closed. Moreover, spaces whose elements are ’smooth’ in some sense tend

to be nuclear spaces.

Theorem 2.2.5. (Bochner’s theorem, [16]) For any characteristic functional Φ on Rn

there exists a unique probability measure µ on Rn such that Φ is its generating functional.

Namely,

Φ(ξ) =

∫
Rn

ei⟨x,ξ⟩dµ(x), ξ ∈ Rn.

Theorem 2.2.6. (Minlos theorem, [16]) Let X be a nuclear space. For any character-

istic functional Φ defined on X there exists a unique probability measure µ defined on the

measurable space (X ′,B), where B is regarded as the Borel σ-algebra generated by the

weak topology on X ′, such that:∫
X′

ei⟨w,ξ⟩dµ(w) = Φ(ξ), ξ ∈ X. (2.2.6)

Proposition 2.2.5. Let F be a completely monotonic function defined on the positive real

line.Therefore, there exists a unique characteristic functional, defined on a real separable

Hilbert space H, such that:

Φ(ξ) = F (∥ξ∥2), ξ ∈ H.

Proof. A proof can be found in [16]. Using this proposition and Minlos theorem [16],

the following definition makes sense.

Definition 2.2.9. For any β ∈ (0, 1] the Mittag-Leffler measure is defined as the unique

probability measure µβ on S ′(R) by fixing its characteristic functional∫
S′
ei⟨w,φ⟩dµβ(w) = Eβ(−

1

2
⟨φ, φ⟩), φ ∈ S(R) (2.2.7)

Remark.

1. The measure µβ is also called grey noise (reference) measure [17, 16].

2. In the approach of (Mura, [16]) the grey noise measure is defined via the characteris-

tic function Eβ(−(., .)α) and denoted by µα,β. This means that first the parameters

0 < α < 2 and 0 < β < 1 are fixed and then generalized grey Brownian motion Bα,β
t

is constructed in L2(µα,β).
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3. In the case α = β and 0 < β ≤ 1, the probability space (S ′(R),B, µβ,β) is called

grey noise space and the measure µβ,β is called grey noise measure (see [1], [21]).

Lemma 2.2.2. For any φ ∈ S(R) and n ∈ N0 we have

∫
S′(R)

⟨w,φ⟩2n+1dµβ(w) = 0

∫
S′(R)

⟨w,φ⟩2ndµβ(w) =
(2n)!

2nΓ (βn+ 1)
| φ |2n .

Proof. A proof can be found in [1].

Definition 2.2.10. We consider the generalized stochastic process Xα,β defined canoni-

cally on the (S ′(R),B, µα,β), called grey noise by

Xα,β(φ) : S ′(R) → R, w 7→ Xα,β(φ)(w) := ⟨w,φ⟩.

Properties

1. Characteristic function:

E(eiλXα,β(φ)) := Eβ(−λ2∥φ∥2α),

2. Moments:

E(Xα,β(φ))
k =


0, k = 2n+ 1

(2n)!

Γ (βn+ 1)
∥φ∥2nα , k = 2n

3. For any f ∈ Hα, we have Xα,β(f) ∈ L2(µα,β) and

∥Xα,β(f)∥2L2(µα,β)
=

2

Γ (β + 1)
∥f∥2α

Generalized grey Brownian motion definition

In this subsection we briefly introduce the mathematical definition and the main propri-

eties of the generalized grey Brownian motion.
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Definition 2.2.11. The stochastic process

{Bα,β(t)}t≥0 = {Xα,β(1[0,t))}t≥0. (2.2.8)

is called generalized (standard) grey Brownian motion.

Proposition 2.2.6. [16]

1. Bα,β(0) = 0 a.s. Moreover, for each t ≥ 0, E(Bα,β(t)) = 0 and

E(Bα,β(t)
2) =

2

Γ (β + 1)
tα. (2.2.9)

2. The auto-covariance function is:

E(Bα,β(t)Bα,β(s)) = γα,β(t, s) =
1

Γ (β + 1)
(tα + sα − |t− s|α). (2.2.10)

3. For any t, s ≥ 0, the characteristic function of the increments is:

E(eiy(Bα,β(t)−Bα,β(s))) = Eβ(−y2|t− s|α), y ∈ R. (2.2.11)

Proposition 2.2.7. For any 0 < α < 2 and 0 < β ≤ 1, the process Bα,β(t), t ≥ 0, is a

self-similar with stationary increments process (H-sssi), with H = α/2.

Proof. See [21].

Remark. In view of Proposition 2.2.7, {Bα,β(t)} forms a class of H-sssi stochastic pro-

cesses indexed by two parameters 0 < α < 2 and 0 < β ≤ 1. This class includes

fractional Brownian motion (β = 1), grey Brownian motion (α = β) and Brownian mo-

tion (α = β = 1).

Basic Properties of the ggBm

2.3.3.1 The p-variation of generalized grey Brownian motion

This subsection is devoted to the study of the p-variation of ggBm. The approach taken

is inspired from the one used for the fBm.

Proposition 2.2.8. We have the following limit in probability

lim
n−→+∞

npα
2
−1

n∑
j=1

∣∣∣∣Bα,β

(
j

n

)
−Bα,β

(
j − 1

n

)∣∣∣∣p = E(|Bα,β(1)|p).
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Proof. See [4]

Proposition 2.2.9. We have the following limit in probability

Vp,n :=
n∑

j=1

∣∣∣∣Bα,β(
j

n
)−Bα,β(

j − 1

n
)

∣∣∣∣p −−−−−−−→
n −→ +∞



0 a.s. if pα/2 > 1

∞ a.s. if pα/2 < 1

E(|Bα,β(1)|p) a.s. if p = 2/α.

Remark. The ggBm is not a semimartingale. In addition, Bα,β cannot be of finite

variation on [0, 1] and by scaling and stationarity of the increment on any interval.

Proof. Indeed there is a subsequence such that Vp,n converge almost surely to ∞ for

p = 1 and α ∈ (0, 2). If α ∈ (1, 2) we can choose p ∈ (2/α, 2) such that Vp,n converge

to 0 for some subsequence. This implies that the quadratic variation of Bα,β is zero. if

α ∈ (0, 1) we can choose p > 2 such that 2p/α < 1 and the p-variation of Bα,β must be

infinite. So, in any case Bα,β can not be a semimartingale.

2.3.3.2 Characterization of th ggBm

We have seen that the generalized grey Brownian motion (ggBm), is made up off self-

similar with stationary increments processes (Prop. 2.2.7) and depends on two real pa-

rameters α ∈ (0, 2) and β ∈ (0, 1].

The ggBm is defined through the explicit construction of the underline probability

space. However, we are now going to show that it is possible to define it in an unspecified

probability space. For this purpose, we write down explicitly all the finite dimensional

probability density functions. Moreover, we shall provide different ggBm characteriza-

tions.

Proposition 2.2.10. Let Bα,β be a ggBm, then for any collection {Bα,β(t1), ..., Bα,β(tn)},

the joint probability density function is given by:

fα,β(x1, x2, ..., xn; γα,β) =
(2π)−

n−1
2√

2Γ (1 + b)n det γα,β

∫ ∞

0

1

τn/2
M1/2

(
ζ

τ 1/2

)
Mβ(τ)dτ. (2.2.12)

with:

ζ =

(
2Γ (1 + β)−1

n∑
i,j=1

xiγ
−1
α,β(ti, tj)xj

)1/2

, (2.2.13)

γα,β(ti, tj) =
1

Γ (1 + β)
(tαi + tαj − |ti − tj|α), i, j = 1, ..., n. (2.2.14)
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Proof. See ([16]).

Using the Kolmogorov extension theorem, the above proposition allows us to define

the ggBm in an unspecified probability space. In fact, given a probability space (Ω,F ,P),

the following proposition characterizes the ggBm:

Proposition 2.2.11. [16] Let X(t), t ≥ 0, be a stochastic process, defined in a certain

probability space (Ω,F ,P), such that

1. X(t) has covariance matrix indicated by γα,β and finite-dimensional distributions

defined by Eq. (2.2.12 ).

2. EX2(t) =
2

Γ (1 + β)
tα for 0 < β ≤ 1 and 0 < α < 2.

3. X(t) has stationary increments,

then X(t), t ≥ 0, is a generalized grey Brownian motion.

In fact condition 2) together with condition 3) imply that γα,β must be the ggBm

autocovariance matrix Eq. (2.2.10).

Corollary 2.2.2. [16] Let X(t), t ≥ 0, be a stochastic process defined in a certain

probability space (Ω,F ,P). Let H = α/2 with 0 < α < 2 and suppose that

EX(1)2 = 2/Γ (1 + β).

The following statements are equivalent:

i) X is H-sssi with finite-dimensional distribution defined by Eq. (2.2.12);

ii) X is a generalized grey Brownian motion with scaling exponent α/2 and "fractional

order" parameter β;

iii) X has zero mean, covariance function γα,β(t, s), t, s ≥ 0, defined by Eq. (2.2.10) and

finite dimensional distribution defined by Eq. (2.2.12).

2.3.3.3 Representation of ggBm

Up to now, we have seen that the ggBm Bα,β(t), t ≥ 0, is an H-sssi process, which

generalizes Gaussian processes (it is indeed Gaussian when β = 1) and is defined only

by its autocovariance structure. These properties make us think that Bα,β(t) may be

equivalent to a process ΛβXα(t), t ≥ 0, where Xα(t) is a Gaussian process and Λβ is a
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suitable chosen independent random variable. In this section we will show that gBm

Bα,β admits different representations involves certain known processes, such as fractional

Brownian motion (fBm).

Theorem 2.2.7. (Finite dimensional representation, [2]) Let Bα,β be a gBm, then

for any collection X = {Bα,β(t1), . . . , Bα,β(tn) has characteristic function given by

E(ei(θ,X)) = Eβ

(
−1

2
θTΣαθ

)
, θ ∈ R

and the joint probability density function is given by: θ ∈ Rn

fα,β(θ,Σα) =
(2π)

−n
2

√
detΣα

∫ ∞

0

τ
−n
2 e−

θT Σ−1
α θ

2τ Mβ(τ)dτ,

where the M -Wright density function Mβ is such that

(LMβ)(s) = Eβ(−s).

and

Σα = (tαi + tαj − |ti − tj|α)ni,j=1

Proposition 2.2.12. (Normal variance mixture, [2] ) Let Bα,β(t), t ≥ 0, be a ggBm,

then

{Bα,β(t), t ≥ 0} d
= {
√
LβXα(t), t ≥ 0}, (2.2.15)

where Xα(t) is a standard fBm , Lβ is an independent non negative random variable with

probability density function Mβ(τ), τ ≥ 0.

The representation Eq. (2.2.15) is particularly interesting. In fact, a number of ques-

tion, in particularly those related to the distribution properties of Bα,β(t), can be reduced

to question concerning the fBm Xα(t).

2.3.3.4 ggBm trajectories

In order to obtain examples of the Bα,β(t) =
√
LβXα(t) trajectories, we just have

to simulate the fractional Brownian motion Xα(t). For this purpose (See [16]). Some

typical path simulations of Bβ,β(t) (shortly Bβ(t) and B2−β,β(t)), with β = 1/2 are shown

in Figures ((2.1), (2.2)). The first process provides an example of stochastic model for

slow-diffusion (short-memory), the second provides a stochastic model for fast-diffusion

(long-memory).
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Figure 2.1: Bβ(t) trajectories in the case β = 0.5 for 0 ≤ t ≤ 2

Figure 2.2: B2−β,β(t) trajectories in the case β = 0.5 for 0 ≤ t ≤ 2.

2.3.3.5 Hölder continuity

Proposition 2.2.13. [17] Let 0 < α < 2 and 0 < β < 1. Then for all p ∈ N there exists

K < ∞ such that E(| Bα,β
t −Bα,β

s |2p) = K | t− s |αp, t, s ≥ 0.

The last proposition ensures that generalized grey Brownian motion has a continuous

version. Indeed, choose p ∈ N such that αp > 1 then the previous proposition provides

the estimate E((Bα,β
t − Bα,β

s )2p) ≤ k | t − s |1+p with q = αp − 1 > 0. This estimate is

sufficient to apply Kolmogorov’s continuity theorem.

2.3.3.6 Long-range dependency

Because of the stationarity of the increments, the anomalous diffusion appears deeply

related to the long-range dependence characterization of Bα,β(t). We remember that an

H-sssi process has long-range dependence (or long memory) if 1/2 < H < 1. This means

that the discrete time process of its increments exhibits long-range correlation [16]. That

is, the increments auto-correlation function r(k) tends to zero with a power law as k goes

to infinity. Therefore, when 0 < α < 1 the diffusion is slow and the process has short

memory. While when 1 < α < 2 the diffusion is fast and the process has long memory.
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2.2.3 Continuous Time Random Walk (CTRW)

Continuous-time random walk (CTRW) is an extension of the random walk. More specif-

ically, it is constructed by introducing a new source of randomness to the random walk.

This new source of randomness is waiting time. It was first discussed by Montroll and

Weiss(1965), Kenkre and al. (1973), Gorenflo and al. (2007) .

Figure 2.3: Schematic view on a continuous time random walk (CTRW)

Definition 2.2.12. A simple formulation of a CTRW is to consider the stochastic process

X(t) defined by X(t) = X0 +

N(t)∑
i=1

∆Xi, whose increments ∆Xi are iid random variables

taking values in a domain Ω and N(t) is the number of jumps in the interval (0, t). The

probability for the process taking the value X at time t is then given by

P (X, t) =
∞∑
n=0

P (n, t)Pn(X).

Here Pn(X) is the probability for the process taking the value X after n jumps, and

P (n, t) is the probability of having n jumps after time t, such that

P (n, t) ∼ tα−1

tα + σ2n2

2

=

∫ ∞

0

tα−1e−ktαe−
kσ2n2

2 dk.

Remark. The kind of diffusion that the CTRW formalism yields depends on the distri-

bution of step increments:

• If the increments are small, then diffusion is normal, and a simple diffusion equation

can be derived.
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• If the increments are not small, then super as well as sub-diffusion can result, de-

pending on the concrete choice of increment distributions.

• An important property of the CTRW equations is that they are non-local, both in

space and time (which is also termed non-Markovian).

Definition 2.2.13. The waiting time probability density function with power law tails,

i.e., for large τ is:

ϕ(τ) ∽
1

τ 1+α
, α > 0.

In this case, the first moment of waiting time is divergent for 0 < α < 1.

Example 2.2.1. An example is the heavy-tailed probability density function

ϕ(τ) =


0, τ < τ0;

α
τα0
τ 1+α

, τ > τ0.

(2.2.16)

Here τ0 is a time scale.

Properties

Continuous Time Random Walks (CTRWs) exhibit several important properties that

distinguish them from standard random walks. Here are some key properties of CTRWs:

1. Decoupling of time and space: CTRWs decouple temporal and spatial aspects, allow-

ing for more flexible modeling of processes with independent or different mechanisms

governing temporal and spatial dynamics.

2. Anomalous diffusion: CTRWs can exhibit subdiffusive or superdiffusive behavior de-

pending on the choice of waiting time and jump length distributions, unlike standard

Brownian motion.

3. Long-range correlations and memory effects: CTRWs can capture long-range corre-

lations and memory effects due to broad or heavy-tailed waiting time distributions,

resulting in temporally clustered or bursty events common in complex systems.

4. Non stationarity and aging: CTRWs can exhibit non-stationary behavior, allowing

for the evolution of statistical properties over time, especially in modeling systems

undergoing aging or gradual changes in dynamics.
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5. Fractional dynamics: CTRWs can cause fractional dynamics, involving fractional

derivatives or calculus, due to power-law tails in the waiting time distribution, caus-

ing long-range temporal correlations and memory effects.

Application: Dynamics of the Asset Prices

Modeling dynamics of asset prices plays important role in a lot of microeconomics prob-

lems. For example, by understanding the behavior of stock prices, one can take good

decision for a portfolio [9]. Continuous-time random walk process is a suitable class of

process for modeling the behavior of high frequency data.

Figure 2.4: A trajectory for the continuous-time random walk process: tick-by-tick price

fluctuation.

Figure (2.4) shows a trajectory for the continuous-time random walk. It shows two

random variables play important role in the structure of this process: jump magnitude,

and waiting time. Unlike the random walk, the waiting time for jumps is not the same

during time. It is perfect to describe the behavior of dynamics of The initial setting for

implementing the continuous-time random walk for studying the behavior of asset prices is

as follows. Denote the waiting times between each trade by {j1, j2, · · · , jn, · · · }. Let (Pt)t≥0

and St = log(Pt) be the price process and log-price of an asset at time t. The waiting time

random variables are independent and identically distributed. Let X1, X2, · · · , Xn, · · · be

the log return process, more specifically, Xn is given by

Xn = Sn − Sn−1 = log(Pn)− log(Pn−1) = log

(
Pn

Pn−1

)
. (2.2.17)



2.2 Models of anomalous diffusion 40

Without loss of generality we assume X0 = 0. Bear in mind that the log-return is

more convenient to study the behavior of asset price. Moreover, the log-return random

variables are independent and identically distributed. If the random variables jn and

∆Xn are independent for each value of n, then Xn is called an uncoupled continuous-time

random walk process, and if they are dependent, Xn is called a coupled continuous-time

random walk process. Let Tn = j1 + j2 + ... + jn be the time nth trade. The number of

trades by time t > 0 is Nt = max{n : Tn ≤ t}, and therefore, the log-price at time t is

given by SNt = log(PTn) = X1 +X2 + ...+XNt .

This equation is a subordinated process. More specifically, the calendar time t, for

the stochastic process St is changed with business time, Nt. If the waiting times are ex-

ponentially distributed, the continuous-time random walk process is a compound Poisson

process. Therefore, the continuous-time random process is a Markovian process that

belongs to the class of Lévy processes. In this case, the distribution for the log-price

is Gaussian and for the price the distribution is log-normal. Some properties for the

distribution for a continuous-time random walk process are summarized as follows:

• If the log-returns process has finite variance and c → ∞ , then c
1
2Sct → Bt . Bt is

Brownian motion and its probability density function, f(X, t), is the solution of
∂f(X, t)

∂t
= D

∂2f(X, t)

∂X2
, (2.2.18)

where D > 0.

• If the waiting time random variables have a finite mean such as
1

λ
, then Nt ∼ λt,

when t → ∞. Therefore, the the scaling limit of a continuous-time random walk is

a Brownian motion and its probability density function satisfies Eq. (2.2.18)

• If the distribution of log-returns is symmetric, with zero mean, and its tail has

power-law probability, then the random walk Sn is asymptotically a stable process.

More specifically, if P (|Xn| > r) ∼ r−α, then c−
1
αSct → At, where At is a stable

process. The probability density function for the stable process At is the solution
∂f(X, t)

∂t
= D

∂αf(X, t)

∂|X|α
, (2.2.19)

Remark. • The probability density function for the continuous-time random walk

process does not exist in closed-form, it can be obtained in an asymptotic form.

• The compound poisson process is special class of the continuous-time random walk

processes where the distribution of the waiting time random variable is exponential.
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2.2.4 Fractional Itô motion (FIM)

With the notion of Itô SDEs recalled, we introduce the following model:

fractional Itô motion FIM, IH(t) (t ≥ 0) , where the subscript H manifests the underlying

Hurst exponent. In analogy with fBm, we name FIM in honor of Kioshi Itô the mathe-

matician that invented the white-noise stochastic calculus.

The dynamics of FIM are governed by the Itô SDE

İH(t) = |IH(t)|1−
1

2H Ḃ(t) (2.2.20)

Namely, FIM has a zero drift, µ(x) = 0, and a power-law volatility, σ(x) = |x|1−
1

2H .

Where Ḃ(t) is the white noise , we initiate FIM from the spatial origin IH(0) = 0. Hence,

integrating Eq. (2.2.20) yields

IH(t) =

∫ t

0

|IH(u)|1−
1

2H Ḃ(u)du. (2.2.21)

The right-hand side of Eq. (2.2.21) is a running Itô integral.

Martingale and Markov property

Proposition 2.2.14. [6] A general running Itô integral with an integrand that does not

’look into the future’ is a symmetric process and a martingale, hence, in particular, FIM

exhibits these properties.

Proposition 2.2.15. [6] The FIM is a Markov process and martingale.

Self-similarity Property

Proposition 2.2.16. [6] FIM is a self-similar process, and the Hurst exponent of FIM

takes values in the range 0 < H < 1. Hence, the diffusivity of FIM is identical to the

aforementioned diffusivity of FBM:

1. sub-diffusion in the exponent range 0 < H < 1/2,

2. super-diffusion in the exponent range 1/2 < H < 1,

3. regular diffusion at the exponent value H = 1/2. Indeed, setting H = 1/2 in

Eq. (2.2.21) yields BM: I1/2(t) = B(t).

Proposition 2.2.17. [6]

The FIM is a process with a continuous trajectory, non-Gaussian dissipation patterns.
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Stationary Processes

Using the fact that FIM is a selfsimilar process with Hurst exponent H, as well as the

fact that FIM is a martingale, it is shown in the Methods that the FIM increment

IH(t+∆)− IH(t)

is a random variable with mean zero and with variance

V ar[IH(t+∆)− IH(t)] = V ar[IH(1)].(t+∆)2H − t2H . (2.2.22)

The variance of Eq. (2.2.22) depends on the starting point t, as well as on the length ∆,

of the temporal interval [t, t+∆]. Hence, Eq. (2.2.22) implies that the increments of FIM

are not stationary [6].

Fractional Brownian motion vs fractional Itô motion

In this section we carry on with visual comparisons that examine profound differences

between fBm and FIM. comparisons between simulated trajectories of fBm and FIM are

offered by ( figure (2.5)) (for sub-diffusion) and by ( figure (2.7)) (for super-diffusion).

• The FIM shares the ’upside’ features of fBm: It is a random-motion model which is

symmetric and selfsimilar, and whose trajectory is continuous that generalizes BM.

Produces both sub-diffusion and super-diffusion. As FIM is a Markov process and

a martingale, it circumvents the ’downside’ features of fBm: it well applies in the

context of stochastic integration.

• As fBm and FIM are selfsimilar processes, they both initiate from the spatial ori-

gin. Hence, from a probabilistic perspective, at time 0 both these random motions

manifest a unit mass that is placed at the origin. In turn, at a positive time t, this

unit mass dissipates, and the ’shape of the dissipation’ is quantified by a probability

density function: the density of the randomvariable BH(t), in the case of fBm; and

the density of the random variable IH(t), in the case of FIM.
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Figure 2.5: Simulated trajectories of sub-diffusive fBm (left panels) and of sub-diffusive

FIM (right panels).

The properties of fBm imply that:

– BH(t) is normal with mean zero and with variance V ar[BH(t)] = V ar[BH(1)] ·

t2H. Hence, setting b = V ar[BH(1)], the density of the random variable BH(t)

is:
1√
2πb

· 1

tH
exp

(
− x2

2bt2H

)
. (2.2.23)

This density is a symmetric ’bell curve’ (see figure (2.7)): it vanishes at

x → ±∞ , and it has a unimodal shape the peaks at the spatial origin x = 0.

We emphasize that the shape of this density is the same for all the values of

the Hurst exponent H.

– While the density of the random variable IH(t) is

1

2HΓ (1−H)
·
(
2H2

t

)1−H

exp

(
−2H2

t
|x|1/H

)
|x|1/H−2 (2.2.24)

(−∞ < x < ∞). This density is symmetric, and it vanishes at x → ±∞. The

shape of this density is determined by the value of the Hurst exponent H, as
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follows (see figure (2.7)).

– In the sub-diffusion range, 0 < H < 1/2 , the density has a bimodal shape: it

vanishes at the spatial origin x = 0, and it peaks at the spatial points

x = ±1− 2H

2H2
tH ;

at these points the density’s peak height is cH/tH , where cH is a constant that

depends on the Hurst exponent H.

Figure 2.6: Simulated trajectories of super-diffusive fBm(left panels) and of super-diffusive

FIM (right panels).

– At the regular-diffusion value, H = 1/2, the density is a ’bell curve’: it has a

uni modal shape that peaks at the spatial origin x = 0.

– In the super-diffusion range, 1/2 < H < 1, the density has a unimodal shape

that explodes at the spatial origin x = 0.

– The differences between the shape of the Gaussian fBm density of Eq. (2.2.23)

and the shape of the non-Gaussian (for H ̸= 1/2) FIM density of Eq. (2.2.24)

are dramatic. On the one hand, changing the Hurst exponent H in the fBm

model has no qualitative effect on the shape of the dissipation pattern. On the



2.2 Models of anomalous diffusion 45

other hand, changing the Hurst exponent H in the FIM model has a profound

qualitative effect on the shape of the dissipation pattern.

Figure 2.7: Schematic illustrations of the shapes of the FBM and FIM dissipation patterns

(for a fixed positive time point t).
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Table 2.1: A ’bird’s-eye view’ comparison between the FBM and FIM models with Hurst

exponents H ̸= 1/2.

BM FBM FIM

Finite variance YES

Symmetric process YES

Continuous trajectory YES

Selfsimilar process YES

Hurst exponent H = 1/2 0 < H < 1 0 < H < 1

Gaussian process YES YES NO

Markov process YES NO YES

Martingale YES NO YES

Stationary increments YES YES NO

Uncorrelated increments YES NO YES



Chapter 3
Fractional anomalous diffusion

In this chapter we will first introduce the basic notions of fractional calculus. The area

of mathematics that allows non-integer order integrals and derivatives. Since its to begin

with appearance within the late 17th century it has ended up well known (particularly

among scientists and engineers) because numerous issues are depicted by, and can be

fathomed utilizing fractional calculus. Further details on fractional calculus can be found

in [11, 19] and references therein.

3.1 Fractional calculus

3.1.1 Basic definitions of fractional derivatives and Integrals

This section is devoted to review the most important definitions of fractional derivatives

and Integrals.

3.2.1.1 Grünwald-Letnikov, 1867-1868.

Grünwald-Letnikov derivative or also named Grünwald-Letnikov differintegral is a basic

extension of the natural derivative to fractional one. It was introduced by A. Grünwald

in 1867, and then by A. Letnikov in 1868. Hence, it is written as

f
′
(x) = lim

h→0

f(x)− f(x− h)

h
,

47
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Applying this formula again, we can find the second derivative:

f
′′
(x) = lim

h→0

f
′
(x)− f

′
(x− h)

h
,

= lim
h1→0

lim
h2→0

f(x+h2)−f(x)
h2

− lim
h2→0

f(x−h1−h2)−f(x−h1)
h2

h1

.

By choosing the same value of h, i.e. h1 = h2 = h, the expression simplifies to

f
′′
(x) = lim

h→0

f(x− 2h)− 2f(x− h) + f(x)

h2
,

For the nth derivative, this procedure can be consolidated into the following summation

fn(x) = Dnf(x) = lim
h→0

1

hn

n∑
m=0

(−1)m
(
n

m

)
f(x−mh).

(
n

m

)
=

n!

m!(n−m)!
.

This expression can be generalized for non-integer values for n with α ∈ R provided that

the binomial coefficient be understood as using the Gamma Function as
Γ (α + 1)

m!Γ (α−m+ 1)
in place of the standard factorial. Also, the upper limit of the summation (no longer

the integer, n) goes to infinity as
t− a

h
(where t and a are the upper and lower limits of

differentiation, respectively).

We are left with the generalized form of the Grünwald-Letnikov fractional derivative.

aD
αf(x) = lim

h→0

1

hα

[x−a
h

]∑
m=0

(−1)m
(α− 1)!

m!(α−m+ 1)!
f(x−mh).

For negative α, the process will be integration. Therefore, for integration we write

aD
−αf(x) = lim

h→0
hα

[x−a
h

]∑
m=0

Γ (α +m)

m!Γ (α)
f(x−mh),

or equivalently,

aD
−αf(x) = lim

n→∞

(
n

x− a

)α n∑
m=0

Γ (α +m)

m!Γ (α)
f

(
x−m

(
x− a

n

))
.

3.2.1.2 Riemann-Liouville, 1832-1847.

The Riemann-Liouville operator is still the most frequently used when fractional integra-

tion is performed. It is considered a direct generalization of Cauchy’s formula.
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We begin by introducing a fractional integral of integer order n in the form of Cauchy

formula.

aD
−n
x f(x) =

1

Γ (n)

∫ x

a

(x− t)n−1f(t) dt,

It will be shown that the above integral can be expressed in terms of n-multiple integral,

that is

aD
−n
x f(x) =

∫ x

0

dx1

∫ x1

a

dx2

∫ x2

a

dx3 . . .

∫ xn−1

a

f(t) dt. (3.1.1)

When n = 2, by using the well-known Dirichlet formula, namely∫ b

a

dx

∫ x

a

f(x, y)dy =

∫ b

a

dy

∫ b

y

f(x, y) dx, (3.1.2)

Eq. (3.1.1) becomes

∫ x

a

dx1

∫ x1

a

f(t) dt =

∫ x

a

dtf(t)

∫ x

t

dx1

=

∫ x

a

(x− t)f(t) dt.

(3.1.3)

This shows that the two-fold integral can be reduced to a single integral with the help of

Dirichlet formula. For n = 3, the integral in Eq. (3.1.1) gives

aD
−3
x f(x) =

∫ x

a

dx1

∫ x1

a

dx2

∫ x2

a

f(t) dt,

=

∫ x

a

dx1

[∫ x1

a

dx2

∫ x2

a

f(t) dt

]
.

(3.1.4)

By using the result in Eq. (3.1.3), the integrals within big brackets simplify to yield

aD
−3
x f(x) =

∫ x

a

dx1

[∫ x1

a

(x1 − t)f(t) dt

]
.

If we use Eq. (3.1.2), then the above expression reduces to

aD
−3
x f(x) =

∫ x

a

dtf(t)

∫ t

x

(x1 − t)dx1 =

∫ x

a

(x− t)2

2!
f(t) dt.

Continuing this process, we finally obtain

aD
−n
x f(x) =

1

(n− 1)!

∫ x

a

(x− t)n−1f(t) dt. (3.1.5)

It is evident that the integral in Eq. (3.1.5) is meaningful for any number n provided its

real part is greater than zero.
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Definition 3.1.1. (Riemann-Liouville fractional integrals)

Let f(x) ∈ L(a, b), α > 0, then

aI
α
x f(x) = aD

−α
x f(x) = Iαa+f(x) =

1

Γ (α)

∫ x

a

f(t)

(x− t)1−α
dt, (3.1.6)

and

xI
α
b f(x) = xD

−α
b f(x) = Iαb−f(x) =

1

Γ (α)

∫ b

x

f(t)

(t− x)1−α
dt. (3.1.7)

for x > a is called Riemann-Liouville left-sided and right-sided fractional integral, respec-

tively, of order α.

Theorem 3.1.1. Let f ∈ L1[a, b] and α > 0. Then, the integral Iαa f(x) exists for almost

every x ∈ [a, b]. Moreover, the function Iαa f itself is also an element of L1[a, b].

proof. We write the integral in question as∫ x

a

(x− t)α−1f(t)dt =

∫ +∞

−∞
ϕ1(x− t)ϕ2(t)dt,

where

ϕ1(u) =


uα−1, for 0 < u ≤ b− a

0, else

and

ϕ2(u) =


f(u), for a < u ≤ b

0, else

By construction, ϕj ∈ L(R) for j ∈ {1, 2} and thus by a classical result on Lebesgue

integration.

Example 3.1.1. If f(x) = (x− a)β−1, then find the value of aI
α
x f(x).

We have

aI
α
x f(x) =

1

Γ (α)

∫ x

a

(x− t)α−1(t− a)β−1dt.

If we substitute t = a+ y(x− a) in the above integral, it reduces to

Γ (β)

Γ (α + β)
(x− a)α+β−1

where β > 0. Thus

aI
α
x f(x) =

Γ (β)

Γ (α + β)
(x− a)α+β−1
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Having established these fundamental properties of Riemann-Liouville integral op-

erators, we now come to the corresponding differential operators.

Definition 3.1.2. (Riemann-Liouville Fractional Derivative)

Let (n− 1) ≤ α < n. The operator aD
α
x , defined by

aD
α
xf(x) =

1

Γ (n− α)

(
d

dt

)n ∫ x

a

f(t)

(x− t)α−n+1
dt,

and

xD
α
b f(x) =

1

Γ (n− α)

(
d

dt

)n ∫ b

x

f(t)

(t− x)α−n+1
dt.

is called the Riemann-Liouville left-sided and right-sided fractional differential operator,

respectively, of order α.

For α = 0, we set D0 := I, the identity operator.

3.2.1.3 Caputo Fractional Derivative, 1967

The Caputo fractional derivative is considered to be an alternative definition for Riemann-

Liouville definition, it is introduced by the Italian Mathematician Caputo in 1967.

Definition 3.1.3. Let α > 0, the Caputo left-sided and right-sided fractional differential

operator of order α is given by:

C
a D

α
xf(x) =

1

Γ (n− α)

∫ x

a

f (n)(t)

(x− t)α−n+1
dt,

and
C
xD

α
b f(x) =

1

Γ (n− α)

∫ b

x

f (n)(t)

(t− x)α−n+1
dt,

and
C
a D

α
xf(x) = In−α

a f (n)(x).

3.2.1.4 Other definitions of fractional derivative

In the recent years, new definitions of fractional derivative have been introduced in the

literature. Interesting examples are Marchaud, Hilfer and Canavati fractional derivatives.

Definition 3.1.4. (Marchaud derivative:1927 ) For a function defined on R and for

every α ∈ (0, 1) distinguishing two types of derivatives, respectively from the right and

from the left one :
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Dα
+f(x) =

α

Γ (1− α)
+

∫ ∞

0

f(x)− f(x− t)

t1+α
dt,

and

Dα
−f(x) =

α

Γ (1− α)
+

∫ 0

−∞

f(x)− f(x+ t)

t1+α
dt.

These fractional derivatives are well defined when f is a bounded, locally Hölder con-

tinuous function in R.

Remark. If we compare the Marchaud derivative with respect to the Riemann-Liouville

one, we immediately realize that, in the latter one, the classical derivative operator ap-

pears, while, in the first one, it does not. This is one of the key points that Marchaud’s

definition makes evident. That is, Marchaud derivative avoids applying the classical

derivative after an integration in order to define the fractional operator.

Definition 3.1.5. (Hilfer derivative:2000 ) Let µ ∈ (0, 1), ν ∈ [0, 1], and f ∈ L1[a, b],

a < t < b. The Hilfer derivative is defined as

(Dµ,ν
a+ f)(t) =

(
I
ν(1−µ)
a+

d

dt

(
I
(1−ν)(1−µ)
a+ f

))
(t);

(Dµ,ν
b− f)(t) =

(
I
ν(1−µ)
b−

d

dt

(
I
(1−ν)(1−µ)
b− f

))
(t).

Remark. Notice that Hilfer derivatives coincide with Riemann-Liouville derivatives for

ν = 0 and with Caputo derivatives for ν = 1.

Definition 3.1.6. (Canavati derivative:2009 ) Let n − 1 < α < n, f ∈ Cα([a, b]).

Then, the Canavati derivative of order α is defined as

Can
a Dα

t f(t) =
1

Γ (n− α)
+

d

dt

∫ t

a

f (n−1)(τ)

(t− τ)α−n+1
dτ.

3.1.2 The basic properties of fractional operator

3.2.2.1 Representation

Lemma 3.1.1. [19]

• The Riemann Liouville fractional derivative is equivalent to the composition of the

same operator ((n − α)-fold integration and n − th ordre differentiation) but in

reverse ordre i.e

aD
α
xf(x) = DnIn−α

a f(x)
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• Let n− 1 < α < n, n ∈ N, α ∈ R and f(x) be such that CDα
a f(x) exists. Then,

C
a D

α
xf(x) = In−α

a Dnf(x).

Proposition 3.1.1. In general the two operators, Riemann-Liouville and Caputo, do not

coincide, i.e,

aD
α
xf(x) ̸= C

a D
α
xf(x)

proof. The well-known Taylor series expansion about the point 0 is

f(x) = f(0) + xf (1)(0) +
x2

2!
f (2)(0) +

x3

3!
f (3)(0) + ...+

xn−1

(n− 1)!
f (n−1)(0) +Rn−1

=
n−1∑
k=0

xk

Γ (k + 1)
f (k)(0) +Rn−1

Rn−1 =

∫ x

0

f (n)(s)(x− s)n−1

(n− 1)!
ds =

1

Γ (n)

∫ x

0

f (n)(s)(x− s)n−1ds

= Inf (n)(x).

Using the linearity property of R-L and representation property of Caputo

C
a D

α
xf(x) = In−αDnf(x).

and

aD
α
xf(x) = aD

α
x

(
n−1∑
k=0

xk

Γ (k + 1)
f (k)(0) +Rn−1

)

=
n−1∑
k=0

aD
α
xx

k

Γ (k + 1)
f (k)(0) + aD

α
xRn−1

=
n−1∑
k=0

xk−α

Γ (k + 1)
f (k)(0) + aD

α
xI

nf (n)(x)

=
n−1∑
k=0

xk−α

Γ (k + 1)
f (k)(0) + In−αf (n)(x)

=
n−1∑
k=0

xk−α

Γ (k + 1)
f (k)(0) + C

a D
α
xf(x).

This means that

aD
α
xf(x) ̸= C

a D
α
xf(x)

Proposition 3.1.2. The relation between the Riemann-liouville and Caputo fractional

derivatives is given by:

C
a D

α
xf(x) = aD

α
x

(
f(x)−

n−1∑
k=0

tk

k!
f (k)(0)

)
.
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proof. The proof result of Proposition 3.1.1 is

aD
α
xf(x) =

n−1∑
k=0

xk−α

Γ (k + 1)
f (k)(0) + C

a D
α
xf(x)

This means that
C
a D

α
xf(x) = aD

α

(
f(x)−

n−1∑
k=0

xk

k!
f (k)(0)

)
.

3.2.2.2 Interpolation

Lemma 3.1.2.

• Let n − 1 < α < n, n ∈ N, α ∈ R and f(t) be such that Dαf(t) exists. Then the

following properties for the R-L operator hold:

lim
α−→n

Dαf(t) = f (n)(t),

lim
α−→n−1

Dαf(t) = f (n−1)(t).

• Let n− 1 < α < n, n ∈ N, α ∈ R and f(t) be such that CDαf(t) exists. Then the

following properties for the Caputo operator hold:

C

lim
α−→n

Dαf(t) = f (n)(t),

C

lim
α−→n−1

Dαf(t) = f (n−1)(t)− f (n−1)(0).

proof. The proof uses integration by parts.

cDαf(t) =
1

Γ (n− α)

∫ t

0

f (n)(s)

(t− s)α+1−n
ds

=
1

Γ (n− α)

(
−f (n)(s)

(t− s)n−α

n− α

∣∣∣∣t
s=0

−
∫ t

0

−f (n−1)(s)
(t− s)n−α

n− α
ds

)

=
1

Γ (n− α + 1)

(
f (n)(0)tn−α +

∫ t

0

f (n+1)(s)(t− s)n−αds

)
.

Now, by taking the limit for α −→ n and α −→ n− 1, respectively, it follows
C

lim
α−→n

Dαf(t) =
(
f (n)(0) + f (n)(s)

) ∣∣∣∣t
s=0

= f (n)(t)

and
C

lim
α−→n−1

Dαf(t) =
(
f (n)(0) + f (n)(s)(t− s)

) ∣∣∣∣t
s=0

−
∫ t

0

−f (n)(s)ds

= f (n−1)(s)

∣∣∣∣t
s=0

= f (n−1)(t)− f (n−1)(0).
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For the Riemann-Liouville fractional differential operator the corresponding interpola-

tion property reads

lim
α−→n

Dαf(t) = f (n)(t),

lim
α−→n−1

Dαf(t) = f (n−1)(t).

3.2.2.3 Non-commutation

Lemma 3.1.3. • Let n − 1 < α < n, m,n ∈ N, α ∈ R and the function f(x) is

such that aD
α
xf(x) exists. Then, in general, Riemann Liouville operator is also

non-commutative and satisfies

Dm (aD
α
xf(x)) = aD

α+m
x f(x) ̸= aD

α
x (D

mf(x))

• Let n − 1 < α < n, m,n ∈ N, α ∈ R and the function f(x) is such that C
a D

α
xf(x)

exists. Then in general

C
a D

α
x (D

mf(x)) = C
a D

α+m
x f(x) ̸= Dm

(
C
a D

α
xf(x)

)
proof Let α =

1

2
, f(x) = 1, and m = 1. using the definition of Dα

x ,

D
1
2
xD

1(1) = D
1
2 (0) = 0,

D
3
2
x (1) = − 1

2
√

(π)
x− 3

2 ,

D
1
2
xD

1(1) = 0 ̸= D
− 3

2
x .

That means

D
1
2D1(1) ̸= D1D

1
2 (1).

The same proof of Caputo.

3.2.2.4 Composition

• Fractional integration of a fractional integral

The Riemann-Liouville fractional integral has the following important property

aD
−p
t (aD

−q
t f(t)) = aD

−q
t (aD

−p
t f(t)) = aD

−p−q
t f(t), (3.1.8)
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which is called the composition rule for the Riemann-Liouville fractional integrals. Using

the definition the proof is quite straightforward

aD
−p
t

(
aD

−q
t f(t)

)
=

1

Γ (p)

∫ t

a

(t− τ)p−1(aD
−q
t f(τ))dτ

=
1

Γ (p)

∫ t

a

(t− τ)p−1

(
1

Γ (q)

∫ τ

a

(τ − ξ)q−1f(ξ)dξ

)
dτ

=
1

Γ (p)Γ (q)

∫ t

a

∫ τ

a

(t− τ)p−1(τ − ξ)q−1f(ξ) dξ dτ.

Changing the order of integration we obtain

aD
−p
t

(
aD

−q
t f(t)

)
=

1

Γ (p)Γ (q)

∫ t

a

f(ξ)

∫ τ

a

(t− τ)p−1(τ − ξ)q−1 dτ dξ.

We make the substitution
τ − ξ

t− ξ
= ζ from which it follows that dτ = (t − ξ) dζ and the

new interval of integration is [0, 1]. Now we are able to rewrite the last expression as

aD
−p
t

(
aD

−q
t f(t)

)
=

1

Γ (p)Γ (q)

∫ t

a

f(ξ)

(
(t− ξ)p+q−1

∫ 1

0

(1− ζ)p−1ζq−1dζ

)
dξ

=
1

Γ (p)Γ (q)

∫ t

a

f(ξ)
(
(t− ξ)p+q−1B(p, q)

)
dξ,

Using identity Eq. (1.1.5) to express the Beta function in terms of the Gamma function

we obtain

aD
−p
t

(
aD

−q
t f(t)

)
=

1

Γ (p)Γ (q)

Γ (p)Γ (q)

Γ (p+ q)

∫ t

a

f(ξ)(t− ξ)p+q−1 dξ

=
1

Γ (p+ q)

∫ t

a

(t− ξ)p+q−1f(ξ) dξ

= aD
−p−q
t f(t).

• Fractional differentiation of a fractional integral

An important property of the Riemann-Liouville fractional derivative is

aD
p
t

(
aD

−q
t f(t)

)
= aD

p−q
t f(t), (3.1.9)

where f has to be continuous and if p ≥ q ≥ 0, the derivative aD
p−q
t f exists. This property

is called the composition rule for the Riemann-Liouville fractional derivatives. We shall

prove this property, but first we need another property which actually is a special case of

the previous one with q = p

aD
p
t

(
aD

−p
t f(t)

)
= f(t), (3.1.10)

where p > 0 and t > a. This implies that the Riemann-Liouville fractional differentiation

operator is the left inverse of the Riemann-Liouville fractional integration of the same

order p. We prove this in the following way.
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• First we consider the case p = n ∈ N∗, then we have

aD
n
t

(
aD

−n
t f(t)

)
=

dn

dtn
1

Γ (n)

∫ t

a

(t− τ)n−1f(τ)dτ

=
d

dt

∫ t

a

f(τ)dτ = f(t).

• For the non-integer case we take k − 1 ≤ p < k and use Eq. (3.1.8) to write

aD
−k
t f(t) = aD

−(k−p)
t

(
aD

−p
t f(t)

)
.

Now using the definition of the Riemann-Liouville differintegral we obtain

aD
p
t

(
aD

−p
t f(t)

)
=

dk

dtk

[
aD

−(k−p)
t

(
aD

−p
t f(t)

)]
=

dk

dtk
[
aD

−k
t f(t)

]
= f(t).

• Now we are able to prove Eq. (3.1.9). We consider two cases. First we’ll deal with

q ≥ p ≥ 0. Then we have

aD
p
t

(
aD

−q
t f(t)

)
= aD

p
t

[
aD

−p
t

(
aD

−(q−p)
t f(t)

)]
= aD

p−q
t f(t).

This follows directly from Eq. (3.1.8) and Eq. (3.1.10). Now we will consider the

second case in which we have p > q ≥ 0. Using Eq. (3.1.8) we see that

aD
p
t

(
aD

−q
t f(t)

)
=

dk

dtk

[
aD

−(k−p)
t

(
aD

−q
t f(t)

)]
=

dk

dtk

(
aD

p−q−k
t f(t)

)
=

dk

dtk

(
aD

−(k−(p−q))
t f(t)

)
= aD

p−q
t f(t).

So in both cases we proved Eq. (3.1.9).

Remark. The converse of Eq. (3.1.10) is not true, so aD
−p
t (aD

p
t f(t)) ̸= f(t). The proof

for this can be found in [19].

3.2.2.5 Semigroup

Theorem 3.1.2. For any f ∈ C([a, b]) the Riemann-Liouville fractional integral satisfies

Iαa+I
β
a+f(x) = Iα+β

a+ f(x),

for α > 0, β > 0.
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proof. The proof is rather direct, we have by definition:

Iαa+I
β
a+f(x) =

1

Γ (α)Γ (β)

∫ x

a

dt

(x− t)1−α

∫ t

a

f(u)

(t− u)1−β
du,

and since f(x) ∈ C([a, b]) we can, by Fubini’s theorem, interchange order of integration

and by setting t = u+ s(x− u), we obtain

Iαa+I
β
a+f(x) =

B(α, β)

Γ (α)Γ (β)

∫ x

a

f(u)

(x− u)1−α−β
du = Iα+β

a+ f(x).

3.2.2.6 Linearity

Let f and g are functions for which the given derivatives or integrals operator are defined

and λ, µ ∈ R are real constants.

aD
p
t (λf(t) + µg(t)) = λ aD

p
t f(t) + µ aD

p
t g(t).

proof.

• For Grüunwald-Letnikov fractional derivative, we have:

aD
p
t (λf(t) + µg(t)) = lim

h→0
h−p

m∑
r=0

(−1)r
(
p

r

)
(λf(t− rh) + µg(t− rh))

= λ lim
h→0

h−p

m∑
r=0

(−1)r
(
p

r

)
f(t− rh)

+ µ lim
h→0

h−p

m∑
r=0

(−1)r
(
p

r

)
g(t− rh)

= λ aD
p
t f(t) + µ aD

p
t g(t).

• For Riemann-Liouville differintegral:

aD
−p
t (λf(t) + µg(t)) =

1

Γ (p)

∫ t

a

(t− τ)p−1(λf(t) + µg(t))dτ

= λ
1

Γ (p)

∫ t

a

(t− τ)p−1f(τ)dτ + µ
1

Γ (p)

∫ t

a

(t− τ)p−1g(τ)dτ

= λ aD
−p
t f(t) + µ aD

−p
t g(t).

3.2.2.7 Zero Rule

It can be proved that if f is continuous for t ≥ a then we have

lim
p→0

aD
−p
t f(t) = f(t).

proof. The proof can be found in [19]. Hence, we define

aD
0
t f(t) = f(t).
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3.2.2.8 Product Rule & Leibniz’s Rule

If f and g are functions, We know the derivative of their product is given by the product

rule

(f.g)′ = f ′.g + f.g′.

This can be generalized to

(fg)(n) =
n∑

k=0

(
n

k

)
f (k)g(n−k),

which is also known as the Leibniz rule. In the last expression f and g are n-times

differentiable functions.

3.2 Application: Anomalous Diffusion in the Human

Brain Using Fractional Order Calculus

A new diffusion model has been proposed to describe anomalous diffusion behavior in

human brain tissues [24], particularly at high b-values. The model uses fractional or-

der calculus to solve the Bloch-Torrey equation and yields new parameters for describing

anomalous diffusion. This study successfully applied the fractional calculus model to

analyze diffusion images of healthy human brain tissues in vivo. The model produced

spatially resolved maps of diffusion coefficient D, fractional order derivative in space β,

and spatial parameter µ, showing notable contrast between white and gray matter due to

the varying complexity of tissue structures and microenvironment.

In many biologic tissues, the diffusion-induced MR signal loss deviates from monoex-

ponential decay, exp(-bD) (where D is the diffusion coefficient and b is the b factor),

particularly at high b-values (e.g.,> 1500sec/mm2 for human brain tissues). This phe-

nomenon, sometimes referred to as anomalous diffusion, has been modeled extensively

using a biexponential function:

S/S0 = (1− f)exp(−bDfast) + fexp(−bDslow) (3.2.1)

where the fast diffusion coefficient Dfast can be an order of magnitude larger than the

slow diffusion coefficient Dslow whose fraction is given by f . At relatively low b-values

(e.g., b ⩽ 1000sec/mm2) , the first term in Eq. (3.2.1) dominates, giving a pseudo mo-

noexponential decay reflecting primarily the fast diffusion component. As the b-value
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increases, the contribution of the slow diffusion component becomes increasingly impor-

tant and the deviation from monoexponential decay becomes nonnegligible.

The ’biexponential’ behavior has been attributed to tissue heterogeneity manifested by

cellular structures, cell membrane, and/or differences between intra- and extracellular

spaces. The exact origin of the biexponential decay, however, remains elusive. A preva-

lent explanation associates the fast and slow diffusion with the extra- and intracellular

compartments, respectively, by assuming that higher concentration of macromolecules

and presence of subcellular structures (organelles, mitochondria, etc.) can considerably

hinder water molecular diffusion in the cell. This seemingly plausible explanation has

been used to interpret changes of apparent diffusion coefficients observed in acute cere-

bral ischemia, epidermoid, arachnoid cyst, gliomas, and other diseases. However, the slow

diffusion fraction f, obtained from biexponential fitting, correlates poorly with known cell

volume fraction. For example, the cell volume fraction in the gray matter of healthy

human brain is typically ∽ 80% .

The biexponential model yields a slow diffusion fraction of only ∽ 40%. In addi-

tion, biexponential behavior has been observed from the intracellular compartment alone,

further challenging the validity of the intra/extracellular diffusion model. To resolve this

discrepancy, Sehy et al. [24], attributed the slow diffusion component to water molecules

in the close vicinity of the cell membrane instead of the intracellular space. Although a

good correlation has been established between the membrane volume and the slow diffu-

sion fraction, the division of water molecules between the two compartments is somewhat

arbitrary since the molecules span a continuum of distribution.

Recognizing the limitations of the biexponential model, several groups have investi-

gated alternative models to describe signals in high b-value diffusion imagin. Jensen et

al. [24], used kurtosis to account for nongaussian diffusion observed at high b-values.

Pfeuffer et al. Generalized the biexponential decay to a multicompartmental model:

S/S0 =
n∑

i=0

fie
−bDi (3.2.2)

where

• fi is the volume fraction of the i− th compartment and
n∑

i=0

fi = 1.
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Bennett et al. [24], used a stretched exponential model Eq. (3.2.2) to describe the

diffusion-induced signal loss:

S/S0 = e−(b×DDC)α (3.2.3)

where

• DDC, coined as distributed diffusion coefficient, is a single number representation

of the diffusion coefficient distribution function.

• α is an empiric constant (0 < α ⩽ 1)).

The mean-squared displacement of water molecules is linked with the fractal dimen-

sion (H).

• H = 1/dw.

• dw is the Brownian motion path (dw > 2 indicates subdiffusion, while dw < 2

corresponds to superdiffusion).

In the stretched exponential formalism was derived by recognizing that first the mean

square displacement ⟨r2(t)⟩ of diffusing molecules is related to diffusion time t by Eq.(3.2.4)

and second, the dependence of apparent diffusion coefficient on b can be expressed anal-

ogously to the dependence of diffusion coefficient on t Eq. (3.2.5),

⟨r2(t)⟩ ∝ tα (3.2.4)

ADC ∝ ⟨R2(b)⟩
b

(3.2.5)

where

• ⟨R2(b)⟩ is the apparent mean square displacement, analogous to ⟨r2(t)⟩.

Equations (3.2.4) and ( 3.2.5) directly lead to the stretched exponential expression

described by Eq. (3.2.3).

Fractal models suggest a possible fractional order dynamics in diffusion-induced magne-

tization changes, as dictated by the Bloch-Torrey equation. Researchers have examined

the connection between fractional order dynamics and diffusion by solving the Bloch-

Torrey equation using fractional order calculus. The stretched exponential model follows
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from a fundamental extension of this equation through the application of fractional cal-

culus operators. The model based on fractional calculus yields a new set of parameters

to describe anomalous diffusion:

• D diffusion coefficient.

• β fractional order derivative in space .

• µ a spatial parameter.

This study demonstrates that the fractional calculus (FC) model can be successfully

applied to analyzing diffusion images of healthy human brain tissues in vivo, producing

spatially resolved maps of D, β, and µ.

3.2.1 Theory

If C(x, t) represents the concentration of the diffusing species in one dimension, then a

fractional order partial differential equation Eq. (3.2.6) emerges from Fickś first law,

∂C(x, t)

∂tα
= D̀

∂2βC(x, t)

∂|x|2β
(3.2.6)

where

• D̀ is the generalized diffusion coefficient (note that the units of D̀ are mm2b/second).

• α (0 < α ⩽ 1) is a fractional order derivative with respect to time.

• β (0 < β ⩽ 1), a fractional order derivative with respect to space.

With this formalism, a fractional order generalization of the Bloch-Torrey equation can

be written as

τα−1C
0 Dt

αMXY (r, t) = λMXY (r, t) +Dµ2(β−1)∇2βMXY (r, t) (3.2.7)

λ = −iγ(r,G) (3.2.8)

where

• C
0 D

t
α is the Caputo form of the Riemann-Liouville fractional order derivative in time

(see Eq. (3.2.9)).

• ∇2β = (D2β
x +D2β

Y +D2β
Z ) is a Riesz fractional order Laplacian operator in space.
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• γ is the gyromagnetic ratio.

• MXY represents the transverse magnetization.

• τ 1−α and µ2(β−1) are fractional order time and space constants, respectively, needed

to preserve units (e.g., the units of diffusion coefficient D remain as mm2/sec).

The fractional order derivative operator C
0 D

t
α can be explicitly expressed as:

C
0 D

t
αMXY (r, t) =

1

Γ (1− α)

∫ t

0

M̀XY (r, τ)

(t− τ)α
dτ (3.2.9)

where

• MXY (r, t) indicates the first order derivative with respect to time.

• Γ (1− α) is a gamma function defined as

Γ (X) =

∫ ∞

0

e−uuX−1du (3.2.10)

For fractional order dynamics in space (i.e., a = 1,0 < b < 1), the transverse

magnetization was derived for constant, bipolar, Stejskal-Tanner, and twice-refocused

diffusion gradients, respectively. The result for the Stejskal-Tanner gradient is given by

Eq. (3.2.11).

MXY = M0exp

[
−Dµ2(β−1)(γGdδ)

2β

(
∆− 2β − 1

2β + 1
δ

)]
(3.2.11)

where

• Gd is the diffusion gradient amplitude

• δ and ∆ are the diffusion gradient pulse width and gradient lobe separation, respec-

tively [24].

When b = 1. Eq. (3.2.11) reduces to the well-known monoexponential expression

exp(−bD) , and the spatial variable m is nullified. In a general case where b < 1, µ

becomes active and the conventional definition of b value does not hold. To accommodate

these changes, we define a new parameter b∗ as follows:

b∗ ≡ (γGdδ)
2

(
∆− 2β − 1

2β + 1
δ

)
(3.2.12)

With this definition, Eq. (3.2.11) becomes

MXY = M0exp

[
−Dµ2(β−1)(b∗)β

(
∆− 2β − 1

2β + 1
δ

)1−β
]

(3.2.13)
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If we further define a pseudo diffusion coefficient D∗ in Eq. (3.2.14), then Eq. (3.2.13)

takes the form of stretched exponential decay (18-20), as described by Eq. (3.2.15).

D∗ =

[
D

µ
2(1− 1

β
)

(
∆− 2β − 1

2β + 1
δ

) 1
β
−1
]

(3.2.14)

MXY = M0exp
[
−(D∗ × b∗)β

]
(3.2.15)

• Note that D∗ preserves the nominal units of diffusion coefficient (mm2/sec) and is

analogous to the distributed diffusion coefficient described by Bennett et al. [24].

• It is also interesting to note that D* becomes identical to D if

µ2 = D

(
∆− 2β − 1

2β + 1
δ

)
,

which can be derived from the equations above.

Although the present study focuses on the diffusion model with fractional order in

space described by Eqs. ((3.2.11)-(3.2.15)), for completeness we also present theoretical

formulism for the fractional order dynamics in time (i.e., 0 < α < 1, b = 1). With a

constant diffusion gradient and an free induction decay (FID) acquisition, the transverse

magnetization is given by

MXY = M0Eα [−iγGdrτ(t/τ)
α] exp

[
−B(t/τ)3α

]
(3.2.16)

B =
2Γ (2− α)Dγ2Gzτ

3

3α2Γ (2α + 1)
(3.2.17)

where

• r is a spatial variable along the diffusion gradient direction.

• Eα is the single parameter Mittag-Leffler function. When α = 1, Eq. (3.2.16)

becomes identical to the classic expression describing diffusion-indced signal atten-

uation in an FID under the influence of a constant gradient.

3.2.2 Materials and method

Image Acquisition

To demonstrate and evaluate the FC model described above, high b-value diffusion

imaging experiments were carried out on five healthy human volunteers, using a 3 − T
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GE Signa HDX scanner (General Electric Healthcare, Waukesha, WI) equipped with a

gradient system capable of a maximal amplitude of 40 mT/m and a maximal slew rate of

150 T/m/sec. An eight-channel phased-array head coil was employed to enable parallel

imaging (acceleration factor = 2) for improved robustness against image distortion aris-

ing from magnetic susceptibility variations. All images were acquired using a customized

single-shot echo-planar imaging diffusion sequence. This sequence reduces image distor-

tion caused by eddy currents by dynamically adjusting the imaging gradients (readout,

phase encoding, and slice selection), as well as the receiver frequency to offset the eddy

current magnetic fields. With this compensation, the maximal image shift and distortion

were limited to the subpixel level, as confirmed by a phantom scan. This effective com-

pensation technique allowed us to use the conventional Stejskal-Tanner gradient based

upon which Eqs. ((3.2.11)-(3.2.15)) were derived. This simpler gradient waveform fea-

tures a shorter echo time than the twice-refocused gradient waveforms implemented in

commercial diffusion sequences.

Fifteen b-values, ranging from 0 to 4700 sec/mm2, were produced by varying the

Stejskal-Tanner diffusion gradient amplitude (Gd) while keeping the pulse width (δ) and

separation (∆) constant (∆ = 55.7 ms and δ = 48.7 ms). At each b-value, the diffusion-

weighting gradient was successively applied along each of the three orthogonal axes to

acquire diffusion-weighted images in the axial plane. Trace-weighted images were then

computed to remove the effect of diffusion anisotropy, as well as to increase the signal-to-

noise ratio (SNR), followed by analysis using the FC diffusion model. The other acquisition

parameters were repetition time = 3000 ms, echo time = 112 ms, slice thickness = 4 mm,

slice gap = 1.5 mm, field of view = 22 cm2, image matrix size = 256 × 256, number of

excitations (NEX) = 8, and the total scan time ≈ 18 min.

Image Analysis

Prior to image analysis, the degree of image misregistration caused by head motion

was evaluated among the images with different b-values. A pair of images with adjacent

b-values was subtracted from each other to detect
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Figure 3.1: A set of representative diffusion-weighted images with different b-values, as

shown in the figure. Each frame represents a trace-weighted image obtained by taking the

geometric average of the individual diffusion images, with diffusion gradient successively

applied along each of the three orthogonal axes.

Relative motion by assessing the width of the edge in the resultant difference image.

If substantial edge intensity (i.e., edge width is more than a half of a pixel) was observed,

a rigid-body motion correction was performed by applying a linear phase ramp in k-space

in the direction along which image shift was detected. The maximal shift observed in

all subjects was approximately two pixels, although the motion amplitude was typically

well within the subpixel level, which required no correction. Considering the relatively

low spatial resolution (4mm) in the slice direction, no attempt was made to correct for

through-plane motion.

After motion correction, image pixel intensities as a function of Gd were fitted to the FC

diffusion model described by Eq. (3.2.11), using a Levenberg-Marquardt nonlinear fitting

algorithm. An intensity threshold was set at n̄ + 2σ, where n is the mean noise in the

background and s is the standard deviation of noise. Pixel intensities below this threshold
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were not included in curve fitting. Both n and s were computed from a background region

of interest (ROI; ∽ 100 pixels in snnize) free from the Nyquist ghost. The noise followed

a Rician distribution.

In the fitting, the initial D value for each pixel was obtained from the data acquired

at b-values < 1000 sec/mm2, using the classic monoexponential model. The initial β

values were chosen as ∽ 1, and the initial m values were fitted from Eq. (3.2.11), with

µ being the only variable (the initial values of D and β were used in this fitting). After

the initial values were determined, the set of diffusion- weighted images was analyzed

using Eq. (3.2.11) to yield the final values of D, β, and µ on a voxel-by-voxel basis.

In addition, the same fitting algorithm was also applied to representative ROIs in gray

matter (putamen), white matter (genu of the corpus callosum), and cerebrospinal fluid

(CSF). The typical ROI size was 2× 2 pixels. For both pixelwise and ROI analyses, the

quality of the fit was measured by χ2.

3.2.3 Result

Figure (3.1) displays a set of representative diffusion-weighted images from a human

volunteer with b-values ranging from 0 to 4700 sec/mm2. With an NEX of 8 and a

moderate echo time (112ms), an SNR greater than 3.5 was achieved in the brain tissues

(except for CSF) even at the highest b-value. The SNRs in several selected brain regions

are summarized in Table 1. Although images with fewer averages were also attempted, it

was found that eight averages were needed to achieve an adequate SNR for reliable and

stable fitting results. The problem with head motion during the long acquisition time

(∽ 18min) was addressed effectively using the motion correction technique described in

the Materials and Methods section.
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Table 3.1: SNR in Selected Brain Regions at Two Different b-values.

Caudate

Putamen Nucleus Genu Splenium

b = 2050sec/mm2 8.5 10.7 13.5 14.3

b = 4700sec/mm2 3.5 4.6 5.7 6.5

Figure 3.2: Spatially resolved maps based on D(a), β(b), and µ(c) obtained from the

images shown in Fig.(3.1). The units and scales are indicated on the right color bar.

Figure (3.2) shows a set of representative maps of D, β and µ obtained from the

diffusion-weighted images in Fig.(3.1). The D map (Fig.(3.2) a) closely resembles that

obtained using a monoexponential model with a typical value of 0.66 ± 0.007 × 103,

0.41 ± 0.008 × 103, and 2.72 ± 0.006 × 103 mm2/sec in the putamen, genu, and CSF,

respectively (Table 2). The small standard deviations demonstrated the high reliability

of the fit. Both the β and µ maps (Fig.(3.2) b, c) exhibited remarkable gray/white

matter contrast. The β and µ values in the three representative ROIs (putamen, genu,

and CSF) are shown in Table (3.2). In general, the white matter showed substantially

lower β value (e.g., 0.64± 0.01 in the genu) than the gray matter (e.g., 0.82± 0.01 in the

putamen), suggesting a larger deviation from the monoexponential model. This result

was consistent with the increased diffusion complexity (such as anisotropy) in the white

matter comprising primarily axons linked together to form the fiber structures. The

CSF exhibited the largest b-value (0.95 ± 0.01; very close to 1.0), reflecting a simpler
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diffusion process with minimal anomalous diffusion, as expected. The speckles in the β

map were not caused by noise as they were not accentuated when the SNR was lowered

with NEX= 6. In the µ map (Fig.(3.2) c), the contrast between the white and gray

matter was most striking, exhibiting features typically seen in fractional anisotropy maps

obtained in diffusion tensor imaging, even though the effects of diffusion anisotropy were

suppressed by using diffusion-trace-weighted images to obtain the µ map. The m values

for the three representative ROIs (putamen, genu, and CSF) were found to be 5.88± 0.06

mm, 4.87 ± 0.06 mm, and 7.53 ± 0.12 mm, respectively (Table 3.2). The error terms

in the gray matter and white matter were comparable, but both were significantly lower

than that in the CSF. As detailed in the Discussion section, the increased error in the

CSF can be partially attributed to the fact that µ becomes increasingly unstable when β

approaches 1 (Eq. (3.2.11)). Although not explicitly shown, the same results were also

observed in the other four subjects in the study.

Table 3.2: Diffusion Parameters Obtained From Three Brain Regions, Using the FC

Diffusion Model.
aIn CSF, only images with b < 1400 sec/mm2 were used in the fitting.

D (×10−3mm2/sec) β µ(µm) χ2

Putamen 0.66 ± 0.007 0.82 ± 0.01 5.88 ± 0.06 0.01

Genu 0.41 ± 0.008 0.64 ± 0.01 4.87 ± 0.06 0.02

CSF 2.72 ± 0.006 0.95 ± 0.01 7.53 ± 0.12 0.01a

As an example, the quality of the fractional order curve fits is illustrated in Fig.(3.3),

where the signal intensities of the three representative ROIs are plotted as a function of b∗

defined in Eq. (3.2.12) (note that the fitting was originally performed with respect to the

diffusionweighting gradient amplitude Gd, which was later converted to b∗ for display). As

indicated in Table 2, the fitting errors are rather small, with χ2 ranging from 0.01 to 0.02.

For comparison, the same dataset was also fitted to the biexponential function given by
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Eq. (3.2.1) 1. The χ2 errors of the biexponential fit were four to five times larger. These

results were typical for all image pixels and all subjects who were evaluated in this study.

Figure 3.3: Image signal intensity as a function of b∗ for three selected ROIs. WM: white

matter selected from the genu; GM: gray matter selected from the putamen.

3.2.4 Discussion

In this study, a novel model to analyzing anomalous diffusion in human brain tissues

in vivo at high b-values up to 4700 sec/mm2 have been applied. This model is based

on solutions of fractionalized Bloch-Torrey differential equation with respect to space.

The theoretical results demonstrate that the fractional order differential operator yields

mathematical expressions similar to those developed by Özarslan, Bennett , Hall and

Barrick [24], without relying on fractals or empiric information. Fractionalization of

the Laplacian in the Bloch-Torrey equation produces two additional parameters: the

operational order parameter β (dimensionless) and the unitpreserving space constant µ

(in units of micrometers). As shown by Eq. (3.2.15), β is directly related to the exponent

in the stretched exponential model and serves as a parameter describing the fractional

order dynamics associated with anomalous diffusion in biologic tissues.
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Figure 3.4: A sequence diagram of the diffusion-weighting module with twice-refocused

spin echo.

Previous studies on phantoms and biologic tissues have shown that a decrease in

β value strongly correlates with increased structural complexity. This observation was

further substantiated in the present study, where white matter was found to consistently

exhibit lower β values than the gray matter not only in the selected ROIs but also in

virtually all pixels in the major white-matter tracts. This result suggests a connection

between the phenomenological stretched exponential and the fractional order dynamics

assumed here for describing anomalous diffusion using the fractionalized Bloch-Torrey

equation. The β value employed in the model also naturally distinguishes simple diffu-

sion (e.g., monoexponential diffusion) from anomalous diffusion. In the fluid environment

of CSF where conventional diffusion processes (instead of anomalous diffusion) are ex-

pected, β gives a significantly higher value (ranging from 0.94 to 1.0) than those in the

brain parenchyma.

Unlike β, which can also be derived from fractals, µ is unique to the FC diffu-

sion model. Although µ was introduced as a parameter to preserve the nominal units of

diffusion coefficient, it appears to provide a measure of diffusion environment with a sur-

prisingly high contrast between the white and gray matter (Fig.(3.2) c). Previous studies

on Sephadex with different pore sizes found that m was inversely related to the mean

free length of diffusing molecules. This trend, however, was not observed in the brain

tissues. Instead, the smaller µ values in the white matter as compared to the gray mat-

ter suggested a correlation with the reduced mean free length because of tightly packed

axonal structures. In the CSF where the diffusion process is least restricted, the largest
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µ value was observed despite an elevated error Table ((3.2)). To use the µ map for tissue

characterization, however, caution must be exercised because µ values become increasing

unstable as β approaches 1.0 (Eq. (3.2.11)). This phenomenon was seen in the CSF

(β ≈ 1) where µ values exhibited large variations, ranging from 5.9 mm to 8.7 mm. For

white matter and gray matter in which β was typically less than 0.8, µ values were very

stable, as shown by the small standard deviations in Table (3.2).

Introduced as mathematical parameters, both β and µ have shown good correlations

with physical entities such as tissue structures and the microenvironment in which water

diffusion becomes anomalous. The biophysical interpretation of β and µ needs to be fur-

ther explored through simulations and well-controlled experiments. The exact relationship

between β or µ and tissue structures may provide us with valuable insights into anoma-

lous diffusion in tissue, perhaps revealing new features of the tissue microenvironment.

Even with limited and preliminary results on β and µ, the FC diffusion model appears

to suggest a fundamentally different approach to exploring tissue structures through dif-

fusion measurements. Instead of focusing on changes in the diffusion coefficient or the

multicompartmental feature of diffusion process, the FC model emphasizes the fractional

order dynamics associated with diffusion environmental changes that can be related to

experimentally measurable parameters β and µ. The microenvironmental changes in tis-

sues are the reasons for the observed changes in apparent diffusion coefficient. With the

FC diffusion model, we may have a more direct access to the tissue microenvironmental

changes than what is typically inferred from apparent diffusion coefficients using the ex-

isting approaches.

Unlike other diffusion models, the diffusion coefficient in Eq. (3.2.11) is decoupled

from the parameters relating to the tissue microenvironment and thus reflects the diffu-

sion process in a pure physical sense without being substantially influenced by structures.

This property was further preserved in the fitting algorithm, in which the initial D value

was determined from the low b-values (b < 1000 sec/mm2) where the nominal diffusion

process is dominant. Once the initial diffusion coefficient was determined, the final D

value did not vary substantially, even when data with substantially higherb values were

employed in the fitting. This result suggests that the diffusion coefficient in the FC model

may reflect an intrinsic physical property not substantially influenced by diffusion envi-
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ronment.

The highest b-value employed in this study was limited to 4700 sec/mm2 due to the

maximal gradient strength available (40mT/m) and SNR considerations. b-values beyond

4700 sec/mm2 were attempted, but the low SNR (e.g., SNR < 3) led to unreliable nonlin-

ear fitting. Even at b = 4700 sec/mm2, a large number of signal averages was needed to

achieve an adequate SNR, resulting in long acquisition times (i.e., 18 min for 15 b-values).



Conclusion

The concept of diffusion plays a fundamental role in the understanding of our sur-

rounding, specially in those systems in which the motion of particles cannot be

completely described by a deterministic theory. For a long time, most stochastic processes

where associated to a Brownian (or normal)-like behaviour. However, in recent years, we

have seen how many of the systems of study diverge from it. In order to explain such di-

vergence, other models that currently form what we now know as the anomalous diffusion

theory; inspired and closely related to Brownian motion have been proposed.

The main point of this master thesis was to present the main concepts behind normal

and anomalous diffusion stochastic processes. Starting from the different regimes of diffu-

sion, namely normal, subdiffusive and superdiffusive. then studying the mean anomalous

diffusion stochastic processes, discussing first their formal characteristics, and properties

such as Grey Brownian motion (GBM), fractional Brownian motion (fBm), Continuous-

time random walk (CTRW) and fractional Itô motion (FIM). and last as a practical

application, a new mathematical approach-fractional order calculus-to describe anoma-

lous diffusion in human brain tissues have been used. The result, based on fractional

order calculus, yields a diffusion model that features two new parameters: the fractional

order parameter β (dimensionless) and the unit-preserving space constant µ (in units of

µm). Spatially resolved maps based on β and µ showed notable contrast between white

and gray matter. The contrast observed in β and µ maps appears to correlate with the

underlying tissue structures and micro-environment. Although the biophysical basis of β

and µ remains elusive, these parameters can potentially characterize molecular diffusion

beyond what the apparent diffusion coefficient can offer and may lead to a new way to

investigate tissue structural changes in disease progression, intervention, and regression.
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