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Notations

N Set of positive natural numbers.

R+ Set of nonnegative real numbers.

(Ω,F ,P) Probability space.

E Expectation with respect to P.

E = {1, ...., s} Finite state space.

ME Set of real matrix on E× E.

ME(N) Matrix-valued functions defined on N ,

with values in ME.

Z := (Zk)k∈N Semi-Markov chain.

Z := (Zt)t∈R+ Semi-Markov process (SMP).

(J, S) := (Jn, Sn)n∈N Markov renewal chain (MRC).

J := (Jn)n∈N Visited states, embedded Markov chain (EMC).

S := (Sn)n∈N Jump times.

X := (Xn)n∈N Sojourn times.

M Fixed censoring time.

N(M) Number of jumps of Z in the time interval [1,M ].

Ni(M) Number of visits to state i of the EMC,

up to time M.

Nij(M) Number of transitions from state i to state j.

of the EMC, up to time M.

Nij(k,M) Number of transitions from state i to state j of the

EMC, up to time M, with sojourn time in state i

equal to k.
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p := (pij)i,j∈E Transition matrix of the EMC J .

q := (qij(k))i,j∈E,k∈N Semi-Markov kernel.

Q := (Qij(k))i,j∈E,k∈N Cumulated semi-Markov kernel.

Q := (Qij(t))i,j∈E,t∈R+ First derivative of semi Markov kernel.

f := (fij(k))i,j∈E,k∈N Conditional sojourn time in state i,

before visiting state j.

F := (Fij(k))i,j∈E,k∈N Conditional cumulative sojourn time distribution

in state i, before visiting state j.

F := (Fij(t))i,j∈E,t∈R+ Sojourn time distribution in state i,

before visiting state j.

h := (hi(k))i∈E,k∈N Sojourn time distribution in state i.

H := (Hi(k))i∈E,k∈N Cumulative distribution of sojourn time in state i.

H := (Hi(t))i∈E,t∈R+ Sojourn time distribution in state i.

H := (Hi(k))i∈E,k∈N Survival function in state i.

P := (Pij)(k)i,j∈E,k∈N Transition function of the semi-Markov chain Z.

P := (Pij)(t)i,j∈E,t∈R+ Transition function of the semi-Markov

process Z.

Ψ(t) = (Ψij(t))i,j∈E,t∈R+ Markov renewal matrix.

µij Mean first passage time from state i to state j,

for the semi-Markov process Z.

µ∗
ij Mean first passage time from state i to state j

for the embedded Markov chain J .

ν = (ν(j))j∈E Stationary distribution of the EMC J .

α = (αi)i∈E Initial distribution of semi-Markov process Z.

A ∗B Discrete-time matrix convolution product of A, B.

Q ∗ ϕ Stieltjes convolution of ϕ, Q.
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A(n) n-fold convolution of A ∈ ME(N).
a.s−→ Almost sure convergence (strong consistency).
P−→ Convergence in probability.
D−→ Convergence in distribution.

δij Symbol of Kronecker.

1A Indicatrice function of A.

N (0, σ2) Standard normal random variable.

DTMP Discrete-time Markov Process.

CTMP Continuous-time Markov Process.

DTSMP Discrete-time Semi-Markov Process.

SMP Semi-Markov Process.

CTSMP Continuous-time Semi-Markov Process.

DTMRP Discrete-time Markov Renewal Process.

EMC Embedded Markov Chain.

MLE Maximum-Likelihood Estimator.

SLLN Strong Law of Large Numbers.

CLT Central Limit Theorem.
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Introduction
The Semi-Markov Process (SMP) is a generalization of the Markov process that was intro-

duced independently by Lévy (1954) [27] and Smith (1955) [37]. A Markov chain (MC) with

a random change in the time scale can be considered as an SMP with a finite state space (Pyke

[34], [35]). This means that the sojourn periods in each state can have arbitrary distributions

that may be influenced by the next state visited. This generalization makes semi-Markov pro-

cesses a powerful tool for modeling a wide range of stochastic systems where the assumption

of exponentially or geometrically distributed sojourn times is too restrictive.

Semi-Markov processes play a crucial role in probability and statistical modeling, with ap-

plications in a variety of domains such as survival analysis, biology, reliability, DNA analysis,

insurance and finance, earthquake modeling, meteorology studies, and so on; see, for example,

Heutte and Huber-Carol (2002) [23], Ouhbi and Limnios (2003) [30], Chryssaphinou et al.

(2008) [10], Janssen and Manca (2006) [24], and Votsi et al [41].

It’s worth noting that semi-Markov theory is primarily researched in a continuous-time

framework, with very few papers addressing the discrete-time scenario. For a continuous-time

framework, see Limnios and Oprisan (2001)[28], and for a discrete-time framework, see Barbu

and Limnios (2008)[3] and the references therein.

Several research papers have been published on the development of estimators and the inves-

tigation of their asymptotic qualities, namely convergence (or consistency) and normality asymptotic.

By integrating over sets of states or time intervals within the semi-Markov processes, inte-

gral functionals play a crucial role in characterizing various properties of the system, such as

transition probabilities, state occupation times, and expected rewards. These functionals pro-

vided a systematic framework for analyzing the temporal evolution of the process and extracting

meaningful information about its dynamic behavior.

The concept of functional integrals, also known as path integrals, was initially introduced by

R. P. Feynman (1948) [15] and has since become a cornerstone in quantum mechanics and sta-

tistical mechanics. in the context of semi Markov process, they were presented by D. Silvestrov

(1980) [36] and N. Limnios & G. Oprisan (2001) [28].

Over the years, integral functionals in semi-Markov processes have undergone continuous

refinement and enhancement, propelled by advancements in probability theory, functional anal-

ysis, and stochastic modeling. Today, they stand as essential tools for understanding and mod-

eling complex stochastic systems and have found applications in diverse fields such as finance,
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telecommunications, and reliability engineering.

The integration of integral functionals of semi-Markov processes with reliability analysis

represents a powerful approach to studying the dynamic behavior and performance of complex

systems over time. In the context of reliability, integral functionals can be used to model and

analyze the reliability characteristics of systems subject to different types of failures, repairs,

maintenance activities, and other operational events.

There are four chapters in this master memory.

In the first chapter, we provide some background and introduce basic concepts and prop-

erties related to the discrete time homogeneous Markov and continuous-time homogeneous

Markov process. Additionally, we consider a homogeneous discrete-time finite state space

semi-Markov model. We present its basic probabilistic properties and introduce their empirical

estimators for the main characteristics (such as semi-Markov kernel, sojourn time distributions,

transition probabilities, etc.). These estimations are derived by considering a sample path of the

discrete-time semi-Markov process (DTSMP) in the time interval [0,M ] with M an arbitrarily

chosen positive integer. At the end of this chapter, we provide the asymptotic properties of the

estimators, including strong consistency and asymptotic normality.

In Chapter 2, we delve into continuous-time semi-Markov processes, presenting their funda-

mental probability properties and giving the empirical estimators for the semi-Markov kernel,

renewal function, and the transition function. We also examine their asymptotic properties,

focusing on convergence and asymptotic normality.

In Chapter 3, we begin by defining the integral functionals of semi-Markov processes. We

discuss several concepts and theorems as covered in [21], [30], [31] , describing the reliability

function, and addressing the asymptotic normality and convergence of the R(t) estimation,

along with its confidence interval.

In the final chapter, we will explore the utilization of the R programming language (smmR

and SemiMarkov packages) for simulating and estimating semi-Markov processes (SMPs).

This chapter will provide detailed guidance and practical examples to illustrate how SMPs can

be simulated and assessed in R. It will delve into the estimation of the reliability function, a key

measure for assessing the long-term reliability of systems. Additionally, the computation of the

integral functional of SMPs will be explored, providing additional insights into the system’s

behavior and performance.



Chapter 1

Introduction to Markov process and

discret time semi-Markov process

Markov processes are an important class of stochastic processes characterised by the prop-

erty of having no memory, which means that the future evolution of the process depends only

on its current state and not on its past history. This property makes Markov processes, essential

for modelling real random processes, particularly in the fields of reliability and maintenance.

Discrete-time semi Markov processes (DTSMP) and discrete-time Markov renewal pro-

cesses (DTMRP) generalise discrete-time Markov processes and renewal processes. In a discrete-

time Markov process, the sejourn time in each state is geometrically distributed. However,

semi-Markov processes allow the sejourn time to follow any distribution over N∗, which pro-

vides greater flexibility and makes them more suitable for a variety of applications, This chapter

covers the fundamental concepts, properties and theorems related to these processes.

11
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1.1 Discrete state space Markov process

1.1.1 Definitions and examples

Definition 1.1.1 (Markov Chain). Let J = {Jn;n ≥ 0} be a sequence of random variables

defined on the same probability space (Ω, A,P) with values in E (state space), which is a finite

or countable space. We say that J is a Markov Chain (MC) if, for all i1, i2, . . . , in+1 ∈ E, we

have:

P(Jn+1 = in+1︸ ︷︷ ︸
The future

| J1 = i1, . . . , Jn = in︸ ︷︷ ︸
The past and the present

) = P(Jn+1 = in+1︸ ︷︷ ︸
The future

| Jn = in︸ ︷︷ ︸
The present

).

Definition 1.1.2 ( Homogeneous Markov chain). A Markov chain is homogeneous if, for all

n ≥ 0, i and j in E:

P(Jn+1 = i | Jn = j) = P(J1 = i | J0 = j).

In this case, we define

pij = P(J1 = i | J0 = j) for i, j ∈ E, and pij is called the transition probability.

Definition 1.1.3 ( Transition Matrix). The matrix p = (pij)i,j∈E is a stochastic matrix, i.e.,

for all i, j ∈ E, p ≥ 0, and for all i ∈ E,
∑

j∈E pij = 1.

Definition 1.1.4. The distribution of J0, denoted by α = (α1, ..., αs), is called the initial distri-

bution of the Markov Chain.

αi = P (J0 = i) for any state i ∈ E.

Theorem 1.1.1. For all m ≥ 0, the probability of transitioning from i to j in m steps is equal

to the element (i, j) of the matrix pm = p
(m)
ij (matrix product of p repeated m times).

Example 1.1.1 ( Homogeneous Markov Chain). A frog climbs a ladder. Every minute, it can

move up a rung with probability 1/2, or go down a rung with probability 1/2. The ladder has 5

rungs. If the frog reaches the top it immediately jumps down the ladder and starts again.

We denote Jn as the position of the frog on the ladder. The state space is therefore

E = {0, 1, 2, ..5}. If at time n the frog is at level x ∈ {1, 2, 3, 4} on the ladder, then at time n+1

it will be on rung x + 1 with a probability of 1/2, or on rung x − 1 with the same probability,

which is expressed as:

P (Jn+1 = x+ 1 | Jn = x) =
1

2
(= P (J1 = x+ 1 | J0 = x))

P (Jn+1 = x− 1 | Jn = x) =
1

2
(= P (J1 = x− 1 | J0 = x))
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The probabilities do not depend on n, and the transition matrix is given by:

pij =



0 1 0 0 0 0

1/2 0 1/2 0 0 0

0 1/2 0 1/2 0 0

0 0 1/2 0 1/2 0

0 0 0 1/2 0 1/2

1/2 0 0 0 1/2 0


If the frog is at state 5, then it can either transition to 4 or transition to state 0. The last row

of the matrix is thus (1/2, 0, 0, 0, 1/2, 0) (again, this does not depend on time n).

If the frog is at state 0, it can only transition to state 1. The first row of the matrix is therefore

(0, 1, 0, 0, 0, 0).

Jn is indeed a homogeneous Markov chain, with the transition matrix p.

1.1.2 Graph associated with a transition matrix

Definition 1.1.5 ( Graph Associated with a Transition Matrix). To visualize the evolution of a

homogeneous Markov chain, it is often useful to represent the transition matrix p of the Markov

chain by a directed graph: The nodes of the graph are the possible states of the Markov chain,

An arrow pointing from state i to state j indicates that there is a strictly positive probability that

the next state in the Markov chain will be state j if it is currently in state i. We put the weight

pij on the arrow going from state i to state j (Figure 1.1).

1

2

3

4

5

Figure 1.1: 5-state graph.
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1.1.3 Characterization of a homogeneous Markov chain

Let (Jn)n∈N be a homogeneous Markov chain. Then we have the following definitions:

Definition 1.1.6 ( Sojourn Time). Let (Jn) be a homogeneous Markov chain with transition

matrix pi,j . We denote by Ri the random variable equal to the sojourn time in state i. For every

k ∈ N∗,

P (Ri = k) = P (Jn+1 = i, . . . , Jn+k = i, Jn+k+1 ̸= i | Jn = i) .

Proposition 1.1.1. [3] Let (Jn)n≥0 be a Markov chain with transition function p. Then:

P (Ri = k) = (1− pii)p
(k)
ii (geometric distribution)

and on the other hand, if pij ̸= 1, we have, for j ̸= i:

P (Jn+1 = j | Jn = i, Jn+1 ̸= i) =
pij

1− pii
.

Suppose pii ̸= 1. If the chain is in state i at time n, it stays there for an unspecified du-

ration that follows a geometric distribution with parameter 1 − pii. Note that n is a fixed and

non-random time. However, it’s worth noting that we can only deduce the sojourn time in state

i as a geometric distribution with parameter 1− pii.

1.1.4 Classification of states

Definition 1.1.7 (reachable state). We say that state j is reachable from state i, written as

i→ j if p(n)ij > 0. We assume every state is reachable from itself since p(0)ii = 1.

Definition 1.1.8 (Communicate state). Two states i and j are said to communicate, written as

i↔ j if they are accessible from each other. In other words,

i↔ j means i→ j and j → i.

Definition 1.1.9 (Absorbing Markov Chain). A state i ∈ E is said to be absorbing if pii = 1

(and therefore necessarily pij = 0 for any j ̸= i; if the chain enters this state, it remains there

with probability 1). A Markov chain is said to be absorbing if there exists, for any state of E,

an absorbing state accessible from this state. In an absorbing chain, any non-absorbing state

is called transient.

Definition 1.1.10 (irreducible Markov Chain). A Markov chain is said to be irreducible if all

states communicate with each other.
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Definition 1.1.11 (Recurrent, positive recurrent state). A state is said to be recurrent if, any

time that we leave that state, we will return to that state in the future with probability one. On

the other hand, if the probability of returning is less than one, the state is called transient. A

state that has a finite predicted time to return to from its current state is known as a positive

recurrent state. Here, we provide a formal definition: For any state i, we define

Gii = P (Jn = i, for some n ≥ 1 | J0 = i) .

We have that:

• State i is recurrent if Gii = 1.

• State i is transient if Gii < 1.

A state i is called positive recurrent if it is recurrent (Gii = 1) and the expected return time

to state i is finite. More formally, let Ti be the return time to state i, defined as the smallest

n > 0 such that Jn = i. The state i is positive recurrent if:

E[Ti | J0 = i] <∞.

Definition 1.1.12 (Periodic, aperiodic state). A state i ∈ E is said to be periodic of pe-

riod d > 1, or d-periodic, if d is equal to the greatest common divisor of all n such that

P (Jn+1 = i | J1 = i) > 0. If d = 1, then the state i is said to be aperiodic.

Definition 1.1.13 (Ergodic state). An aperiodic recurrent state is called ergodic. An irre-

ducible Markov chain with one state ergodic (and then all states ergodic) is called ergodic.

1.2 Continuous-time Markov process

Definition 1.2.1 (Continuous-time Markov process). Let (J(t))t∈R+be a stochastic process

defined on a probability space (Ω,F ,P), with values in a measurable space (E, ε). Unless

otherwise stated, we assume that E = {1, 2, . . . , s} or E = {1, 2, . . .}.

1. A stochastic process (J(t))t∈R+is called continuous-time Markov process with the state

space E if, for any h, t ≥ 0 and j ∈ E we have:

P (J(h+ t) = j | J (h1) = i1, . . . , J (hn) = in, J(h) = i) = P(J(h+ t) = j | J(h) = i)

0 ≤ h1 < . . . < hn < h, n ∈ N, i1, . . . , in, i, j ∈ E.
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2. If P(J(h + t) = j | J(h) = i) does not depend on h, then (J(t))t∈R+is said to be

homogeneous with respect to time.

Definition 1.2.2 (Transition matrix). Let (J(t))t∈R+ be a homogeneous continuous-time Markov

process with state space E. The functions defined on R by

t→ pij(t) := P(J(h+ t) = j | J(h) = i), i, j ∈ E

are called transition functions of the process. The matrix p(t) = (pij(t))i,j∈E is called the

transition matrix (possibly infinite), and (p(t))t∈R+ is called the transition semigroup of the

continuous-time Markov process.

Proposition 1.2.1. [16] Let Ti be the waiting time in state i. The Chapman-Kolmogorov equa-

tion allows that Ti always has an exponential distribution with a parameter λi > 0,

Gi(t) = P(Ti ≤ t) = 1− e−λit, t ≥ 0, i ∈ E.

1.3 Markov renewal chain and semi-Markov chain

Let us consider :

• E the state space. We suppose E to be finite, with |E| = s.

• The stochastic process J = (Jn)n>0 with state space E for the system state at the n-th

jump.

• The stochastic process S = (Sn)n>0 with state space N for the n-th jump. We suppose

S0 = 0 and 0 < S1 < S2 < . . . < Sn < Sn+1 < . . .

• The stochastic process X = (Xn)n>0 with state space N⋆ for the sojourn time Xn in state

Jn−1 before the n-th jump. Thus, Xn = Sn − Sn−1, for all n ∈ N∗.
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States

time

{Jn = k}

{J0 = i}
{J1 = j}

S0 S1 S2 Sn−1 Sn

X1

X2

Xn

. . . . . .

. . .
. . .

(Xn) : sojourn time

(Jn) : states of the system

(Sn) : jump time

Figure 1.2: A typical sample path of a discrete time semi-Markov process.

Definition 1.3.1. A matrix-valued function q ∈ ME(N) is said to be a discrete-time semi-Markov

kernel if it satisfies the following three properties:

1. 0 ≤ qij(γ) ≤ 1, i, j ∈ E, γ ∈ N

2. qij(0) = 0 and
∑∞

γ=0 qij(γ) ≤ 1, i, j ∈ E

3.
∑∞

γ=0

∑
j∈E qij(γ) = 1, i ∈ E.

Definition 1.3.2 (Markov renewal chain). The stochastic process (J, S) = ((Jn, Sn);n ∈ N)

is said to be a discrete-time Markov renewal process (DTMRP), for all n ∈ N, for all i, j ∈ E,

and for all γ ∈ N, it satisfies almost surely

P (Jn+1 = j, Sn+1 − Sn = γ | J0, . . . , Jn;S0, . . . , Sn)

=P (Jn+1 = j, Sn+1 − Sn = γ | Jn) .
(1.1)

Where J = (Jn)n∈N is a Markov chain with state space E, called the embedded Markov

chain of the MRC (J, S).

Furthermore, (J, S) is considered homogeneous if Equation 1.1 is independent of n, with

the discrete semi-Markov kernel q defined by

qij(γ) = P (Jn+1 = j,Xn+1 = γ | Jn = i) .

Proposition 1.3.1.

(i) j is recurrent for the MRP if and only if j is recurrent, necessarily positive in the embedded

MC.
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(ii) j being transient for the MRP implies that j is also transient for the embedded MC.

The operation that will be commonly used when working on the space ME(N) of matrix-

valued functions will be the discrete-time matrix convolution product. In the sequel, we recall

its definition, and we define recursively the n-fold convolution.

Definition 1.3.3 (discrete time matrix convolution product). LetA,B ∈ ME(N) two matrix-valued

functions. The matrix convolution productA∗B is the matrix-valued functionC ∈ ME(N) defined by

Cij(γ) :=
∑
k∈E

γ∑
l=0

Aik(γ − l)Bkj(l), i, j ∈ E, γ ∈ N.

Definition 1.3.4 (discrete time n-fold convolution). Let A ∈ ME(N) be a matrix-valued

function and n ∈ N. The n-fold convolution of A is the matrix function A(n) ∈ ME(N) defined

recursively by:

A
(0)
ij (γ) :=

 1 if γ = 0 and i = j,

0 elsewhere
,

A
(1)
ij (γ) := Aij(γ),

A
(n)
ij (γ) := (A ∗ A ∗ . . . ∗ A)ij︸ ︷︷ ︸

n− times

=
∑
k∈E

γ∑
l=0

Aik(l)A
(n−1)
kj (γ − l), n ≥ 2, γ ∈ N.

Lemme 1.1. Let δI = (dij(γ); i, j ∈ E) ∈ ME(N) be the matrix - valued function defined by

dij(γ) :=

 1 if i = j and γ = 0

0 elsewhere.

Then, δI satisfies

δI ∗ A = A ∗ δI = A, A ∈ ME(N), i.e.,

δI is the neutral element for the discrete time matrix convolution product.

For a DTMRP (J, S), the n-fold convolution of the semi-Markov kernel q can be expressed

as follows.

Proposition 1.3.2. [3] For all i, j ∈ E, for all n and γ ∈ N, we have

q
(n)
ij (γ) = P (Jn = j, Sn = γ | J0 = i) .
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Proof. For n = 0, we have

q
(0)
ij (γ) = P (J0 = j, S0 = γ | J0 = i) .

Thus the result follows. For n = 1, we have

q
(1)
ij (γ) = P (J1 = j, S1 = γ | J0 = i) .

Since S1 = X1, we have q(1)ij (γ) = qij(γ).

For n ≥ 2 :
P (Jn = j, Sn = γ | J0 = i)

=
∑
k∈E

γ−1∑
l=1

P (Jn = j, Sn = γ, J1 = k, S1 = l | J0 = i)

=
∑
k∈E

γ−1∑
l=1

P (Jn = j, Sn = γ | J1 = k, S1 = l, J0 = i)

× P (J1 = k, S1 = l | J0 = i)

=
∑
k∈E

γ−1∑
l=1

P (Jn−1 = j, Sn−1 = γ − l | J0 = k)

× P (J1 = k,X1 = l | J0 = i)

=
∑
k∈E

γ−1∑
l=1

q
(n−1)
kj (γ − l)qik(l) = q

(n)
ij (γ),

thus the result follows.

Definition 1.3.5 (Discrete-time semi-Markov chain). The stochastic processZ = (Zγ; γ ∈ N)

is said to be a discrete time semi-Markov process associated with the DTMRP (J, S), if

Zγ = JNγ , γ ∈ N,

where Nγ := sup {n ≥ 0;Sn ≤ γ} is the discrete time counting process of the number of jumps

in [1, γ] ⊂ N. Thus, Zγ gives the system state at time γ. We have also Jn = ZSn , n ∈ N.

Example 1.3.1. Let F be a textile factory. Prior to being disposed of in river R, its waste

is processed by treatment unit U . In order to avoid having to halt production in the event of

a failure in U , a waste storage depot D has been created. A trash storage depot D has been

created in order to act as a buffer between F and U . If there is a breakdown in U and it is fixed

before D fills up, then D continues to run on a regular basis. Thus, D continues to run on a
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regular basis, and D is assumed to empty immediately upon fixing U . instantaneously, once U

is determined. If F production is not corrected, then it must end.

Let E = {1, 2, 3} be the set of possible states of the system:

- 1 : all is well (F and U are operational, D is empty).

- 2 : failure of U , but D is not yet full (F is therefore still operational).

- 3 : failure of U , D is full, and F is not operational.

We observe that :

- 1⇝ 2 ( if U fails ).

- 2⇝ 3 ( if D is full ).

- 2⇝ 1 ( If the failure of U is resolved before D becomes full ).

- 3⇝ 1 (When U is repaired ).

We thus have a process Jn, which represents the successive states of the system, and which is

defined by:

• an initial distribution α = (α1, α2, α3), where 0 < α1, α2, α3 and α1 + α2 + α3 = 1,

• a transition matrix (as 1 only communicates with 2, 2 with 1 and 3, and 3 with 1):

P =


0 1 0

1/2 0 1/2

1 0 0


However, to model the system of interest properly, state changes alone are not sufficient: we

also need to consider the timeXn that the system spends in each state (from which, for example,

a production estimate will result). Suppose, therefore, that we can discretize time (for example,

by taking an hour as the time unit), and that state changes can only occur at these moments.

Let’s introduce, for all k ∈ N: 
0 f12(k) 0

f21(k) 0 f23(k)

f31(k) 0 0


where:
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- f12 (.) is the distribution of the time it takes for U to break down.

- f21 (.) is the distribution of the time it takes U to be repaired.

- f23 (.) is the distribution of the filling time of D.

- f31(.) is the distribution for the time needed to repair U , and therefore for F to work

again, once D is full.

The sojourn time in a state therefore depends on the state of the system. We can then

choose the discrete laws (Poisson, geometric, etc.) that best fit the real experiment (using

statistical estimates, for example).

We can then define Sn =
∑n

k=0Xk, which is the time of the nth change of state. The

system is therefore defined by two pieces of data:

– A Markov process Jn, with initial distribution π0 and transition matrix P, which

represents the state of the system after the nth change of state.

– A process Sn which represents the time of the nth change of state.

Under certain assumptions, which appears up above, the pair (Jn, Sn) forms what is

known as a MRC. The process Zn = JN(n), where N(n) = max {k ∈ N, Sk ≤ n}, which

represents the state of the system at time n, will then be what we call a semi-Markov

chain.

Definition 1.3.6. The transition matrix p = (pij; i, j ∈ E) ∈ ME of (Jn) is defined by

pij = P (Jn+1 = j | Jn = i) , i, j ∈ E, n ∈ N.

Note that, for any i, j ∈ E, pij can be expressed in terms of the semi-Markov kernel by

pij =
∞∑
k=0

qij(k).

Example 1.3.2. A Markov chain with the transition matrix (pij; i, j ∈ E) is a particular case

of a semi-Markov chain with semi-Markov kernel (qij; i, j ∈ E)

qij(γ) =

pij(pii)
γ−1 if i ̸= j and γ ∈ N∗

0 elsewhere
.



1.3 Markov renewal chain and semi-Markov chain 22

Here, pij represents the probability of directly transitioning from state i to state j in one

time unit in the Markov chain, and (pii)
γ−1 represents the probability of remaining in state i for

γ − 1 time units, followed by a transition to state j in the γ-th time unit.

This definition of the semi-Markov kernel ensures that the transition probabilities qij(γ)

match the transition probabilities of the Markov chain for all i, j ∈ E and γ ∈ N∗.

Therefore, a Markov chain with the given transition matrix can be considered a particular

case of a Semi-Markov chain with the specified semi-Markov kernel.

Definition 1.3.7. The cumulated semi-Markov kernel, Q = (Qij(k), k ∈ N) ∈ ME(N) defined,

for all i, j ∈ E and for all k ∈ N, by

Qij(k) = P(Jn+1 = j,Xn+1 ≤ k|Jn = i) =
k∑
l=0

qij(l).

and the Markov renewal matrix ψ := (ψ(γ); γ ∈ N) ∈ ME(N), defined by

ψij(γ) :=

γ∑
n=0

q
(n)
ij (γ), i, j ∈ E, γ ∈ N.

Let
(
Sjγ; γ ∈ N∗) be the successive passage times in a fixed state j ∈ E. For an arbitrary

state i ∈ E, we consider the distribution of the first hitting time of state j, starting from state i

gij(γ) = Pi
(
Sj1 = γ

)
, γ ≥ 1.

Let us also denote by µjj the mean recurrence time of state j for the associated semi-Markov

process (Zγ; γ ∈ N), i.e., µjj represents the mean of gjj, µjj = Ej
(
Sj1
)
= E

(
Sj2 − Sj1

)
.

Definition 1.3.8. The matrix renewal function Ψ = (Ψ(γ); γ ∈ N) ∈ME(N) of the DTMRP is

defined by

Ψij(γ) = Ei [Nj(γ)] , i, j ∈ E, γ ∈ N,

where Nj(γ) is the number of visits to state j before time γ. The matrix renewal function can

be expressed in the following form:

Ψij(γ) =

γ∑
n=0

Q
(n)
ij (γ), i, j ∈ E, γ ∈ N.

Indeed,

Ei [Nj(γ)] =

γ∑
n=0

P (Jn = j;Sn ≤ γ | J0 = i) =

γ∑
n=0

Q
(n)
ij (γ).

We have the following relation between the matrix-valued functions Ψ and ψ:

Ψij(γ) =

γ∑
k=0

ψij(k).
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1.3.1 Sojourn times

Definition 1.3.9 (conditional distributions of sojourn times). For all i, j ∈ E, let us define:

1. fij(.) , the conditional distribution of Xn+1, n ∈ N

fij(γ) := P (Xn+1 = γ | Jn = i, Jn+1 = j) , γ ∈ N.

2. Fij(.) , the conditional cumulative distribution of Xn+1, n ∈ N

Fij(γ) := P (Xn+1 ≤ γ | Jn = i, Jn+1 = j) =
k∑
l=0

fij(l), γ ∈ N.

Obviously, for all i, j ∈ E and for all γ ∈ N, we have

fij(γ) =

 qij(γ)/pij if pij ̸= 0.

1{γ=∞} if pij = 0.

Definition 1.3.10 (sojourn time distributions in a given state). For all i ∈ E, let us define:

1. hi(·), the sojourn time distribution in state i:

hi(k) := P (X1 = k | J0 = i) =
∑
j∈E

qij(k), k ∈ N∗.

2. Hi(·), the sojourn time cumulative distribution function in state i:

Hi(k) := P (X1 ≤ k | J0 = i) =
k∑
l=1

hi(l), k ∈ N∗.

For G the cumulative distribution of a certain random variable X , we denote the survival

function by G(n) := 1 − G(n) = P (X > n), n ∈ N. Thus for all states i, j ∈ E we establish

F ij and H i as the corresponding survival functions.

Example 1.3.3. Consider the following DNA sequence of HEV (hepatitis E virus):

AGGCAGACCACATATGTGGTCGATGCCATGGAGGCCCATCAGTTTATTA

AGGCTCCTGGCATCACTACTGCTATTGAGCAGGCTGCTCTAGCAGCGGC

CATCCGTCTGGACACCAGCTACGGTACCTCCGGGTAGTCAAATAATTCC

GAGGACCGTAGTGATGACGATAACTCGTCCGACGAGATCGTCGCCGGT
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Suppose that the bases {A,C,G, T} are independent of each other and have the same

probability of appearing in a location, which is equal to 1/4. Thus the occurrences of one

of them, say, C, form a renewal chain.

The common distribution of (Xn)n∈N∗ is called the waiting time distribution of the renewal chain.

Denote it by f = (fn)n∈N , fn := P (X1 = n), with f0 := 0, and denote by F the cumulative

distribution function of the waiting time, F (n) := P (X1 ≤ n).

Set f̄ :=
∑
n>0

fn ≤ 1 = P (X1 <∞) for the probability that a renewal will ever occur.

Definition 1.3.11. The transition function of the semi-Markov process Z is the matrix-valued

function P ∈ ME(N) defined by:

Pij(γ) = P (Zγ = j | Z0 = i) , i, j ∈ E, γ ∈ N.

Proposition 1.3.3. For all i, j ∈ E and for all γ ∈ N, we have:

Pij(γ) = 1{i=j}(γ) [1−Hi(γ)] +
∑
k∈E

γ∑
l=0

qik(l)Pkj(γ − l), (1.2)

where

1{i=j}(γ) =

 1 if i = j and γ ≥ 0.

0 elsewhere.

Let us define for all γ ∈ N :

• I(γ) =
(
1{i=j}(γ); i, j ∈ E

)
, I = (I(γ); γ ∈ N),

• H(γ) = diag (Hi(γ); i ∈ E) , H = (H(γ); γ ∈ N).

In matrix-valued function notation, Equation 1.2 becomes

P = I −H + q ∗ P .
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Proof. For all i, j ∈ E and for all γ ∈ N, we have

Pij(γ)

= P (Zγ = j, S1 > γ | Z0 = i) + P (Zγ = j, S1 ≤ γ | Z0 = i)

= 1{i=j}(γ) (1−Hi(γ))

+
∑
k∈E

γ∑
l=0

P (Zγ = j, ZS1 = k, S1 = l | Z0 = i)

= 1{i=j}(γ) (1−Hi(γ))

+
∑
k∈E

γ∑
l=0

P (Zγ = j | ZS1 = k, S1 = l, Z0 = i)

× P (J1 = k, S1 = l | J0 = i)

= 1{i=j}(γ) (1−Hi(γ))

+
∑
k∈E

γ∑
l=0

P (Zγ−l = j | Z0 = k)P (J1 = k,X1 = l | J0 = i)

= 1{i=j}(γ) (1−Hi(γ)) +
∑
k∈E

γ∑
l=0

Pkj(γ − l)qik(l).

The following assumptions concerning the Markov renewal chain will be needed in the rest

of this work.

A1 The Markov chain (Jn)n∈N is irreducible.

A2 The mean sojourn times are finite, i.e.,
∑

n≥0(1−Hi(n)) <∞, for any state i ∈ E.

A3 The Markov renewal process (Jn, Sn)n∈N is aperiodic.

Proposition 1.3.4. If the Assumptions A1 and A3 is satisfied, then for a fixed j ∈ E, we have

lim
γ→∞

ψjj(γ) =
1

µjj
.

Definition 1.3.12. For a discrete time semi-Markov process (Zγ; γ ∈ N ), the limit distribution

(πj; j ∈ E) is defined by

πj = lim
γ→∞

Pij(γ), i, j ∈ E.

Proposition 1.3.5. For an aperiodic DTMRP and under Assumption A1 and A2, the limit

distribution is given by

πj = lim
γ→∞

Pij(γ) =
1

µjj
mj =

ν(j)mj∑
i∈E ν(i)mi

, j ∈ E,
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where ν is the stationary distribution of the embedded Markov chain (Jn;n ∈ N) , and

mj =
∑
n≥0

(1−Hj(n)).

1.4 Elements of statistical estimation

This section builds nonparametric estimators for a discrete-time semi-Markov system’s pri-

mary attributes, such as the semi-Markov kernel, the transition matrix of the embedded Markov

chain, the conditional distributions of the sojourn times, or the semi-Markov transition function.

We investigate the asymptotic properties of the estimators, namely, the strong consistency and

the asymptotic normality.

1.4.1 Construction of the estimators

Let us consider a sample path of an ergodic Markov renewal chain (Jn, Sn)n∈N, censored at

fixed arbitrary time M ∈ N∗,

H(M) :=
(
J0, X1, . . . , JN(M)−1, XN(M), JN(M), uM

)
,

where N(M) is the discrete-time counting process of the number of jumps in [1,M ] ⊂ N, and

uM :=M − SN(M) is the censored sojourn time in the last visited state JN(M).

Empirical estimators

Starting from the sample path H(M), we will propose empirical estimators for the quantities

of interest of the semi-Markov chain. For any states i, j ∈ E and positive integer k ∈ N, k ≤M ,

we define the empirical estimators of the transition matrix of the embedded Markov chain pij ,

of the conditional distribution of the sojourn times fij(k), and of the discrete-time semi-Markov

kernel qij(k) by

p̂ij(M) :=
Nij(M)

Ni(M)
, if Ni(M) ̸= 0.

f̂ij(k,M) :=
Nij(k,M)

Nij(M)
, if Nij(M) ̸= 0.

q̂ij(k,M) :=
Nij(k,M)

Ni(M)
, if Ni(M) ̸= 0,

(1.3)

where Nij(k,M), Ni(M) and Nij(M) are given by :

• Ni(M) :=
∑N(M)

n=1 1{Jn=i} : the number of visits to state i, up to time M ;
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• Nij(M) :=
∑N(M)

n=1 1{Jn−1=i,Jn=j} : the number of transitions from i to j, up to time M ;

• Nij(k,M) :=
∑N(M)

n=1 1{Jn−1=i,Jn=j,Xn=k} : the number of transitions from i to j, up to

time M , with sojourn time in state i equal to k, 1 ≤ k ≤M .

If Ni(M) = 0 we set p̂ij(M) := 0 and q̂ij(k,M) := 0 for any k ∈ N, and if Nij(M) = 0 we

set f̂ij(k,M) := 0 for any k ∈ N.

The likelihood function corresponding to the history H(M) is

L(M) = αJ0

N(M)∏
k=1

pJk−1JkfJk−1Jk (Xk) H̄JN(M)
(uM) ,

where H̄JN(M)
is the survival function in state i and αi is the initial distribution of state i.

Lemma 1.4.1. [3] For a semi-Markov chain (Zn)n∈N we have

uM/M
a.s.−→

M→∞
0.

The previous lemma tells us that, for large M,uM does not add significant information to

the likelihood function. For these reason, we will neglect the term H̄JN(M)
(uM) in the expres-

sion of the likelihood function L(M). On the other side, the sample path H(M) of the MRC

(Jn, Sn)n∈N contains only one observation of the initial distribution α of (Jn)n∈N, so the infor-

mation on αJ0 does not increase with M . As we are interested in large-sample estimation of

semi-Markov chains, the term αJ0 will be equally neglected in the expression of the likelihood

function.

Consequently, we will be concerned with the maximization of the approached likelihood

function defined by

L1(M) =

N(M)∏
k=1

pJk−1,JkfJk−1Jk (Xk) . (1.4)

Proposition 1.4.1. [3] For a sample path of a DTMRP (Jn, Sn)n∈N, censored at time M ∈

N, the empirical estimators p̂ij(M), f̂ij(k,M) and q̂ij(k,M), proposed in Equations 1.3, are

approached non-parametric maximum likelihood estimators i.e. they maximize the approached

likelihood function L1, given in Equation 1.4 .

Proof. We consider the approached likelihood function L1(M) given by Equation 1.4. Using

the equality
s∑
j=1

pij = 1. (1.5)
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the approached log-likelihood function can be written in the form

log (L1(M)) =
M∑
k=1

s∑
i,j=1

[
Nij(M)log (pij) +Nij(k,M)log (fij(k)) + λi

(
1−

s∑
j=1

pij

)]
.

(1.6)

Where the Lagrange multipliers λi are arbitrarily chosen constants. In order to obtain the ap-

proached MLE of pij we maximize Equation 1.6 with respect to pij , and get pij = Nij(M)/λi.

Equation 1.5 becomes

1 =
s∑
j=1

pij =
s∑
j=1

Nij(M)

λi
=
Ni(M)

λi
.

Finally, we infer that the values λi which maximize Equation 1.6 with respect to pij are

given by λi = Ni(M) and we obtain

p̂ij(M) :=
Nij(M)

Ni(M)
.

The expression of f̂ij(k,M) can be obtained by the same method. Indeed, using the equality
∞∑
k=1

fij(k) = 1, (1.7)

we write the approached log-likelihood function in the form

log (L1(M)) =
M∑
k=1

s∑
i,j=1

[
Nij(M)log (pij) +Nij(k,M)log (fij(k)) + λij

(
1−

∞∑
k=1

fij(k)

)]
.

(1.8)

Where λij are arbitrarily chosen constants. Maximizing 1.8 with respect to fij(k) we obtain

f̂ij(k,M) := Nij(k,M)/λij .

From Equation 1.7 we obtain λij(M) = Nij(M). Thus f̂ij(k,M) := Nij(k,M)/Nij(M).

In an analogous way we can prove that the expression of the approached MLE of the kernel

qij(k) is given by equation 1.3.

Lemma 1.4.2. [3] For a MRC that satisfies Assumptions A1 and A2, we have:

1. lim
M→∞

SM = ∞ a.s .

2. lim
M→∞

N(M) = ∞ a.s .

Lemma 1.4.3. For the DTMRP (Jn, Sn)n∈N. We have

Ni(M)

M

a.s.−→
M→∞

1

µii
,
Nij(M)

M

a.s.−→
M→∞

pij
µii

,
N(M)

M

a.s.−→
M→∞

1

ν(l)µll
.

Where µii is the mean recurrence time of state i for the semi-Markov process (Zn)n∈N,(ν(l); l ∈ E)

the stationary distribution and l is an arbitrary fixed state.
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1.4.2 Asymptotic properties of the estimators

In this part, we study the asymptotic properties (consistency and asymptotic normality) of the

proposed estimators P̂ij, F̂ij, ψ̂ij and Q̂ij , with :

F̂ij(k,M) :=
1

Nij(M)

Nij(M)∑
l=1

1{Xnl
≤k},

Q̂ij(k,M) :=
1

Ni(M)

Ni(M)∑
m=1

1{Jm−1=i,Jm=j,Xm≤k},

ψ̂ij(k,M) :=
k∑

n=0

q̂
(n)
ij (k,M),

P̂ (k,M) := (δI− q̂(.,M))−1 ∗ (I− diag(Q̂(.,M)1))(k).

(1.9)

Theorem 1.4.1. [3] For any fixed arbitrary states i, j ∈ E ,

(a) (Strong consistency) max
i,j∈E

max
0≤k≤M

∣∣∣F̂ij(k,M)− Fij(k)
∣∣∣ a.s.−→
M−→∞

0.

(b) (Asymptotic normality)
√
M
[
F̂ij(k,M)− Fij(k)

]
D−−−−→

M→∞
N (0, σ2

F (i, j, k)) ,

with the asymptotic variance

σ2
F (i, j, k) =

∑
l∈E

∑
r∈E

δilδjr
µii
pij
Fij(k) (1− Fij(k)) ,

and µii is the mean recurrence time of state i for the SMP (Zk)k∈N .

Theorem 1.4.2. [3] For any fixed k ∈ N and i, j ∈ E, we have

(a) (Strong consistency) max
i,j∈E

max
0≤k≤M

∣∣∣Q̂ij(k,M)−Qij(k)
∣∣∣ a.s.−→
M−→∞

0.

(b) (Asymptotic normality)
√
M
[
Q̂ij(k,M)−Qij(k)

]
D−−−−→

M→∞
N
(
0, σ2

Q(i, j, k)
)
,

where

σ2
Q(i, j, k) =

∑
l∈E

∑
r∈E

δilµiiQij(k) (δjr −Qir(k)) .

Theorem 1.4.3. [3] For any fixed k ∈ N and i, j ∈ E, we have

(a) (Strong consistency) max
i,j∈E

max
0≤k≤M

∣∣∣ψ̂ij(k,M)− ψij(k)
∣∣∣ a.s.−→
M→∞

0.

(b) (Asymptotic normality)
√
M
[
ψ̂ij(k,M)− ψij(k)

]
D−−−−→

M→∞
N
(
0, σ2

ψ(i, j, k)
)
,
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where

σ2
ψ(i, j, k) =

s∑
m=1

µmm

{
s∑
r=1

[(
ψim ∗ ψrj

)2

∗ qmr

]
(k)

−

[
s∑
r=1

(
ψim ∗ qmr ∗ ψrj

)]2}
.

Theorem 1.4.4. [3], [1] For any fixed k ∈ N and i, j ∈ E, we have

(a) (Strong consistency) max
i,j∈E

max
0≤k≤M

∣∣∣P̂ij(k,M)− Pij(k)
∣∣∣ a.s.−→
M→∞

0.

(b) (Asymptotic normality)
√
M
[
P̂ij(k,M)− Pij(k)

]
D−−−−→

M→∞
N (0, σ2

P (i, j, k)) ,

where

σ2
P (i, j, k) =

s∑
m=1

µmm

{
s∑
r=1

[δmjΨij − (1−Hj) ∗ ψim ∗ ψrj]2 ∗ qmr(k)

−

[
δmjψij ∗Hm(k)−

s∑
r=1

(1−Hj) ∗ ψim ∗ ψrj ∗ qmr

]2
(k)

 .



Chapter 2

Continuous-time semi-Markov process

This chapter provides the definitions and basic properties related to Continuous-time semi-

Markov process (CTSMP). The semi Markov process (SMP) is constructed by the so-called

Markov renewal process (MRP) that is a special case of the two-dimensional Markov sequence.

The MRP is defined by the transition probabilities matrix, called the renewal kernel and an

initial distribution, or by other characteristics that are equivalent to the renewal kernel. The

counting process corresponding to the SMP allows us to determine the concept of process regu-

larity. The process is said to be regular if the corresponding counting process has a finite number

of jumps in a finite period.

2.1 Definitions and properties

Definition 2.1.1 (Markov renewal process). Let E be the state space. A Markov renewal

process is a bivariate stochastic process (Jn, Sn) where Jn are the values of the state space E

in the Markov chain and Sn are the jump times. We define Xn+1 = Sn+1 − Sn to be the sojourn

time in the state Jn. The process has to satisfy the following equality

P (Jn+1 = j, Sn+1 − Sn ≤ t | J0, J1, . . . , Jn, S0, S1, . . . , Sn)

=P (Jn+1 = j, Sn+1 − Sn ≤ t | Jn) ,
(2.1)

for all j ∈ E, all t ∈ R+ and all n ∈ N.

31
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Definition 2.1.2 (Renewal matrix, renewal kernel). The matrix defined as

Q(t) = {Qij(t) : i, j ∈ E} ,

Qij(t) := P (Jn+1 = j,Xn+1 ≤ t | Jn = i) ,

is called a renewal matrix. We identify the renewal matrix Q as the renewal kernel.

Proposition 2.1.1. [16] The Markov renewal matrix Q satisfies the following conditions:

(i) For all t ≥ 0 and i, j ∈ E, it holds true that Qij(t) ≥ 0.

(ii) The functions Qij(t) are right-continuous.

(iii) For all i, j ∈ E, it holds true that Qij(0) = 0 and Qij(t) ≤ 1 for all t ≥ 0.

(iv) For all i ∈ E, it holds that lim
i→∞

∑
j∈E

Qij(t) = 1.

Definition 2.1.3. The probabilities

pij = lim
t→∞

Qij(t) = Qij(∞)

= P (Jn+1 = j | Jn = i) ,

are the transition probabilities from state i to state j of the embedded Markov chain {Jn;n ∈ N}.

We assume that the transition probabilities do not depend on the time n.

Proposition 2.1.2. [16] For a Markov renewal process with a renewal kernel Q(t), t ≥ 0, the

following equality is satisfied

P (J0 = i0, J1 = i1, X1 ≤ t1, . . . , Jn = in, Xn ≤ tn) = αi0Qi0i1 (t1)Qi1i2 (t2) . . . Qin−1in (tn) ,

where αi0 := P (J0 = i0) is the initial distribution of the Markov renewal process.

For t1 → ∞, . . . , tn → ∞, we obtain

P (J0 = i0, J1 = i1, . . . , Jn = in) = αi0pi0i1pi1i2 . . . pin−1in .

Definition 2.1.4 (Continuous-time semi-Markov process). Consider a Markov-renewal process

{(Jn, Sn) : n ∈ N} defined on a complete probability space and with state space E. The stochastic

process {Zt; t ∈ R+} defined by

Zt = JN(t).

is called a semi-Markov process (SMP) where N(t) = max {n ∈ N : Sn ≤ t} is the counting

process of the semi-Markov process up to time t. we can also define the semi-Markov Process

by

Zt = Jn for t ∈ [Sn, Sn+1) , n ∈ N.
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Definition 2.1.5. We define the transition matrix of the process {Zt; t > 0} as

P(t) = {Pij(t) : i, j ∈ E} ,

Pij(t) = P (Zt = j | Z0 = i) ,

= P
(
JN(t) = j | J0 = i

)
.

For all i, j ∈ E. Then the unconditional semi-Markov state probability is equal to

Pj(t) = P (Zt = j) = P
(
JN(t) = j

)
=

s∑
i=1

P
(
JN(t) = j | J0 = i

)
P (J0 = i)

=
s∑
i=1

αiPij(t).

Where αi = P (J0 = i) .

Definition 2.1.6. The matrix renewal function Ψ = (Ψ(t); t ∈ R+) ∈ME(R+), is defined by

Ψij(t) = Ei [Nj(t)] =
∞∑
n=0

Q
(n)
ij (t) =: (I −Q(t))(−1)(i, j), t ∈ R.

Where the n-fold Stieltjes convolution of Qij(t) by itself is defined as, t ≥ 0,

Q
(n)
ij (t) =


∑

k∈E
∫ t
0
Qik(ds)Q

(n−1)
kj (t− s), n ≥ 2,

Qij(t), n = 1,

δij, n = 0.

and

I(t) =
(
1{i=j}(t); i, j ∈ E

)
, I = (I(t); t ∈ R+).

Definition 2.1.7 (Regularity of SMP). A semi-Markov process {Z(t) : t ≥ 0} is said to be

regular if the corresponding counting process {N(t) : t ≥ 0} has a finite number of jumps on a

finite period with probability 1 :

∀t ∈ R+, P(N(t) <∞) = 1. (2.2)

Proposition 2.1.3. [17] A SMP {Z(t) : t ⩾ 0} is regular if and only if

∀t ∈ R+, lim
n→∞

P(N(t) ⩾ n) = lim
n→∞

P (Sn ⩽ t) = 0.
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Definition 2.1.8 (Distribution functions of sojourn time). For all i, j ∈ E,∀t ∈ R+.

1. Fij(.) , the distribution function associated with the sojourn time in state i, before going

to state j :

Fij(t) := P (Xn+1 ≤ t | Jn = i, Jn+1 = j) .

2. Hi(.) , the distribution function of the sojourn time, also called the waiting time, in state i :

Hi(t) := P (Xn+1 ≤ t | Jn = i) =
∑
j∈E

Qij(t).

From the definition before we can derive the following result.

Proposition 2.1.4. [16] It holds true that

Fij(t) =
Qij(t)

pij
.

For all t ≥ 0 and i, j ∈ E.

Proof. From the definition of conditional probabilities, it follows that

Fij(t) = P (Xn+1 ≤ t | Jn = i, Jn+1 = j)

=
P (Xn+1 ≤ t, Jn = i, Jn+1 = j)

P (Jn = i, Jn+1 = j)

=
P (Xn+1 ≤ t, Jn = i, Jn+1 = j)

P (Jn = i)

P (Jn = i)

P (Jn = i, Jn+1 = j)

=
P (Jn+1 = j,Xn+1 ≤ t | Jn = i)

P (Jn+1 = j, Jn = i)

=
Qij(t)

pij
.

2.1.1 Connection between semi-Markov and Markov process

A discrete state space and continuous-time SMP is a generalization of that kind of Markov

process. The Markov process can be treated as a special case of the SMP.

Theorem 2.1.1 (Korolyuk and Turbin). [17] Every homogeneous Markov process {J(t) : t ≥

0} with the discrete space E and the right-continuous trajectories keeping constant values on

the half-intervals, given by the transition rate matrix
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Λ = [λij : i, j ∈ E] , 0 < −λii = λi <∞ is the SMP with the kernel

Q(t) = [Qij(t) : i, j ∈ E] ,

where
Qij(t) = pij

(
1− e−λit

)
, t ⩾ 0,

pij =
λij
λi

for i ̸= j, pii = 0.

Proof. [19] [22]

The length of interval [Sn, Sn+1) given states at instants Sn and Sn+1 is a random variable

having an exponential distribution with parameter independent of state at the moment Sn+1 :

Fij(t) = P (Sn+1 − Sn ⩽ t | J (Sn) = i, J (Sn+1) = j) = 1− e−λit, t ⩾ 0.

As we know, the function Fij(t) is a cumulative probability distribution of a holding time in

the state i, if the next state is j. Recall that the function

Hi(t) =
∑
j∈E

Qij(t) = 1− e−λit, t ⩾ 0.

is a CDF of a waiting time in the state i.

2.2 Elements of statistical estimation

2.2.1 Useful technical results

We introduce the following technical results which will be needed for the proofs for Qij , Ψij ,

and Pij .

Theorem 2.2.1 (Anscombe’s theorem, [8]). Let (Yn)n∈N be a sequence of random variables

and (Nn)n∈N a positive integer-valued stochastic process. Suppose that

1√
n

n∑
m=1

Ym
D−→

n→∞
N
(
0, σ2

)
and Nn/n

P−−−→
n→∞

θ,

where θ is a constant, 0 < θ <∞. Then,

1√
Nn

Nn∑
m=1

Ym
D−→

n→∞
N
(
0, σ2

)
.
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Theorem 2.2.2 (Slutsky’s theorem). Let X,Xt, Yt, t ∈ R, be random variables or vectors. If

Xt
D−→

t→∞
X and Yt

P−→
t→∞

c , with c a constant, then

1. Xt + Yt
D−→

t→∞
X + c

2. YtXt
D−→

t→∞
cX

3. Y −1
t Xt

D−→
t→∞

c−1X , for c ̸= 0.

We present the central limit theorem for additive functional of MRPs, given by Pyke and

Schaufele [33] .

Notation 2.2.1. For a real measurable function f , defined on E × E × R, define, for each

M > 0, the functional Wf (M) as

Wf (M) :=

N(M)∑
n=1

f (Jn−1, Jn, Xn) .

Set

Aij :=

∫ ∞

0

f(i, j, x)dQij(x), Ai :=
s∑
j=1

Aij,

Bij :=

∫ ∞

0

(f(i, j, x))2dQij(x), Bi :=
s∑
j=1

Bij.

Let µij and µ∗
ij denote the mean first passage times from state i to j in the MRP (Jn, Sn) and

in the corresponding Markov chain (Jn)n∈N, respectively. Write

ri :=
s∑

u=1

Au
µ∗
ii

µ∗
uu

,

σ2
i := −r2i +

s∑
u=1

Bu
µ∗
ii

µ∗
uu

+ 2
s∑

u=1

∑
l ̸=i

∑
j ̸=i

AulAjµ
∗
ii

µ∗
li + µ∗

ij − µ∗
lj

µ∗
uuµ

∗
jj

.

Finally, put

mf :=
ri
µii

Bf :=
σ2
i

µii
.
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Theorem 2.2.3 (Central Limit Theorem). For an irreducible recurrent MRPs that satisfies

Assumptions A1 and A2, we have

M−1/2 [Wf (M)−M ·mf ]
D−−−−→

M→∞
N (0, Bf ) .

Theorem 2.2.4 (Glivenko-Cantelli theorem, [7]). Let Fn(x) = 1
n

∑n
k=1 1{Xk≤x} be the empir-

ical distribution function of the i.i.d. random sample X1, . . . , Xn. Denote by F the common

distribution function of Xi, i = 1, . . . , n. Thus

sup
x∈R

|Fn(x)− F (x)| a.s−→
n→∞

0.

2.2.2 Empirical estimators

Estimators for semi Markov kernel Qij(t) are defined on sample functions of the MRP over

[0,M ]. These sample functions of the MRP are equivalent to the sample functions(
J0, J1, . . . , JN(M), X0, X1, . . . , XN(M)

)
.

For the semi-Markov kernel Qij(t), we have the following empirical estimator

Q̂ij(t,M) =
1

Ni(M)

N(t)∑
n=1

1{Jn−1=i,Jn=j,Xn≤t},

where

Ni(M) :=

N(M)∑
n=1

1{Jn=i} =
∞∑
n=1

1{Jn=i,Sn≤M}.

The empirical estimator of the transition matrix of the embedded Markov chain pij is defined

by

p̂ij :=
Nij(M)

Ni(M)
,

where

Nij(M) :=

N(M)∑
n=1

1{Jn−1=i,Jn=j} =
∞∑
n=1

1{Jn−1=i,Jn=i,Sn≤M}.

Because Fij(t) = Qij(t)/pij , in a similar way we obtain that F̂ij(t,M) = Q̂ij(t,M)/p̂ij(M)

with

F̂ij(t,M) =
1

Nij(M)

N(t)∑
n=1

1{Jn−1=i,Jn=j,Xn≤t}.

The quantities F̂ij(t,M) and p̂ij are respectively the empirical estimators for the conditional

transition functions and the transition probabilities.
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We define the following empirical estimators of Pij , and Ψij:

Ψ̂ij(t) :=
∞∑
n=0

Q̂
(n)
ij (t),

P̂ (t,M) :=Ψ̂ ⋆ (I − diag(Q̂(t,M))).

(2.3)

Theorem 2.2.5. (Barbu & Limnios, [3]) The empirical estimator p̂ij(M) of pij , for all

i, j ∈ E is strongly consistent, i.e.

p̂ij(M)
a.s.−−→ pij as M → ∞.

Theorem 2.2.6. For any fixed i, j ∈ E, as M → ∞, we have:

(a) (Strong consistency) max
i,j∈E

sup
t∈(0,M)

∣∣∣Q̂ij(t,M)−Qij(t)
∣∣∣ a.s.−−→ 0,

(b) (Asymptotic normality) M1/2
(
Q̂ij(t,M)−Qij(t)

)
D−→ N

(
0, σ2

ij(t)
)
, where

σ2
ij(t) := µiiQij(t) [1−Qij(t)].

Proof. (Limnios & Oprisan, [28] )

(a) We define ∆Qij =
(
Q̂ij(t,M)−Qij(t)

)
, it holds true that Qij(t) = Fij(t)pij and

therefore Q̂ij(t,M) = F̂ij(t,M)p̂ij(M) as well. Then it follows that

max
i,j∈E

sup
t∈[0,M)

|∆Qij| = max
i,j∈E

sup
t∈[0,M)

∣∣∣F̂ij(t,M)p̂ij(M)− Fij(t)pij

∣∣∣
= max

i,j∈E
sup

t∈[0,M)

∣∣∣F̂ij(t,M)p̂ij(M)− F̂ij(t,M)pij + F̂ij(t,M)pij − Fij(t)pij

∣∣∣
≤ max

i,j∈E
sup

t∈[0,M)

∣∣∣F̂ij(t,M)p̂ij(M)− F̂ij(t,M)pij

∣∣∣
+max

i,j∈E
sup

t∈[0,M)

∣∣∣F̂ij(t,M)pij − Fij(t)pij

∣∣∣
= max

i,j∈E
sup

t∈[0,M)

∣∣∣F̂ij(t,M) (p̂ij(T )− pij)
∣∣∣

+max
i,j∈E

sup
t∈[0,M)

∣∣∣(F̂ij(t,M)− Fij(t)
)
pij

∣∣∣
= max

i,j∈E
sup

t∈[0,M)

|p̂ij(M)− pij| F̂ij(t,M)

+ max
i,j∈E

sup
t∈[0,M)

∣∣∣F̂ij(t,M)− Fij(t)
∣∣∣ pij.

By theorem 2.2.5, the first term converges to 0 (a.s.), By theorem 2.2.4 (Glivenko-Cantelli

theorem), the second converges to 0 (a.s.) as well.
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(b) We have

M1/2
[
Q̂ij(t,M)−Qij(t)

]
=

M

Ni(M)
M−1/2

N(t)∑
k=1

(
1{Jk=j,Xk≤t} −Qij(t)

)
1{Jk−1=i}.

Consider the function

f(m, ℓ, u) =
(
1{ℓ=j,u≤t} −Qij(t)

)
1{m=i}.

By the Pyke and Schaufele CLT (see Theorem 2.2.1 and 2.2.3), and since Ni(M)/M con-

verges to 1/µii (a.s.), we get the desired result.

Lemme 2.1. Under the assumptions of Theorem 2.2.6, we have, for all i, j ∈ E and n ∈ N,

max
i,j∈E

sup
t∈[0,∞[

∣∣∣Q̂(n)
ij (t,M)−Q

(n)
ij (t)

∣∣∣ −→ 0 a.s., as M −→ ∞.

Theorem 2.2.7. [31] The estimator Ψ̂ij(t,M) of the Markov renewal function Ψij(t) satisfies

the following two properties:

(a) (Strong consistency) it is uniformly strongly consistent, i.e., as M → ∞,

max
i,j∈E

sup
t∈[0,M)

∣∣∣Ψ̂ij(t,M)−Ψij(t)
∣∣∣ a.s.−−→ 0.

(b) (Asymptotic normality) For any fixed t > 0, it converges in distribution, as M → ∞, to

a normal random variable, i.e.,

M1/2
(
Ψ̂ij(t,M)−Ψij(t)

)
D−→ N

(
0, σ2

ij(t)
)
,

where

σ2
ij(t) =

∑
r∈E

∑
k∈E

µrr
{
(ψir ∗ ψkj)2 ∗Qrk − (ψir ∗ ψkj ∗Qrk)

2} (t),
and ψij is the density function of Ψij .

Proof. (a) We have Ψ̂(t) =
∑∞

n=0 Q̂
(n)(t,M). To prove the uniform strong consistence of the

estimator of the Markov renewal matrix, we need the lemma 2.1.

Let i and j be two states and t ∈ [0,M ] and ϵ > 0. Since Sn −→ ∞, (because the

MRP which we have considered is positive recurrent), there exists a constant k0 > 0 such that

max
i∈E

s∑
j=1

Q
(k0)
ij (t) < 1.
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Let Ω be a set of probability 1 , where the convergence of Lemma 2.1 is valid for all n ⩾ 1.

Set ϵ = 1−max
i∈E

∑s
j=1Q

(k0)
ij (t). For all ω ∈ Ω, there exists T0(ω), such that for all M ⩾M0(ω)

max
i∈E

s∑
j=1

Q̂
(k0)
ij (t,M) ⩽ max

i∈E

∣∣∣∣∣
s∑
j=1

[
Q̂

(k0)
ij (t,M)−Q

(k0)
ij (t)

]∣∣∣∣∣+
+max

i∈E

s∑
j=1

Q
(k0)
ij (t) ⩽ 1− ϵ

2
.

Moreover, for all m ⩾ k0, there exists (q, r) ∈ N∗×N such that m = qk0+r where 0 ⩽ r < k0

and we see that,

max
i,j∈E

Q̂
(m)
ij (t,M) = max

i,j∈E

s∑
n=1

Q̂
(r)
in ∗ Q̂(qk0)

nj (t,M)

⩽ max
i,j∈E

s∑
n=1

Q̂
(r)
in (t,M) · Q̂(qk0)

nj (t,M)

⩽ max
i,j∈E

Q̂
(qk0)
ij (t,M).

Let us now prove that, for all q ∈ N∗,

max
i∈E

s∑
j=1

Q̂
(qk0)
ij (t,M) ⩽

(
1− ϵ

2

)q
.

In fact, for q = 1, the result is true. Suppose that the result is valid until order q and prove it

to order q + 1. In fact, for q = 1, the result is true. Suppose that the result is valid until order q

and prove it to order q + 1.

max
i∈E

s∑
j=1

Q̂
((q+1)k0)
ij (t,M) = max

i∈E

s∑
j=1

s∑
n=1

Q̂
(qk0)
in ∗Q(k0)

nj (t,M)

⩽ max
i∈E

s∑
n=1

Q̂
(qk0)
in (t,M) ·max

i∈E

s∑
j=1

Q
(k0)
ij (t,M)

⩽
(
1− ϵ

2

)q
·
(
1− ϵ

2

)
.

On the other hand,

Ψ̂ij(t,M) =
∞∑
l=0

Q̂
(n)
ij (t,M)

=

k0∑
n=0

Q̂
(n)
ij (t,M) +

2k0∑
n=k0+1

Q̂
(n)
ij (t,M) +

3k0∑
n=2k0+1

Q̂
(n)
ij (t,M) + · · ·

Let βmij (t) be a sequence of functions defined by

βmij (t) =

 Q̂
(m)
ij (t,M) if m < k0,

k0
(
1− ϵ

2

)[m/k0] otherwise.
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Where [x] is the integer part of x. We have, Ψ̂ij(t,M)−Ψij(t) ⩽
∑∞

m=0 β
m
ij (t) <∞. Thus by

Lemma 2.1 and the Lebesgue’s dominated convergence theorem, we get

Ψ̂ij(t,M)
a.s.−−→ Ψij(t) as M −→ ∞.

To prove that the estimator of the Markov renewal matrix is uniformly strongly consistent

on compact [0,M ], for M ∈ R+, observe that Ψij(t) is monotone and continuous (since F is

continuous), so, the convergence of Ψ̂ij(t,M) to Ψij(t, T ) is uniform for t ∈ [0,M ].

(b) First we define ∆Ψij =
(
Ψ̂ij(t,M)−Ψij(t)

)
, By the Markov renewal equation we see

that,
M1/2∆Ψij =M1/2

[
Ψ̂ij(t)− (Ψ̂ ∗Ψ)ij(t) + (Ψ̂ ∗Ψ)ij(t)−Ψij(t)

]
=M1/2

{
[Ψ̂ ∗ (I −Ψ)]ij(t) + [(Ψ̂− I) ∗Ψ]ij(t)

}
=M1/2

{
−(Ψ̂ ∗Q ∗Ψ)ij(t) + (Ψ̂ ∗ Q̂ ∗Ψ)ij(t)

}
=M1/2[Ψ̂ ∗∆Q ∗Ψ]ij(t)

=M1/2[Ψ̂ ∗∆Q ∗Ψ ∗∆Q ∗Ψ]ij(t)

+M1/2[Ψ ∗∆Q ∗Ψ]ij(t).

(2.4)

Since for all i, k, l, r, v, w ∈ E,

sup
s⩽t

[
Ψ̂ik(·,M) ∗Ψlr(·) ∗Ψvw(·)

]
(s) ⩽

[
∞∑
m=1

βmij (t)

]
·Ψlr(t) ·Ψvw(t) < +∞,

we conclude by Lemma 2.1, that the first term of 2.4 converges in probability to zero as M

tends towards infinity.

The last term can be written as follows:

M1/2[Ψ ∗∆Q ∗Ψ]ij(t)

=M1/2

s∑
l=1

s∑
r=1

(
Ψil ∗ (Q̂(·,M)−Q)lr ∗Ψrj

)
(t)

=M1/2

s∑
l=1

s∑
r=1

(
Ψil ∗ Q̂(·,M)lr ∗Ψrj

)
(t)−

√
M

s∑
l=1

s∑
r=1

(Ψil ∗Qlr ∗Ψrj) (t)

=
1

M1/2

N(M)∑
n=1

s∑
l=1

M

Nl(M)

s∑
r=1

[(
Ψil ∗ 1{Jn−1=l,Jn=r,Xn=·} ∗Ψrj

)
(t)

−
(
Ψil ∗Qlr1{Jn−1=l} ∗Ψrj

)
(t)
]
.
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SinceNl(M)/M
a.s.−→

M→∞
1/µll, using Slutsky’s Theorem 2.2.2 we obtain thatM1/2

[
Ψ̂ij(t,M)−Ψij(t)

]
has the same limit in distribution as

1

M1/2

N(M)∑
n=1

s∑
l=1

µll

s∑
r=1

[(
Ψil ∗ 1{Jn−1=l,Jn=r,Xn=·} ∗Ψrj

)
(t)

−
(
Ψil ∗Qlr1{Jn−1=l} ∗Ψrj

)
(t)
]

=

√
N(M)

M

1√
N(M)

N(M)∑
n=1

f(Jn−1, Jn, Xn)

where the random variables f(Jn−1, Jn, Xn) are defined by

f(Jn−1, Jn, Xn) :=
s∑
l=1

µll

s∑
r=1

[(
Ψil ∗ 1{Jn−1=l,Jn=r,Xn=·} ∗Ψrj

)
(t)

−
(
Ψil ∗Qlr1{Jn−1=l} ∗Ψrj

)
(k)
]
.

By theorem 2.2.3, we deduce that the second term of 2.4 converges in law to a normal

random variable with mean zero and variance σ2
ij(t).

Lemme 2.2. For all i, j, k, l ∈ E,M1/2 |[∆Qij ∗∆Qkl] (t)| converges in probability to zero,

when M tends to infinity.

Lemme 2.3. For all i, j ∈ {1, . . . , s}, t ∈ [0,M ] and l ∈ N∗, the random variate M1/2∆Q
(l)
ij (t)

has the same limit in law as
l∑

r=1

s∑
k=1

s∑
n=1

M1/2
[
Q

(r−1)
ik ∗∆Qkn∗ Q

(l−r)
nj

]
(t) as M tends to

infinity.

Theorem 2.2.8. [32] The estimator P̂ij(t,M) of the transition function Pij(t), satisfies the

following two properties:

(a) (Strong consistency) For any fixed L > 0, we have, as M → ∞ ,

max
i,j∈E

sup
t∈[0,L]

∣∣∣P̂ij(t,M)− Pij(t)
∣∣∣ a.s.−−→ 0,

(b) (Asymptotic normality) For any fixed t > 0, we have, as M → ∞,

M1/2
(
P̂ij(t,M)− Pij(t)

)
D−→ N

(
0, σ2

ij(t)
)
,

where
σ2
ij(t) =

∑
r∈E

∑
k∈E

µrr
[
(1−Hi) ∗Birkj −Ψij1{r=j}

]2 ∗Qrk(t)

−
{[

(1−Hi) ∗Birkj −Ψij1{r=j}
]
∗Qrk(t)

}2
,

and

Birkj(t) =
∞∑
n=1

n∑
ℓ=1

Q
(ℓ−1)
ir ∗Q(n−ℓ)

kj (t).
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Proof. (a) Let us consider the matricesB(t) = I−diag(Q(t)·1) and B̂(t,M) = I − diag(Q̂(t,M) · 1).

then for (i, j) ∈ E× E be fixed then,

sup
t∈[0,L]

∣∣∣P̂ij(t,M)− Pij(t)
∣∣∣ = sup

t∈[0,L]

∣∣∣(Ψ̂ ∗ B̂)ij(t,M)− (Ψ ∗B)ij(t)
∣∣∣

≤ sup
t∈[0,L]

∣∣∣Ψ̂ij(t,M)−Ψij(t)
∣∣∣

+ sup
t∈[0,L]

∣∣∣Ψ̂ij(t,M)−Ψij(t)
∣∣∣ · diag(Q̂(t,M) · 1)

+ sup
t∈[0,L]

∣∣∣diag((Q̂−Q) · 1)jj(t,M)
∣∣∣Ψij(L).

Since s, the number of states, is finite, the process is normal and therefore Ψij(t) is finite

(cf. [33]). From Theorems 2.2.6 and 2.2.7 on the uniformly strong consistency of the estimators

of the semi-Markov kernel and of the Markov renewal function in [0, L], we see that

diag((Q̂−Q) ·1)jj(t,M) and ∆Ψij(t,M) on [0, L] converge a.s. to zero as M tends to infinity.

(b) First we define ∆Pij =
(
P̂ij(t,M)− Pij(t)

)
, ∆Qij =

(
Q̂ij(t,M)−Qij(t)

)
, from 2.3

we see that,

M1/2∆Pij =M
1/2
[
Ψ̂ij ∗ (I − diag(Q̂1))jj −Ψij ∗ (I − diag(Q1))jj

=M1/2
[(

Ψ̂ij −Ψij

)
∗ (I − diag(Q1))jj−

−Ψij ∗ diag([Q̂−Q]1)jj

]
−

−
(
Ψ̂ij −Ψij

)
∗ diag([Q̂−Q]1)jj.

(2.5)

From Lemma 2.2, M1/2
(
Ψ̂ij −Ψij

)
∗ diag([Q̂ − Q]1)jj converges, in probability, when M

tends to infinity, to zero. So, M1/2∆Pij(t,M) has the same limit as

M1/2
[(

Ψ̂ij −Ψij

)
∗ (I − diag(Q1))jj −Ψij ∗ diag([Q̂−Q]1)jj

]
.

From Lemma 2.3 and Theorem 2.2.7, it has the same limit as,

M1/2

[(
1−

s∑
l=1

Qjl

)
∗

(
s∑

n=1

s∑
k=1

Binkj ∗∆Qnk

)
−Ψij ∗

(
s∑

k=1

∆Qjk

)]

=
s∑

n=1

s∑
k=1

M1/2

[(
1−

s∑
l=1

Qjl

)
∗Binkj ∗∆Qnk

]
−

s∑
k=1

M1/2Ψij ∗∆Qjk.

Let f be a real function defined on E× E× R+by

f(r,m, x) =

[(
1−

s∑
l=1

Qjl

)
∗Binkj −Ψij1{n=j}

]
×

× 1{r=n}
(
1{m=k,x⩽t} −Qnk

)
.
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So, M1/2∆Pij(t,M) =M1/2Wf (t), where

Wf (t) =
s∑

n=1

s∑
k=1

Nn∑
l=1

f (Jl−1, Jl, Xl)

Nn

,

we obtain the desired findings using Pyke and Schaufele’s ([33]) central limit theorem 2.2.3

.



Chapter 3

Integral functionals of semi-Markov

processes in reliability problems

The wear on technological objects is the result of a variety of random harmful events. The

wear is frequently the outcome of the repeated extortion’s impacts. When the accumulated

effects of extortion surpass a certain threshold of deterioration, the object is damaged. It is

a difficult task to numerically simulate many real-world object wearing processes. Here, we

only look at situations that result in quite straightforward models. The research examines the

possibility of determining the parameters and reliability features of an item degradation based

on stochastic process models. Stochastic models of breakdown have been constructed using the

integral functional of semi-Markov processes.

3.1 Definition and basic properties

Definition 3.1.1 (Integral Functionals). Let us consider a right-continuous semi-Markov

process Zt, t ⩾ 0, with state space E and a function h : E → R. Define the following integral

functional

L(t) =

∫ t

0

h (Zs) ds, t ≥ 0, (3.1)

is called an integral functional of the SM process or a cumulative process of the SM process

{Z(t) : t ⩾ 0}. If {(Jn, Sn) : n ∈ N0} is the MRP defining the process {L(t) : t ⩾ 0} then

L(t) = h (J0)S1 + . . .+ h (Jn−1)Sn + h (Jn) (t− Zn) for t ∈ [Zn, Zn+1) . (3.2)

45
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This formula allows to generate the trajectories of the process {L(t) : t ⩾ 0}. Using the

definition of the counting process we obtain an equivalent form of the formula 3.2

L(t) =

N(t)∑
k=1

h (Jk−1)Sk +
(
t− ZN(t)

)
h
(
JN(t)

)
. (3.3)

Example 3.1.1. Let {Z(t) : t ⩾ 0} be a semi-Markov process with a state space E = {0, 1, 2}

which is generated by MRP {(Jn, Sn) : n ∈ N}. Assume h(x) = 0.5x, x ⩾ 0, 0 ⩽ t ⩽ 12

and
{(J0 = 2, S0 = 0) , (J1 = 1, S1 = 4.2) , (J2 = 0, S2 = 2.8) ,

(J3 = 2, S3 = 1.2) , (J4 = 2, S4 = 3.1) , . . .} .
(3.4)

From 3.2 we obtain a piece of trajectory of the stochastic process {L(t) : t ⩾ 0} :

L(t) =



t for t ∈ [0, 4.2).

4.2 + 0, 5(t− 4.2) for t ∈ [4.2, 7).

5.6 for t ∈ [7, 8.2).

5.6 + 0.5(t− 8.2) for t ∈ [8.2, 11.3).

7.15 + (t− 11.3) for t ∈ [11.3, 12) .

(3.5)

0 2 4 6 8 10 12

0.
0

0.
5

1.
0

1.
5

2.
0

Time

Z
(t
)

Figure 3.1: Trajectory of Z(t).

Figure 3.1 shows a trajectory of a semi-Markov process corresponding to a MRP.
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Figure 3.2: Trajectory of L(t).

Realization 3.4 and figure 3.2 illustrates the corresponding trajectory of the integral func-

tional.

Consider a joint distribution of the process {Z(t) : t ⩾ 0} and {L(t) : t ⩾ 0}. Let

UiA(t, Z) = P(Z(t) ∈ A,L(t) ⩽ x | Z(0) = i), i ∈ E. (3.6)

Theorem 3.1.1. [20] The functions UiA(t, x), i ∈ E satisfy a system of integral equations

UiA(t, x) = IA×[0,x](i, h(i)t) [1−Hi(t)]

+
∑
j∈E

∫ t

0

UjA(t− v, x− h(i)v)dQij(v), i ∈ E.
(3.7)

For A = E we obtain

UiE(t, x) = P{L(t) ⩽ x | Z(0) = i}, i ∈ E. (3.8)

Proposition 3.1.1. [20]

The conditional cumulative distribution functions (CDF) of the process {L(t) : t ⩾ 0}

satisfy a system of the integral equations

UiE(t, x) = I[0,x](h(i)t) [1−Hi(t)] +
∑
j∈E

∫ t

0

UjE(t− v, x− h(i)v)dQij(v). (3.9)

From 3.4 we get

UiA(t,∞) = lim
x→∞

UiA(t, x) = P{Z(t) ∈ A | Z(0) = i}, i ∈ E.
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Let

PiA(t) = UiA(t,∞), i ∈ E.

The conditional probability PiA(t), i ∈ E verifies a system of integral equations [20]

PiA(t) = IA(i) [1−Gi(t)] +
∑
j∈E

∫ t

0

PjA(t− v)dQij(v), i ∈ E. (3.10)

If A denotes subset of "up" states of the object, then PiA(t) denotes it’s availability under

condition that an initial state is i ∈ E.

A cumulative process {L(t) : t ⩾ 0} allows defining a random process {T (x) : x ⩾ 0} by

T (x) = inf{t : L(t) > x}. (3.11)

A random variable T (x) denotes an instant of a level x exceeding by the cumulative process.

If x is the critical level of the process describing degradation of an object then

R(t) = P(T (x) > t), t ⩾ 0. (3.12)

is a reliability function.

A stochastic process {Kj(t) : t ⩾ 0} defined by

Kj(t) =

∫ t

0

1(Z(u)=j) du, (3.13)

where

1(Z(u)=j) =

 1 for Z(u) = j

0 for Z(u) ̸= j
, (3.14)

is an example of an integral functional of a SM process. A value of the random variable Kj(t)

denotes a cumulated sojourn time of the SM process {Z(t) : t ⩾ 0} in a state j, during

the interval [0, t]. The process {Kj(t) : t ⩾ 0} is connected with the process {Tj(x) : x ⩾ 0}

defined by

Tj(x) = inf {t : Kj(t) > x} . (3.15)

A random process {Tj(x) : x ⩾ 0} denotes an instant of time of exceeding a level x by

the cumulated sojourn time of the SM process. Those processes have asymptotically normal

distribution with parameters depending on a kernel of the process {Z(t) : t ⩾ 0}. In renewal



3.1 Definition and basic properties 49

theory there is well known concept of an alternating process. We can treat it as the SM process

{Z(t) : t ⩾ 0} with a state space E = {0, 1}, a kernel

Q(t) =

 0 Fγ(t)

Fζ(t) 0

 . (3.16)

and an initial distribution

α0 = [0, 1]. (3.17)

Where Fγ(t), Fζ(t) are CDF of the nonnegative, independent random variables γ, ζ . From defi-

nition of the process {Kj(t) : t ⩾ 0} it follows that the process is connected with the cumulated

sojourn time in a state 1 of the alternating process. If ζn, n = 1, 2, . . ., denoting consecutive

waiting times of the state j, are supposed to be the random variables with an identical probabil-

ity

Gj(t) = P(ζ ⩽ t) = P (Tj ⩽ t) . (3.18)

While γn, n = 1, 2, . . ., denote the lengths of the time intervals, that pass from the instants of

n-th going out from the state j to next going in this state, then the definition of the process

{Kj(t) : t ⩾ 0} which start with the state j is almost identical with definition of the simple al-

ternating process. The only difference lies in that for general SM process, the random variables

ζn, γn, n = 1, 2, . . ., can be dependent. But we can distinguish a class of the SM processes, that

the mentioned above random variables are independent.

If {Z(t) : t ⩾ 0} is SM process with a kernel Q(t) = [Qij(t) : i, j ∈ E] such that

Qij(t) = pijGj(t), where pii = 0 for i ∈ E, then the random variables ζn, γn, n = 1, 2, . . .

are independent and

Θ
(n)
jj = ζn + γn. (3.19)

Where Θ
(n)
jj is n-th return time to the j state .

The equations which allow to calculating the one dimensional distribution of the process

{Kj(t) : t ⩾ 0} are presented in books [19], [20]. But they are very complicated and difficult

for applying. Then, in this case we can use an approximate formula which implies from the

following theorem [19], [20]:

Theorem 3.1.2. Let {Z(t) : t ⩾ 0} be a SM process defined by a continuous type kernel

Q(t) = [Qij(t) : i, j ∈ E] such that

Qij(t) = pijGj(t), Where pii = 0 for i ∈ E.
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If moreover the random variables Tj,Θjj have positive finite second moments, then

lim
t→∞

P
(
Kj(t)−mj(t)

σj(t)
⩽ x

)
=

1√
2π

∫ x

−∞
e−

u2

2 du, (3.20)

where

mj(t) =
E (Tj)

E (Θjj)
t. (3.21)

σj(t) =

√
V (Tj) [E (Θjj)− E (Tjj)]

2 + [V (Θjj)− E (Tj)] [E (Tj)]
2

[E (Θjj)]
3 t. (3.22)

From the above theorem it follows that the process {Kj(t) : t ⩾ 0} has an approximately

normal distribution with an expectation given by an equality 3.14 and a standard deviation

taking the form of 3.22.

Under the same assumptions the process {Tj(x) : x ⩾ 0} denoting the moment of exceeding

a level x by the sojourn time of the SM process has an approximately normal distribution

lim
t→∞

P
(
Tj(x)−mj(x)

σj(x)
⩽ y

)
=

1√
2π

∫ y

−∞
e−

u2

2 du, (3.23)

where

mj(x) =
E (Θjj)

E (Tj)
x. (3.24)

σj(x) =

√
V (Tj) [E (Θjj)− E (Tj)]

2 + [V (Θjj)− V (Tj)] [E (Tj)]
2

[E (Tj)]
3 x. (3.25)

For the alternating process {Z(t) : t ⩾ 0} with the kernel 3.16 the formulas 3.21, 3.22,

3.24, and 3.25 are of the form

m(t) =
E(ζ)

E(ζ) + E(γ)
t.

σ(t) =

√
[V (ζ)][E(γ)]2 + [V (γ)][E(ζ)]2

[E(ζ) + E(γ)]3
t.

m(x) =
E(ζ) + E(γ)

E(ζ)
x.

σ(x) =

√
[V (ζ)][E(γ)]2 + [V (γ)][E(ζ)]2

[E(ζ)]3
x.

(3.26)
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Example 3.1.2. After c = 50000[ h ] of working a plane engine is treated as broken-down.

We suppose that a sojourn time of one fly is random variable ζ with an expectation E(ζ) =

3.48[ h ] and a variance V (ζ) = 2.15
[
h2
]
. A time of the each plane stoppage is a positive

random variable γ with the expectation E(γ) = 4.5[ h ] and the variance V (γ) = 4.21
[
h2
]
.

Under those assumption the alternating process {Z(t) : t ⩾ 0} defined by the kernel 3.16

and the initial distribution 3.17 is a reliability model of the plane engine operation process. A

random variable T (c) = inf{t : K(t) > c}, where K(t) =
∫ t
0
Z(u)du denotes an instant of

exceeding a level c by a summary sojourn time of the alternating process {Z(t) : t ⩾ 0}. From

above presented theorem it follows that a random variable T (c) has an approximately normal

distribution N(m(c), σ(c)), where

m(c) =
E(ζ) + E(γ)

E(ζ)
c.

and

σ(c) =

√
V (ζ)[E(γ)]2 + [V (γ)][E(ζ)]2

[E(ζ)]3
c.

The estimated reliability function R(t), t ⩾ 0 takes the form:

R(t) = P(T (c) > t) ≈ 1− Φ

(
t−m(c)

σ(c)

)
.

where Φ(·) is CDF of the standard normal distribution. For above assumed parameters we

obtain the expectation and the standard deviation for a time to failure of the plane engine.

m(50000) ≈ 114655[ h] ≈ 4777.29[ days ], σ(50000) ≈ 334.0[ h] ≈ 13.92[ days ].

The estimated reliability function R(t), t ⩾ 0 is

R(t) ≈ 1− Φ

(
t− 114655, 0

334.0

)
.

The function is shown in figure 3.3. The value of the function for c = 50000 is 0.99865 .



3.2 Discrete-time semi-Markov process reliability analysis 52

0 50000 100000 150000

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Time (hours)

R
el

ia
bi

lit
y

Figure 3.3: Approximate reliability function of the plain engine.

Remark 3.1.1. Cumulative processes can be used as a probability models of the object degra-

dation. Theoretical results give possibility to obtain approximate reliability parameters and

characteristics.

3.2 Discrete-time semi-Markov process reliability analysis

In reliability, the state space E = {1, . . . , s}, is naturally partitioned into two sets, U and D,

where U = {1, . . . , s1} is the set of working (or "up") states , and D = {s1 + 1, . . . , s} is the

set of repair (or "down") states , i.e. E = U ∪D and U ∩D = ∅. Finite semi-Markov reliability

models whose state spaces are partitioned in the above manner will be considered here. The

transition from one state to another means, physically speaking, the failure or the repair of one

of the components of the system. In the set of up states, U , the system is operational. No service

is delivered if the system is in the set of down states,D. However, a repair will return the system

from D to U . To model this situation, it will be assumed that the MRP is irreducible.

Definition 3.2.1. Consider a system S starting to function at time k = 0 and let TD denote the

first passage time in subset D, called the lifetime of the system, i.e.,

TD := inf {n ∈ N; Zn ∈ D} and inf ∅ := ∞.
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The reliability of a discrete-time semi-Markov system S at time k ∈ N, that is the probability

that the system has functioned without failure in the period [0, k] is

R(k) := P (TD > k) = P (Zn ∈ U, n = 0, . . . , k) .

The following outcome describes the system’s reliability in terms of the fundamental semi-

Markov chain quantities, In the sequel, for a matrix X , we will denote XU its restriction to U .

Proposition 3.2.1. The reliability of a discrete-time semi-Markov system at time k ∈ N is given

by:

R(k) = αUPU(k)1s1 = αU
(
δI − qU

)(−1) ∗
(
I − diag(Q · 1)U

)
(k)1s1 . (3.27)

Where 1s1 = (1, 1, . . . , 1)t .

3.2.1 Asymptotic properties of the estimators

The expression of the reliability given in 3.27, together with the estimators of the semi-

Markov transition function and of the cumulative semi-Markov kernel given above, allow us to

obtain the estimator of the system’s reliability at time k given by

R̂(k,M) :=α̂U · P̂U(k,M) · 1s1

= α̂U
[(
δI − q̂U

)
(·,M) ∗

(
I − diag(Q̂(·,M) · 1)U

)]
(k)1s1 .

Let us give now the result concerning the consistency and the asymptotic normality of the

reliability estimator.

Theorem 3.2.1. For any fixed arbitrary positive integer k ∈ N, the estimator of the reliability

of a discrete-time semi-Markov system at instant k is strongly consistent, i.e.,

|R̂(k,M)−R(k)| a.s−−−−→
M→∞

0.

and asymptotically normal, i.e., we have

√
M [R̂(k,M)−R(k)]

D−−−−→
M→∞

N
(
0, σ2

r(k)
)
,

with the asymptotic variance

σ2
r(k) =

s∑
i=1

µii


s∑
j=1

[
DU
ij − 1{i∈U}

∑
n∈U

αnΨti

]2
∗ qij(k)

−

[
s∑
j=1

(
DU
ij ∗ qij − 1{i∈U}

∑
n∈U

αnψti ∗Qij

)]2
(k)

 ,
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where
DU
ij :=

∑
n∈U

∑
r∈U

αnψni ∗ ψjr ∗ (I − diag(Q · 1))rr,

ψij(k) :=
k∑

n=0

q
(n)
ij (k), Ψij(k) :=

k∑
n=0

Q
(n)
ij (k),

µii : the mean recurrence time of the state i for the chain Z.

3.2.2 Asymptotic confidence intervals

The previously obtained asymptotic results allow one to construct the asymptotic confidence

intervals for reliability. For this purpose, we need to construct a consistent estimator of the

asymptotic variances.

Firstly, we can construct estimators of ψ(k) and of Q(k,M). One can check that these es-

timators are strongly consistent. Secondly, for k ≤ M , replacing Q(k), ψ(k) respectively by

Q̂(k,M), ψ̂(k,M), we obtain an estimator σ̂2
r(k) of the variance σ2

r(k). From the strong con-

sistency of the estimators Q̂(k,M) and ψ̂(k,M) (see [3], [2]), we obtain that σ̂2
r(k) converges

almost surely to σ2
r(k), as M tends to infinity. Finally, the asymptotic confidence interval of

R(k) at level 100(1− γ)%, γ ∈ (0, 1), is:

R̂(k,M)− u1−γ/2
σ̂r(k)√
M

≤ R(k) ≤ R̂(k,M) + u1−γ/2
σ̂r(k)√
M

. (3.28)

where uγ is the γ - quantile of an N (0, 1) - distributed variable.

3.3 Continuous-time semi-Markov process reliability analysis

Definition 3.3.1. The reliability R(t) of the system is given by:

R(t) =
∑
i∈U

αiRi(t) = P [JNs ∈ U, for all s ⩽ t ] .

Let Ri(t) to be the conditional probability that the first failure does not occur up to time t,

given that the process started from state i ∈ U . So

R(t) = αU · PU(t) · 1s1 ,

where

PU(t) =
(
I −QU(t)

)(−1) ∗
(
I − diag(Q(t)1s1)

U
)
. (3.29)
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3.3.1 Asymptotic properties of the estimators

We shall give estimators of the reliability of semi-Markov systems and prove uniform strong

consistency and weak convergence theorems, for these estimators when M , the censored time,

tends to infinity.

Reliability estimator of a semi-Markov system can be expressed in closed forms as follows

(Limnios, [31]).

R̂(t,M) = αU · P̂U(t,M).1s1 , (3.30)

where

P̂U(t,M) =
(
I − Q̂U(t,M)

)(−1)

∗
(
I − diag(Q̂(t,M)1s1)

U
)
.

In this part, we provide uniformly strong consistency and central limit theories for the reli-

ability estimator.

Theorem 3.3.1. [32] The estimator of the reliability of the semi-Markov system is uniformly

strongly consistent in the sense that, for all L ∈ R+, when M → ∞

sup
t∈[0,L]

|R̂(t,M)−R(t)| a.s−→
M→∞

0.

Proof. Let us consider the matricesB(t) = I−diag(Q(t)·1s1) and B̂(t,M) = I − diag(Q̂(t,M) · 1s1).

Then P (t) = [Ψ ∗ B](t) and P̂ (t,M) = [Ψ̂ ∗ B̂](t,M) is its estimator. Let i, j ∈ E be fixed.

Then:

sup
t∈[0,L]

|R̂(t,M)−R(t)| = sup
t∈[0,L]

∣∣∣∣∣∑
i∈U

∑
j∈U

{
α̂i(Ψ̂ ∗ B̂)ij(t,M)− αi(Ψ ∗B)ij(t)

}∣∣∣∣∣
which has the same limit as

sup
t∈[0,L]

∣∣∣∣∣∑
i∈U

∑
j∈U

{
αi(Ψ̂ ∗ B̂)ij(t,M)− αi(Ψ ∗B)ij(t)

}∣∣∣∣∣
⩽ s21

{
max
i,j∈E

sup
t∈[0,L]

∣∣∣Ψ̂ij(t,M)−Ψij(t)
∣∣∣

+max
i,j∈E

sup
t∈[0,L]

∣∣∣Ψ̂ij(t,M)−Ψij(t)
∣∣∣ · diag(Q̂(t,M) · 1s1)

}

+ s21

{
max
i,j∈E

sup
t∈[0,L]

∣∣∣diag(Q̂−Q)jj(t,M)
∣∣∣Ψij(L)

}
.

Since s1, the number of up states, is finite, the process is normal and therefore Ψij(t) is finite

(see Pyke and Schaufele, [33]). From the uniform strong consistency of the estimators of the
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semi-Markov kernel and of the Markov renewal function in [0, L] obtained in Theorems 2.2.6

and 2.2.7 , we get that diag(Q̂ − Q)jj(t,M) and Ψ̂ij(t,M) − Ψij(t) on [0, L] converges (a.s.)

to zero as M tends to infinity.

Theorem 3.3.2. For any Fixed t, t ∈ [0,M ] ,

M1/2[R̂(t,M)−R(t)]
D−−−−→

M→∞
N
(
0, σ2

R(t)
)
,

where

σ2
R(t) =

∑
i∈U

s∑
j=1

µii ·


(
BU
ij1{j∈U} −

∑
n∈U

αnΨ
U
li

)2

∗Qij(t)

−

[(
BU
ij1{j∈U} −

∑
n∈U

αnΨ
U
li

)
∗Qij

]2 .

and

BU
ij =

∑
n∈U

∑
k∈U

αnB
U
nijk ∗ (I − diag(Q1s1)kk) .

Proof. From 3.29 and 3.30, we get that

M1/2∆R(t,M) =M1/2
∑
i∈U

∑
j∈U

{
α̂i · Ψ̂ij ∗ (I − diag(Q̂ · 1s1))jj

−αi ·Ψij ∗ (I − diag(Q · 1s1))jj} ,

which has the same limit in law as

M1/2
∑
i∈U

∑
j∈U

αi {∆Ψij ∗ (I − diag(Q · 1s1))jj

−Ψij ∗ diag(∆Q · 1s1)jj −∆Ψij ∗ diag(∆Q · 1s1)jj} .

From Lemma 2.1, the last term, i.e., M1/2∆Ψij ∗ diag(∆Q · 1s1)ij converges in probability

to zero, as M tends to infinity. On the other hand, from Theorem 2.2.7, M1/2∆R(t,M) has the

same limit in law as

M1/2
∑
i∈U

∑
j∈U

αi

{∑
n∈U

∑
k∈U

BU
inkj ∗∆Qnk ∗ (I − diag(Q · 1s1))jj −Ψij ∗ diag(∆(Q · 1s1))jj

}
.

=M1/2
∑
n∈U

∑
k∈U

{∑
i∈U

∑
j∈U

αiB
U
inkj ∗ (I − diag(Q · 1s1))jj ∗∆Qnk

}

−M1/2
∑
n∈U

∑
k∈U

αnΨnk ∗ diag(∆(Q · 1s1))kk,

which can be written as
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M1/2
∑
n∈U

∑
k∈U

BU
nk ∗∆Qnk −M1/2

∑
n∈U

∑
k∈U

(∑
i∈U

αiΨin

)
∗∆Qnk. (3.31)

Consider the real measurable function f(·, ·, ·) defined on E× E× R+ by

f(i, j, x) = 1{i=n,j=k}B
U
nk ∗

(
1{x⩽t} −Qnk(t)

)
− 1{i=n,i∈U,j=k}

(∑
r∈U

αrΨrn

)
∗
(
1{x⩽t} −Qnk(t)

)
.

Then 3.31 can be written as M1/2Wf (t) where

Wf (t) =
∑
n∈U

∑
k∈U

1

Nn

Nn∑
l=1

f (Jl−1, Jl, Xl) .

It is well known that for all i ∈ E,M/Ni converges a.s. to µii. Hence, by applying Pyke and

Schaufele’s ([33]) central limit theorem (see 2.2.3 ) to the function f , we get that M1/2∆R(t)

converges weakly to a normal random variable with zero mean and variance

σ2 =
∑
i∈U

∑
j∈U

µii


[
BU
ij −

∑
k∈U

αkΨki1{i∈U}

]2
∗Qij(t)

−

[(
BU
ij −

∑
k∈U

αkΨki1{i∈U}

)
∗Qij(t)

]2 .

3.3.2 Asymptotic confidence intervals

For each time point t ≤ M , we replace the true parameters Q(t) and Ψ(t) with their esti-

mators Q̂(t,M) and Ψ̂(t,M). We use these estimators to construct σ̂2
R(t), an estimator of the

variance σ2
R(t) of the reliability function R(t).

the strong consistency of the estimators Q̂(t,M) and Ψ̂(t,M) implies that σ̂2
R(t) converges

almost surely to σ2
R(t) as M tends to infinity.

the asymptotic confidence interval for R(t) at a confidence level of 100(1 − γ)%, where

γ ∈ (0, 1) is given by:

R̂(t,M)− u1−γ/2
σ̂R(t)√
M

≤ R(t) ≤ R̂(t,M) + u1−γ/2
σ̂R(t)√
M

,

where uγ is the γ-quantile of the standard normal distribution N (0, 1).



Chapter 4

Simulation and estimation of semi-Markov

models for reliability analysis using R

This chapter examines the application of R in simulating and estimating semi-Markov mod-

els, as well as for reliability and integral functional simulation.

4.1 R package for DTSMP analysis: smmR and SemiMarkov

This packages performs parametric and non-parametric estimation and simulation for multi-

state discrete-time semi-Markov processes (Barbu [4]). For the parametric estimation, several

discrete distributions are considered for the sojourn times: Uniform, Geometric, Poisson, Dis-

crete Weibull of type 1 and Negative Binomial. The non-parametric estimation concerns the

sojourn time distributions, where no assumptions are done on the shape of distributions. More-

over, the estimation can be done on the basis of one or several sample paths, with or without

censoring at the beginning or/and at the end of the sample paths.

Semi-Markov models are specified by using the functions smmparametric() and

smmnonparametric() for parametric and non-parametric specifications respectively. These

functions return objects of S3 class (smm, smmparametric) and (smm, smmnonparametric)

respectively (smm class inherits from S3 classes smmparametric or smmnonparametric).

Thus, smm is like a wrapper class for semi-Markov model specifications.

Based on a model specification (an object of class smm), it is possible to:

• simulate one or several sequences with the method simulate.smm();

• plot conditional sojourn time distributions (method plot.smm());

58
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• compute log-likelihood, AIC and BIC criteria (methods logLik(), AIC(), BIC());

• compute reliability, maintainability, availability, failure rates (methods reliability(),

maintainability(), availability(), failureRate()).

Estimations of parametric and non-parametric semi-Markov models can be done by us-

ing the function fitsmm(). This function returns an object of S3 class smmfit. The class

smmfit inherits from classes (smm, smmparametric) or (smm, smmnonparametric).

Based on a fitted/estimated semi-Markov model (an object of class smmfit), it is possible

to:

• simulate one or several sequences with the method simulate.smmfit();

• plot estimated conditional sojourn time distributions (method plot.smmfit());

• compute log-likelihood, AIC and BIC criteria (methods logLik(), AIC(), BIC());

• compute estimated reliability, maintainability, availability, failure rates and their confi-

dence intervals (methods reliability(), maintainability(), availability(),

failureRate()).

In this work we consider four different semi-Markov models corresponding to the following

four types of sojourn times:

• Sojourn times depending on the current state and on the next state:

fij(k) = P (Sn+1 − Sn = k | Jn = i, Jn+1 = j) .

• Sojourn times depending only on the current state:

fi•(k) = P (Sn+1 − Sn = k | Jn = i) .

• Sojourn times depending only on the next state to be visited:

f•j(k) = P (Sn+1 − Sn = k | Jn+1 = j) .

• Sojourn times depending neither on the current state nor on the next state:

f(k) = P (Sn+1 − Sn = k) .
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Note that the sojourn times of the type fi•(·), f•j(·), or f(·) are particular cases of the

general type fij(·). Nonetheless, in some specific applications, particular cases can be important

because adapted to the phenomenon under study; that is the reason why we investigate these

cases separately.

4.1.1 Simulation of semi-Markov model

Simulation according to classical distributions

In this part, we will consider the simulation according to classical distributions.

Parameters: This simulation is carried out by the function simulSM(). The different

parameters of the function are:

• E: Vector of state space of length S.

• NbSeq: Number of simulated sequences.

• lengthSeq: Vector containing the lengths of each simulated sequence.

• TypeSojournTime: Type of sojourn time; it can be "fij", "fi", "fj" or "f" according to

the four cases previously discussed.

• init: Vector of initial distribution of length S.

• Ptrans: Matrix of transition probabilities of the embedded Markov chain J = (Jm)m

of size S × S.

• distr: Sojourn time distributions.

– is a matrix of distributions of size S × S if TypeSojournTime is equal to "fij",

– is a vector of distributions of size S if TypeSojournTime is equal to "fi" or "fj",

– is a distribution if TypeSojournTime is equal to "f", where the distributions to

be used can be one of "uniform", "geom", "pois", "weibull" or "nbinom".

• param: Parameters of sojourn time distributions:

– is an array of parameters of size S×S× 2 if TypeSojournTime is equal to "fij",

– is a matrix of parameters of size S × 2 if TypeSojournTime is equal to "fi" or

"fj",
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– is a vector of parameters if TypeSojournTime is equal to " f ".

The R commands below generate three sequences of size 1000, 10000, and 2000 respectively

with the finite state space E = {a, c, g, t}, where the sojourn times depend on the current state

and on the next state.

install.packages("smmR")

install.packages("SemiMarkov")

library(smmR)

library(SemiMarkov)

# state space

E <- c("a", "c", "g", "t")

S <- length(E)

# sequence sizes

lengthSeq3 <- c(1000, 10000, 2000)

# creation of the initial distribution

vect.init <- c(1/4, 1/4, 1/4, 1/4)

# creation of transition matrix

Pij <- matrix(c(0, 0.2, 0.3, 0.4, 0.2, 0, 0.5, 0.2, 0.5, 0.3, 0,

0.4, 0.3, 0.5, 0.2, 0), ncol = 4)

# creation of the distribution matrix

distr.matrix <- matrix(c("dweibull", "pois", "geom", "nbinom",

"geom", "nbinom", "pois", "dweibull",

"pois", "pois", "dweibull", "geom",

"pois", "geom", "geom", "nbinom"),

nrow = S, ncol = S, byrow = TRUE)

# creation of an array containing the parameters

param1.matrix <- matrix(c(0.6, 2, 0.4, 4, 0.7, 2, 5, 0.6,

2, 3, 0.6, 0.6, 4, 0.3, 0.4, 4),

nrow = S, ncol = S, byrow = TRUE)
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param2.matrix <- matrix(c(0.8, 0, 0, 2, 0, 5, 0, 0.8,

0, 0, 0.8, 0, 4, 0, 0, 4),

nrow = S, ncol = S, byrow = TRUE)

param.array <- array(c(param1.matrix, param2.matrix), c(S, S, 2))

# simulation of 3 sequences

seq3 <- simulSM(E = E, NbSeq = 3, lengthSeq = lengthSeq3,

TypeSojournTime = "fij", init = vect.init,

Ptrans = Pij, distr = distr.matrix,

param = param.array, File.out = "seq3.txt")

We note that the parameters of the distributions are given in the following way: for exam-

ple, f13(·) is a Geometric distribution with parameter 0.4, while f14(·) is a Negative Binomial

distribution with parameters 4 and 2. In other words, the parameters of f13(·) are given in the

vector param.array [1, 3], which is equal to (0.4, 0), and the parameters of f14(·) are given

in the vector param.array [1, 4], which is equal to (4, 2); that means that if a distribution has

only 1 parameter, the corresponding vector of parameters will have 0 on the second position.

Values: The function simulSM() returns a list of simulated sequences. These sequences

can be saved in a table file by using the parameter File.out.

seq3 [[1]][1:15]

[1] "t" "t" "t" "t" "c" "c" "c" "c" "g" "g" "g" "g" "g" "g" "g"

Simulation according to distributions given by the user

Now we will consider the simulation according to distributions given by the user.

Parameters: This simulation is carried out by the function simulSM(). The various

parameters of the function are the same as those of the previous function, with the addition of:

• laws: Sojourn time distributions introduced by the user:

– is an array of size S × S ×Kmax if TypeSojournTime is equal to "fij",

– is a matrix of size S ×Kmax if TypeSojournTime is equal to "fi" or "fj",

– is a vector of length Kmax if TypeSojournTime is equal to "f",
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where Kmax is the maximum length for the sojourn times.

The R commands below generate three sequences of size 1000, 10000, and 2000 respec-

tively with the finite state space E = {a, c, g, t}, where the sojourn times depend only on the

next state.

# state space

E <- c("a", "c", "g", "t")

S <- length(E)

# sequence sizes

lengthSeq3 <- c(1000, 10000, 2000)

# creation of the initial distribution

vect.init <- c(1/4, 1/4, 1/4, 1/4)

# creation of transition matrix

Pij <- matrix(c(0, 0.2, 0.3, 0.4, 0.2, 0, 0.5, 0.2, 0.5,

0.3, 0, 0.4, 0.3, 0.5, 0.2, 0), ncol = 4)

# creation of a matrix corresponding to the conditional sojourn time

distributions

Kmax <- 6

nparam.matrix <- matrix(c(0.2, 0.1, 0.3, 0.2, 0.2, 0, 0.4, 0.2,

0.1,0, 0.2, 0.1, 0.5, 0.3, 0.15, 0.05, 0, 0,0.3, 0.2, 0.1, 0.2,

0.2, 0), nrow = S, ncol = Kmax, byrow = TRUE)

# simulation of 3 sequences with censoring at the beginning

seqNP3_begin <- simulSM(E = E, NbSeq = 3, lengthSeq = lengthSeq3,

TypeSojournTime = "fj", init = vect.init, Ptrans = Pij,

laws = nparam.matrix, File.out = "seqNP3_begin.txt",

cens.beg = 1, cens.end = 0)

# simulation of 3 sequences with censoring at the end

seqNP3_end <- simulSM(E = E, NbSeq = 3, lengthSeq = lengthSeq3,

TypeSojournTime = "fj", init = vect.init, Ptrans = Pij,
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laws = nparam.matrix, File.out = "seqNP3_end.txt",

cens.beg = 0, cens.end = 1)

# simulation of 3 sequences censored at the beginning and at the end

seqNP3_begin_end <- simulSM(E = E, NbSeq 3, lengthSeq = lengthSeq3,

TypeSojournTime = "fj", init = vect.init, Ptrans = Pij,

laws = nparam.matrix, File.out = "seqNP3_begin_end.txt",

cens.beg = 1, cens.end = 1)

# simulation of 3 sequences without censoring

seqNP3_no <- simulSM(E = E, NbSeq = 3, lengthSeq = lengthSeq3,

TypeSojournTime = "fj", init = vect.init, Ptrans = Pij,

laws = nparam.matrix, File.out = "seqNP3_no.txt")

Values: The function simulSM() returns a list of simulated sequences.

seqNP3_begin [[1]][1:15]

[1] "g" "g" "g" "a" "g" "g" "g" "g" "t" "g" "g" "g" "g" "g" "g"

Estimation of semi-Markov model

In this section we explain and illustrate the estimation of a semi-Markov model in the non-

parametric case.

4.1.2 Non-parametric estimation of DTSMP

Here we will consider two types of estimation for semi-Markov chains: a direct estimation,

cf. Barbu and Limnios ([3], [1]) and an estimation based on a couple Markov chain associated

to the semi-Markov chain (see [40]).

Parameters: The estimation is carried out by the function estimSM() and several param-

eters must be given.

• file: Path of the table file which contains the sequences from which to estimate.

• seq: List of the sequence(s) from which to estimate.

• E: Vector of state space of length S.
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• TypeSojournTime: Type of sojourn time; always equal to "NP" for the non-parametric

estimation.

Note that the sequences from which we estimate can be given either as an R list (seq

argument) or as a file in table format (file argument). The parameter distr is always equal

to "NP".

## data

seqNP3_no = read.table("seqNP3_no.txt")

E = c("a","c","g","t")

## estimation of simulated sequences

estSeqNP3= estimSM(seq = seqNP3_no, E = E, TypeSojournTime = "fj",

distr = "NP", cens.end = 0, cens.beg = 0)

Values: The function estimSM() returns a list containing:

• init: Vector of size S with estimated initial probabilities of the semi-Markov chain

estSeqNP3\$init

[1] 0.00000000 0.6666670 0.33333330 0.0000000

• Ptrans: Matrix of size S × S with estimated transition probabilities of the embedded

Markov chain J = (Jn)n

estSeqNP3\$Ptrans

[ ,1] [ ,2] [ ,3] [ ,4]

[1,] 0.0000000 0.2051948 0.5090909 0.2857143

[2,] 0.1938179 0.0000000 0.3107769 0.4954052

[3,] 0.3010169 0.4874576 0.0000000 0.2115254

[4,] 0.3881686 0.1936791 0.4181524 0.0000000

• laws: Array of size S×S×Kmax with estimated values of the sojourn time distributions

estSeqNP3\$laws[,,1:2]

, , 1

[ ,1] [ ,2] [ ,3] [ ,4]

[1,] 0.0000000 0.3941423 0.4728997 0.2939271

[2,] 0.1896104 0.0000000 0.4728997 0.2939271
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[3,] 0.1896104 0.3941423 0.0000000 0.2939271

[4,] 0.1896104 0.3941423 0.4728997 0.0000000

, , 2

[ ,1] [ ,2] [ ,3] [ ,4]

[1,] 0.0000000 0.1949791 0.3089431 0.1959514

[2,] 0.1073593 0.0000000 0.3089431 0.1959514

[3,] 0.1073593 0.1949791 0.0000000 0.1959514

[4,] 0.1073593 0.1949791 0.3089431 0.0000000

• q: Array of size S × S ×Kmax with estimated semi-Markov kernel

estSeqNP3\$q[,,1:3]

, , 1

[ ,1] [ ,2] [ ,3] [ ,4]

[1,] 0.00000000 0.07792208 0.2562771 0.06753247

[2,] 0.03508772 0.00000000 0.1378446 0.15956558

[3,] 0.05559322 0.18576271 0.0000000 0.06372881

[4,] 0.07698541 0.08670989 0.1920583 0.00000000

, , 2

[ ,1] [ ,2] [ ,3] [ ,4]

[1,] 0.00000000 0.04329004 0.1411255 0.05627706

[2,] 0.01670844 0.00000000 0.1019215 0.10025063

[3,] 0.03796610 0.09762712 0.0000000 0.03864407

[4,] 0.03889789 0.03160454 0.1385737 0.00000000

, , 3

[ ,1] [ ,2] [ ,3] [ ,4]

[1,] 0.00000000 0.02770563 0.07965368 0.04069264

[2,] 0.07101086 0.00000000 0.05179616 0.03926483

[3,] 0.09152542 0.05423729 0.00000000 0.02440678

[4,] 0.10940032 0.01782820 0.05591572 0.00000000

4.1.3 Simulation of the reliability function for DTSMP

In this section, we present a method to compute the reliability function and its confidence

interval for a Discret-time SMP model. We detail the steps for the calculation, illustrate the
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process with a specific example, and provide the R code implementation.

parameters: To compute the reliability function for the semi-Markov model, we utilize

the function reliability().

• k: Number of periods to be examined for the reliability function.

• upstates: Vector specifying the states considered as upstates for the reliability calculation.

• level: Confidence level for the confidence interval calculation.

• klim: Optional parameter specifying the maximum number of iterations for convergence.

states <- c("a", "c", "g", "t")

s <- length(states)

# Creation of the initial distribution

vect.init <- c(1 / 4, 1 / 4, 1 / 4, 1 / 4)

# Creation of the transition matrix

pij <- matrix(c(0, 0.2, 0.5, 0.3,

0.2, 0, 0.3, 0.5,

0.3, 0.5, 0, 0.2,

0.4, 0.2, 0.4, 0),

ncol = s, byrow = TRUE)

# Creation of a matrix corresponding to the conditional sojourn time

distributions

kmax <- 6

nparam.matrix <- matrix(c(0.2, 0.1, 0.3, 0.2,

0.2, 0, 0.4, 0.2,

0.1, 0, 0.2, 0.1,

0.5, 0.3, 0.15, 0.05,

0, 0, 0.3, 0.2,

0.1, 0.2, 0.2, 0),

nrow = s, ncol = kmax, byrow = TRUE)

# Initialize the semi-Markov model

library(smmR)

semimarkov <- smmnonparametric(states = states, init = vect.init,

ptrans = pij, type.sojourn = "fj", distr = nparam.matrix)
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# Calculate the reliability function

k <- 100

rr <- reliability(semimarkov, k, upstates = c("a", "g"), level =

0.95, klim = 10000)

g <- rr[, 2]

t <- rr[, 1]

# Plot the reliability function

plot(t, type = "l",col="blue")

# Compute the confidence interval

ic1 <- t + 1.96 * (sqrt(g) / sqrt(k))

ic2 <- t - 1.96 * (sqrt(g) / sqrt(k))

# Plot the confidence intervals

lines(ic1, col = "red")

lines(ic2, col = "red")

legend("topright", legend = c("Reliability", "95% CI Upper", "95% CI

Lower"), col = c("blue", "red", "red"), lty = c(1, 1, 1),

lwd = c(2, 1, 1))
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Figure 4.1: Reliability function with confidence intervals.
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4.2 Continuous-time SMP algorithm

4.2.1 Monte carlo method

We shall give algorithm for realizing semi-Markov trajectories. This algorithm give realiza-

tions of a semi-Markov process into the time interval [0, t]. The output of the algorithms will be

(j0, s0, . . . , jk, sk), the successive visited states and jump times, with sk ≤ t < sk+1.

Consider a semi-Markov kernel Q(t) and denote the transition probability matrix of the

EMC p = Q(∞). Set also Fij(·) = Qij(·)/pij , if pij > 0, Hi(t) =
∑

j∈EQij(t), and Qij(t) =∫ t
0
qij(u)Hi(du) . We consider here that the initial state of the system is fixed.

The algorithm is based on the EMC.

Algorithm

1. Put k = 0, S0 = 0, and set j0 as the initial state;

2. Sample random variable J ∼ p(jk, ·) and set jk+1 = J(ω);

3. Sample random variable X ∼ Fjkjk+1
(·) and set x = X(ω);

4. Put k := k + 1 and sk = sk−1 + x. If sk ≥ t then end;

5. Set jk := jk+1 and continue to step 2.

Numerical example

In this section we carry out a simulation study to evaluate the finite sample performance of

the estimation procedure described in the previous sections. We will apply our results to a

three-state semi-Markov processes. The transitions between states are given in Fig.4.2.

Figure 4.2: A three state semi-Markov system .
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Taking the initial distribution α = (1/3, 1/3, 1/3), the transition matrix of the embedded

Markov chain (Jn)n∈R+ is given by:

(pij)ij =


0 0.9 0.1

0.8 0 0.2

1 0 0


and the conditional sojourn time distributions are defined by:

• f12 is normally distributed, N (µ, σ2), with parameters µ = 1.0 and σ2 = 0.2.

• f13 is gamma distributed, Γ(α, β), with parameters α = 3 and β = 2.

• f31 is normally distributed, N (µ, σ2), with parameters µ = 2.0 and σ2 = 0.5.

• f23 is exponentially distributed, with parameter λ = 0.5.

$realisation

$realisation[[1]]

[1] 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 3 1 2 1

2 1 2 1 2 1 2

[39] 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

2 1 2 1 2 3 1

[77] 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 3 1 2 1 2 1

2 1 2 1 2 1 2

[115] 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

2 1 2 1 2 1 2

$saut

$saut[[1]]

[1] 8.007594 9.203026 9.770048 19.143830 28.217834

30.768822

[7] 33.335021 42.466593 42.879345 49.355742 51.626033

58.951192

[13] 59.597311 64.305667 77.287072 80.907378 85.729960

88.478846

[19] 89.108953 92.867506 106.755540 111.191515 115.952540

126.819882

[25] 129.388958 136.824663 144.531240 147.938703 156.030915
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158.115849

[31] 158.158408 159.573728 163.305283 166.754757 171.593676

173.281841

$sejourn

$sejourn[[1]]

[1] 8.00759382 1.19543239 0.56702195 9.37378145 9.07400434

2.55098803

[7] 2.56619889 9.13157176 0.41275244 6.47639699 2.27029129

7.32515853

[13] 0.64611947 4.70835602 12.98140506 3.62030550 4.82258204

2.74888570

[19] 0.63010761 3.75855250 13.88803434 4.43597442 4.76102527

10.86734270

[25] 2.56907526 7.43570526 7.70657709 3.40746317 8.09221189

2.08493358

4.2.2 Simulation of the integral functional

In this section, we describe a procedure that uses a piecewise-defined function to calculate the

integral functional of a random process. We give an example of how to calculate the functional

in detail, walk through the processes in detail, and provide the R code implementation.

The integral functional L(t) can be defined as:

L(t) =

∫ t

0

h (Zs) ds =

N(t)∑
k=1

h (Jk−1)Sk +
(
t−XN(t)

)
h
(
JN(t)

)
, t ≥ 0, (4.1)

where

• The function h(x) modifies the state values.

• The sequences J and S represent the states and holding times, respectively.

• Sequence of time points t with a specified increment.

The steps to compute L(t) for each time point:

• Calculate the cumulative sum of S to determine N(t), the number of jumps up to time t.
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• Sum the terms h(Jk−1)Sk for k from 1 to N(t).

• Add the remaining term (t−XN(t))h(JN(t)).

# Define the sequences J and S

J <- c(3, 1, 4, 1, 5)

S <- c(1.5, 3.3, 2.7, 0.8, 2.2)

# Define the function h(x)

h <- function(x) {

return(0.2 * x^2 + 0.3 * x + 0.1)

}

# Define the time points and initialize L values

t <- seq(0, 12, by = 0.01)

L_values <- numeric(length(t))

# Calculate L(t) for each time point t

for (i in seq_along(t)) {

current_t <- t[i]

cumulative_S <- cumsum(S)

# Find N(t), the number of jumps up to time t

N_t <- sum(cumulative_S <= current_t)

if (N_t == 0) {

L_values[i] <- current_t

} else {

sum_term <- sum(h(J[1:N_t]) * S[1:N_t])

if (N_t < length(S)) {

remaining_term <- (current_t - cumulative_S[N_t]) * h(J[N_t +

1])

} else {

remaining_term <- (current_t - cumulative_S[N_t]) * h(J[N_t])

}

L_values[i] <- sum_term + remaining_term

}

}

# Plot the trajectory

plot(t, L_values, type = "l", col = "blue", lwd = 2, xlab = "Time",
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ylab = "L(t)")
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Figure 4.3: Trajectory of L(t).

4.2.3 Reliability algorithm

Generally speaking, it is clear that, for the purpose of application, it is more worth while

solving the Equation 3.29

In order to numericaly solve this equation and give an approximation of the reliability esti-

mator, we use the same algorithm of Corradi [12] ( we use the restriction on U).

The variables involved are the following:

• s = number of states of the SMP.

• M = number of periods to be examined for the transient analysis of the SMP.

• P = matrix of order s of the embedded MC in the SMP.

• MF = square lower-triangular block matrix of order M +1 whose blocks are of order m.
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The algorithm for the solution of 3.29 works with the following steps:

# Reads the inputs: s,M,P,MF

# Constructs MQ,MU,MD

U(0) = I

Q(0) = 0

S(0) = 0

D(0) = I

for t = 1 to M

Q(t) = P ∗ F(t)

for i = 1 to m

sii(t) = Qii(t) · 1

endfor

U(t) = Q(t) = Q(t−1)

D(t) = D(0) = S(t)

endfor

# Solves the system: Φ(0) = D(0)

for t = 1 to T

Φ(t) = D(t)

for s = 1 to t

Φ(t) = Φ(t) + U(s) · Φ(t−s)

endfor

endfor

# Prints the results:
TQ, TΦ
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Figure 4.4: Reliability of a three-state system by the Monte Carlo method.



Conclusion

Integral functionals of semi-Markov processes are highly valuable in various reliability stud-

ies. They play a crucial role in analyzing complex engineering systems, which include a vast

range of applications such as infrastructure networks, manufacturing processes, and telecom-

munications systems. By incorporating these mathematical tools into reliability models, re-

searchers can significantly improve their predictive capabilities regarding system reliability.

This integration allows for better optimization of maintenance schedules, ensuring that sys-

tems operate efficiently and with minimal downtime. Additionally, it aids in the assessment of

overall system performance, providing a clear picture of how systems function under different

conditions.

Consequently, this detailed analysis enables researchers and engineers to make well-informed

decisions that enhance the reliability and robustness of the systems they work with. By lever-

aging integral functionals of semi-Markov processes, it is possible to achieve a more thorough

and nuanced understanding of system behavior, leading to improvements in design, operation,

and overall system reliability.
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