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Abstract
This work considers some mathematical methods for formulation and

numerical simulation of stochastic epidemic models. Specifically, models are
formulated by stochastic differential equations. Some well-known examples are

used for illustration such as a SIR epidemic model.
An optimal control analysis of a dynamical system of optimal control is

presented. The stochastic and deterministic control systems are studied. For
the deterministic optimal control problem the Pontryagins Maximum

Principle is used. The stochastic optimal control problem is performed by
using Stochastic Maximum Principle. The comparative results are obtained

numerically through simulation, with a specific application to influenza using
the Susceptible-Infected-Recovered (SIR) model.

The results highlight the advantages of stochastic optimal control in
mitigating Epidemics outbreaks, offering insights for policymakers on resource

allocation and intervention strategies in the presence of uncertainty.
Key words: Epidemic models, Optimal control theory, Pontryagins Maximum
Principle, Stochastic Maximum Principle, Numerical simulations, Stochastic

Differential Equations.
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Introduction

In recent years, the world has witnessed a wide spread of infectious diseases, such as the

COVID-19 pandemic, which had a negative impact on public health and global economy. These

epidemics require intervention and for this reason we have to understand the dynamics of disease

transmission and develop effective strategies to combat epidemics and reducing infection.

Mathematics modeling plays an important role in finding solutions through epidemic models,

which are powerful tools for analyzing and understanding the spread of diseases. These models

describe the dynamics of infections over time using Ordinary differential equations (ODEs) and

stochastic differential equations (SDEs)[11][27]. They also help decision-makers to assess the

impact of various interventions, such as vaccination, quarantine, and social distancing.

Epidemic models aim to produce exact epidemic progression forecasts which then support the

development of efficient strategies for disease spread containment. Through the combination of

mathematical frameworks with actual health data these models generate specific guidelines for

global and local epidemic responses that reduce both human and economic damage. Stochastic

modeling stands as one of the multiple epidemic modeling methods which provides a structure

for integrating random elements to capture the unpredictable nature of real disease processes.

Through the implementation of optimal control theory, experts can create successful epidemic

management strategies which maintain a proper balance between health protection and eco-

nomic considerations [1][50][12]. The optimal control problem for deterministic systems can be

solved by using Pontryagin Maximum Principle, and for the stochastic optimal control problem

is performed by using Stochastic Maximum Principle [29, 22].

This thesis is organized in four chapters: The first chapter (1) provides a foundational un-

derstanding of epidemic modeling and optimal control, essential for addressing the complex

dynamics of infectious disease spread. It begins by introducing the basic epidemic models, in-

cluding the Susceptible-Infectious-Recovered (SIR) model, which captures the core mechanisms

of disease transmission and recovery within a population. These models serve as critical tools

for predicting outbreaks and guiding public health interventions. To accurately simulate these

x
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models, we explore numerical methods for solving ordinary differential equations (ODEs), with

a focus on the Runge-Kutta (RK) method. The chapter then transitions to the determinis-

tic optimal control framework, which seeks to minimize the spread and impact of infectious

diseases through strategic interventions [12, 47, 50]. We introduce the Pontryagin Maximum

Principle (PMP), which is a fundamental method for deriving optimal control strategies.

The second chapter (2) delves into the mathematical foundations of Forward-Backward Stochas-

tic Differential Equations (FBSDEs), which play a critical role in modeling and controlling

systems influenced by randomness. We first present the general structure of FBSDEs. To

solve these complex equations, we discuss numerical methods such as the Forward-Backward

Euler-Maruyama scheme and the Least Squares Regression based method, which provide prac-

tical approaches for approximating the solutions of FBSDEs. Building on this foundation, we

introduce stochastic epidemic models, which extend traditional deterministic frameworks by

incorporating random perturbations. These models provide a more realistic representation of

disease spread, accounting for the unpredictable nature of infection. Then we will recall the

strong formulation of the stochastic optimal control problem. A statement of the stochastic

maximum principle is given in which the stochastic Hamiltonian system is introduced [22].

In chapter (3), we apply the theoretical framework of optimal control to influenza epidemic. We

analyze the comparative performance of deterministic and stochastic optimal control approaches

for epidemic management using the Susceptible-Infected-Recovered (SIR) model with media

awareness, the inclusion treatment and vaccination as controls. We begin by formulating both

deterministic and stochastic models to capture the spread dynamics of influenza and show the

effect of media awareness program without controls on the spread of the disease. Then we

formulate both deterministic and stochastic optimal control models and we focus on finding

the successful intervention strategy which decreases the number of infections with a minimum

cost.

Finally, in chapter (4) we perform a numerical analysis of optimal control to influenza epidemic,

evaluating the impact of various control strategies, such as vaccination, and treatment, on

the spread of the disease. We explore different scenarios to assess the effectiveness of these

strategies under varying epidemiological and intervention conditions. For simulations we use

Python programming language.



Chapter 1

Deterministic Epidemic Models and

Optimal Control

1.1 Epidemics outbreaks

Infectious diseases are those that can be transmitted from one person to another person and

can cause epidemic outbreaks for examples, Covid19, Influenza, Measles, HIV, Tuberculosis,

Malaria, Yellow fever. These are caused by viral and bacterial agents. Even with advanced

medical treatments and vaccinations in place, the high number of people affected becomes an

issue. The infectious viruses are capable of constant adaptation which causes new diseases

to surface and, most of the time, leads to epidemics. Mathematical models can be used to

represent how an infection spreads across a population over time, and generally come in two

forms: stochastic and deterministic models [11][14].

1.2 The basic epidemic models

Throughout this section, we introduce the foundational concepts of mathematical modeling in

epidemiology, focusing on some of the most widely used epidemic models. The choice of the

most appropriated model depends on the precision or generality required.

Epidemic models provide valuable insights into disease transmission and help predict outbreak

dynamics. Historical advancements in this field began with John Graunt in 1662, who system-

atically analyzed mortality causes in London, laying the foundation for epidemiology’s ”theory

of competing risks.”

The first step is to represent the epidemiology of the disease being studied by dividing the pop-

1



1.2 The basic epidemic models 2

ulation into subpopulations, called compartments, that represent the various stages of disease

progression. For example, individuals are identified as ’susceptible’ (S) to a disease if they don’t

currently have the disease nor any immunity to the disease, e.g., they have not been vaccinated.

Individuals are ’exposed’ (E) if they have been infected with the disease pathogen but are not

able to infect others, and they are ’infectious’ (I) if they are infected and infectious with the

disease pathogen. Finally, they are ’removed’ (R) if they have cleared the infection and have

immunity to recurrence for at least some period of time [2, 9, 10, 28, 31]. the epidemiology of a

disease is represented as a series of subpopulations connected by the flow from one compartment

to another that is dictated by the disease dynamics. The rates of flow between compartments

are estimated from experiments and data analysis [35, 45, 43].

Now we will consider that population is constant, neglecting the tourism an immigration fac-

tors. Also it is considered that the population is homogeneously mixed, which means that

every individual interacts with another at the same level and therefore all individuals have the

same risk of contracting the disease. The compartment changes are expressed by a system of

differential equations [1].let us present a method for solving ODEs before introducing the basic

epidemic models

Runge-Kutta method for ODE’s

Runge−Kutta method is based on the concept of using weighted averages of different slopes to

estimate the value of the derivative at each step. The most commonly used form of the Runge−

Kutta method is the fourth−order RungeKutta (RK4) method [13] which is given by this algo-
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rithm.

Algorithm 1: Fourth-Order Runge-Kutta (RK4) Method

1 ∆t is the step size, tn is the current time, xn is the current solution, and f(t,x) is the

ODE function. Set N ← T/∆t (Number of steps) ;

2 for n = 0 to N − 1 do

3 Compute:

k1 = ∆tf(xn, tn)

k2 = ∆tf

(
xn + ∆t

2 k1, tn + ∆t

2

)

k3 = ∆tf

(
xn + ∆t

2 k2, tn + ∆t

2

)
k4 = ∆tf (xn + ∆t · k3, tn + ∆t)

4 Update solution:

xn+1 = xn + 1
6(k1 + 2k2 + 2k3 + k4)

return xn+1

The simple Kermack–McKendrick epidemic Model (SIR)

Description: The SIR model is suitable for diseases where recovered individuals acquire im-

munity. for example Measles can be modelled using the SIR framework, as individuals acquire

long-term immunity after recovery[1][50].

The compartments are:

• Susceptible(S ): Individuals who can contract the disease.

• Infected (I): Individuals who are infected and can spread the disease.

• Recovered (R): Individuals who have recovered and acquire immunity.

• β is the transmission rate and γ is the recovery rate.

The total population is constant: N = S + I + R. We consider the following equations

dS
dt

= −βSI,

dI
dt

= βSI − γI,

dR
dt

= γI

(1.1)

where: S(0) > 0, I(0) > 0, and R(0) ⩾ 0.
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Figure 1.1: The SIR principal scheme

Example:

Consider an epidemic of influenza in a British boarding school in early 1978 . Three boys

were reported to the school with the typical symptoms of influenza. Over the next few days,

a very large fraction of the 763 boys in the school had contact with the infection. Within two

weeks, the infection had become extinguished. The best parameters yield an estimated active

infectious period γ = 1
2.2 , and a transmission rate β = 1.66 per day[1].

Figure 1.2: The time-evolution of in influenza over 15 days

From the graph of Figure 1.2 behavior we observe that the susceptible S decreases over time

as individuals get infected and infected I increases initially due to new infections, peaks, and

then decreases as individuals recover. Then recovered R increases as more infected individuals

recover.

SI Model:

Description: The SI model is one of the simplest epidemic models used to describe the

spread of infectious diseases. In this model, there is no recovery or removal process, meaning
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once individuals become infected, they remain in the infected compartment indefinitely[1]. This

model is suitable for diseases where there is no immunity or cure, such as certain viral infections

(HIV). The disease spreads through interactions between susceptible and infected individuals,

governed by the following differential equations:
dS
dt

= −βSI

dI
dt

= βSI

where: S(0) > 0, I(0) > 0

The total population is constant: N = S + I.

Figure 1.3: The SI principal scheme

Example:

We take a closer look at the course of the Corona virus pandemic in Croatia. We will consider

the period from October 11, 2020 to February 8, 2021. We assume that N = 235473, with the

parameter α = 0.00015. [28]

Figure 1.4: Simulation of coronavirus infection in Croatia

From the graph behavior we can observe that susceptible decreases as individuals get infected.

Then the infected increases as the entire population becomes infected over time. So the infection
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spreads until everyone is infected.

SIS Model:

Description: The SIS model describes diseases where infected individuals recover but do not

gain immunity and can become susceptible again[1]. The common cold can be modeled using

the SIS framework, as individuals can recover and become susceptible to reinfection. The total

population is constant: N = S + I. So that lead us to the following system:


dS
dt

= −βSI + γI

dI
dt

= βSI − γI

where:where:S(0) > 0, I(0) > 0

• β: Transmission rate.

• γ: Recovery rate.

Figure 1.5: The SIS principal scheme

Each arrow pointing towards the inside of the compartment represents a positive term in the

differential equation, and the opposite direction introduces a negative term.

Example:

Trachoma is an infectious disease causing a characteristic roughening of the inner surface of

the eyelids. Also called granular conjunctivitis or Egyptian ophthalmia, it is the leading cause

of infectious blindness in the world, with parameters β = 0.047 as transmission rate and the

recovery rate γ = 0.017 [1].
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Figure 1.6: Deterministic SIS model for trachoma disease

From the graph behavior we observe that the susceptible decreases initially but stabilizes as

individuals cycle back from the infected group. Then the infected increases and stabilizes as

the infection rate and recovery rate balance. So the infection persists over time, reaching a

steady state where a constant proportion of the population remains infected.

SEIR Model:

Description: The SEIR model extends the SIR model by adding an E (Exposed) compart-

ment, representing individuals who have been exposed to the disease but are not yet infectious.

For example COVID-19 can be modeled using the SEIR framework[1], as there is an incubation

period where individuals are exposed but not yet infectious. The total population is constant:

N = S + E + I + R. This is described by the following set of differential equations:

dS
dt

= −βSI,

dE
dt

= βSI − σE,

dI
dt

= σE − γI,

dR
dt

= γI

where:S(0) > 0, I(0) > 0 , E(0) > 0 and R(0) ≥ 0

• β: Transmission rate.

• σ: Rate at which exposed individuals become infectious.
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• γ: Recovery rate.

Figure 1.7: The SEIR principal scheme

Example:

Rubella, commonly known as German Measles, is a most common in child age, caused by the

rubella virus. Children recover more quickly than adults, and can be very serious in pregnancy.

The virus is contracted through the respiratory tract and has an incubation period of 2 to 3

weeks. The primary symptom of rubella virus infection is the appearance of a rash on the face

which spreads to the trunk and limbs and usually fades after three days. Other symptoms

include low grade fever, swollen glands, joint pains, headache and conjunctivitis. From [1], the

parameters are β = 0.52759, σ = 0.65, γ = 0.012.

Figure 1.8: Deterministic SEIR model for Rubella disease

Adding an exposed (E) compartment for individuals in the incubation phase who are infected

but not yet infectious, the susceptible decreases as individuals are exposed and infected. The

exposed increases initially, then decreases as their individuals become infectious.

The basic reproduction number

In epidemiology there are many used threshold values, the most important is the basic repro-

duction number which is defined as fellows.
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Definition 1.2.1 : The basic reproduction number R0 is a famous result due to Kermack and

McKendrick, it is called also ”threshold phenomenon” because initially proportion of susceptible

in population must be exceed this critical for an infected to invade and it is defined as the average

number of secondary infections that occurs when one infective is introduced into a completely

susceptible population [6, 14, 15]. If R0 < 1 the disease cannot invade the population and the

infection will die out over a period of time, if R0 > 1 the disease will invade the population.

Example:

The classical SIR model has been utilized to determine, the basic reproduction number (R0) of

COV ID19 in Algeria basing on the daily reported confirmed cases by the Algerian Ministry of

Health from February 25th, 2020 to August 12th, 2020 [17]. The SIR model is as follows:

dS
dt

= − β
N

SI,

dI
dt

= β
N

SI − γI,

dR
dt

= γI

(1.2)

At t = 0 we have S = N , I ≈ 0, and R = 0. The disease will die out over a period of time, if

β

N
SI − γI = βI − γI < 0.

Then

R0 = β

γ
< 1.

The parameters of SIR epidemic model β = 0.0561215, γ = 0.0455331 are estimated by using

least squares. After substituting these parameters, we find the basic reproduction number of

COV ID19 in Algeria

R0 = β

γ
= 1.23254

Since (R0 > 1), then the disease will spread in the population.

Calculating R0 using the next-generation matrix:

In complex epidemic models, R0 can be computed using the Next-Generation Matrix (NGM)

method. It is obtained by taking the largest (dominant) eigenvalue (spectral radius). This

involves constructing two matrices [15][14]:

R0 =
[

∂Fi(x0)
∂xj

] [
∂Vi(x0)

∂xj

]−1

= ρ(FV −1)

Where
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• Fi is the rate of appearance of new criminals in compartments.

• Vi is the transfer of individuals out of the compartment.

• x0 is the equilibrium state.

1.3 Equilibrium points and stability in epidemic models

Definition 1.3.1 An equilibrium point (or steady-state) in an epidemic model is a state

where the system does not change over time. Mathematically, this means that all derivatives in

the system of differential equations are zero:

dX

dt
= 0

where X represents the state variables (e.g., the number of susceptible, infected, and recovered

individuals). At equilibrium, the number of individuals in each compartment remains constant

over time, meaning there is no net change in infections or recoveries [6, 8, 24].

Types of equilibrium in epidemic models:

Theorem 1.3.1 The disease-free equilibrium (DFE) represents a situation where the infection

has been eradicated (I∗ = 0). It exists in all epidemic models because a population without

infection is always a possible state. Stability of the DFE depends on the basic reproduction

number R0. If R0 < 1, the disease-free equilibrium is globally asymptotically stable, meaning

the epidemic will eventually fade out [18].

Theorem 1.3.2 The endemic equilibrium represents a situation where the disease persists at

a constant level (I∗ > 0). It exists if R0 > 1, meaning that on average, each infected individual

transmits the disease to more than one person. Stability of the endemic equilibrium depends on

model parameters such as recovery rate, transmission rate, and control measures [18].

Stability of equilibrium points:

The stability of an equilibrium point determines whether small perturbations (e.g., introduction

of a few infected individuals) will cause the system to return to equilibrium or move away from

it. If explicit solution to a system of differential equations can be calculated, then presumably

the question of solution stability can be resolved by inspection of the solution formulas, but
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the most system it is not possible to generate explicit solution formulas, so we have to find

methods of determining stability without the use of explicit solution [51].

Local stability analysis (Jacobian Method):

To check the local stability of an equilibrium point X∗, we linearize the system by computing

the Jacobian matrix J :

J = ∂F

∂X

∣∣∣∣∣
X∗

where F (X) represents the system of differential equations.

• If all eigenvalues of J have negative real parts, then the equilibrium is locally asymptoti-

cally stable.

• If at least one eigenvalue has a positive real part, then the equilibrium is unstable [48].

Corollary: [48] (Corollary of Gershgorin Circle Theorem) Let A be an (n× n) matrix with

real entries. If the diagonal elements aii of A satisfy aii < −ri, where

ri =
n∑

j=1,j ̸=i

| aij |

for i = 1......n; then the eigenvalues of A are negative or have negative real parts.

1.4 Deterministic optimal control problem

Optimal Control (OC) is the process of determining control and state trajectories for a dynamic

system over a period of time in order to minimize the cost function. In epidemic control,

a government want to minimize the spread of a disease by controlling vaccination or social

distancing policies or treatments. Then the goal is to find the best strategy to minimize

infections while keeping costs low by finding a continuous control u(t) and the associated state

variable x(t) to maximize or minimize a given cost ( objective) functional J [23]. The control

u(·) is taken from the set

U [0, T ] ≜
{
u : [0, T ]→ U ⊂ Rd|u(·) measurable

}
,

and we Consider the following control system:


ẋ(t) = b(t, x(t), u(t))

x(0) = x0,

(1.3)
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where b : [0, T ]× Rd × U → Rd. We consider the associated cost functional:

J(u(·)) =
∫ T

0
f(t, x(t), u(t)) dt + h(x(T )). (1.4)

where f and h are called the running cost and the terminal cost, respectively.

Definition 1.4.1 :[22] A control u(·) is called an admissible control, and (x(·), u(·)) called an

admissible pair, if:

(i) u(·) ∈ U [0, T ];

(ii) x(·) is the unique solution of the dynamic system under u(·);

(iii) x(t) ∈ S(t) where S(t) is a given multifunction such that for each t ∈ [0, T ], S(t) ⊂ Rd.

(iv) t 7→ f(t, x(t), u(t)) ∈ L1[0, T ].

The set of all admissible controls is denoted by Uad[0, T ]:

Our deterministic optimal control problem can be stated as follows.

Problem (D).[22] Minimize J over Uad[0, T ].

Problem (D) is said to be finite if J has a finite lower bound, and is said to be uniquely solvable

if there is a unique u∗(·) ∈ Uad[0, T ] satisfying

J(u∗(·)) = inf
u(·)∈Uad[0,T ]

J(u(·)).

Any u∗(·) ∈ Uad[0, T ] satisfying J is called an optimal control, with the corresponding state

trajectory x∗(·) = x(·; u∗(·)), and (x∗(·), u∗(·)) are called an optimal state trajectory and an

optimal pair, respectively.

1.4.1 Existence of optimal controls

In this subsection we are going to discuss the existence of optimal controls.

Theorem 1.4.1 [20] Let J be an objective functional on a given control set U [0, T ]. Suppose

J is subject to the state system having non-negative initial conditions at t = 0, then there exists

an optimal control u∗ such that

J(u∗) = min{J(u) : u ∈ U [0, T ]}.

Proof:[20] It is necessary to verify the following four properties in proving the Theorem 1.4.1:
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(i) Convexity and closure of the control set U [0, T ].

(ii) Boundedness of the state system by a linear function in the state and control variables.

(iii) Convexity of the integrand of the objective functional with respect to the control.

(iv) There exist constants c1, c2 > 0 and c3 > 1 such that the running cost is bounded below

by:

c1
(
|u|2

) c3
2 − c2.

See [20] for more details about the proof.

Theorem 1.4.2 [19] Let U be convex, and let J be strictly convex on U . Then there exists at

most one u∗ ∈ U such that J has a minimum at u∗.

Proof:[19] Let u∗ and u be two solutions of the optimization problem such that u∗ ̸= u. Set

v = u∗+u
2 . Since J is strictly convex, we have:

J(u) = J(u∗) ≤ J(v) <
1
2(J(u∗) + J(u)),

that is J(u) < J(u∗) < J(u), which is a contradiction since J(u) = J(u∗) = minu∈U J .

1.5 Pontryagin’s Maximum Principle (PMP)

Optimal control problems may be regarded as optimization problems in infinite-dimensional

spaces which make them substantially difficult to solve. The maximum principle, formulated

and derived by Pontryagin and his group in the 1950s, is truly a milestone of optimal control

theory. It states that any optimal control along with the optimal state trajectory must solve the

so-called Hamiltonian system [27, 3], which is a two-point boundary value problem (and can also

be called a forward-backward differential equation, to be able to compare with the stochastic

case), plus a maximum condition of a function called the Hamiltonian. Let us assume the

following:

• (D1) (U, d) is a separable metric space and T > 0.

• (D2) The maps b : [0, T ]× Rn × U → Rn, f : [0, T ]× Rn × U → R, and h : Rn → R are

measurable, and there exist a constant L > 0 and a modulus of continuity ω : [0,∞) →

[0,∞) such that for φ(t, x, u) = b(t, x, u), f(t, x, u), h(x), we have
|φ(t, x, u)− φ(t, x̂, û)| ≤ L|x− x̂|+ ω(d(u, û)),

|φ(t, 0, u)| ≤ L,
∀t ∈ [0, T ], x, x̂ ∈ Rn, u, û ∈ U.
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• (D3) The maps b, f , and h are C1 in x, and there exists a modulus of continuity ω :

[0,∞)→ [0,∞) such that for φ(t, x, u) = b(t, x, u), f(t, x, u), h(x), we have

|φx(t, x, u)− φx(t, x̂, û)| ≤ ω(|x− x̂|+ d(u, û)),∀t ∈ [0, T ], x, x̂ ∈ Rn, u, û ∈ U.

• It is clear that under (D1)-(D2), for any u(·) ∈ Uad[0, T ], equation (1.3) admits a unique

solution x(·). Hence the preblem (1.3)–(1.4) is well-defined [22].

Theorem 1.5.1 [22] (Deterministic Maximum Principle) Let (D1)−(D3) hold . Let (x∗(·), u∗(·)) ∈

Uad[0, T ] be an optimal pair of Problem (D). Then there exists a p(·) : [0, T ] → Rn satisfying

the following adjoint equation:
ṗ(t) = −bx(t, x∗(t), u∗(t))T p(t) + fx(t, x∗(t), u∗(t)),

p(T ) = −hx(x∗(T )),
(1.5)

and

H(t, x∗(t), u∗(t), p(t)) = max
u∈U

H(t, x∗(t), u, p(t)), (1.6)

where Hamiltonian function is

H(t, x, u, p) ≜ ⟨p, b(t, x, u)⟩ − f(t, x, u), (t, x, u, p) ∈ [0, T ]× Rn × U × Rn.

We call p(·) the adjoint function. The necessary condition (1.6), corresponding to the optimal

adjoint equation, along with, the maximization condition, can be written as:

ẋ(t) = Hp(t, x(t), u(t), p(t)),

ṗ(t) = −Hx(t, x(t), u(t), p(t)),

x(0) = x0 p(T ) = hx(x(T ))

H(t, x(t), u(t), p(t)) = maxu∈U H(t, x(t), u, p(t)),

The above system is called an Hamiltonian system.

Remark 1.5.1 [1] We can switch back and forth between maximization and minimization:

min(J) = −max(−J).

Example: Let x(t) represent the number of tumor cells at time t, with exponential growth

factor α, and u(t) the drug concentration. The aim is to minimize the number of tumor cells
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at the end of the treatment period and the accumulated harmful effects of the drug on the

body[1]. This problem is formulated as minimize the cost function J :

J = x(T ) +
∫ T

0
u2dt

ẋ = αx− u, x(0) = x0

Let us consider the Hamiltonian

H(t, x, u, λ) = u2 + λ(αx− u).

The optimality condition is given by

∂H

∂u
= 0 =⇒ u∗ = λ

2 .

The adjoint condition is given by

λ̇ = −∂H

∂x
⇐⇒ λ̇ = −αλ =⇒ λ = Ce−αt,

Using the transversality condition p(T ) = 1 (note that h(x(T )) = x, so hx(x(T )) = 1), we

obtain

λ(t) = eα(T −t).

and

u∗ = eα(T −t)

2 .

The optimal state trajectory is (using ẋ = αx− u and x(0) = x0):

x∗ = x0e
αt + eαT e−αT − eαt

4α
.

Figure 1.9: The optimal curves for tumor cells and the drug concentration



Chapter 2

Stochastic Epidemic Models and

Optimal Control

A stochastic epidemic model is a mathematical framework used to describe the spread of infec-

tious diseases in a population while accounting for random variations and uncertainties. Unlike

deterministic models, which use fixed equations to predict disease dynamics, stochastic models

incorporate probabilistic elements to represent real-world randomness, such as variations in

transmission, recovery, and other epidemiological factors [51][43].

These models typically use stochastic processes, such as stochastic differential equations (SDEs),

to simulate the unpredictable nature of disease transmission. They are particularly useful

for studying outbreaks in small populations, rare events, or cases where randomness plays a

significant role in disease dynamics.

2.1 Forward stochastic differential equations

Let T > 0 and (Ω,F ,P) be a filtered probability space, where W : [0, T ] × Ω → Rd is a d-

dimensional standard F-Brownian motion on (Ω,F ,P), F = {Ft}t≥0 is the natural filtration

generated by the Brownian motion W . Suppose that (Ω,F ,P) is complete, F0 contains all

the P-null sets in F , and F is right continuous [21]. A forward stochastic differential equation

FSDE or simply SDE Ex(b, σ) is an equation formally written

dxt = b(t, xt)dt + σ(t, xt)dWt

b, σ are called the drift coefficient and the diffusion coefficient, respectively, these coefficients

are locally bounded measurable functions. The SDE Equation is interpreted as the stochastic

16
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integral equation

xt = x0 +
∫ t

0
b(t, xs)ds +

∫ t

0
σ(t, xs)dWs

Theorem 2.1.1 (Cauchy-Lipschitz for SDEs) We assume that there exist constant K positive

such that ∀t ≥ 0, x, y ∈ Rd

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K|x− y|

|b(t, x)| ≤ K(1 + |x|), |σ(t, x)| ≤ K(1 + |x|)

then the Ex(b, σ) has a unique continuous solution.

2.2 Backward stochastic differential equations

For ordinary differential equations (ODEs), both initial value and terminal value problems can

be well-posed under suitable regularity conditions. In fact, a terminal value problem can be

transformed into an equivalent initial value problem through the time reversal, where denotes

the time variable and is the terminal time. However, the situation is more subtle for stochastic

differential equations (SDEs), as such a time transformation would break the the adaptivity

of the solution. In this section, we aim to provide an intuitive motivation for formulating a

backward stochastic differential equation (BSDE) that maintains the adaptedness of its solution

[38].

Notations

1. S2(Rk): is the vector space consisting of processes Y , progressively measurable, with

values in Rk, such that:

∥Y ∥2
S2 := E

[
sup

0≤t≤T
|Yt|2

]
<∞,

and S2
c (Rk) is the subspace formed by continuous processes. Two indistinguishable pro-

cesses are always identified.

2. M2(Rk×d): is the vector space consisting of processes Z, progressively measurable, with

values in Rk×d, such that:

∥Z∥2
M2 := E

[∫ T

0
∥Zt∥2dt

]
<∞,

where if z ∈ Rk×d, then ∥z∥2 = trace(zz∗). M2(Rk×d) denotes the equivalence classes in

M2(Rk×d).
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3. The spaces S2, S2
c , and M2 are Banach spaces under the norms defined above. We denote

the product space S2
c (Rk)×M2(Rk×d) by B2.

4. We define an application f defined on [0, T ]×Ω×Rk×Rk×d with values in Rk, such that

for any x ∈ Rk, z ∈ Rk×d, the process (f(t, ω, x, z))0≤t≤T is progressively measurable with

respect to FT (or Ft-measurable), and with values in Rk.

We start by a simple example (but it’s illustrative) to know f ≡ 0. Let m = 1, T > 0, and

ξ ∈ L2(Ω;R). Consider the following stochastic differential equation [26]

dY (t) = 0, t ∈ [0, T ]; Y (T ) = ξ.

It’s impossible to find an Ft-adapted solution Y (·), since the only solution of this equation is

Y (t) = ξ t ∈ [0, T ].

A natural way to making this equation Ft-adapted is to redefine Y (·) as follows:

Y (t) = E(ξ|Ft), t ∈ [0, T ].

Then, Y (·) is Ft-adapted and satisfies the terminal condition Y (T ) = ξ. Noting that the process

Y (·) defined by the last equation is a square integrable Ft-martingale. By the martingale

representation theorem, we can find an Ft-adapted process Z(·) ∈ L2([0, T ];R) such that

Y (t) = Y (0) +
∫ t

0
Z(s)dW (s), ∀t ∈ [0, T ], P -a.s.

then

ξ = Y (T ) = Y (0) +
∫ T

0
Z(s)dW (s).

Hence,

Y (t) = ξ −
∫ T

t
Z(s)dW (s), ∀t ∈ [0, T ].

Here, the role of the process Z is to make the process Y adapted.

We allow f to depend on the process Z, the equation therefore becomes:

−dYt = f(t, Yt, Zt)dt− ZtdWt,

with

YT = ξ,

or, equivalently, the BSDE is

Yt = ξ +
∫ T

t
f(s, Ys, Zs)ds−

∫ T

t
ZsdWs, 0 ≤ t ≤ T.
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Definition 2.2.1 [26] A solution of BSDE is a pair (Yt, Zt)0≤t≤T satisfying:

1. Y and Z are progressively measurable at values respectively in Rk and Rk×d.

2.
∫ T

0 |f(s, Ys, Zs)|ds +
∫ T

0 ∥Zs∥2ds <∞ P-a.s.

3. P-a.s., we have

Yt = ξ +
∫ T

t
f(s, Ys, Zs)ds−

∫ T

t
ZsdWs, 0 ≤ t ≤ T.

Proposition [26] We suppose that exists a process (ft)0≤t≤T ∈ M2(R), and a constant λ > 0

such as

|f(t, y, z)| ≤ ft + λ(|y|+ ||z||), ∀(t, y, z) ∈ [0, T ]× Rk × Rk×d.

If (Yt, Zt)0≤t≤T is a solution of BSDE such as Z ∈M2, then Y belongs to S2
c .

Lipschitz case

Pardoux−Peng result

We give some assumption [26]. There exists a constant λ P-a.s. such that :

1. (H1): Lipschitz condition in (y,z): for all t, y, ȳ, z, z̄,

|f(t, y, z)− f(t, ȳ, z̄)| ≤ λ(|y − ȳ|+ ∥z − z̄∥).

2. (H2): Integrability condition

E
[
|ξ|2 +

∫ T

0
|f(s, 0, 0)|2ds

]
<∞.

Theorem 2.2.1 [26](Pardoux−Peng ) Under (H1)and (H2) the BSDE has a unique solution

(Y, Z).

2.3 Numerical method for forward backward stochastic

differential equations

Most forward backward stochastic differential equations can not be solved analytically and thus

numerical methods must be applied in order to approximate their solutions. There have been

many numerical methods proposed over the past few decades for the most part, in a complex



2.3 Numerical method for forward backward stochastic differential equations 20

and scattered manner, with each requiring a variety of different and similar assumptions and

conditions. In this section we will introduce the Euler scheme for the forward SDEs then we

will focus on the backward Euler methods and least-squares approach for BSDEs to estimate

the conditional expectations.

Forward Euler methods

Now, provide a brief explanation of the numerical approximation technique that was employed

to resolve FSDEs. The Japanese mathematician G. Maruyama developed the Euler-Maruyama

method, which is an extension of the Euler method, as a numerical integration methodology for

estimating solutions for a system of stochastic differential equations from a given initial value

X0 = x0 [49].

Let 0 = t0 < t1 < · · · < tk−1 < tk = T be a partition of the interval [0, T ] , where the length of

each subinterval is ∆t = ti+1 − ti = T/k, which implies that ti+1 = ti + ∆t = i∆t and

∆Wi = W (ti + ∆t)−W (ti).

For each stochastic process trajectory, the value of Xti+1 is approximated using only the value

of the previous time step, Xti
. Then, to find the trajectories or approximate solutions of

a stochastic differential equation by the Euler-Maruyama method, the following equation is

implemented:

Xti+1 = Xti
+ b(ti, Xti

)∆t + σ(ti, Xti
)∆Wi

for all i = 0, 1, . . . , k − 1. In order to carry out the method computationally, it is essential

to understand how to compute ∆Wi. Since the partition is made up of equal intervals, the

differences ∆Wi, i = 0, 1, . . . , k − 1 have the same distribution, ∆Wi ∼ N(0, ∆t). Let η be a

random variable with a standard normal distribution η ∼ N(0, 1). Then
√

∆tη has a normal

distribution with zero mean and variance ∆t, that is,
√

∆tη ∼ N(0, ∆t).

When the diffusion coefficient is identically zero, that is when σ ≡ 0, the stochastic iterative

scheme reduces to the deterministic Euler scheme for the ordinary differential equation.

Backward Euler methods

The first class of backward numerical methods we review are the so called backward Euler

schemes for BSDEs. In the present context, there are certainly two general categories of explicit

and implicit discretization schemes for the FBSDE [36] which can be summarized as follows:
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Algorithm 2: Backward Scheme for BSDE

1 Initialization: Approximate the terminal condition Y n
tn

= Φ(Xn
tn

) with the

Euler-Maruyama scheme Xn.

2 for k = (n− 1) to 0 do

3

Zn
tk

= 1
tk+1 − tk

E
[
Y n

tk+1
(Wtk+1 −Wtk

)⊤
∣∣∣Ftk

]
,

4 Compute Y n
tk

using either:

Y n
tk

=


E
[
Y n

tk+1
+ f(tk, Xtk

, Ytk+1 , Zn
tk

)(tk+1 − tk)
∣∣∣Ftk

]
, (explicit)

E
[
Y n

tk+1

∣∣∣Ftk

]
+ f(tk, Xtk

, Ytk
, Zn

tk
)(tk+1 − tk). (implicit)

5 end for

Note: The implicit scheme often provides better properties and performance relative to the

explicit scheme, with these benefits coming in exchange for the additional computing effort for

solving the defining equation for Y n
tk

.

Least-squares regression based methods for BSDEs

Least-squares regression based methods was applied to solve BSDEs. The basic idea here is

to replace the conditional expectations by projections on finite-dimensional subspaces which

are spanned by pre-selected basis functions. The coefficients for the projection on the finite-

dimensional subspaces are approximated by the solution of a linear least-squares problem mak-

ing use of simulated sample paths [52]. It can be applied to compute conditional expectations

of the form E[Y |X] for square-integrable random variables X and Y numerically, provided a

machinery for sampling independent copies of the pair (X, Y ) [53][36]. The method builds upon

the elementary property that E[Y |X] = u(X), where the function u solves:

u = arg min
v

E[|v(X)− Y |2]

and v runs over all measurable functions with E[|v(X)|2] <∞.

Methods that fit into this category are ones which use a form of least-squares regression to

evaluate the conditional expectations appearing in a discretization. Here, we proceed with

representative methods of [40] to illustrate this type of method in a clear and concise manner.

Let ∆k = T/n, that is, tk = kT/n and ∆Wk = Wtk+1 − Wtk
for k ∈ {0, 1, · · · , n}. For
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each time point tk, we take RK-valued deterministic function bases (eK
i,k)i∈{0,1,··· ,d}. For every

k ∈ {1, · · · , n}, let {∆W m
k }m∈{1,··· ,M} be independent copies of ∆Wk. For the time discretization

we consider a partition π = {t0......tk} of the interval [0, T ] i.e 0 = t0 < t1 < · · · < tk−1 < tk = T

and let {Xπ,m
k }m∈{1,··· ,M} be corresponding copies of Xπ

k . This method can be summarized in

the following algorithm:
Algorithm 3: Least-squares regression based methods for BSDEs

1 Set yn,M,K
n (·) = Φ(·)

2 for k = (n− 1) to 1 do

3

αM,K
i,k = argmin

α

1
M

M∑
m=1

∣∣∣∣∣yn,M,K
k+1 (Xπ,m

k+1)∆W i,m
k

∆k

− α · eK
i,k(Xπ,m

k )
∣∣∣∣∣
2

,

4 for(i ∈ {1, · · · , d})

5 zn,M,K
k = (zn,M,K

1,k , · · · , zn,M,K
d,k ) where zn,M,K

i,k (·) = αM,K
i,k · eK

i,k(·)

6

αM,K
0,k = argmin

α

1
M

M∑
m=1
|yn,M,K

k+1 (Xπ,m
k+1)

+∆kf(tk, Xπ,m
k , yn,M,K

k+1 (Xπ,m
k+1), zn,M,K

k (Xπ,m
k ))− α · eK

0,k(Xπ,m
k )|2.

yn,M,K
k (·) = αM,K

0,k · eK
0,k(·)

7 end for

8 Return

Y π,M,K
0 = 1

M

M∑
m=1

(
yn,M,K

1 (Xπ,m
1 ) + ∆1f(t0, x, yn,M,K

1 (Xπ,m
1 ), zn,M,K

1 (Xπ,m
1 ))

)

Under the Lipschitz continuity in the state variables, the (1/2)-Hölder continuity in time of the

coefficients of the Markovian BSDE, and the condition that for all measurable functions φ such

that φ(Xπ
k ) ∈ L2(Ω), there is (βK

k )k such that βK · eK
i,k(Xπ

k )→ φ(Xπ
k ) in L2(Ω,Fk) as K →∞.

2.4 Stochastic Epidemic Models

Considering that white noise is in direct proportional to populations : S, E, I, R introduced in

the first chapter. Thus, we get the following stochastic models [21][12].
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Stochastic SIR Model

The stochastic SIR model includes susceptible (S), infected (I), and recovered (R) indi-

viduals

dS = −βSI dt + ϵS dW, (2.1)

dI = (βSI − γI) dt + ϵI dW, (2.2)

dR = γI dt + ϵR dW, (2.3)

where:

• β is the transmission rate.

• γ is the recovery rate.

• W is Brownian motions.

• ϵ is noise intensity.

Stochastic SI Model

The SI model assumes no recovery, meaning individuals remain infected indefinitely.

dS = −βSI dt + ϵS dW, (2.4)

dI = βSI dt + ϵI dW. (2.5)

Stochastic SEIR Model

The SEIR model includes an exposed (E) compartment for individuals who are infected but

not yet infectious.

dS = −βSI dt + ϵS dW, (2.6)

dE = (βSI − αE) dt + ϵE dW, (2.7)

dI = (αE − γI) dt + ϵI dW, (2.8)

dR = γI dt + ϵR dW, (2.9)

where α is the rate of progression from exposed to infectious.
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Stochastic SIS Model

The SIS model assumes no immunity, meaning recovered individuals can become susceptible

again.

dS = (−βSI + γI) dt + ϵS dW, (2.10)

dI = (βSI − γI) dt + ϵI dW. (2.11)

We use the following algorithm to simulate the stochastic epidemic models with parameters :

β = 0.0003, α = 0.2, γ = 0.1, ϵ = 0.02
Algorithm 4: Stochastic epidemic models simulation

Input: Initial value ,t0, Xt0 ,∆t,K,T

Output: Approximate solution {Xti+1} ,E[Xti+1 ]

1 Monte carlo simulation :

2 for m = 0 to 200 do

3 Set k ← T/∆t (Number of steps) ;

4 for i = 0 to k − 1 do

5 Generate ηi ∼ N (0, 1) ;

6 Xti+1 = Xti
+ b(Xti

, ti)∆t + σ(Xti
, ti)
√

∆tηi ;

7 ti+1 = ti + ∆t ;

8 endFor

9 compute the expected value E[Xti+1 ];

10 endFor

11
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Figure 2.1: Stochastic epidemic models simulation. The program execution took 11.39 seconds

to complete the full simulation.

Note: The Monte Carlo method for SDEs involves generating random samples of the Brow-

nian motion and using them to simulate the evolution of the stochastic process over time. By

averaging the outcomes of multiple simulations, an approximation of the solution to the SDE

can be obtained.

2.4.1 Stochastic Lyapunov Function

Definition 2.4.1 A Stochastic Lyapunov Function V (X) is a non-negative function. It

satisfies conditions similar to the deterministic Lyapunov method but considers the stochastic

dynamics[11]. A function V (X) is a Lyapunov function for the stochastic system if:

• V (X) > 0 for all X different from X∗ such that V (X∗) = 0.

• The Stochastic Differential Operator (Generator) LV (X) is negative definite in

a region containing X∗.

Consider the stochastic differential equation (SDE) of n-dimensional form:

dX(t) = F (t, X(t))dt + G(t, X(t))dW (t), (2.12)

where F (t, X) : R+ × Rn → Rn and G(t, X) : R+ × Rn → Rn×mare measurable functions, and

W (t) is an Rm-valued standard Brownian motion. Given V (X, t) ∈ C2,1(Rn × R+,R) [39], we
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define the operator L corresponding to the SDE by

LV = Vt(X, t) + VX(X, t)F (X, t) + 1
2 trace

[
GT (X, t)VXX(X, t)G(X, t)

]
,

where

Vt(X, t) = ∂V (X, t)
∂t

, VX(X, t) =
(

∂V

∂x1
,

∂V

∂x2
, . . . ,

∂V

∂xn

)
, VXX(X, t) =

(
∂2V

∂xi∂xj

)
n×n

.

• The second term corresponds to the deterministic dynamics.

• The 1
2 trace

[
GT (X, t)VXX(X, t)G(X, t)

]
term accounts for the stochastic perturbations.

Then, the corresponding Itô formula can be obtained as :

dV (X, t) = LV (X, t)dt + VX(X, t)G(X, t)dW (t).

2.5 Stochastic optimal control problem

The stochastic optimal control problem is performed by using Stochastic Maximum Principle.

The mathematical significance of the Maximum Principle lies in its ability to simplify the

original infinite-dimensional optimal control problem into a more tractable form by focusing on

the maximization of the Hamiltonian. This often enables the derivation of closed-form solutions

for specific classes of control problems. Pontryagin’s original formulation of the Maximum

Principle was developed for deterministic systems, drawing upon ideas from classical calculus

of variations. The standard approach involves perturbing an optimal control using a spike

variation and analyzing the first-order term in a Taylor expansion [22]. As the perturbation

tends to zero, a variational inequality emerges, leading to the Maximum Principle through a

duality argument.

However, extending this method to stochastic control problems presents substantial challenges,

particularly when the diffusion coefficient depends on the control . the standard first-order

variation techniques insufficient. Addressing this issue requires considering both first- and

second-order terms in the expansion, resulting in a more complex stochastic maximum principle

involving a forward-backward stochastic differential system and an additional quadratic term

in the diffusion coefficient [22]. In this thesis, we restrict our attention to the case where the

diffusion term is independent from the control.

In the following subsection, we introduce the preliminaries of stochastic optimal control.
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2.5.1 Controlled stochastic differential equations

Given a filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the usual condition on which an

d-dimensional standard Brownian motion W(.) is defined [22], consider the following controlled

stochastic differential equation:


dx(t) = b(t, x(t), u(t))dt + σ(t, x(t))dWt,

x(0) = x0 ∈ Rn

(2.13)

The cost functional is:

J(u(·)) = E
[∫ T

0
f(t, x(t), u(t))dt + h(x(T ))

]
. (2.14)

where u(t) ∈ [0, T ] is an admissible control process, i.e., a F-adapted square-integrable process

valued in a given subset U of Rd. The drift coefficient b and the diffusion coefficient σ are

deterministic functions:

b : [0, T ]× Rn × U → Rn,

σ : [0, T ]× Rn → Rn×d.

f : [0, T ]× Rn × U → R,

h : [0, T ]× Rn → R,

U [0, T ] ≜
{
u : [0, T ]× Ω→ U | u ∈ L2

F(0, T ;Rd)
}

, (2.15)

where

L2
F(0, T ;Rd) ≜

{
x : [0, T ]× Ω→ Rd is F-adapted and E

[∫ T

0
|xt|2dt

]
<∞

}
.

Definition 2.5.1 [26],[22] Let (Ω,F , {Ft}t≥0,P) be given satisfying the usual conditions and

W (t) be a d-dimensional standard {Ft}t≥0-Brownian motion. A control u(·) is called an s-

admissible control, and (x(·), u(·)) an s-admissible pair, if

(i) u(·) ∈ U [0, T ];

(ii) x(·) is the unique solution of equation (2.13)

(iii) some prescribed state constraints are satisfied.
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(iv) f(·, x(·), u(·)) ∈ L1
F(0, T ;R); and h(xT ) ∈ L1

F(Ω;R).

The set of all admissible controls is denoted by U s
ad[0, T ].

Problem (P): [22] Our stochastic optimal control problem can be stated as minimizing the

cost function J over U s
ad[0, T ].

The goal is to find u∗(·) ∈ U s
ad[0, T ] (if it exists) such that:

J(u∗(·)) = inf
u(·)∈Us

ad[0,T ]
E
[∫ T

0
f(t, x(t), u(t))dt + h(x(T ))

]
. (2.16)

• Problem (P) is said to be s-finite if the right-hand side of (2.16) is finite, and it is said to

be (uniquely) s-solvable if there exists a (unique) u∗(·) ∈ U s
ad[0, T ] such that (2.16) holds.

• Any u∗(·) ∈ U s
ad[0, T ] satisfying (2.16) is called an optimal control.

• The corresponding state process x∗(·) and the state-control pair (x∗(·), u∗(·)) are called

an optimal state process and an optimal pair, respectively.

2.5.2 Existence of optimal controls

Mazur’s theorem: [54] Let (xn) ⇀ x weakly as n → ∞ in a normed linear space X . Then

there exists, for any ε > 0, a convex combination ∑n
j=1 αjxj

(
αj ≥ 0,

∑n
j=1 αj = 1

)
of xj such

that ∥∥∥∥∥∥x−
n∑

j=1
αjxj

∥∥∥∥∥∥ ≤ ε.

Now consider the following stochastic linear controlled system [26]:
dx(t) = [Ax(t) + Bu(t)]dt + Cx(t)dW (t), t ∈ [0, T ],

x(0) = x0,

(2.17)

where A, B, and C are matrices of suitable sizes. The state x(t) takes values in Rn, and the

control u(·) is in U [0, T ]. We introduce the following assumptions:

(H1) The set U ⊂ Rk is convex and closed, and the functions f and h are convex and for some

α, K > 0

f(x, u) ≥ α|u|2 −K, h(x) ≥ −K, ∀(x, u) ∈ Rn × U. (2.18)

(H2) The set U ⊂ Rk is convex and compact, and the functions f and h are convex.

Theorem 2.5.1 [26] Under either (H1) or (H2), if Problem (P) is finite, then it admits an

optimal control.
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Proof. We suppose that (H1) holds. Let xj(·), uj(·) be a minimizing sequence. By (2.18), we

have

E
∫ T

0
|uj(t)|2dt ≤ K, ∀j ≥ 1.

for some positive constant K. Thus, there is a subsequence which is still labeled by uj(·), such

that

uj(·) ⇀ u∗(·), in L2
F(0, T ;Rk), weakly convergence.

By Mazur’s theorem, we have a sequence of convex combinations

ũj(·) ≜
∑
i≥1

αijui+j(·), aij ≥ 0 and
∑
i≥1

αij = 1,

such that

ũj(·)→ u∗(·), in L2
F(0, T ;Rk), Strongly convergence.

Since the set U ⊆ Rk is convex and closed, it follows that u∗(·) ∈ U s[0, T ].

On the other hand, if x̃j(·) is the state under the control ũj(·), here we have the convergence

x̃j(·)→ x∗(·), strongly in CF([0, T ],Rn).

So, (x∗(·), u∗(·)) is admissible, and the convexity of f and h implies

J(u∗(·)) = lim
j→∞

J(ũj(·)) ≤ lim
j→∞

∑
i≥1

αijJ(ui+j(·)),

= inf
u(·)∈Us[0,T ]

J(u(·)).

Hence, (x∗(·), u∗(·)) is an optimal pair. □

2.5.3 Statement of Stochastic maximum principle

Let us make the following assumptions:

• (S0): {Ft}t>0 is the natural filtration generated by W (t).

• (S1): (U, d) is a separable metric space and T > 0.

• (S2): The maps b, σ, f, h are measurable, and there exist a constant L > 0 and a modulus

of continuity ω̄ : [0,∞)→ [0,∞) such that for σ and φ = b, h, f , we have

|φ(t, x, u)− φ(t, x̄, ū)| ≤ L|x− x̄|+ ω̄(d(u− ū)),

|σ(t, x)− σ(t, x̄)| ≤ L|x− x̄|

|φ(t, 0, u)| ≤ L, ∀t ∈ [0, T ], x, x̄ ∈ Rn, u, ū ∈ U,
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• (S3): The maps b, σ, f, h are C1 in x. Moreover, there exist a constant L > 0 and a

modulus of continuity ω̄ : [0,∞)→ [0,∞) such that for σ and φ = b, h, f , we have:
|φx(t, x, u)− φx(t, x̄, ū)| ≤ L|x− x̄|+ ω̄(d(u− ū))

|σx(t, x)− σx(t, x̄)| ≤ L|x− x̄|, ∀t ∈ [0, T ], x, x̄ ∈ Rn, u, ū ∈ U,

• Given u(·) ∈ U [0, T ], equation (2.13) is an SDE with random coefficients. We see that

under assumptions (S0)− (S2), for any u(·) ∈ U [0, T ], the state equation (2.13) admits a

unique solution x(·) ≡ x(·; x(·)) and the cost functional (2.14) is well defined. In the case

where x(·) is the solution of (2.13) corresponding to u(·) ∈ U [0, T ], we call (x(·), u(·)) an

admissible pair, and x(·) an admissible state process (trajectory).

Before introducing a set of sufficient conditions for the Stochastic Maximum Principle (SMP),

we firstly introduce the adjoint equations involved in a SMP.

Adjoint equation

Let (x∗(·), u∗(·)) be a given optimal pair [22]. We introduce the adjoint BSDE as follows:
dp(t) = −

[
bx(t, x∗(t), u∗(t))⊤p(t) +∑d

j=1 σj
x(t, x∗(t))⊤qt,j − fx(t, x∗(t), u∗(t))

]
dt + q(t)dWt,

p(T ) = −hx(x∗(T )), t ∈ [0, T ],
(2.19)

• where p(·) and q(·) are two F adapted processes which should be solved.

• Any pair of processes (p(·), q(·)) ∈ L2(0, T ;Rn)×(L2(0, T ;Rn))d satisfying (2.19) is called

an adapted solution of (2.19).

• We refer to (2.19) as the first-order adjoint equations and to p(·) as the first-order adjoint

process.

• Under (S0)− (S3), for any (x∗(·), u∗(·)) admits a unique adapted solution (p(·), q(·)).

The sufficient conditions for the SMP given by the following theorem.

Theorem 2.5.2 Let Assumptions (S0)−(S3) hold. Let (x∗(·), u∗(·), p(·), q(·)) be an admissible

4-tuple. Suppose that h(·) is convex, H(t, ·, ·, p(t), q(t)) defined by

H(t, x, u, p, q) = ⟨p, b(t, x, u)⟩+ tr[q⊤σ(t, x)]− f(t, x, u),



2.5 Stochastic optimal control problem 31

where

(t, x, u, p, q) ∈ [0, T ]× Rn × U × Rn × Rn×d

is concave for all t ∈ [0, T ] almost surely and

H(t, x∗(t), u∗(t), p(t), q(t)) = max
u∈U

H(t, x∗(t), u, p(t), q(t)), P-a.s.

holds. Then (x∗(·), u∗(·)) is an optimal pair of (2.16) [22].

Stochastic Hamiltonian system

Note that the partial differentials of the Hamiltonian satisfy b(t, x, u) = Hp(t, x, u, p, q) and

σ(t, x) = Hq(t, x, p, q), then we have :

dx(t) = Hp(t, x(t), u(t), p, q))dt + Hq(t, x, p, q)dWt,

dp(t) = −Hx(t, x(t), u(t), p(t), q(t))dt + q(t)dWt, t ∈ [0, T ],

x(0) = x0, (T ) = −hx(x(T )),

H(t, x(t), u(t), p(t), q(t)) = maxu∈U H(t, x(t), u, p(t), q(t)),

(2.20)

which is called a (extended) stochastic Hamiltonian system and it is also called a forward-

backward stochastic differential equation (FBSDE, for short).Therefore,It is seen from the

following theorem that optimal control theory can be used to solve stochastic Hamiltonian

systems.

Theorem 2.5.3 [22] Let (S0)-(S3) hold. Let Problem (P) admit an optimal pair (x∗(·), u∗(·)).

Then the optimal 4-tuple (x∗(·), u∗(·), p(·), q(·)) of Problem (P) solves the stochastic Hamilto-

nian system.

Now we state the Pontryagin-type maximum principle for optimal stochastic control. At first

glance, one might naturally expect that a stochastic maximum principle should maximize the

Hamiltonian H. However, this is not true when the diffusion coefficient σ depends on the

control. The following example illustrates this point:
dx(t) = u(t)dW (t), t ∈ [0, 1],

x(0) = 0,

with the control domain U = [−1, 1] and the cost functional:
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J(u(·)) = E
{∫ 1

0

∣∣∣∣x(t)2 − 1
2u(t)2

∣∣∣∣ dt + x(1)2
}

.

Substituting x(t) =
∫ t

0 u(s)dW (s) into the cost functional yields:

J = E
∫ 1

0

(2
3 − t

)
u(t)2dt.

The optimal control is u(t) ≡ 0 with the optimal state trajectory x(t) ≡ 0. However, the

corresponding Hamiltonian is:

H(t, x(t), u, p(t), q(t)) = 1
2u2 + q(t)u.

This convex function in u does not attain its maximum at u(t) = 0 for any t.

To formulate the correct stochastic maximum principle, we must add a risk adjustment term

to the Hamiltonian that accounts for the diffusion coefficient and reflects the controller’s risk

attitude. This leads to generalized Hamiltonian [22].



Chapter 3

Deterministic and Stochastic Optimal

Control analysis for Influenza with

media awareness programs under

treatment and vaccination

Major influenza include the 1918 Spanish flu the mother of all pandemics [25], 1957 Asian flu,

1968 Hong Kong flu, and the 2009 H1N1 pandemic influenza spreads primarily through airborne

droplets. When an infected person coughs, sneezes, or talks, tiny droplets containing the virus

can be inhaled by others.

Common symptoms include fever, cough, sore throat, body aches, fatigue, and sometimes se-

vere respiratory complications. Annual flu vaccines help prevent infection and reduce severity,

especially for high-risk populations.

Antiviral medications like oseltamivir (Tamiflu) and supportive care (hydration, fever manage-

ment) can help reduce symptoms and complications [25].

In this chapter, we analyze the comparative performance of deterministic and stochastic optimal

control approaches for epidemic management using the Susceptible-Infected-Recovered (SIR)

model with media awareness, the inclusion treatment and vaccination as controls [4] [33] [34]

[46] [51].

We formulate and solve the optimal control problems using the Pontryagin’s Maximum Principle

(PMP) for the deterministic model and the Stochastic Maximum Principle (SMP) for the

stochastic model.

33
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3.1 Deterministic Model Formulation

We assume :

• Recovered individuals gain a strong immunity after infection.

• A media awareness program is incorporated into deterministic and stochastic

optimal control analysis.

• In the model, the effective contact rate is defined as:

P (I) = β − πf(I),

where:

• β Contact rate of susceptibles with infectives.

• π Rate of awareness. It is also assumed that β ≥ π .

• f(I) is the media coverage function, which is given by

f(I) = I

1 + I

• As I increases, f(I) increases, which causes P (I) to decrease, reflecting the impact of

media in reducing transmission through increased public awareness.

Then SIR principal scheme diagram with media awareness program :

S I R

Λ ϕS

(β − πI
1+I

)SI γI

µS (µ + δ)I µR
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Parameters Explanation values

Λ Constant rate at which number of susceptibles increases continuously. 40

β Contact rate of susceptible with infectives. 0.0003

π Rate of awareness. 0.0002

ϕ Rate of vaccination of susceptibles. 0.65

γ Recovery rate of infectives. 0.045

δ Disease-induced death rate. 0.02

µ Natural death rate from each class. 0.05

A1 positive constants 100

A2 positive constant 150

A3 positive constant 100

S(0) initial susceptibles 100000

I(0) initial infectived 100

R(0) initial Recovered 0

ϵ intensity of noise 0.005.

Table 3.1: Parameters values

Remark 3.1.1: we assume that the vaccinated individuals gain strong immunity as the recov-

ered individuals from the epidemic. From a mathematical perspective, introducing a separate

vaccinated compartment would increase the model’s complexity by adding additional equations

and parameters (e.g., vaccine efficacy, waning immunity, partial protection)[47][45]. While such

extensions are necessary in certain contexts especially when studying vaccine hesitancy, varying

efficacy, or multi-dose regimens in many standard models, the primary goal is to capture the

overall dynamics efficiently [42]. Hence, placing vaccinated individuals in offers a simplified yet

biologically meaningful representation of their immune status, facilitating both analysis and

simulation.

The model equations are given by this system :



dS
dt

= Λ−
(
β − πI

1+I

)
SI − (ϕ + µ)S

dI
dt

=
(
β − πI

1+I

)
SI − (γ + δ + µ)I

dR
dt

= ϕS + γI − µR

(3.1)
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Where S(0) > 0, I(0) > 0, R(0) ≥ 0, and the total variable population at time t is given by:

N = S + I + R.

3.1.1 The effect of media awareness program

In order to show the effect of media awareness program we will solve numerically the system of

ODEs of the SIR model (by using a Runge-Kutta method).

Figure 3.1: The deterministic SIR model without media awareness program (π = 0) (without

controls)

Figure 3.2: The deterministic SIR model with media awareness program (without controls)
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Interpretation

The figure 3.1 shows the simulation of a deterministic SIR model without media awareness

and without controls. It illustrates the typical epidemic curve, where the infected population

increasing to a peak 80000, before gradually decreasing. The sharp initial peak indicates a

rapid spread due to the absence of interventions.

The figure 3.2 shows the variation of the three categories susceptible, infectious, recovered over

days. When the number of susceptible gets drop down, the number of infection increases to a

peak 50000 even though there are still no control, because people more cautious and attentive,

leading them to take measures such as social distancing or quarantine after becoming aware of

the rise in infections and the danger of the epidemic through the media awareness.

We conclude that media awareness is essential in combating the disease. However, this alone

is not enough to eliminate the epidemic. So assume the following controls have been used:

1. Let u1 ∈ [0, u1 max] be the control representing the strengthening effort made on the

vaccination program.

2. Let u2 ∈ [0, u2 max] be the control representing the controlling effort that alters in-

fection cases receiving treatment per unit time.

The controlled system of ODEs is given as follow

dS
dt

= Λ−
(
β − πI(t)

1+I(t)

)
S(t)I(t)− (1 + u1)ϕS(t)− µS(t)

dI
dt

=
(
β − πI(t)

1+I(t)

)
S(t)I(t)− (1 + u2)γI(t)− δI(t)− µI(t)

dR
dt

= (1 + u1)ϕS(t) + (1 + u2)γI(t)− µR(t)

(3.2)

where S(0) > 0, I(0) > 0, R(0) ≥ 0.

To show the existence of the feasible set of system (3.2) which attracts all solutions initiating

in the interior of the positive orthant. that is, all solutions are uniformly bounded in

a proper subset Ω ⊂ R3.

Using the fact that N = S(t) + I(t) + R(t), the system reduces (3.2) to the following system

dN

dt
= Λ− µN(t)− δI(t) (3.3)

≤ Λ− µN(t) (3.4)

Rewriting (3.3):
dN

dt
+ µN = Λ
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This is a linear first-order differential equation. The integrating factor is eµt. Multiplying both

sides by eµt:

eµt dN

dt
+ µeµtN = Λeµt

d

dt

(
Neµt

)
= Λeµt

Neµt =
∫

Λeµtdt

Neµt = Λ
µ

eµt + C

Then

N = Λ
µ

+ Ce−µt

Using the initial condition N(0) = N0,

N0 = Λ
µ

+ C

Thus,

C = N0 −
Λ
µ

N(t) =
(

N0 −
Λ
µ

)
e−µt + Λ

µ

We have

N(t) ≤ N(0)e−µt + Λ
µ

(1− e−µt) (3.5)

where N(0) is the sum of initial values S(0), I(0), R(0).

lim
t→∞

N(t) = Λ
µ

Thus, Λ
µ

is the upper bound of N. Therefore, the region of attraction is given by

the set:

Ω =
{

(S, I, R) ∈ R3 : 0 ≤ S + I + R ≤ Λ
µ

}
(3.6)

and attracts all solutions initiating in the interior of the positive orthant

Theorem 3.1.1 [14] The solutions S, I, R of the system (3.2) with initial values S(0) > 0, I >

0, and R ≥ 0 in the feasible domain are positive in Ω for all time t > 0, because the model

represents population of human being.
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proof: Given the differential equation for S(t):

˙S(t) = Λ−
(

β − πI(t)
1 + I(t)

)
S(t)I(t)− ((1 + u1(t))ϕ + µ) S

dS

dt
+
[
((1 + u1)ϕ + µ) +

(
β − πI

1 + I

)
I
]

S = Λ

The integrating factor is:

IF = e−
∫
[((1+u1)ϕ+µ)+(β− πI

1+I )I]dt

Multiplying by the integrating factor:

d

dt
(S · IF ) = Λ · IF

S · IF =
∫

Λ · IF dt + C

S(t) = e
∫
[((1+u1)ϕ+µ)+(β− πI(t)

1+I(t))I(t)]dt
(∫

Λe−
∫
[((1+u1)ϕ+µ)+(β− πI(t)

1+I(t))I(t)]dtdt + C
)

= e−[((1+u1)ϕ+µ)+(β− πI(t)
1+I(t))I(t)]t

(
Λ
∫

e[((1+u1)ϕ+µ)+(β− πI(t)
1+I(t))I(t)]tdt + C

)

= e−[((1+u1)ϕ+µ)+(β− πI(t)
1+I(t))I(t)]t

Λ e[((1+u1)ϕ+µ)+(β− πI(t)
1+I(t))I(t)]t[

((1 + u1)ϕ + µ) +
(
β − πI(t)

1+I(t)

)
I(t)

] + C


= Λ[

((1 + u1)ϕ + µ) +
(
β − πI(t)

1+I(t)

)
I(t)

] + Ce−[((1+u1)ϕ+µ)+(β− πI(t)
1+I(t))I(t)]t

lim
t→0

S(t) = Λ[
((1 + u1)ϕ + µ) +

(
β − πI(t)

1+I(t)

)
I(t)

] + C > 0

Following the same method, we can easily verify that I(t) > 0 and R(t) > 0 for all t > 0.

Equilibrium points and stability :

The equilibria for the system (3.2) is obtained by equating each of the derivatives to zero. So,

it is found that the model system (3.2) has two non-negative equilibria, i.e., disease-free

equilibrium (DFE) when I = 0, and the EE endemic equilibrium when I ̸= 0 [16], [4], [31],

[37].

Disease-Free Equilibrium (DFE)

1. Solve for S and R at equilibrium (dS
dt

= 0 and dR
dt

= 0).
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Solve for S∗. Setting dS
dt

= 0:

Λ− (ϕ(1 + u1)µ)S = 0 (3.7)

S∗ = Λ
ϕ(1 + u1) + µ

(3.8)

For R∗, setting dR
dt

= 0:

ϕ(1 + u1)S + γ(1 + u2)I − µR = 0 (3.9)

Substituting I = 0:

ϕ(1 + u1)S − µR = 0 (3.10)

Solving for R∗:

R∗ = ϕ(1 + u1)
µ

S∗ = ϕ(1 + u1)
µ

· Λ
ϕ(1 + u2) + µ

(3.11)

Thus, the disease-free equilibrium (DFE) is:

E0 = (S∗(t), I∗(t), R∗(t)) =
(

Λ
ϕ(1 + u1) + µ

, 0,
ϕ(1 + u1)

µ
· Λ

ϕ(1 + u1) + µ

)
(3.12)

This point represents the state where the infection has been eradicated, and only susceptibles

and recovered individuals remain.

Basic reproduction number R0

To calculate the basic reproduction number R0 at the Disease-Free Equilibrium (DFE), we use

the next-generation matrix matrix.

R0 =
[

∂Fi(x0)
∂xj

] [
∂Vi(x0)

∂xj

]−1

= ρ(FV −1)

From the infection equation, we extract:

dI

dt
=
(

β − πI(t)
1 + I(t)

)
S(t)I(t)− ((1 + u2)γ + δ + µ)I(t)

(S∗(t), I∗(t), R∗(t)) =
(

Λ
ϕ(1 + u1) + µ

, 0,
ϕΛ

µ(ϕ + µ)

)

Fi =
(

β − πI(t)
1 + I(t)

)
I(t)S(t)

At DFE,

F =
[

∂Fi

∂I(t)

]
DF E

= β
Λ

ϕ(1 + u1) + µ

Vi = ((1 + u2)γ + δ + µ)I(t)
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V =
[

∂Vi

∂I(t)

]
DF E

= (1 + u2)γ + δ + µ

R0 = βΛ
(ϕ(1 + u1) + µ)((1 + u2)γ + δ + µ)

Now we going to analyze the stability of the DFE. To define local stability of E0, the Jacobian

matrix of model system (3.2) is evaluated at DFE.

J =


−
(
β − πI(t)

1+I(t)

)
I(t)− µ −S(t)

(
β − πI(t)

1+I(t) −
πI(t)

(1+I(t))2

)
0(

β − πI(t)
1+I(t)

)
I(t) S

(
β − πI(t)

1+I(t) −
πI(t)

(1+I(t))2

)
− (γ(1 + u2) + δ + µ) 0

ϕ(1 + u1) γ(1 + u2) −µ



JDF E =


−µ − Λ

ϕ(1+u1)+µ
β 0

0 Λ
ϕ(1+u1)+µ

− (γ(1 + u2) + δ + µ) 0

ϕ(1 + u1) γ(1 + u2) −µ


The eigenvalues of the Jacobian matrix are

λ1 = −µ, λ2 = βΛ
µ + ϕ

− (γ(1 + u2) + δ + µ), λ3 = −µ.

the eigen values are negative Except λ2 , thus if
βΛ

(ϕ(1 + u1) + µ)(γ(1 + u2) + δ + µ) < 0

Then E0 is locally asymptotically stable.

Remark 3.1.2: By (Corollary of Gershgorin Circle Theorem) The local stability can be es-

tablished without the need to calculate the eigenvalues.

Remark 3.1.3: [18] The case R0 = 1 is a critical threshold point where the disease free equi-

librium E0 loses its asymptotic stability and simply becomes (neutrally) stable. Moreover, it

becomes unstable immediately R0 > 1 and this will lead to the existence of a stable endemic

equilibrium (EE). Note that R0 = 1 can literarily be viewed as a transcritical bifurcation point

where stability is exchanged between E0 and Endemic Equilibrium (EE).

Endemic Equilibrium

We consider the system at equilibrium for I(t) ̸= 0 (dS
dt

= 0, dI
dt

= 0, dR
dt

= 0). We use the fact

S + I + R = N , we have:

(
β − πI(t)

1+I(t)

)
S(t)I(t)− (γ(1 + u2) + δ + µ)I(t) = 0

ϕ(1 + u1)S(t) + γ(1 + u2)I(t)− µR = 0

Λ− µN − δI(t) = 0

(3.13)
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and

S = N − I −R. (3.14)

By solving the system we find

N∗ = Λ− δI(t)
µ

R∗(t) = ϕ(1 + u1)(Λ− δI(t)− µI(t)) + (1 + u2)γµI(t)
µ(ϕ(1 + u1) + µ)

Then

EE = (I(t), ϕ(1 + u1)(Λ− δI(t)− µI(t)) + (1 + u2)γµI(t)
µ(ϕ(1 + u1) + µ) ,

Λ− δI(t)
µ

)

For the stability of endemic Equilibrium as same kind of DFE [37](See also [24, 4]).

Let the basic reproduction number R0

R0 = βΛ
(ϕ(1 + u1) + µ)((1 + u2)γ + δ + µ)

By definition R0 < 1 the disease cannot invade the population and the infection will die out

over a period of time. When R0 > 1 The disease will invade

Figure 3.3: the basic reproduction number (R0).

It is clear that the greater of controls u1 and u2, the lower the reproduction number. That

mean increasing control effectively reduces the spread of the disease, demonstrating their role in

reducing infections and eventually eliminating the disease. However, excessive control can have

negative consequences moreover it is costly, so public health policy makers seek to minimize the

infection with a minimum cost. Therefore, in the next section, we focus on finding the successful

intervention strategy which leads to decrease the number of infections with a minimum cost.
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3.2 Optimal Control Analysis

Let’s recall the controlled system :

dS
dt

= Λ−
(
β − πI(t)

1+I(t)

)
S(t)I(t)− (1 + u1(t))ϕS(t)− µS(t)

dI
dt

=
(
β − πI(t)

1+I(t)

)
S(t)I(t)− (1 + u2(t))γI(t)− δI(t)− µI(t)

dR
dt

= (1 + u1(t))ϕS(t) + (1 + u2(t))γI(t)− µR(t)

(3.15)

The objective functional is

J(u1, u2) =
∫ T

0

(
A1I(t) + A2u

2
1(t)

2 + A3u
2
2(t)

2

)
dt, (3.16)

Where set of controls is defined as follows

U = {ui : 0 ≤ ui ≤ uimax ≤ 1, i = 1, 2; ui is Lebesgue measurable}. (3.17)

J(u∗
1, u∗

2) = inf{J(u1, u2)|u1, u2 ∈ U} (3.18)

Where A1 is the weight of infection, A2 and A3 are the relative weights assigned to the cost

of vaccination and treatment respectively. The control u1 represent the strengthening effort

made on the vaccination program per unit time while the control u2 represent the

controlling effort that alters infection cases per unit time. Thus, u1 and u2 lie between

0 and 1 whereas u1max and u2max will depend on the amount of resources available to implement

each of the control measures.

The weights A2 and A3 will depend on the relative importance of each of the control measures

in mitigating the spread of the disease. Thus, the terms A2u
2
1 and A3u

2
2 describe the costs

associated with vaccination and treatment respectively. The vaccination cost could include the

cost of the vaccine, the vaccine storage cost, other related overheads, etc. The treatment cost

could include the cost of the medical tests and diagnosis, drug cost, hospitalization cost, etc[16]

[47].

Our goal is to characterize an optimal control (u∗
1, u∗

2) ∈ U which minimizes the cost of the

vaccination and the cost of the treatment over the specified time interval.

3.2.1 Existence of optimal control

Theorem 3.2.1 [4] There exists an optimal control u∗ = (u∗
1, u∗

2) ∈ U such that subject to the

control system 3.15 with initial condition at t = 0:

J(u∗
1, u∗

2) = min
(u1,u2)∈U

J(u1, u2). (3.19)
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Proof: (i) Convexity and closer of control set U : We have U = [0, 1]2 is closed by

definition, further for two arbitrary points y = (y1, y2) and z = (z1, z2) ∈ U it is following by

definition of convex set

(λy + (1− λ)z) ∈ U, ∀λ ∈ [0, 1]

Then U is convex.

(ii) Boundedness of the state system by a linear function in the state and control

variables:

∥b(t, x, v)∥ ≤ ∥g(t, x)∥+ ∥h(t, x)∥∥v∥ ≤ a1 + a2∥v∥

Let

v = (u1, u2)

and

x = (S(t), I(t), R(t))

we have :

b(t, x, v) =


Λ−

(
β − πI(t)

1+I(t)

)
S(t)I(t)− ((1 + u1(t))ϕ + µ) S(t)(

β − πI(t)
1+I(t)

)
S(t)I(t)− ((1 + u2(t))γ + δ + µ) I(t)

(1 + u1(t))ϕS(t)− (1 + u2(t))γI(t)− µR(t)



b(t, x, v) = g(t, x) + h(t, x)v

where

g(t, x) =


Λ−

(
β − πI(t)

1+I(t)

)
S(t)I(t)− µS(t)− ϕS(t)(

β − πI(t)
1+I(t)

)
S(t)I(t)− (γ + δ + µ)I(t)

ϕS(t)− γI(t)− µR(t)



h(t, x) =


−ϕS 0

0 −γI(t)

ϕS γI(t)



v =

u1(t)

u2(t)


Compute ∥g(t, x)∥:

∥g(t, x)∥ =
√

g2
1 + g2

2 + g2
3

where:
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g1 = Λ−
(

β − πI(t)
1 + I(t)

)
S(t)I(t)− µS(t)− ϕS(t)

g2 =
(

β − πI(t)
1 + I(t)

)
S(t)I(t)− (γ + δ + µ)I(t)

g3 = ϕS(t)− γI(t)− µR(t)

Thus,

a1 = ∥g(t, x)∥

Compute ∥h(t, x)∥

h(t, x) =


−ϕS(t) 0

0 −γI(t)

ϕS γI(t)


Approximating the Frobenius norm:

∥h(t, x)∥ =
√

(−ϕS(t))2 + (−γI(t))2 + (ϕS(t))2 + (γI(t))2

=
√

2ϕ2S(t)2 + 2γ2I(t)2

=
√

2
√

ϕ2S(t)2 + γ2I(t)2

Compute ∥v∥

v =

u1(t)

u2(t)



∥v∥ =
√

u2
1 + u2

2

Compute Final Bound

∥b(t, x, v)∥ ≤ ∥g(t, x)∥+ ∥h(t, x)∥∥v∥

Let

a2 =
√

2
√

ϕ2S2 + γ2I(t)2

Replacing each state variable by its upper bound S = I = R = Λ
µ
. So:

a2 =
√

2Λ
µ

√
ϕ2 + γ2.



3.2 Optimal Control Analysis 46

Then

∥b(t, x, v)∥ ≤ a1 + a2∥v∥.

(iii) Convexity of the integrand of the cost functional with respect to the control:

Let f(I, u1, u2) = A1I + A2
u2

1(t)
2 + A3

u2
2(t)
2 . It is clear that it is convex on the control set U .

(iv) We can easily see that there exist a constant η > 1 and positive numbers θ1, θ2 such that

f(I, u1, u2) = A1I + A2
u2

1(t)
2 + A3

u2
2(t)
2 ≥ 1

2(A2u
2
1(t) + A3u

2
2(t))

≥ θ1(u2
1(t) + u2

2(t))
η
2 − θ2

where

θ1 = 1
2 min{A2, A3}, θ2 > 0, and η = 2.

Characterization of the optimal control :

Our goal is to minimize the cost function J :

J(u1, u2) =
∫ T

0

(
A1I(t) + A2u

2
1(t)

2 + A3u
2
2(t)

2

)
dt,

To do that we have to find the optimal solution of ordinary differential equations for the adjoint

variables by using the Pontryagin’s Maximum Principle(PMP) under boundary conditions and

characterization of an optimal control with respect to the controls u1(t), u2(t) [4], [30], [5], [4].

To do this, we define the Hamiltonian for the control problem as follows:

H = A1I(t) + A2
u2

1(t)
2 + A3

u2
2(t)
2 + λ1Ṡ + λ2İ + λ3Ṙ

=
(
A1I(t) + A2u2

1(t)
2 + A3u2

2(t)
2

)
+ λ1

(
Λ−

(
β − πI(t)

1+I(t)

)
S(t)I(t)− ((1 + u1(t))ϕ + µ) S(t)

)
+λ2

((
β − πI(t)

1+I(t)

)
S(t)I(t)− (1 + u2(t))γI(t)− δI(t)− µI(t)

)
+λ3 ((1 + u1(t))ϕS(t) + (1 + u2(t))γI(t)− µR(t))

Let (S∗, I∗, R∗) be the optimal solutions of states with associated optimal variables (u∗
1, u∗

2) for

the optimal control problem. Then there exist adjoint variables λ = (λ1, λ2, λ3) satisfying :

dλ

dt
= λ̇ = −∂H(t, u, λ)

∂x

λ̇1 = −dH
dS

= −
(
−λ1

(
β − πI(t)

1+I(t)

)
I(t)− λ1((1 + u1(t))ϕ + µ) + λ3(1 + u1(t))ϕ + λ2

(
β − πI(t)

1+I(t)

)
I(t)

)

= λ1

(
β − πI(t)

1 + I(t)

)
I(t) + λ1((1 + u1(t))ϕ + µ)− λ3(1 + u1(t))ϕ− λ2

(
β − πI(t)

1 + I(t)

)
I(t)
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λ̇1 = (λ1 − λ2)
(
β − πI(t)

1+I(t)

)
I(t) + (λ1 − λ3)(1 + u1(t))ϕ + λ1µ

λ̇2 = −dH
dI

= −
(
A1 − λ1

(
βS(t)− πI(t)S(t)(2+I(t))

(1+I(t))2

))
+λ2

(
βS(t)− πI(t)S(2+I(t))

(1+I(t))2

)
−λ2((1+u2(t))γ+

δ + µ) +λ3(1 + u2(t))γ

λ̇2 = −A1 + (λ1 − λ2)
(

βS(t)− πI(t)S(2 + I(t))
(1 + I(t))2

)
+ (λ2 − λ3)(1 + u2(t))γ + λ2(δ + µ)

λ̇3 = −dH

dR
= (−λ3µ) = λ3µ

Then the adjoint system is

λ̇1 = (λ1 − λ2)
(
β − πI(t)

1+I(t)

)
I(t) + (λ1 − λ3)(1 + u1(t))ϕ + λ1µ

λ̇2 = −A1 + (λ1 − λ2)
(
βS(t)− πI(t)S(t)(2+I(t))

(1+I(t))2

)
+ (λ2 − λ3)(1 + u2(t))γ + λ2(δ + µ)

λ̇3 = λ3µ

Minimizing H with respect u1 and u2

∂H

∂u1
= A2u1(t)− λ1ϕS(t)− λ3ϕS(t) = 0

∂H

∂u2
= A3u2(t)− λ2γI(t) + λ3γI(t) = 0

Then

u∗
1(t) = (λ1 − λ3)ϕS(t)

A2

u∗
2(t) = (λ2 − λ3)γI(t)

A3

Where (λ1, λ2, λ3) are marginal costs or multipliers from the state and adjoint equations. If

λ1 > λ3, vaccinating susceptibles is economically valuable by reduces future infections. And

if λ2 > λ3, treating infections is economically valuable by reduces deaths and hospitalizations.

[16][45].

The transversality conditions (terminal condition) are λi(T ) = 0, i = 1, 2, 3 because the cost

function J is independent on the state at the final time. So we concluded:

u∗
1(t) = max{0, min{1,

(λ1 − λ3)ϕS(t)
A2

}}

u∗
2(t) = max{0, min{1,

(λ2 − λ3)γI(t)
A3

}}

To find out the optimal controls and states, it is solved numerically using forward backward

sweep method (see Chapter 4).



3.3 Stochastic Model Formulation 48

3.3 Stochastic Model Formulation

We are designed the stochastic model by perturbation of parameter β and performed optimal

control analysis using stochastic maximum principle to study stochastic optimal control problem

of SIR type epidemic model with media awareness programs under controls u1 and u2 [4][5].

It is assumed that fluctuations in the environment which manifest themselves as fluctuation in

the parameters β,

β → β + ϵη(t)

where, η(t) ∼ N(0, 1) represents Gaussian white noise, and ϵ is the intensity of the white

noise and dW (t) = η(t)dt, where W (t) is standard Brownian motion with W (0) = 0, and with

intensity of white noise ϵ2 > 0. The stochastic version corresponding deterministic model is

described by the following set of stochastic differential equations :

dS =
[
Λ−

(
β − πI(t)

1+I(t)

)
S(t)I(t)− (ϕ + µ)S(t)

]
dt− ϵS(t)I(t)dW (t)

dI =
[(

β − πI(t)
1+I(t)

)
S(t)I(t)− (γ + δ + µ)I(t)

]
dt + ϵS(t)I(t)dW (t)

dR = [ϕS(t) + γI(t)− µR(t)] dt

(3.20)

3.3.1 The effect of media awareness program

In order to show the effect of media awareness program in the stochastic version of SIR model

without controls, we use Monte Carlo method to solve the system of SDEs (3.20) where the

number of Monte Carlo paths is N = 1000.

Figure 3.4: The stochastic SIR model without media awareness program(π = 0) (without

controls)
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Figure 3.5: The Stochastic SIR model with media awareness program (without controls)

Interpretation :

The figure 3.4 shows the results of the stochastic SIR model without media awareness and

without controls. Unlike the deterministic case, this model captures the randomness in disease

transmission. The shaded regions represent the 95% confidence intervals (CI) for the suscepti-

ble S, infected I, and recovered R populations, reflecting the possible variation in the disease

trajectory. This uncertainty highlights the unpredictable nature of real epidemics, where small

random fluctuations can significantly impact the outbreak’s dynamics.

From the figure 3.5 Initially, the number of susceptible individuals is high, but it decreases

rapidly as the epidemic spreads the number of infected individuals rises rapidly at the beginning,

creating an epidemic peak moreover the model reaches a steady-state equilibrium. As

deterministic case the number of infected get drop down due to the effect of media awareness

program. However it is not enough to eliminate epidemic. More efficient strategies could be

applied.

3.3.2 Existence and uniqueness of positive solutions

Now we want to show that the solution of system (3.20) is positive and global by using Lyapunov

analysis method [3], [45],[18], [32].

Theorem 3.3.1 There is a unique solution S(t), I(t), R(t) of system (3.20) on t ≥ 0 for any

initial value (S(0), I(0), R(0)) ∈ R3
+, and the solution will remain in R3

+ with probability 1,

namely, (S(t), I(t), R(t)) ∈ R3
+ for all t ≥ 0 almost surely.

proof. Since the coefficients of the equation are locally Lipschitz continuous for any given initial

value (S(0), I(0), R(0)) ∈ R3
+, there is a unique local solution S(t), I(t), R(t) on t ∈ [0, τe), where
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τe is the explosion time. To show that this solution is global, we need to show that τe =∞ a.s.

Let k0 > 0 be sufficiently large so that S(0), I(0) and R(0) all lie within the interval [1/k0, k0].

For each integer k > k0, define the stopping time

τk = inf
{

t ∈ [0, τe) : min(S(t), I(t), R(t)) ≤ 1
k

or max(S(t), I(t), R(t)) ≥ k
}

,

where, we set inf ∅ = ∞ (as usual ∅ denotes the empty set). According to the definition, τk

is increasing as k → ∞. Set τ∞ = limk→∞ τk. We whence see τ∞ ≤ τe. If we can show that

τ∞ =∞ a.s., then τe =∞ and (S(t), I(t), R(t)) ∈ R3
+ a.s. for all t > 0.

In other words, to complete the proof all we need to show is that τ∞ =∞ a.s. If this statement

is false, then there exist a pair of constants T > 0 and ϵ1 ∈ (0, 1) such that P(τ∞ ≤ T ) > ϵ1.

Hence there is an integer k1 > k0 such that

P(τk ≤ T ) ≥ ϵ1, for all k > k1. (3.21)

For t ≤ τk, it is observed for each k,

dN(t) = [Λ− µN(t)− δI]dt

≤ [Λ− µN(t)]dt.

Therefore,

N(0) = S(0) + I(0) + R(0)

(N(t)) ≤


Λ
µ
, if N(0) ≤ Λ/µ,

N(0) if N(0) > Λ/µ

:= M

Define a C2-function V : R3
+ → R+ by

V (S, I, R) = (S − 1− log S) + (I − 1− log I) + (R− 1− log R)

dV (S, I, R) =
(

1− 1
S

)
dS + 1

2S2 (dS)2 +
(

1− 1
I

)
dI + 1

2I2 (dI)2 +
(

1− 1
R

)
dR + 1

2R2 (dR)2

=
(
1− 1

S

) [
(Λ−

(
β − πI

(1+I)

)
SI − (ϕ + µ)S)dt− ϵSIdW (t)

]
+(1− 1

I
)
[
(β − πI

(1+I
)SI − (γ + δ + µ)I)dt + ϵSIdW (t)

]
+
(
1− 1

R

)
(ϕS +γI−µR)dt+ ϵ2S2I2

2I2 dt+
ϵ2S2I2

2S2 dt

= {
(
1− 1

S

)
(Λ−

(
β − πI

(1+I)

)
SI−(ϕ+µ)S)+(1−1

I
)
[
(β − πI

(1+I
)SI − (γ + δ + µ)I

]
+
(
1− 1

R

)
(ϕS+

γI − µR) + ϵ2S2

2 + ϵ2I2

2 }dt + ϵ(I − S)dW

= LV dt + ϵ(I − S)dW (t).



3.3 Stochastic Model Formulation 51

Therefore, LV =
(
1− 1

S

)
(Λ−

(
β − πI

(1+I)

)
SI−(ϕ+µ)S)+(1−1

I
)
[
(β − πI

(1+I))SI − (γ + δ + µ)I
]
+(

1− 1
R

)
(ϕS + γI − µR) + ϵ2S2

2 + ϵ2I2

2

= Λ− µS − µR− µI − Λ
S

+
(
β − πI

(1+I)

)
I + (ϕ + µ)−

(
β − πI

(1+I)

)
S + (γ + δ + µ)− ϕ

R
S − ϕ

R
I +

µ + 1
2ϵ2(I2 + S2) ≤ Λ + 3µ + ϕ + γ + δ + βM + ϵ2M2 := K̃

E [W{S(τk ∧ τ), I(τk ∧ τ), R(τk ∧ τ)}]

≤ W{S(0), I(0), R(0)}+ E
[∫ τk∧τ

0
K̃dt

]

≤ W{S(0), I(0), R(0)}+ K̃τ . (3.22)

Set Ωk = (τk ∧ τ), note that for every ω ∈ Ωk, there is at least one of S(τk, ω), I(τk, ω), R(τk, ω)

that equals k or 1/k and hence

W{S(τk), I(τk), R(τk)} is no less than k − 1− log k or 1/k − 1− log k consequently.

W{S(τk), I(τk), R(τk)} ≥ k − 1− log k ∧ 1/k − 1− log k.

It is then follows (3.21) and (3.22) that

W{S(0), I(0), R(0)}+ K̃τ ≥ E [1Ωk
(ω)W{S(τk), I(τk), R(τk)}]

≥ ε [k − 1− log k ∧ 1/k − 1− log k]

where 1Ωk
(ω) is the indicator function of Ωk. Let k →∞ leads to the contradiction

∞ > W{S(0), I(0), R(0)}+ K̃τ =∞.

So we must therefore have τ∞ =∞, and Hence the proof is achieved.

Remark 3.3.1: From theorem 3.3.1, for any initial value (S(0), I(0), R(0)) ∈ R3
+, there is a

unique global solution (S(t), I(t), R(t)) ∈ R3
+ almost surely. Hence

dN(t) ≤ [µN(t)] dt, and N(t) ≤ Λ
µ

+ e−µtN(0).

So

Ω∗ = {(S, I, R) ∈ R3
+ : 0 < S, 0 ≤ I, 0 ≤ R, S + I + R ≤ Λ

µ
}

is a positively invariant set of system (3.20), which is similar to Ω of deterministic system.

From now , we always assume that (S(t), I(t), R(t)) ∈ Ω∗.
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3.4 Stochastic Optimal Control Analysis

The stochastic version corresponding to the deterministic controlled model is described by the

following set of stochastic differential equations:

dS =
[
Λ−

(
β − πI(t)

1+I(t))

)
S(t)I(t)− (ϕ(1 + u1(t)) + µ)S(t)

]
dt− ϵS(t)I(t)dW (t)

dI =
[(

β − πI(t)
1+I(t)

)
S(t)I(t)− ((1 + u2(t))γ + δ + µ)I(t)

]
dt + ϵS(t)I(t)dW (t)

dR = [ϕ(1 + u1(t))S(t) + γ(1 + u2(t))I(t)− µR(t)] dt

(3.23)

Where S(0) > 0, I(0) > 0, R(0) ≥ 0. We define the vectors:

x(t) = [S(t), I(t), R(t)] and u(t) = [u1(t), u2(t)],

for n ∈ N, x0 ∈ Rn, and an n-dimensional Brownian motions W (t). Consider the general

n-dimensional stochastic differential equation:

dx(t) = b(x(t), u(t))dt + σ(x(t))dW (t),

with the initial conditions

x(0) = [S(0), I(0), R(0)] = x0,

where b and σ are vectors with components such that

b1(x(t), u(t)) = Λ−
(

β − πI

1 + I)

)
SI − (ϕ(1 + u1) + µ)S

b2(x(t), u(t)) =
(

β − πI

1 + I

)
SI − ((1 + u2)γ + δ + µ)I,

b3(x(t), u(t)) = ϕ(1 + u1)S + γ(1 + u2)I − µR,

σ1(x(t), t) = −ϵSI,

σ2(x(t), t) = ϵSI,

σ3(x(t), t) = 0.
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The cost functional is given as follows :

J(u) = E
{∫ T

0
(A1I + 1

2A2u
2
1(t) + 1

2A3u
2
2(t))dt

}

where A1, A2, A3 are positive constants. Our goal is to find an optimal control u∗ = [u∗
1, u∗

2]

such that

J(u∗) ≤ J(u),∀u1, u2 ∈ U,

where U is an admissible control set defined by

U = {u1, u2 | 0 ≤ u1 ≤ umax, 0 ≤ u2 ≤ umax},

The aim is to characterize an optimal control (u∗
1, u∗

2) ∈ U which minimizes the cost of the

vaccination and the cost of the treatment over the specified time interval and also minimizes

the number of infectives at terminal time. In order to use the stochastic maximum principle,

we define the Hamiltonian H(x, u, p, q) by

H =
(

A1I(t) + A2
u2

1(t)
2 + A3

u2
2(t)
2

)
+ p1

[
Λ−

(
β − πI(t)

1 + I(t)

)
I(t)S(t)− ((1 + u1(t))ϕ + µ)S(t)

]

+ p2

[(
β − πI(t)

1 + I(t)

)
I(t)S(t)− ((1 + u2(t))γ + δ + µ2) I(t)

]

+ p3 [(1 + u1(t))ϕS(t) + (1 + u2(t))γI(t)− µR(t)]

− q1ϵS(t)I(t) + q2ϵS(t)I(t) (3.24)

It follows from the stochastic maximum principle that, the adjoint equations are:

dp(t) = −∂H(x(t), u, p, q)
∂x

dt + q(t)dW (t)

dp1 =
[
p1
((

β − I(t)π
1+I(t)

)
I(t) + ((1 + u1(t))ϕ + µ)

)
− p2

(
β − I(t)π

1+I(t)

)
I(t)− p3(1 + u1(t))ϕ + q1ϵI(t)

]
dt

−q2ϵI(t)dt + q1dw

dp2 =
[
p1
(
βS(t)− 2πI(t)S(t)+πS(t)I2(t)

(1+I(t))2

)
− p2

(
βS(t)− 2πI(t)S(t)+πS(t)I(t)2

(1+I(t))2 − ((1 + u2(t))γ + δ + µ)
)]

dt

+ [−p3(1 + u2(t))γ − A1 + q1S(t)ϵ− q2ϵS(t)] dt + q2dw

dp3 = p3µdt
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Then the stochastic adjoint system is

ṗ1 =
[
(p1 − p2)

(
β − πI(t)

1+I(t)

)
I(t) + (p1 − p3)(1 + u1(t))ϕ + p1µ + (q1 − q2)ϵI(t)

]
dt + q1dw

ṗ2 =
[
−A1 + (p1 − p2)

(
βS(t)− πI(t)S(t)(2+I(t))

(1+I(t))2

)
+ (p2 − p3)(1 + u2(t))γ + p2(δ + µ) + (q1 − q2)ϵS(t)

]
dt

+q2dw

ṗ3 = p3µ

(3.25)

With the initial and terminal conditions

S(t0) = S(0), I(t0) = I(0), R(t0) = R(0), (3.26)

p1(T ) = 0, p2(T ) = 0, p3(T ) = 0 (3.27)

By differentiating Hamiltonian equation with respect to u1 and u2, we get the optimal controls

u∗
1 and u∗

2:

u∗
1(t) = max

[
min

(
S(t)ϕ(p1 − p3)

A2
, 1
)

, 0
]

(3.28)

u∗
2(t) = max

[
min

(
I(t)γ(p2 − p3)

A3
, 1
)

, 0
]

(3.29)

where p1, p2 and p3 are marginal costs. If p1 > p3, vaccinating susceptibles is economically

valuable by reduces future infections. If p2 > p3, treating infections is economically valuable

by reduces deaths and hospitalizations [53][16].

The numerical simulation of results of deterministic and stochastic optimal control problems

are discussed in the next chapter 4.



Chapter 4

Numerical analysis of optimal control

for Influenza with media awareness

programs under treatment and

vaccination

In this chapter we want to present the numerical results and discussion of deterministic and

Stochastic optimal control analysis of Influenza. The feasibility of analysis regarding determin-

istic and stochastic optimality conditions are simulated numerically over time. All parameter

values in the computations are the same in both scenarios [4][45][5]. They are summarized in

the Table 3.1. For simulations we use Python programming language.

4.1 Numerical analysis of deterministic optimal control

problem for Influenza

In this section, the numerical simulations of the deterministic optimal control problem is dis-

cussed.

An iterative scheme of fourth order Runge-Kutta method is used for solving the deterministic

optimality system. The algorithm is the forward-backward scheme; starting with an initial

guess for the optimal controls, the state variables are then solved forward in time from the dy-

namics of system using a Runge-Kutta method of the fourth order. Then, those state variables

and initial guess for the controls are used to solve the adjoint equations backward in time with
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given final conditions, again employing a fourth order Runge-Kutta method. The controls are

updated and used to solve the state and then the adjoint system. This iterative process termi-

nates when current state, adjoint, and control values converge ([1] [4] [45][46]). This method

can be summarized in the following algorithm.
Algorithm 5: The forward-backward scheme method

1 Input : x(0) = [S(0), I(0), R(0)] ,u∗ = [u∗
1(0), u∗

2(0)], λi(T ) = 0 .

2 Output : u∗
1, u∗

2, S∗(t), I∗(t), R∗(t)

3 Solve Forward the State Equations using a numerical method (e.g., RK4):

4

ẋ = b(x, u), x(0) = x0.

5 Using the terminal conditions λi(T ) = 0 and the values for u1 ,u2 and S(t),

I(t), R(t), solve the Costate (Adjoint) Equations backward in time :

6

λ̇i = −∂H

∂x
, λi(T ) = 0.

7 Update u1 and u2 by entering the new S∗, I∗, R∗ and λi values into the

characterization of the optimal control.

8 Iterate until convergence.
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Figure 4.1: Simulation of deterministic model solution (top left). Control profile u(t) (top

right). Zoom of the solution for the 10 first days (bottom).

Note: The program execution took 35 seconds to complete the full simulation.

Interpretations

Figure 4.1 presents the simulation of deterministic model solution and control profile u(t).

The results indicate an increase in the number of recovered individuals and a reduction in

infections. The vaccination effort, represented by u1, is maximized for up to 34 days before

gradually decreasing to its lower bound over the next 100 days. Meanwhile, the control u2, which

regulates the treatment of infected individuals, achieves optimal results when maintained at its

maximum level from t = 0 to t = 58 days.
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4.2 Numerical analysis of stochastic optimal control

We use Least-squares regression based method, where the number of Monte Carlo paths is 1000

and only 200 are plotted. The state variables are solved forward in time from the dynamics

system (3.23) using a forward Euler-Maruyama method, then Least-squares regression based

method is applied to solve the adjoint equations (3.25) backward in time with given final

conditions where the polynomial basis functions up to degree 2 is used for the least-squares

regression. Then the controls are updated and used to solve the state and the adjoint systems.

Note: The program execution took 135.90 seconds to complete the full simulation.

Figure 4.2: Simulation of stochastic model solution (Solution of FSDEs) and control profile u1

(vaccination), u2 (treatment).

Figure 4.3: Zoom of the stochastic model solution for the 10 first days.
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Interpretations

As control is applied, the infected population gets drop down, and the susceptible population

is reduced quickly while the recovered population gets drop up over time meaning that the

intervention is effective.

This result suggests that an aggressive control strategy is initially required, where maximum

intervention is applied at the start and then relaxed as the epidemic is being reduced under

controls. The sudden drop at the end may indicate that the infection has diminished to a level

where further intervention is no longer necessary.

Moreover, the relatively high weight for vaccination (A2 = 150) means the cost of vaccination

is significantly higher than the cost of treatment, encouraging the system to reduce vaccination

efforts earlier to minimize costs that’s why the vaccination effort drops down after 34 days.

This indicates that as the weight of control (vaccination efforts) increases, the disease can be

controlled in a minimum time. Also the treatment control also starts near 1 but decreases after

58 days. The weight of treatment (A3 = 100) makes it a more cost-effective intervention over

a longer period compared to vaccination.

Figure 4.4: Simulation of deterministic and stochastic cost functional

Figure 4.4 represent the evolution of the deterministic and stochastic cost functional over time.

From the figure the stochastic model demonstrates that incorporating noise yields more precise

results compared to the deterministic model because the cost associated with the stochastic

problem is less than that of the deterministic problem. We conclude that the deterministic

model provides a baseline prediction, but the stochastic model is more effective to minimize

infection with minimum costs.
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Figure 4.5: Simulation of deterministic and stochastic adjoint trajectories .

Note:The program execution took 67.09 seconds to complete the full simulation. It is also

worth noting that we take N=1000 Monte Carlo paths, and only 15 are plotted to save time.

Figure 4.5 shows the simulation of deterministic and stochastic adjoint (Costate) trajectories

over time, it is clear from the figure p1 > p3 and p2 > p3 so vaccinating susceptibles and treat-

ing infections are economically valuable to reduce future infections, deaths and hospitalizations.

Remark 4.2.1: We can solve stochastic optimal control problem by using a so-called ”proxy

method”, as mentioned in [4, 42].
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4.3 Deterministic and stochastic analysis for different

Scenarios

Figure 4.6: Simulation of deterministic and stochastic infective trajectory, and control profile

u1 and u2 for varying rate of awareness π.

Note: In order to save time, the simulation time horizon was limited to 10 units of time. It

is important to note that this reduction does not affect the accuracy or reliability of the results.

Figure 4.6 illustrates the impact of varying the media awareness rate on the infective trajectory

and the optimal control strategies for vaccination (u1) and treatment (u2). As the value of

π increases from 0.0002 to 0.00026, the number of infective individuals decreases over time,

this confirms that as awareness grows infection decreases. For vaccination effort (u1), greater

values of awareness, reduce the vaccination effort over time. In contrast, the treatment effort

(u2) remains at its maximum across all awareness levels, highlighting the continued necessity

of treatment efforts to avoid a new waves of the epidemic because some individuals become

infected despite awareness.
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Figure 4.7: Simulation of deterministic and stochastic infective trajectory, and control profile

u1(t) and u2(t) for varying rate of vaccination parameter ϕ.

Figure 4.7 presents the simulation results for infective trajectories and control profiles under

different values of the vaccination rate parameter. Figure 4.7(a) shows that as the vaccination

rate parameter increases from 0.65 to 1.05, the number of infective individuals decrease. This

confirms the direct role of effective vaccination in mitigating disease spread. From figure 4.7(b),

for larger values, such as 1.05, the vaccination effort drops earlier and more gradual. On the

other hand, figure 4.7 (c) shows that the treatment control remains at its maximum level across

all vaccination rates, indicating that treatment continues to play a crucial role, regardless of

how effective the vaccination is.
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Figure 4.8: Simulation of deterministic and stochastic infective trajectory, and control profile

u1(t) and u2(t) for varying Contact rate of susceptible with infectives β.

Figure 4.8 shows the simulation results for infective trajectories and optimal control profiles with

respect to varying values of the contact rate β between susceptible and infective individuals.

From figure 4.8 (a), the infective trajectory increases as the contact rate β rises. This highlights

the strong influence of contact rate β. Figure 4.8 (b) illustrates the vaccination effort (u1). The

intensity and fluctuations in (u1) are more pronounced for higher values, indicating a more

reactive and sustained vaccination effort is needed as the disease spreads faster with higher

contact rates. From figure 4.8(c), the treatment control remains at its maximum throughout

the simulation across all contact rates, suggesting that treatment must be continuously applied

at full capacity to manage the infectious population effectively.
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Figure 4.9: Simulation of state variables over time without media awareness and without vac-

cination with treatment.

Figure 4.10: Simulation of state variables over time with media awareness and vaccination

without treatment.

From figure 4.9 there is a small reduction in the number of infections in the presence of treat-

ment,while a significant drop occurs in the presence of media awareness program and vaccination

without treatment as shown in the figure 4.10 . This confirms the importance of prevention
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strategies in mitigating epidemics. We conclude that the prevention is better than cure.



General Conclusion

The dissertation focuses on developing stochastic epidemic models that use stochastic differen-

tial equations for numerical simulation of the Susceptible-Infected-Recovered (SIR) framework

for influenza. Our research demonstrates the implementation of Pontryagin’s Maximum Princi-

ple along with the Stochastic Maximum Principle to solve both the deterministic and stochastic

optimal control problems.

The comparison between deterministic and stochastic control strategies was conducted through

numerical simulations to identify their respective effectiveness. The study results show the

fundamental necessity of including uncertainty within epidemic control models and strategies.

Stochastic optimal control methods deliver more authentic disease spread prevention techniques

for uncertain conditions which makes them essential for practical implementation.

The work provides essential information to policy makers together with public health author-

ities about how stochastic components improve epidemic control strategies to create better

adaptable interventions. In this work the most effective and essential control measures among

all prevention strategies are media awareness programs together with vaccination. These results

can be useful through further investigation of complex models. By using real world data and

approximate stochastic control based on more sophisticated techniques such as Deep Learning,

these findings could be of valuable degree to treat and interpret more complex epidemic models.
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