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Abstract

This study investigates the estimation and prediction of parameters for the Weibull
and Alpha Power Weibull (APW) distributions using progressively Type-II censored data.
The APW model provides greater flexibility in modeling different hazard rate shapes.
Maximum likelihood and Bayesian methods are used to estimate distribution parame-
ters, reliability, and hazard functions. Bayesian estimates are obtained via MCMC under
Squared Error and LINEX loss functions. Monte Carlo simulations evaluate the perfor-
mance of the methods, and real engineering data confirm their effectiveness. Results show
that Bayesian inference with the APW model offers accurate and reliable performance un-
der progressive censoring.
Keywords: Weibull distribution, Alpha Power Weibull distribution (APW), Progressive
Type-II censoring, Bayesian estimation, Maximum likelihood, Monte Carlo simulation,
MCMC techniques.

Resumé
Cette étude porte sur l’estimation et la prédiction des paramètres des lois de Weibull et
de Weibull puissance alpha (APW) en présence de données censurées de type II progres-
sive. Le modèle APW offre une plus grande flexibilité pour modéliser différentes formes
de taux de défaillance. Les méthodes du maximum de vraisemblance et bayésienne sont
utilisées pour estimer les paramètres de la distribution, ainsi que les fonctions de fiabilité
et de risque. Les estimateurs bayésiens sont obtenus à l’aide de la méthode MCMC sous
les fonctions de perte quadratique et LINEX. Des simulations de Monte Carlo sont util-
isées pour évaluer les performances des méthodes, et des données réelles du domaine de
l’ingénierie confirment leur efficacité. Les résultats montrent que l’inférence bayésienne
basée sur le modèle APW fournit des estimations précises et fiables en présence de censure
progressive.
Mots-clés : distribution de Weibull, distribution de Weibull puissance alpha (APW), cen-
sure progressive de type II, estimation bayésienne, maximum de vraisemblance, Simulation
de monte carlo , Techniques MCMC.
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Introduction

Statistical models must adapt to the challenge of extracting meaningful inferences
from partially observed data. In such contexts, statistical inference plays a crucial role
in estimating model parameters, evaluating system performance, and making predictions
despite the presence of censored observations.

Statistical inference under censoring mechanisms enables analysts to make valid con-
clusions using only a subset of the data, typically observed until a certain point or stage.
Among various censoring types, progressive Type-II censoring has gained significant im-
portance for its flexibility and realism. Unlike classical Type-I or Type-II censoring,
progressive schemes allow for the systematic removal of surviving units at multiple stages
during the test. This not only saves resources but also captures more detailed failure
behavior [4].

In progressive Type-II censoring, items are placed under test, and failure times are
recorded. At each failure time, a pre-determined number of remaining items are removed
(censored), leading to a multi-stage observation structure. This design generalizes other
censoring schemes and has proven effective in applications where time and cost efficiency
are critical.

To analyze data collected under such schemes, various estimation methods are em-
ployed. The maximum likelihood estimation (MLE) method is widely used due to its
asymptotic properties and interpretability [6]. On the other hand, Bayesian estimation
offers a probabilistic framework that incorporates prior information and allows for flex-
ible modeling using sampling-based methods such as the Metropolis-Hastings algorithm
[7, 14]. Both approaches are valuable tools in handling progressively censored data.

The Weibull distribution is among the most prominent models in reliability and sur-
vival analysis due to its ability to characterize different hazard rate behaviors-decreasing,
constant, or increasing depending on its shape parameter. Its versatility makes it a stan-
dard choice in industrial applications and life-data analysis [16, 13].

Although the Weibull distribution is powerful, it may lack the flexibility needed to
capture complex real-world data patterns. This has motivated the development of more
general families of lifetime distributions. Several extensions have been proposed in the
literature, including the equi-transponentiated Weibull, modified Weibull, and generalized
Weibull distributions. These variants aim to enhance the flexibility of the modeling by
introducing additional parameters to control skewness, tail behavior, or hazard shape.

Among these generalizations, the Alpha Power Weibull (APW) distribution has re-
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cently attracted attention due to its ability to provide an even wider range of hazard
shapes by including an additional parameter, α . The APW distribution not only en-
compasses the classical Weibull distribution as a special case but also offers an improved
fit for complex reliability data. Its flexibility in modeling both monotonic and nonmono-
tonic hazard functions makes it a suitable candidate for real-world applications involving
progressive censoring schemes.

In recent statistical literature, increasing attention has been given to the problem
of designing optimal censoring schemes. For a fixed number of units n and observed
failures m, the goal is to determine the best progressive censoring scheme (R1, R2, ..., Rm)

such that m +
m∑
i=1

Ri = n, and the chosen scheme yields the most information about

the unknown parameters. This involves defining appropriate information measures and
comparing competing schemes .

The main objective of this study is to explore and explain the methods for conducting
robust statistical inference, such as parameter estimation and hypothesis testing, when
data are collected under this specific censoring scheme, highlighting its practical impor-
tance.

The rest of my dissertation work is organized as follows : In Chapter 1, we present
the theoretical background necessary for understanding classical and Bayesian estimation
methods, along with a discussion on censoring mechanisms, with emphasis on progressive
Type-II censoring.
In Chapter 2 focuses on parameter estimation for the Weibull distribution using classical
techniques such as maximum likelihood and confidence intervals, as well as Bayesian
estimation under different loss functions.
In Chapter 3, the analysis is extended to the Alpha Power Weibull distribution, where
both estimation methods are studied. The methodology of Monte Carlo simulation is
outlined to support the theoretical procedures, and a real data example is included to
illustrate the application of the proposed estimators.



Chapter 1
Backgrounds

This chapter is divided into three important sections. The first one contains some defi-
nitions of maximum likelihood estimation. Then, some of definitions and properties on
bayesian estimation are also provided. Finally, the concept of censoring is introduced,
with a particular focus on progressive Type-II censoring, which plays a central role in the
data structure and estimation procedures considered in this study.

1.1 Maximum Likelihood Estimation

Maximum likelihood estimation is a probabilistic approach to solving the density
estimation problem. It involves finding the probability distribution and its parameters
that best describe the observed data by maximizing a likelihood function.

Likelihood and Log-Likelihood Functions

Let X = x be a realization of a random variable (rv) or vector X with a known probability
mass or density function (pmf or pdf) f(x; θ), which depends on the observed value x
and an unknown parameter θ . This function is typically defined by a statistical model.

The parameter θ, which may be scalar or vector, lies in the parameter space Θ, while
the set of all possible values of X is the sample space Ω.
Definition 1.1.1. The likelihood function L(θ) is the pmf or pdf of the observed data
x, viewed as a function of the unknown parameter θ. That is,

L(θ;x) = f(x; θ)

When X is a random sample (rs), we assume that x1, . . . , xn are observations of the
random vector X = (X1, . . . , Xn), where Xi

iid∼ f(x; θ), for i = 1, . . . , n.

13
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due to the assumed independence of the components of X.

Therefore, the likelihood function based on a rs is:

L(θ;X) =
n∏

i=1

L(θ;xi) =
n∏

i=1

f(xi; θ)

The log-likelihood is hence the sum of the individual log-likelihood contributions as

logL (θ;X) = log

(
n∏

i=1

f (xi; θ)

)
=

n∑
i=1

logf (xi; θ) .

1.1.1 Maximum Likelihood Estimate

The maximum likelihood provides a reliable and general method for estimating param-
eters. This approach can be used in many different estimation problems.For example,it
is useful in reliability analysis, especially when dealing with censored data from different
censoring schemes.
Definition 1.1.2. The likelihood function is maximized to produce the maximum likeli-
hood estimate (MLE) θ̂ML of a parameter θ:

θ̂ML = argmaxL (θ)
θ∈Θ

.

Example 1.1.1. Let X denote a rs from an exponential distribution Exp (θ).Then:

L (θ) =
n∏

i=1

{θe(−θxi)}

= θne

(
−θ

n∑
i=1

xi

)

is the likelihood function of θ ∈ R+. The log-likelihood function is therefore:

logL (θ) = nlog (θ)− θ
n∑

i=1

xi

with derivative:
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∂logL (θ)

∂θ
=

n

θ
−

n∑
i=1

xi

Setting the derivative to zero, we easily obtain the MLE θ̂ML =
n

n∑
i=1

xi

is the mean

observed survival time.

1.1.2 Score Function and Fisher Information

Definition 1.1.3. The first derivative of the log-likelihood function

S (θ) =
∂logL (θ)

∂θ

is called the score function.
Remark. Computation of the MLE is typically done by solving the score equation
S (θ) = 0.
Definition 1.1.4. The negative second derivative of the log-likelihood function

I (θ) = −∂
2logL (θ)

∂θ2
(1.1)

is called the Fisher information. The value of the Fisher information at the MLE θ̂ML

I
(
θ̂ML

)
, is the observed Fisher information.

Example 1.1.2. Suppose we have observations x1, x2, . . . , xn of a rs from a normal dis-
tribution N (µ, σ2) with unknown mean µ and known variance σ2.

The pdf is:

f(xi | µ) =
1√
2πσ2

exp

(
−(xi − µ)2

2σ2

)
The likeliohood is:

L(µ) =
n∏

i=1

f(xi | µ) =
(

1√
2πσ2

)n

exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2

)

The log-likelihood function and score function are then

logL(µ) = − 1

2σ2

n∑
i=1

(x− µ)2



16

and

S(µ) =
d

dµ
log L(µ) =

1

σ2

n∑
i=1

(xi − µ)

respectively.The solution of score equation S(µ) = 0 is the MLE

µ̂ML = x̄

We take the second derivative of the log-likelihood:

d2

dµ2
log L(µ) = − n

σ2

so The Fisher information is:

I(µ) = E
[
− d2

dµ2
log L(µ)

]
=

n

σ2

Since this value does not depend on µ, we have:

I(µ̂ML) = I(µ) =
n

σ2

Now, assume µ is Known and σ2 is Unknown The log-likelihood is:

log L(σ2) = −n
2
log(2πσ2)− 1

2σ2

n∑
i=1

(xi − µ)2

and The MLE and Fisher information of σ2 are then

σ̂2
ML =

1

n

n∑
i=1

(xi − µ)2

and

I(σ2) =
1

σ6

n∑
i=1

(xi − µ)2 − n

2σ4

In the MLE, the observed Fisher information becomes

I(σ̂2
ML) =

n

2σ̂4
ML

Remark. From a frequentist point of view, the MLE µ̂ML = X̄ is a random variable. Its
variance is:
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Var(µ̂ML) =
σ2

n

This is exactly equal to the inverse of the Fisher information:

Var(µ̂ML) =
1

I(µ̂ML)

In general, under regularity conditions, the variance of the MLE θ̂ML is approximately
equal to the inverse observed Fisher information:

Var(θ̂ML) ≈
1

I(θ̂ML)

This approximation improves as the sample size increases. Example (1.1.1) is a special
case where the equality holds exactly for any sample size.
Theorem 1.1.1. (Asymptotic Normality of MLE)[12]

Let θ̂ be the MLE for an unknown parameter θ. Then, we have

√
n(θ̂ − θ) → N

(
0,

1

I(θ)

)

As we can see, the asymptotic variance dispersion of the estimate around true param-
eter will be smaller when Fisher information is larger.

1.1.3 Delta Method

The delta method is a result concerning the approximate probability distribution for a
function of an asymptotically normal statistical estimator from knowledge of the limiting
variance of that estimator. The delta method generalizes easily to a multivariate setting,
careful motivation of the technique is more easily demonstrated in univariate terms.
Definition 1.1.5. if there is a sequence of random variables Xn satisfying

√
n [Xn − θ]

d→ N (0, σ2)

where θ and σ2 are finite valued constants and d→ denotes convergence in distribution,
then

√
n [g(Xn)− g(θ)]

d→ N
(
0, σ2. [g′(θ)]

2
)
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for any function g satisfying the property that g′(θ) exists and is non-zero valued.

1.2 Confidence Interval

A confidence interval (CI) provides a range of plausible values for an unknown parameter,
such as the mean or variance. Instead of giving a single estimate, it offers an interval
that is likely to contain the true parameter with a certain level of confidence, typically
95%. CI are important because they reflect the uncertainty in estimation due to sampling
variability, and they help us make informed decisions by quantifying the precision of our
estimates.
Definition 1.2.1. For fixed γ ∈ (0, 1), a γ.100% confidence interval for θ is defined by
two statistics Tl = hl (X) and Tu = hu (X) based on a rs X, which fulfill

P (Tl ≤ θ ≤ Tu) = γ (1.2)

for all θ ∈ Θ. The statistics Tl and Tu are the limits of the confidence interval, and
we assume Tl ≤ Tu throughout. The confidence level γ is also called coverage probability.

1.3 Bayesian Estimation

In frequentist inference, the data X are considered random, and point estimates of the
unknown parameter θ are treated as functions of the data. The parameter θ is fixed but
unknown. The properties of these estimates are studied by looking at how they behave
over many possible samples of the data.
In Bayesian inference, named after Thomas Bayes, the unknown parameter θ is treated
as a rv with a prior distribution f(θ). After observing the data X = x, Bayes theorem
is used to update this prior and obtain the posterior distribution f (θ|x), which reflects
what we know about θ given the data. Unlike frequentist inference, Bayesian inference is
based on the observed data X = x.
Definition 1.3.1. [12] Let A and B denote two events A,B with 0 < P (A) < 1 and
P (B) > 0.then

P (A|B) =
P (B|A)P (A)

P (B)
(1.3)

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)
(1.4)

For a general partition A1, A2, ..., An with P (Ai) > 0 for all i = 1, ..., n we have that
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P (Aj|B) =
P (B|Aj)P (Aj)
n∑

i=1

P (B|Ai)P (Ai)
(1.5)

for each j = 1, ..., n.

1.3.1 Posterior Distribution

The posterior distribution is the most important quantity in Bayesian inference. It con-
tains all the information available about the unknown parameter θ after having observed
the data X = x. Certain characteristics of the posterior distribution can be used to derive
Bayesian point estimate.
Definition 1.3.2. Let X = x be the observed realization of a (possibly multivariate)
rv X with density function f (x|θ). Specifying a prior distribution with density function
f (θ) allows us to compute the density function f (θ|x) of the posterior distribution using
Bayes theorem.

f (θ|x) = f (x|θ) f (θ)∫
f (x|θ) f (θ) dθ

(1.6)

For discrete parameter θ the integral in the denominator has to be replaced with a
sum.
Remark. • The term f(x | θ) is the likelihood, denoted by L(θ) previously denoted by
f(x, θ). Since θ is now random, we write L(θ) = f(x | θ). The marginal likelihood can
also be written as ∫

f (x|θ) f (θ) dθ =
∫
f (x, θ) dθ = f (x) .

which does not depend on θ.
• The posterior density is proportional to the product of the likelihood and the prior:

f(θ | x) ∝ f(x | θ)f(θ) or f(θ | x) ∝ L(θ)f(θ),

with the constant of proportionality ensuring normalization.
Example 1.3.1. The number X = x of events observed in a fixed time interval can be
reasonably modeled by the Poisson distribution. That is, we assume

X ∼ P(λ)

where λ > 0 is the unknown rate parameter representing the average number of occur-
rences per interval.

It is tempting to select a Gamma distribution as a prior for λ, because the support
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of the Gamma distribution matches the parameter space (0,∞). Let the prior be

λ ∼ G(α, β), with α, β > 0,

which has the probability density function

f(λ) =
βα

Γ(α)
λα−1e−βλ, λ > 0.

The likelihood function based on a single observation x is

f(x|λ) = e−λλx

x!
, x = 0, 1, 2, . . .

Hence, the posterior distribution is proportional to the product of the likelihood and
the prior:

f(λ|x) ∝ f(x|λ) · f(λ) ∝ λxe−λ · λα−1e−βλ = λα+x−1e−(β+1)λ

This is recognized as the kernel of a Gamma distribution with updated parameters

λ|x ∼ G(α + x, β + 1)

More generally, if we observe a random sample X1, X2, . . . , Xn ∼ P(λ), the sufficient

statistic is T =
n∑

i=1

Xi. Then the posterior becomes

λ|x ∼ G(α + T, β + n)

The Bayes estimator under squared error loss is the posterior mean:

λ̂Bayes =
α + T

β + n

1.3.2 Choice of the Prior Distribution

Bayesian inference allows the probabilistic specification of prior beliefs through a prior
distribution. It is often useful and justified to restrict the range of possible prior distri-
butions to a specific family with one or two parameters. The choice of this family can
depend on the type of likelihood function used. We now discuss such a choice.
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Conjugate Prior Distributions

A practical way to choose a prior distribution is to select one from a family of distributions
that leads to a posterior distribution in the same family. This type of prior is called a
conjugate prior distribution.
Definition 1.3.3. Let L (θ) = f (x|θ) denote a likelihood function based on the obser-
vation X = x.A class G of distributions is called conjugate with respect to L (θ) if the
posterior distribution f (θ|x) is in G for all x whenever the prior distribution f (θ) is in G.

• The family G = {all distributions} is trivially conjugate with respect to any likelihood
function. In practice one tries to find smaller sets G that are specific to the likelihood
L (θ).

Table 1.1: Summary of conjugate prior distributions for different likelihood functions
Likelihood Conjugate prior Posterior distribution

distribution
X|π ∼ Bin(n, π) π ∼ β(α, β) π|x ∼ β(α+ x, β + n− x)

X|π ∼ Geom(π) π ∼ β(α, β) π|x ∼ β(α+ 1, β + x− 1)

X|λ ∼ P(e.λ) λ ∼ G(α, β) λ|x ∼ G(α+ x, β + e)

X|λ ∼ Exp(λ) λ ∼ G(α, β) λ|x ∼ G(α+ 1, β + x)

X|µ ∼ N (µ, σ2) µ ∼ N (ν, ς2) µ|x ∼ N

((
1

σ2
+

1

ς2

)−1

.

(
x

σ2
+
ν

ς2

)
,

(
1

σ2
+

1

ς2

)−1
)

X|σ2 ∼ N (µ, σ2) σ2 ∼ IG(α, β) σ2|x ∼ IG

(
α+

1

2
, β +

1

2
(x− µ)2

)

Improper Prior Distributions

The prior distribution affects the posterior distribution. To reduce this influence, a vague
prior is often used such as one with a very large variance. In extreme cases, this may result
in an improper prior, meaning a prior whose "density" does not integrate to one. Since
it lacks a normalizing constant, it is usually written using the proportionality symbol
“∝”. When using improper priors, it is important to check that the resulting posterior
distribution is proper (i.e., it integrates to one). If the posterior is proper, then the use
of improper priors is acceptable in Bayesian analysis. We now give a formal definition of
an improper prior distribution.
Definition 1.3.4. A prior distribution with density function f (θ) ≥ 0 is called improper
if ∫

Θ

f (θ) dθ = ∞ or
∑
θ∈Θ

f (θ) = ∞ (1.7)

for continuous or discrete parameters θ, respectively.
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Jeffreys Prior Distributions

It turns out that a particular choice of prior distribution is invariant under reparametri-
sation. This is Jeffreys prior (after Sir Harold Jeffreys, 1891-1989).
Definition 1.3.5. Let X be a rv with likelihood function f (x|θ) where θ is an unknown
scalar parameter. Jeffreys prior is defined as

f (θ) ∝
√
J (θ) (1.8)

where J (θ) is the expected Fisher information of θ. Equation (1.8) is also known as
Jeffreys rule.

1.3.3 Bayesian Point Estimate

Statistical inference about θ is based solely on the posterior distribution. Suitable point
estimates are location parameters, such as the mean, median or mode, of the posterior
distribution. We will formally define those now for a scalar parameter θ.
Definition 1.3.6. • The posterior mean E (θ|x) is the expectation of the posterior dis-
tribution:

E (θ|x) =
∫
θf (θ|x) dθ

• The posterior mode Mod(θ|x) is the mode of the posterior distribution:

Mod (θ|x) = argmax f (θ|x)
θ

• The posterior median Med(θ|x) is the median of the posterior distribution, i.e. any
number a that satisfies∫ a

−∞
f (θ|x) dθ = 0.5 and

∫ ∞

a

f (θ|x) dθ = 0.5

Properties of Bayesian Point Estimate

To estimate an unknown parameter θ, there are at least three possible Bayesian point
estimate available: the posterior mean, mode, and median.Which one should we choose
in a specific application? To answer this question, we take a decision-theoretic view and
first introduce the notion of a loss function.
Definition 1.3.7. Loss function

A loss function l(a, θ) ∈ R quantifies the loss encountered when estimating the true
parameter θ by a. If a = θ , the associated loss is typically set to zero: l(θ, θ) = 0.

Common loss functions
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• Quadratic loss: l(a, θ) = (a− θ)2

• Linear loss: l(a, θ) = |a− θ|

• Zero-one loss:

lε(a, θ) =

0, if |a− θ| ≤ ε

1, if |a− θ| > ε
, where ε > 0

We now choose the point estimate a that minimises the posterior expected loss with
respect to f(θ | x). Such a point estimate is called a Bayes estimate.
Definition 1.3.8. (Bayes estimate)

A Bayes estimate of θ with respect to a loss function l(a, θ) minimises the expected
posterior loss:

E[l(a, θ) | x] =
∫
Θ

l(a, θ)f(θ | x) dθ

It turns out that commonly used Bayesian point estimates correspond to Bayes esti-
mates under specific loss functions.
Result 1.3.1. [12]

• The posterior mean is the Bayes estimate under quadratic loss.

• The Bayes estimate to linear loss is the posterior median.

• The posterior mode is the Bayes estimate under zero loss as ε→ 0.

To prove (1.3.1) we need the next integral rule.
Definition 1.3.9. (Leibniz Integral Rule)

Let a, b and f be real-valued functions that are continuously differentiable in t .Then
the Leibniz integral rule is

∂

∂t

∫ b(t)

a(t)

f (x, t) dx =

∫ b(t)

a(t)

∂

∂t
f (x, t) dx− f{a (t) , t}. d

dt
a (t) + f{b (t) , t}. d

dt
b (t) (1.9)

This rule is also known as differentiation under the integral sign.

Proof. We first derive the posterior mean E (θ|x) as the Bayes estimate with respect to
quadratic loss. The expected quadratic loss is
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E{l (a, θ) |x} =

∫
l (a, θ) f (θ|x) dθ

=

∫
(a− θ)2 f (θ|x) dθ

Setting the derivative with respect to a to zero leads to

2

∫
(a− θ) f (θ|x) dθ = 0 ⇔ a−

∫
θf (θ|x) dθ = 0 (1.10)

It immediately follows that a =

∫
θf (θ|x) dθ = E (θ|x) .

• Consider now the expected linear loss

E{l (a, θ) |x} =

∫
l (a, θ) f (θ|x) dθ =

∫
|a− θ|f (θ|x) dθ

=

∫
θ≤a

(a− θ) f (θ|x) dθ +
∫
θ>a

(θ − a) f (θ|x) dθ

The derivative with respect to a can be calculated using Leibniz′s integral rule (1.9):

∂

∂a
E{l (a, θ) |x} =

∂

∂a

∫ a

−∞
(a− θ) f (θ|x) dθ + ∂

∂a

∫ ∞

a

(θ − a) f (θ|x) dθ

=

∫ a

−∞
f (θ|x) dθ − (a− (−∞)) f (−∞|x) .0 + (a− a) f (a|x) .1

−
∫ ∞

a

f (θ|x) dθ − (a− a) f (a|x) .1 + (∞− a) f (∞|x) .0

=

∫ a

−∞
f (θ|x) dθ −

∫ ∞

a

f (θ|x) dθ

Setting this equal to zero yields the posterior median a = Med (θ|x) as the solution for
the estimate.

• Finally, the expected zero-one loss is

E{l (a, θ) |x} =

∫
lε (a, θ) f (θ|x) dθ

=

∫ a−ε

−∞
f (θ|x) dθ +

∫ +∞

a+ε

f (θ|x) dθ

= 1−
∫ a+ε

a−ε

f (θ|x) dθ
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This will be minimised if the integral
∫ a+ε

a−ε

f (θ|x) dθ is maximised. For small ε the

integral is approximately 2εf (a|x), which is maximised through the posterior mode
a =Mod (θ|x).

1.4 Censoring and Progressive Censoring

In survival analysis and reliability studies, data are often subject to censoring due to
time or cost limitations. Understanding the types of censoring is crucial before applying
estimation techniques. This section provides a brief overview of censoring mechanisms,
with a special focus on progressive censoring, which is particularly relevant for this study
[5].

1.4.1 Censoring

Life-testing and reliability studies have recently gained significant attention. It is un-
derstood that collecting complete lifetime data can be inefficient, expensive, and time-
consuming. In addition, in some experiments, not all failure times can be observed. For
these reasons, censored sampling is used in life-testing experiments.

Types Of Censoring

• Right: is the most common type, where the event has not occurred by the end of
the observation period.

• Left: happens when the event occurs before the observation period begins.

• Interval: occurs when the event occurs but is only known to fall within a specific
time frame.

A more advanced form of censoring, called progressive censoring, was developed
by reliability practitioners to enhance data collection flexibility.

1.4.2 Progressive Censoring

In today’s competitive market, product reliability has become crucial. Consumers now
expect high-quality products with long useful life. To meet these expectations, manu-
facturers conduct reliability and life-testing experiments to understand product failure
patterns and design effective warranties. Progressive censoring is one of these methods
that is used in these experiments. It helps gather more accurate data, especially when
some items are removed during testing. This technique improves the precision of statistical
inference compared to conventional methods, making it valuable for product improvement
and quality assessment.
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• Genesis

Issues relating to progressive censoring can be dated back more than 40 years. To give
a glimpse of its history, here is a query made in 1966 (Query 18, Technometrics, August
1966):

"It is not uncommon in our life-testing for items to fail for reasons quite
unrelated to the normal failure mechanism. For example, consider a number of
lamps placed simultaneously on life-test. One of the lamps might be accidently
broken after the start of the test but before all the lamps had burned out. If
all lamps but one had burned out and the last were accidently broken, the
population parameters are easily estimated by techniques designed to deal
with censoring on the right. Breakage of any lamp but the longest lived one in
the sample, however, introduces the problem of how to utilize the information
that this lamp burned the observed number of hours before it was destroyed.
What procedures can be recommended?"

The response to this enquiry was given by Dr. A. Clifford Cohen of University of
Georgia in a subsequent issue of Technometrics. Yet, the above presented passage, being
the first documented practical enquiry about the loss or removal of industrial units from
experimentation prior to the termination of the experiment and due to causes other than
failure, may be viewed as the genesis of "real-life" problem-based research on the topic of
progressive censoring [5].

Now, you are probably wondering, what exactly is progressive censoring?

• The Need for Progressive Censoring

In reliability experiments, it’s common for test units to be removed or lost before
failure, either unintentionally (like breakage or dropout) or deliberately (to save time,
cost, or resources). Traditional censoring assumes a single point of removal, but this
doesn’t always reflect real-world situations. Progressive censoring addresses this gap by
allowing multiple, planned removals at various points in time. This flexibility makes it
especially useful in experiments where early removal can save costs or where continuous
monitoring is necessary. It also helps improve the accuracy and efficiency of statistical
analysis.

• Types of Progressive Censoring

1. Progressive Type-I Censoring : In this type of censoring, some elements of the
test are removed at different times during the study. The test continues until a fixed
time is chosen before the test starts. This method is often used in reliability studies
to check how long items last before they fail.
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2. Progressive Type-II Censoring : In this method, the test continues until a pre-
fixed number of failures occur. After each failure, a certain number of remaining
units are randomly withdrawn from the test.

This approach provides more control over the number of failures observed compared
to traditional censoring methods,and allows for efficient data collection with limited
resources.

Definition 1.4.1. The joint pdf of all m progressively Type-II censored rs

X1:m:n, X2:m:n, . . . , Xm:m:n is given by:

fX1:m:n,X2:m:n,...,Xm:m:n(x1, x2, . . . , xm) = c

m∏
i=1

f(xi) [1− F (xi)]
Ri , (1.11)

where X1 < X2 < ... < Xm. and the constant c is:

c = n(n−R1 − 1)(n−R1 −R2 − 2) . . . (n−R1 −R2 − · · · −Rm−1 −m+ 1).

withdrawn

Rm

xm,n

R3

x3,n

withdrawn

R2

x2,n

withdrawn

Experiment
Begins

Experiment
Ends

R1

x1,n

withdrawn

Figure 1.1: Progressive censoring of a life test with censoring scheme R = (R1, ..., Rm)



Chapter 2
Statistical Inference Based On
Progressive Type-II Censoring from
Weibull Distribution

In this chapter, We considerd classical methods including MLE and asymptotic confidence
intervals, as well as Bayesian estimation. A brief numerical comparison is also given.

2.1 Classical Estimation

Classical estimation is a statistical method used to infer unknown population parameters
from sample data through objective procedures such as the method of moments, MLE,
and least squares, aiming to produce estimators that are unbiased, consistent, efficient,
and sufficient, and it is widely applied in statistical inference based on progressive Type-II
censoring from the Weibull distribution.

Weibull Distribution

The Weibull distribution (WE) is one of the most widely used distributions in reliability
and survival studies. It plays an important role in analyzing skewed data and it is quite
useful in diverse fields ranging from engineering to medical scopes (Lawless, 1982)[16]. A
detailed discussion of the WE distribution has been provided by Johnson et al (1995) [13].
Definition 2.1.1. The WE distribution with shape α and scale λ parameters has the
cumulative distribution function (cdf)

F (x|α, λ) = 1− e−λxα

, x > 0, α, λ > 0, (2.1)

28
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and pdf

f(x|α, λ) =

αλxα−1e−λxα

, if x > 0,

0, if x ≤ 0,
(2.2)
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Figure 2.1: The PDF and CDF of the WE distribution using some specified values.

2.1.1 Maximum Likelihood Estimation

Let X = (X1:m:n, X2:m:n, . . . , Xm:m:n) be a progressively Type-II censored sample of size
m from a total of n units from WE distribution based on the censoring scheme R =

(R1, R2, . . . , Rm), where: n = m+
m∑
j=1

Rj
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The likelihood function under progressive Type-II censoring is:

L(α, λ|x) = c
m∏
i=1

f(xi:m:n|α, λ)[1− F (xi:m:n|α, λ)]Ri . (2.3)

Substituting (2.1), (2.2) in (2.3), we obtain

L(α, λ|x) ∝ αmλm

(
m∏
i=1

xα−1
i:m:n

)
exp

(
−λ

m∑
i=1

(1 +Ri)x
α
i:m:n

)
. (2.4)

Then the log-likelihood function is:

log L(α, λ|x) = log

(
αmλm

m∏
i=1

xα−1
i:m:ne

−λ
∑m

i=1(1+Ri)x
α
i:m:n

)

= log (αm) + log (λm) +
m∑
i=1

log(xα−1
i:m:n) + log(e−λ

∑m
i=1(1+Ri)x

α
i:m:n)

= mlogα+mlogλ+ (α− 1)
m∑
i=1

logxi:m:n − λ
m∑
i=1

(1 +Ri)x
α
i:m:n

We use the partial derivatives of the log-likelihood function with respect to α and λ, we
get:

∂ log L(α, λ|x)
∂λ

=
m

λ
−

m∑
i=1

(1 +Ri)x
α
i:m:n = 0

and

∂ log L(α, λ|x)
∂α

=
m

α
+

m∑
i=1

log xi:m:n − λ

m∑
i=1

(1 +Ri)x
α
i:m:n log xi:m:n = 0 (2.5)

The MLEs of λ is
λ̂ML =

m∑m
i=1(1 +Ri)xαi:m:n

(2.6)

Substituting (2.6) into (2.5) for λ:

m

α
+

m∑
i=1

log xi:m:n −
(

m∑m
k=1(1 +Ri)xαi:m:n

)( m∑
i=1

(1 +Ri)x
α
i:m:n log xi:m:n

)
= 0 (2.7)

Since we can not obtain the solution explicitly for the shape parameter α from equation
(2.7), it is typically estimated numerically using iterative algorithms such as Newton-
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Raphson, secant, bisection, or fixed-point iteration.For more details about the existence
and uniqueness of these MLEs and uniqueness, see Balakrishnan and Kateri (2008) [6].

2.1.2 Asymptotic Confidence Interval

Since it is not easy to derive the exact distribution of the MLEs in Eq’s (2.6) and
(2.5), we cannot obtain the exact confidence intervals (CIs) for the parameters α and λ

Consequently, asymptotic CIs (ACIs) of the parameters are derived using the asymptotic
distribution of MLEs. To this end, we need to find the variance-covariance matrix of the
MLEs. The observed information matrix of θ = (α, λ) is given by:

I(θ) = −

 ∂2logL(α, λ|x)
∂α2

∂2logL(α, λ|x)
∂α∂λ

∂2logL(α, λ|x)
∂λ∂α

∂2logL(α, λ|x)
∂λ2

 (2.8)

where

∂2logL(α, λ|x)
∂λ2

= −m

λ2
(2.9)

∂2logL(α, λ|x)
∂λ∂α

=
∂2logL(α, λ|x)

∂α∂λ
= −

m∑
i=1

(1 +Ri)x
α
i:m:n log xi:m:n (2.10)

∂2logL(α, λ|x)
∂α2

= −m

α2
− λ

m∑
i=1

(1 +Ri)x
α
i:m:n(log xi:m:n)

2 (2.11)

Hence, the inverse of the observed information matrix is given by:

I−1(θ) = −

 ∂2logL(α, λ|x)
∂α2

∂2logL(α, λ|x)
∂α∂λ

∂2logL(α, λ|x)
∂λ∂α

∂2logL(α, λ|x)
∂λ2


−1

=

(
V11 V12

V21 V22

)
(2.12)
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where

V11 =

m

λ

2(
m

α

2

+ λS1

)(m
λ2

)
− S2

2

V12 = V21 =
−S2(m

α2
+ λS1

)(m
λ2

)
− S2

2

V22 =

m

α2
+ λS1(m

α2
+ λS1

)(m
λ2

)
− S2

2

Let us denote:

S1 =
m∑
i=1

(1 +Ri)x
α̂
i:m:n(log xi:m:n)

2, S2 =
m∑
i=1

(1 +Ri)x
α̂
i:m:n log(xi:m:n)

The asymptotic joint distribution of theMLEs α̂ and λ̂ is approximated by a bivariate
normal distribution, and is given by:

(
α̂

λ̂

)
D∼ N

[(
α

λ

)
,

(
V11 V12

V21 V22

)]
(2.13)

The inverse matrix is:

I−1(θ̂) =
1(

m
α̂2 + λ̂S1

)(
m

λ̂2

)
− S2

2

 m

λ̂2
−S2

−S2
m

α̂2
+ λ̂S1


By replacing α and λ with their MLEs, we obtain the estimated variance-covariance

matrix of the MLEs θ̂ = (α̂, λ̂):

I−1(θ̂) =

(
var(α̂) cov(α̂, λ̂)

cov(λ̂, α̂) var(λ̂)

)
(2.14)

Thus, the approximate (1− α)100% CIs for the parameters α and λ are respectively
given by:
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(Lα, Uα) = α̂± z1−α
2

√
var(α̂), (2.15)

(Lλ, Uλ) = λ̂± z1−α
2

√
var(λ̂), (2.16)

where z1−α
2

is the (1− α

2
) quantile of the standard normal distribution.

However, since the parameters α and λ are strictly positive, the lower bounds of these
asymptotic intervals may sometimes be negative. To address this issue, we follow the log-
transformation approach using the delta method. The asymptotic distribution of log(θ̂j)
for j = 1, 2 is given by:

log(θ̂j)− log(θj)
D∼ N

(
0,

var(θ̂j)

θ̂2j

)
(2.17)

Therefore, modified asymptotic (1−α)100%(0 < α < 1) CIs for α and λ can be easily
obtained, respectively, as follows:

(
α̂ exp

(
−z1−α

2

√
var(α̂)

α̂

)
, α̂ exp

(
z1−α

2

√
var(α̂)

α̂

))
, (2.18)λ̂ exp

−z1−α
2

√
var(λ̂)

λ̂

 , λ̂ exp

z1−α
2

√
var(λ̂)

λ̂

 . (2.19)

2.1.3 Bootstrap

The bootstrap method is a useful resampling technique for constructing confidence inter-
vals, especially when the asymptotic distribution is not reliable or the exact distribution
is unknown. To construct the bootstrap confidence intervals for the parameters α and λ

based on progressively Type-II censored data, we proceed as follows:

1. Generate B bootstrap samples from the estimated Weibull distribution with param-
eters α̂ and λ̂.

2. For each bootstrap sample, apply the same progressive Type-II censoring scheme
used in the original sample and compute the MLEs α̂∗(b) and λ̂∗(b) for b = 1, 2, . . . , B.

3. After obtaining the B bootstrap replicates of the MLEs, sort the bootstrap estimates
of each parameter in ascending order.

4. The 100(1 − α)% percentile bootstrap confidence intervals for the parameters are
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then given by:

(
α̂∗
(⌊αB/2⌋), α̂

∗
(⌈(1−α/2)B⌉)

)
, (2.20)(

λ̂∗(⌊αB/2⌋), λ̂
∗
(⌈(1−α/2)B⌉)

)
, (2.21)

where α̂∗
(i) and λ̂∗(i) denote the i-th order statistics of the bootstrap replicates of α̂ and

λ̂ respectively.

The bootstrap CIs are computationally intensive but often yield more accurate results
than asymptotic intervals, especially for small sample sizes or highly censored data.

2.2 Bayesian Estimation

In this section, we develop the Bayesian estimation procedure for the parameters of the
Weibull distribution under progressively Type-II censored data. The methodology is based
on specifying suitable prior distributions, deriving the posterior distributions, and com-
puting Bayes estimators under various loss functions. Moreover, a Monte Carlo simulation
method is applied to obtain the estimates when analytical forms are not available.

2.2.1 Prior Distribution

We assume the parameters α and λ are a priori independent:

• The prior for λ is chosen as a Gamma distribution:

π1(λ|a0, b0) =
ba00

Γ(a0)
λa0−1e−b0λ, λ > 0,

where a0 > 0 and b0 > 0 are chosen to reflect the prior knowledge about λ.

• The prior for α is π2(α) assumed to be log-concave and defined on (0,∞).which
means that the logarithm of the density function is concave. This property simplifies
the implementation of certain sampling algorithms, especially in Bayesian estimation
frameworks. Log-concave densities are particularly useful in Adaptive Rejection
Sampling (ARS). For more details, see Berger and Sun (1993) [7] and Kundu (2008)
[14] and Devroye (1984) [11].
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2.2.2 Posteroir Distribution

Joint Posterior Distribution

By combining the likelihood with the prior, we obtain the joint posterior of α and λ as:

π(α, λ|data) ∝ L(α, λ) · π1(λ|a0, b0) · π2(α)

∝ (αmλm+a0−1

(
m∏
j=1

xα−1
j:m:n

)
exp

{
−λ

(
b0 +

m∑
j=1

(1 +Rj)x
α
j:m:n

)}
π2(α)

Conditional Posterior Distribution

To perform Bayesian estimation,we next derive the conditional posterior distributions of
each parameter.

• Conditional posterior of λ given α: Fixing α,the conditional posterior of λ is given
by:

π(λ | α, data) ∝ λm+a0−1 exp

{
−λ

(
b0 +

m∑
j=1

(1 +Rj)x
α
j:m:n

)}
.

This is the kernel of a Gamma distribution:

λ|α, data ∼ G

(
a0 +m, b0 +

m∑
j=1

(1 +Rj)x
α
j:m:n

)
.

• Conditional posterior of α given λ and data : Conversely,fixing λ the conditional
posterior of α becomes:

π(α|λ, data) ∝ αm

m∏
j=1

xα−1
j:m:n exp

{
−λ

m∑
j=1

(1 +Rj)x
α
j:m:n

}
π2(α). (2.22)

Marginal posterior of α:

To derive the marginal posterior of α,we integrate out λ from the joint posterior:

π(α | data) ∝ π2(α)

(
m∏
j=1

xαj:m:n

)∫ ∞

0

λm+a0−1e−λ(b0+
∑m

j=1(1+Rj)x
α
j:m:n)dλ.

Using the known identity:
∫ ∞

0

λk−1e−cλdλ = Γ(k)c−k,
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with: k = a0 +m and c = b0 +
m∑
j=1

(1 +Rj)x
α
j:m:n

we get:

π(α | data) ∝

(
m∏
j=1

xαj:m:n

)(
b0 +

m∑
j=1

(1 +Rj)x
α
j:m:n

)−(a0+m)

π2(α).

Including the factor αm, the final form is:

π(α|data) ∝ αm

m∏
j=1

xα−1
j:m:n

(
b0 +

m∑
j=1

(1 +Rj)x
α
j:m:n

)−(a0+m)

π2(α). (2.23)

This distribution is log-concave if π2(α) is log-concave.

2.2.3 Bayes Estimates under Different Loss Functions

The sample-based technique using the conditional posterior distribution can be used to
obtain the Bayes estimates (BEs) of θ = α or λ under three different loss functions. For
a parameter θ and a decision rule a.

• The BEs under different loss functions are:

• Squared Error Loss (l1(a, θ) = (a− θ)2):

θ̂B1 = Eposterior(θ|data) =
∫ ∞

0

∫ ∞

0

θ π(α, λ|data) dα dλ.

• Absolute Error Loss (l2(a, θ) = |a− θ|):

θ̂B2 = Medposterior(θ|data).

• LINEX Loss (l3(a, θ) = (a/θ)ν − ν ln(a/θ)− 1, ν ̸= 0):

θ̂B3 =
[
Eposterior(θ

−ν |data)
]−1/ν

=

[∫ ∞

0

∫ ∞

0

θ−νπ(α, λ|data) dα dλ
]−1/ν

.

Proof. (Bayes Estimator under LINEX Loss)

The LINEX (Linear Exponential) loss function is defined as:

l(a, θ) =
(a
θ

)ν
− ν ln

(a
θ

)
− 1,
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Find the Bayes estimate a that minimizes the posterior expected loss:

E[l(a, θ)|x] =

∫
l(a, θ)f(θ|x)dθ

=

∫ [(a
θ

)ν
− ν ln

(a
θ

)
− 1
]
f(θ|x)dθ

= aν
∫
θ−νf(θ|x)dθ − ν ln(a)(θ|x)dθ + ν

∫
ln(θ)f(θ|x)dθ − 1

= aνE[θ−ν |x]− ν ln(δ) + νE[ln(θ)|x]− 1

Setting the derivative with respect to a to zero leads to

νaν−1E[θ−ν |x]− ν/a = 0 ⇔ aν E[θ−ν |x] = 1 ⇔ a =
(
E[θ−ν |x]

)−1/ν

2.2.4 Monte Carlo Simulation Algorithm

Since explicit forms of Bayesian estimation are often intractable, we use Monte Carlo
(MC) sampling:

step (1) Generate α1 from the log-concave density function π(α|data) using the method
proposed by Devroye (1984) [11].

step (2) Generate λ1 from the Gamma conditional posterior given α1.

step (3) Repeat Steps(1) and (2) M-times and obtain MC samples (αi, λi), i = 1, . . . ,M

.

These resulting samples (αl, λl) are used to approximate the BEs of the parameters
and also to construct the corresponding simulated confidence intervals. The simulation
steps and comparaison criteria in this section are adapted from Abu Awwad et al.(2014)[1]

2.3 Numerical Comparison

To evaluate the performance of the sample-based estimators and predictors, a MC simu-
lation study was conducted. For specified values of n, m, and a given censoring scheme,
progressively Type-II censored samples were generated from the WE distribution with
fixed parameters α = 2 and λ = 1, following the algorithm developed by Balakrishnan
and Aggarwala (2000)[4]. In each simulation run, both the MLEs and BEs of α and λ

were computed under various loss functions. This process was repeated 5000 times. The
average bias and the mean squared error (MSE) were calculated for each estimator. The
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results, rounded to four decimal places, are presented in Tables (2.1) and (2.2), where the
MSE values are given in parentheses.
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The numerical results from tables (2.1) and (2.2) show that BEs generally outperform
MLEs by having lower bias and MSE. The effectiveness of both estimation techniques
is sensitive to variations in sample size and the chosen sampling scheme. While the
performance of BEs for the parameter α was similar under schemes L1 and L3, the BEs
for the λ parameter were better under L2 than L1. Furthermore, across most scenarios,
the estimates for λ calculated using the LINEX loss (LL) function L3 were superior to all
others.



Chapter 3
Statistical Inference Based On
Progressive Type-II Censoring from
Alpha Power Weibull Distribution

Several generalizations of classical lifetime distributions have been introduced to better fit
real data. Commonly used models include the exponential, Weibull, log-normal, gamma,
and generalized exponential distributions. While these models are useful, they may lack
sufficient flexibility to capture complex data behaviors.

To address this, the Alpha Power transformation, introduced by Mahdavi and Kundu
(2017) [17], has been applied to enhance baseline models.

In particular, the Alpha Power Weibull (APW) distribution extends the standard
Weibull by adding a shape parameter, offering more flexibility in modeling various failure
rates.

This chapter studies statistical inference for the parameters of the APW distribution
based on progressive Type-II censored data. We present the distribution, derive MLE and
Bayesian estimators, construct confidence intervals, and provide a numerical comparison.

Alpha Power Weibull Distribution

One of the most flexible distributions is known as the APW distribution which was in-
troduced by Nassar et al. [19] by utilizing the alpha power transformation method intro-
duced by Mahdavi and Kundu [17]. It can be considered to be a flexible extension of the
traditional Weibull distribution and can deliver several desirable properties and better
flexibility in the form of the hazard and density functions. If X is a rv that follows the
APW distribution, then its pdf and cdf can be expressed as

42
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f(x;α, β, λ) =
λβ log(α)xβ−1e−λxβ

α1−e−λxβ

α− 1
, x > 0, α, β, λ > 0, α ̸= 1 (3.1)

and

F (x;α, β, λ) =
α1−e−λxβ − 1

α− 1
(3.2)

where α and β are shape parameters and λ is a scale parameter

• The reliability function (RF) and hazard rate function (HRF) of the APW distri-
bution are given by:

R(x;α, β, λ) =
α

α− 1

(
1− α− exp(−λxβ)

)
(3.3)

h(x;α, β, λ) =
λβ log(α)xβ−1 exp(−λxβ)

αexp(−λxβ) − 1
(3.4)

For α = 1, the APW distribution reduces to the alpha power exponential distribution
proposed by Mahdavi and Kundu [17].
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Figure 3.1: The PDFs and HRFs of the APW distribution using some specified values.
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3.1 Classical Estimation

3.1.1 Maximum Likelihood Estimation

The MLEs of the parameters α, β, and λ as well RF and HRF of the APW distribution
under progressively Type-II censored data are given by

L(α, β, λ | x) = c
m∏
i=1

f(xi:m:n) [1− F (xi:m:n)]
Ri

∝
m∏
i=1

λβ log(α)xβ−1
i e−λxβ

i · α
1−e−λx

β
i

α− 1

 m∏
i=1

[
α

α− 1

(
1− α−e−λx

β
i

)]Ri

∝ (λβ log α)m

[
m∏
i=1

xβ−1
i

]
e−λ

∑m
i=1 x

β
i α

∑m
i=1(1−e−λx

β
i )

(
1

α− 1

)m

(
α

α− 1

)∑m
i=1 Ri m∏

i=1

(
1− α−e−λx

β
i

)Ri

∝ (λβ log α)m
(

α

α− 1

)n
[

m∏
i=1

xβ−1
i

]
exp

(
−λ

m∑
i=1

xβi

)

exp

(
log α

m∑
i=1

(1− e−λxβ
i )

)
m∏
i=1

(
1− α−e−λx

β
i

)Ri

∝ [λβ log(α)]m
(

α

α− 1

)n

exp

(
−λ

m∑
i=1

xβi − log(α)
m∑
i=1

e−λxβ
i

)
m∏
i=1

xβ−1
i

m∏
i=1

(
1− α−e−λx

β
i

)Ri

Where xi = xi:m:n, for i = 1, . . . ,m and n = m+
m∑
i=1

Ri

Then the log likelihood function can be written as follows:

log L(α, β, λ | x) = mlog[λβ log(α)] + n log

(
α

α− 1

)
− λ

m∑
i=1

xβi − log(α)
m∑
i=1

e−λxβ
i

+
m∑
i=1

Ri log

(
1− α−e−λx

β
i

)
. (3.5)

The MLEs of α, β, λ, denoted by α̂, β̂, λ̂, respectively, can be obtained by maximizing
the log-likelihood function in (3.5). Equivalently, they can be obtained by solving the
following system of nonlinear equations:
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∂ log L(α, β, λ | x)
∂α

=
m

α log(α)
+ n

(
1

α
− 1

α− 1

)
− 1

α

m∑
i=1

e−λxβ
i +

1

α

m∑
i=1

Ri
e−λxβ

i

ψi

= 0,

(3.6)

∂ log L(α, β, λ | x)
∂β

=
m

β
−λ

m∑
i=1

xβi log(xi)+λ log(α)
m∑
i=1

vi log(xi)−λ log(α)
m∑
i=1

Ri
vi log(xi)

ψi

= 0,

(3.7)

∂ log L(α, β, λ | x)
∂λ

=
m

λ
−

m∑
i=1

xβi + log(α)
m∑
i=1

vi − log(α)
m∑
i=1

Ri
vi
ψi

= 0, (3.8)

where ψi = αe−λx
β
i − 1 and vi = xβi e

−λxβ
i .

The MLEs of the parameters for APW distribution under progressively Type-II cen-
sored data can be obtained by solving equations (3.6)-(3.8) using the Newton-Raphson
iterative method. It is worth noting that the MLEs of the APW distribution based on
Type-II (non-progressive) censoring can be derived directly from (3.6)-(3.8) by setting
R1 = R2 = · · · = Rm−1 = 0. Using the invariance property of MLEs, the estimates of the
R(t) and the h(t) at a specific time t are given by:

R̂(t) =
α̂

α̂− 1

(
1− α̂− exp(−λ̂tβ̂)

)
, ĥ(t) =

λ̂β̂ log(α̂)tβ̂−1 exp(−λ̂tβ̂)
α̂exp(−λ̂tβ̂) − 1

. (3.9)

3.1.2 Asymptotic Confidence Interval

It is important to construct CI for the unknown parameters α, β, and λ, as well as for
the R(t) and h(t). To achieve this, we employ the asymptotic properties of the MLEs.

Under standard regularity conditions, the asymptotic distribution of the MLEs (α̂, β̂, λ̂)
is a multivariate normal distribution with mean (α, β, λ) and covariance matrix given by
the inverse of the Fisher information matrix, denoted by I−1(α, β, λ). However, due to the
complex expressions of the second-order partial derivatives of the log-likelihood function,
computing I−1(α, β, λ) analytically is challenging.

Instead, we use the observed Fisher information matrix evaluated at the MLEs, i.e.,
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I−1(α̂, β̂, λ̂), which is computed as follows:

I−1(α̂, β̂, λ̂) =


−∂

2L(α, β, λ | x)
∂α2

−∂
2L(α, β, λ | x)

∂α∂β
−∂

2L(α, β, λ | x)
∂α∂λ

−∂
2L(α, β, λ | x)

∂β∂α
−∂

2L(α, β, λ | x)
∂β2

−∂
2L(α, β, λ | x)

∂β∂λ

−∂
2L(α, β, λ | x)

∂λ∂α
−∂

2L(α, β, λ | x)
∂λ∂β

−∂
2L(α, β, λ | x)

∂λ2



−1

(α̂,β̂,λ̂)

(3.10)

The elements of the Fisher information matrix are obtained from the log-likelihood func-
tion as follows:

∂2logL(α, β, λ | x)
∂α2

=
m[1 + log(α)]

[α log(α)]2
n
[
(α− 1)−2 − α−2

]
+

1

α2

m∑
i=1

e−λxβ
i

m∑
i=1

α−2ψ−2
i Rie

−λxβ
i ϕi,

∂2logL(α, β, λ | x)
∂β2

= −m

β2
− λ

m∑
i=1

xβi (log xi)
2 + λ log(α)

m∑
i=1

φi − λ log(α)
m∑
i=1

Riφiψ
−1
i

− λ2
2
log(α)

m∑
i=1

Riwiψ
−2
i ,

∂2logL(α, β, λ | x)
∂λ2

= −m

λ2
− log(α)

m∑
i=1

xβi vi − log(α)

m∑
i=1

Riviuiψ
−2
i ,

and

∂2logL(α, β, λ | x)
∂α∂β

=
λ

α

m∑
i=1

vi log(xi) +
λ

α

m∑
i=1

Riuie
−λxβ

i log(xi)ψ
−2
i ,

∂2logL(α, β, λ | x)
∂α∂λ

=
1

α

m∑
i=1

vi +
1

α

m∑
i=1

Riuie
−λxβ

i ψ−2
i ,

∂2logL(α, β, λ | x)
∂β∂λ

= −
m∑
i=1

xβi log(xi) + log(α)

m∑
i=1

φi

−1
log(xi)− log(α)

m∑
i=1

Riφi

−1
log(xi)ψ

−1
i

− λ
2
log(α)

m∑
i=1

Riwi

−1
log(xi)ψ

−2
i ,

where

φi = vi(log xi)
2(1− λxβi ), wi = v2i (log xi)

2αe−λx
β
i , ϕi = 1− αe−λx

β
i (1 + e−λxβ

i ),

and ui = xβi [1 + αe−λx
β
i (log(α)e−λxβ

i − 1)].

Then, the 100(1 − ε)% ACIs for the unknown parameters α, β, and λ are computed
as:
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α̂± zε/2
√

v̂(α̂), β̂ ± zε/2

√
v̂(β̂), λ̂± zε/2

√
v̂(λ̂) (3.11)

where v̂(α̂), v̂(β̂), and v̂(λ̂) are the estimated variances obtained from the diagonal
elements of (3.10), and zε/2 is the upper ε/2 quantile of the standard normal distribution.

To obtain the ACIs for R(t) of the APW distribution, we use the delta method.
For this purpose, we need the first-order partial derivatives of R(t) with respect to the
unknown parameters α, β, and λ, as follows:

∂R(t)

∂α
=

1 + (α− 1)e−λtβ − αe−λtβ

(α− 1)2αe−λtβ
,

∂R(t)

∂β
= −λα log(α) log(t)t

βe−λtβ

(α− 1)αe−λtβ
,

∂R(t)

∂λ
=
α log(α)tβe−λtβ

(α− 1)αe−λtβ
,

Let YR =

(
∂R

∂α
,
∂R

∂β
,
∂R

∂λ

)⊤ ∣∣
(α,β,λ)=(α̂,β̂,λ̂)

Then, the estimated variances of R̂(t) can be approximated by:

v̂(R̂) ≈ YRI
−1(α̂, β̂, λ̂)Y ⊤

R ,

and the ACIs of R(t) at the confidence level 100(1− ε)% are given respectively by:

R̂(t)± zε/2

√
v̂(R̂).

the first-order partial derivatives of h(t) with respect to the unknown parameters α, β,
and λ To obtain the ACIs for h(t)

∂h(t)

∂α
=
λβtβ−1e−λtβ

[
αe−λtβ

(1− log(α)e−λtβ)− 1
]

α
(
αe−λtβ − 1

)2 ,

∂h(t)

∂β
=
λtβ−1e−λtβ log(α)[1 + β log(t)− λβtβ log(t)]

αe−λtβ − 1
− λ2βt2β−1e−2λtβ log2(α) log(t)αe−λtβ

(αe−λtβ − 1)2
,

∂h(t)

∂λ
=
βtβ−1e−λtβ log(α)[1− λtβ]

αe−λtβ − 1
− λβt2β−1e−2λtβ log2(α)αe−λtβ

(αe−λtβ − 1)2
.
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Let Yh =

(
∂h

∂α
,
∂h

∂β
,
∂h

∂λ

)⊤ ∣∣
(α,β,λ)=(α̂,β̂,λ̂)

Then, the estimated variances of R̂(t) can be approximated by:

v̂(ĥ) ≈ YhI
−1(α̂, β̂, λ̂)Y ⊤

h ,

and the ACIs of h(t) is:

ĥ(t)± zε/2

√
v̂(ĥ).

3.2 Bayesian Estimation

In this section, we consider the Bayesian estimation of the unknown parameters α, β,
and λ, along with the RF and HRF, based on progressively Type-II censored data. The
estimation is performed under both the squared error loss (SEL) and the LINEX loss (LL)
functions.

3.2.1 Prior Distribution

There was no conjugate prior to the APW distribution. As a result, we presumptively
use gamma priors, which are thought to be more flexible than other priors and adjust
to the support of the parameters. Additionally, the independent gamma priors are clear
and straightforward, which may avoid many complicated inferential issues, see also in this
regard Kundu and Howlader [15], Dey et al.[10] and Nassar et al.[20] Let:

α ∼ G(a1, b1), β ∼ G(a2, b2), λ ∼ G(a3, b3),

which leads to the joint prior distribution:

g(α, β, λ) ∝ αa1−1βa2−1λa3−1 exp (−(b1α + b2β + b3λ)) , α, β, λ > 0. (3.12)

3.2.2 Posterior Distribution

Combining the likelihood function with the prior in Equation (3.12), the joint posterior
density function becomes:
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π(α, β, λ | x) = A−1α
n+a1−1βm+a2−1λm+a3−1[log(α)]m

(α− 1)n

× exp

[
−λ

(
m∑
i=1

xβi + b3

)]
exp

(
− log(α)

m∑
i=1

e−λxβ
i − b1α− b2β

)

×
m∏
i=1

(
1− α−e−λx

β
i

)Ri

,

(3.13)
where A is the normalizing constant and given by

A =

∫ ∞

0

∫ ∞

0

∫ ∞

0

αn+a1−1βm+a2−1λm+a3−1[log(α)]m

(α− 1)n

× exp

[
−λ

(
m∑
i=1

xβi + b3

)]
exp

(
− log(α)

m∑
i=1

e−λxβ
i − b1α− b2β

)

×
m∏
i=1

(
1− α−e−λx

β
i

)Ri

dα dβ dλ.

From the posterior density in Equation (3.13), the full conditional distributions are
as follows:

For α:

π1(α | β, λ, x) ∝ αm+a1−1[log(α)]m

(α− 1)n
exp

(
− log(α)

m∑
i=1

e−λxβ
i − b1α

)

×
m∏
i=1

(
1− α−e−λx

β
i

)Ri

,

(3.14)

For β:

π2(β | α, λ, x) ∝ βm+a2−1 exp

(
−λ

m∑
i=1

xβi − log(α)
m∑
i=1

e−λxβ
i − b2β

)

×
m∏
i=1

(
1− α−e−λx

β
i

)Ri

,

(3.15)
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For λ:

π3(λ | α, β, x) ∝ λm+a3−1 exp

(
−λ

m∑
i=1

xβi − log(α)
m∑
i=1

e−λxβ
i − b3λ

)

×
m∏
i=1

(
1− α−e−λx

β
i

)Ri

.

(3.16)

It is clear that the full conditional distributions of α, β and λ , respectively,can not
be reduced to any well-known distributions.

3.2.3 Bayes Estimators Under Squared Error Loss (SEL)

Under the SEL function, the BEs of any function ϕ(α, β, λ) is the posterior mean:

ϕ̃SEL = E[ϕ(α, β, λ)|x] =
∫∞
0

∫∞
0

∫∞
0
ϕ(α, β, λ)π(α, β, λ|x) dαdβdλ∫ ∫ ∫
π(α, β, λ|x) dαdβdλ

. (3.17)

Since the integrals in Equation (3.17) are analytically intractable, we employ the
Markov Chain Monte Carlo (MCMC) method[22], particularly the Metropolis-Hastings
(MH) algorithm, to approximate the BEs.

3.3 Numerical Results

3.3.1 Metropolis-Hastings Sampling Procedure

Since direct sampling of α, β, and λ is infeasible, we employ the M-H algorithm with a
normal proposal distribution. This allows us to generate samples from the full conditional
distributions to obtain Bayes estimates and construct the highest posterior density(HPD)
credible intervals for the unknown parameters as well as RF and HRF.

we suggest applying the following steps of the M-H algorithm:

step (1) Set initial values for (α, β, λ), denoted by (α(0), β(0), λ(0)).

step (2) Set iteration index j = 1.

step (3) Generate α∗ from N (α(j−1), v̂(α(j−1)).

step (4) Compute the acceptance probability:

p(α(j−1)|α∗) = min

{
1,

π1(α
∗|β(j−1), λ(j−1))

π1(α(j−1)|β(j−1), λ(j−1))

}
.
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step (5) Generate u ∼ U(0, 1).

step (6) If u ≤ p(α(j−1)|α∗), set α(j) = α∗; otherwise, set α(j) = α(j−1).

step (7) Repeat steps 3–6 for β and λ to generate β(j) and λ(j) from their corresponding
posterior densities.

step (8) Compute the RF and HRF by substituting (α(j), β(j), λ(j)) into their respective
functional forms for t > 0.

step (9) Set j = j + 1.

step (10) Repeat steps 3–8 for a total of Q iterations, resulting in the samples:

{
α(j), β(j), λ(j), R(j)(t), h(j)(t)

}
, j = 1, 2, . . . , Q.

step (11) Discard the first M samples as burn-in. Then, compute the Bayes estimates of
α, β, λ, R(t), and h(t) under the SEL function as:

ϕ̃SEL =
1

Q−M

Q∑
j=M+1

ϕ(j).

step (12) Under the LL function proposed by Varian [23], the Bayes estimates are given
by:

ϕ̃LL = −1

q
log

(
1

Q−M

Q∑
j=M+1

e−qϕ(j)

)
, q ̸= 0.

step (13) Finally, we apply the method proposed by Chen and Shao [8] to compute the
HPD credible intervals for α, β, λ, R(t), and h(t) using the posterior samples.

3.3.2 Methodology of the Monte Carlo Simulation

A comprehensive MC simulation study is conducted to compare the behavior of the pro-
posed estimators for the parameters α,β,λ,R(t) and h(t).

Simulation Design and Estimation Procedure

The simulation assumes true parameter values (α, β, λ) = (0.5, 1.5, 0.1), and reliability
characteristics are computed at time point t = 0.5, for which the true values are R(t) =
0.952 and h(t) = 0.145. Various combinations of sample sizes n = 50 and n = 100, and
numbers of observed failures m = 20, 40, 80 are used. Three progressive censoring schemes
are considered:

• Scheme 1: R1 = n−m, Ri = 0 for i ̸= 1
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• Scheme 2: Rm/2 = n−m, Ri = 0 for i ̸= m/2

• Scheme 3: Rm = n−m, Ri = 0 for i ̸= m

Two informative gamma priors are adopted for Bayesian estimation:

• Prior 1: ai = (2.5, 7.5, 0.5), bi = 5

• Prior 2: ai = (5, 15, 1), bi = 10 for i = 1, 2, 3

The M-H algorithm was used to generate 12,000 MCMC samples. The first 2,000 itera-
tions were discarded as a burn-in period, and the remaining 10,000 samples were used to
compute the Bayesian estimates and their 95% HPD credible intervals.

The simulation design and estimation procedure were inspired by the methodology
used in Alotaibi et al.(2022)[3]

3.4 Comparison Between Obtained Estimators on Real

Engineering Data

This section presents the practical application of the proposed estimators using two real-
life datasets from the engineering field to evaluate the performance of APW distribution
under progressive Type-II censoring.

Data Description

The first dataset, referred to as Data-I, consists of the failure times of 20 mechanical
components reported by Murthy and al.[18]. The second dataset, Data-II, contains
accelerated life test data of metallic specimens subjected to a stress level of 2.6 × 104

psi.These data set hase been reported and analysed by Cheng and Elsayed [9]. The
ordered data points of both data sets I and II are provided in (3.1).
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Table 3.1: The failure times of mechanical components and metal-coupons.

Data Failure Times
I 0.067, 0.068, 0.076, 0.081, 0.084, 0.085, 0.085, 0.086,

0.089, 0.098, 0.098, 0.114, 0.114, 0.115, 0.121, 0.125,
0.131, 0.149, 0.160, 0.485

II 2.33, 2.58, 2.68, 2.76, 2.90, 3.10, 3.12, 3.15, 3.18, 3.21,
3.21, 3.29, 3.35, 3.36, 3.38, 3.38, 3.42, 3.42, 3.42, 3.44,
3.49, 3.50, 3.50, 3.51, 3.51, 3.52, 3.52, 3.56, 3.58, 3.58,
3.60, 3.62, 3.63, 3.66, 3.67, 3.70, 3.70, 3.72, 3.72, 3.74,
3.75, 3.76, 3.79, 3.79, 3.80, 3.82, 3.89, 3.89, 3.95, 3.96,
4.00, 4.00, 4.00, 4.03, 4.04, 4.06, 4.08, 4.08, 4.10, 4.12,
4.14, 4.16, 4.16, 4.16, 4.20, 4.22, 4.23, 4.26, 4.28, 4.32,
4.32, 4.33, 4.33, 4.37, 4.38, 4.39, 4.39, 4.43, 4.45, 4.45,
4.52, 4.56, 4.56, 4.60, 4.64, 4.66, 4.68, 4.70, 4.70, 4.73,
4.74, 4.76, 4.76, 4.86, 4.88, 4.89, 4.90, 4.91, 5.03, 5.17,
5.40, 5.60

To assess the suitability of the APW distribution, the Kolmogorov-Smirnov (K-S)
statistic and corresponding p values were calculated for each datase, and the model pa-
rameters the MLEs of the model parameters (α, β, λ) were estimated using the MLEs,
as presented in (3.2). In addition, the algorithm proposed by Balakrishnan and Cramer
[5] was applied to generate progressive Type-II censored samples from the complete data
sets. The censoring schemes adopted in this analysis are listed in (3.3).

Table 3.2: Summary fit of the APW distribution under real data sets.

Data α̂ (SE) β̂ (SE) λ̂ (SE) K-S (p-value)
I 42849.2 (9.2940) 0.92007 (0.1488) 21.2764 (7.1551) 0.181 (0.530)
II 68891.6 (2.0970) 2.72066 (0.2052) 0.00658 (0.0192) 0.045 (0.986)
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Table 3.3: Various Type-II progressively censored samples from mechanical components
and metal-coupons data sets.

Data (Sample) m R Type-II Progressive Censored Data
Data-I (S1) 15 (5, 0∗14) 0.067, 0.085, 0.086, 0.089, 0.098, 0.098,

0.114, 0.114, 0.115, 0.121, 0.125, 0.131,
0.149, 0.160, 0.485

Data-I (S2) (0∗7, 5, 0∗7) 0.067, 0.066, 0.076, 0.081, 0.084, 0.085,
0.085, 0.086, 0.115, 0.121, 0.125, 0.131,
0.149, 0.160, 0.485

Data-I (S3) (0∗14, 5) 0.067, 0.066, 0.076, 0.081, 0.084, 0.085,
0.085, 0.086, 0.089, 0.098, 0.098, 0.114,
0.114, 0.115, 0.121

Data-II (S1) 45 (57, 0∗44) 2.33, 4.10, 4.12, 4.14, 4.16, 4.16, 4.16, 4.20,
4.22, 4.23, 4.26, 4.28, 4.32, 4.32, 4.33, 4.33,
4.37, 4.38, 4.39, 4.39, 4.43, 4.45, 4.45, 4.52,
4.56, 4.60, 4.64, 4.66, 4.68, 4.73, 4.79, 4.81,
4.84, 4.88, 4.90, 4.95, 4.97, 5.00, 5.05, 5.10,
5.14, 5.18, 5.21, 5.22, 5.25

Data-II (S2) (0∗22, 57, 0∗22) 2.33, 2.68, 2.72, 2.90, 3.14, 3.16, 3.18, 3.21,
3.21, 3.25, 3.35, 3.36, 3.38, 3.39, 3.40, 3.41,
3.44, 3.46, 3.50, 3.51, 3.55, 3.56, 3.58, 3.58,
3.58, 3.60, 3.62, 3.63, 3.63, 3.66, 3.67, 3.70,
3.72, 3.74, 3.75, 3.76, 3.79, 3.79, 3.80

Data-II (S3) (0∗44, 57) 2.33, 2.58, 2.68, 2.72, 2.90, 3.14, 3.16, 3.18,
3.21, 3.21, 3.25, 3.35, 3.36, 3.38, 3.39, 3.40,
3.41, 3.44, 3.46, 3.50, 3.51, 3.55, 3.56, 3.58,
3.58, 3.58, 3.60, 3.62, 3.63, 3.63, 3.66, 3.67,
3.70, 3.72, 3.74, 3.75, 3.76, 3.79, 3.79, 3.80

In (3.2), the results show that the p-values for both datasets greater than 0.05, indi-
cating that the APW distribution is well-suited to represent the real-world data.
In table (3.3), demonstrates the adaptability of the model to censored and incomplete
data settings.

Bayesian and MLE with Interval Analysis

The parameters α, β, and λ, along with the R(t) and h(t), were estimated using both the
MLE method and the Bayesian approach under the SEL and LINEX loss functions. The
results are reported in table 3.4. and to evaluate the precision of the interval estimates,
the mean confidence length (ACL) were calculated for both ACI derived from MLE and
HPD intervals obtained through Bayesian estimation, as shown in table 3.5.
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Table 3.4: MLE and Bayesian point estimates with their (SEs).

Data (Sample) Par. MLE SEL LL (q = −3) LL (q = +3)

Data-I (S1)

α 5215.91 (9.9806) 5215.79 (0.0012) 5215.79 (0.1173) 5215.79 (0.1175)
β 0.9813 (0.1654) 0.97475 (0.0009) 0.97475 (0.0963) 0.97475 (0.1066)
λ 19.6584 (7.6000) 19.5330 (0.0013) 19.5330 (0.1253) 19.5329 (0.1251)
R(0.1) 0.6668 (0.0897) 0.6547 (0.0004) 0.6547 (0.0121) 0.6546 (0.0125)
h(0.1) 11.0652 (3.0169) 11.3187 (0.0120) 11.3274 (0.2624) 11.3099 (0.2449)

Data-I (S2)

α 4109.16 (7.3782) 4109.12 (0.0014) 4109.12 (0.0920) 4109.12 (0.0934)
β 0.9064 (0.1382) 0.90381 (0.0002) 0.90381 (0.0026) 0.90380 (0.0022)
λ 17.2650 (5.2702) 17.2594 (0.0002) 17.2594 (0.0507) 17.2594 (0.0505)
R(0.1) 0.62372 (0.0906) 0.61496 (0.0004) 0.61497 (0.0887) 0.61497 (0.0887)
h(0.1) 11.4492 (2.9366) 11.6298 (0.0109) 11.6370 (0.1687) 11.6227 (0.1737)

Data-I (S3)

α 3037.22 (12.1411) 3037.10 (0.0012) 3037.10 (0.0700) 3037.10 (0.0675)
β 1.87803 (0.0651) 1.87459 (0.0012) 1.87459 (0.0022) 1.87458 (0.0030)
λ 179.7011 (1.1842) 179.581 (0.0007) 179.581 (0.0537) 179.580 (0.0533)
R(0.1) 0.55294 (0.0957) 0.54048 (0.0006) 0.54048 (0.0103) 0.54048 (0.0104)
h(0.1) 30.1922 (5.9534) 30.7723 (0.0289) 30.8225 (0.6305) 30.7221 (0.5303)

Data-II (S1)

α 13184.1 (7.5350) 13184.1 (0.0005) 13184.1 (0.0191) 13184.1 (0.0197)
β 5.0096 (0.0631) 5.0089 (0.0003) 5.0089 (0.0040) 5.0089 (0.0044)
λ 4.5494 (0.0561) 4.5482 (0.0002) 4.5482 (0.0065) 4.5482 (0.0063)
R(4.5) 0.22086 (0.0366) 0.20115 (0.0002) 0.20116 (0.0093) 0.20115 (0.0092)
h(4.5) 3.0188 (0.8109) 3.0591 (0.0138) 3.0592 (0.0641) 3.0591 (0.0635)

Data-II (S2)

α 23183.8 (2.2339) 23184.0 (0.0005) 23184.0 (0.0035) 23184.0 (0.0034)
β 6.0392 (0.0328) 6.0370 (0.0002) 6.0370 (0.0045) 6.0370 (0.0045)
λ 2.2188 (0.0508) 2.2155 (0.0002) 2.2155 (0.0080) 2.2155 (0.0081)
R(4.5) 0.38192 (0.0537) 0.37624 (0.0003) 0.37624 (0.0051) 0.37624 (0.0052)
h(4.5) 3.0412 (0.6852) 3.0138 (0.0118) 3.0138 (0.0663) 3.0138 (0.0664)

Data-II (S3)

α 3050.18 (0.9681) 3050.2 (0.0002) 3050.2 (0.0030) 3050.2 (0.0031)
β 2.9132 (0.0312) 2.9136 (0.0002) 2.9136 (0.0045) 2.9136 (0.0045)
λ 83.2076 (0.5012) 83.1268 (0.0003) 83.1268 (0.0074) 83.1268 (0.0075)
R(4.5) 0.20862 (0.0385) 0.20175 (0.0003) 0.20175 (0.0085) 0.20175 (0.0086)
h(4.5) 3.17180 (0.8818) 3.1477 (0.0014) 3.1478 (0.0239) 3.1476 (0.0242)
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Table 3.5: Two-sided 95% ACI/HPD credible interval estimates with their [lengths].

Data (Sample) Par. ACI HPD

Data-I (S1)

α (5196.32, 5235.40) [39.123] (5215.31, 5216.26)[0.9531]
β (0.65693, 1.30542) [0.6485] (0.87338, 1.07297) [0.1996]
λ (6.25054, 39.92530) [27.675] (10.9529, 20.0888) [9.1359]
R(0.1) (0.49210, 0.84254) [0.3504] (0.47944, 0.81822) [0.3388]
h(0.1) (0.10165, 0.47025) [0.3686] (0.10238, 0.42260) [0.3202]

Data-I (S2)

α (4076.31, 4142.13) [65.768] (4108.73, 4109.50) [0.7737]
β (0.77452, 1.41599) [0.6415] (1.12760, 1.27295) [0.1454]
λ (6.93102, 27.5973) [20.666] (17.1641, 17.3587) [0.1946]
R(0.1) (0.54478, 0.91921) [0.3744] (0.58897, 0.91018) [0.3212]
h(0.1) (0.25040, 1.19322) [0.9428] (0.37761, 1.38590) [1.0082]

Data-I (S3)

α (3034.20, 3067.24) [33.042] (3036.14, 3036.86) [0.7218]
β (1.76811, 1.98884) [0.2197] (1.78621, 1.97257) [0.1864]
λ (6.88532, 9.20257) [2.3172] (7.05691, 8.94801) [1.8911]
R(0.1) (0.68386, 0.92160) [0.2377] (0.75402, 0.91181) [0.1578]
h(0.1) (0.18322, 0.51653) [0.3333] (0.34789, 0.68975) [0.3419]

Data-II (S1)

α (13169.3, 13198.8) [29.538] (13183.8, 13184.3) [0.3942]
β (3.81867, 5.78267) [1.9640] (3.50499, 5.20983) [1.7048]
λ (0.00000, 0.00269) [0.0026] (0.00000, 0.00228) [0.0023]
R(4.5) (1.28740, 2.75757) [1.4737] (1.46972, 2.58228) [1.1126]
h(4.5) (0.21054, 1.65011) [1.4396] (0.22366, 1.43333) [1.2097]

Data-II (S2)

α (1.84368, 2.78397) [0.9403] (2.24354, 2.38236) [0.1388]
β (3.64932, 5.19769) [1.5484] (3.29496, 5.10868) [1.8137]
λ (0.00000, 0.00368) [0.0037] (0.00000, 0.00329) [0.0033]
R(4.5) (0.26859, 1.49060) [1.2220] (0.28783, 1.40897) [1.1211]
h(4.5) (0.12093, 1.45211) [1.3312] (0.13882, 1.31335) [1.1745]

Data-II (S3)

α (3082.16, 3084.69) [2.5257] (3044.39, 3044.94) [0.5470]
β (1.62004, 1.66970) [0.0497] (1.62668, 1.66288) [0.0362]
λ (0.00000, 0.00014) [0.0001] (0.00000, 0.00011) [0.0001]
R(4.5) (1.40594, 2.19600) [0.7901] (1.45360, 2.10871) [0.6551]
h(4.5) (1.44349, 4.90012) [3.4566] (2.62990, 3.70098) [1.0711]

In table 3.4, the results show a high level of agreement between the MLE and Bayesian
estimates, indicating stability and consistency in the estimation process,with the Bayesian
under SEL has the smallest SEs,reflecting higher precision. The values of R(t) were
relatively high, reflecting a strong survival probability, while the values of h(t) remained
low, indicating an acceptable failure rate. And in table 3.5, the Bayesian HPD intervals
outperform the traditional ACIs by providing generally shorter interval lengths. This
supports the preference for Bayesian estimation, particularly under progressive censoring.



Conclusion

This thesis has explored statistical inference methodologies for analyzing data subject
to progressive Type II censoring, with a focus on two important lifetime distributions:
the Weibull distribution and the Alpha Power Weibull (APW) distribution. Progressive
Type II censoring, by allowing systematic removal of surviving units at multiple stages,
offers a flexible and resource-efficient framework for reliability and survival studies. The
work has demonstrated how classical maximum likelihood estimation (MLE) and Bayesian
estimation approaches can be effectively adapted to this censoring scheme.

The theoretical developments presented include detailed derivations of likelihood func-
tions, score functions, and Fisher information matrices under progressive censoring, which
enable the computation of MLEs and their asymptotic properties. Bayesian methods were
also developed, incorporating prior information and utilizing Monte Carlo simulation tech-
niques such as the Metropolis-Hastings algorithm to approximate posterior distributions
and obtain Bayesian estimators under various loss functions.

A comparative numerical study through extensive simulations showed that Bayesian
estimators often perform favorably in terms of bias and mean squared error, especially
when prior information is available. The application to real engineering data illustrated
the practical utility of the proposed methods, with the APW distribution providing a more
flexible fit than the classical Weibull distribution due to its additional shape parameter.

Overall, this study contributes to the reliability and survival analysis literature by
providing robust inferential tools tailored to progressive Type-II censored data, enhancing
the modeling flexibility and inferential accuracy. Future work may extend these methods
to other complex censoring schemes and explore their applications in diverse fields such
as biomedical studies and industrial quality control.
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