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Chapitre 1

General Introduction

Everything is theoretically impossible, until it is done.

Robert A. Heinlein

This thesis addresses the problem of offline writer identification using scanned images
of handwritten documents, a challenging pattern recognition task with significant appli-
cations in forensic science and historical document analysis. Identifying the writer of a
questioned document through automated, image-based methods is a complex computer
vision problem that raises several critical research questions :

— How can individual handwriting styles be characterized using robust computa-
tional algorithms ?

— Which features and representations best capture writer-specific characteristics
across multilingual scripts, and how can they be effectively combined ?

— What level of performance can be achieved with automated methods in large-
scale, multilingual writer identification scenarios ?

The current study describes a new and very effective techniques that we have develo-
ped for automatic writer identification. The goal of our research was to design state-of-
the-art automatic methods involving only a reduced number of adjustable parameters
and to create a robust writer identification system capable of managing hundreds to
thousands of writers in multiscripts (named USAWRS, University of Säıda Automatic
Writer Recognition System).

There are two distinguishing characteristics of our approach : human intervention is
minimized in the writer recognition process and we encode individual handwriting style
using features designed to be independent of the textual content of the handwritten
sample.

Writer individuality is encoded using probability distribution functions extracted
from handwritten text blocks and, in our methods, the computer is completely unaware
of what has been written in the samples. The development of our writer identification
techniques takes place at a time when many biometric modalities undergo a transition
from research to real full-scale deployment.

Our methods leverage large, multilingual benchmarking datasets, such as the IC-
DAR 2011 Writer Identification Contest dataset (208 documents from 26 writers) and
the ICDAR 2013 Writer Identification Competition dataset (1,000 documents from 250
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writers), to evaluate performance. These datasets, containing handwritten samples in
multiple languages, provide a rigorous testbed for assessing the system’s ability to ge-
neralize across scripts and handle large writer populations. By combining MLBP-IWSL
features with optimized distance metrics (e.g., Chi-Squared) and fusion strategies (e.g.,
SUM rule), our approach achieves competitive performance, with top-1 accuracies rea-
ching up to 100% in certain configurations, as demonstrated in our experimental eva-
luations.

This thesis contributes to the field by proposing a scalable, text-independent writer
identification system that advances the state-of-the-art in offline handwriting analysis.
The following chapters detail the MLBP-IWSL in black and white methodology, expe-
rimental protocols, and comprehensive results, demonstrating the system’s effectiveness
and potential impact in forensic and historical contexts.

1.1 Motivation and Context

In the contemporary digital age, characterized by rapid technological evolution, the
proliferation of connected systems, and the ever-growing need for security and identity
protection, the demand for reliable, robust, and automatic identity verification systems
has become not only critical but indispensable. With the rise of online services, e-
governance, digital banking, and remote access to confidential information, traditional
methods of authentication and identification are proving increasingly inadequate and
vulnerable.

Historically, identity verification has relied on three main strategies :

1. knowledge-based methods (e.g., passwords, secret questions) ;

2. possession-based methods (e.g., physical tokens, smart cards, badges) ;

3. Inherence-based methods, more commonly known as biometrics.

The first two approaches, while widespread, suffer from severe limitations. Passwords
can be forgotten, guessed, shared, or stolen ; cards and tokens can be lost, duplicated, or
counterfeited. These flaws make such systems prone to security breaches, identity theft,
unauthorized access, and operational inefficiencies.

The advent of biometric technologies has thus ushered in a transformative paradigm
shift in the field of identity management. Biometric systems authenticate or identify
individuals based on distinctive, immutable, and measurable biological or behavioral
traits. These include fingerprints, iris patterns, facial features, palm geometry, voice,
gait, keystroke dynamics, and handwriting, among others. Because such traits are inhe-
rently linked to the individual, they provide a far higher level of security, resistance to
forgery, and user convenience than traditional methods.

Furthermore, biometric recognition systems offer several key advantages : they eli-
minate the need to remember passwords or carry physical tokens ; they reduce adminis-
trative overhead in managing access credentials ; and they offer scalable solutions that
can operate across diverse domains, from border control and national ID programs to
smartphone authentication and forensic analysis. As global security challenges conti-
nue to evolve—driven by cybercrime, terrorism, and the expansion of digital ecosys-
tems—the role of biometrics in reinforcing trust, privacy, and authentication integrity
becomes increasingly prominent.
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Against this backdrop, the exploration of new biometric modalities and the en-
hancement of existing ones represent a frontier of scientific inquiry and technological
innovation. In particular, behavioral biometrics such as handwriting offer promising ave-
nues due to their non-intrusive nature, cultural acceptance, and applicability in both
online and offline contexts. This research contributes to this evolving field by focusing
on the development of systems for writer identification based on offline handwriting
samples—an approach that seeks to recognize individuals based on the unique charac-
teristics of their handwritten script.

1.2 Overview of Biometrics

Biometrics refers to the automated recognition of individuals based on their physiolo-
gical and/or behavioral traits. It is grounded in the principle that each person possesses
unique and measurable characteristics that can be used to establish identity with a high
degree of confidence. These biometric traits are generally divided into two categories :

— Physiological Biometrics : These are based on physical characteristics that
remain relatively stable over time. Examples include fingerprints, iris patterns,
facial structure, palm geometry, and DNA.

— Behavioral Biometrics : These are based on patterns in human activity and
behavior, which can vary slightly over time but are still unique to individuals.
Examples include voice recognition, gait analysis, typing dynamics, and hand-
writing.

Biometric systems operate in two main modes : verification (1 :1 comparison) and
identification (1 :N comparison). In the verification mode, the system confirms a claimed
identity by comparing the input biometric data with a stored template. In identification
mode, the system determines an individual’s identity by comparing the input data with
multiple stored templates, aiming to find the best match [13].

1.2.1 Handwriting as a Behavioral Biometric

Among various behavioral biometric modalities, handwriting—particularly offline
handwriting—has attracted significant interest due to its natural use in many real-
world scenarios, such as legal documents, forms, and historical archives. Handwriting
contains a wealth of personalized features that can reflect an individual’s motor habits,
cognitive style, and neuromuscular characteristics.

Writer identification through handwriting analysis involves determining the author
of a piece of handwriting from a set of known individuals. This process is challenging
due to the intra-writer variability (variations in an individual’s writing over time or
under different conditions) and the inter-writer similarity (similarities between different
individuals’ writing styles). Despite these challenges, handwriting offers an important
advantage : it can be acquired non-intrusively using simple devices like scanners or
cameras, making it ideal for both forensic and commercial applications.

1.2.2 Factors causing variability in handwriting

Figure 1.1 shows four factors causing variability in handwriting [22] :
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Figure 1.1 – Factors causing handwriting variability.

1. Affine transforms : Affine transforms are under voluntary control. However, wri-
ting slant constitutes a habitual parameter which may be exploited in writer
recognition ;

2. Neuro-biomechanical variability : Neuro-biomechanical variability refers to the
amount of effort which is spent on overcoming the low-pass characteristics of the
biomechanical limb by conscious cognitive motor control ;

3. Sequencing variability : Sequencing variability becomes evident from stochastic
variations in the production of the strokes in a capital E or of strokes in Chinese
characters, as well as stroke variations due to slips of the pen ;

4. Allographic variation : Allographic variation refers to individual use of character
shapes.

1.3 Writer Identification and Verification in Hand-

writing Biometrics

Handwriting, as a form of behavioral biometric trait, encapsulates the neuromus-
cular patterns and cognitive processes unique to each individual. The act of writing
is influenced by a combination of motor coordination, learned habits, psychological
state, and physiological conditions, making it a rich source of biometric data. These
characteristics are particularly useful for tasks such as writer identification and writer
verification, which are two core problems in the domain of handwriting biometrics.

1.3.0.1 Writer Identification

Writer identification refers to the process of determining the identity of an individual
solely based on the analysis of a handwriting sample, without any claim of identity from
the user. It is a 1 :N comparison task, where the system attempts to match the sample
against a database of known handwriting profiles (also called templates or models). If a
match is found with sufficient similarity, the system outputs the corresponding identity.

Types of Writer Identification Writer identification can be further categorized as :
— Closed-set identification : The writer of the sample is assumed to be among

the enrolled users. The goal is to rank all templates and select the top candidate
with the highest similarity score.
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Figure 1.2 – Writer identification model.

— Open-set identification : The writer may or may not be enrolled in the system.
The system must not only identify the most similar template but also determine
whether the sample belongs to an enrolled writer or should be rejected as unk-
nown.

This mode is highly relevant in forensic and law enforcement scenarios where, for
example, a handwritten note must be attributed to one of several suspects.

1.3.0.2 Writer Verification

In contrast, writer verification involves confirming a claimed identity based on hand-
writing. The user presents a handwriting sample along with an identity claim (e.g., user
ID), and the system verifies whether the handwriting matches the stored template for
that specific individual. This is a 1 :1 comparison task, and the outcome is a binary
decision : accept or reject the claim.(see Figure 1.3)

Figure 1.3 – Writer verification model.

Types of Writer Verification Writer verification may be performed in two ways :
— Static (Offline) Verification : The handwriting sample is acquired after wri-

ting, typically via scanning. Features are extracted from the image of the writing,
such as stroke width, slant, curvature, baseline deviation, and spacing between
characters and words.

— Dynamic (Online) Verification : The writing is captured in real-time using di-
gital devices like tablets or styluses, recording temporal data such as pen pressure,
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velocity, acceleration, and stroke order. This method is generally more accurate
but requires specialized acquisition devices.

1.3.1 Challenges in Writer Recognition

Despite its advantages, handwriting-based biometric systems face several challenges :
— Intra-class variability : An individual’s handwriting can vary due to mood,

health, fatigue, writing surface, or pen used.
— Inter-class similarity : Different individuals may have similar writing styles,

especially when following common calligraphic or educational standards.
— Aging effect : Handwriting changes gradually over time, which can reduce sys-

tem performance if templates are not updated.
— Forgery and impersonation : Skilled forgers can attempt to imitate another

person’s handwriting, posing security risks.
Addressing these issues requires sophisticated algorithms for feature extraction, clas-

sification, and template matching, often involving advanced machine learning and deep
learning techniques.

1.3.2 Applications of Writer Identification and Verification

Writer recognition has numerous practical applications across various fields :
— Forensic analysis : Identifying suspects from handwriting found in criminal

investigations.
— Document security : Verifying signatures in contracts, cheques, or legal docu-

ments.
— Authentication systems : Secure access to digital platforms or physical spaces

through handwritten signatures or phrases.
— Historical document analysis : Determining the authorship of ancient ma-

nuscripts or letters for archiving and academic research.
— Banking and finance : Signature verification to prevent fraud in financial

transactions.

1.4 Relevance of This Research

The objective of this work is to investigate and develop techniques for writer iden-
tification based on offline handwriting. This biometric approach combines image
processing, feature extraction, pattern recognition, and machine learning to analyze
handwriting samples and attribute them to the correct writer. Such systems have wide-
ranging applications including forensic analysis, access control, fraud detection, and
archival document indexing.

The present work has a particular focus on multilingual documents and text-
independent recognition. In the broader context of biometric authentication, handwri-
ting is classified as a behavioral biometric trait, as it reflects individual neuromotor and
cognitive processes. Unlike physiological traits (e.g., fingerprints or iris patterns), beha-
vioral biometrics such as handwriting exhibit greater intra-personal variability, requiring
sophisticated modeling to achieve accurate recognition.
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Writer identification, in this context, aims to attribute a handwritten document to
its correct author — referred to as the scribe or scripteur — without prior knowledge
of the textual content. The goal is to extract distinctive and robust characteristics from
handwriting samples that are invariant to the content written, the language or script
used (English, Greek, German, French, etc.), and the sample size (from short notes to
long passages). This problem becomes even more complex in multilingual or multi-
script environments, where variability due to script conventions must be disentangled
from person-specific features.

1.4.1 Motivation and Challenges

While writer identification in monolingual contexts has matured significantly, with
numerous contributions addressing major world scripts, the domain of writer iden-
tification in multi-script settings remains relatively under-explored. Few existing
studies address how features behave across languages or how to maintain performance
when writers use different scripts. Moreover, most systems assume a sufficiently large
writing sample, which is not always available in real-world applications such as forensic
document analysis or historical manuscript indexing.

This research confronts these challenges by focusing on the development of a robust
and scalable writer identification system capable of handling :

— Handwritten documents in multiple languages and scripts.
— Text-independent analysis, where the content of the writing is unknown or irre-

levant.
— Short and variable-length writing samples.
— High inter-writer similarity and intra-writer variability.

1.5 Project Timeline and Work Plan

The development of a multilingual writer identification system requires a structured
approach to ensure scientific rigor and practical applicability. This chapter outlines the
detailed timeline, objectives, and methodologies employed in the project. Each phase
builds upon the previous one, leading to a robust system and a comprehensive academic
report.

1.5.1 Phase 1 : Literature Review on Writer Identification Sys-
tems

Duration : 1 month
The initial phase involves a comprehensive literature review of writer identification

systems, focusing on texture-based approaches. This phase includes :
— Examining classical and modern writer identification methods, such as codebook-

based, contour-based, and texture-based approaches.
— Analyzing benchmark competitions (e.g., ICDAR 2011 and ICDAR 2013) to un-

derstand datasets, evaluation protocols, and performance baselines.
— Exploring challenges in mono-script versus multi-script identification.
— Identifying the strengths, limitations, and knowledge gaps of existing methods.
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This foundational research shapes the project’s direction and informs the design of
new discriminative features.

1.5.2 Phase 2 : Proposal of Discriminative Features

Duration : 2 months
The second phase focuses on developing novel features for writer identification, dra-

wing inspiration from forensic document examination and advanced image processing
techniques. Activities include :

— Extracting low-level and mid-level features capturing texture, stroke direction,
curvature, and edge statistics.

— Proposing two original features optimized for multi-script environments.
— Implementing feature normalization and dimensionality reduction to enhance

classification performance.
— Designing a modular pipeline to test various feature combinations.
These features are designed to be robust across both short and long handwriting

samples, accommodating varying input sizes.

1.5.3 Phase 3 : Experimental Evaluation

Duration : 1 month
The third phase evaluates the proposed features using real-world datasets. This phase

includes :
— Benchmarking on ICDAR 2011 and ICDAR 2013 multilingual datasets.
— Testing on short and long text samples to ensure robustness.
— Measuring performance using Top-1, Top-5, and Top-10 accuracy metrics and

confusion matrices.
— Comparing the system’s performance against state-of-the-art methods.
— Conducting cross-validation and statistical significance testing.
Results are analyzed in detail in the Results Analysis chapter.

1.5.4 Phase 4 : Final Report and Thesis Writing

Duration : 1 month
The final phase involves compiling the project into a well-structured thesis. Activities

include :
— Structuring the manuscript according to academic standards.
— Integrating diagrams, tables, and results into a cohesive format.
— Performing final proofreading and formatting in LATEX for submission.
— Preparing presentation slides and defense materials.
The thesis also explores potential research extensions and prospects for Ph.D. work

in biometric identification.

1.5.5 Summary Table of the Work Plan
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Detailed Project Timeline

Phase Objective and Description Key Activities Duration

Phase 1 Conduct an in-depth literature re-
view on texture-based writer identi-
fication systems

Study of ICDAR bench-
marks, analysis of tex-
ture, contour, and stroke-
based methods, identifi-
cation of limitations

1 month

Phase 2 Design and propose new discrimina-
tive features for multilingual writer
identification

Development of ori-
ginal texture-based
descriptors, feature
fusion, normalization
techniques, robustness
analysis

2 months

Phase 3 Evaluate the effectiveness of propo-
sed features on multilingual datasets

Implementation on IC-
DAR 2011/2013 data-
sets, Top-1/Top-5/Top-
10 accuracy assessment,
statistical analysis

1 month

Phase 4 Prepare final documentation and de-
fense materials

Writing the thesis
using LATEX, integra-
ting results, preparing
presentation slides and
appendices

1 month

1.6 Project Description

1.6.1 Title

Writer Identification from Multilingual Documents

1.6.2 Summary

Writer identification is a key area in handwriting analysis, aiming to identify the au-
thor of a handwritten sample by analyzing unique characteristics. This process focuses
on internal features specific to an individual’s writing style, leveraging the variability
of handwriting to distinguish one writer from others. As a behavioral biometric, hand-
writing requires sufficient sample sizes for reliable identification. Thus, a robust writer
identification system must extract descriptive features that are effective for both short
and long text samples, regardless of length.

While monolingual writer identification is a well-established field, with scripts such as
Chinese, Japanese, Arabic, Bengali, Telugu, Oriya, and Latin extensively studied, mul-
tilingual writer identification remains relatively unexplored, with limited contributions
in the literature. This project aims to address this gap by developing a text-independent
writer identification system capable of handling multilingual documents, contributing
to advancements in forensic document examination and biometric identification.
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1.6.3 Keywords

— Behavioral biometrics
— Multilingual handwritten text
— Texture
— Forensic document examination
— Feature extraction/combination
— Writer identification

1.6.4 Platforms, Tools, and Technologies

— Programming Languages : C++, C#
— Operating Systems : Linux, Windows
— Methodologies : Design Patterns
— Tools : Microsoft Visual Studio, CPPunit, TestDriven.net, Photoshop, Gimp,

IncrediBuild, TortoiseSVN, StarUML, TeXstudio, MiKTeX, Beamer LATEX

1.6.5 Objectives (Prioritized)

1. Develop a robust, text-independent writer identification system for multilingual
documents.

2. Propose discriminative features inspired by human expert analysis in forensic
document examination.

3. Improve identification accuracy through the development of complex, robust fea-
tures.

4. Produce a scientific publication based on the results (e.g., for ICDAR or ICFHR
competitions).

5. Explore opportunities for further research in a Ph.D. program.

1.6.6 Expected Outcomes

1. Achievement of the primary internship objective : a functional writer identifica-
tion system.

2. A fully developed system, including design, development, and comprehensive
testing.

3. A scientific publication based on the project results (ICDAR or ICFHR compe-
titions).

4. Potential to pursue further research in a Ph.D. program in biometric identifica-
tion.

1.7 Conclusion

This chapter provides a detailed overview of the timeline and methodology for the
multilingual writer identification system project. Each phase is strategically designed to
build knowledge, develop tools, and generate experimental insights, ensuring a scientifi-
cally rigorous outcome. The subsequent chapters delve into the technical implementation
and empirical evaluation of the system.
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Chapitre 2

State Of The Art : Writer
Identification Approaches

Research is to see what everybody else has seen, and to think what nobody else has
thought.

Albert Szent-Gyorgyi

2.1 Introduction

Writer identification has evolved significantly over the past two decades, with various
computational approaches capturing the unique characteristics of individual handwri-
ting styles. The field has witnessed substantial development across three main catego-
ries of features : codebook-based approaches, texture-based methods, and contour-based
techniques. Each approach offers distinct advantages in characterizing the writing style
of individual writers, contributing to the advancement of automated handwriting ana-
lysis systems.

2.2 Codebook-based Approaches

2.2.1 Fundamental Principles

The codebook approach, also known as bag-of-shapes, has proven to be particu-
larly effective in capturing the distinctive characteristics of individual writing styles.
The fundamental principle behind codebook approaches lies in treating the writer as
a stochastic pattern generator, where the probability distribution of graphemes serves
as a distinctive identifier. The shape occurrence probability is a characteristic for a gi-
ven writer and may be employed to distinguish between intra-cluster and inter-cluster
similarity.

2.2.2 Pioneering Work and Evolution

The concept was pioneered by Bulacu and Schomaker [22], who introduced a com-
prehensive framework combining textural and allographic features for writer identifi-
cation. Their approach utilized a codebook of graphemes generated through clustering
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algorithms, achieving significant results in text-independent writer identification. The
probability distribution of each writer is computed using a common codebook of 20×20
graphemes generated with the k-som2D clustering algorithm for each document indivi-
dually.

Building upon this foundation, Siddiqi and Vincent [68] enhanced the codebook
approach by incorporating redundant writing patterns with contour-based orientation
and curvature features, demonstrating improved discrimination capabilities with 92.6%
accuracy.

2.2.3 Advanced Codebook Methods

Several significant advancements have been made in codebook generation and opti-
mization :

Efficient Code Extraction : Ghiasi and Safabakhsh [34] introduced efficient code
extraction methods to optimize the codebook generation process, addressing computa-
tional complexity issues while maintaining high identification accuracy of 95.3%.

Model-based Approaches : Abdi and Khemakhem [1, 2] proposed model-based
approaches that combined statistical modeling with codebook features, particularly sui-
ted for Arabic text identification. They used a beta-elliptic model (Elliptic Graphemes)
to generate a synthetic codebook for Arabic writer recognition, achieving 97.2% accuracy
with 60 feature vectors extracted using template matching.

Ensemble Methods : Khalifa et al. [48] introduced an ensemble of grapheme co-
debook features, significantly improving the identification accuracy to 98.1% through
multiple complementary representations.

Junction Detection : He et al. [42] developed an innovative approach incorporating
junction detection with codebook features, introducing ”Junclets” as a new descriptor
for writer identification. The junction detection in handwritten images is determined
by analyzing the stroke-length distribution in every direction around a reference point
inside the ink of texts, achieving 96.8% accuracy.

2.2.4 Recent Developments

Recent developments have focused on enhancing the robustness and efficiency of
codebook approaches :

— Khan et al. (2017) [49] introduced bagged discrete cosine transform (BDCT)
features, combining them with codebook methods to improve resilience against
noise and variations, achieving 97.5% accuracy.

— Durou et al. [31] contributed by integrating bag of words with OBI features,
demonstrating the adaptability of codebook methods to modern machine learning
techniques with 96.7% accuracy.

— Bennour et al. (2019) [15] advanced the field by introducing implicit shape
codebook features, which improved shape modeling capabilities and achieved
state-of-the-art results of 98.3% on various databases by exploiting key points in
handwriting.

— Djeddi et al. (2021) [26] provided valuable insights into the influence of co-
debook patterns on writer recognition, offering systematic guidance for pattern
selection and codebook optimization with 97.8% accuracy.
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Comparison of Codebook-Based Methods

Research Methodology Advantages Disadvantages Results

Bulacu &
Schomaker
(2007)

Textural and al-
lographic features
with grapheme co-
debook

Language inde-
pendent ; Robust
feature extraction

High computatio-
nal cost ; Limited
scalability

88%

Siddiqi &
Vincent
(2010)

Redundant wri-
ting patterns with
contour features

Improved pat-
tern recognition ;
Better feature
representation

Complex feature
extraction ; Sensiti-
vity to noise

92.6%

Ghiasi &
Safabakhsh
(2013)

Efficient code ex-
traction with modi-
fied codebook

Reduced com-
plexity ; Fast
processing

Feature loss during
extraction ; Dataset
dependence

95.3%

Abdi &
Khema-
khem
(2014)

Model-based
approach with sta-
tistical modeling

Strong theoretical
foundation ; Good
generalization

Complex imple-
mentation ; High
memory require-
ments

97.2%

Khalifa et
al. (2015)

Ensemble of gra-
pheme codebooks

High accuracy ; Ro-
bust to variations

Computational
overhead ; Complex
training

98.1%

He et al.
(2015)

Junction detection
with codebook fea-
tures

Novel feature ex-
traction ; Good for
complex scripts

Junction detection
errors ; Style limita-
tions

96.8%

Khan et al.
(2017)

Bagged DCT fea-
tures

Robust to noise ;
Good feature repre-
sentation

High dimensio-
nality ; Complex
optimization

97.5%

Durou et al. Bag of words with
OBI features

Modern ML inte-
gration ; Flexible
implementation

Training data
requirements ;
Feature selection
complexity

96.7%

Bennour et
al. (2019)

Implicit shape co-
debook

Advanced shape
modeling ; Impro-
ved accuracy

Complex shape
analysis ; Proces-
sing overhead

98.3%

Djeddi et al.
(2021)

Pattern influence
analysis

Comprehensive
evaluation ; Opti-
mization insights

Limited to speci-
fic patterns ; Data-
set dependencies

97.8%

2.3 Texture-based Approaches

2.3.1 Fundamental Concepts

Image texture-based techniques for offline writer identification consider each digiti-
zed image of handwriting (or handwriting contours) as a different texture and extract
features from the whole document (Entire Image or EI), Regions of Interest (ROIs like
blocks, grid cells, connected-components, words, etc.), or Writing Fragments (WFs).
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Probability Distribution Functions (PDFs) are calculated and employed to characterize
the writer of a given sample.

2.3.2 Early Texture-based Methods

Bulacu et al. (2007) [20] proposed performing handwriting writer identification
using textural features. Probability Distribution Functions (PDFs) are calculated using
the entire handwriting image (document) and its contours for contour direction, contour-
Hinge, direction co-occurrence and Run-Length on white distributions (RL).

Bertolini et al. (2013) [17] published a texture-based descriptor for writer iden-
tification using Local Binary Patterns (LBP) in a comparative study with Local Phase
Quantization (LPQ), concluding that LPQ performed better than their LBP variant.

2.3.3 Scale-Invariant and Advanced Features

Wu et al. (2014) [73] developed a method for offline text-independent writer iden-
tification based on the Scale Invariant Feature Transform (SIFT). The SIFT Descriptor
Signature (SDS) and the Scale Orientation Histogram (SOH) are extracted from hand-
writing images to characterize different writers.

Bahram et al. (2016) [9] offered a set of textural features to characterize writer
individuality, including Direction-Length, Angle-Length, Direction Co-Probability, and
Angle Co-Probability of connected components.

2.3.4 Block-Based and Fragment-Based Methods

Singh et al. (2018) [70] divided cursive handwriting into nine texture blocks to
compute histograms of the Local Binary Pattern (LBP) and the Center Symmetric Local
Binary Co-occurrence Pattern (CSLBCoP). For each writing sample, a set of 9 blocks
were created and feature vectors were computed for writer identification.

Kessentini et al. (2018) [46] combined Edge-Hinge with a fragment length of 6
and 7 pixels and Run-length features in the Dempster-Shafer Theory (DST) model to
improve identification rates.

2.3.5 Modern Texture Descriptors

Hannad et al. (2019) [36] presented an approach combining two textural features :
the Histogram of Oriented Gradients (HOG) and Gray Level Run Length (GLRL) Ma-
trices for writer identification and characterization.

Kumar and Sharma (2019) [52] presented a texture-based model (DCWI) using
distribution descriptive curve (DDC) and cellular automata (CA) descriptors to capture
necessary details of handwritten words.

Khan et al. (2019) [50] applied a combination of Scale-Invariant Feature Transform
(SIFT) and RootSIFT descriptors in Gaussian mixture models (dissimilarity SGMM and
DGMM) to compare and classify handwritten documents.

Chahi et al. (2020) [24] developed a Local gradient full-Scale Transform Patterns
(LSTP) based method for writer identification, extracting feature code maps from resi-
zed small regions of interest based on the distribution of local intensity gradients.
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Comparison of Texture-Based Methods

Research Methodology Advantages Disadvantages Results

Bulacu et
al. (2007)

Textural features
with PDFs from
entire image and
contours

Text-independent
analysis ; Multi-
feature integration

Sensitive to image
quality ; High com-
putational cost

N/A

Bertolini et
al. (2013)

Local Binary Pat-
terns (LBP) vs Lo-
cal Phase Quanti-
zation (LPQ)

Comparative ana-
lysis ; LPQ superio-
rity shown

Limited feature
scope ; Perfor-
mance variation

N/A

Wu et al.
(2014)

SIFT with SDS and
SOH descriptors

Scale invariance ;
Robust feature
extraction

Complex feature
computation ;
Sensitivity to noise

N/A

Bahram et
al. (2016)

Direction-Length,
Angle-Length,
Direction/Angle
Co-Probability

Multiple textural
features ; Connec-
ted component
analysis

Feature dimensio-
nality ; Parameter
tuning required

N/A

Singh et al.
(2018)

Nine texture blocks
with LBP and
CSLBCoP histo-
grams

Block-based analy-
sis ; Multiple pat-
tern integration

Fixed block struc-
ture ; Limited
adaptability

N/A

Kessentini
et al. (2018)

Edge-Hinge with
Run-length fea-
tures in DST
model

Fragment-based
analysis ; Theory-
based fusion

Complex model
integration ; Frag-
ment extraction
issues

N/A

Hannad et
al. (2019)

Histogram of
Oriented Gradients
(HOG) and GLRL
matrices

Complementary
features ; Good
characterization

Feature extraction
complexity ; Para-
meter sensitivity

N/A

Kumar &
Sharma
(2019)

Distribution Des-
criptive Curve
(DDC) and Cel-
lular Automata
(CA)

Novel descriptors ;
Word-level analysis

Complex im-
plementation ;
Limited evaluation

N/A

Khan et al.
(2019)

SIFT and Root-
SIFT with Gaus-
sian Mixture Mo-
dels

Robust feature
combination ; Sta-
tistical modeling

High computatio-
nal cost ; Model
complexity

N/A

Chahi et al.
(2020)

Local Gradient
full-Scale Trans-
form Patterns
(LSTP)

Local intensity gra-
dients ; ROI-based
extraction

Processing ove-
rhead ; Scale
dependency

N/A
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2.4 Contour-Based Approaches

2.4.1 Fundamental Principles

Contour-based methods have emerged as particularly effective techniques for analy-
zing the structural properties of handwritten text. The fundamental principle behind
contour-based approaches lies in analyzing the edges and outlines of handwritten strokes
to extract discriminative features.

2.4.2 Pioneering Contour Analysis

This concept was pioneered by Bulacu and Schomaker (2007) [21], who introdu-
ced comprehensive text-independent writer identification methods using both textural
and allographic features. For contour analysis specifically, they developed directional
edge-based features that capture the probability distribution of contour fragments in
handwritten text. Their edge-direction distribution and hinge features extracted from
contours achieved 89.4% accuracy in text-independent writer identification across mul-
tiple languages.

2.4.3 Enhanced Contour Features

Building directly upon this foundation, Brink et al. (2012) [19] enhanced contour
analysis by introducing directional ink-trace width measurements as a complementary
feature. Their innovative approach measured the width of ink traces perpendicular to the
main writing direction, capturing the subtle variations in pen pressure and movement
that characterize individual writers, achieving 91.8% accuracy.

2.4.4 Rotation-Invariant Descriptors

A significant advancement came withHe and Schomaker (2015) [41], who addres-
sed a critical limitation in previous methods by introducing the Delta-n Hinge feature,
a rotation-invariant descriptor for writer identification. This approach captured the an-
gular relationships between adjacent segments of contours while ensuring invariance to
document orientation—a particularly valuable property for historical documents and
forensic applications, achieving 93.2% accuracy.

2.4.5 Historical Manuscript Applications

The evolution of contour-based approaches continued with He et al. (2014) [40],
who developed a specialized method using contour and stroke fragments for historical
manuscript dating and writer identification. Their work demonstrated that fragment-
based contour analysis could effectively capture the temporal evolution of writing styles,
enabling both accurate dating and writer identification for historical manuscripts span-
ning different periods with 89.7% accuracy.

2.4.6 Hybrid Contour-Texture Integration

In parallel, Bahram (2012) [8] explored the integration of texture-based features
with contour analysis, treating handwriting as both a structural and textural pattern.
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This hybrid approach demonstrated that contour properties could be effectively combi-
ned with textural features to improve the overall discriminative power of the identifica-
tion system with 87.5% accuracy, particularly for complex writing styles and degraded
documents.

Comparison of Contour-Based Methods

Research Methodology Advantages Disadvantages Results

Bulacu &
Schomaker
(2007)

Directional edge-
based features with
hinge patterns

Language inde-
pendent ; Multi-
script capability ;
Text-independent
analysis

Sensitive to docu-
ment quality ; Di-
rectional quantiza-
tion issues

89.4%

Brink et al.
(2012)

Directional ink-
trace width measu-
rements

Captures pen pres-
sure variations ;
Complementary to
existing features ;
High discrimina-
tion power

Requires high-
quality images ;
Sensitive to binari-
zation errors

91.8%

He & Scho-
maker
(2015)

Delta-n Hinge
rotation-invariant
features

Rotation inva-
riance ; Robust to
document orien-
tation ; Effective
for historical docu-
ments

Computational
complexity ; Fea-
ture dimensionality
issues

93.2%

He et al.
(2014)

Contour and stroke
fragments for histo-
rical manuscripts

Temporal style
modeling ; Effective
for degraded docu-
ments ; Suitable for
dating and ID

Complex frag-
ment extraction ;
Domain-specific
optimization requi-
red

89.7%

Bahram
(2012)

Texture-based
approach with
contour integration

Hybrid feature
representation ;
Good for complex
scripts ; Noise
resilience

High dimensiona-
lity ; Parameter
sensitivity

87.5%

2.5 Comparative Analysis and Challenges

2.5.1 Performance Comparison

The three approaches demonstrate varying strengths :
— Codebook approaches show the highest accuracy rates, with recent methods

achieving up to 98.3% (Bennour et al., 2019)
— Contour-based methods achieve moderate to high accuracy (87.5% to 93.2%)

with good robustness to document orientation
— Texture-based approaches are proven to be efficient in terms of execution time

and are generally preferred when only a certain minimum amount of handwriting
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data is available

Figure 2.1 – Writeridentificationtimeline.

2.5.2 Common Challenges

Despite their effectiveness, all approaches face certain challenges :
Codebook Approaches :
— Computational complexity in segmentation and feature extraction processes
— Time-intensive operations, especially in large-scale applications
— High memory requirements for ensemble methods
Contour-Based Approaches :
— Sensitivity to document quality, noise, and preprocessing variations
— Performance affected by document degradation, ink bleeding, and background

noise
— Computational complexity in rotation-invariant descriptors

Texture-Based Approaches :
— Feature dimensionality issues
— Sensitivity to image quality and preprocessing parameters
— Dataset dependencies for optimal performance

Advantage and disadvantage of text-independent offline writer identification methods

Categories References Features Advantage Disadvantage
/ Accuracy

Codebook-
based

Bensefia et al.,
2005 ; Bulacu et
al., 2007

Bag of gra-
phemes

Forensic-style
modeling,
informative

IFN/ENIT :
94.9%
(BDCT,
Khan et al.,
2017)

He et al., 2015 ;
Khalifa et al.,
2015

Junclets Junction-based
fragmentation
of characters

Firemaker :
80.6% (He et
al., 2015)

Abdi and Khe-
makhem, 2015 ;
Khan et al.,
2017

Elliptic gra-
phemes,
BDCT

Versatile shape
representation

CVL : 99.6%
(Khan et al.,
2017)

(continued on next page)
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(continued from previous page)

Categories References Features Advantage Disadvantage
/ Accuracy

Durou et al.,
2019 ; Bennour
et al., 2019

Implicit
shapes (key-
points)

Sparse key-
points, flexible

BFL : 98.3%
(Bennour et
al., 2019)

Texture-based Bulacu et al.,
2007 ; Siddiqi
and Vincent,
2010

Contour-
Hinge, LBP

Fast, no lear-
ning phase

IFN/ENIT :
98.5% (Singh
et al., 2018)

Bertolini et al.,
2013 ; Wu et al.,
2014

LPQ, SIFT,
SOH

Robust descrip-
tors, no trai-
ning

IAM : 98.5%
(Wu et al.,
2014)

Singh et al.,
2018 ; Chahi et
al., 2020

LSTP,
CSLBCoP

Accurate
region-based
analysis

CVL : 100.0%
(Chahi et al.,
2020)

Hannad et al.,
2016 ; Kessen-
tini et al., 2018

HOG,
GLRL,
Edge-Hinge

Works on noisy
data

CERUG-
CN : 100.0%
(Chahi et al.,
2020)

Kumar and
Sharma, 2019

DDC, CA
descriptors

Describes
stroke struc-
ture effectively

ICDAR2013 :
98.4% (Chahi
et al., 2020)

Contour-based Bulacu and
Schomaker,
2007

Edge direc-
tion, hinge
histograms

Language-
independent,
multi-script

89.4% (multi-
database avg)

Brink et al.,
2012

Ink-trace
width fea-
tures

Captures pres-
sure/stroke dy-
namics

91.8%
(contour
width descrip-
tor)

He and Scho-
maker, 2015

Delta-n
Hinge
(rotation-
invariant)

Orientation-
robust, good
for archives

93.2% (histo-
rical dataset)

He et al., 2014 Contour
and stroke
fragments

Style dating +
identification

89.7% (his-
toric manus-
cripts)

Bahram, 2012 Contour
+ texture
fusion

Hybrid of
structure and
texture

87.5% (hybrid
descriptor)

2.6 Conclusion

Writer identification in multilingual contexts remains an open and challenging field,
especially given the variability of scripts and the differences in text length. While prior
benchmarks such as ICDAR 2011 and ICDAR 2013 have focused primarily on monolin-
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gual (Latin script) scenarios, they continue to serve as valuable datasets for evaluating
new approaches.

In this research, we proposed two novel, text-independent features for writer identi-
fication and evaluated their effectiveness on both short and long handwritten samples.
Using the ICDAR 2011 and 2013 datasets, we demonstrated that these features can
capture writer-specific traits with high discriminative power across varying conditions.

The experimental results, detailed in the next chapters, confirm the potential of
our features to generalize beyond monolingual settings and limited text lengths. These
findings offer promising directions for the development of robust, language-independent
writer identification systems applicable to diverse real-world scenarios.
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Chapitre 3

Proposed Technique

Science is the process of finding patterns in the chaos of nature.

Richard Feynman

3.1 Introduction

This section presents the methodology of the proposed offline writer identification
system, USAWRS (University of Säıda Automatic Writer Recognition System), desi-
gned for robust, text-independent writer identification across multilingual handwritten
documents. The system processes scanned handwriting images using two primary repre-
sentations during feature extraction : binary connected-components and their exterior
contours. The contour, defined as a sequence of pixels on the ink-background boundary
of a connected-component, provides an efficient vectorial representation that enables ra-
pid feature computation while capturing essential writing shapes. These representations
are critical for encoding writer-specific attributes, such as direction, slant, curvature,
ink-trace width, and letter shapes.

For writer characterization, we propose two complementary features based on the
Modified Local Binary Pattern with Ink Width and Stroke Length (MLBP-IWSL) fra-
mework :

— F1 : MLBP-IWSL (black pixels) : Extracts MLBP-IWSL features from black
pixels (ink traces), capturing local texture patterns and structural attributes of
the handwriting, such as stroke width and length variations.

— F2 : MLBP-IWSL (white pixels) : Computes MLBP-IWSL features from
white pixels (background regions), encoding complementary texture and contour
information to enhance writer discriminability.

These features are fused to combine the strengths of F1 and F2, leveraging their
complementary information to improve identification accuracy. The MLBP-IWSL fea-
tures are text-independent, allowing the system to identify writers without relying on
the textual content of the samples. By using probability distribution functions derived
from contour-based texture analysis, F1 and F2 effectively capture writer individuality,
focusing on stylistic nuances across multilingual scripts.

As illustrated in Figure 3.1, the proposed approach comprises three main processing
steps :

1. Pre-processing : Normalizes and enhances scanned handwriting images to en-
sure consistent feature extraction across diverse datasets.
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2. Feature Extraction : Computes F1 (MLBP-IWSL black pixels) and F2
(MLBP-IWSL white pixels) from binary connected-components and contours,
followed by their fusion to encode writer-specific characteristics.

3. Classification (Identification) : Employs distance metrics (e.g., Chi-Squared)
and fusion strategies (e.g., SUM rule) to match query samples against a database
of known writers.
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Figure 3.1 – The framework of our writer identification system.

Each step is detailed in the following subsections, providing a comprehensive over-
view of the methodology and its implementation on multilingual datasets, such as the
ICDAR 2011 Writer Identification Contest dataset (208 documents from 26 writers) and
the ICDAR 2013 Writer Identification Competition dataset (1,000 documents from 250
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writers), which include handwritten samples in English, Greek, French, and German.
The USAWRS system minimizes human intervention, aligning with the goal of develo-
ping a scalable and practical solution for forensic and historical document analysis.

3.2 Pre-processing

As with many tasks in pattern recognition, the preprocessing phase is a vital step
that significantly impacts the overall performance and accuracy of the writer verification
system. This stage involve preparing and cleaning the input data to enhance the system’s
ability to correctly recognize and differentiate between different handwriting styles.
In our experiments, the input data are composed of black connected components that

capture the handwriting, along with their associated contours. so the pre-processing step
begins by binarizing the document images to distinguish the foreground (handwriting)
from the background. Next, connected components are extracted from the binarized
image. Non-significant components such as small noise elements, isolated dots, or specks
are then removed. Finally, the process involves extracting both the inner and outer
contours of the remaining connected components for further analysis[11].

3.2.1 Binarisation :

is a key step in preparing images for analysis. It takes a grayscale or color image and
simplifies it by turning it into a black and white picture, where only two colors exist :
black for important details like text or handwriting, and white for the background, like
the paper. This simplification makes it much easier to perform tasks such as recognizing
characters, verifying writers, or detecting shapes and outlines. Depending on how this
threshold is determined, binarisation methods are commonly divided into two main
categories :

— Global Binarisation : Global binarisation applies a single threshold value to
the entire image. Each pixel is classified as foreground or background based on
this one global threshold.
Advantages : Simple, fast, and effective for images with uniform lighting and
contrast.
Common method : Otsu’s method, which automatically selects an optimal
threshold by maximizing inter-class variance.

— Local Binarisation : Local binarisation, also known as adaptive binarisation,
computes a different threshold for each pixel based on the local neighborhood
(a small window around each pixel). This makes it more suitable for documents
with irregular lighting, shadows, and low quality.
Advantages : Durable to variations in lighting and background noise.
Common methods : Niblack, Sauvola, and Wolf algorithms, which dynamically
adjust thresholds using local mean and standard deviation.
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Aspect Global Thresholding Local Thresholding

Characteristics Uses a single threshold value
for the entire image. It is less
effective for images with une-
ven illumination.

Computes thresholds based
on neighboring pixel intensi-
ties, adapting to local illu-
mination and contrast varia-
tions.

Threshold Value Determination Threshold is constant across
the image.

Thresholds vary across dif-
ferent image regions, based on
local statistics.

Illumination Handling Performs poorly under va-
rying lighting ; suitable for
uniformly illuminated images.

Robust to lighting variation ;
ideal for non-uniformly lit
scenes.

Computational Complexity Computationally efficient and
fast.

Requires more processing due
to per-pixel or per-region
computations.

Use Cases Best suited for clean, scanned
documents or uniformly lit en-
vironments.

Preferred for natural scenes or
images with shadows and in-
consistent lighting.

Table 3.1 – Comparison between Global and Local Thresholding[56]

3.2.1.1 Binarisation Methodes :

1. Otsu’s Methode (Global Thresholding) : Otsu’s method is a nonparametric,
unsupervised technique for automatic image thresholding. It selects the optimal thre-
shold by maximizing the between-class variance using histogram moments. The method
is simple, efficient, and extendable to multilevel thresholding.[59]

σ2
b (t) = ω1(t)ω2(t) [µ1(t)− µ2(t)]

2

Where :
— ω1, ω2 are the class probabilities
— µ1, µ2 are the class means
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Figure 3.2 – Workflow of Otsu’s Thresholding Method for Image Binarization

Figure 3.3 – Global Image Thresholding using Otsu’s Method

2. Niblack’s Methode (Local Thresholding) : Niblack’s method is a local thre-
sholding technique used in image processing to segment an image into foreground and
background regions. It computes the threshold for each pixel based on the mean and
standard deviation of the pixel intensities in a local neighborhood[56].

T (x, y) = m(x, y) + k · s(x, y)

Where :
— m(x, y) is the local mean
— s(x, y) is the local standard deviation
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— k is a tunable parameter, usually between -0.5 and 0.5

Figure 3.4 – Workflow of Niblack’s Thresholding Method for Image Binarization

Figure 3.5 – local Image Thresholding using Niblack’s Method

3. Sauvola’s Methode (Improved Local Thresholding) : Sauvola’s method im-
proves upon Niblack’s adaptive thresholding by handling uneven illumination. It uses the
local mean and standard deviation with a dynamic range parameter for better adapta-
bility ,This makes it effective for binarizing document images with text and background
noise[56].

The formula for the threshold is :

T (x, y) = µ(x, y)

[
1 + k

(
σ(x, y)

R
− 1

)]
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Where :
— R is the dynamic range of standard deviation (typically 128)
— k is typically in the range [0.3, 0.5]

.65.65

Figure 3.6 – Workflow of Sauvola’s Thresholding Method for Image Binarization

Figure 3.7 – local Image Thresholding using sauvola’s Method

4. K-means Clustering : K-meansis an unsupervised algorithm and it is used to
segment the interest area from the background. It clusters, or partitions the given data
into K-clusters or parts based on the K-centroids(typicaly k=2)[45].

Method Type Lighting Parameters Noise Ro-
bustness

Best For

Otsu Global Uniform No Low Clean scanned
documents

Niblack Local Irregular Yes Medium Historical,
noisy text

Sauvola Local Irregular Yes High Noisy/low
contrast docs

K-means Clustering Any Yes High Degraded/irregular
docs

Table 3.2 – Comparison of Binarisation Methods
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Figure 3.8 – Binarization Process

For our work, we decided to use Otsu’s method to binarise the handwriting images.
The main reason is that our images are mostly clean and well-scanned, with good lighting
and a clear difference between the text and the background. Otsu’s method is great in
this kind of situation because it automatically finds the best threshold to separate the
black writing from the white background. It’s also fast and simple to use, which made
it a practical choice. By using Otsu’s method, we were able to get clean binary images
that made the next steps, like contour detection and writer analysis, much easier and
more reliable.

3.2.2 Connected Components Extraxtion :

Connected components extraction is a key step in processing binary images where
the goal is to identify and separate individual objects made up of connected pixels.
In a black-and-white image, for example, the black pixels usually represent meaningful
content such as handwritten letters, symbols, or shapes, while the white pixels represent
the background.
The extraction process works by examining the image to find groups of black pixels

that are connected to each other based on a connectivity rule. Typically, this rule consi-
ders either 4-connectivity (pixels connected horizontally or vertically) or 8-connectivity
(including diagonal neighbors). Pixels that meet this connectivity condition are grouped
together as one connected component.
Once these groups are identified, each connected component is assigned a unique la-

bel. This labeling allows us to treat each component as an individual object for further
analysis. For example, in handwriting recognition or writer identification, connected
components often correspond to letters, strokes, or words that need to be analyzed se-
parately.
This step is crucial because it simplifies complex images by breaking them down

into smaller, meaningful parts. After extracting connected components, other impor-
tant tasks such as contour tracing, feature extraction, or classification become more
manageable and accurate[25].
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Figure 3.9 – Connected Components Extraxtion Process

3.2.3 Removal of Small Connected Components :

This is an important cleaning step in image processing, especially after connected
components extraction. When working with binary images, small groups of connected
pixels often appear due to noise, dust, or minor imperfections in the scanning process.
These tiny components usually do not carry useful information—for example, random
dots, specks, or small artifacts—and can interfere with later analysis steps.
To improve the quality of the data, these small connected components are identified

and removed based on their size, typically by setting a minimum pixel area threshold.
Any connected component smaller than this threshold is discarded from the image. This
helps to reduce noise and focus on the meaningful parts of the image, such as actual
letters or handwriting strokes.
Removing small connected components is essential to improve the accuracy of tasks

like writer identification, character recognition, or contour extraction, because it ensures
that only significant and relevant parts of the image are processed.

Figure 3.10 – Non significant Connected Components Detection

3.2.4 Contour Detection :

Contour detection is the process of tracing the outlines or borders of shapes in a
binary image. In the context of handwriting analysis, these shapes are the connected
components representing individual letters or strokes. This step helps us understand the
exact form and structure of each component, which is essential for detailed analysis.
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There are two types of contours we usually extract :
— Outer contours, which trace the external boundary of a shape. For example,

in the letter ”O”, the outer edge forms the main visible border.
— Inner contours, which trace holes or enclosed spaces inside a shape like the

circular gap inside the letter ”O” or ”P”.
To perform contour detection, one commonly used method is the Moore-Neighbor

Tracing Algorithm, which is simple and effective for binary images[35].

Figure 3.11 – Outer-Iner Contour Detection

The Moore-Neighbor Tracing Algorithm :

The Moore-Neighbor Tracing algorithm is a classical method used to extract the
boundary (or contour) of a shape in a binary image. It is especially useful when the
shape consists of connected pixels, such as characters in handwriting, and we want to
trace its exact border[35].

3.2.4.1 Moore Neighborhood :

The Moore neighborhood of a pixel (also known as the 8-neighbors), P , is the set
of 8 pixels that share either a vertex or an edge with P . These neighboring pixels are
denoted as P1, P2, ..., P8 as illustrated in the figure below[35].

3.2.4.2 Algorithm Idea :

Given a digital pattern (a group of black pixels) on a white background arranged
in a grid, we first locate a black pixel and declare it as the start pixel. This can be
done by scanning from the bottom to the top and left to right until a black pixel is
found. Imagine a ladybug placed on this start pixel. The goal is to trace the contour by
walking around the shape in a clockwise direction. At every step, when a black pixel P
is reached, we backtrack to the white pixel from which we entered P , and then explore
all pixels in the Moore neighborhood of P in a clockwise order until another black pixel
is found. The tracing continues until the start pixel is visited again in the same manner.

All the black pixels visited during this process form the boundary or contour of the
shape[35].

30



Figure 3.12 – The Moore neighborhood of a pixel P[35]

3.2.4.3 Formal Algorithm :

Input : A square grid pattern T containing a connected component P of black cells.
Output : A sequence B = (b1, b2, ..., bk) of boundary pixels (the contour).

1. Initialize B as an empty list.

2. Scan T from bottom to top and left to right until a black pixel s ∈ P is found.

3. Insert s into B.

4. Set the current boundary point p := s.

5. Backtrack to the pixel from which s was entered.

6. Set c to be the next clockwise pixel in the Moore neighborhood M(p).

7. While c ̸= s :
— If c is black :

— Insert c into B
— Set p := c
— Backtrack to the pixel from which p was entered

— Else :
— Advance c to the next clockwise pixel in M(p)

8. End While

Result : The sequence B contains the coordinates of the contour pixels[35].
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Figure 3.13 – standing on the start pixel[35]

Figure 3.14 – description of the Moore-Neighbor tracing algorithm[35]

3.3 Feature Extraction

3.3.1 Feature Fusion

Fusion techniques are recognized for improving performance and have been utili-
zed in various classification tasks in general [55], and in biometric applications specifi-
cally [32, 64, 63]. Fusion can be performed at the feature level [74, 60], where diverse
features capturing different types of information are integrated, or at the decision le-
vel [75, 47], where outputs from multiple classifiers are combined to improve overall
system performance.

This approach calculates a single numerical value, called a scalar score, which re-
presents how different or similar the input sample is compared to the claimed identity.
In the context of writer verification, this score helps decide whether the handwriting
sample belongs to the claimed writer or not.
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To get this scalar score, the system first extracts multiple dissimilarity measures
from the input sample. Each dissimilarity measure comes from a different textural des-
criptor—these are algorithms or features that capture various patterns and textures in
the handwriting. Since different descriptors focus on different aspects of the handwriting
(such as stroke thickness, curvature, or texture), combining their results provides a more
comprehensive evaluation[37].

Once the individual dissimilarity scores are computed, they need to be combined
into one final score. This is done using fusion rules, which are mathematical methods
that integrate multiple values into a single representative number. Common fusion rules
include :

— Sum rule : Adding all the individual scores together. This assumes that all
descriptors contribute equally to the final decision[37].

Let :
— Di denote the distance (or dissimilarity score) obtained from the i-th feature.
— N be the total number of features.
— Di ∈ R, and a special value (e.g., Di = DBL MAX) indicates an invalid or

undefined feature score.
Then the normalized sum fusion distance Dfused is defined as :

Dfused =

 1
N

N∑
i=1

Di, if Di ̸= DBL MAX ∀i

DBL MAX, if any Di = DBL MAX

Key Characteristics
— Robustness : If any feature yields an invalid distance (DBL MAX), the fused

distance is set to DBL MAX to flag unreliability.
— Normalization : The sum of all valid distances is divided by the number of

features to ensure scale consistency.
— Use Case : This rule is typically applied when all features are expected to

contribute equally and are on a comparable scale.
— Product rule : Multiplying all the scores. This method emphasizes agreement

among descriptors since one very low score can reduce the total significantly[37].
Let :

— Di be the distance from the i-th feature.
— N be the total number of features.

Dfused =


N∏
i=1

Di, if Di ̸= DBL MAX ∀i

DBL MAX, if any Di = DBL MAX

Key Characteristics
— Amplifies large differences : Sensitive to outliers and large distances.
— Multiplicative : Strongly penalizes any high distance.
— Use Case : Useful when features must all be jointly low to indicate similarity..

— Min rule : Taking the smallest (minimum) score among the descriptors. This
could be useful when one strong match is enough to accept the sample[37].

Dfused =


N

min
i=1

Di, if Di ̸= DBL MAX ∀i

DBL MAX, if any Di = DBL MAX
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Key Characteristics
— Pessimistic : Prioritizes the worst-case (highest) distance
— Robust to low distances : One bad score dominates.
— Use Case : Suitable when any dissimilarity should trigger rejection..

— Max rule : Taking the largest (maximum) score, which might reflect the worst-
case dissimilarity[37].

Dfused =


N

max
i=1

Di, if Di ̸= DBL MAX ∀i

DBL MAX, if any Di = DBL MAX

Key Characteristics
— Optimistic : Considers the best-case (smallest) distance.
— Normalization : May ignore bad scores : One good match can dominate.
— Use Case : Suitable when any strong similarity is sufficient.

By applying these fusion rules, the system consolidates the diverse information from
multiple descriptors into a single meaningful score, improving the robustness and accu-
racy of the verification process.

Fusion Rule Formula Intuition Strengths Weaknesses Typical
Use Case

Sum
l∑

i=1

ci,j Aggregate all
evidence ad-
ditively

Simple, effec-
tive, smooth

Sensitive to
scale, may
dilute strong
signals

When fea-
tures com-
plement each
other

Product
l∏

i=1

ci,j Emphasize
consensus

Penalizes di-
sagreement,
more discri-
minative

Sensitive to
low values,
assumes in-
dependence

When all fea-
tures must
agree

Max
l

max
i=1

ci,j Take stron-
gest evidence

Robust to
weak fea-
tures

Can be
optimistic,
ignores other
sources

When one
feature is
highly re-
liable

Min
l

min
i=1

ci,j Take weakest
evidence

Conservative,
reduces false
acceptance

Can be
overly pessi-
mistic

High-security
scenarios
requiring
consensus

Table 3.3 – Summary of Fusion Rules[4]

3.3.2 Distance Calculation

In this work ,we measure the degree of dissimilarity between two samples by
applying various distance functions such as Chi-square (χ2), Manhattan, Euclidean,
Minkowski
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3.3.2.1 Chi-square (χ2) Distance

Given two feature vectors T1 and T2, the distance function computes a value that
quantifies the difference between them while normalizing for the scale of their individual
elements.

Formally, the Chi-square distance D between two vectors of equal length n is defined
as :

D(T1, T2) =
n∑

i=1

(T1[i]− T2[i])
2

T1[i] + T2[i]

where T1[i] and T2[i] represent the i
th components of vectors T1 and T2, respectively.

The implementation follows these key steps :
Dimension Check : The function first verifies that both input vectors have the

same dimension. This ensures that the comparison is valid and element-wise correspon-
dence exists.

Selective Computation : To avoid division by zero or meaningless terms, the
function only includes in the summation those indices where at least one of the vector
components is non-zero.

Distance Accumulation : For each valid index, the squared difference of the com-
ponents is divided by their sum, effectively normalizing the difference by the combined
magnitude of the components. This emphasizes relative differences over absolute diffe-
rences, making the metric robust to scale variations.

This distance metric is widely used in pattern recognition and image processingand
is commonly used in hypothesis testing to determine if two histograms come from the
same distribution[66], due to its sensitivity to relative changes rather than absolute ma-
gnitudes. By using this function, we ensure that the computed distances are meaningful
even when component values vary widely in scale or distribution.

The method provides an efficient O(n) time complexity, where n is the length of
the vectors, making it suitable for high-dimensional data comparison in real-time or
large-scale applications.

3.3.2.2 Manhattan Distance

Given two feature vectors T1 and T2, the Manhattan distance function calculates the
total absolute difference between their corresponding elements.

Formally, the Manhattan distance D between two vectors of equal length n is defined
as :

D(T1, T2) =
n∑

i=1

|T1[i]− T2[i]|

where T1[i] and T2[i] are the ith components of the vectors T1 and T2, respectively.
The implementation follows these steps :
Dimension Check : The function first ensures that both vectors have the same

length. This guarantees a valid one-to-one element comparison.
Distance Accumulation : For each element index i, the absolute difference bet-

ween the corresponding elements of the two vectors is calculated using Math::Abs(),
and then added to the cumulative distance.
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This approach effectively measures how different the two vectors are in terms of
individual element values.

The Manhattan distance is commonly used in machine learning, clustering, and
pattern recognition tasks where the total deviation is more relevant than the squared
deviation (as in Euclidean distance). It is particularly useful in high-dimensional spaces
where the geometry of data behaves differently[30].

The algorithm has a linear time complexity of O(n), where n is the length of the
vectors, making it suitable for large-scale applications or real-time systems.

3.3.2.3 Euclidean Distance

The Euclidean distance function calculates the straight-line distance between two
feature vectors T1 and T2 in multi-dimensional space.

Formally, the Euclidean distance D between two vectors of equal length n is defined
as :

D(T1, T2) =

√√√√ n∑
i=1

(T1[i]− T2[i])2

where T1[i] and T2[i] denote the i
th components of the vectors T1 and T2, respectively.

The implementation consists of the following steps :
Dimension Check : The function begins by confirming that both vectors have the

same length to ensure a valid element-wise comparison.
Distance Accumulation : A loop iterates over each index i, computing the square

of the difference between corresponding elements. These squared differences are accu-
mulated into the variable distance.

Square Root Application : After the loop, the square root of the accumulated
value is taken to obtain the final Euclidean distance, which reflects the true geometric
distance between the two vectors.

It is one of the most commonly used distance metrics in pattern recognition, machine
learning, and statistical analysis.

This method provides a reliable and interpretable measure of similarity or difference
between vectors. It has a time complexity of O(n), where n is the dimensionality of the
input vectors.

3.3.2.4 Minkowski Distance

The Minkowski distance is a generalization of both the Euclidean and Manhattan
distances, controlled by a parameter r ≥ 1. It calculates the distance between two feature
vectors T1 and T2 of equal length by raising the absolute difference of each component
to the power of r, summing all results, and then taking the r-th root of the total.

Formally, the Minkowski distance D is defined as :

D(T1, T2) =

(
n∑

i=1

|T1[i]− T2[i]|r
) 1

r

where :
— T1[i] and T2[i] are the ith components of the input vectors,
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— n is the dimension (length) of the vectors,
— r is the order of the distance.

The implementation consists of the following steps
— Dimension Check : The function first confirms both vectors are of equal length.
— Distance Calculation : It iterates through each index i, computes |T1[i]−T2[i]|r,

and accumulates the result.
— Final Root : After accumulation, the rth root is applied to compute the final

distance.
This metric adapts based on the value of r :
— r = 1 yields the Manhattan distance,
— r = 2 gives the Euclidean distance,
— Higher values of r increasingly emphasize larger component differences.
The algorithm has a time complexity of O(n), making it efficient for comparing

high-dimensional feature vectors in various pattern recognition and machine learning
applications.

Comparison of Distance Metrics

Distance
Metric

Key Characteristics Advantages Time Com-
plexity

Chi-square
(χ2)

- Normalizes difference
by sum of components.
- Sums only where de-
nominator ̸= 0. - Sen-
sitive to relative diffe-
rences.

- Robust to scale varia-
tions. - Effective for his-
togram comparisons. -
Used in image proces-
sing.

O(n)

Manhattan - Sum of absolute diffe-
rences. - Measures total
deviation.

- Simple and interpre-
table. - Works well in
high dimensions. - Less
sensitive to outliers.

O(n)

Euclidean - Straight-line distance
in n-dimensional space.
- Squares differences
before summing.

- Common in pattern
recognition. - Intuitive
geometric meaning. -
Sensitive to outliers.

O(n)

Minkowski - Generalizes L1 (r =
1) and L2 (r = 2). -
r ≥ 1 adjusts sensiti-
vity.

- Flexible for different
use cases. - Emphasizes
large differences with
higher r.

O(n)

3.3.3 Run-Length

The concept of Run-Length (RL) distribution was first introduced by Arazi in 1977[5]
as one of the earliest features for automatic writer recognition. Since then, it has gained
recognition as an effective global descriptor for capturing the unique stylistic traits of
handwritten text. The fundamental idea behind this method is to analyze sequences of
pixels called runs that share similar visual properties across specified directions in the
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image.
A run is defined as a series of consecutive, connected pixels that exhibit the same

characteristic, such as pixel intensity[29]. In the context of binary images (i.e., black-
and-white images where black denotes ink and white represents the paper background),
run-length analysis is used to measure the lengths of such sequences. These sequences
are measured separately for black pixels (foreground) and white pixels (background).

The white pixel runs provide valuable insight into the spatial layout of the hand-
writing, including intra- and inter-letter spacing as well as the curvature and openness
of character shapes. Conversely, the black pixel runs convey details about the writing
instrument, particularly the thickness of the strokes or the width of the ink traces, which
are highly characteristic of a writer’s style.

Run-length measurements can be conducted in multiple orientations to capture di-
rectional textural features. The four commonly used directions are :

— Horizontal (0°)
— Vertical (90°)
— Diagonal (45°)
— Diagonal (135°)
In each of these directions, the lengths of the detected runs are compiled into histo-

grams. These histograms are then normalized to form probability distribution functions
(PDFs), which effectively describe the textural structure of the handwriting. These
PDFs serve as discriminative features for identifying individual writers.

To further enhance the analysis beyond binary images, Gray-Level Run-Length
Matrices (GLRLMs) can be employed. This extension allows the system to work
directly with grayscale images without needing a binarization step[28]. In this case,
a run is defined as a sequence of neighboring pixels that all share the same gray-level
intensity g. The GLRLM stores this information in a matrixM(g, h), where each element
corresponds to the number of runs with gray level g and length h.

GLRLMs can also be computed in the four principal directions (0°, 45°, 90°, and
135°) to capture multi-directional textural information[61]. Once generated, these ma-
trices are likewise converted into normalized histograms, providing compact statistical
representations of the textural patterns found in handwriting. These descriptors are
then used as part of the writer identification system to distinguish between different
writing styles.

An example illustrating how run-lengths are computed across the four directions is
provided in Fig. 4.8, which demonstrates the visual formation of both black and white
run-length distributions in different orientations.
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Figure 3.15 – Calculation of run-length matrices

3.3.4 Ink-trace Width and Shape Letters (IWSL)

An IWSL measurement refers to the number of consecutive black and white pixels
located between two exterior contour points along a specific direction in a binary image.
Formally, the IWSL can be defined as follows :

Let S be a binary sequence of connected pixels in a bi-level (binary) image, where
each pixel is represented as either 1 (black) or 0 (white). Let pcs and pce denote the
starting and ending positions of the sequence S, and let p1, . . . , pn represent the pixels
lying between the two exterior contour points.

The IWSL is then computed as the Euclidean distance between the two exterior
contour points :

pcs = (xcs, ycs), pce = (xce, yce)

IWSL =
√

(xce − xcs)2 + (yce − ycs)2 (3.1)

This measurement provides a numeric estimation of the stroke length between two
contour points in a specific direction[11].

The IWSL computation for exterior contour pixels is based on techniques similar to
those described in [28, 29, 43]. The measurement is evaluated along four main directions
to effectively capture structural writing details such as character shapes, average letter
widths, and ink stroke width :

— Horizontal direction : IWSL1

— Vertical direction : IWSL2

— Left-diagonal direction : IWSL3

— Right-diagonal direction : IWSL4

3.3.4.1 IWSL for Black and White Pixel Analysis

The IWSL measurement can be applied to both black pixels (ink traces) and white
pixels (background regions) to capture comprehensive structural information about
handwriting patterns. This dual analysis provides complementary features that enhance
the discriminative power of the IWSL descriptor.

Black Pixel IWSL (IWSL(b)) The traditional IWSL measurement focuses on black
pixels, which represent the actual ink traces of the handwriting. Black pixel IWSL
captures :
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— Stroke thickness variations characteristic of individual writing instruments
— Ink flow patterns that reflect writing pressure and speed
— Character formation details and pen trajectory information
— Local structural properties of letter shapes and connections
For black pixels, the IWSL is computed along sequences of consecutive black pixels

between exterior contour points :

IWSL
(b)
k =

√
(x

(b)
ce − x

(b)
cs )2 + (y

(b)
ce − y

(b)
cs )2 (3.2)

where k ∈ {1, 2, 3, 4} represents the four directional measurements.

White Pixel IWSL (IWSL(w)) White pixel IWSL analysis focuses on the back-
ground regions and inter-character spaces, providing valuable information about :

— Inter-character and inter-word spacing consistency
— Internal character openings and loops (e.g., in letters ’a’, ’o’, ’e’, ’b’)
— Writing density and spatial organization patterns
— Negative space distribution that reflects individual writing habits
For white pixels, the IWSL measurement is computed along sequences of consecutive

white pixels bounded by black pixel contours :

IWSL
(w)
k =

√
(x

(w)
ce − x

(w)
cs )2 + (y

(w)
ce − y

(w)
cs )2 (3.3)

The white pixel analysis is particularly effective in capturing writer-specific traits
related to spacing habits, character proportions, and overall writing layout, which are
often consistent across different writing samples from the same individual.

Combined IWSL Feature Representation The comprehensive IWSL descriptor
combines both black and white pixel measurements to create a robust feature set :

IWSLcombined = {IWSL
(b)
k , IWSL

(w)
k }4k=1 (3.4)

This dual approach leverages both positive (ink) and negative (background) spa-
tial information, resulting in a more complete representation of individual handwriting
characteristics for writer identification applications.

These directional IWSL measurements serve as valuable features in handwriting
analysis. An illustration of the IWSL computation on a binary image is shown in Fig. 4.9.

3.3.5 Modified Local Binary Pattern (MLBP)

The modified LBP (MLBP) operator labels each candidate pixel pc at coordinates
(xc, yc) in a binary image (connected components) IB by examining its eight neighbors
within a 3× 3 neighborhood (n0, ..., n7). It produces a binary pattern by concatenating
eight binary digits (0s and 1s) and converting the result into a decimal number.

The MLBP for a candidate pixel pc is defined as :

MLBP8,1(pc) =
7∑

k=0

s(nk) · 2k (3.5)
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Figure 3.16 – Computing local IWSL in the four directions

where the function s(nk) is given by :

s(nk) =

{
1, if nk ∈ ECIB and pk ∈ IB

0, otherwise
(3.6)

Here, ECIB refers to the exterior contours of the binary image IB. An illustration of
the modified LBP operator is shown in Fig. 5.

Depending on the writing direction (i.e., directionality), languages can be classified as
either Right-to-Left (RTL) or Left-to-Right (LTR) scripts. RTL scripts, such as Arabic,
Farsi, Hebrew, and Urdu, are written from right to left and from top to bottom. In
contrast, languages such as English, Greek, Dutch, and Latin are written from left to
right.

Based on these directional properties, two variants of MLBP are proposed :
— Left MLBP (denoted by MLBP1)
— Upper MLBP (denoted by MLBP2)
They are computed as follows :

MLBP1(pc) =
1∑

k=0

s(nk+6) · 2k +
4∑

k=2

s(nk−2) · 2k (3.7)

MLBP2(pc) =
4∑

k=0

s(nk) · 2k (3.8)

In writer identification tasks, diagonal features are also important and have been
shown to provide excellent results on widely used handwriting databases[29]. Therefore,
two additional diagonal MLBP operators are proposed :

— Left-Diagonal MLBP (denoted by MLBP3)
— Right-Diagonal MLBP (denoted by MLBP4)
These diagonal MLBP values are computed as :

MLBP3(pc) =
4∑

k=0

s(nk+1) · 2k (3.9)
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MLBP4(pc) =
4∑

k=0

s(nk+3) · 2k (3.10)

Figure 4.15 shows an example of the modified LBP pattern and its decomposition
into the four MLBP codes described above.

Figure 3.17 – Local information used for MLBP code calculation[11]

Figure 3.18 – Computing the modified LBP code and its splitting into Left, Upper,
Left- and Right-Diagonals MLBP codes (P ¼ 8 and R ¼ 1 :0).[11]

3.3.6 MLBP-IWSL

The joint distribution of the Modified Local Binary Pattern (MLBPk) and the Ink-
trace Width and Shape Letters (IWSLk) measurements, where k ∈ {1, 2, 3, 4}.

For each input handwritten document image, the FMLBPk×IWSLk
feature vector is a

probability distribution obtained by normalizing the histogram HMLBPk×IWSLk
and is

defined as follows :
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FMLBPk×IWSLk
=

HMLBPk×IWSLk

∥HMLBPk×IWSLk
∥+ ε

(3.11)

where ε is a very small value close to zero [11], and HMLBPk×IWSLk
is a histogram

computed by using the following equation :

HMLBPk×IWSLk
(l) =

N∑
i=1

∑
pc∈Ci

δ [l, ((MLBPk − 1) ·NIWSL + IWSLk)] , l = 1, . . . , (NMLBP·NIWSL)

(3.12)

3.3.6.1 MLBP-IWSL Extension : White Pixel Analysis

Traditional IWSL analysis primarily focuses on black pixel (ink) measurements to
capture stroke characteristics. However, the analysis of white pixels (background re-
gions) provides complementary discriminative information that significantly enhances
writer identification performance. White pixel analysis captures the spatial distribution
of negative spaces, which reflects individual writing habits and stylistic traits.

The white pixel regions in handwritten documents contain valuable information
about :

— Inter-character spacing patterns : The consistent gaps between letters that
characterize individual writing styles

— Intra-character gaps and openings : The internal spaces within letters (e.g.,
loops in ’a’, ’o’, ’e’) that vary among writers

— Writing density and compactness : The overall spatial distribution reflecting
writing pressure and pen control

— Directional writing characteristics : The alignment and orientation patterns
reflected in background spaces

For white pixel analysis, the IWSL computation is modified to measure distances
between contour points that bound white (background) regions. Let IWSL

(w)
k denote the

IWSL measurement for white pixels in direction k, where k ∈ {1, 2, 3, 4} corresponds to
horizontal, vertical, left-diagonal, and right-diagonal directions, respectively.

The white pixel IWSL is computed as :

IWSL
(w)
k =

√
(x

(w)
ce − x

(w)
cs )2 + (y

(w)
ce − y

(w)
cs )2 (3.13)

where p
(w)
cs = (x

(w)
cs , y

(w)
cs ) and p

(w)
ce = (x

(w)
ce , y

(w)
ce ) represent the starting and ending

contour points of white pixel sequences in direction k.
The joint distribution for white pixels is formulated as :

F
MLBPk×IWSL

(w)
k

=
H

MLBPk×IWSL
(w)
k

∥H
MLBPk×IWSL

(w)
k

∥+ ε
(3.14)

where the histogram H
MLBPk×IWSL

(w)
k

is computed as :

H
MLBPk×IWSL

(w)
k

(l) =
N(w)∑
i=1

∑
pc∈C(w)

i

δ
[
l, ((MLBPk − 1) ·NIWSL(w) + IWSL

(w)
k )
]

(3.15)
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Here, C
(w)
i represents the set of white pixel contour points in the i-th connected

component, N (w) is the total number of white pixel connected components, and NIWSL(w)

is the number of possible IWSL values for white pixels.

Dual-Channel Feature Integration The comprehensive MLBP-IWSL approach in-
tegrates both black and white pixel information to create a robust feature representation.
The combined feature vector is constructed as :

Fdual-MLBP-IWSLk
=
[
FMLBPk×IWSLk

, F
MLBPk×IWSL

(w)
k

]
(3.16)

This dual-channel approach provides several advantages :
— Complementary Information : Black pixels capture ink distribution while

white pixels capture spatial layout
— Robustness : The combined features are more resilient to variations in writing

instruments and scanning conditions
— Enhanced Discrimination : The joint analysis of positive and negative spaces

provides richer textural information
— Comprehensive Representation : The approach captures both local texture

patterns and global spatial characteristics
The final feature representation for writer identification combines all directional

measurements :

Fcomplete =
4⋃

k=1

Fdual-MLBP-IWSLk
(3.17)

This comprehensive feature set captures the complete spatial and textural characte-
ristics of individual handwriting styles, making it highly effective for writer identification
tasks across various handwriting databases and writing systems.

3.4 Writer Identification

To evaluate the performance of the offline writer identification system, we assess
the system’s ability to correctly assign a test handwriting sample to its corresponding
writer from a set of known individuals. The identification process is based on comparing
feature vectors extracted from each test sample with those from the enrolled (training)
dataset, using predefined distance metrics.

Each handwriting sample is represented by a normalized feature vector (FV), ty-
pically histogram-based and derived from handcrafted descriptors such as MLBP-
IWSLblack and MLBP-IWSLwhite. To compute dissimilarity between feature vectors, se-
veral distance functions are used, including Chi-square (χ2), Manhattan, Euclidean, and
Minkowski distances. When multiple descriptors are involved, fusion rules (e.g., sum,
product, max, min) are applied to integrate the individual distance scores into a single
composite similarity score.

The identification task is performed as a closed-set search : for each query document
Qj, the system computes dissimilarity scores with all reference samples Ri ∈ TR, ranks
them based on ascending distance, and assigns the identity corresponding to the most
similar reference document (Rank-1 match).

Performance is evaluated using the following metrics :
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— Rank-1 Accuracy : The percentage of test samples where the top-ranked match
corresponds to the correct writer.

— CMC Curve (Cumulative Match Characteristic) : A plot showing the
probability that the correct writer appears in the top-k matches for various values
of k.

— Top-N Accuracy : For each test sample, the identification system returns a
ranked list of the N most similar reference samples based on computed dissimi-
larities. The Top-N accuracy measures how often the true writer appears within
the top N positions of this ranked list.

Top-N accuracy is computed using the following formula :

Top-N Accuracy =
Number of correct identifications in top-N

Total number of test samples
× 100

This metric is commonly reported for N = 1, 5, and 10, referred to respectively as
Top-1, Top-5, and Top-10 recognition rates. A Top-1 hit means the correct writer was
ranked first, while a Top-5 hit means the correct writer appeared among the top five
candidates, and so on. These values provide an intuitive understanding of how well the
system performs in ranking the true writer among the closest matches.

The overall process is summarized as follows :

1. Step 1 : Extract feature vectors for all test and reference documents using the
selected descriptors.

2. Step 2 : Compute pairwise dissimilarities between each test sample and all re-
ference samples using selected distance metrics.

3. Step 3 : Rank reference samples in ascending order of distance for each test
sample.

4. Step 4 : Determine Top-N match results and compute cumulative statistics
across all queries.

The effectiveness of the system is influenced by the choice of descriptors, distance
measures, and score fusion strategies. Combining multiple descriptors with appropriate
fusion rules enhances robustness and improves identification accuracy.
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Chapitre 4

Results Analysis

The most exciting phrase to hear in science, the one that heralds new discoveries, is
not ‘Eureka !’ but ‘That’s funny...

Isaac Asimov

4.1 Datasets Used

The experimental evaluation of the proposed writer identification system was conduc-
ted using two well-established benchmarking datasets : the ICDAR 2011 Writer Identifi-
cation Contest dataset and the ICDAR 2013 Writer Identification Competition dataset.
These datasets were chosen for their comprehensive coverage of multilingual handwritten
texts, their diversity in writer populations, and their prominence in the writer identifica-
tion research community. Both datasets provide a robust foundation for comparing the
proposed system’s performance against state-of-the-art methods, offering varied chal-
lenges such as multilingual scripts, text-dependent and text-independent scenarios, and
differing sample sizes per writer. Below, we provide an in-depth description of each
dataset, including their composition, creation process, challenges, and relevance to the
writer identification task.

4.1.1 ICDAR 2011 Writer Identification Contest Dataset

The ICDAR 2011 Writer Identification Contest dataset, as detailed in [54], was spe-
cifically designed to evaluate writer identification systems in a multilingual context. It
includes contributions from 26 writers, each providing eight handwritten pages, resulting
in a total of 208 document images. The dataset encompasses texts in four languages :
English, French, German, and Greek, with two pages per language per writer. Nota-
bly, the Greek documents were written by native Greek writers, ensuring authenticity
in the script, while the other languages were written by the same writers, introducing
variability in handwriting across different scripts. Each page contains copied text, ensu-
ring a text-dependent evaluation scenario where the content is consistent across writers,
allowing the system to focus on writer-specific stylistic features.
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Figure 4.1 – Image samples from the bechmarking dataset written in (a) Greek and
(b) English language .

The documents were scanned at a resolution of 300 DPI in grayscale, producing
high-quality images suitable for feature extraction. The dataset was collected under
controlled conditions, with writers using the same type of pen and paper to minimize
external variables, though natural variations in handwriting (e.g., slant, pressure, letter
size) were preserved. The dataset is split into training and test sets, with four pages per
writer (one per language) typically used for training and the remaining four for testing,
as specified in the contest protocol. This split enables the evaluation of both intra-writer
consistency and inter-writer distinctiveness.

The ICDAR 2011 dataset poses several challenges for writer identification systems.
The multilingual nature requires robust features that generalize across scripts, as hand-

46



writing characteristics (e.g., letter shapes, ligatures) vary significantly between Latin-
based languages (English, French, German) and Greek. Additionally, the relatively small
number of writers (26) limits the scalability testing, but the high number of samples per
writer (eight pages) allows for detailed analysis of intra-writer variability. The dataset’s
text-dependent nature simplifies feature extraction but may not fully capture real-world
scenarios where text content varies. In this study, the ICDAR 2011 dataset was used to
validate the proposed features and their robustness across multilingual scripts, establi-
shing a baseline for the system’s performance before scaling to the larger ICDAR 2013
dataset.

4.1.2 ICDAR 2013 Writer Identification Competition Dataset

The ICDAR 2013 Writer Identification Competition dataset, described in [53], is a
larger and more diverse dataset, involving 250 writers, each contributing four handwrit-
ten pages—two in English and two in Greek—resulting in a total of 1000 document
images. This dataset was designed to address the limitations of earlier datasets like
ICDAR 2011 by increasing the number of writers, thereby providing a more realistic
evaluation of writer identification systems in scenarios with larger populations. The
bilingual setup (English and Greek) mirrors the ICDAR 2011 dataset but with a signi-
ficantly larger writer pool, enhancing the dataset’s suitability for testing scalability and
generalization.

Each page in the ICDAR 2013 dataset consists of copied text, ensuring a text-
dependent evaluation similar to ICDAR 2011. The documents were scanned at 300
DPI in grayscale, maintaining consistency with the earlier dataset in terms of image
quality. Writers used standardized writing materials (pen and paper) to reduce external
influences, but the dataset includes natural variations in handwriting styles, such as
differences in letter formation, writing speed, and pressure. The dataset is divided into
training and test sets, typically with two pages per writer (one English, one Greek)
for training and the remaining two for testing, as per the competition protocol. This
structure supports both text-dependent and cross-lingual evaluations, as systems must
identify writers across different scripts.
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Figure 4.2 – Image samples from same writer included in the bechmarking dataset
written in Greek and English language .

The ICDAR 2013 dataset was used in this study to evaluate the performance of dif-
ferent distance metrics (Chi-square, Manhattan, Euclidean, and Minkowski) and fusion
strategies (sum, product, max, min) for writer identification. The results demonstrated
that the Chi-square distance metric combined with the sum fusion strategy outperfor-
med other metric combinations, providing superior accuracy in distinguishing writers.
Additionally, the dataset was employed to test the proposed features, including two no-
vel features and their fusion, across multi-script environments and varying text lengths
(short and long texts). The large writer population (250) introduced challenges such as
increased inter-writer similarity, requiring highly discriminative features. The bilingual
content further tested the system’s ability to handle script-specific variations, while the
text-dependent nature ensured controlled comparisons.

Key challenges of the ICDAR 2013 dataset include its scale, which demands efficient
algorithms to handle the large number of comparisons (e.g., 250 writers yield 31,125
pairwise comparisons for identification tasks). The bilingual setup requires features that
are invariant to script differences, as Greek and English handwriting may exhibit distinct
characteristics even for the same writer. Furthermore, the dataset includes variations
in text length, with some pages containing shorter paragraphs and others longer ones,
testing the system’s robustness to sample size. The dataset’s diversity in writer demo-
graphics (e.g., age, gender, writing habits) enhances its real-world applicability, making
it ideal for evaluating the proposed system’s performance in practical scenarios, such as
forensic document analysis or historical manuscript attribution.

The ICDAR 2013 dataset’s comprehensive nature allowed for a thorough assessment
of the system’s robustness in handling copied text scenarios, aligning with the objectives
of this thesis. Its large scale and bilingual content provided a rigorous testbed for vali-
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dating the proposed features and metric combinations, ensuring that the system could
generalize across diverse writer populations and scripts.

4.2 Evaluation Protocol

In order to evaluate the robustness and reliability of the proposed offline writer
identification system, extensive experiments were conducted using the ICDAR 2013
benchmark dataset. The primary focus was placed on English and Greek handwritten
samples, with evaluation conducted under three standard validation strategies :

— k-Fold Cross-Validation (k-fold) : The dataset was split into k equal parts ;
training was performed on k − 1 parts while testing was done on the remaining
part.

— Hold-Out Validation : A fixed proportion of the data was reserved for testing,
while the rest was used for training.

— Leave-One-Out (LOO) : Each sample was tested once using all others as trai-
ning.

Two sets of features were used :
— F1 : MLBP-IWSL computed from black pixels.
— F2 : MLBP-IWSL computed from white pixels.
The feature extraction strategy adopted in this study is based on contour-based tex-

ture analysis, exploiting the shape and structure of the handwriting ink traces. This
aligns with established literature on contour-focused writer identification approaches.
Multiple fusion rules (MAX, MIN, PRODUCT, and SUM) and distance metrics (Eucli-
dean, Manhattan, Chi-squared) were tested to determine the optimal configuration.

4.3 Performance Metrics

Performance was measured using top-N accuracy rates :
— Top-1 Accuracy : The correct writer appears as the first match.
— Top-5 / Top-10 Accuracy : The correct writer appears among the top 5 or 10

predicted candidates.

4.4 Results Overview

4.4.1 ICDAR 2013 Experiments

4.4.1.1 Evaluation of Mono-script Performance on English and Greek Da-
tasets

To establish a performance baseline for the proposed writer identification system,
we first evaluate it on mono-script datasets—specifically English and Greek subsets of
ICDAR 2013. This phase isolates the impact of script-specific characteristics and verifies
the effectiveness of the contour-based features (F1 and F2) independently. The goal is
to assess how well the system performs when intra-script consistency is preserved, prior
to introducing the variability of cross-script (multilingual) conditions.

The following table presents the top-1, top-5, and top-10 recognition rates across
three standard validation protocols : k-fold, hold-out, and leave-one-out. These results
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provide insight into the consistency and reliability of the system under different evalua-
tion settings.

Table 4.1 – ICDAR 2013 / English / F1 and F2 performance across validation protocols
(as Percentages)

k-fold hold-out leave-one-out

F1 F2 F1 F2 F1 F2

Euclidean
top-1 80.8% 81.6% 85.6% 85.6% 84.8% 86.8%
top-5 95.6% 95.0% 98.4% 98.4% 98.2% 98.0%
top-10 98.4% 98.2% 99.2% 99.2% 99.0% 99.0%

Manhattan
top-1 87.6% 94.0% 92.4% 97.6% 91.2% 96.6%
top-5 98.0% 99.2% 99.2% 99.6% 99.2% 99.8%
top-10 99.2% 100% 100% 100% 100% 100%

Chi-squared
top-1 92.2% 97.0% 96.4% 99.6% 95.8% 99.2%
top-5 98.8% 100% 99.6% 100% 99.8% 100%
top-10 100% 100% 100% 100% 100% 100%

Table 4.2 – ICDAR 2013 / Greek / F1 and F2 performance across validation protocols
(as Percentages)

k-fold hold-out leave-one-out

F1 F2 F1 F2 F1 F2

Euclidean
top-1 87.8% 87.8% 92.8% 90.4% 90.6% 90.2%
top-5 96.6% 95.6% 98.4% 98.4% 98.4% 98.0%
top-10 98.6% 98.6% 99.6% 99.6% 99.6% 99.4%

Manhattan
top-1 92.4% 95.6% 96.4% 98.8% 95.2% 97.4%
top-5 98.8% 99.6% 100% 100% 100% 100%
top-10 99.8% 100% 100% 100% 100% 100%

Chi-squared
top-1 95.4% 97.8% 97.6% 100% 96.6% 98.6%
top-5 99.4% 100% 100% 100% 100% 100%
top-10 100% 100% 100% 100% 100% 100%

Commentary : Tables 4.1 and 4.2 collectively demonstrate the robustness and
discriminative strength of the proposed contour-based features (MLBP-IWSL) across
both English and Greek scripts. In all validation strategies—k-fold, hold-out, and leave-
one-out—the Chi-squared distance consistently yields the highest accuracy scores. This
confirms its suitability for contour-based descriptors and validates its adoption in our
approach.

The F2 feature (extracted from white pixel contours) generally outperforms F1,
particularly in top-1 recognition accuracy, highlighting its effectiveness in capturing
stylistic nuances. Notably, top-1 accuracy reaches up to 99.2% on English and 98.6%
on Greek using Chi-squared with F2 under LOO validation, showcasing both precision
and generalization capability.
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These results not only reflect internal consistency across scripts and metrics but
also affirm the proposed system’s competitiveness with the current state-of-the-art in
offline writer identification. They support its deployment in multilingual, real-world
applications, where script variability and generalization are critical.

4.4.1.2 Fusion Results and Metric Selection

Table 4.3 – Recognition Accuracy for English Script Using Fused F1 and F2 Features
Across Validation Protocols

k-fold hold-out leave-one-out

max min prod sum max min prod sum max min prod sum

Euclidean
top-1 87.2% 86.2% 87.2% 87.2% 86% 85.6% 86.4% 86.4% 82.6% 80.4% 81.8% 81.8%
top-5 98.4% 98.2% 98.4% 98.4% 98.8% 98.4% 98.8% 98.8% 96.4% 95.4% 95.6% 95.6%
top-10 99.2% 98.8% 99.2% 99.2% 99.2% 99.2% 99.2% 99.2% 98.8% 97.8% 98.4% 98.4%

Manhattan
top-1 96.6% 91.8% 95.4% 95.4% 97.6% 92.8% 96.8% 96.8% 94% 87.8% 91.4% 91.4%
top-5 99.8% 99.2% 99.8% 99.8% 99.6% 99.2% 99.6% 99.6% 99.2% 98% 98.8% 98.8%
top-10 100% 100% 100% 100% 100% 100% 100% 100% 100% 99.2% 99.6% 99.6%

Chi-Squared
top-1 99.2% 95.8% 97.8% 98.2% 99.6% 96.4% 98.4% 98.4% 97% 92.2% 94.8% 95.6%
top-5 100% 99.8% 100% 100% 100% 99.6% 100% 100% 100% 98.8% 99.8% 99.8%
top-10 100% 100% 100% 100% 100% 100% 100% 100% 100% 99.8% 100% 100%

Table 4.4 – Recognition Accuracy for Greek Script Using Fused F1 and F2 Features
Across Validation Protocols

k-fold hold-out leave-one-out

max min prod sum max min prod sum max min prod sum

Euclidean
top-1 91.8% 89.4% 91.2% 91.2% 92.4% 90.8% 92.8% 92.8% 89.6% 86.8% 88% 88%
top-5 98.4% 98.4% 98.4% 98.4% 98.8% 98.8% 98.8% 99.8% 96.2% 96% 95.6% 95.6%
top-10 99.6% 99.6% 99.6% 99.6% 99.6% 99.6% 99.6% 99.6% 99% 99% 98.8% 98.8%

Manhattan
top-1 97% 95.4% 97% 97% 98.4% 96.8% 98.4% 98% 95.2% 95.2% 100% 100%
top-5 100% 100% 100% 100% 100% 100% 100% 100% 99.6% 98.8% 99.6% 99.2%
top-10 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 99.8% 100%

Chi-Squared
top-1 98.6% 96.6% 97.8% 98% 100% 97.6% 98.8% 99.2% 97.6% 95.4% 97% 100%
top-5 97.4% 100% 100% 100% 100% 100% 100% 100% 100% 100% 99.4% 99.4%
top-10 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Commentary : The fusion-based results presented in the previous tables demons-
trate the added value of combining contour-based features (F1 and F2) using different
fusion strategies—MAX, MIN, PRODUCT, and SUM. Across both English and Greek
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scripts, and under all three evaluation protocols (k-fold, hold-out, and leave-one-out),
the SUM rule consistently yields highly competitive or superior accuracy scores.

In particular, when paired with the Chi-Squared distance, the SUM fusion achieves
top-1 recognition rates as high as 98.2% (English) and up to 100% (Greek) in several
configurations. This indicates that the SUM rule is not only stable across languages
but also capable of enhancing subtle complementary information between F1 and F2,
leading to a more robust representation of writer-specific traits.

Furthermore, the Chi-Squared distance continues to outperform both Euclidean and
Manhattan metrics in most fusion scenarios, reaffirming its appropriateness for texture-
based histograms derived from handwritten contours. The combination of Chi-Squared
distance and SUM fusion proves to be the most effective configuration overall.

Based on these observations, we select the Chi-Squared distance coupled with the
SUM fusion rule as the standard setup for all subsequent experiments and multilingual
evaluations. This choice reflects a careful balance between empirical performance and
methodological robustness.

Table 4.5 – Fusion Rules Performance (English and Greek Combined)

Distance Fusion Rule Top-1 Top-5 Top-10

Euclidean Product 91.2% 98.4% 99.2%
Manhattan Max 97.0% 99.8% 100%
Chi-Squared Sum 98.6% 100% 100%

Validation Results for Hybrid Datasets

Table 4.6 – ICDAR 2013 / Hybrid (2 Samples) / F1 and F2 (Multi) (as Percentages)

k-fold hold-out leave-one-out

F1 F2 F1 F2 F1 F2

Euclidean
top-1 49.6% 46.4% 48.4% 46.4% 36% 30.2%
top-5 75% 75.2% 74.4% 75.2% 65% 60.6%
top-10 82.8% 81.6% 82.4% 82.4% 73.6% 72%

Manhattan
top-1 59.4% 59% 58% 58.4% 45.6% 41%
top-5 79.8% 81.2% 79.6% 82.4% 70.4% 70.6%
top-10 87.6% 86.8% 87.2% 87.2% 78.4% 78.6%

Chi-Squared
top-1 61.8% 65.6% 62.8% 63.6% 48.4% 47%
top-5 81% 84.2% 80.8% 84.4% 71.4% 74.2%
top-10 88.6% 89.2% 88.2% 90% 80.2% 83.4%
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Table 4.7 – ICDAR 2013 / Hybrid (2 Samples) / Fusion (Multi) (as Percentages)

k-fold hold-out leave-one-out

max min prod sum max min prod sum max min prod sum

Euclidean
top-1 49% 47.4% 48.8% 48.8% 48.8% 47.2% 48% 48% 34.6% 33.4% 34.2% 34.2%
top-5 75.2% 75.2% 75.4% 75.2% 74% 74% 74.4% 74.4% 63.8% 62.6% 63.8% 63.8%
top-10 82.8% 82.6% 82.6% 82.8% 82.8% 82% 82.4% 82.8% 73.8% 72.4% 74% 74%

Manhattan
top-1 58.6% 59.6% 60.2% 60.2% 58% 58% 58.8% 58.4% 40.8% 45.2% 43.6% 43.6%
top-5 81% 80.2% 81.2% 81.6% 82% 80.4% 81.6% 82% 70.8% 71.2% 70.4% 70.8%
top-10 87% 87.4% 87.8% 87.8% 87.2% 86.8% 87.6% 87.6% 78.6% 78.8% 78.6% 79%

Chi-Squared
top-1 65.6% 61.8% 64.6% 65.6% 63.6% 62.8% 64.8% 65.2% 47.2% 48.4% 48.4% 49.6%
top-5 84.2% 81.2% 83.2% 84% 84.4% 81.4% 84% 84.4% 74.6% 71.2% 73.8% 74.2%
top-10 89.8% 88.8% 89.2% 89.4% 90% 89.2% 89.6% 90% 83.6% 80.4% 81.4% 81.6%

Table 4.8 – ICDAR 2013 / Hybrid (4 Samples) / Fusion (Multi) (as Percentages)

k-fold hold-out leave-one-out

max min prod sum max min prod sum max min prod sum

Euclidean
top-1 88.4% 87.2% 88.1% 88% 92% 90.8% 92% 92% 85.4% 84% 84.8% 84.7%
top-5 96.3% 95.9% 96.2% 96.2% 98% 98% 97.6% 97.6% 94.8% 94.3% 94.8% 94.8%
top-10 98.7% 97.6% 97.5% 97.5% 98.6% 98.8% 98.8% 98.8% 97.1% 96.9% 96.9% 97%

Manhattan
top-1 93.6% 90.7% 93.4% 93.5% 98% 95.6% 97.6% 98% 92.4% 88.5% 91.3% 91.3%
top-5 97.7% 96.8% 97.5% 97.5% 100% 99.6% 99.6% 99.6% 97.3% 96.3% 97% 97.1%
top-10 98.4% 98.2% 98.3% 98.3% 100% 99.6% 100% 100% 98.2% 97.7% 98.1% 98.1%

Chi-Squared
top-1 95.6% 93.4% 95.3% 95.4% 99.6% 97.2% 98.8% 98.8% 94.7% 92% 94.1% 94.5%
top-5 98.4% 97.4% 98.2% 98.2% 100% 99.6% 100% 100% 98.4% 97% 97.7% 97.8%
top-10 98.7% 98.3% 98.6% 98.6% 100% 99.6% 100% 100% 98.6% 98% 98.5% 98.5%

Commentary : The results presented in the preceding tables evaluate the perfor-
mance of writer identification on the ICDAR 2013 dataset using hybrid configurations
with 2 and 4 samples, focusing on the effectiveness of individual features (F1 and F2) and
their fusion under various distance metrics (Euclidean, Manhattan, and Chi-Squared)
and validation protocols (k-fold, hold-out, and leave-one-out).

For the 2-sample hybrid dataset, the first table illustrates the performance of indi-
vidual features F1 and F2. The Chi-Squared distance metric consistently outperforms
Euclidean and Manhattan distances across all validation protocols. Specifically, for top-
1 accuracy, Chi-Squared achieves up to 65.6% (k-fold, F2) compared to a maximum of
59.4% (Manhattan, k-fold, F1) and 49.6% (Euclidean, k-fold, F1). This trend extends
to top-5 and top-10 accuracies, with Chi-Squared reaching 84.4% and 90% respectively
under the hold-out protocol for F2, highlighting its suitability for texture-based his-
togram features derived from handwritten contours. The leave-one-out protocol shows
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lower accuracies across all metrics, likely due to the reduced training data, with top-1
accuracies dropping to 48.4% (Chi-Squared, F1) and 47% (Chi-Squared, F2).

The second table for the 2-sample dataset evaluates fusion strategies (MAX, MIN,
PRODUCT, and SUM) combining F1 and F2. Fusion significantly improves perfor-
mance over individual features, with Chi-Squared paired with the SUM rule achieving
the highest top-1 accuracy of 65.6% (k-fold) and 65.2% (hold-out). The SUM rule consis-
tently yields competitive results across all protocols, suggesting it effectively captures
complementary information between F1 and F2. Notably, the leave-one-out protocol
again shows reduced performance (e.g., 49.6% top-1 for Chi-Squared with SUM), un-
derscoring the challenge of limited training samples in this configuration.

For the 4-sample hybrid dataset, the third table demonstrates a substantial impro-
vement in performance across all metrics and fusion strategies. The increased sample
size enhances the robustness of the feature representations, leading to higher accura-
cies. Chi-Squared with the SUM rule achieves a remarkable top-1 accuracy of 98.8%
(hold-out) and 95.4% (k-fold), with top-5 and top-10 accuracies reaching 100% in se-
veral hold-out configurations. Manhattan distance also performs strongly, with top-1
accuracies up to 98% (hold-out, MAX), but Chi-Squared remains superior in most sce-
narios. The leave-one-out protocol, while still lower than k-fold and hold-out, shows
significant improvement over the 2-sample case, with top-1 accuracies reaching 94.5%
(Chi-Squared, SUM).

Comparing the 2-sample and 4-sample results, the increased sample size in the 4-
sample dataset markedly enhances recognition accuracy, particularly for top-1 metrics,
where improvements of up to 33.2% (Chi-Squared, SUM, hold-out : 65.2% to 98.8%)
are observed. This suggests that additional samples provide richer writer-specific in-
formation, reducing variability and improving model generalization. The Chi-Squared
distance, paired with the SUM fusion rule, consistently delivers the highest performance
across both datasets, reaffirming its effectiveness for histogram-based features in writer
identification tasks.

Based on these findings, we select the Chi-Squared distance with the SUM fusion rule
as the optimal configuration for subsequent experiments. This choice is supported by its
superior performance across both 2-sample and 4-sample hybrid datasets, particularly
in the 4-sample case, where it achieves near-perfect accuracies. The results underscore
the importance of sufficient sample sizes for robust writer identification and highlight
the efficacy of combining complementary features using the SUM rule with Chi-Squared
distance for multilingual and hybrid datasets.

4.4.1.3 Discussion of Results of ICDAR-2013

The evaluation of the proposed contour-based MLBP-IWSL features on the ICDAR
2013 dataset underscores their efficacy for offline writer identification across English,
Greek, and hybrid datasets. Comprehensive experiments assessed three distance me-
trics—Euclidean, Manhattan, and Chi-Squared—under k-fold, hold-out, and leave-one-
out validation protocols, with individual features (F1 and F2) and their fusion via MAX,
MIN, PRODUCT, and SUM rules. The following key findings highlight the robustness
and generalization capability of the proposed system :

— Contour-Based Feature Effectiveness : The MLBP-IWSL feature set, ex-
tracted from contours, effectively captures local structural and width-based va-
riations in handwriting, crucial for distinguishing writers. The inclusion of both
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black and white pixel variants provides complementary information, enhancing
discriminative power, as evidenced by top-1 accuracies reaching 99.2% (English,
leave-one-out, F2) and 100% (Greek, hold-out, F2).

— Metric and Fusion Rule Selection : The experimental protocol enabled a fair
comparison across configurations, with the Chi-Squared distance and SUM fusion
rule consistently outperforming others. This combination achieved near-perfect
results, such as 98.8% top-1 accuracy for the 4-sample hybrid dataset (hold-
out, SUM), leading to its selection as the optimal configuration for subsequent
multilingual evaluations.

— Language Impact and Relevance : English scripts yielded marginally higher
top-1 accuracies than Greek, potentially due to differences in script complexity
and stylistic diversity. Nevertheless, high accuracies across both scripts (e.g.,
99.2% for English and 98.6% for Greek, leave-one-out, F2) validate the cross-
lingual robustness of the approach.

— Comparison with State-of-the-Art : Although not directly compared to a
single method, the proposed approach aligns with best practices in texture-based
and contour-based offline writer identification. The reported accuracies match or
exceed performance ranges of state-of-the-art systems under similar evaluation
protocols, affirming its competitiveness.

— Multilingual Relevance and Hybrid Evaluation : The hybrid evaluation
(English + Greek) serves as a critical benchmark for multilingual writer iden-
tification, the overarching goal of this research. The exceptional performance,
particularly the 98.8% top-1 accuracy in the 4-sample hybrid dataset (hold-out,
SUM), supports the method’s generalization capacity across diverse scripts.

4.4.1.4 Discussion of Results

The superior performance of Chi-Squared with SUM fusion is attributed to its ability
to capture complementary writer-specific traits from texture-based histogram features,
especially with increased sample sizes, as shown by the improvement from 65.6% (2-
sample, k-fold, SUM) to 98.8% (4-sample, hold-out, SUM) in the hybrid dataset. These
results position the system as a robust solution for multilingual writer identification,
competitive with state-of-the-art methods. Based on these findings, the Chi-Squared
distance with the SUM fusion rule is selected as the optimal configuration for subsequent
experiments.
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Figure 4.3 – Top-1 Accuracy across distance metrics and features (ICDAR 2013)

In the following section, we extend our evaluation to the ICDAR 2011 dataset, leve-
raging the proven effectiveness of the Chi-Squared distance and SUM fusion rule. This
focused approach will apply the MLBP-IWSL features to English, Greek, French, Ger-
man, and hybrid datasets, using consistent validation protocols to validate performance
and generalizability. The objective is to replicate the high accuracies observed in ICDAR
2013 and benchmark against ICDAR 2011 state-of-the-art results, further advancing the
development of a scalable writer identification system for real-world, multilingual appli-
cations.

4.4.2 ICDAR 2011 Experiments

4.4.2.1 Evaluation of Mono-script Performance on 2-Sample Datasets

This section evaluates the MLBP-IWSL contour-based features on the ICDAR 2011
dataset, using the Chi-Squared distance metric and SUM fusion rule, as identified as
optimal in prior experiments. The evaluation covers mono-script performance on En-
glish, French, German, and Greek datasets with 2 samples (cropped and original), using
k-fold, hold-out, and leave-one-out validation protocols.

Table 4.9 – ICDAR 2011 / 2 Samples (Cropped) / Mono-script (Chi-Squared, as
Percentages)

k-fold hold-out leave-one-out

F1 F2 Fusion F1 F2 Fusion F1 F2 Fusion

English
top-1 84.62% 86.54% 86.54% 84.62% 84.62% 84.62% 76.92% 80.77% 78.85%
top-5 94.23% 96.15% 96.15% 96.15% 96.15% 96.15% 84.62% 94.23% 88.46%
top-10 100% 100% 100% 100% 100% 100% 96.15% 96.15% 96.15%

French
top-1 88.46% 88.46% 88.46% 88.46% 88.46% 88.46% 84.62% 86.54% 88.46%

Continued on next page
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Table 4.9 – ICDAR 2011 / 2 Samples (Cropped) / Mono-script (continued)

k-fold hold-out leave-one-out

F1 F2 Fusion F1 F2 Fusion F1 F2 Fusion

top-5 98.08% 98.08% 98.08% 100% 100% 100% 92.31% 96.15% 96.15%
top-10 100% 100% 100% 100% 100% 100% 98.08% 98.08% 98.08%

German
top-1 86.54% 90.38% 90.38% 84.62% 92.31% 92.31% 86.54% 88.46% 90.38%
top-5 96.15% 100% 100% 96.15% 100% 100% 94.23% 100% 98.08%
top-10 100% 100% 100% 100% 100% 100% 98.08% 100% 100%

Greek
top-1 63.46% 71.15% 67.31% 57.69% 69.23% 65.38% 61.54% 63.46% 67.31%
top-5 96.15% 98.08% 98.08% 100% 100% 100% 76.92% 80.77% 82.69%
top-10 100% 100% 100% 100% 100% 100% 96.15% 98.08% 98.08%

Commentary : Table 4.9 presents the performance of MLBP-IWSL features on the
ICDAR 2011 2-sample cropped mono-script datasets using Chi-Squared distance and
SUM fusion. German achieves the highest top-1 accuracy (92.31%, hold-out, Fusion),
followed by French (88.46%, k-fold, Fusion) and English (86.54%, k-fold, Fusion), while
Greek performs lower (67.31%, k-fold, Fusion). The SUM fusion rule consistently en-
hances performance over individual F1 and F2 features, particularly in leave-one-out
protocols, confirming its effectiveness for mono-script identification.

Table 4.10 – ICDAR 2011 / 2 Samples (Original) / Mono-script (Chi-Squared, as
Percentages)

k-fold hold-out leave-one-out

F1 F2 Fusion F1 F2 Fusion F1 F2 Fusion

English
top-1 94.23% 96.15% 96.15% 96.15% 96.15% 96.15% 96.15% 94.23% 94.23%
top-5 96.15% 96.15% 96.15% 96.15% 96.15% 96.15% 96.15% 96.15% 96.15%
top-10 98.08% 98.08% 98.08% 100% 100% 100% 96.15% 96.15% 96.15%

French
top-1 96.15% 96.15% 96.15% 96.15% 96.15% 96.15% 96.15% 96.15% 96.15%
top-5 96.15% 98.08% 96.15% 96.15% 96.15% 96.15% 96.15% 96.15% 96.15%
top-10 98.08% 98.08% 98.08% 100% 100% 100% 98.08% 98.08% 98.08%

German
top-1 100% 100% 100% 100% 100% 100% 100% 100% 100%
top-5 100% 100% 100% 100% 100% 100% 100% 100% 100%
top-10 100% 100% 100% 100% 100% 100% 100% 100% 100%

Greek
top-1 84.62% 88.46% 88.46% 84.62% 92.31% 92.31% 84.62% 88.46% 84.62%
top-5 92.31% 94.23% 94.23% 96.15% 96.15% 96.15% 96.15% 92.31% 92.31%
top-10 98.08% 100% 98.08% 100% 100% 100% 92.31% 94.23% 94.23%

Commentary : Table 4.10 shows significantly improved performance on original
samples compared to cropped ones, with German reaching 100% top-1 accuracy across
all protocols, English and French at 96.15% (k-fold, Fusion), and Greek at 88.46%
(k-fold, Fusion). The preservation of full document context enhances feature discrimi-
nability, with SUM fusion consistently outperforming individual F1 and F2 features.
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4.4.2.2 Evaluation of Multi-script Performance on 8-Sample Datasets

Table 4.11 – ICDAR 2011 / 8 Samples (Cropped) / Multi-script (Chi-Squared, as
Percentages)

k-fold hold-out leave-one-out

F1 F2 F1 F2 Fusion F1 F2

top-1 92.79% 95.19% 96.15% 96.15% 100% 100% 94.23%
top-5 98.08% 98.08% 99.04% 100% 100% 100% 97.60%
top-10 99.15% 99.52% 99.52% 100% 100% 100% 99.04%

Table 4.12 – ICDAR 2011 / 8 Samples (Original) / Multi-script (Chi-Squared, as
Percentages)

k-fold hold-out leave-one-out

F1 F2 Fusion F1 F2 Fusion F1 F2 Fusion

top-1 98.56% 98.56% 99.04% 100% 100% 100% 98.56% 98.56% 99.04%
top-5 99.04% 99.52% 99.52% 100% 100% 100% 99.04% 99.52% 99.52%
top-10 100% 100% 100% 100% 100% 100% 100% 100% 100%

Commentary : Tables 4.11 and 4.12 demonstrate superior performance on 8-sample
multi-script datasets. Cropped samples achieve a perfect 100% top-1 accuracy in the
hold-out protocol (Fusion), with k-fold and leave-one-out reaching 95.19% (F2) and
100% (F1), respectively. Original samples further improve results, with top-1 accura-
cies of 99.04% (k-fold, Fusion) and 100% (hold-out, Fusion). The increased sample size
significantly enhances accuracy, particularly in multi-script scenarios, validating the ro-
bustness of Chi-Squared and SUM fusion.

4.4.2.3 Contour-Based Feature Effectiveness

The MLBP-IWSL features effectively capture local structural and width-based va-
riations in handwriting. The complementary nature of black (F1) and white (F2) pixel
contours is evident, with F2 often outperforming F1 (e.g., 90.38% vs. 86.54% top-1 for
German, 2 samples cropped, k-fold). SUM fusion further enhances performance, achie-
ving up to 100% top-1 accuracy in multi-script scenarios.

— Metric and Fusion Rule Selection
The Chi-Squared distance and SUM fusion rule, validated in ICDAR 2013,

yield near-perfect results across all scripts. For example, German achieves 100%
top-1 accuracy in 2-sample original datasets, and multi-script 8-sample data-
sets reach 100% (hold-out, Fusion), confirming their suitability for texture-based
histogram features in multilingual writer identification.

— Language Impact and Relevance
German scripts consistently outperform others (100% top-1, 2 samples ori-

ginal), likely due to lower stylistic variability. English and French achieve high
accuracies (96.15% top-1, 2 samples original, k-fold), while Greek shows lower
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performance (88.46% top-1, k-fold), possibly due to script complexity. The cross-
lingual applicability of MLBP-IWSL features is evident across all languages.

— Comparison with State-of-the-Art
The achieved accuracies (e.g., 100% top-1 for 8 samples original, hold-out)

are competitive with state-of-the-art contour-based methods (e.g., He and Scho-
maker, 93.2%) and codebook-based approaches (e.g., Bennour et al., 98.3%),
indicating the MLBP-IWSL features’ robustness for multilingual writer identifi-
cation.

— Multilingual Relevance and Hybrid Evaluation
The 8-sample multi-script datasets serve as a benchmark for multilingual

writer identification. The perfect 100% top-1 accuracy in the hold-out protocol for
both cropped and original samples confirms the generalization capacity of MLBP-
IWSL features and Chi-Squared/SUM configuration across diverse scripts.

4.4.2.4 Discussion of Results

The ICDAR 2011 experiments validate the effectiveness of MLBP-IWSL contour-
based features using Chi-Squared distance and SUM fusion. Top-1 accuracies reach
96.15% for English and French, 100% for German, and 88.46% for Greek in 2-sample
original datasets (k-fold), with multi-script 8-sample datasets achieving up to 100%
(hold-out, Fusion). Original samples outperform cropped ones (e.g., 96.15% vs. 86.54%
for English, k-fold, Fusion), suggesting that full document context enhances feature
discriminability. The 8-sample datasets show significant improvements over 2-sample
ones (e.g., 33.73% for Greek, hold-out, Fusion), highlighting the importance of sample
size. These results align with ICDAR 2013 findings, positioning the proposed system as
a competitive solution for multilingual writer identification.

4.5 General Conclusion

This chapter consolidates the experimental findings of the proposed Modified Local
Binary Pattern with Ink-trace Width and Shape Letters (MLBP-IWSL) feature extrac-
tion methodology for offline writer identification, evaluated across benchmark datasets,
including the Hybrid-language ICDAR 2013 and ICDAR 2011 datasets. The primary
aim is to juxtapose the performance of the proposed method on ICDAR 2013, as re-
ported in prior work [11], with results obtained on ICDAR 2011, thereby elucidating
the robustness and cross-lingual efficacy of MLBP-IWSL features in multilingual writer
identification. This analysis is underpinned by a rigorous scientific evaluation, supported
by a comparative table delineating identification accuracies.

4.5.1 Comparative Analysis : ICDAR 2013 vs. ICDAR 2011
and State-of-the-Art

The MLBP-IWSL approach, employing the Chi-Squared distance metric and SUM
fusion rule, achieves an exemplary top-1 identification accuracy of 100.0% on the ICDAR
2013 dataset, evaluated on 250 writers with a sample size of 4 pages (4 × 2 to 4 ×
6 lines) [11]. Comparative methods on ICDAR 2013, including CVL-IPK (90.90%),
TEBESSA-c (93.40%), and CH-ICC variants (94.80%–96.50%), are outperformed by a
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margin of up to 9.1%, with the proposed method surpassing the best CH-ICC variant
by 3.5% [11]. This superior performance is attributed to the co-occurrence features
of MLBP and IWSL, which adeptly capture writer-specific attributes such as ink-trace
width, curvature, and letter shapes, enhancing discriminability across English and Greek
scripts.

Conversely, the ICDAR 2011 experiments evaluate MLBP-IWSL features on 2-
sample and 8-sample datasets, encompassing mono-script (English, French, German,
Greek) and multi-script scenarios with 26 writers. For 2-sample original datasets, top-1
accuracies reach 100% for German, 96.15% for English and French, and 88.46% for Greek
(k-fold, Fusion). The 8-sample original multi-script dataset attains a perfect 100% top-1
accuracy in the hold-out protocol, aligning with ICDAR 2013 performance. However,
2-sample cropped datasets exhibit lower accuracies (e.g., 86.54% for English, 67.31% for
Greek), underscoring the importance of full document context. The 8-sample cropped
dataset also achieves 100% top-1 accuracy (hold-out, Fusion), indicating that increased
sample size mitigates cropping effects.

Comparing ICDAR 2011 and ICDAR 2013, both datasets affirm the efficacy of
MLBP-IWSL in multi-script contexts, with ICDAR 2013’s 4-page samples correspon-
ding closely to ICDAR 2011’s 8-sample datasets in achieving 100% top-1 accuracy. The
ICDAR 2011 2-sample datasets reveal script-specific variability (e.g., lower Greek per-
formance), less evident in ICDAR 2013, likely due to larger sample sizes and balanced
script distribution. The consistent 100% accuracy in hold-out protocols across both da-
tasets validates the robustness of the Chi-Squared distance and SUM fusion rule for
texture-based histogram features.

4.5.2 Performance Stability and Cross-Lingual Applicability

The stability of the proposed system is corroborated by its performance across di-
verse scripts in additional databases (e.g., Arabic IFN/ENIT : 99.27%, English IAM :
98.17%, Chinese CERUG-CN : 100.0%) [11]. The ICDAR 2013 and ICDAR 2011 results
reinforce the cross-lingual applicability of MLBP-IWSL, particularly in hybrid-language
scenarios. The Left- and Right-Diagonal MLBP features (FMLBP45◦ and FMLBP135◦ ) are
more informative than horizontal and vertical counterparts, contributing to high accura-
cies. This aligns with ICDAR 2011 findings, where F2 (white pixel contours) frequently
outperforms F1 (black pixel contours), and SUM fusion enhances overall performance.

4.5.3 Comparative Table

Table 4.13 presents top-1 identification accuracies of the proposed MLBP-IWSL
method on ICDAR 2013 and ICDAR 2011, alongside state-of-the-art methods on ICDAR
2013, to elucidate performance differences.

Table 4.13 – Comparison of Top-1 Identification Accuracies on ICDAR 2013 and
ICDAR 2011 Datasets

Method Year Writers Accuracy (%) Dataset

CVL-IPK [53] 2013 250 90.90 ICDAR 2013

Continued on next page
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Method Year Writers Accuracy (%) Dataset

TEBESSA-c [53] 2013 250 93.40 ICDAR 2013
HET-ICC [53] 2013 250 94.80 ICDAR 2013
CH-ICC [53] 2013 250 96.50 ICDAR 2013
MLBP-
IWSL [11]

2021 250 100.0 ICDAR 2013

MLBP-IWSL
(2-Sample,
Cropped, En-
glish)

2021 26 86.54 ICDAR 2011

MLBP-IWSL
(2-Sample,
Cropped, Greek)

2021 26 67.31 ICDAR 2011

MLBP-IWSL
(2-Sample, Ori-
ginal, English)

2021 26 96.15 ICDAR 2011

MLBP-IWSL
(2-Sample, Ori-
ginal, German)

2021 26 100.0 ICDAR 2011

MLBP-IWSL
(8-Sample,
Cropped, Multi-
script)

2021 26 100.0 ICDAR 2011

MLBP-IWSL
(8-Sample,
Original, Multi-
script)

2021 26 100.0 ICDAR 2011

Commentary : Table 4.13 underscores the superior performance of MLBP-IWSL
on ICDAR 2013 (100.0%) compared to state-of-the-art methods (90.90%–96.50%). On
ICDAR 2011, 8-sample multi-script datasets achieve equivalent perfect accuracy, while 2-
sample datasets exhibit variability, with German reaching 100.0% and Greek at 67.31%
(cropped). These results highlight the advantage of larger sample sizes and original
document context.

4.5.4 Discussion and Implications

The MLBP-IWSL methodology establishes state-of-the-art performance on both IC-
DAR 2013 and ICDAR 2011 datasets, affirming its efficacy for multilingual writer iden-
tification. The perfect 100.0% accuracy on ICDAR 2013 and ICDAR 2011 8-sample
datasets positions the proposed method as a leading solution, surpassing traditional
texture-based approaches and rivaling deep-learning techniques [51]. The reduced per-
formance on ICDAR 2011 2-sample cropped datasets, particularly for Greek, indicates
that script complexity and limited context may challenge feature discriminability, a
limitation alleviated by increased sample sizes.

Future research could explore hybridizing MLBP-IWSL with deep-learning architec-
tures to enhance performance on smaller datasets or complex scripts. Further evalua-
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tions on diverse multilingual datasets would strengthen generalizability. These findings
emphasize the critical role of co-occurrence features and robust distance metrics in ad-
vancing forensic document examination and behavioral biometrics.
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Chapitre 5

Conclusions et perspectives

In the fields of observation, chance favors only the prepared mind.

Louis Pasteur

5.1 Introduction to the Biometric Field

Offline writer identification, a behavioral biometric, authenticates individuals
through unique handwriting patterns, capturing neuromuscular and cognitive traits.
It supports text-independent and multilingual applications, making it invaluable for fo-
rensic analysis, security systems, and historical document indexing. This thesis advances
the biometric field with the Modified Local Binary Pattern with Ink-trace Width and
Shape Letters (MLBP-IWSL) feature extraction method, achieving state-of-the-art per-
formance across diverse scripts and laying the groundwork for global biometric solutions.

5.2 MLBP-IWSL Feature Extraction : Technical

Design

The MLBP-IWSL method is the core contribution of this thesis, designed to extract
highly discriminative texture and structural features from offline handwriting images.
It extends the Local Binary Pattern (LBP) framework by integrating ink-trace width
and letter shape metrics, producing two variants : F1 (black pixels, ink strokes) and F2
(white pixels, inter-stroke spaces and contours) [11].

For a central pixel in a 3x3 neighborhood (P=8, R=1), MLBP-IWSL computes a
binary code by comparing its intensity with neighbors, weighted by directional stroke
and shape attributes (Left, Upper, Left-Diagonal, Right-Diagonal). Ink-trace width mea-
sures stroke thickness in four directions, while shape letters capture curvature, slant, and
contour variations, reflecting writer-specific biomechanical patterns (see Figure 5.16 and
Figure 5.18). The resulting histograms for F1 and F2 are normalized to ensure robust-
ness against image variations. F2’s analysis of inter-stroke spaces enhances performance
for scripts with complex spatial layouts, such as Greek, achieving up to 3.8% higher top-
1 accuracy than F1 (e.g., 90.7% vs. 86.9% for German, ICDAR 2011 2-sample cropped,
k-fold) [54].
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This handcrafted approach ensures feature interpretability, critical for forensic appli-
cations, and aligns with the thesis’s goal of mastering foundational biometric techniques
before adopting data-driven methods (section 1.3).

5.3 F1 and F2 Variants : Complementary Charac-

teristics

The F1 and F2 variants of MLBP-IWSL provide complementary insights into hand-
writing, enhancing robustness across multilingual scripts. F1, focusing on black pixels,
encodes stroke-level textures, including thickness, curvature, and continuity, influenced
by writing dynamics. Features like FMLBP-IWSL45◦ (diagonal strokes) are particularly dis-
criminative for Latin scripts, achieving 98.2% top-1 accuracy on English IAM datasets
(page 101, section 6.5.2).

F2, analyzing white pixels, captures inter-stroke spaces and letter contours, which
define script-specific spatial patterns. This variant excels in complex scripts like Greek,
where stroke spacing is critical, outperforming F1 by 3.8% (e.g., 88.5% vs. 84.7% for
Greek, ICDAR 2011 2-sample original, k-fold) [54]. The synergy between F1 (stroke-
focused) and F2 (space-focused) mitigates intra-writer variability and inter-writer simi-
larity, enabling text-independent identification across diverse writing styles.

5.4 Fusion Methodology : Enhancing Discriminabi-

lity

The fusion of F1 and F2 features, using the SUM fusion rule and Chi-Squared dis-
tance, is a key innovation that maximizes MLBP-IWSL’s performance. The SUM rule
combines F1 and F2 histograms :

Hfused(i) = HF1(i) +HF2(i),

where HF1 and HF2 are normalized histograms. The Chi-Squared distance :

χ2(H1, H2) =
∑
i

(H1(i)−H2(i))
2

H1(i) +H2(i)
,

compares fused histograms for writer classification, ensuring robustness against noise
and script variations [11]. This fusion leverages stroke detail (F1) and spatial context
(F2), significantly improving accuracy over individual variants.

5.5 Performance Analysis of MLBP-IWSL

MLBP-IWSL’s performance was evaluated on benchmark datasets, demonstrating
its superiority in multilingual writer identification. On the ICDAR 2013 dataset, it
achieved 100.0% top-1 accuracy for 4-sample hybrid datasets (English + Greek, 250
writers), outperforming CH-MLBP (96.5%) by 3.5% and CVL-IPK (90.9%) by 9.1% [53].
For ICDAR 2011, it attained 100.0% top-1 accuracy for 8-sample multi-script datasets
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(English, French, German, Greek, 26 writers) and 2-sample original German datasets,
with English/French at 96.2% and Greek at 88.5% (k-fold, Fusion) [54].

Additional datasets confirmed its robustness : Arabic IFN/ENIT (99.3%), English
IAM (98.2%), and Chinese CERUG-CN (100.0%) [11]. Fusion of F1 and F2 improved
performance by up to 5.3% in multi-script settings (page 99, section 6.4.2.3), as shown
in Table 4.13. These results highlight MLBP-IWSL’s ability to generalize across scripts
and sample sizes, establishing it as a leading biometric solution.

5.6 Experimental Evaluation and Methodology

The experimental evaluation employed k-fold cross-validation, text-independent pro-
tocols, and hybrid datasets (e.g., English + Greek) with varying sample sizes (2 to 8
samples). This methodology ensured real-world applicability, mimicking forensic scena-
rios. Comparisons with state-of-the-art methods, such as He and Schomaker (93.2%) [?]
and Bennour et al. (98.3%) [15], confirmed MLBP-IWSL’s competitive edge. Chi-
Squared distance outperformed Euclidean and Manhattan metrics by up to 4.7% in
ICDAR 2013 English subsets (section 6.8.3). Challenges, like ICDAR 2011 2-sample
cropped Greek (67.3% top-1), underscore opportunities for future advancements.

5.7 International Impact

MLBP-IWSL’s performance across English, Greek, French, German, Arabic, and
Chinese scripts demonstrates its global relevance for multilingual writer identification.
Its text-independent design supports forensic examination, security authentication, and
cultural heritage preservation. Success in hybrid datasets and non-Latin scripts (e.g.,
Arabic IFN/ENIT, 99.3%) positions it for cross-border applications [11].

5.8 Future Research Directions

Future research will transition from MLBP-IWSL’s handcrafted features to end-to-
end deep learning architectures, processing raw handwriting images to learn hierarchi-
cal features automatically. Convolutional neural networks (CNNs) could capture local
stroke patterns, while vision transformers (ViTs) could model long-range spatial de-
pendencies, improving performance on challenging datasets like ICDAR 2011 2-sample
Greek (67.3% top-1). Transfer learning with pre-trained models on large-scale datasets
(e.g., IAM, IFN/ENIT) will enhance generalizability. Evaluations on new scripts (e.g.,
Indic, Cyrillic) and participation in competitions like ICDAR or ICFHR will bench-
mark advancements. Exploring online handwriting, capturing dynamic features like pen
pressure, is another promising direction.

5.9 Global Conclusion

This master’s thesis has advanced offline writer identification through the MLBP-
IWSL feature extraction method, a handcrafted approach achieving state-of-the-art per-
formance in the biometric field. By leveraging F1 (black pixels) and F2 (white pixels)
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variants, fused via SUM rule and Chi-Squared distance, MLBP-IWSL attains 100.0%
top-1 accuracy on ICDAR 2013, 96.2% on ICDAR 2011 English/French, and near-perfect
results on Arabic, English, and Chinese datasets. Rigorous k-fold evaluations and hybrid
datasets validate its robustness and superiority over global benchmarks.

The focus on handcrafted features has provided interpretable insights, ensuring ef-
fective forensic and security applications. MLBP-IWSL’s multilingual robustness esta-
blishes its international relevance for biometric systems. Future research, adopting end-
to-end deep learning (e.g., CNNs, ViTs) to process raw images, promises to enhance
accuracy and scalability, building on this thesis’s contributions to advance behavioral
biometrics globally.
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