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Abstract

The stochastic Koopman operator characterizes the average evolution of observables in dynamical
systems subject to uncertainty or noise. This study focuses on random dynamical systems (RDS)
in both discrete and continuous time. We analyze the spectrum and eigenfunctions of several linear
RDS. In particular, we examine cases where the family of operators forms a semigroup, which en-
ables the definition of an associated generator. A stochastic Hankel-DMD algorithm is introduced
to numerically approximate the Koopman eigenvalues and eigenfunctions, along with a proof of
convergence. The method is applied to various examples, demonstrating spectral decomposition
and model reduction. This approach extends deterministic Koopman theory to systems influenced
by randomness. Moreover, we highlight the advantages of refined DMD algorithms in improving
the accuracy of the approximated spectra.

Keywords: stochastic Koopman operator, random dynamical systems, spectral analysis, semi-
group theory, Hankel-DMD, dynamic mode decomposition, numerical approximation.
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Introduction

The Koopman operator theory represents an alternative formulation of dynamical systems theory,
offering a versatile framework for data-driven study of high-dimensional nonlinear systems. This
theory originated in the 1930s through the work of Bernard Koopman and John Von Neumann
[24, 25]. In particular, Koopman realized that the evolution of observables on the state space of
a Hamiltonian system could be described by a linear transformation, which was later named the
Koopman operator [2]. Decades later, research such as that in [32] and [30] revived interest in
this formalism by proving the Koopman spectral decomposition and introducing the concept of
Koopman modes. These theoretical advancements were complemented by data-driven algorithms
for approximating the Koopman operator’s spectrum and modes, opening a new path for data-
driven study of high-dimensional systems (see, e.g.,[7, 18, 34, 35, 38]).

The two main candidates for studying systems via operators are the Koopman operator and the
Perron-Frobenius operator. In appropriate function spaces, these operators are duals to each other,
theoretically implying that there is no fundamental distinction between working with one or the
other. However, as previously mentioned, practical considerations come into play. For example,
how do we construct or represent the chosen operator from the problem description and available
data? How well does a finite approximation of this operator represent the ideal theoretical frame-
work? And to what extent is the intuition gained from numerical artifacts rather than reality? The
Perron-Frobenius operator represents a ”dynamics of densities” view, focusing on the evolution
of groups of trajectories. The idea is to observe the evolution of a mass distribution under the
action of a flow. From a numerical perspective, constructing this operator relies on selecting a
set of initial conditions and simulating over a short period of time to avoid accumulating numer-
ical errors. Through these short simulations, transient dynamics can be captured well. However,
much attention has been focused on computing invariant densities, theoretical objects at infinity,
by approximating the Perron-Frobenius operator with a Markov chain.

On the other hand, the Koopman operator presents a ”dynamics of observables” view, akin to
the Lagrangian perspective in fluid mechanics, where measurements are made along trajectories.
For this operator, the numerical construction relies on potentially fewer initial conditions but re-
quires longer run-times, making it more suitable for physical experiments. For example, when
testing a jet engine, one starts with a relatively small number of initial conditions and runs it for a
long time, rather than preparing thousands of initial conditions and running the engine for only a
few seconds for each one[8].
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Dynamic Mode Decomposition (DMD) is an essential tool in computational data-driven anal-
ysis of fluid flows. More generally, it is a computational device for Koopman spectral analysis
of nonlinear dynamical systems, with numerous applications in applied sciences and engineering.
Its effectiveness has led to the development of several modifications that make DMD more reliable
and functional. This approach allows for more precise selection of Ritz pairs, providing more accu-
rate spectral information about the Koopman operator. These improvements are illustrated through
numerical experiments, enhancing the effectiveness of the method known as DMD RRR (Refined
Rayleigh-Ritz Dynamic Mode Decomposition).

The objective of this master thesis is to provide a comprehensive study of the Koopman operator
theory in the context of Random Dynamical Systems (RDS). The primary focus is to elucidate
the fundamental concepts of the Koopman operator and its spectral properties, and to explore the
application of data-driven algorithms for approximating the Koopman operator’s spectrum and
modes. A further objective is to demonstrate the effectiveness of these methodologies through
various numerical examples, with a particular emphasis on the stochastic Koopman operator.

This work is presented in three chapters:

Chapter 1: Theoretical Principles of Random Dynamical Systems
This chapter lays the theoretical groundwork by introducing the fundamental concepts of both
deterministic and random dynamical systems. It delves into the definition of a Wiener process and
establishes the basic definitions of discrete and continuous Random Dynamical Systems (RDS).
Furthermore, the chapter provides an extensive overview of the Koopman operator, covering its
fundamental concepts, spectral properties, and the analysis of eigenfunctions and the spectrum of
eigenvalues.

Chapter 2: Koopman Operator Spectrum for Random Dynamical Systems
Chapter 2 focuses on the stochastic Koopman operator within the framework of Random Dynam-
ical Systems. It explores the operator’s characteristics in various contexts, including discrete-time
RDS, RDS generated by random differential equations, and RDS generated by stochastic differen-
tial equations.Additionally, the concept of semigroups of Koopman operators and their generators
is also examined.

Chapter 3: Numerical Examples
Chapter 3 delves into numerical approximations of the stochastic Koopman operator, with a de-
tailed discussion of the DMD algorithms for RDS.The theoretical concepts and methodologies
developed in the previous chapters are illustrated through a variety of numerical examples. These
examples include discrete RDS scenarios such as noisy rotation on the circle and discrete linear
RDS, as well as continuous-time linear RDS. Furthermore, the chapter presents examples involv-
ing stochastic differential equations, such as linear scalar SDE, nonlinear scalar SDE, and the noisy
van der Pol oscillator, to demonstrate the practical application and effectiveness of the studied
approaches.
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Chapter 1

Theoretical Principles of Random
Dynamical Systems

Random Dynamical Systems (RDS) are formally defined as cocycles over an ergodic base flow,
acting on a state space.

1.1 Introduction to deterministic and random dynamical systems

Let (Ω,F , P) be a probability space, and T a semigroup (we can think of it as time). Suppose
that θ := (θ(t))t∈T is a group or semigroup of measurable transformations of (Ω,F , P) preserving
a measure P (i.e. θ(t)P = P), such that the map (t, ω) 7→ θ(t)ω is measurable. The quadruple
(Ω,F , P, (θ(t))t∈T) is called a metric dynamical system.

Definition 1.1.1. A Random Dynamical System (RDS) on a measurable space (M,B) over (θt)t∈T

the dynamical system (Ω,F , P) is a measurable map:

φ : T ×Ω × M → M,

such that φ(0, ω) = idM and

φ(t + s, ω) = φ(t, θsω) ◦ φ(s, ω) (1.1.1)

for all t, s ∈ T and for all ω outside a P-null set, where φ(t, ω) : M → M is the map which arises
when t ∈ T and ω ∈ Ω are fixed, and ◦ means composition.
A family of maps φ(t, ω) satisfying (1.1.1) is called a cocycle, and (1.1.1) is the cocycle property.

The simplest case of a random dynamical system is a non-random, deterministic dynamical
system.
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Definition 1.1.2. A random dynamical system is deterministic if φ does not depend on ω, i.e.,
φ(t, x, ω) = φ(t, x).

Then the cocycle property (1.1.1) reads φ(t + s) = φ(t) ◦ φ(s), hence (φ(t))t∈T consists of the
iterates of a measurable map on M if T = Z(+), and (φ(t))t∈T is a measurable (semi-)flow if T = R(+),
respectively.

Remark 1. By the cocycle property, φ(t, ω) is automatically invertible (for all t ∈ T and for P-
almost all ω) if T = R or Z, and φ(t, ω)−1 = φ(−t, θtω).

Definition 1.1.3. Let θ : Ω→ Ω be a measure preserving transformation, and let ψ : M × Ω→ M
be a measurable map. Put ψn = ψ ◦ θ

n−1. Then

φ(n, ω) =


ψn(ω) ◦ ψn−1(ω) . . . ◦ ψ1(ω) for n > 0
id for n = 0
ψ−1

n+1(ω) ◦ ψ−1
n+2(ω) . . . ◦ ψ−1

0 (ω) for n < 0

defines an RDS (of course, defining φ(n, ω) for n < 0 requires θ and ψ(·, ω) to be invertible P-a.s.).
In particular, if M = Rd and x 7→ ψ(x, ω) is linear, then φ becomes a product of random matrices.

1.2 The Wiener process

Let (Ω, F , P) be a complete probability space, {Ft}t∈[0,T ] a system of σ-subalgebras of F which
are increasing in t, and {Xt}t∈[0,T ] a stochastic process on (Ω,F , P). In the following discussion, the
time interval [0,T ] will be fixed.

Definition 1.2.1. When (Xt,Ft, P) satisfies the following conditions 1), 2) and 3), it is called a
Wiener process:
1) The sample paths of Xt are continuous in t, and X0 = 0.
2) For t ≥ s, t, s ∈ [0,T ], E(Xt | Fs) = Xs with P-measure 1, where E(· | ·) denotes the conditional
exectation with respect to the measure P.
3) E((Xt − Xs)2 | Fs) = t − s with P-measure 1, for t ≥ s, t, s ∈ [0,T ]

Definition 1.2.2. A stochastic process Yt defined on (Ω,F , P) (or simply, (Yt, P)) is called a
Gaussian process, when the distribution of (Yt1 ,Yt2 , . . . ,Ytn) with respect to P is subject to an n-
dimensional Gaussian distribution.

1.3 Discrete and Continuous Random Dynamical Systems

1.3.1 Discrete RDS

For a discrete time RDS we have T = Z+ ∪ {0}. Let (Ω,F , P, (θ(t))t∈T) be a given metric dynamical
system and let ψ = θ(1).
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Definition 1.3.1. The discrete RDS φ(n, ω) over θ can be defined by the one step maps
T (ω, ·) : M → M as

T (ω, ·) := φ(1, ω),

since by applying the cocycle property one gets

φ(n, ω) = T (ψn−1(ω), ·) ◦ · · · ◦ T (ψ(ω), ·) ◦ T (ω, ·), n ≥ 1. (1.3.1)

From the fact that maps ψi = θ(i) preserve the measure P, it follows that the maps T (ψi(ω), ·)
are identically distributed, thus (T (ψi(ω), ·))i∈T is a stationary sequence of random maps on M [4,
Section 2.1]. According to (1.1.1), φ(0, ω) = idM. The action of the discrete RDS φ(n, ω) on x ∈ M
gives its value at the n-th step and we denote it as

T n(ω, x) = φ(n, ω)x. (1.3.2)

Remark 2. We have a continuous-time RDS,if T is continuous (for example, T = R or T = R+).

1.3.2 RDS generated by the random differential equations

Suppose that T = R or T = R+ ∪ {0}. Let (Ω,F , P, (θ(t))t∈T) be a metric dynamical system.
We consider a continuous-time RDS generated by the random differential equation (RDE) of the
following form

ẋ = F(θ(t)ω, x), (1.3.3)

defined on the manifold M, where θ(t)ω is associated with the random dynamics. In this type of
equations, the randomness refers just to the random parameters, which do not depend on the state
of the system. RDE (1.3.3) generates an RDS φ over θ, whose action is defined by

φ(t, ω)x = x +
∫ t

0
F(θ(s)ω, φ(s, ω)x) ds. (1.3.4)

The properties of this RDS under different regularity properties of the function F can be found in
[4, Section 2.2]. A set of trajectories starting at x that are generated by (1.3.3) is given by φ(t, ω)x
and it defines the family of random variables. We say that this is a solution of the RDE with the
initial condition φ(0, ω)x = x. Since the solutions of the RDE are defined pathwise, for each fixed
ω, the trajectory can be determined as a solution of deterministic ordinary differential equations,
so that the RDE (1.3.3) can be seen as a family of ordinary differential equations.

1.3.3 RDS generated by the stochastic differential equations

Let T = R+, M = Rd and T ∈ T.Suppose that the stochastic process Xt(ω), t ∈ [0,T ], ω ∈ Ω is
obtained as a solution of the nonautonomous stochastic differential equation (SDE)

dXt = G(t, Xt) dt + σ(t, Xt) dWt, (1.3.5)
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where G : [0,T ] × Rd → Rd and σ : [0,T ] × Rd → Rd×r are L2 measurable. Here, Wt =

(W1
t , . . . ,W

r
t ) denotes the r-dimensional Wiener process with independent components and stan-

dard properties, i.e., E(W i
t ) = 0, i = 1, . . . , r, E(W i

t W
j
s ) = min(t, s)δi j, i, j = 1, . . . , r (δi j is the

Kronecker delta symbol). The solution Xt(ω) of

Xt(x) = x +
∫ t

0
G(Xs) ds +

∫ t

0
σ(Xs) dWs (1.3.6)

with the initial condition Xt0(ω) is formally defined in terms of Itô integral as (see [1, Chapter 6])

Xt(ω) = Xt0(ω) +
∫ t

t0
G(s, Xs(ω)) ds +

∫ t

t0
σ(s, Xs(ω)) dWs. (1.3.7)

The probability space on which the process is considered can be identified with Ω = C0(R+,Rr)
(space of continuous functions satisfying ω(t0) = 0). Then, ω ∈ Ω is identified with the canonical
realization of the Wiener process such that ω(t) = Wt(ω). If F is the Borel σ-algebra, P the
measure generated by the Wiener process, and θ(t) defined by the ”Wiener shifts”

θ(t)ω(·) = ω(t + ·) − ω(t), (1.3.8)

(Ω,F , P, (θ(t))t∈T) becomes a metric dynamical system (see [4, Appendix A]). It is a driving dy-
namical system for the two-parameter family of RDS φ(t, t0, ω) that is given by

φ(t, t0, ω)x = Xt(ω),

where Xt(ω) is given by (1.3.7) for the initial condition Xt0(ω) = x. Under certain regularity and
boundedness properties of the functions G and σ, the basic existence and uniqueness results for the
SDE of the form (1.3.5 ) can also be found in [1, Section 6.3], [33, Section 3.3].

1.4 Random Dynamical Systems and Markov Processes

1.4.1 RDS with independent increments, Brownian RDS

A random dynamical system (RDS) φ(t, ω) over (Ω,F , P, (θt)t∈T) is said to have independent incre-
ments if for all
t0 ≤ t1 ≤ . . . ≤ tn the random variables

φ(t1 − t0, θt0ω), φ(t2 − t1, θt1ω), . . . , φ(tn − tn−1, θtn−1ω) (1.4.1)

are independent. If, in addition, for T = R+ or R the map t 7→ φ(t, ω)x is continuous for all x ∈ M
P-a.s., then the RDS or cocycle is said to be a Brownian RDS or cocycle.
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Remark 3. (i) An RDS with independent increments automatically has stationary (time homoge-
neous) increments, as, by the θt invariance of P, φ(h, θtω) D= φ(h, ω) for all t ∈ T.
(ii) If φ(t, ω) consists of invertible mappings then, by the cocycle property,

φs,t(ω) := φ(t, ω) ◦ φ(s, ω)−1 = φ(t − s, θsω)

for s ≤ t, so (1.4.1) meansthat for t0 ≤ t1 ≤ . . . ≤ tn

φt0,t1 , φt1,t2 , . . . , φtn−1,tn (1.4.2)

are independent.

1.4.2 RDS and Markov chains, discrete time T = Z+ or Z

Case T = Z+: Here φ(n, ω) = φ(1, θn−1ω)◦. . .◦φ(1, ω), so the cocycle has independent increments
if and only if φ(1, ω), φ(1, θω), . . . are iid. We thus have a product of iid random mappings, i.e., a
classical ‘iterated function system’. The mapping

x 7→ φ(n, ω)x

defines a homogeneous Markov chain with transition kernel,for all B ∈ B

P(x, B) = P{ω | φ(1, ω)x ∈ B}. (1.4.3)

Putting xn = φ(n, ω)x0 we have
xn+1 = φ(1, θnω)xn, (1.4.4)

i.e., a stochastic difference equation generating the Markov chain.
Conversely, given a transition kernel P(x, B) on M, we want to construct an RDS with indepen-

dent increments over a dynamical system (Ω,F , P, θ), i.e., a cocycle φ(n, ω) with (φ(1, θnω))n∈Z+

iid, such that (1.4.3) holds. This question has been dealt with by Kifer [23, Section 1.1]. It always
has a positive answer as soon as M is a Borel subset of a Polish space and if we are content with
a measurable mapping (x, ω) 7→ φ(1, ω)x. If we want x 7→ φ(1, ω)x to be continuous or homeo-
morphisms or smooth etc., a general answer to this representation problem is not known up to now
(compare Kifer [23, p. 12]).

Case T = Z: Now φ(n, ω) is invertible, and the cocycle has independent increments if and only
if (φ(1, θnω))n∈Z is iid. The mapping x 7→ φ(n, ω)x defines a homogeneous Markov chain on all of
Z starting at x0 = x, and (1.4.4) can be inverted to give

xn = φ(1, θnω)−1xn+1 = φ(−1, θ−nω)xn+1.

We can now look at the forward transition kernel

P+(x, B) = P{ω | φ(1, ω)x ∈ B}
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and the backward transition kernel

P−(x, B) = P{ω | φ(−1, ω)x ∈ B} = P{ω | φ(1, ω)−1x ∈ B}.

Note that in general P+ and P− do not have the same invariant measures: a forward invariant
measure ν+ has to satisfy

ν+ =

∫
P+(x, ·)dν+(x) = Eφ(1, ω)ν+,

whereas a backward invariant measure ν− is characterized by

ν− =

∫
P−(x, ·)dν−(x) = Eφ(−1, ω)ν− = Eφ(1, ω)−1ν−.

1.4.3 RDS and Markov processes, continuous time T = R+ or R

Case T = R+: Assume M = Rd (similar things hold on manifolds). Let φ(t, ω) be a Brownian
RDS of homeomorphisms (or diffeomorphisms of some smoothness class). Then (φ(t, ω))t∈R+ is a
Brownian motion with values in the group Hom(Rd) (or Diff∗(Rd) with a suitable ∗) in the sense of
Baxendale [5], or

φs,t(ω) = φ(t, ω) ◦ φ(s, ω)−1,

s, t ∈ R+, is a temporally homogeneous Brownian flow. By studying the infinitesimal mean

lim
h→0

1
h
E(φt,t+h(ω)x − x) = b(x)

and the infinitesimal covariance

lim
h→0

1
h
E((φt,t+h(ω)x − x)(φt,t+h(ω)y − y)′) = a(x, y),

Kunita [27] constructs a vector field valued Brownian motion (F(x, t, ω))x∈Rd ,t∈R+ , i.e., a continuous
(in t) Gaussian process (F(·, t, ω))t∈R+ with values in the space of vector fields on Rd

(so x 7→ F(x, t, ω) is a vector field), which has additively stationary independent increments and
satisfies F(·, 0, ω) = 0 ( P-a.s.).
The Brownian motion F is related to the Brownian flow φ by E(F(x, t, ω)) = tb(x) and

cov(F(x, t, ω), F(y, s, ω)) = min{t, s}a(x, y).

This implies that for all s ∈ R+

φs,t(ω)x = x +
∫ t

s
F(φs,u(ω)x, du, ω), t ∈ [s,∞), (1.4.5)

which has to be understood in the sense that (1.4.5) has a solution which coincides in distribution
with the original Brownian flow φ. In short: The (forward) flow satisfies an Itô SDE driven by
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vector field valued Gaussian white noise. F is called the random infinitesimal generator of φ. All
n-point motions (φ(t, ω)x1, . . . , φ(t, ω)xn) are homogeneous Feller-Markov processes. In particular,
(φ(t, ω)x)t∈R+ is a Markov process whose transition semigroup has generator

L =
d∑

i=1

bi(x)
∂

∂xi +
1
2

d∑
i, j=1

ai j(x, x)
∂2

∂xi∂x j . (1.4.6)

The backward flow φs,t(ω)−1 = φ(s, ω) ◦ φ(t, ω)−1, 0 ≤ s ≤ t, satisfies for each t ∈ R+ a backward
Itô equation in s ∈ [0, t],

φs,t(ω)−1x = x −
∫ t

s
F̂(φu,t(ω)−1x, du, ω),

where

F̂(x, t, ω) = F(x, t, ω) − tc(x), ci(x) =
d∑

j=1

∂ai j

∂x j (x, y)
∣∣∣∣∣
y=x
, (1.4.7)

and the backward integral
∫ t

s F̂(φu,t(ω)−1x, dû, ω) is formally defined by the same definition as the
forward integral — the difference being the inverted measurability counting from t backward to s.
As usual, things get more symmetric if we use Stratonovich forward and backward integrals.Put

F0(x, t, ω) = F(x, t, ω) −
t
2

c(x),

then F0 is the forward as well as the backward Stratonovich infinitesimal generator of φ.
Conversely, given a temporally homogeneous V(Rd) (=vector fields on Rd) -valued Brownian

motion F, we can write down the SDE (1.4.5) to generate a Brownian flow with generator F. We
can easily construct a Brownian RDS describing the same object. Indeed, put

Ω = {ω | ω(0) = 0, ω(·) ∈ C(R+,V(Rd))}

F = Borel field

P = distribution of F = ‘Wiener measure’

θtω(·) = ω(· + t) − ω(t), t ∈ R+,

so θt leaves P invariant and is ergodic. Moreover, representing F(·, t, ω) ≡ ω(t), the uniqueness of
the solution flow of (1.4.5) yields

φs,t(ω) = φ(t − s, θsω), 0 ≤ s ≤ t.

The flow property φ0,t+s = φs,t+s ◦ φ0,s reads

φ(t + s, ω) = φ(t, θsω) ◦ φ(s, ω),
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which is nothing but the cocycle property. As (1.4.2) is satisfied, and (1.4.2) is equivalent to
(1.4.1), we have constructed a Brownian RDS from the given V(Rd)-valued temporally homoge-
neous Brownian motion F.
The result is (modulo technical assumptions): There is a one-to-one relation between Brownian
RDS and temporally homogeneous vector field valued Brownian motions (defined via the SDE
(1.4.5)).
Since the law of F(·, t) (Gaussian!) is uniquely determined by the infinitesimal characteristics b(x)
and a(x, y), it follows that (a, b) uniquely determine the law of the corresponding Brownian RDS.
Consequently, as a and b appear in the generator of the two-point motion, the law of the two-point
motion uniquely determines the law of the Brownian RDS.
(The last statement is in general not true in the case of discrete time.)
Note that, however, the law of the Brownian RDS is in general not determined by the law of the
one-point motion. The point is that the generator (1.4.6) only contains a(x, x) instead of a(x, y). In
general there are thus many distinct Brownian RDS whose one-point motions have the same law.
For instance, if a(x, x) ∈ C2

b(Rd;Rd×d) is given, it can be factorized as a(x, x) = σ(x)σ(x)
′

with
σ : Rd → Rd×d Lipschitz. Now put a(x, y) = σ(x)σ(y)

′

, and generate a Brownian RDS by solving

dφs,t(ω)x = b(φs,t(ω)x) dt + σ(φs,t(ω)x) dB(t, ω),

where B is a standard Brownian motion in Rd. In this case

F(x, t, ω) = tb(x) + σ(x)B(t, ω).

In general countably many B j’s are necessary to represent F.

1.5 The Koopman operator

1.5.1 Background

The Koopman operator advances measurement functions of the state of a dynamical system with
the flow of the dynamics. To explain the basic properties of the Koopman operator, we begin with
an autonomous ordinary differential equation

d
dt

x(t) = f (x(t)) (1.5.1)

on a finite-dimensional state space M ⊆ Rn. The flow map operator, or time-t map, Ft : M → M
advances initial conditions x(0) forward along the trajectory by a time t, so that trajectories evolve
according to

x(t) = Ft(x(0)). (1.5.2)

The family of Koopman operators K t : G(M)→ G(M), parameterized by t, are given by

K tg(x) = g(Ft(x)), (1.5.3)
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where G(M) is a set of measurement functions g : M → C. Another name for g, derived from this
framework’s origin in quantum mechanics, is an observable function, although this should not be
confused with the unrelated observability from control theory. We can interpret (1.5.3) as defining
a family of functions

gt := K tg, g0 := g. (1.5.4)

that corresponds to the trajectory t 7→ gt in the set G(M) of measurement functions. In most
applications, the set of functions G(M) is not defined a priori, but is loosely specified by a set
of properties it should satisfy, e.g., that it is a vector space, that it possesses an inner product,
that it is complete, or that it contains certain functions of interest, such as continuous functions
on M. Hilbert spaces, such as L2(M, dµ) or reproducing kernel Hilbert spaces (RKHS), are a
common choice in modern applied mathematics, although historically other Banach spaces, such
as integrable functions L1 or continuous functions C(M) have also been used. The choice of the
space, whether explicit or implicit, can have consequences on the properties of the operator and
its approximations. In all cases, however, G(M) is of significantly higher dimension than M, i.e.,
countably or uncountably infinite.

The most significant property of the Koopman operator is that it is linear when G(M) is a linear
(vector) space of functions:

K t(α1g1(x) + α2g2(x)) = α1g1(Ft(x)) + α2g2(Ft(x))

= α1K
tg1(x) + α2K

tg2(x).
(1.5.5)

This property holds regardless of whether Ft : M → M is linear itself, as it is simply a consequence
of definition (1.5.3), since the argument function g is on the ”outside” of the composition, allowing
linearity to carry over from the vector space of observables. In this sense, the Koopman framework
obtains linearity of K t despite the nonlinearity of Ft by trading the finite-dimensional state space
M for an infinite-dimensional function space G(M).

When time t is discrete, t ∈ N, and the dynamics are autonomous, then Ft is a repeated t-fold
composition of F ≡ F1 given by Ft(x) = F(F(. . . (F(x)))), so that K tg is likewise generated by
repeated application of K ≡ K1. The generator K of the (countable) composition semigroup is
then called the Koopman operator, which results in a dynamical system

gk+1 = Kgk, (1.5.6)

analogous to xk+1 = F(xk), except that (1.5.6) is linear and infinite-dimensional.
When time t is continuous, the flow map family satisfies the semigroup property

Ft+s(x) = Ft(F s(x)), ∀x, t, s ≥ 0, (1.5.7)

which can be strengthened to a group property t, s ∈ R if the flow map is invertible. The Koopman
operator familyK t inherits these properties as well. Given a continuous and sufficiently smooth dy-
namics, it is also possible to define the continuous-time infinitesimal generator L of the Koopman
operator family as

Lg := lim
t→0

K tg − g
t

= lim
t→0

g ◦ Ft − g
t

. (1.5.8)
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The generator L has been called the Lie operator [24], as it is the Lie derivative of g along the
vector field f(x) when the dynamics is given by (1.5.1). This follows from applying the chain rule
to the time derivative of g(x):

d
dt

g(x(t)) = ∇g · ẋ(t) = ∇g · f (x(t)) (1.5.9)

and
d
dt

g(x(t)) = lim
τ→0

g(x(t + τ)) − g(x(t))
τ

= L(g(x(t))). (1.5.10)

resulting in
Lg = ∇g · f. (1.5.11)

The adjoint of the Koopman operator is the Perron-Frobenius operator [15, 16]. In many ways,
the operator-theoretic framework for applied dynamical systems has two dual perspectives, corre-
sponding either to the Koopman operator or the Perron-Frobenius operator.

Similar to (1.5.6), L induces a linear dynamical system in continuous-time:

d
dt

g = Lg. (1.5.12)

The linear dynamical systems in (1.5.6) and (1.5.12) are analogous to the dynamical systems in
(1.5.1).

1.5.2 Eigenfunctions and the spectrum of eigenvalues

A Koopman eigenfunction φ(x) corresponding to an eigenvalue λ satisfies

ϕ(xk+1) = Kϕ(xk) = λϕ(xk). (1.5.13)

In continuous-time, a Lie operator eigenfunction ϕ(x) satisfies

d
dt
ϕ(x) = Lϕ(x) = µϕ(x), (1.5.14)

where µ is a continuous-time eigenvalue. In general, eigenvalues and eigenvectors are complex-
valued scalars and functions, respectively, even when the state space M and dynamics F(x) are
real-valued.

It is simple to show that Koopman eigenfunctions ϕ(x) that satisfy (1.5.13) for λ , 0 are also
eigenfunctions of the Lie operator, although with a different eigenvalue. Applying the Lie operator
(1.5.8) to such a ϕ leads to

K tϕ = λtϕ =⇒ Lϕ = lim
t→0

K tϕ − ϕ

t
= lim

t→0

λt − 1
t

ϕ = log(λ)ϕ. (1.5.15)
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Conversely, the induced dynamics (1.5.12) applied to an eigenfunction of L leads to

Lϕ = µϕ =⇒
d
dt
ϕ = Lϕ = µϕ. (1.5.16)

An eigenfunction ϕ of L with eigenvalue µ is then an eigenfunction of K t with eigenvalue

λt = exp(µt).

Thus, we will typically not make a distinction between Lie and Koopman eigenfunctions in the
context of autonomous dynamical systems.

Eigenfunctions of K and L that are induced by already-linear dynamics further illustrate the
connection between linear discrete dynamics xn+1 = Axn with analogous concepts for

gn+1 = Kgn.

Given a left-eigenvector wT A = λwT of the matrix A, we form a corresponding Koopman eigen-
function as

ϕ(x) := wT x (1.5.17)

since
Kϕ(x) = ϕ(Ax) = wT Ax = λwT x = λϕ(x). (1.5.18)

In other words, while right-eigenvectors of A giver rise to time-invariant directions in the state space
M, which will be known as Koopman modes or dynamic modes, the left-eigenvectors give rise to
Koopman eigenfunctions, which are similarly time-invariant directions in the space of observables
G(M).

In general systems, a set of Koopman eigenfunctions may be used to generate more eigenfunc-
tions. In discrete time, we find that the product of two eigenfunctions ϕ1(x) and ϕ2(x) is also an
eigenfunction:

K(ϕ1(x)ϕ2(x)) = ϕ1(F(x))ϕ2(F(x))

= λ1λ2ϕ1(x)ϕ2(x)
(1.5.19)

with a new eigenvalue λ1λ2 given by the product of the two eigenvalues of ϕ1(x) and ϕ2(x). This
argument assumes implicitly that the product of the two eigenfunctions is again an eigenfunction
or, more strongly, that the space of observables is closed under multiplication. The corresponding
relationship for L can be found by applying (1.5.15),

λ1λ2 = eµ1eµ2 = eµ1+µ2 , (1.5.20)

resulting in
L(ϕ1(x)ϕ2(x)) = (µ1 + µ2)ϕ1(x)ϕ2(x). (1.5.21)

A simple consequence is that a complex conjugate pair of eigenfunctions of L, (µ, ϕ), (µ̄, ϕ̄), addi-
tionally implies the existence of a real-valued eigenfunction |φ| =

√
φφ̄ with an associated eigen-

value (µ + µ̄)/2 = Re(µ), thus leading to a non-oscillatory growth/decay of the eigenvalue.



1.5. THE KOOPMAN OPERATOR 20

Algebraically, when the space of observables is closed under multiplication, the set of Koopman
eigenfunctions establishes a commutative monoid under point-wise multiplication. Thus, depend-
ing on the dynamical system, there may be a finite set of generator eigenfunction elements that
may be used to construct all other eigenfunctions. Cardinality of the set of eigenfunctions and the
relationships between them are further explored in [6]. The corresponding Koopman eigenvalues
form a multiplicative lattice, or an additive lattice for Lie eigenvalues due to (1.5.15).

Observables that can be formed as linear combinations of eigenfunctions, i.e., g ∈ span{ϕk}
K
k=1,

have a particularly simple evolution under the Koopman operator

g(x) =
∑

k

vkϕk =⇒ K tg(x) =
∑

k

vkλ
t
kϕk. (1.5.22)

This implies that the subspace span{ϕk}
K
k=1 is invariant under the action of K .

1.5.3 Analytic Series Expansions for Eigenfunctions

Given the dynamics in (1.5.1), it is possible to solve the PDE

∇ϕ(x) · f (x) = λϕ(x) (1.5.23)

using standard techniques, such as recursively solving for the terms in a Taylor or Laurent series.
A number of simple examples are explored below.

Linear Dynamics. Consider the simple linear dynamics:

d
dt

x = x (1.5.24)

Assuming a Taylor series expansion for ϕ(x):

ϕ(x) = c0 + c1x + c2x2 + c3x3 + · · ·

Then the gradient and directional derivatives are given by:

∇ϕ = c1 + 2c2x + 3c3x2 + 4c4x3 + · · ·

∇ϕ · f = c1x + 2c2x2 + 3c3x3 + 4c4x4 + · · ·

Solving the Koopman eigenfunction PDE (1.5.23), we find that c0 = 0 must hold. For any positive
integer λ in (1.5.23), only one of the coefficients may be nonzero. Specifically, for λ = k ∈ Z+,
then ϕ(x) = cxk is an eigenfunction for any constant c. For instance, if λ = 1, then ϕ(x) = x.

Quadratic Nonlinear Dynamics. Consider a nonlinear dynamical system:

d
dt

x = x2 (1.5.25)
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There is no Taylor series that satisfies (1.5.23), except the trivial solution ϕ = 0 for λ = 0. Instead,
we assume a Laurent series:

ϕ(x) = · · · + c−3x−3 + c−2x−2 + c−1x−1 + c0 + c1x + c2x2 + c3x3 + · · ·

The gradient and directional derivatives are:

∇ϕ = · · · − 3c−3x−4 − 2c−2x−3 − c−1x−2 + c1 + 2c2x + 3c3x2 + 4c4x3 + · · ·

∇ϕ · f = · · · − 3c−3x−2 − 2c−2x−1 − c−1 + c1x2 + 2c2x3 + 3c3x4 + 4c4x5 + · · ·

Solving for the coefficients of the Laurent series that satisfy (1.5.23), we find that all coefficients
with positive index are zero, i.e., ck = 0 for all k ≥ 1. However, the nonpositive index coefficients
are given by the recursion:

λck+1 = kck, for k ≤ −1

Thus, the Laurent series becomes:

ϕ(x) = c0

(
1 −

λ

x
+
λ2

2x2 −
λ3

3!x3 + · · ·

)
= c0e−λ/x

This holds for all values of λ ∈ C. There are also other Koopman eigenfunctions that can be
identified from the Laurent series.

Polynomial Nonlinear Dynamics. For a more general nonlinear dynamical system:

d
dt

x = axn, (1.5.26)

ϕ(x) = e
λ

(1−n)a x1−n
is an eigenfunction for all λ ∈ C.



Chapter 2

The Koopman Operator Spectrum for
Random Dynamical Systems

In the context of random dynamical systems, the stochastic Koopman operator acts on the space
of observable functions and allows the system’s evolution to be represented in terms of dynamic
modes. This spectral approach offers a unique perspective for analyzing systems where traditional
mathematical models are too complex or non-existent, but where data can be obtained by observ-
ing the system. The growing interest in this approach lies in its ability to provide data-driven
model reduction and prediction methods. Using algorithms such as stochastic Hankel-Dynamic
Mode Decomposition (sHankel-DMD), it is possible to numerically approximate the spectral ob-
jects (eigenvalues, eigenfunctions) of the stochastic Koopman operator and apply this methodology
to various practical examples[10].

2.1 Stochastic Koopman operator

Definition 2.1.1. The stochastic Koopman operator K t associated with the RDS φ is defined on a
space of functions (observables) f : M → C for which the functional

K t f (x) = E[ f (φ(t, ω)x)], x ∈ M (2.1.1)

exists. We refer to the family of operators (K t)t∈T as the stochastic Koopman operator family.

Given a continuous function on a compact metric space, the functional exists. If spectral ex-
pansions of the Koopman operator are required, the space might require further specification (e.g.,
in many cases, a Hilbert space will suffice, see Example 2). However, to maintain simplicity, we
generally do not specify the domain of the operator (except in specific examples), as our analysis
is largely unaffected by it.[10]

Definition 2.1.2. The observables ϕt : M → C that satisfy equation

K tϕt(x) = λS (t)ϕt(x) (2.1.2)

22
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we call the eigenfunctions of the stochastic Koopman operator, while the associated values λS (t)
we call the stochastic Koopman eigenvalues.

The above definition can be viewed geometrically: the level sets of an eigenfunction ϕ of a
stochastic Koopman operator are unique in the sense that the expectation of the value of the level set
at time t is λS (t)ϕt(x), where λS is the stochastic eigenvalue, and ϕt(x) represents the eigenfunction
evaluated at time t. This expectation depends only on the initial level set at t = 0, from which the
dynamics started.

An even stronger statement is available for eigenvalues on the unit circle: in that case, the
precise location of the state of the system after time t is within a level set of the associated eigen-
function. For example, if ϕ(x) is an eigenfunction associated with eigenvalue 1, then its level sets
are invariant sets for the underlying RDS.(see the proof in [32] for the discrete-time RDS).

2.2 Stationarity and Ergodicity

Definition 2.2.1. A measure µ is called invariant, or stationary, if

µ(A) =
∫

M

∫
Ω

χA(φ(1, ω, x)) dP dµ,

where χA is the indicator function for A ⊆ M. If µ is a stationary measure, we have the equality∫
M

∫
Ω

f (φ(t1 + s, ω, x), . . . , φ(tn + s, ω, x)) dP dµ =
∫

M

∫
Ω

f (φ(t1, ω, x), . . . , φ(tn, ω, x)) dP dµ

(2.2.1)
for any s, t1, . . . , tn .

Definition 2.2.2. A set A ⊆ M is called invariant if∫
Ω

χA(φ(1, ω, x)) dP = χA(x)

for almost every x.

Definition 2.2.3. A stationary measure µ is called ergodic if every invariant set has measure 0 or 1.
The ergodicity assumption ensures that almost every trajectory samples the entire space, not just
some invariant subset. With this assumption, we can use time averages to evaluate integrals over
the space.

Lemma 1. Suppose µ is an ergodic measure. Let

h(x, ω) = ĥ(φ(t1, ω, x), φ(t2, ω, x), . . . , φ(tn, ω, x))

for some t1, t2, . . . , tn, with h ∈ L1(µ × P). Then we have

lim
m→∞

1
m

m−1∑
j=0

h(x j, ω j) =
∫

M

∫
Ω

h(x, ω) dP dµ (2.2.2)

for almost every (x0, ω0) with respect to µ × P.
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2.3 Stochastic Koopman operator for discrete time RDS

Proposition 1. Suppose that A : Ω→ Rd×d is measurable and that the one step map
T : Ω × Rd → Rd of a discrete RDS is defined by

T (ω, x) = A(ω)x. (2.3.1)

Denote by Φ(n, ω) the linear RDS satisfying T n(ω, x) = Φ(n, ω)x, i.e.,

Φ(n, ω) = A(ψn−1(ω)) · · · A(ψ(ω))A(ω).

Assume that Φ̂(n) = E[Φ(n, ω)] are diagonalizable, with simple eigenvalues λ̂ j(n) and left and right
eigenvectors ŵn

j , v̂
n
j , j = 1, . . . , d. Then the eigenfunctions of the stochastic Koopman operator Kn

are
ϕn

j(x) = ⟨x, ŵn
j⟩, j = 1, . . . , d, (2.3.2)

with the corresponding eigenvalues λS
j (n) = λ̂ j(n). Moreover, if matrices A(ω), ω ∈ Ω com-

mute and are diagonalizable with the simple eigenvalues λ j(ω) and corresponding left eigenvectors
w j, j = 1, . . . , d, then

ŵn
j = w j and λS

j (n) = E

 n∏
i=1

λ j(ψi−1(ω))

 .
Furthermore, v̂n

j , j = 1, . . . , d are the Koopman modes of the full-state observable and the following
expansion is valid

Knx =
d∑

j=1

λS
j (n)⟨x, ŵn

j⟩v̂
n
j . (2.3.3)

Proof. The action of the stochastic Koopman operator on functions defined by (2.3.2) is equal
to

Knϕn
j(x) = E[⟨Φ(n, ω)x, ŵn

j⟩]

= E[⟨x,Φ(n, ω)∗ŵn
j⟩]

= ⟨x,E[Φ(n, ω)∗]ŵn
j⟩

= ⟨x, Φ̂(n)∗ŵn
j⟩

= λ̂ j(n)⟨x, ŵ j(n)⟩

= λ̂ j(n)ϕn
j(x)

where we have used that
E[Φ(n, ω)∗] = (E[Φ(n, ω)])∗ = Φ̂(n)∗.
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In the case when matrices A(ω), ω ∈ Ω commute and are diagonalizable, they are simultaneously
diagonalizable (see [20, Theorem 1.3.12] ), i.e., there exists a single invertible matrix V , so that
A(ω) = VΛ(ω)V−1, whereΛ(ω) = diag(λ1(ω), . . . , λd(ω)). It is clear that the columns of the matrix
V are the common right eigenvectors of the matrices A(ω), ω ∈ Ω, and that W∗ = V−1, where W is
the matrix of the left eigenvectors. It is straightforward that

Φ(n, ω) = V
n∏

i=1

Λ(ψi−1(ω))W∗.

Therefore,

Φ̂(n) = VE

 n∏
i=1

Λ(ψi−1(ω))

 W∗,

and we easily conclude that ŵ j = w j and

λS
j (n) = E

 n∏
i=1

λ j(ψi−1(ω))

 .
Equation (2.3.3) can be easily proved by using the decomposition of the state x in the base ŵn

j , v̂
n
j ,

j = 1, . . . , d, the linearity of the Koopman operator, and its action on the eigenfunctions given with
(2.3.2), i.e.,

Knx = Kn
d∑

j=1

⟨x, ŵn
j⟩v̂

n
j

=

d∑
j=1

Kn⟨x, ŵn
j⟩v̂

n
j

=

d∑
j=1

λS
j (n)⟨x, ŵn

j⟩v̂
n
j .

Remark 4. We will use the term principal eigenfunctions for the eigenfunctions of the form
ϕ j(x) = ⟨x,w j⟩, j = 1, . . . , d;In the linear case, the action of the Koopman operators on the full
state observable can be derived by using just the principal eigenfunctions, eigenvalues, and modes.

2.4 Stochastic Koopman operator for RDS generated by the random
differential equations

Proposition 2. If A : Ω→ Rd×d and A ∈ L1(Ω,F ,P), then RDE

ẋ = A(θ(t)ω)x, (2.4.1)
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generates a linear RDS Φ satisfying

Φ(t, ω) = I +
∫ t

0
A(θ(s)ω)Φ(s, ω) ds. (2.4.2)

Assume that Φ̂(t) = E[Φ(t, ω)] is diagonalizable, with simple eigenvalues µ̂t
j and left eigenvectors

ŵt
j, j = 1, . . . , d. Then

ϕt
j(x) = ⟨x, ŵt

j⟩, j = 1, . . . , d, (2.4.3)

are the principal eigenfunctions of the stochastic Koopman operator K t with corresponding prin-
cipal eigenvalues λS

j (t) = µ̂ j(t), j = 1, . . . , d. Moreover, if matrices A(ω) commute and are diago-
nalizable with the simple eigenvalues λ j(ω) and corresponding left eigenvectors w j, j = 1, . . . , d,
then

ŵt
j = w j and λS

j (t) = E
[
e
∫ t

0 λ j(θ(s)ω) ds
]
.

Furthermore, v̂t
j, j = 1, . . . , d are the Koopman modes of the full-state observable and the following

expansion is valid

K tx =
d∑

j=1

λS
j (t)⟨x, ŵt

j⟩v̂
t
j. (2.4.4)

Proof. The first part of the proposition follows from [4, Example 2.2.8]. Furthermore, the
action of the stochastic Koopman operator on functions defined by (2.4.3) is equal to

K tϕt
j(x) = E[⟨Φ(t, ω)x, ŵt

j⟩]

= E[⟨x,Φ(t, ω)∗ŵt
j⟩]

= ⟨x,E[Φ(t, ω)∗]ŵt
j⟩

= ⟨x, Φ̂(t)∗ŵt
j⟩

= µ̂t
j⟨x, ŵ

t
j⟩

= µ̂t
jϕ

t
j(x)

With the same argument as in the proof of Proposition 1, we have A(ω) = VΛ(ω)W∗, where W and
V are matrices of common left and right eigenvectors,
and Λ(ω) = diag(λ1(ω), . . . , λd(ω)). It is straightforward that

Φ(t, ω) = e
∫ t

0 A(θ(s)ω) ds = Ve
∫ t

0 Λ(θ(s)ω) dsW∗,

and
Φ̂(t) = VE

[
e
∫ t

0 Λ(θ(s)ω) ds
]

W∗.

We easily conclude that ŵ j = w j and λS
j (t) = E

[
e
∫ t

0 λ j(θ(s)ω) ds
]
.

The proof of (2.4.4) is the same as the proof of (2.3.3) .
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Example 1. (Linear scalar RDS). Suppose that linear scalar RDE is given by

ẋ = a(ω)x, (2.4.5)

where a : Ω → R is a random variable with finite moments. Observe that θ(t) = id, which means
that the probability space does not change with time. If the moment generating function defined by
Ma(t) = E[eta(ω)] is analytic for |t| < R, then for the initial condition φ(0, ω)x = x and t < R there
exists a unique solution of (2.4.5), which can be expressed as[36]

φ(t, ω)x = xe
∫ t

0 a(ω) ds. (2.4.6)

The action of the stochastic Koopman operator on the full state observable function ϕ(x) = x is
then

K t x = E[φ(t, ω)x]

= E
[
xe

∫ t
0 a(ω) ds

]
= E

[
ea(ω)t

]
x.

Thus, ϕ(x) = x is the eigenfunction of the stochastic Koopman operator and the corresponding
eigenvalue satisfies

λS (t) = E
[
ea(ω)t

]
=Ma(t). (2.4.7)

2.5 Stochastic Koopman operator for RDS generated by the stochas-
tic differential equations

The Koopman operator family K t,t0 related to this RDS is defined by

K t,t0 f (x) = E[ f (φ(t, t0, ω)x)]. (2.5.1)

In this more general setting with the two-parameter family of Koopman operators (2.5.1), the eigen-
functions ϕt,t0 : M → C and eigenvalues λS (t, t0) of the Koopman operator K t,t0 defined on a
finite-time interval satisfy

K t,t0ϕt,t0(x) = λS (t, t0)ϕt,t0(x). (2.5.2)

The following two propositions treat two classes of linear SDE. In the first one the random part of
equations models the additive noise and in the second one it models the multiplicative noise.

Proposition 3. Let the linear SDE with additive noise be defined by

dXt = A(t)Xt dt +
r∑

i=1

bi(t) dW i
t . (2.5.3)
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where A(t) is a d × d matrix of functions and bi(t), i = 1, . . . ,m are d-dimensional vector functions.
Assume that the fundamental matrix Φ(t, t0) satisfying the matrix differential equation

Φ̇ = A(t)ϕ, Φ(t0) = I (2.5.4)

is diagonalizable, with simple eigenvalues µ̂t,t0
j and left eigenvectors ŵt,t0

j , j = 1, . . . , d. Then

ϕt,t0
j (x) = ⟨x, ŵt,t0

j ⟩, j = 1, . . . , d, (2.5.5)

are the eigenfunctions of the stochastic Koopman operator K t,t0 , with corresponding eigenvalues

λS
j (t, t0) = µ̂ j(t, t0).

If matrices A(t) commute and are diagonalizable with the simple eigenvalues λ j(t) and correspond-
ing left eigenvectors w j, j = 1, . . . , d, then

ŵt,t0
j = w j and λS

j (t, t0) = e
∫ t

t0
λ j(s) ds

. (2.5.6)

Proof. Since the solution of (2.5.3) with the initial condition Xt0(ω) = x is given by, (see [1,
Section 8.2] )

Xt(ω) = Φ(t, t0)

x + r∑
i=1

∫ t

t0
Φ−1(s, t0)bi(s) dW i

s

 ,
we have

Kt,t0ϕ
t,t0
j (X) = E

[
ϕt,t0

j (Xt(ω))
]

= E

〈Φ(t, t0)x, ŵt,t0
j

〉
+

〈 r∑
i=1

∫ t

t0
Φ(t, t0)Φ−1(s, t0)bi(s) dW i

s, ŵ
t,t0
j

〉
=

〈
Φ(t, t0)x, ŵt,t0

j

〉
+

r∑
i=1

〈
E

[∫ t

t0
Φ(t, t0)Φ−1(s, t0)bi(s)dW i

s

]
, ŵt,t0

j

〉
= µ̂t,t0

j ⟨x, ŵ
t,t0
j ⟩

= µ̂t,t0
j ϕS ,t,t0

j (x),

where we used that E
[∫ t

t0
F(s) dWs

]
= 0 (see [1, Theorem 4.4.14]) applied to

F(s) = Φ(t, t0)Φ−1(s, t0)bi(s).

With this we proved the first statement. Since in the commutative case the fundamental matrix can
be expressed in the form

Φ(t, t0) = e
∫ t

t0
A(s) ds

,

its eigenvectors coincide with the eigenvectors of the matrix A(t) and eigenvalues are given by
(2.5.6).
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Proposition 4. Let the linear SDE with multiplicative noise be defined by

dXt = A(t)Xt dt +
r∑

i=1

Bi(t)Xt dW i
t , (2.5.7)

where A(t), Bi(t), i = 1, . . . , r are d × d matrices of functions. Denote with Φ(t, t0) the fundamental
matrix satisfying the matrix SDE

dΦ = AΦ dt +
r∑

i=1

Bi(t)Φ dW i
t , Φ(t0) = I. (2.5.8)

and assume that Φ̂(t, t0) = E[Φ(t, t0)] is diagonalizable, with simple eigenvalues µ̂t,t0
j and left eigen-

vectors ŵt,t0
j , j = 1, . . . , d. Then

ϕt,t0
j (x) = ⟨x, ŵt,t0

j ⟩, j = 1, . . . , d, (2.5.9)

are the eigenfunctions of the stochastic Koopman operator K t,t0 , with corresponding eigenvalues

λS
j (t, t0) = µ̂ j(t, t0).

If the matrices A(t) and Bi(t), i = 1, . . . , r commute, i.e., if A(t)A(s) = A(s)A(t),

A(t)Bi(s) = Bi(s)A(t)

= Bi(t)B j(s)

= B j(s)Bi(t)

for i, j = 1, . . . , r and all s, t, and if the matrices A(t) are diagonalizable with the simple eigenvalues
λ j(t) and corresponding left eigenvectors w j, j = 1, . . . , d, then

ŵt,t0
j = w j and λS

j (t, t0) = e
∫ t

t0
λ j(s) ds

. (2.5.10)

Proof. For the fundamental matrix Φ(t, t0) and the initial condition Xt0(ω) = x, the solution of
(2.5.7) is equal to, (see [1, Section 8.5] )

Xt(ω) = Φ(t, t0)x, (2.5.11)

thus

K t,t0ϕt,t0
j (x) = E

[
ϕt,t0

j (Xt(ω))
]

= E
[〈
Φ(t, t0)x, ŵt,t0

j

〉]
=

〈
Φ̂(t, t0)x, ŵt,t0

j

〉
= µ̂t,t0

j ⟨x, ŵ
t,t0
j ⟩

= eλ̂ j(t,t0)ϕt,t0
j (x),
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For the case with commutative matrices A(t) and Bi(t), i = 1, . . . , r, the fundamental matrix Φ(t, t0)
can be expressed in an explicit form as

Φ(t, t0) = e
∫ t

t0
(A(s)− 1

2
∑r

i=1 Bi(s)Bi(s)T ) ds+
∫ t

t0

∑r
i=1 Bi(s) dW i

s . (2.5.12)

Since

Φ̂(t, t0) = E[Φ(t, t0)]

= e
∫ t

t0
(A(s)− 1

2
∑r

i=1 Bi(s)Bi(s)T ) ds
E

[
e
∫ t

t0

∑r
i=1 Bi(s) dW i

s
]

= e
∫ t

t0
(A(s)− 1

2
∑r

i=1 Bi(s)Bi(s)T ) dse
1
2

∫ t
t0

∑r
i=1 Bi(s)Bi(s)T ds

= e
∫ t

t0
A(s) ds

,

the eigenvectors of Φ̂(t, t0) coincide with the eigenvectors of the matrix A(t) and eigenvalues are
given by (2.5.10), which proves the statement. Here we used the fact that

E
[
e
∫ t

t0
B(s) dWs

]
= e

1
2

∫ t
t0

B(s)B(s)T ds
.

(see [1, Theorem 8.4.5] )
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2.6 Semigroups of Koopman operators and their generators

In this section, we examine Random Dynamical Systems (RDS) whose associated stochastic Koop-
man operators satisfy the semigroup property. We focus on situations where M is a Polish space
and B is the Borel sigma-algebra. An RDS defines a family of stochastic processes taking values in
M. Each process is associated with a probability measure Px on the canonical space MT , induced
by a probability measure P related to the driving dynamical system. Significant results regarding
the properties of stochastic Koopman operators can be obtained in specific contexts, such as linear
or Markovian settings. Therefore, we limit our considerations to particular types of RDS and only
consider those that are Markovian[9], or more precisely, to those for which the family of processes
{φ(t, ω)x}x∈M is a time-homogeneous Markov family. Let F x

t denote the sigma-algebra generated
by the ”past” of the stochastic process, i.e.,

F x
t = σ(φ(s, ω)x, s ≤ t)

The Markov property implies that for s ≤ t and any random variable Y , measurable with respect to
F x

t , the following relation holds:

E[Y | F x
s ] = E[Y | φ(s, ω)x] (2.6.1)

Moreover, for such Y , the following equality, known as the Chapman-Kolmogorov equation, is
valid:

E[Y | φ(s, ω)x] = E[E[Y | φ(t, ω)x] | φ(s, ω)x] (2.6.2)

The Chapman-Kolmogorov equation implies the semigroup property of stochastic Koopman oper-
ators, i.e.,

K t+s = K s ◦ K t (2.6.3)

In the context of Markov processes, the Koopman operator is commonly referred to as the Markov
propagator or transition operator, and its properties have been extensively studied [12], [41]. There
are two significant and well-known classes of Random Dynamical Systems (RDS) that can be
identified with the Markov family: the discrete-time RDS generated by an independent identically
distributed process, and the continuous-time RDS generated by stochastic differential equations
where noise is modeled using a Wiener process. In both cases, the probability space associated with
the stochastic process modeling the noise can be identified with the canonical measure-preserving
dynamical system ([4]). In the following, we briefly describe the canonical dynamical system
(θ(t))t∈T induced by a given stochastic process ξ̃. Suppose ξ̃ = (ξ̃t)t∈T , where ξ̃t : Ω̃ → B is a B-
valued stochastic process on a probability space Ω̃, where (B,B) is a measurable state space. The
given process and the probability measure on Ω̃ induce a probability measure P on BT , allowing us
to define a new probability space (Ω,F , P) = (BT,BT, P), where BT is the sigma-algebra generated
by the collection of cylinder sets. The canonical realization ξ of the stochastic process ξ̃ is defined
on (Ω,F , P) by the coordinate functions ξt(ω) = ω(t), ω ∈ Ω. The shift transformations
θ(t) : BT → BT given by

θ(t)ω(τ) := ω(t + τ), t ∈ T (2.6.4)
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constitute the semigroup or group of measurable transformations. Notice that the canonical real-
ization ξt(ω) can be viewed as the composition of the shift transformation (2.6.4) and the canonical
projection π : BT → B defined by

π(ω(τ)) = ω(0) (2.6.5)

i.e., ξt(ω) = ω(t) = π(θ(t)ω). If time T is discrete (T = Z or T = Z+),
a map (t, ω) 7→ θ(t)ω is measurable and (θ(t))t∈T is a measurable dynamical system. In the con-
tinuous time case (T = R or T = R+), when B = Rm or when B is a Polish space, (θ(t))t∈T could
become a measurable dynamical system after some redefinition of the probability measure P and
of the σ-algebra set (see [4]).

2.6.1 Discrete-time RDS

Let now assume that for T = Z+ ∪ {0}, ω = (ωi)i∈T is a canonical realization of the stochastic
process with the associated driving system composed by the shift transformation maps (2.6.4) as
described in the previous paragraph. If we assume that the discrete RDS φ(n, ω) is defined by the
one step map T (ω, ·) : M → M of the form

T (ω, ·) = T0(π(ω), ·), (2.6.6)

where π denotes the canonical projection (2.6.5), by taking into account (2.6.6) in (1.3.1), we get

φ(n, ω) = T0(π(ψn−1(ω)), ·) ◦ · · · ◦ T0(π(ψ(ω)), ·) ◦ T0(π(ω), ·), n ≥ 1. (2.6.7)

If ω is an i.i.d. stochastic process, the sequence

{T (ψi(ω), ·) = T0(π(ψi−1(ω)), ·); i ≥ 1}

is an i.i.d. sequence of random maps, so that RDS (2.6.7) generates the time-homogeneous Markov
family {φ(n, ω)x}x∈M [4].
In this case, the stochastic Koopman operator family is a semigroup, so that

Kn = K1 ◦ · · · ◦ K1 = (K1)n, n > 0.

Therefore one can think about K1 as the generator of the stochastic Koopman semigroup, and we
denote it by KS . According to (2.1.1), K1 is determined by using the one step map T (ω, ·) as

KS f (x) = K1 f (x) = E[ f (T (ω, x))]. (2.6.8)

It follows from the semigroup property that if λS is the eigenvalue of the stochastic Koopman
generator with the associated eigenfunction ϕ(x), then (λS )n and ϕ(x) are the eigenvalue and the
eigenfunction of the operator Kn.

Remark 5. The random maps were identically distributed but not necessarily independent, so that
the future state of the process obtained by the action of their composition (1.3.1) could depend on
the past behavior of the system and not only on the present state.
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Example 2. (Noisy rotation on the circle). We describe here the example considered in [10, 22].
A deterministic dynamical system representing the rotation on the unit circle S 1 is defined by

T (x) = x + ϑ, (2.6.9)

where ϑ ∈ S 1 is a constant number. We consider here its stochastic perturbation, i.e., a discrete
RDS over the dynamical system θ = (θ(t))t∈T, where θ(t) are shift transformations (2.6.4), defined
by the one step map T : Ω × S 1 → S 1 of the form (2.6.6):

T (ω, x) = x + ϑ + π(ω). (2.6.10)

Here ω ∈ [−δ/2, δ/2]Z is a canonical realization of a stochastic process and π(·) is the canonical
projection defined by (2.6.5). We suppose that the coordinatesωi are i.i.d. with uniform distribution
on the interval [−δ/2, δ/2] for some δ > 0. According to (2.6.8), the action of the associated
stochastic Koopman generator on an observable function f : S 1 → C is given by

KS f (x) = E[ f (T (ω, x))] =
1
δ

∫ δ/2

−δ/2
f (x + ϑ + ω0) dω0. (2.6.11)

For the functions
ϕ j(x) = exp(i2π jx), j ∈ Z, (2.6.12)

the following equality holds

KSϕ j(x) =
1
δ

∫ δ/2

−δ/2
exp(i2π j(x + ϑ + ω0)) dω0

=
sin( jπδ)

jπδ
exp(i2π jϑ) exp(i2π jx)

=
sin( jπδ)

jπδ
exp(i2π jθ)ϕ j(x).

We easily conclude that (2.6.12) are the eigenfunctions of the stochastic Koopman generator with
corresponding eigenvalues

λS
j =

sin( jπδ)
jπδ

exp(i2π jϑ), j ∈ Z. (2.6.13)

For any function f : L2(S 1)→ C we have the spectral expansion

Kn f (x) =
∑
j∈Z

c j

(
sin( jπδ)

jπδ

)n

exp(i2π jnϑ) exp(i2π jx), (2.6.14)

where c j are the Fourier coefficients of f . Clearly, Kn f (x) → c0 as t → ∞. It is known that
the eigenvalues of the Koopman generator related to the deterministic dynamical system (2.6.9) lie
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on the unit circle and are equal to λ j = exp(i2π jϑ); while the eigenfunctions are the same as in
the random case. Moreover, it is interesting to observe that for rational θ the eigenspaces in the
deterministic case, i.e., for δ = 0, are infinite dimensional, while they are finite dimensional in the
stochastic case (δ > 0) due to the compactness of the operator. To be more precise, in this example,
the eigenspaces become one-dimensional.

Remark 6. Consider the case when randomness is additive, i.e., when the one-step map T : Ω ×
Rd → Rd is given by

T (ω, x) = Ax + π(θ(t)ω),

where θ(t) is a shift transformation and ω : Ω → Rd is the canonical realization of a process with
i.i.d. components. Suppose that E[ω] = 0 and that the matrix A is diagonalizable with simple
eigenvalues λ j, j = 1, . . . , d. Then the eigenfunctions of the stochastic Koopman generator KS are
principal eigenfunctions of the form
ϕ j(x) = ⟨x,w j⟩, where w j are left eigenvectors of A, while its eigenvalues coincide with the eigen-
values of the matrix A.

2.6.2 Continuous-time RDS

Let suppose that the stochastic Koopman operators family satisfies the semigroup property. Define
the generator of the stochastic Koopman family (K t)t∈T acting on the observable functions f ∈
C1

b(Rd) by the limit

KS f (x) = lim
t→0+

K t f (x) − f (x)
t

, (2.6.15)

if it exists. For the Koopman operators associated with the RDS generated by RDE we have the
following proposition.

Proposition 5. If the solution of RDE (1.3.3) is differentiable with respect to t and the stochastic
Koopman family (K t)t∈T is a semigroup, then the action of the generator KS on f ∈ C1

b(Rd) is
equal to

KS f (x) = E[F(ω, x)] · ∇ f (x). (2.6.16)
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Proof.

KS f (x) = lim
t→0+

K t f (x) − f (x)
t

= lim
t→0+

E[ f (X(t, ω, x))] − f (x)
t

= lim
t→0+
E

[
f (X(t, ω, x)) − f (x)

t

]
= E

[
lim
t→0+

f (X(t, ω, x)) − f (X(0, ω, x))
t

]
= E

[
d
dt

f (X(t, ω, x))
∣∣∣∣∣
t=0

]
= E

[
∇ f (x) ·

d
dt

X(t, ω, x)
∣∣∣∣∣
t=0

]
= E[F(ω, x)] · ∇ f (x).

The swapping of the order of limit and expectation in the second line is justified by the dominated
convergence theorem and the fact that the convergence f (X(t,ω,x))− f (x)

t is uniform for all ω and x,
since the derivative of f is bounded and the solution is differentiable (see [28, Section 7.6] for the
proof in the deterministic case).

Corollary 1. Suppose that a stochastic Koopman generatorKS associated with RDE (1.3.3) exists.
If ϕ1 and ϕ2 are the eigenfunctions of KS with the associated eigenvalues λ1 and λ2, then ϕ1ϕ2 is
also an eigenfunction with the associated eigenvalue λ1 + λ2.

Proof. Since KSϕi(x) = λiϕi(x) = E[F(ω, x)] · ∇ϕi(x), for i = 1, 2, we have

KS (ϕ1ϕ2)(x) = E[F(ω, x)] · ∇(ϕ1ϕ2)(x)

= E[F(ω, x)] · ∇ϕ1(x)ϕ2(x) + E[F(ω, x)] · ∇ϕ2(x)ϕ1(x)

= λ1ϕ1(x)ϕ2(x) + λ2ϕ2(x)ϕ1(x)

= (λ1 + λ2)(ϕ1ϕ2)(x). (*)

Corollary 2. Let ϕ ∈ C1
b(Rd) be an eigenfunction associated with eigenvalue λ of the stochastic

Koopman generator KS associated with an RDE (1.3.3). Then

d
dt
ϕ(φ(t, ω)x) = λϕ(φ(t, ω)x) + F̃(ω, x) · ∇ϕ(φ(t, ω)x), (2.6.17)

where
F̃(ω, x) = F(ω, x) − E[F(ω, x)].
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Corollary 3. Suppose that a stochastic Koopman generatorKS associated with linear RDE (2.4.1)
exists. Also, assume that Â = E[A(ω)] is diagonalizable, with simple eigenvalues λ̂ j and left
eigenvectors ŵ j, j = 1, . . . , d. Then

ϕ j(x) = ⟨x, ŵ j⟩, j = 1, . . . , d, (2.6.18)

are the principal eigenfunctions of the generator KS , while λS
j = λ̂ j are the associated principal

eigenvalues.

Proof. According to (2.6.16), the action of the generator KS of the Koopman operator family
associated with the linear RDS generated by (2.4.1) on f ∈ C1

b(Rd) is equal to

KS f (x) = E[A(ω)x] · ∇ f (x)

= Âx · ∇ f (x).

Thus

KSϕ j(x) = ⟨Âx,w j⟩

= ⟨x, Â∗w j⟩

= λ̂ jϕ j(x),

which proves the statement.

Remark 7. Provided that the assumptions of Corollary 3 are valid, the principal eigenfunctions
ϕ j(x) given by (2.6.18) are the eigenfunctions of each Koopman operator K t also, with the corre-
sponding principal eigenvalues λS

j (t) = eλ̂ jt. The set of principal eigenfunctions does not cover all
the eigenfunctions of the Koopman operator as we discuss next. According to Corollary 1, over the
space of real analytic functions,

ϕ(x) = ϕn1
1 (x) · · · ϕnd

d (x), λ =

d∑
j=1

n jλ̂ j,

with n j ∈ N
+ ∪ {0}, j = 1, . . . , d, are the eigenvalues and eigenfunctions of the Koopman generator.

Thus, like in the deterministic case, any analytic observable function f can be represented as a lin-
ear combination of powers of the principal eigenfunctions [31] and its evolution under the RDS can
be obtained using the spectral expansion formula. Another type of RDS which could be identified
with the time-homogeneous Markov family are the RDS generated by the SDE of the form (1.3.5)
with autonomous functions G and σ, i.e.,

dXt = G(Xt) dt + σ(Xt) dWt. (2.6.19)

In this case the stochastic differential equation generates the one-parameter family of RDS

φ(t, ω) := φ(t, 0, ω) = φ(t + t0, t0, ω),
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so that the corresponding stochastic Koopman operator family and the associated stochastic eigen-
values and eigenfunctions depend on parameter t only. In this autonomous setting, we denote by
Xt(x) the solution of equation (2.6.19) for the initial condition X0(ω) = x. In accordance with
(1.3.7) it is equal to

Xt(x) = x +
∫ t

0
G(Xs) ds +

∫ t

0
σ(Xs) dWs. (2.6.20)

Proposition 6. The action of the generator of the stochastic Koopman family KS on f ∈ C2
b(Rd)

is given by

KS f (x) = G(x)∇ f (x) +
1
2

Tr
(
σ(x)(∇2 f (x))σ(x)T

)
, (2.6.21)

where Tr denotes the trace of the matrix.

Proposition 7. Let ϕ ∈ C2
b(Rd) be an eigenfunction of the stochastic Koopman generator KS

associated with RDS generated by SDE (2.6.19) with the corresponding eigenvalue λ. Then

dϕ(Xt) = λϕ(Xt)dt + ∇ϕ(Xt)σ(Xt)dWt. (2.6.22)

ϕ is the eigenfunction of the stochastic Koopman operator K t also, i.e.

K tϕ(x) = eλtϕ(x). (2.6.23)

Proof. Suppose d = 1. It follows from Itô’s formula

dYt = f ′(Xt)dXt +
1
2

f ′′(Xt)σ(Xt)2dt (2.6.24)

that the eigenfunction ϕ(Xt) evolves according to

dϕ(Xt) = ϕ′(Xt)G(Xt)dt +
1
2
ϕ′′(Xt)σ(Xt)2dt + ϕ′(Xt)σ(Xt)dWt

= KSϕ(Xt)dt + ϕ′(Xt)σ(Xt)dWt

= λϕ(Xt)dt + ϕ′(Xt)σ(Xt)dWt,

where in the last equality we used thatKSϕ(x) = λϕ(x). By using a similar procedure, the equations
(2.6.22) valid in multidimensional case can be easily derived. The fact that ϕ is an eigenfunction
of each Koopman semigroup member K t follows from the spectral mapping theorem [13, Chapter
IV.3].

Remark 8. Unlike in the case of RDS generated by the RDE, the product of eigenfunctions of
the stochastic Koopman generator associated with RDS generated by SDE is not necessarily an
eigenfunction. This easily follows from Proposition 6. However, the eigenfunctions in many cases
satisfy a recurrence relationship (e.g., Hermite polynomials, which are Koopman eigenfunctions of
Ornstein-Uhlenbeck processes obtained as a solution of the Ornstein-Uhlenbeck SDE [33, Section
4.4]) and thus can be deduced from the principal eigenfunctions. This reduces the problem to
analysis of principal eigenfunctions, and thus d objects in an d dimensional space, remarkable for
a nominally infinite-dimensional representation.



Chapter 3

Numerical approximations of the
stochastic Koopman operator

One of the goals of this work is to compute the numerical approximations of the spectral objects of
the stochastic Koopman operators, i.e., their eigenvalues and eigenfunctions. This is performed by
extending the DMD algorithms, that are originally developed for approximating the spectral object
of the Koopman operators in deterministic settings, to the stochastic framework. DMD algorithms
and the spectral analysis of the Koopman operator are connected in the following way. Suppose
that the restriction of the infinite dimensional stochastic Koopman operator K t to an appropriate n
dimensional subspace of functions is closed under the action of the Koopman operator (see [11]).
Let K ∈ Cn×n denote its representation by an n × n dimensional matrix. The goal of the DMD
numerical algorithms is to determine the spectrum and associated eigenvectors of the finite dimen-
sional linear operator K, and those are in turn the eigenvalues and coordinates of eigenfunctions
of the associated Koopman operator in the chosen finite-dimensional basis. If the considered sub-
space is not closed under the action of the Koopman operator, one can expect that under certain
assumptions, the operator K at least approximates the underlying dynamics [2, 26].

3.1 The DMD algorithm for RDS

The DMD algorithm provides us with a decomposition of the pair (Xm,Ym) given by the eigenval-
ues and the eigenvectors of the operatorK, which is in the data-driven settings not known explicitly,
while it is known that its action on the range Xm should be equal to Ym [40]. For n ≫ m and full
column range of Xm there exists an exact solution of the equation Ym = KXm, while for m ≤ n the
equation is satisfied in a least squares sense [40].
Let f = ( f1, . . . , fn)T : M → Cn be a vector-valued observable on the state space. For an x ∈ M,
let fk(ω, x) = f (T k(ω, x)); k = 0, 1, . . . be a vector-valued observable series on the trajectory of the
considered discrete-time RDS. Denote its expectation by

fk(x) = E[fk(ω, x)] = Kkf(x). (3.1.1)

38
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For the continuous-time RDS φ, we choose the time step ∆t and define the values of the observables
in the same way as in the discrete-time case by taking

T k(ω, x) = φ(k∆t, ω)x. (3.1.2)

The value of the observable at the time moment tk = k∆t is evaluated as

fk(x) = Kk
∆tf(x) = E[f(φ(k∆t, ω)x)]. (3.1.3)

In this stochastic framework, the DMD algorithm is applied to the matrices Xm,Ym ∈ C
n×m, which

are for the chosen initial states x1, . . . , xm ∈ M defined by

Xm =
(
f0(x1) f0(x2) · · · f0(xm)

)
Ym =

(
fk(x1) fk(x2) · · · fk(xm)

)
(3.1.4)

In this case, we expect that the DMD algorithm provides us with the eigenvalues and eigenfunctions
of the finite dimensional approximation operator associated with the Koopman operatorK tk . In the
case when the Koopman operator family is a semigroup, we haveKk

∆t = (K1
∆t)

k, thus it makes sense
to apply the DMD algorithm to the time-delayed snapshots, which means that for the chosen initial
condition x0, we define the matrices Xm and Ym as

Xm =
(
f0(x0) f1(x0) · · · fm−1(x0)

)
Ym =

(
f1(x0) f2(x0) · · · fm(x0)

)
(3.1.5)

In this case, we expect that the algorithm provides us with the eigenvalues and eigenfunctions
of the approximation operator associated with K1

∆t. The proof of the convergence of the DMD
type algorithm with input matrices (3.1.5) where f1, . . . , fn span the finite dimensional invariant
subspace of the stochastic Koopman operator, to its eigenvalues and eigenfunctions is given in [39]
for the RDS in which the noise is modeled by i.i.d. random variables and under the assumption of
ergodicity. We describe now the crucial steps of the DMD RRR algorithm.

3.2 DMD-RRR:Refined Rayleigh Ritz Dynamic Mode Decomposition

The DMD-RRR is an improved version of the Dynamic Mode Decomposition (DMD) that aims
to extract ”dynamic modes” (spatial patterns evolving with specific frequencies and growth/decay
rates) from dynamic system data. Unlike classical DMD, DMD-RRR incorporates Refined Rayleigh-
Ritz techniques and numerical rank management, making it more robust to noise and high-dimensional
data.
In [11] a data-driven algorithm for computing DMD, called DMD refined Rayleigh Ritz (DMD-
RRR) algorithm, which enables selection of Ritz pairs based on the data-driven computation of
the residual, and substantially improves the quality of the retained spectral objects. The DMD
RRR algorithm starts in the same way as other SVD-based DMD algorithms, i.e., with the SVD
decomposition for low dimensional approximation of data:

Xm = UΣV∗ ≈ UrΣrV∗r , (3.2.1)
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where Σ = diag(σi)
min(m,n)
i=1 , σi are singular values arranged in descending order, i.e., σ1 ≥ . . . ≥

σmin(m,n) ≥ 0, and r is the dimension of the approximation space. Then

Ym = KXm ≈ KUrΣrV∗r . (3.2.2)

Since KUr = YmVrΣ
−1
r , the Rayleigh quotient matrix Sr = U∗rKUr with respect to the range Ur can

be computed in this data-driven setting as

Sr = U∗r YmVrΣ
−1
r . (3.2.3)

Each eigenpair (λ,w) of Sr generates the corresponding Ritz pair (λ,Urw), that is a candidate for
the approximation of the eigenvalue and eigenvector of the Koopman operator. Here we emphasize
a few crucial points at which the DMD RRR algorithm is improved in comparison with the standard
DMD algorithms [35, 40]. The first point of difference refers to the dimension r of the reduction
space. Instead of defining the dimension of the Instead of defining the dimension of the space a
priori or taking into account the spectral gap in singular values, it is proposed in [11] to take into
account user-supplied tolerance ϵ, which is then used for defining r as the largest index satisfying
σr ≥ σ1ϵ. The algorithm is, according to [11], further enhanced with the residual computation for
each Ritz vector pair (λ,Urw)

η = ∥K(Urw) − λ(Urw)∥2 = ∥(YmVrΣ
−1
r )w − λ(Urw)∥2, (3.2.4)

where ∥ · ∥2 stands for the L2 norm. Then the vectors at which the required accuracy is not attained
are not taken into account. The final improvement compared to the standard algorithms refers to
scaling of the initial data, i.e., if the matrix Dx is defined with

Dx = diag(∥Xm(:, i)∥2)m−1
i=0 ,

we set Xm = X(1)
m Dx and Ym = Y(1)

m Dx and proceed with X(1)
m and Y(1)

m as data matrices.
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Algorithm 1 DMD-RRR for Random Dynamical Systems

Require: • Data matrices Xm = (f0(x0), f1(x0), · · · , fm−1(x0)) and
Ym = (f1(x0), f2(x0), · · · , fm(x0)) from a single trajectory starting at x0

• Tolerance ε for numerical rank determination
1: Normalize the data: Dx = diag(∥Xm(:, i)∥2)m

i=1
2: X(1)

m = XmD+x and Y(1)
m = YmD+x

3: Compute the thin SVD: X(1)
m = UΣV∗, where Σ = diag(σi)m

i=1 with σ1 ≥ σ2 ≥ . . . ≥ σmin ≥ 0
4: Determine the rank r as the largest index i satisfying σi ≥ σ1ε

5: Extract the first r columns: Ur = U(:, 1 : r), Vr = V(:, 1 : r), Σr = Σ(1 : r, 1 : r)
6: Compute the Rayleigh quotient: S r = U∗r YmVrΣ

−1
r

7: Compute eigenvalues and eigenvectors of S r: S rW = WΛ, where Λ = diag(λi)r
i=1

8: Compute the dynamic modes: Φ = YmVrΣ
−1
r W

9: For i = 1, . . . , r do
10: Compute the residual for each Ritz pair (λi,Urwi):
11: ηi = ∥K(Urwi) − λi(Urwi)∥2 = ∥(YmVrΣ

−1
r )wi − λi(Urwi)∥2

12: End For
Ensure: Φ (dynamic modes), Λ (eigenvalues), residuals {ηi}

r
i=1

3.3 Stochastic Hankel DMD (sHankel-DMD) algorithm

This section defines the stochastic Hankel matrix and describes the application of a DMD-type
algorithm to this structure. The approach is based on the Hankel DMD method introduced in
[2] for deterministic dynamical systems, with the underlying principles extended to the stochastic
setting. The analysis is restricted to discrete-time random dynamical systems (RDS), under the
assumption that the associated family of stochastic Koopman operators satisfies the semigroup
property. This assumption is crucial, as it ensures the validity of the results produced by applying
the DMD algorithm to the Hankel matrix. In the absence of this property, a situation similar to that
of non-autonomous deterministic systems arises: applying the DMD algorithm to time-delayed
snapshots leads to the approximation of different operators, which results in significant errors [29].
The Hankel matrix in the stochastic framework is defined as follows. For a scalar observable
f : M → C, we define the vector of n observations along the trajectory that starts at x ∈ M and is
generated by the one-step discrete random map T :

fn(ω, x) = ( f (x), f (T (ω, x)) . . . f (T n−1(ω, x)))T . (3.3.1)

Let fk
n(x), k = 0, 1, . . . denote the expectation of fn(θ(k)ω,T k(ω, x)) over the trajectories of length

k, i.e.,

fk
n(x) = E[fn(θ(k)ω,T k(ω, x))]

= (Kk f (x),Kk f (T (ω, x)), . . . ,Kk f (T n−1(ω, x)))T .
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Observe that the components of fk
n(x) are the values of the function Kk f along the trajectory of

length n starting at x ∈ M. The stochastic Hankel matrix of dimension n × m, associated with the
trajectories starting at x ∈ M and generated by the map T is defined by

Hn×m(ω, x) = (f0
n(x) f1

n(x) . . . fm−1
n (x))

=


f (x) K1 f (x) · · · Km−1 f (x)

f (T (ω, x)) K1 f (T (ω, x)) · · · Km−1 f (T (ω, x))
...

...
. . .

...

f (T n−1(ω, x)) K1 f (T n−1(ω, x)) · · · Km−1 f (T n−1(ω, x))

 .
The columns of Hn×m are approximations of functions in the Krylov subspace

Km(K , f ) = span( f ,K1 f , . . . ,Km−1 f ), (3.3.2)

obtained by sampling the values of functions Kk f , k = 0, . . . ,m − 1 along the trajectory of length
n starting at x ∈ M. When the DMD algorithm is applied to the stochastic Hankel matrix, the
input data matrix Xm is defined by taking the first m columns of the Hankel matrix Hn×(m+1)(ω, x),
while the data matrix Ym is formed from the last m columns of the same matrix. We refer to this
methodology as the stochastic Hankel DMD (sHankel-DMD) algorithm. As already mentioned,
when we consider the continuous-time RDS, we could for the chosen ∆t associate to it a discrete
RDS by defining the one-step map as T (ω, x) = φ(∆t, ω)x. Then the Koopman operator Kk should
be replaced with the operator Kk

∆t.
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Algorithm 2 Stochastic Hankel DMD
Require: • Scalar observable f : M → C

• One-step discrete random map T : M → M

• Initial state x ∈ M

• Number of observations n along trajectory

• Number of columns m for the Hankel matrix

• Tolerance ε for numerical rank determination
Form the vector of n observations along the trajectory starting at x:
fn(ω, x) = ( f (x), f (T (ω, x)), . . . , f (T n−1(ω, x)))T

3: Compute the components of the expected trajectory:
fk
n(x) = E[fn(θ(k)ω,T k(ω, x))]

Construct the stochastic Hankel matrix Hn×m(ω, x) of dimension n × m:
6: Hn×m(ω, x) = (f1

n(x) . . . fm−1
n (x))

Define the data matrices Xm and Ym:
Xm = first m columns of Hn×(m+1)(ω, x)

9: Ym = last m columns of Hn×(m+1)(ω, x)
Normalize the data: Dx = diag(∥Xm(:, i)∥2)m

i=1
X(1)

m = XmD+x and Y(1)
m = YmD+x

12: Compute the thin SVD: X(1)
m = UΣV∗, where Σ = diag(σi)m

i=1
Determine the rank r as the largest index i satisfying σi ≥ σ1ε

Extract the first r columns: Ur = U(:, 1 : r), Vr = V(:, 1 : r), Σr = Σ(1 : r, 1 : r)
15: Compute the Rayleigh quotient: S r = U∗r YmVrΣ

−1
r

Compute eigenvalues and eigenvectors of S r: S rW = WΛ, where Λ = diag(λi)r
i=1

Compute the dynamic modes: Φ = YmVrΣ
−1
r W

18: For i = 1, . . . , r do
Compute the residual for each Ritz pair (λi,Urwi):
ηi = ∥K(Urwi) − λi(Urwi)∥2 = ∥YmVrΣ

−1
r wi − λi(Urwi)∥2

21: End For
Ensure: Φ (dynamic modes), Λ (eigenvalues), residuals {ηi}

r
i=1
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3.3.1 Convergence of the sHankel-DMD algorithm

It was proved in [2] that for ergodic systems, under the assumption that observables are in an
invariant subspace of the Koopman operator, the eigenvalues and eigenfunctions obtained by the
extended DMD algorithm applied to Hankel matrix, converge to the true Koopman eigenvalues
and eigenfunctions of the considered system. The convergence of the DMD algorithm with input
matrices Xm and Ym defined by (3.1.5) to the eigenvalues and the eigenfunctions of the Koopman
operator is proved in [39] for the class of RDS in which the noise is modeled by i.i.d. random vari-
ables, under the assumption of ergodicity, and of the existence of the finite dimensional invariant
subspace. Here we prove that under the same assumptions, the convergence is accomplished for
the sHankel-DMD algorithm. Our proof is based on the fact that the eigenvalues and the eigen-
functions obtained by DMD algorithm correspond to the matrix that is similar to the companion
matrix, which represents the finite dimensional approximation of the Koopman operator in the
Krylov basis. We limit the considerations to the discrete-time RDS. Suppose that the dynamics on
the compact invariant set A ⊆ M is generated by the measure-preserving map T (ω, ·) : A → A for
each ω ∈ Ω. We recall from [4] that a probability measure ν is invariant for RDS ϕ(n, ω) = T n(ω, ·)
if it is invariant for the skew product flow

Θ(n)(ω, x) = (θ(n)ω,T n(ω, x))

generated by T and θ(t), i.e., ifΘ(n)ν = ν and if πΩν = Pwhere πΩ denotes the canonical projection
Ω × A → Ω. Invariant measures always exist for a continuous RDS on compact space A (see [4,
Theorem 1.5.10]). If A is a Polish space, the measure ν on Ω × A could be written as a product of
measures, i.e., dν(ω, x) = dµω(x)dP(ω), i.e., for f ∈ L1(ν)∫

Ω×A
f dν =

∫
Ω

∫
A

f (ω, x)dµω(x)dP(ω). (3.3.3)

If the skew product dynamical systemΘ is ergodic onΩ×A with respect to some invariant measure
ν and if θ(n) is ergodic with respect to P, we say that φ is ergodic with respect to the invariant
measure ν. Under the assumption of ergodicity of Θ with respect to the measure ν, the Birkhoff’s
ergodic theorem states that the time average of observable f ∈ L2(Ω × A, ν) under Θ is given by

lim
n→∞

1
n

n−1∑
k=0

f (θ(k)ω,T k(ω, x)) =
∫
Ω×A

f (ω, x)dν, a.e. on Ω × A. (3.3.4)

The following proposition shows that under the assumption of ergodicity and Markovian property
of RDS, the sHankel-DMD algorithm provide us with approximations of eigenvalues and eigen-
functions that converge to the true Koopman eigenvalues and eigenfunctions.

Proposition 8. Suppose that the dynamics on the compact invariant set A ⊆ M is given by the one
step map T (ω, ·) : A → A for each ω ∈ Ω and that the associated discrete time RDS φ is ergodic
with respect to some invariant measure ν. Assume additionally that the processes {φ(n, ω)x; x ∈ A}
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form a Markov family. Denote by µ the marginal measure µ = EP(ν) on A. Let the Krylov subspace
Km(K , f ) span an r-dimensional subspace of the Hilbert spaceH = L2(A, µ), with r < m, invariant
under the action of the stochastic Koopman operator. Then for almost every x ∈ A, as n → ∞,
the eigenvalues and eigenfunctions obtained by applying the DMD algorithm to the first r + 1
columns of the n × (m + 1)-dimensional stochastic Hankel matrix converge to the true eigenvalues
and eigenfunctions of the stochastic Koopman operator.

Proof. Consider the observables f : A → R belonging to the Hilbert spaceH = L2(A, µ). Due
to the ergodicity of Θ, in accordance with Birkhoff’s ergodic theorem, (3.3.4) is valid, we get:

lim
n→∞

1
n

n−1∑
k=0

f (T k(ω, x)) =
∫
Ω×A

f (x)dν =
∫
Ω

∫
A

f (x)dµω(x)dP(ω) =
∫

A
f dµ. (3.3.5)

where the last equality follows from the fact that µ = EP(ν) = EP(µω) For observables f , g ∈ H , let
the vectors of n observations along the trajectory starting at x ∈ A of the RDS generated by the map
T be denoted by fn(ω, x) and gn(ω, x) and defined by (3.3.1). If we denote the data-driven inner
product by ⟨fn(ω, x), gn(ω, x)⟩, we have:

lim
n→∞

1
n

[⟨fn(ω, x), gn(ω, x)⟩] = lim
n→∞

1
n

n−1∑
k=0

f (T k(ω, x))g∗(T k(ω, x))

= lim
n→∞

1
n

n−1∑
k=0

f g∗(T k(ω, x))

=

∫
A

f g∗dµ

= ⟨ f , g⟩H for a.e. x (**)

with respect to the measure µ. Using the assumption that Km(K , f ) spans an r-dimensional sub-
space ofH , which is invariant for the stochastic Koopman operator, the restriction of the Koopman
operator to this subspace is finite-dimensional and can be realized by an r × r matrix. The repre-
sentation of this matrix in the basis formed by the functions ( f ,K f , . . . ,Km−1 f ) is given with the
companion matrix:

C =



0 0 · · · 0 c0
1 0 · · · 0 c1
0 1 · · · 0 c2
...

...
. . .

...
...

0 0 · · · 1 cr−1


(3.3.6)
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where the vector c = (c0, c1, . . . , cr−1)T , obtained by using least squares approximation, is equal
to

c = G−1
(
⟨ f ,K r f ⟩H , ⟨K1 f ,K r f ⟩H , . . . , ⟨K r−1 f ,K r f ⟩H

)T
. (3.3.7)

Here G denotes the Gramian matrix with elements

Gi j = ⟨K
i−1 f ,K j−1 f ⟩H , i, j = 1, . . . , r (3.3.8)

Consider now the stochastic Hankel matrix Hn×(r+1)(ω, x) of dimension n×(r+1) along a trajectory
starting at x and the companion matrix algorithm [2, 11] applied to the matrices

Xr = (f0
n(x) f1

n(x) . . . fr−1
n (x)) and Yr = (f1

n(x) f2
n(x) . . . fr

n(x)).

We denote by C̃ the numerical companion matrix computed as a best approximation of the least
squares problem

C̃ = arg min
B∈Cr×r

∥Yr − XrB∥.

Using the assumption that the matrix Xr has a full column rank, the pseudoinverse is of the form
X+r = (X∗rXr)−1X∗r and the matrix C̃ is

C̃ = X+r Yr

= (X∗rXr)−1X∗rYr

=

(
1
n

X∗rXr

)−1 (
1
n

X∗rYr

)
= G̃−1

(
1
n

YrX∗r

)
. (***)

Here G̃ denotes the numerical Gramian matrix whose elements are equal to

G̃i j(ω, x) =
1
n
⟨fi−1

n (x), f j−1
n (x)⟩

=
1
n

n−1∑
k=0

(K i−1 f )(T k(ω, x))(K j−1 f ∗)(T k(ω, x))

=
1
n

n−1∑
k=0

(K i−1 f )(K j−1 f ∗)(T k(ω, x)), i, j = 1, . . . , r.

Now, by using (**), we conclude that

lim
n→∞

G̃i j(ω, x) = ⟨K i−1,K j−1 f ⟩H , i, j = 1, . . . , r, for a.e. x, (3.3.9)

with respect to the measure µ. From (***) we get that the last column

c̃ = (c̃0(ω, x), c̃1(ω, x), . . . , c̃r−1(ω, x))T (3.3.10)
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of C̃ is equal to

c̃ = G̃−1 1
n

(
⟨f0

n(x), fr
n(x)⟩, ⟨f1

n(x), fr
n(x)⟩, . . . , ⟨fr−1

n (x), fr
n(x)⟩

)T
. (3.3.11)

Since
lim
n→∞
⟨f j−1

n (x), fr
n(x)⟩ = ⟨K j−1 f ,K r f ⟩H , j = 1, . . . , r, for a.e. x, (3.3.12)

with respect to the measure µ, and the matrix G̃−1 converges to the inverse of the true Gramian
matrix G−1, it follows that the components of c̃ converge to the components of c̃ (3.3.7). As
in [2, Proposition 3.1], we use the fact that the eigenvalues of the matrix C̃ are the roots of a
polynomial having coefficients c̃i. Therefore, the eigenvalues of C̃ are continuously dependent on
these coefficients, which implies that the eigenvalues of the companion matrix C̃ converge to the
eigenvalues of the exact companion matrix, i.e., to the exact eigenvalues of the stochastic Koopman
operator. The eigenvalues and eigenvectors provided by the DMD algorithm are computed from
the eigenvalues and eigenvectors of the matrix Sr, which is similar to the companion matrix C̃ (see
[11, Proposition 3.1]), thus the conclusion follows.
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3.4 Numerical examples

3.4.1 Discrete RDS

Noisy rotation on the circle

To analyze the noisy rotation on the circle using the DMD algorithm, focusing on the computation
of the Koopman operator’s spectral properties.
The dynamical system under consideration is described as in Example 2, where the evolution of the
state variable is subject to both deterministic rotation and additive noise. To analyze this system,
we define a set of real-valued observable functions, which serve as the input to the DMD algorithm:

f j(x) = cos( j2πx),

g j(x) = sin( j2πx), where j = 1, . . . , n − 1

These observables are arranged into a vector-valued observable:

f =



f1
...

fn−1
g1
...

gn−1


This vector captures the essential harmonics of the system and provides a suitable subspace for
spectral approximation. The input data matrices Xm and Ym,used for the application of the DMD-
RRR (Refined Rayleigh–Ritz) algorithm, are constructed as in Equation((3.1.5)), using snapshots
of the observable vector evaluated along a trajectory of the system.
Analysis:
The analysis considers both deterministic and stochastic cases of the system.

• Deterministic Case:

– According to Tu et al. [40], for m ≫ n, the DMD algorithm approximates the associated
Koopman operator in a least-squares sense.

– Due to ergodicity and the law of large numbers, as m → ∞, the DMD algorithm’s
results converge to the eigenvalues and eigenvectors of the finite-dimensional approxi-
mating matrix of the Koopman operator.

• Stochastic Case:

– According to Takeishi et al. [39], the DMD algorithm also converges to the eigenvalues
and eigenfunctions of the stochastic Koopman operator.
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• Data Acquisition:

– To recover the spectrum of the stochastic Koopman operator in the ergodic system, the
matrices Xm and Ym are constructed using values of the observable vector from a single,
sufficiently long trajectory:

Xm =
(

f (x0), f (T (ω, x0)), . . . , f (T m−1(ω, x0))
)

Ym =
(

f (T (ω, x0)), f (T 2(ω, x0)), . . . , f (T m(ω, x0))
)

– where x0 is the initial state.

• Numerical Experiment Setup:

– The number of observable functions is set to n1 = 150, resulting in n = 300 observable
functions.

– The number of sequential snapshots used to determine the matrices Xm and Ym is m =
5000.

– Parameters for the flow are set to ϑ = π/320 and δ = 0.01.

– The DMD RRR algorithm is applied to obtain numerical results.

• Results:

– In the deterministic case, the eigenvalues lie on the unit circle, as expected.

– The real parts of the numerically recovered eigenfunctions ϕi(x), i = 1, 2, 3, closely
match the theoretically established eigenfunctions given by equation (2.6.12).

– The numerically captured eigenvalues of the stochastic Koopman operator closely co-
incide with the theoretical eigenvalues given by equation (2.6.13).

– In the stochastic case, the real parts of the eigenfunctions corresponding to the first three
eigenvalues λS

i , i = 1, 2, 3, are presented; these eigenfunctions are given by equation
(2.6.12).

• Remarks:

– The deterministic and stochastic Koopman operators commute in this case, so the
eigenfunctions are the same, and the addition of noise does not perturb them (consistent
with Giannakis et al. [19]).

– The computed eigenvalues approximate the eigenvalues of the stochastic Koopman op-
erator restricted to the subspace spanned by the components of the vector observable.

– Since this subspace is invariant under the Koopman operator, the eigenvalues are com-
puted with high accuracy.

• Alternative Observables:
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– Similar results were obtained using observable functions:

f j(x) = e j2πix and g j(x) = e− j2πix, j = 1, . . . , n1.

Figure 3.1: Rotation on circle
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Discrete linear RDS

The discrete-time linear Random Dynamical System (RDS) under consideration is defined by a
mapping as introduced in Equation (2.3.1). The evolution of the system is governed by a random
matrix A(ω), explicitly given by

A(ω) =
(

0 π(ω)
−π(ω) 0

)
, (3.4.1)

where the function π is defined in Equation (2.6.5). The random parameterω ∈ Ω evolves according
to the shift transformations θ = (θ(t))t∈Z+ , as specified in Equation (2.6.4). Each coordinate ωi of
ω is generated by an independent and identically distributed (i.i.d.) random variable, satisfying the
probability distribution

P(ωi = 1) = p1 and P(ωi = 2) = 1 − p1, 0 < p1 < 1.

Theoretical Background:

• As proved in Proposition 1, the principal eigenvalues of the stochastic Koopman operator are
equal to the eigenvalues of the matrix Â = E[A(ω)].

• The associated eigenfunctions are given by equation (2.3.2).

Numerical Experiment Setup:

• Set p1 = 0.75.

• Select N = 104 initial points uniformly distributed over [0, 1] × [0, 1].

• For every chosen initial point x j,0, j = 1, . . . ,N, determine the random trajectory x j,k, k =
1, 2, . . . , where x j,k denotes the state value at the k-th step.

DMD Application:

• Apply the DMD RRR algorithm to the full-state observables by taking states on each trajec-
tory separately.

• Define the input matrices for the DMD RRR algorithm as:

Xm, j = (x j,1, x j,2, . . . , x j,m−1)

Ym, j = (x j,2, x j,3, . . . , x j,m), j = 1, . . . ,N

Eigenvalue Approximation and Error Estimation:
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• In each computation associated with the initial value x j,0, obtain the eigenvalue pair λ( j)
1,2,

which approximates the principal Koopman eigenvalues λ̂1,2.

• For fixed m and the chosen set of initial conditions, obtain samples of approximating eigen-
values λ( j)

1,2, j = 1, . . . ,N.

• To estimate the error, evaluate the L1, L2, and L∞ norms of the difference between the exact
eigenvalues and the computed eigenvalues for the obtained sets of approximating eigenval-
ues.

• Present the norms determined for different values of parameter m (as shown in Figure 3.2).

Observations and Conclusions:

• The accuracy of the obtained eigenvalues increases monotonically with the number of snap-
shots m used in the computations.

• The error is O( 1√
m

), as expected for a random process of this type.

• The norm of the state values ∥x j,m∥ increases with m and can become quite large for large
values of m.

• The condition number of the input matrices of the DMD RRR algorithm can be very large.

• The scaling applied in the enhanced DMD RRR algorithm prevents instabilities that could
arise if the standard DMD algorithm without scaling is applied.

Figure 3.2: Discrete linear RDS defined by (3.4.1). L1, L2, and L∞ errors of approximated Koop-
man eigenvalues.
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3.4.2 Stochastic differential equations examples

Linear scalar SDE

The system under consideration is governed by a linear scalar stochastic differential equation (SDE)
of the form:

dX = µX dt + σ dWt, (3.4.2)

where µ < 0 and σ > 0. This equation defines a one-dimensional Ornstein–Uhlenbeck process, as
described in [33].

In the deterministic case (σ = 0), the Koopman eigenvalues are given by

λn = nµ, n = 0, 1, 2, . . .

and the corresponding eigenfunctions are the monomials

ϕn(x) = xn.

In the stochastic case, the eigenvalues of the stochastic Koopman generator remain the same as
in the deterministic case. However, the eigenfunctions take the form

ϕn(x) = anHn(αx), α =

√
|µ|

σ2 , n = 0, 1, 2, . . .

where Hn denotes the Hermite polynomials and an are normalization constants, as detailed in
[33, 3].

DMD Application in Deterministic Case:

• Observable functions: f j(x) = x j, j = 1, . . . , n.

• Satisfactory results for the first n eigenvalues were obtained for moderate values of n (e.g.,
n = 10).

• Significant numerical errors arise for larger values of n due to the ill-conditioned system
caused by the evolution of higher-order monomials (enµt xn → 0).

• With n = 10 and m = 2000 snapshots, the ten leading eigenvalues are determined with
accuracy greater than 0.01 (see Figure 3.3(b)).

• The standard DMD algorithm (without scaling) was more sensitive, capturing at most three
eigenvalues with accuracy greater than 0.01 on the same data.

DMD Application in Stochastic Case (Approach 1):
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• Observable functions: f j(x) = x j, j = 1, . . . , n.

• m = 100 initial points from the interval [−1, 1] are chosen.

• n-dimensional observable vector is used.

• Input matrices Xm,Ym ∈ R
m×n are defined by equation (3.1.4), with Ym determined for k =

100 and using N = 1000 trajectories for each initial condition.

• Eigenvalues computed using this approach lead to very accurate results for the Koopman op-
erator (see Figure 3.3(d) of the source document), with accuracy similar to the deterministic
case.

• Accuracy depends on the number of computations N, as well as the number and distribution
of initial points.

DMD Application in Stochastic Case (Approach 2):

• Observable functions: f j(x) = x j, j = 1, . . . , n.

• For one chosen initial point, N = 1000 trajectories are generated.

• These trajectories are used to determine approximations of the expected values of the ob-
servable functions.

• These expected values are used in equation (3.1.5) to form input matrices Xm and Ym for
m = 2000.

• The number of eigenvalues captured with satisfactory accuracy decreases (only four with
accuracy greater than 10−2 in the presented case - see Figure 3.3(e)).

• The eigenfunctions associated with these four eigenvalues are captured with satisfactory ac-
curacy (Figure 3.3(f)).

• The lower accuracy could be due to errors introduced when approximating expected values
by averaging along trajectories.

• Increasing the number of computed trajectories should improve accuracy due to the law of
large numbers.
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Figure 3.3: Linear scalar equation. Deterministic and Stochastic cases with µ = -0.5, σ = 0.001
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Nonlinear scalar SDE

The nonlinear scalar stochastic differential equation (SDE) under consideration is:

dX = (µX − X3) dt + σ dWt. (3.4.3)

The qualitative behavior of the solutions depends on the sign of the parameter µ, as discussed in
[17]. In this analysis, we focus on the case where µ < 0 is fixed.

Theoretical Koopman Spectrum (Deterministic Case, σ = 0):

• The eigenvalues of the adjoint of the Liouville operator (which is the Koopman operator for
the deterministic equation) are:

λn = nµ, n = 0, 1, 2, . . . ,

(from [17]).

• The associated eigenfunctions are:

ϕn(x) =

 x√
x2 + |µ|

n

,

(from [17]).

Theoretical Koopman Spectrum (Stochastic Case, σ > 0):

• Eigenvalues and eigenfunctions of the generator of the stochastic Koopman family can be
evaluated by solving the associated backward Kolmogorov equation, which can be trans-
formed into the Schrödinger equation (see [17]).

• For small values of σ, the eigenvalues are very similar to the deterministic case.

• Eigenvalues are approximated numerically by solving the Schrödinger equation using the
finite difference method.

DMD Application in Deterministic Case (σ = 0):

• The choice of observable functions is crucial for the accuracy of the results.

• Using Analytical Eigenfunctions or Linear Combinations as Observables:

– The subspace spanned by these functions is closed under the action of the Koopman
operator.
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– The restriction of the Koopman operator on this subspace can be exactly described by
a finite-dimensional matrix (the key matrix for DMD RRR).

– As a consequence, eigenvalues and eigenfunctions are computed with high accuracy
(see Figure 3.4).

• Using Monomials ( f j(x) = x j) as Observables:

– Results were less accurate.

– Only a few leading eigenvalues and eigenfunctions were computed with satisfactory
accuracy.

DMD Application in Stochastic Case (σ > 0):

• The DMD RRR algorithm is applied using the same set of observable functions as in the
deterministic case.

• Approach 1 (Multiple Initial Conditions):

– m = 100 initial conditions are chosen from an unspecified interval.

– Expected values of the observable functions are determined over N = 1000 trajectories
and after k = 100 time steps.

– Results in the same number of accurately computed eigenvalues as in the deterministic
case (see Figure 3.4(d)).
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Figure 3.4: Nonlinear scalar equation. Deterministic and Stochastic cases with µ = -0.5, σ = 0.001
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Noisy van der Pol Oscillator

The system is described by the following two-dimensional stochastic differential equation (SDE):

dX1 = X2 dt,

dX2 =
(
µ(1 − X2

1)X2 − X1
)

dt +
√

2ε dWt, (3.3.3)

where Wt denotes a one-dimensional Wiener process.
The existence of a solution to this SDE system has been established in [4]. Furthermore, the

convergence of numerical approximations computed via the Euler–Maruyama method has been
demonstrated in [21].

Deterministic Case (ε = 0):

• The dynamics converge to an asymptotic limit cycle whose basin of attraction is R2.

• The base frequency of the limit cycle is approximately ω0 = 1 − 1
16µ

2 + O(µ3) [37].

• Applying the Hankel DMD RRR algorithm with the observable function

f (x1, x2) = x2
1 + x2

2 +

√
x2

1 + x2
2

yields a computed base frequency of 0.994151 for the chosen initial state.

• Eigenvalues computed with standard DMD and DMD RRR (with residual threshold η0 =

10−3) are compared (see Figure 3.5).

• The number of eigenvalues/eigenvectors obtained is 250 (for a Hankel matrix with r = 250
columns), but only a few satisfy the residual threshold in DMD RRR.

• DMD RRR eigenvalues form a lattice structure consistent with theoretical results
{kω0 − µ + kω0 : k ∈ Z} [31].

• Standard DMD computes many spurious eigenvalues.

• Solution and DMD RRR eigenvalues (with residual threshold) are presented in Figure 3.5 .

Stochastic Case (ε > 0):

• For large t, the solution is ”smeared out” around the deterministic limit cycle, forming a
stochastic asymptotic limit cycle (see Figure 3.5).

• This statistical equilibrium can be determined by solving the associated Fokker-Planck equa-
tion.
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• Energy bounds for the noisy van der Pol oscillator were determined in [14].

• For small to moderate noise, the base frequency of the averaged limit cycle remains similar
to the deterministic case.

• Noise parameter is set to ϵ = 0.005.

Figure 3.5: Van der Pol oscillator. Deterministic case: (a) solution; (b) Koopman eigenval-
ues.Stochastic case: (c) solution; (d) stochastic Koopman eigenvalues



Conclusion

This thesis thoroughly explores the framework of the stochastic Koopman operator, extending the
classical Koopman operator theory to random dynamical systems. Given the intrinsic complexity
of such systems, often shaped by inherent uncertainties, the objective was to provide theoretical
and numerical tools for their linear analysis and the prediction of their observables.

The theoretical foundations of the stochastic Koopman operator were first established. This
included the formalization of its action on observables across various classes of random systems,
ranging from deterministic systems perturbed by noise to stochastic differential equations (SDEs).
This groundwork facilitated the characterization of the operator’s fundamental properties, such as
linearity and its infinite-dimensional nature, thereby enabling subsequent applications and approx-
imations.

Building on this theoretical basis, numerical approximation methods for the stochastic Koop-
man operator were developed and assessed. Particular emphasis was placed on adapting Dynamic
Mode Decomposition (DMD) algorithms originally designed for deterministic systems [34, 35]
to enhance robustness under stochastic influences. This adaptation allowed for the extraction of
stochastic Koopman modes and eigenvalues, yielding critical insights into the underlying dynam-
ics of random systems. The effectiveness and relevance of these numerical approaches were rig-
orously validated through a series of examples, including both discrete cases (e.g., noisy rotation
on the circle) and continuous ones (e.g., linear and nonlinear SDEs, noisy Van der Pol oscillator).
These examples demonstrated the capacity of the methods to capture observable dynamics in the
presence of noise.

Finally, these tools were applied to practical problems to illustrate their usefulness in tasks
such as long-term prediction of observables and the identification of coherent structures in com-
plex random systems. These applications underscored the added value of the stochastic Koopman
framework over traditional methods for analyzing random systems, particularly in terms of simpli-
fying complex dynamics and enhancing predictive capabilities.

61



Bibliography

[1] L. arnold. stochastic differential equations. john wiley sons, 1974.

[2] Hassan Arbabi and Igor Mezic. Ergodic theory, dynamic mode decomposition, and compu-
tation of spectral properties of the koopman operator. SIAM Journal on Applied Dynamical
Systems, 16(4):2096–2126, 2017.

[3] L Arnold, H Crauel, and JP Eckmann. Lyapunov exponents (proceedings oberwolfach 1990).
Lecture Notes in Mathematics, 1486, 1991.

[4] Ludwig Arnold, Christopher KRT Jones, Konstantin Mischaikow, Geneviève Raugel, and
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