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General introduction 

Spinel materials constitute a remarkable class of compounds that have garnered 

significant interest due to their unique structural and functional properties [1-3]. These 

properties critically depend on several factors; particularly the specific metal ions 

incorporated within the structure[4] their arrangement within the lattice and the overall 

crystal structure itself. These materials exhibit diverse atomic and electronic 

configurations[5], resulting in exceptional electronic, optical[6, 7], magnetic, and catalytic 

properties[8-11]. This remarkable spectrum of properties endows spinel materials with 

exceptional versatility, enabling applications across diverse technological fields. These 

include data storage[12], high-frequency electronic devices[13], dielectric materials, 

transparent conducting oxides, and laser technologies[14]. These materials also serve as 

functional components in sensor technologies and super capacitor electrodes[15], with 

additional applications spanning superconductivity, biotechnology, biomedical engineering, 

and renewable energy systems[16-19]. The chemical composition of spinel compounds 

follows the general formula AB₂O₄, where A represents divalent cations (A²⁺) occupying 

tetrahedral sites and B denotes trivalent cations (B³⁺) in octahedral coordination. These 

materials exhibit two primary structural configurations: normal and inverse spinel 

arrangements, distinguished by their cation distribution among the available crystallographic 

sites[20]. The normal spinel structure, which is the most common and was first elucidated 

in 1915 by Bragg and Nishikawa, exhibits a geometric arrangement in which A atoms 

occupy tetrahedral coordination sites, while B atoms reside in octahedral sites[21]. In 

contrast, the inverse spinel configuration, as characterized by Barth and Posnjak [22], 

deviates from this standard arrangement. In the inverse structure, denoted as BABO₄, B 

atoms occupy the tetrahedral sites, while the octahedral sites are shared equally between A 

and B atoms. 

Driven by advances in the field, research has shifted focus to ternary spinel oxides 

[8]. These oxides are characterized by three distinct metal cations occupying both tetrahedral 

and octahedral sites within the crystalline structure. Such multicomponent materials offer an 

even broader range of tunable properties [23-25], as demonstrated by recent investigations 

into 3d transition metal-based ternary spinel oxides using density functional theory (DFT). 

This approach has enabled researchers to decipher critical factors influencing lithium-ion 

battery cathodes, including cation site preferences, delithiation voltages, and thermodynamic 



GENERAL INTRODUCTION  

 

3 

 

stability[26]. These parameters are essential for developing high-performance, practical 

cathode materials. 

In our case, we are studying the Cobalt manganese oxide (Co₂MnO₄) which stands 

out among spinel-type materials due to its unique properties and versatile applications [27-

29]. This compound adopts an inverse spinel structure (Co²⁺Co³⁺Mn³⁺O₄) and 

exhibits ferrimagnetic behavior [30]. Its physicochemical characteristics—including 

magnetic performance—are highly dependent on elemental composition and crystal lattice 

arrangement [31].Extensive research has explored Co₂MnO₄’s magnetic properties and 

potential uses, particularly in advanced functional materials [32, 33]. Studies also highlight 

how elemental substitution (e.g., doping or stoichiometric modifications) can significantly 

alter its magnetic response [34-36], offering avenues for tailored material design. 

To explore the untapped potential of this spinel compound class and systematically 

characterize their properties for optimized synthesis, investigations were conducted using 

the full-potential linearized augmented plane wave (FP-LAPW) method. 

This approach enabled comprehensive verification of stability and accurate 

prediction of elastic properties, while elucidating the structural, electronic, and magnetic 

characteristics of the Co₂MnO₄ compound. Our investigations employed computational 

platformsWien2k [37]. 

Electronic structure analysis incorporated the Generalized Gradient Approximation 

(GGA) [38]. This multi-methodological framework provided robust understanding and 

predictive capability regarding the physical properties of this novel material. 

This manuscript is organized into three chapters. The foundational chapter 

establishes our theoretical framework through comprehensive implementation of quantum 

mechanical computational methods within density functional theory (DFT), specifically, the 

Full-Potential Linearized Augmented Plane Wave (FP-LAPW) method. Chapter II 

elaborates these theoretical foundations in detail. Chapter III presents and analyzes our 

research results and discussions. Chapter I, which provides a comprehensive review of, 

precedes these core technical chapters: Fundamental principles of spinel materials, their 

characteristic physical properties and Current technological applications. 
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The work concludes with a synthesis section that systematically summarizes key 

findings, highlights the most significant results, proposes concrete future research directions 

and Outlines promising technological perspectives. 
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1.1.Introduction 

Spinel compounds, with the general formula AB₂X₄, represent an important class of 

materials known for their versatile structural, electrical, magnetic, and optical properties. 

These materials crystallize in a cubic close-packed lattice where divalent (A) and trivalent 

(B) cations occupy tetrahedral and octahedral sites, respectively, within a framework of 

anions (X), typically oxygen, sulfur, or selenium. The flexibility in cation substitution and 

distribution allows for the fine-tuning of properties, making spinels suitable for a wide range 

of technological applications. 

Due to their chemical stability, high melting points, and tunable electronic 

characteristics, spinel-type materials have been extensively studied and utilized in various 

fields, including catalysis, energy storage, magnetic devices, sensors, and optoelectronic 

applications. Recent advancements in synthesis and characterization techniques have further 

enhanced the understanding of spinel structures, enabling the design of novel materials with 

optimized functionalities. 

This chapter provides a comprehensive overview of spinel compounds, beginning 

with their structural features and classification, followed by a discussion of key physical 

properties. The latter sections focus on specific applications, highlighting the role of spinel 

materials in modern technologies and emerging research areas. 

1.2.Crystal Structure of Spinels 

The general formula 𝐴𝐵₂𝑂₄ adopts a spinel structure analogous to that of natural 

spinel, 𝑀𝑔𝐴𝑙₂𝑂₄[39]. This cubic structure, belonging to the Fd3̅m space group (No. 227), 

features a close-packed arrangement of oxygen ions forming a face-centered cubic lattice. 

Within this framework, cations are distributed between two distinct coordination sites: 

octahedral (Oh) and tetrahedral (Td). This specific cation distribution results in eight 𝐴𝐵₂𝑂₄ 

unit motifs (or octants) per unit cell. These motifs highlight the arrangement of A²⁺ and B³⁺ 

cations around O²⁻ anions, illustrating the complexity of the spinel structure. The unit cell is 

rhombohedral and contains two formula units of AB₂O₄. However, since this cell is not the 

most convenient for describing the structure, we instead analyze the smallest cubic multiple 

cell. This cubic cell comprises 32 oxygen atoms, which define 32 B sites and 64 A sites. 

Only 8 A sites and 16 B sites are occupied by cations. Consequently, the smallest cubic cell 

contains 8 formula units of 𝐴𝐵₂𝑂₄ [40]  
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Figure 1.1. Unit cell of the AB₂O₄ spinel structure 

To describe the structure, the unit cell with lattice parameter a is divided into eight smaller 

cubes (octants) with edge lengths of a/2,  a/2, and  a/2. Figure I-1 shows the cation and anion 

positions in two adjacent octants. The oxygen anions are identically arranged in all octants, 

forming the vertices of a tetrahedron inscribed within a smaller cube of edge 

length  
𝑎

4
,

 𝑎

4
, and  𝑎/4 [41]. The occupied A sites are distributed in the center or every 

alternate octantand at the half of the vertices across all octant. Within the cubic unit cell, the 

A sites constitute two face-centered cubic (FCC) sublattices, offset from each other by 𝑎√3/4 

along the [111] direction. The occupied B sites are located in every second octant. Similar 

to the oxygen anions, they are positioned at one-quarter of the octant's space diagonal from 

four of its eight vertices, forming a tetrahedron inscribed within a cubic subcell of edge 

length a/4 [42]. 

 

Figure 1.2: (a) Normal spinel structure, (b) Inverse spinel structure[43]. 

Generally, oxygen atoms (anions) are not precisely located at the FCC (face-centered 

cubic) sublattice positions. The exact position of the oxygen ions is determined by the 

parameter (u). This parameter represents the distance between an O²⁻ anion and the cations 
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in a tetrahedral (Td) site [44]. The parameter (u) is expressed as a fraction of the lattice 

parameter (a). 

In the ideal structure, (u) equals 0.375a. However, this ideal configuration is almost 

never achieved, and for most known spinels, the value of (u) lies between 0.375 and 

0.385 [45]. The presence of O²⁻ ions along with tetrahedral and octahedral sites within the 

face-centered cubic (FCC) lattice allows for variable ionic distributions among these 

nonequivalent sites. These cationic arrangements can be described by a parameter known as 

the inversion degree (λ), which represents the percentage of divalent ions occupying 

octahedral sites. 

The general formula for a spinel structure is written as follows (by convention, 

octahedral sites are enclosed in square brackets) [46]𝐴1−2𝜆
2  𝐵2𝜆

3+ [𝐴2𝜆  
2+ 𝐵2−2𝜆 

3+ ] , Where λ 

represents the inversion degree. 

 For λ=0, the spinel is referred to as 'normal' with the formula 𝐴[𝐵₂]𝑂₄. 

 For λ=0.33, the spinel is statistically disordered, or partially inverse (mixed). 

 For λ=0.5, the spinel is referred to as 'inverse' with the formula 𝐵[𝐴𝐵]𝑂₄. 

Spinel structures can be classified into two types based on cation distribution: normal 

spinels and inverse spinels. In a normal spinel (𝐴[𝐵₂]𝑂₄) the A²⁺ cations occupy tetrahedral 

sites (Td) and B³⁺ cations occupy octahedral sites (Oh). However in an inverse spinel 

(𝐵[𝐴𝐵]𝑂₄) half of the B³⁺ cations occupy tetrahedral sites (Td) and the remaining A²⁺ and 

B³⁺ cations jointly occupy octahedral sites (Oh). 

1.3.Spinel Ferrites 

Spinel ferrites, commonly referred to simply as ferrites, are primarily composed of 

trivalent iron and oxygen. Their general chemical formula is 𝑀𝐹𝑒₂𝑂₄, where M represents 

a divalent metal cation, with iron present in the trivalent state [47].The most relevant ferrites 

for various applications are complex compounds where M represents a combination of 

divalent ions such 𝑎𝑠 𝑀𝑛²⁺, 𝑁𝑖²⁺, 𝑍𝑛²⁺, 𝐹𝑒²⁺, 𝐶𝑜²⁺, 𝑎𝑛𝑑 𝐶𝑢²⁺. 

Ferrites, due to their lack of a preferred magnetization direction, are classified as 'soft' 

magnetic materials [48].This indicates that their magnetization direction can be readily 

altered by applying an external magnetic field [49].The magnetic properties of ferrites 



CHAPTER I :                      Overview of Spinel Materials and Their Technological Applications  

 

9 

 

depend not only on the metal ions occupying interstitial sites but also on their cationic 

distribution. These characteristics make ferrites valuable for diverse applications, including 

magnetic storage media, microwave devices, and magnetic sensors [50, 51]. 

1.4.Types of Magnetism 

Magnetism arises from the motion of electric charges, particularly the spin and orbital 

motion of electrons within atoms. In solid-state materials, the collective behavior of these 

magnetic moments gives rise to various forms of magnetism, each characterized by distinct 

interactions between atomic moments and their responses to external magnetic fields. 

Understanding these types is essential for interpreting the magnetic behavior of spinel 

compounds and designing materials for specific applications such as magnetic storage, 

spintronics, and sensors (see Figure 1.3). 

1.4.1. Ferromagnetism 

Ferromagnetic materials exhibit spontaneous magnetization, wherein the magnetic 

moments of constituent atoms or ions align parallel to each other even in the absence of an 

external magnetic field. This parallel alignment generates a permanent net magnetization. 

The Curie temperature (Tc) represents the critical threshold above which the material loses 

its permanent magnetization and transitions to paramagnetic behavior. At this temperature, 

thermal energy randomizes the magnetic moment orientations through increased thermal 

fluctuations. 

1.4.2. Antiferromagnetism 

Antiferromagnetic materials exhibit antiparallel coupling of atomic or ionic magnetic 

moments. Below the Néel temperature (TN), these moments adopt an antiparallel alignment, 

resulting in complete cancellation of net magnetization. Such materials demonstrate low 

magnetic susceptibility and fundamentally distinct magnetic response compared to 

ferromagnetic systems. The Néel temperature represents the critical transition point where 

the material loses its antiparallel magnetic ordering and undergoes a paramagnetic phase 

transition. Above TN, thermal energy randomizes the magnetic moment orientations through 

increased thermal fluctuations. 
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1.4.3. Ferrimagnetism 

Ferrimagnetic materials are characterized by antiparallel alignment of ionic magnetic 

moments, but unlike antiferromagnetic systems, these moments do not completely cancel 

due to unequal moment magnitudes. This imbalance creates a spontaneous net magnetization 

[52]. Such magnetic ordering is characteristic of ferrites, which find extensive technological 

applications. Similar to ferromagnetic materials, ferrimagnets undergo a paramagnetic 

transition above their Curie temperature (TC). However, ferrimagnetic systems may 

additionally exhibit a compensation temperature (Tcomp) where the net magnetization 

vanishes prior to reaching TC due to opposing sublattice magnetizations. 

 
       Ferromagnetism                       Anti-ferromagnetism                Ferrimagnetism 

Figure 1.3: Magnetic ordering in materials: Ferro-, Antiferro-, and Ferrimagnetism 

1.5.Magnetic Hysteresis Cycle 

The magnetization response of a ferrimagnetic material to an applied magnetic field 

H exhibits characteristic hysteresis behavior, as shown in the hysteresis loop in Figure1.4. 

 

 

Figure1.4: Magnetic Hysteresis Cycle 
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At zero applied field, a residual magnetization Mr (remanence) persists. To reduce 

and eliminate this magnetization, the applied field must be reversed until reaching a critical 

value Hc (coercive field). Both coercive field and remanent magnetization exhibit 

temperature dependence. Above a characteristic temperature (Curie temperature, Tc), the 

hysteresis loop collapses and the material transitions to paramagnetic behavior [53]. The 

hysteresis loop of ferrimagnetic materials typically exhibits a shape similar to that of 

ferromagnetic systems, though with distinct Mr (remanence) and Hc (coercivity) values 

determined by the material's specific composition and crystal structure. The loop width may 

vary significantly, reflecting differences in the strength and nature of internal magnetic 

exchange interactions. 

Magnetic Domains: The magnetic properties of ferrite particles, even at fixed 

composition, exhibit strong grain-size dependence. For crystallites exceeding ~1μm in size, 

they typically contain multiple magnetic domains separated by Bloch walls. Each domain 

maintains a permanent magnetic moment determined by the crystallographic orientation of 

the structure. Magnetization reversal in such systems occurs through domain wall motion 

under relatively weak applied fields [54]. 

For grain sizes below approximately 1μm, single-domain behavior emerges. Each 

particle maintains a permanent magnetic moment aligned along the easy magnetization axis. 

In this regime, magnetization occurs via coherent rotation of ionic magnetic moments, 

resulting in maximized coercivity values. 

1.6.Ferrimagnetism in Ferrites 

The magnetic properties of spinel ferrites are best explained within Néel's theory of 

ferrimagnetism [55].This theory is based on the existence of magnetic ordering resulting 

from spin-spin interactions between metal cations. Néel postulated the existence of two 

magnetic sublattices with antiparallel but unequal moments. These sublattices correspond to 

the two crystallographic sites (tetrahedral Td and octahedral Oh) in the spinel structure. 

Furthermore, Néel proposed that exchange interactions occur between metal cations in Td 

and Oh sites via oxygen ions (superexchange). For high doping concentrations, octahedral-

octahedral (Oh-Oh) interactions become dominant, driving the system toward 

antiferromagnetic ordering. In such cases, the atomic coupling is antiparallel with equal 

moment magnitudes, resulting in zero net magnetization and exhibiting very low positive 

susceptibility. These exchange couplings are disrupted by thermal fluctuations above a 
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critical temperature (Néel temperature, TN), beyond which the antiferromagnetic materials 

transition to paramagnetic behavior. 

1.7.Crystal Field Theory 

Crystal Field Theory (CFT) is a fundamental framework for analyzing the electronic 

structure and properties of coordination compounds. These complexes consist of a central 

metal ion (typically a transition metal cation), surrounded by bound molecules, or anions-

collectively termed ligands [56]. Crystal Field Theory (CFT) postulates that a central metal 

ion, when surrounded by ligands in a symmetric coordination geometry (e.g., octahedral or 

tetrahedral), experiences an electrostatic field that lifts the degeneracy of its d-orbitals 

through differential stabilization and destabilization—an effect arising from the crystal-like 

arrangement that gives the theory its name [57]. 

1.7.1. Electron 3d 

Transition elements possess an incomplete 3d electron shell, resulting in localized 

magnetic moments ( Figure 1.). Unlike delocalized electrons, the 3d electrons of magnetic 

ions do not form separate energy bands due to their limited orbital overlap. However, they 

can significantly influence the electronic properties of valence bands through hybridization 

with p-states. The 3d shell splits into a fully occupied 3d↑ level and an empty or partially 

filled 3d↓ level, with the specific configuration depending on the transition metal ion (Mn, 

Fe, Co, etc.). 

 

Figure 1.5 : Electronic configuration of the 3d and 4s states of transition metals 

1.7.2. Degeneracy of orbitals «d» 

The crystal field significantly affects the orbitals of a metal ion, destabilizing them 

unevenly and lifting their degeneracy. The extent of degeneracy lifting depends on the 

crystal field geometry, which is determined by the arrangement of ligands around the metal 

ion (Figure 1). 
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 Octahedral field: In an octahedral crystal field, six ligands surround the central 

metal ion, forming an octahedron. The ligands are positioned along the *x*, *y*, 

and *z* axes, generating a non-uniform electric field that destabilizes the *d*-

orbitals pointing toward the ligands (antibonding orbitals) while stabilizing those 

directed between the ligands (bonding orbitals).The d-orbitals split intotwo 

groups: 

 𝑡2𝑔 𝑜𝑟𝑏𝑖𝑡𝑎𝑙𝑠:  3𝑑ₓᵧ, 3𝑑ᵧ𝑧, 3𝑑ₓ𝑧 (stabilized). 

 𝑒𝑔 𝑜𝑟𝑏𝑖𝑡𝑎𝑙𝑠:  𝑑_𝑧², 𝑑ₓ² − ᵧ² (destabilized). 

The energy separation between the t2g and e_g orbitals is termed the crystal 

field splitting parameter (Δₒ). 

 (b) Tetrahedral field: In a tetrahedral crystal field, four ligands surround the central 

metal ion in a tetrahedral arrangement. The ligands are positioned at equal angular 

intervals, generating an electric field that is less anisotropic than in an octahedral 

field.The d-orbitals split into two groups: 

  t2 orbitals: (stabilized 

  e orbitals: (destabilized) 

The energy splitting between the t2 and e orbitals is smaller than the octahedral field 

splitting parameter (Δₒ). 

 

Figure 1.6: Effect of crystal field on d-orbital energy levels for (a) octahedral and (b) 

tetrahedral fields. 
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The crystal field-induced splitting of d-orbitals has significant implications for the 

properties and behavior of metal complexes in various physical contexts. The color of metal 

complexes is directly governed by this orbital splitting. Electronic transitions between the 

crystal field-split d-orbitals lead to the absorption or emission of visible light, giving rise to 

the complex's characteristic color. This phenomenon is fundamental to spectroscopic 

analysis and compound characterization [58].Furthermore, orbital splitting significantly 

influences the magnetic properties of complexes. The presence of unpaired electrons in d-

orbitals, resulting from this interaction, confers magnetic behavior to the complex. The 

specific electron configuration determines the overall magnetic moment of the complex, 

which is critical for understanding its magnetic behavior. 

1.8.Electrical Properties 

1.8.1. Electrical conduction in spinel ferrites 

The Verwey mechanism, proposed by E.J.W. Verwey in the 1950s, explains the 

electronic conduction at room temperature in spinel ferrites. According to this model, 

conduction does not result from free electron movement, but rather from polaron hopping 

between cations of the same element that exhibit different ionization states (differing by one 

unit) and occupy equivalent crystallographic sites [59]. 

The conduction mechanism arises not from free electron migration, but through 

polaron hopping between cations of the same element, which must exhibit: (i) ionization 

states differing by one unit, and (ii) occupation of equivalent crystallographic sites. Polarons 

are charge-stabilized quasiparticles consisting of an electron coupled to a localized lattice 

distortion [60]. This model specifically excludes electron hopping between the two 

crystallographic sublattices of the spinel structure (tetrahedral Td and octahedral Oh sites). 

Instead, it preferentially describes hopping between octahedral sites (Oh), where the intersite 

distance determines the most favorable electron transfer pathway. 

In fact, the intersite distances observed in spinel ferrites are the following: 

𝑑𝑂ℎ𝑂ℎ = a √2
4
       and      𝑑𝑇𝑑𝑇𝑑 = a √3

4
 0                                       I-0-1 

Electron hopping between octahedral (Oh) sites requires the lowest energy due to the 

shortest intersite distance. In contrast, hopping between octahedral-tetrahedral sites or 

between tetrahedral sites (Td) is less probable, as it demands higher energy owing to larger 

intersite distances. Electrical conductivity is influenced by the cation distribution among 
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octahedral (Oh) and tetrahedral (Td) sites. The Verwey mechanism accounts for the 

relatively high electrical resistivity of spinel ferrites compared to metals. 

1.8.2. Negative Temperature Coefficient (NTC) Behavior in Spinel Ferrites 

NTC (Negative Temperature Coefficient) spinel ferrites exhibit distinctive properties 

that make them particularly suitable for various technological applications. The temperature 

coefficient (α) of NTC spinel ferrites is typically negative, indicating that their resistivity 

decreases with increasing temperature [61],making these materials highly sensitive to 

thermal variations.Furthermore, these ferrites exhibit high sensitivity factor (B) values, 

indicating a strong resistivity variation over a given temperature range, which enables 

enhanced accuracy in temperature measurement and control. In addition to their exceptional 

sensitivity, NTC spinel ferrites are also recognized for their chemical and mechanical 

stability, making them suitable for operation in harsh environments. This combination of 

thermal sensitivity and robustness establishes NTC spinel ferrites as crucial materials for 

numerous industrial and technological applications where precise temperature regulation 

and measurement are critical [62, 63]. 

1.8.3. Magnetic Semiconductors 

Magnetic semiconductors represent a remarkable class of materials that 

simultaneously exhibit both semiconducting and magnetic properties. This unique 

combination enables concurrent control of electrical and magnetic characteristics, paving the 

way for transformative applications in spintronics and magnetoelectronics[64]. 

A cornerstone of magnetic semiconductor physics is the spin-charge coupling. In 

these materials, conduction electrons serve as dual carriers of both electric charge and spin 

magnetic moment. This dual nature establishes a reciprocal relationship between the 

system's magnetic state and its electronic transport properties.The Goodenough model [65] 

describes how magnetic ordering influences electronic conduction in magnetic 

semiconductors. According to this framework, charge transfer of a conduction electron from 

a donor site to an acceptor site is more probable when the spins of the 3d electrons at both 

donor and acceptor cations are parallel. 

The transfer energy depends on the cos(θ/2) factor, where θ represents the angle 

between the 3d electron spins of two adjacent conduction sites. This factor determines the 

electron transfer probability as a function of spin alignment. Charge transport is more 
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favorable when spins are parallel (θ = 0) compared to antiparallel configurations (θ = π). In 

ferromagnetic semiconductors with aligned spins, resistivity remains relatively low. 

Conversely, antiferromagnetic semiconductors exhibit higher resistivity due to enhanced 

charge carrier localization resulting from antiparallel spin ordering. 

1.9.Applications and Technology 

Spinel ferrites exhibit remarkable magnetic and dielectric properties that make them 

attractive for various technological applications. Key potential uses include: 

1.9.1. Telecommunications 

Ferrites play a critical role in telecommunications [66], particularly in microwave 

filters, circulators, and isolators, owing to their unique physical properties [67].In microwave 

filters, ferrites are incorporated into resonators or transmission lines where their magnetic 

permeability exhibits frequency-dependent behavior, enabling precise control of filter 

bandwidths and enhanced signal selectivity. The application of an external magnetic field 

modulates the ferrites' magnetic properties, facilitating dynamic filter tuning. 

In circulators - passive devices that route electromagnetic signals through a port 

network - ferrites utilize the gyromagnetic effect. Under an applied static magnetic field, 

electron magnetic moments in the ferrites undergo precession, inducing electromagnetic 

wave rotation. This rotational behavior governs signal directionality, ensuring unidirectional 

circulation while preventing undesirable feedback. 

Isolators safeguard sensitive components from signal reflections by permitting 

unidirectional signal transmission. Similar to circulators, isolators exploit the gyromagnetic 

properties of ferrites. An applied magnetic field induces non-reciprocal rotation of 

electromagnetic waves, enabling forward-propagating waves to pass with minimal insertion 

loss while strongly attenuating reflected waves in the reverse direction. This non-reciprocal 

characteristic is critical for preventing interference and signal reflections in communication 

systems. 

1.9.2. Radar and Electronic Warfare Systems 

Ferrites play a critical role in radar and electronic warfare systems by enhancing radar 

performance through improved sensitivity and reduced interference. Their electromagnetic 
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wave absorption properties enable the development of efficient wave absorbers, thereby 

improving radar signal clarity and detection accuracy [68]. 

Furthermore, ferrites can be employed for electronic countermeasures by disrupting 

adversarial signals through their unique magnetoelectronic properties. By exploiting the 

gyromagnetic effect under an applied static magnetic field, ferrites enable precise 

electromagnetic signal manipulation, thereby enhancing the effectiveness of jamming 

operations [69]. 

1.9.3. Consumer Electronics 

The miniaturization potential and low-loss characteristics of ferrites make them 

promising candidates for consumer electronics applications, including smartphones, tablets, 

and laptops. Microwave filters and antennas fabricated from these materials can enhance 

device connectivity and performance. Their ability to mitigate electromagnetic interference 

and improve signal transmission efficiency contributes to superior reception quality and 

more reliable wireless communication. Integration of ferrites in electronic components 

enables compact device designs while maintaining high performance standards, addressing 

the evolving demands of modern technology [70]. 

1.9.4. Electric and Hybrid Vehicles 

Ferrites have critical applications in power converters and filters for electric and 

hybrid vehicles. These components enable efficient conversion of battery-stored electrical 

energy into usable motor power, thereby optimizing vehicle performance. Furthermore, 

ferrites play a pivotal role in electromagnetic interference (EMI) suppression, enhancing the 

reliability and safety of onboard electronic systems. Their high-current handling capacity 

and energy loss minimization properties establish ferrites as essential components for 

improving the efficiency and durability of electric and hybrid vehicles [71]. 

1.9.5. Renewable Energy Systems 

Ferrites can be utilized in power converters and filters for renewable energy systems, 

including wind turbines and solar panels. These components enable efficient conversion of 

renewable energy into grid-compatible electricity. Their high magnetic permeability and low 

energy loss characteristics are critical for optimizing power conversion efficiency and 
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mitigating electromagnetic interference (EMI), thereby enhancing overall system 

performance in renewable energy applications [72]. 

1.9.6. Medical Imaging 

In medical imaging, the magnetic properties of ferrites make them valuable for 

magnetic resonance imaging (MRI). Ferrite nanoparticles can serve as contrast agents, 

enhancing MRI resolution and sensitivity. Their magnetic moments induce localized 

magnetic field perturbations, which improve image contrast and enable more accurate 

diagnosis of various pathologies [73]. 

1.9.7. Magnetic Hyperthermia 

Ferrites also demonstrate potential for magnetic hyperthermia applications, a cancer 

treatment modality that utilizes alternating magnetic fields for localized tumor heating. 

When ferrite nanoparticles are delivered to tumor sites, exposure to external alternating 

magnetic fields induces localized heating through Néel relaxation, enabling precise thermal 

ablation of malignant cells while minimizing damage to healthy tissue [74]. 

1.9.8. Catalysis 

The catalytic properties of ferrites make them valuable for diverse chemical 

processes. These materials serve as effective catalysts for pollutant degradation [75], 

chemical synthesis, and energy conversion. Their crystalline structure and redox-active 

surface sites enable efficient catalytic activity through enhanced chemical interactions [76]. 

Ferrite research continues to advance dynamically, with novel applications 

continuously emerging. The unique multifunctional properties of these materials 

demonstrate significant potential for diverse technological applications, thereby driving 

progress across multiple scientific disciplines and enabling improvements in everyday 

technologies.
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2.1.Introduction 

Materials science encompasses the investigation of the properties, structures, and 

applications of materials across diverse technological and industrial fields. A fundamental 

aspect of this discipline involves understanding the electronic band structures of materials. 

Various computational and experimental techniques have been developed to analyze these 

structures. Depending on the nature of the required information, these methods can be 

classified into three major categories: 

 Empirical methods rely primarily on experimental data to derive material properties 

and behaviors. 

 Semi-empirical methods integrate experimental data with fundamental theoretical 

models, offering a balanced approach between computational efficiency and 

accuracy. 

 Ab initio methods, which rely solely on fundamental data. 

Ab initio methods are theoretical approaches based on fundamental quantum 

mechanical principles to model atomic and molecular behavior. Unlike empirical methods, 

they do not rely on experimental input but instead solve the Schrödinger equation to 

accurately predict electronic and structural properties of materials. 

2.2.Schrödinger Equation 

The time-dependent Schrödinger equation (TDSE) serves as the fundamental starting 

point for studying the electronic properties of materials from a theoretical perspective. This 

first-principles approach describes the quantum mechanical evolution of a many-body 

system under time-varying potentials, providing access to dynamic electronic behavior, 

excited states, and optical responses. 

Mathematical Formulation: 

𝐻𝜓({𝑟𝑖}, {𝑅𝐼}, 𝑡)=𝑖ℏ
𝜕

𝜕𝑡
 𝜓({𝑟𝑖}, {𝑅𝐼}, 𝑡)0-1 

The system is described using a many-particle wave function, ({𝑟𝑖}, {𝑅𝐼}, 𝑡), where the set 

{𝑟𝑖} contains variables representing the positions of the electrons, and the set {𝑅𝐼} 

corresponds to the positions of the nuclei. The Hamiltonian of the system, denoted as 𝐻, 
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governs its dynamics. Due to the large number of degrees of freedom inherent in this wave 

function, the system's ground state can be obtained by solving the time-independent 

Schrödinger equation (stationary state) [77]. 

𝐻𝜓({𝑟𝑖}, {𝑅𝐼})=𝐸𝜓({𝑟𝑖}, {𝑅𝐼})                      II -2 

Where 𝐸 represents the energy of the ground state described by the eigenfunction 𝜓. 

Typically, the Hamiltonian operator is expressed as: 

𝐻= 𝑇𝐸 (𝑟)+ 𝑇𝑁 (𝑅)+ 𝑉𝑒𝑒 (𝑟)+ 𝑉𝑁𝑁 (𝑅)+ 𝑉𝑁𝑒 (𝑟,𝑅)                    II -3 

Where 𝑇𝑒 and 𝑇𝑁 are the kinetic energy operators for electrons and nuclei, respectively, 𝑉𝑒𝑒 

and 𝑉𝑁𝑁 are the operators representing the repulsive potential energy between electrons and 

between nuclei, and 𝑉𝑁𝑒 is the operator for the attractive potential energy between nuclei 

and electrons. These operators can be expressed (in electrostatic units where 4π𝜀0=1) as: 

𝑇(𝑟)= −
ℏ

2𝑚
 ∑𝑖
𝑁∇𝑖

2  and   𝑇𝑁(𝑅)= −
ℏ

2𝑚
 ∑𝐼

𝐴∇𝐼
2                                II-4 

𝑉𝑒(𝑟)=∑𝑖<𝑗
𝑒2

|𝑟𝑖−𝑟𝑗|
  and  𝑉𝑁𝑁(𝑅)= ∑𝐼<𝐽

𝑍𝐼𝑍𝐽𝑒
2

|𝑅𝐼−𝑅𝐽|
                                 II-5 

𝑉𝑁𝑒(𝑟,𝑅)= ∑𝑖,𝐼
𝑍𝐼𝑒

2

|𝑟𝑖−𝑅𝐼|
                                                  II-6 

Where ℏ = ℎ⁄2𝜋 (ℎ being the Planck constant), 𝑚 is the electron mass, 𝑀 is the nucleus mass, 

and 𝑍 is its charge. However, obtaining its exact solution is often challenging, particularly 

for complex systems. For this reason, numerous approximate methods have been developed 

to solve the Schrödinger equation. 

2.3.Born-Oppenheimer (Adiabatic) Approximation 

The Born-Oppenheimer (BO) approximation [78] relies on the fact that the mass of 

any atomic nucleus is significantly larger than that of an electron. As a result, nuclear motion 

can be neglected relative to electronic motion—meaning the nuclei are treated as fixed. In 

other words, the BO approximation decouples electronic and nuclear dynamics by separating 

the system into two coupled subsystems: one for the electrons and another for the nuclei: 

𝜓≈ 𝜓𝐵𝑂=𝜓é𝑙𝑒𝑐×𝜓𝑛𝑜𝑦𝑎𝑢𝑥                                              II-7 

The electronic configuration can thus be considered fully relaxed to its ground state for every 

ionic position during their motion. Consequently, the nuclear kinetic energy is neglected, 

and the nucleus-nucleus potential energy reduces to a constant. This approximation 
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transforms the original problem—requiring solution of the Schrödinger equation for an N-

electron system under the influence of the nuclear potential—into a simplified framework. 

In this regime, the Hamiltonian retains only one-electron (𝑇𝑒 and  𝑉𝑒𝑁) and two-electron 

(𝑉𝑒𝑒) contributions. We may therefore define a new electronic Hamiltonian, 𝐻𝑒, given by: 

𝐻𝑒 = 𝑇𝑒  + 𝑉𝑒−𝑒 + 𝑉𝑒𝑁                                         II-8 

 

Or                                       𝐻𝑒 =
−ℏ2

2𝑚𝑖
∑𝑖∇𝑖

2 +
1

2
∑𝑖,𝑗

𝑒2

|𝑟𝑖−𝑟𝑗|
+ ∑𝑖,𝑗

𝑒2

|𝑟𝑖−𝑅𝑎|
                                 

II-9 

The Schrödinger equation can then be written as: 

[
−ℏ2

2𝑚𝑖
∑𝑖∇𝑖

2 +
1

2
∑𝑖,𝑗

𝑒2

|𝑟𝑖−𝑟𝑗|
+ ∑𝑖,𝑗

𝑒2

|𝑟𝑖−𝑅𝑎|
]𝜓𝑒=𝐸𝑒𝜓𝑒                   II-10 

The Born-Oppenheimer approximation is termed "adiabatic" because it effectively 

decouples the electronic problem from lattice vibrations. While the nuclear kinetic energy 

(Tₙ) and  nucleus-nucleus potential (Vₙₙ) can be subsequently reintroduced to address lattice 

vibrations (phonons), this approach fundamentally assumes no energy exchange occurs 

between the electronic system and vibrational modes. 

The Schrödinger equation solution can thus be restricted to the electronic problem. For 

notational simplicity, all quantities will be implicitly considered as electronic properties 

unless otherwise specified. At this stage, the wavefunction of an electron system in a nuclear 

potential field appears primarily useful for determining the system's energy. While the 

wavefunction itself lacks direct physical meaning, its squared modulus is directly related to 

the electron density distribution. 

The Born-Oppenheimer approximation represents a fundamental simplification that enables 

the treatment of a solid as a system of interacting electrons moving within the static potential 

field of fixed nuclei. However, solving the Schrödinger equation remains highly complex in 

most cases, typically requiring additional approximations based on mean-field theories. In 

such approaches, electrons are treated as independent particles, with the Hartree 

approximation being one of the most prominent examples [79]. 
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2.4.Free-Electron Approximation (Hartree) 

The approach developed by Hartree [79, 80] models the Coulomb interaction through 

an effective Hartree potential 𝑉Hartree, which acts on each electron and represents the mean-

field effect of all other electrons. This potential is defined by: 

𝑉Hartree=∑𝑗 ∫ 𝑑𝑟
′
(𝑟) 𝜓∗                                                       II-11 

And to express the wave function as a product of single-electron wave functions. 

 

(𝑟) = ∏𝑖=1
𝑁é𝑙  𝜓𝑖 (𝑟)                                                 II-12 

Each single-electron wavefunction is then governed by: 

𝐻𝑒𝑓𝑓𝜓(𝑟)= [−
1

2
∇2𝑉Hartree(𝑟) + 𝑉ext]𝜓𝑖 (r) =𝜀𝑖𝜓𝑖(𝑟)                    II-13 

Since the Hartree potential depends on orbital i, Equation (II.13) must be solved self-

consistently. The ground state is obtained by filling the first n electronic energy levels. This 

approximation relies on the free-electron hypothesis, which effectively neglects both 

electron-electron interactions and spin states. This simplification has two significant 

consequences: 

 The total Coulomb repulsion Ve-e  of the electronic system is  overestimated (since 

the initial Hamiltonian represents only a mean-field approximation). 

 The Pauli exclusion principle is not accounted for (electrons are not treated as 

ermions). 

Since this second limitation is more severe than the first, the Hartree-Fock approximation 

[81] was developed to incorporate electron spin effects in the solution of the Schrödinger 

equation. 

2.5.Hartree-Fock Approximation 

In this approach, first implemented in 1930 [82], no approximation is made to the 

Hamiltonian. Instead, the wave function is assumed to be expressible as a Slater determinant 

constructed from n single-electron wave functions 𝜓𝑖. This formulation explicitly accounts 

for the Pauli exclusion principle (thereby incorporating electron spin effects in the solution 

of the Schrödinger equation): 
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𝜓𝑒𝑙(𝑟) =
1

√𝑛!
|

𝜓1(𝑟1) . .
. . .

𝜓𝑛(𝑟1)
..

𝜓1(𝑟𝑛)
. .
. .

.
𝜓𝑛(𝑟𝑛)

|                                          II-14 

Given the normalization of the wave function, the energy expression takes the form: 

𝐸𝐻𝐹(𝑟) = 〈𝜓𝑒𝑙({𝑟})|𝐻|𝜓𝑒𝑙({𝑟}) 〉       With 

{
 
 

 
 ∫𝑑𝑟𝜓𝑖

∗ (𝑟) [−
1

2
∇2 + 𝑉el−noy + 𝑉ext] 𝜓𝑖(𝑟)

𝐽𝑖𝑗 = ∬𝑑𝑟𝑑𝑟′𝜓𝑖(𝑟)𝜓𝑖
∗(𝑟)

1

|𝑟′−𝑟|
𝜓𝑗
∗(𝑟′)𝜓𝑗(𝑟

′)

𝐾𝑖𝑗 = ∬𝑑𝑟𝑑𝑟′𝜓𝑖
∗(𝑟)𝜓𝑗(𝑟)

1

|𝑟′−𝑟|
𝜓𝑖(𝑟

′)𝜓𝑗
∗(𝑟′)𝛿(𝜎𝑖 − 𝜎𝑗)

                      II-15 

 

The term 𝐽𝑖𝑗 represents the Coulomb integral, already present in the Hartree approach, while 

𝐾𝑖𝑗 denotes the exchange integral (or Fock term), which arises from the wavefunction 

antisymmetry requirement. To determine the orbitals (𝑟), we employ the Rayleigh-Ritz 

variational principle to minimize the Hartree-Fock energy𝐸𝐻𝐹(𝑟), subject to wavefunction 

normalization constraints 

𝛿 (𝐸𝐻𝐹(𝑟)− ∑𝑖,𝑗𝜆𝑖,𝑗(⟨𝜓𝑖|𝜓𝑗⟩ − δ𝑖,𝑗))=0 II-16 

Through a unitary transformation, the matrix of Lagrange multipliers 𝜆𝑖,𝑗 can be 

diagonalized, yielding the single-electron Fock equations: 

[𝑇𝑒𝑙 + 𝑉𝑒𝑙−𝑛𝑢 + 𝑉𝐻𝑎𝑟𝑡𝑟𝑒𝑒 + 𝑉𝑓𝑜𝑐𝑘({𝜓(𝑟)})]𝜓𝑖(𝑟) = 𝜀𝑖𝜓𝑖(𝑟)                       With 

{
𝑉𝐻𝑎𝑟𝑡𝑟𝑒𝑒 = ∑ 𝑗 ∫ 𝑑𝑟′𝜓𝑗(𝑟)𝜓𝑗(𝑟

∗)
1

|𝑟′−𝑟|

𝑉𝑓𝑜𝑐𝑘 = [∑ 𝑗 ∫ 𝑑𝑟′𝜓𝑗(𝑟)𝜓𝑗(𝑟
∗)

1

|𝑟′−𝑟|
]
𝜓𝑗(𝑟)

𝜓𝑖(𝑟)
𝛿(𝜎𝑖 − 𝜎𝑗)

                II-17 

 

where the Lagrange parameter is identified as a single-electron energy. This system of 

equations is self-consistent (through both the Hartree term and the non-local Fock term). 

The Hartree-Fock approximation is grounded in the variational principle, which requires 

minimization of the total energy. Specifically, the system's total energy is obtained by 

minimizing the expectation value of the Hamiltonian operator and is formally defined as a 

wavefunction functional: 

𝐸[𝜓] =
∫𝜓∗𝐻𝜓

∫𝜓∗𝜓
                                                  II-18 

By virtue of the variational method, the selection of optimal spin-orbitals corresponds to 

minimizing the electronic energy (𝐸ₑ). This optimized electronic wavefunction, obtained at 
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the lowest achievable energy, will always lie above the exact ground-state energy. The 

energy minimization procedure constitutes a self-consistent process subject to orbital 

orthonormality constraints. The variational calculation demonstrates that each wavefunction 

𝜓ᵢ(𝑟) must satisfy a second-order differential equation – taking the form of a single-particle 

Schrödinger equation – to minimize the expectation value 〈H〉. 

[−∇2 + (𝑟) + (𝑟)](𝑟) = 𝐸𝑖𝜓𝑖(𝑟)                                           II-19 

 

The first potential term (𝑟) in this equation derives directly from the Hamiltonian 𝐻. It 

represents the Coulomb interaction between the electron and all nuclei in the crystal, 

exhibiting the periodicity of the Bravais lattice. The second term 𝑈ᵢ(𝑟), called the self-

consistent mean potential, accounts for the Coulomb repulsion exerted on electron i by all 

other electrons (j≠i), with each electron j occupying its respective state 𝜓ⱼ. 

𝑈𝑖(𝑟)= ∫ ∫ ∫
𝑞2𝜌𝑖(𝑟

′)

|𝑟−𝑟′|
                                              II-20  

In this model, the electron cloud perceived by a given electron is treated as a continuous 

negative charge distribution characterized by the charge density ρ(r), defined as: 

(𝑟) = ∑𝑖|𝜓(𝑟)|
2                                               II-21  

 

The system comprises N equations of the form (II.19) (one for each electron), each distinct 

yet mutually coupled through the potentials U(𝑟). In practice, an exact solution of the system 

remains computationally intractable without introducing additional approximations. 

Consequently, the equations must be solved iteratively until self-consistency of the solutions 

is achieved. The exchange term is defined as: 

𝑉𝑒𝑥𝑐ℎ = ∑𝑗≠𝑖∫
𝜓𝑗
∗(𝑟′)𝜓(𝑟′)

|𝑟−𝑟′|
𝜓𝑗(𝑟)𝑑𝑟

′                                       II-21 

This yields the Hartree-Fock equations 

[−∇2 + 𝑤(𝑟) + 𝑈𝑖(𝑟)]𝜓𝑖(𝑟) − ∑𝑗≠𝑖∫
𝜓𝑗
∗(𝑟′)𝜓(𝑟′)

|𝑟−𝑟′|
𝜓𝑗(𝑟)𝑑𝑟

′𝜓𝑖(𝑟) = 𝜀𝑖𝜓𝑖(𝑟)    II-23  

In the Hartree-Fock method, the total system energy is defined as a wavefunction functional. 

While this approach accounts for electron exchange effects, it neglects electron correlation 

- the dependence of one electron's motion on the instantaneous positions of all others. Post-

Hartree-Fock methods capture only partial correlation energy and are computationally 
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feasible only for small systems. For larger molecules or solid-state systems, density 

functional theory (DFT) proves significantly more suitable. 

2.6.Density Functional Theory (DFT) 

Density Functional Theory (DFT) represents one of the most powerful ab initio 

computational methods for investigating the electronic structure of atoms, molecules, 

crystals, and surfaces. The initial framework was proposed by Thomas and Fermi in the 

1920s [83]. A significant advancement in electronic structure theory was achieved through 

the formal formulation by Hohenberg and Kohn [84]. 

2.6.1. Fundamental Principles 

Building on historical foundations, Thomas and Fermi first introduced electron 

density as the fundamental variable for modeling system properties. While groundbreaking, 

their approach proved quantitatively inadequate for describing molecular and solid-state 

systems. The field advanced significantly decades later through the work of Slater, 

Hohenberg, and Kohn, who established a rigorous theoretical framework. Their formulation 

definitively identified electron density—not wavefunctions—as the key determinant of 

ground-state properties in DFT. 

This paradigm shift offers two critical benefits: (1) versatility across diverse systems, 

and (2) maintained accuracy with tractable computational cost. The theory’s power stems 

from expressing many-electron energies exclusively through electron density—a size-

independent quantity that avoids the exponential complexity of wave function methods. 

In their formalism, they introduced an exchange-correlation functional that models the 

exchange-correlation hole - a critical component in quantum chemistry calculations. 

Subsequently, we will review: the Hohenberg-Kohn theorems, the fundamental principles of 

the method and the various approximation approaches for the exchange-correlation 

functional. 

2.6.2. Hohenberg-Kohn Theorems 

The theoretical framework of Density Functional Theory (DFT) is fundamentally 

grounded in the Hohenberg-Kohn theorems [85]. These theorems apply to an N-electron 
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system moving within a fixed external potential 𝑉𝑒𝑥𝑡(𝑟) generated by nuclear charges, where 

the Hamiltonian takes the form: 

𝐻 = −
ћ

2𝑚𝑒
∑ 𝑖 ∇𝑖

2 + ∑ 𝑖 𝑉𝑒𝑥𝑡(𝑟𝑖) +
1

2
∑ 𝑖 ≠ 𝑗

𝑒2

|𝑟𝑖−𝑟𝑗|
            t       II-24 

 Theorem 1: 

The First Hohenberg-Kohn Theorem establishes that for any interacting electron 

system, the ground-state electron density 𝜌0(𝑟) uniquely determines (up to an additive 

constant) the external potential 𝑉𝑒𝑥𝑡(𝑟) – since different spatial potentials cannot produce 

identical charge densities – and consequently specifies all properties of the system, as the 

density effectively encodes the complete many-body wavefunction and Hamiltonian. 

The total energy of the ground state of an interacting electron system is a unique 

(albeit unknown) functional of the electron density. 

 Theorem 2: 

Hohenberg and Kohn demonstrated that the total energy of a system can be expressed 

as a functional of the electron density, E= 𝑬[𝝆]. The minimum of this total energy 

corresponds to the exact ground-state density 𝝆(𝒓) = 𝝆𝟎(𝒓). Consequently, the variational 

principle can be readily applied to determine the ground-state energy and electron density 

for a given external potential. Moreover, all other ground-state properties are also functionals 

of this ground-state electron density. 

The energy of the ground-state density, 𝑬[𝜌0] , is always lower than the energy of 

any other trial density, 𝑬[𝝆] 

𝐸0 = 𝐸[𝜌0]                                                    II-25 

An extension of these properties to a spin-polarized system is feasible, provided that E is 

generalized as a functional of the two spin densities: 𝐸[𝜌] = 𝐸[𝜌↑, 𝜌↓]. In this framework, 

the applicability and utility of density functional theory (DFT) hinge critically on the form 

of the density functional [𝜌]. While the preceding theorems establish its existence, they 

provide no explicit construction. Consequently, developing sufficiently accurate 

approximations for 𝐸[𝜌] becomes an essential requirement for practical computations. 
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2.6.3. Kohn-Sham Approach 

The Kohn-Sham equations, published in 1965 [86], transformed density functional theory 

(DFT) into a practical tool for calculating ground-state energies of electronic systems. This 

approach enables the determination of exact many-body system properties through 

independent-particle methods. Their formulation is based on the following key concept: 

An interacting electron gas can be mapped exactly onto a system of non-interacting fictitious 

particles, described by single-particle wavefunctions 𝜓𝑖(𝑟). This auxiliary system is 

constructed such that its ground-state electron density - and consequently its total energy 

E[ρ] - matches exactly that of the original interacting electron gas. 

𝐻𝑘𝑠𝜓𝑖(𝑟) = [𝑇𝑒(𝑟) + 𝑉𝑒𝑓𝑓(𝑟)] 𝜓𝑖(𝑟) = 𝜀𝑖 𝜓𝑖(𝑟)                        II-26  

Where 𝑇𝑒(𝑟) represents the kinetic energy operator of the non-interacting fictitious particles, 

and εᵢ denotes the eigenvalue associated with the single-particle state 𝜓𝑖(𝑟). These fictitious 

particles experience an effective potential 𝑉𝑒𝑓𝑓(𝑟) that can be expressed as the sum of three 

distinct potential terms: 

𝑉𝑒𝑓(𝑟)=𝑉𝑒𝑥𝑡(𝑟)+𝑉𝐻(𝑟)+𝑉𝑋𝐶(𝑟)                      II-27  

Here, 𝑉𝐻(𝑟) represents the Hartree potential, corresponding to the classical Coulomb 

interaction between electrons in the electron gas, while (𝑟) denotes the exchange-correlation 

potential. Both potentials can be expressed as direct functionals of the electron density 𝜌(𝑟): 

𝑉𝐻(𝑟) = 𝑒2 ∫
𝜌(𝑟′)

|𝑟−𝑟′|
𝑑3𝑟′                               II-28  

𝑉𝑋𝐶(𝑟) =
𝛿𝐸𝑋𝐶[𝜌]

𝜌(𝑟)
                                                    II-29  

The Hohenberg-Kohn theorems and the subsequent derivation of the Kohn-Sham single-

particle equations are mathematically rigorous, achieved without introducing any 

approximations. However, the exchange-correlation functional 𝑉𝑋𝐶(𝑟) in the Kohn-Sham 

equations precludes exact solutions, as its analytical form remains unknown. Practical 

implementation therefore requires an approximate analytical expression for the exchange-

correlation energy 𝐸𝑋𝐶[𝜌]. 

2.6.3.1.Exchange-Correlation Potential Formulation 𝑉𝑋𝐶(𝑟) 
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This potential constitutes the cornerstone of density functional theory, as it accounts 

for the exchange-correlation effects lost when replacing the true many-body wavefunction 

with non-interacting single-particle Kohn-Sham orbitals. It effectively compensates for the 

information deficit arising from this mapping between the interacting electron gas and its 

fictitious independent-particle counterpart. 

In a real electron gas, electrons with parallel spins experience an effective repulsion due to 

the Pauli exclusion principle. The resulting energy reduction of the interacting electron gas, 

compared to a hypothetical system with only Coulomb interactions, defines the exchange 

energy. 

The system energy can be further modified by increasing the separation distance between 

electrons with antiparallel spins. However, while this reduces Coulombic repulsion, it 

simultaneously increases the kinetic energy of the electron gas. The resulting energy 

difference between this correlated many-body system and the Hartree-Fock reference state 

defines the correlation energy, which may be expressed as: 

𝑉(𝑟)=[𝑇𝑒(𝑟)−𝑇𝑒′(𝑟)]+[𝑉𝑖𝑛𝑡(𝑟)−𝑉𝐻]                   II-30 

Thus, 𝑉𝑋𝐶(𝑟) represents the difference in both kinetic and internal energy between the real 

interacting electron gas and the fictitious Kohn-Sham system, where electron-electron 

interactions are reduced to the classical Hartree term. Despite the long-range nature of 

Coulomb interactions, the exchange-correlation potential 𝑉𝑋𝐶(𝑟) constitutes a local physical 

quantity, reflecting the short-range nature of many-body quantum effects. 

Electron-electron interactions give rise to three fundamental quantum mechanical effects: 

exchange, originating from the Pauli Exclusion Principle, which enforces zero probability 

density for same-spin electrons at identical positions (Fermi hole).  A direct consequence of 

the wave function anti-symmetry requirement under electron coordinate exchange; dynamic 

correlation, representing the instantaneous Coulombic repulsion between electrons; and non-

dynamic (static) correlation, arising from near-degeneracy effects in molecular systems. 

The exchange effect is fundamentally spin-dependent and independent of electronic charge, 

being inherently accounted for in Hartree-Fock theory [5] through the antisymmetry 

requirement of the Slater determinant [87] representing the many-electron wavefunction. 
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While Hartree-Fock includes exchange exactly, it neglects electron correlation - a charge-

dependent effect arising from Coulombic repulsion 
𝟏

𝒓−𝒓𝟎
 between electrons. This correlation 

manifests primarily through dynamic adjustments in electron motion to avoid one another, 

with particularly significant effects in core electron regions due to their high local density. 

The third effect arises from the independent-particle formulation of electronic wave 

functions, specifically the self-interaction correction required for proper electron pair 

counting. Additionally, the exchange-correlation functional must account for the kinetic 

energy difference between the non-interacting reference system and the real interacting 

system. Consequently, accurate determination of both the exchange-correlation energy and 

potential necessitates carefully constructed approximations that address these fundamental 

challenges. 

The accuracy of the Kohn-Sham approach hinges entirely on the ability to compute the 

exchange-correlation potential 𝑉𝑋𝐶(𝑟) as precisely as possible. However, since its exact 

analytical form remains unknown for general systems, solving the Kohn-Sham equations 

presents a fundamental challenge. To address this, various approximate exchange-

correlation functionals have been developed, enabling practical implementations of density 

functional theory while balancing computational efficiency with physical accuracy. 

 

2.6.3.2.Local Density Approximation (LDA) 

In their seminal work, Kohn and Sham proposed treating solids as a homogeneous electron 

gas, where exchange-correlation effects can be reasonably approximated as local 

phenomena. This foundational assumption led to the Local Density Approximation (LDA), 

which expresses the exchange-correlation energy as: 

𝐸𝑋𝐶
𝐿𝐷𝐴 = ∫𝜌(𝑟)𝜀𝑋𝐶

ℎ𝑜𝑚[𝜌(𝑟)]𝑑3𝑟 ≡ ∫𝜌(𝑟){𝜀𝑋
ℎ𝑜𝑚[𝜌(𝑟)] + 𝜀𝐶

ℎ𝑜𝑚[𝜌(𝑟)]} 𝑑3      II-31  

Here, 𝜀𝑥𝑐([𝜌], 𝑟) represents the exchange-correlation energy per particle of a homogeneous 

electron gas with local density 𝜌(𝑟). While this approximation neglects non-local density 

variations, it provides a remarkably robust starting point for quantitative calculations in solid 

state systems. 



CHAPTER 2:                                                                                                        DFT AND FP-LAPW  

 

31 

 

To properly account for spin polarization effects, the LDA framework was subsequently 

generalized to the Local Spin Density Approximation (LSDA). This extension modifies the 

density functional by explicitly incorporating both spin states (↑ and ↓), where the exchange-

correlation energy becomes dependent on the spin densities 𝜌↑ (𝐫) and 𝜌↓ (𝐫) rather than just 

the total electron density 𝜌(𝑟). 

𝐸𝑋𝐶
𝐿𝐷𝐴 = ∫𝜌(𝑟)𝜀𝑋𝐶

ℎ𝑜𝑚[𝜌↑, 𝜌↓]𝑑
3𝑟                   II-32 

The homogeneous exchange potential 𝜀𝑋
ℎ𝑜𝑚 [n(r)] admits an exact analytical expression via 

the exchange energy functional originally formulated by Dirac [11]. This term, widely 

known as the "Dirac exchange," is an exact and well-established contribution to the 

exchange-correlation energy in density functional theory. 

𝜀𝑥(𝜌) = −
3

4
(
3

𝜋
𝜌(𝑟))

1
3⁄

   𝑤𝑖𝑡ℎ   𝜌 = (
4𝜋𝑟3

3
)
−1

   𝑎𝑛𝑑    𝑟 = (
3

4𝜋𝑛
)
1
3⁄ 1

𝑎0
       II-33  

The correlation component, being more complex to evaluate, has been treated through 

various approaches. High-accuracy quantum Monte Carlo calculations performed by 

Ceperley and Alder (CA) [88] provided benchmark results for the homogeneous electron 

gas, which were subsequently parameterized into practical functional forms by various 

authors [89]. While LDA demonstrates remarkable performance for many systems, its 

limitations become apparent when describing strongly delocalized electronic systems. These 

shortcomings arise fundamentally from the approximation's inability to account for local 

electron density inhomogeneities. Systematic errors manifest in several ways, including: 

underestimation of bond lengths in crystalline systems, and overestimation of cohesive 

energies. These deficiencies can be significantly mitigated by incorporating density gradient 

corrections through the Generalized Gradient Approximation (GGA), which accounts for 

spatial variations in the electron density distribution. 

2.6.3.3.Generalized Gradient Approximation (GGA) 

The success of the local density approximation (LDA) spurred the development of 

various generalized gradient approximations (GGAs), leading to significant improvements 

and better adaptability to the systems under study. This approximation involves treating the 

exchange-correlation term not merely as a function of the density alone, but as a local 

functional doubly parameterized by both the density (𝜌) and the magnitude of its gradient 
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|∇𝜌|. The essence of the generalized gradient approximation (GGA) lies in the selection of 

these functional forms, enabling better adaptability to large density variations while 

preserving the desired physical properties. 

In its general form, the energy can be written as [90]: 

𝐸𝑋𝐶
𝐺𝐺𝐴[𝜌] = ∫𝜌(𝑟)𝜀𝑋𝐶

ℎ𝑜𝑚[𝜌(𝑟)𝜀𝑋
ℎ𝑜𝑚]𝑑3𝑟 ≡ ∫ 𝜌(𝑟)𝜀𝑥

ℎ𝑜𝑚(𝜌)𝐹𝑋𝐶[𝜌|∇𝑛|, … ]𝑑
3𝑟        II-34  

Here, 𝜀𝑋
ℎ𝑜𝑚 represents the exchange energy of a non-polarized system with electron density 

𝜌(𝑟). 

As previously discussed, the exchange and correlation terms can be treated separately. The 

GGA (Generalized Gradient Approximation) has proven highly successful across numerous 

applications, delivering superior accuracy compared to LDA (Local Density 

Approximation)—particularly for magnetic systems and systems exhibiting strong electron 

density variations. 

2.6.3.4.  DFT+U Approximation 

The DFT+U method provides a correction scheme for the self-interaction error by 

introducing an effective local term (𝑈𝑒𝑓𝑓) applied to d- or f-type orbitals. The conceptual 

foundation of DFT+U originates from the phenomenological Hubbard model, where the 

two-electron repulsion - similar to the Hartree-Fock (HF) approach - is decomposed into two 

distinct terms: a Coulombic term (U) and an exchange term (J). The first (diagonal) term 

represents the repulsion energy between two electrons occupying the same site i, while the 

second (off-diagonal) term corresponds to the exchange energy between spins on sites i and 

j. The magnitude of J determines whether the interaction between these states is 

ferromagnetic or antiferromagnetic in nature. In the DFT+U implementation proposed by 

Dudarev [91], both Hubbard model parameters U and J are incorporated through a single 

effective parameter (𝑈𝑒𝑓𝑓 = 𝑈 − 𝐽). The Ueff correction introduced in DFT+U, as compared 

to conventional DFT, effectively reduces the local one-electron potential for the targeted 

orbitals. This potential modification induces orbital relocalization (particularly in d- or f-

orbitals), which directly impacts the spin states of transition metals (d-block elements) or f-

electron systems. The DFT+U method has thus become essential for studying electronic 

structures of periodic solids containing transition metals (d-block elements) or f-elements, 
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offering superior computational efficiency compared to hybrid DFT/HF approaches. In the 

LDA+U or GGA+U formalism, a local correction is selectively applied only to the d-orbitals 

(in our case of interest) through the introduction of a Hubbard-type term: 
1

2
∑ 𝑛𝑖𝑛𝑗𝑖≠𝑗 . A 

general expression for this approach can be formulated as follows: 

𝐸𝐷𝐹𝑇+𝑈 = 𝐸𝐷𝐹𝑇 + 𝐸𝑈 − 𝐸𝑑𝑐                                          II-35  

Where 𝐸𝑈 represents the Hubbard correction and 𝐸𝑑𝑐 denotes the double-counting energy. 

This equation demonstrates that the system energy in DFT+U is computed by adding a 

corrective term to the base energy obtained from either LSDA or GGA approximations. This 

correction term better accounts for electronic correlations and effectively replaces the 

inadequately calculated portion of the energy in the LSDA or GGA framework. As shown 

in equation (II.35), the double-counting energy (𝐸𝑑𝑐) must be subtracted to avoid redundant 

inclusion of equivalent interaction terms. 

2.6.3.5.    Tran-Blaha Modified Becke-Johnson Potential Approximation (TB-mBJ) 

Tran and Blaha [92] proposed an alternative approach to improve the band gap 

energy calculated with density functional theory (DFT) by modifying the Becke-Johnson 

potential, as expressed by the following relation: 

𝑈𝑋,𝜎
𝐵𝐽 (𝑟) = 𝑈𝑋,𝜎

𝐵𝑅(𝑟) +
1

𝜋
√
5

6
√
𝑡𝜎(𝑟)

𝜌𝜎(𝑟)
                                              II-36  

Here  𝜌𝜎 = ∑ |𝜓𝑖, 𝜎|
2𝑁𝜎

𝑖=1  is the electron density; 𝑡𝜎 = (
1

2
)∑ ∇∗𝜓𝑖,𝜎∇

∗𝜓𝑖,𝜎
𝑁𝜎
𝑖=1  is the kinetic 

energy density, and : 

 

𝑈𝑋,𝜎
𝐵𝑅(𝑟) = −

1

𝑏𝜎(𝑟)
[1 − 𝑒−𝑋𝜎(𝑟) −

1

2
𝑋𝜎(𝑟)𝑒

−𝑋𝜎(𝑟)]                 II-37 

It is the Becke-Roussel (BR) exchange potential, which was proposed to model the Coulomb 

potential created by the exchange hole. In equation (II.36), 𝑋𝜎 is determined from a nonlinear 

relation involving 𝜌𝜎, ∇𝜌𝜎, ∇2𝜌𝜎, and 𝑡𝜎. 𝑏𝜎 is computed as: 

      𝑏𝜎 = [𝑋𝜎
3𝑒−𝑋𝜎 (8𝜋𝜌𝜎)⁄ ]

1
3⁄                                                   II-38  

Tran and Blaha introduced an empirical parameter 'c' to adjust the relative weights of the 

two terms in the BJ potential, resulting in the modified TB-mBJ potential expressed as: 
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𝑈𝑋,𝜎
𝑇𝐵−𝑚𝐵𝐽(𝑟) = 𝑐𝑢𝑋,𝜎

𝐵𝑅 (𝑟) + (3𝑐 − 2)
1

𝜋
√
5

6
√
𝑡𝜎(𝑟)

𝜌𝜎(𝑟)
                     II-39  

A prescription for calculating 'c' is provided in reference [93] as: 

𝑐 = 𝛼 + 𝛽 [
1

𝑉𝑐𝑒𝑙𝑙
∫
|∇𝜌(𝑟′)|

𝜌(𝑟′)
𝑑3𝑟′]                    II-40  

where Vcell denotes the unit cell volume, and α and β are free parameters with values α = -

0.012 and β = 1.023 Bohr¹ᐟ², as determined by fitting to experimental results. 

 

2.6.4. Solution of the Kohn-Sham Equations 

DFT-based methods are categorized according to the representations used for the 

electron density, potential, and particularly the Kohn-Sham orbitals. The representation 

choice is optimized to minimize computational cost while maintaining accuracy. The Kohn-

Sham orbitals are given by: 

𝜓𝑖(𝑟) = ∑𝐶𝑖𝑗𝜙𝑗(𝑟)                                               II-41  

where 𝜙𝑗(𝑟) are the basis functions and 𝐶𝑖𝑗 the expansion coefficients. Solving the Kohn-

Sham equations requires determining the coefficients 𝐶𝑖𝑗 for the occupied orbitals that 

minimize the total energy. To simplify computations, the Kohn-Sham equations are solved 

at high-symmetry points within the first Brillouin zone. This procedure is illustrated in the 

flowchart of Figure 02.1. The calculation employs a self-consistent iterative cycle: starting 

with an initial charge density 𝜌𝑖𝑛, the secular equation is diagonalized: 

(𝐻 − 𝜀𝑖𝑆)𝐶𝑖 = 0                                                    II-42  

Here, H is the Hamiltonian matrix and S the overlap matrix. The new output charge 

density 𝜌𝑜𝑢𝑡 is then reconstructed from the eigenvectors of this secular equation, using the 

total charge density obtained by summing over all occupied orbitals. If the results do not 

converge, the input and output densities (𝜌𝑖𝑛  and  𝜌𝑜𝑢𝑡) are mixed as follows: 

𝜌𝑖𝑛
𝑖+1 = (1 − 𝛼)𝜌𝑖𝑛

𝑖 + 𝛼𝜌𝑜𝑢𝑡
𝑖

                               II-43  

Here, 𝑖𝑡ℎ denotes the iteration number and α is a mixing parameter. The iterative procedure 

is repeated until convergence is achieved. 
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2.7.Full-Potential Linearized Augmented Plane Wave (FP-LAPW) Method 

Density functional theory (DFT) encompasses multiple computational approaches, 

which are distinguished by their representations of the electronic potential, charge density, 

Initial density  𝜌𝑖𝑛 

 Calculate the effective potential  Veff(r) : 

Veff(r) = VH[𝜌 (r)] + VH[𝜌 (r)] + VH[𝜌 (r)] 

Solving the equations of  Kohn-Sham : 

 
 
∇2 +Veff(r))ϕi(r) = ɛiϕi(r) 

Calculate the new electron density 𝜌𝑜𝑢𝑡 

combine 𝝆𝒊𝒏 and 

𝝆𝒐𝒖𝒕 
 

No
O Converge ? 

YES 

Stop 

Calculate the properties 

Figure 02.1 : Schematic Flow Diagram of the Kohn–Sham Density Functional Theory 
Approach 
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and basis sets for wave function expansion. A key differentiation among these methods lies 

in their treatment of electronic states—specifically, the separation into strongly bound core 

states and valence states. All implementations, irrespective of their specific formalism, 

handle these two classes of states independently. 

2.7.1. Concept of the FP-LAPW Method 

The Full Potential Linearized Augmented Plane Wave (FP-LAPW) method [94, 95] 

ensures the continuity of the potential at the muffin-tin (MT) sphere boundary and expands 

it in the following form: 

V(r)={
∑ 𝑉𝑙𝑚(𝑟)𝑌𝑙𝑚(𝑟)                                      𝑙𝑚

∑ 𝑉𝑘𝑒
𝑖𝑘𝑟

𝑘
         II-44 

Similarly, the charge density is expanded as: 

𝜌(𝑅) = {
∑ 𝜌𝐾𝑒

𝑖𝑘𝑟                       𝑟 > 𝑅𝑎𝐾

∑ 𝜌𝑙𝑚(𝑟)𝑌𝑙𝑚(𝑟)                          𝑟 < 𝑅𝑎              𝑘
              II-45  

The FP-LAPW (Full Potential Linearized Augmented Plane Wave) method is based on 

the self-consistent solution of the Kohn-Sham equations within two distinct regions of the 

unit cell: non-overlapping atomic spheres (muffin-tin spheres) with radii 𝑅𝑎, and the 

interstitial region between these spheres. Within the FP-LAPW framework, both the 

potential V(r) and charge density ρ(r) are represented by: radial/angular basis functions 

inside muffin-tin spheres (Region I), and plane waves in the interstitial region (Region II). 

This full-potential treatment explicitly includes non-spherical components, enabling 

accurate electronic structure calculations. All computations were carried out using the 

WIEN2k implementation of this method, developed by Blaha and Schwarz [96]. 

2.8. WIEN2k Code 

The WIEN2k code is a computational package developed by Blaha, Schwarz, and 

collaborators [94] for first-principles electronic structure calculations within the density 

functional theory (DFT) framework. The WIEN2k code (originally named after the Vienna 

Institute for Electronic Structure Calculations) was developed at the Institute of Materials 

Chemistry, Vienna University of Technology (TU Wien), by Peter Blaha and 
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collaborators [95]. WIEN2k is structured as a modular computational suite, consisting 

of independent subprograms interconnected through CSHLL script-based workflows. 

The determination of material properties using WIEN2k involves three principal 

computational phases: (1) system initialization (structural and basis setup), (2) self-

consistent charge density calculation (achieving electronic convergence), and (3) physical 

property computation (post-processing analysis). The computational workflow for phases 

(1) and (2) is schematically presented in Figure II-3. 

2.8.1. Initialization 

The initialization phase employs five sequentially executed programs to generate all 

required input data for the self-consistent field calculation. The key program, NN (Nearest 

Neighbors), performs critical geometric analysis by: identifying first-neighbor atoms for 

each crystallographically unique atomic site, determining their precise spatial coordinates 

and interatomic distances, and calculating optimized muffin-tin radii (RMT) for each atomic 

species. This geometric preprocessing establishes essential parameters for accurate 

electronic structure calculations in both the atomic sphere and interstitial regions. The 

LSTART program performs relativistic atomic orbital calculations for all constituent species 

and generates the atomic charge densities required by DSTART. This computation requires 

two key input parameters: the exchange-correlation functional type and the energy cutoff 

distinguishing core from valence states. This program performs two critical validation 

functions: it verifies the complete spatial localization of core states within their respective 

muffin-tin spheres prior to self-consistent density calculations, and establishes the 

computational treatment methodology for valence states. 

The SYMMETRY program performs comprehensive crystallographic analysis by: 

determining all space group symmetry operations of the crystal structure, and identifying the 

specific point group symmetry at each inequivalent atomic site. 

The KGEN module generates the k-point mesh within the irreducible wedge of the 

first Brillouin zone, following the crystal symmetry operations determined by SYMMETRY. 
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DSTART generates the initial electronic charge density through superposition of 

atomic densities. 

 

2.8.2. Self-consistent Field (SCF) Calculation 

The self-consistent field (SCF) cycle is initiated and iteratively repeated until 

convergence criteria are satisfied. Each iteration consists of two hierarchically organized 

computational steps: (1) numerical solution of Eq. (II.46) to determine the expansion 

coefficients C G (as defined in Eq. II.53), followed by (2) calculation of the self-consistent 

electron density. This sequential procedure ensures systematic convergence of both 

wavefunction coefficients and charge density distribution. Thus, each iteration cycle 

comprises the following sequential steps: 

 The LAPW0 module calculates the total effective potential by combining: (i) the 

Hartree potential, obtained through numerical solution of Poisson's equation, and (ii) 

the exchange-correlation potential, computed using either the generalized gradient 

approximation (GGA) or local density approximation (LDA). 

 The LAPW1 module computes the Hamiltonian matrix elements and overlap matrix 

in the LAPW basis, followed by eigenvalue determination through matrix 

diagonalization. 

 The LAPW2 module performs two critical functions: (1) determination of the Fermi 

energy level (𝐸𝐹) and (2) computation of the valence electron charge density . 

 The LCORE module performs relativistic calculations of core states within muffin-

tin spheres, considering exclusively the spherical component of the potential. 

 The MIXER module computes the new electron density by summing core and 

valence densities. However, this raw density is not directly used as input for the next 

cycle. Instead, it undergoes mixing with densities from previous iterations through 

an appropriate algorithm. The simplest scheme, developed by Pratt [97], employs a 

linear combination of the new density (𝜌𝑛𝑒𝑤) with the previous iteration's density 

(𝜌𝑜𝑙𝑑): 

𝜌𝑛𝑒𝑤(𝑟) = (1 − 𝛼)𝜌𝑜𝑙𝑑(𝑟) + (𝜌𝑐(𝑟) + 𝜌𝑣(𝑟))                          II-46 
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𝛼 being the mixing parameter. As previously stated, self-consistency is achieved when the 

new density, obtained after the cycle, matches the input density. 

 
 

Figure 2.2: Diagram of an SCF cycle 

2.8.3. Property Calculation 

Physical property calculations are performed using the following programs: 

 OPTIMISE determines the total energy as a function of volume, which is used to 

calculate the lattice parameter, bulk modulus, and its pressure derivative. 

 TETRA computes the total and partial densities of states. 

 SPAGHETTI computes the band structure using the eigenvalues generated by 

LAPW1.  

 OPTIC computes the optical properties. 

  XSPEC computes the absorption and emission X-ray spectral structures. 
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Figure 2.3: Computational Workflow of the WIEN2k Program 
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3.1.Introduction 

In this chapter, we present the results of our calculations concerning the structural, 

electronic and magnetic properties of the normal spinel Co₂MnO₄. We calculated the total 

energy as a function of volume, with all calculations performed assuming a cubic crystal 

structure. These calculations were carried out using the full-potential linearized augmented 

plane wave (FP-LAPW) method [96], as implemented in the WIEN2k code [37]. To account 

for exchange-correlation effects, we employed the generalized gradient approximation 

(GGA-PBE) as developed by Perdew, Burke, and Ernzerhof [38] method. This approach is 

based on density functional theory (DFT) [98]. Initially, our work focused on determining 

the physical properties of the spinel compound Co₂MnO₄. 

3.2.Physical Properties of the Spinel CO₂MnO₄ 

3.2.1. Calculation Details 

In the first part of this study, numerical simulations were performed based on a 

fundamental principle—density functional theory (DFT) [98]. These simulations were 

carried out using the full-potential linearized augmented plane wave (FP-LAPW) method 

[1], as implemented in the WIEN2k software package[37]. To ensure the accuracy of the 

calculations, optimized muffin-tin sphere radii (RMT) were selected: 2 atomic units (a.u.) 

for Manganese (Mn), 1.44 a.u. for oxygen (O), and 1.89 a.u. for Cobalt (Co). Additionally, 

a Brillouin zone sampling grid of 800 k-points was employed. To ensure reliable and 

physically meaningful results, stringent convergence criteria were rigorously enforced, 

including a total energy convergence threshold of 1.0×10⁻⁶ eV/atom, a force convergence 

criterion of 0.002 eV/Å, and a maximum ionic displacement tolerance of 1.0×10⁻⁴ Å, 

ensuring both electronic and structural optimization stability in the calculations. To 

accurately describe exchange-correlation interactions, the Perdew-Burke-Ernzerhof 

generalized gradient approximation (GGA-PBE)[38]was employed as the baseline 

functional.  
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3.2.2. Structural Properties 

The material Co₂MnO₄ crystallizes in a normal spinel structure (cubic), characterized 

by the space group Fd3̅m (No. 227). In this structure, Mn atoms occupy the tetrahedral sites 

with atomic coordinates (3/8, 3/8, 3/8), while Co atoms are located at the octahedral sites 

with coordinates (0, 0, 0). Oxygen (O) atoms are positioned at face-centered cubic sites, 

defined by atomic coordinates (u, u, u). The arrangement of oxygen atoms in Co₂MnO₄ was 

determined through energy minimization calculations, yielding optimal coordinates of (0.26, 

0.26, 0.26) for each oxygen atom. This atomic configuration is illustrated in Figure III.1. 

 

Figure 03.1: Crystal structure of the spinel Co2MnO4 

To investigate the structural properties of Co₂MnO₄, calculations were performed to 

determine the relationship between the total energy (E) and the unit cell volume (V) under a 

specific magnetic configuration. 
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Figure 3.2: Total energy per formula unit of ferromagnetic (FM) phase as functions of the 

volume for Co2MnO4 compound. 

To determine the  structural ground state, such as the equilibrium lattice parameter 

(a₀),   equilibrium unit cell volume (V₀),   minimum total energy (E₀),  bulk modulus (B), 

and its first derivative (B′), the calculated E–V data were fitted to the Birch-Murnaghan 

equation of state. A summary of these properties is presented in Table  III-1, which also 

provides a comparison between the present results and this reported in previous study on 

Co2MnO4 [99]. 

Table III-1: Calculated lattice parameter (in Bohr), bulk modulus (in GPa), its derivative 

pressure, and energy (in Ry) for the structural and magnetic ground phase (FM) in Co2MnO4 

compound. 

 

Compounds a0 B B’ Emin 

Co2MnO4 15.5025 

15.6280[99] 

210.5196 4.6307 -16986.649697 

 

3.2.3. Electronic Properties 

We calculated the spin-polarized band structure of the normal spinel Co2MnO₄ in its 

stable phase, the FM configuration, using GGA approach. The resulting band structures, 
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computed along high-symmetry directions of the Brillouin zone, are shown in Figure III-3 

(a, b). 

Using the GGA-PBE approach, the energy bands corresponding to the d states of Co 

are occupied in both spin-up and spin-down directions and are predominantly located above 

the Fermi level. 

Using this approximation, the calculated indirect band gap (L-X) is 0.951 eV for the 

spin-down channel. Such characteristics may be of interest for applications in semiconductor 

field-effect transistors (FETs) and spintronic devices. Consequently, this new configuration 

exhibits half-metallic behavior. 

To gain a deeper understanding of the impact of various electronic states on the band 

structure, total density of states (DOS) and partial density of states (PDOS) were calculated 

with spin polarization for the spinel Co₂MnO₄. The DOS and PDOS spectra computed using 

both GGA approach for Co₂MnO₄ are shown in Figure III-4. 

By comparing the DOS and PDOS spectra obtained via the GGA method for the FM 

phase of the Co₂MnO₄ spinel, we observe that in the spin-up channel, the valence states are 

partially filled and cross the Fermi level, indicating a metallic character. However, in the 

spin-down channel, the valence states are partially filled but do not cross the Fermi level, 

indicating a semiconducting character. For that we can introduce our compound as “half-

metal”. The PDOS spectra in the region around the Fermi level are predominantly governed 

by the 3d states of Mn atoms, which play a key role in determining the observed electronic 

and magnetic properties. In contrast, the contribution from the O 2p states is negligible. For 

the 3d and 4s states of Co, both the spin-up and spin-down states are fully occupied, but are 

confined to the lower energy region (approximately between –5.8 and –7 eV). Therefore, the 

magnetism observed in the spinel Co₂MnO₄ arises primarily from the 3d electrons of the Mn 

atoms. 
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Figure 03.3: Spin-polarized band structures for Co2MnO4 compound. 

 
Figure 03.4: Spin-polarized density of states (DOS) for Co2MnO4 compound 
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3.2.4. Magnetic Properties 

To gain a deeper understanding of the magnetic characteristics of the normal spinel 

Co₂MnO₄ and the interactions between its constituent atoms under the correlation potential    

GGA, the total and partial atomic magnetic moments were calculated and are presented in 

Table III-2. At first glance, the results indicate that the Mn atom exhibits a significant 

magnetic moment, while the contributions from Co and O atoms are comparatively minor in 

GGA approximation. 

Table III- 2: Total (Mtot), Atomic (MCo, MMn, MO), and interstitial (MIntersti) magnetic 

moments (in µB) for Co2MnO4 compound. 

 

Mtot MCo MMn MO MIntersti 

10.00 0.32831 3.72845 0.01959 1.07314 

 

A total magnetic moment equal 10 suggests that the spin interactions are in high-

spin states, indicative of ferromagnetic coupling between the magnetic sublattices. 
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This dissertation presented a comprehensive theoretical investigation of the normal 

spinel compound Co₂MnO₄ using first-principles calculations based on density functional 

theory (DFT) within the FP-LAPW method, as implemented in the WIEN2k code. The 

objective was to explore the structural, electronic, and magnetic properties of Co₂MnO₄ in 

order to assess its potential for spintronic applications. 

Structural optimization confirmed the thermodynamic stability of Co₂MnO₄ in the 

cubic spinel phase, adopting the normal spinel configuration, in which Mn atoms occupy the 

tetrahedral sites and Co atoms reside in the octahedral sites. The obtained structural 

parameters and atomic arrangement were consistent with known characteristics of normal 

spinel oxides. 

The electronic band structure revealed a half-metallic behavior, characterized by 

metallic conductivity in the majority spin channel and an indirect band gap of approximately 

0.95 eV in the minority spin channel. This full spin polarization at the Fermi level is a key 

feature for spintronic functionality, as it enables spin-polarized charge transport essential for 

devices such as spin valves and magnetic tunnel junctions. 

Magnetic property calculations reveal a total magnetic moment of 10 μB per formula 

unit. This magnetism predominantly originates from the 3d orbitals of Mn atoms occupying 

the octahedral sites, which exhibit strong spin polarization. In contrast, Co atoms located in 

the tetrahedral sites contribute a smaller magnetic moment but align ferromagnetically, 

reinforcing the overall magnetic ordering of the system. 

Although this study did not include calculations of elastic, phononic, or optical 

properties, the results provide a robust theoretical foundation. The observed half-metallicity, 

high spin polarization, and ferromagnetic nature of Co₂MnO₄ suggest that it is a strong 

candidate for application in next-generation spintronic technologies. 

Future investigations could include the effects of cation substitution, pressure, or 

temperature on the material’s physical properties. Moreover, experimental synthesis and 

characterization—such as XRD, magnetometry, and transport measurements—would be 

crucial to validate the predicted behavior and to explore its practical integration into 

spintronic devices. 
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In summary, this work offers valuable insights into the intrinsic physical properties 

of Co₂MnO₄ in its normal spinel form and reinforces its potential as a functional material in 

the growing field of spintronics. 
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Abstract  

This work presents a theoretical study of the normal spinel Co₂MnO₄ using density 

functional theory (DFT) within the FP-LAPW method as implemented in the WIEN2k code. 

Structural optimization confirms the stability of Co₂MnO₄ in the cubic spinel phase, where 

Mn atoms occupy the tetrahedral sites and Co atoms reside in the octahedral sites. Electronic 

structure calculations reveal a half-metallic character with an indirect band gap of 0.95 eV 

in the minority spin channel and full spin polarization at the Fermi level. The total magnetic 

moment is 10 μB per formula unit, mainly arising from Co 3d orbitals, indicating the 

material's ferrimagnetic nature. These results suggest that Co₂MnO₄ is a promising candidate 

for spintronic applications. 

 الملخص

 في بنيته السبينلية العادية باستخدام نظرية الكثافة الوظيفية Co₂MnO₄ يقدمّ هذا العمل دراسة نظرية لمركب

(DFT) جيةضمن منه FP-LAPW كما هي مطبّقة في برنامج WIEN2k.  أكّدت نتائج تحسين البنية استقرارية المركب

في الطور المكعبّ، حيث تشغل ذرات المنغنيز المواقع رباعية التناسق، في حين تشغل ذرات الكوبالت المواقع ثمانية 

فلزية، مع فجوة طاقة غير مباشرة قدرها التناسق. أظهرت الحسابات الإلكترونية أنّ المركب يتميز بخاصية نصف 

 إلكترون فولت في قناة اللف المغزلي الأقلية، واستقطاب كلي عند مستوى فيرمي. وقد تم حساب عزم مغناطيسي 0.95

للكوبالت، مما يدل على الطبيعة الفيريمغناطيسية  d 3لكل وحدة صيغية، ويرجع أساسًا إلى إلكترونات  B μ 10كلي قدره

 .(spintronics) يعد مرشحًا واعداً لتطبيقات الإلكترونيات المغزلية Co₂MnO₄ وتشير هذه النتائج إلى أنللمركب. 

Résumé 

Ce travail présente une étude théorique du composé spinelle normal Co₂MnO₄ en 

utilisant la théorie de la fonctionnelle de la densité (DFT) selon la méthode FP-LAPW, telle 

qu’implémentée dans le code WIEN2k. L’optimisation structurale confirme la stabilité du 

composé dans la phase cubique spinelle, où les atomes de Mn occupent les sites tétraédriques 

et ceux de Co les sites octaédriques. Les calculs de structure électronique révèlent un 

comportement demi-métallique avec une bande interdite indirecte de 0,95 eV dans le canal 

de spin minoritaire et une polarisation totale au niveau de Fermi. Le moment magnétique 

total est de 10 μB par unité formulique, provenant principalement des orbitales 3d du cobalt, 

ce qui confirme le caractère ferrimagnétique du composé. Ces résultats suggèrent que 

Co₂MnO₄ est un candidat prometteur pour les applications en spintronique. 


