

Theme

Class of 2023-2024

الشعبيـة الديمقراطيةزائرية لجاالجمهورية

والبحث العلمي ليوزارة التعليم العا

Led by:

Dr. Ahmed Chaouki Lokbani

Alaa Fatna Brahimi

Karim Toumi

Presented by:

الطـاهـر د. مولايجـامعـة سعــيـدة

كـليـة التكنولوجيا

الالي لاعلامقسم: ا

Master’s thesis

Specialty: Sécurité Informatique et Cryptographie

Comparative Study of Cryptography Algorithms

Alaa Fatna Brahimi’s Dedication

Thank God for giving me the strength, wisdom and perseverance necessary to

complete this work.

To my mother and father,

whose love, unconditional support and sacrifices made it all possible. Your belief in

my abilities has always inspired me to give my best.

To my family,

for their unwavering support and understanding during the most demanding periods of

this work.

To my friends & colleague,

for their constant support and encouragement, even in the most difficult times.

To my special person,

Mr. D.M (May God have mercy on him),for their unwavering encouragement and

their confidence in me. I cannot express how much their help meant to me.

To my teachers and supervisors, Mr. Chouki Okbani,

for their valuable advice, expertise and dedication throughout this project.

To Karim Toumi,

my partner and collaborator, for your precious help and collaboration during this

research. Your perseverance and dedication were essential to the success of this

project.

To me,

I don't want to forget to thank myself. I would like to express my gratitude to myself

for the hard work that I put into this thesis and for believing in myself throughout this

project.

To all those who believed in me and accompanied me on this adventure,

This thesis is dedicated to you.

Karim Toumi’s Dedication

I would like to express my deepest gratitude to all those who have contributed to the

successful completion of this thesis.

First and foremost, I would like to thank my advisor, Mr. Chouki Okbani, for their

invaluable guidance, insightful suggestions, and continuous support throughout the

duration of my research. Their expertise and dedication were instrumental in shaping

the direction and outcome of this work.

I am also grateful to my colleagues and friends for their encouragement and

constructive feedback, which greatly enriched my research experience.

A special thanks to my research partner, Alaa Brahimi, for their collaboration, hard

work, and shared insights throughout this journey. Your dedication and teamwork

were crucial to the success of our research.

To my family, thank you for your unwavering support and encouragement, which has

been a constant source of motivation for me.

Finally, I would like to acknowledge myself for the perseverance, dedication, and hard

work that I put into this thesis. This achievement would not have been possible

without my own commitment and determination.

Thank you all.

Acknowledgements

Above all, we thank Almighty Allah for having granted us the strength and means to

be able to carry out this work. It is with great pleasure that I express in these few lines

my sincere gratitude and my love to all people that I know and to all those who

contributed to my success.

We would like to express our deepest gratitude to all those who supported and guided

us throughout the development of our thesis entitled "Comparative study of

cryptography algorithms". Your expertise, wise advice and patience were essential to

the successful completion of this work.

First of all, we would like to express our sincere gratitude to Mr. Ahmed Chaouki

Lokbani for his advice, support, seriousness and compassion. In particular, we

sincerely thank him for the time he devoted to guiding us, proofreading our work and

providing us with constructive feedback. Your encouragement and availability were

invaluable and contributed greatly to the quality and rigor of this research.

 In addition, we would like to underline the honor that the members of the jury did us

by agreeing to evaluate our work.

Your confidence in our abilities has given us the strength and motivation to overcome

challenges and persevere in our efforts. Thanks to you, we were able not only to

complete this ambitious project, but also to acquire skills and knowledge that will be

invaluable to us for the rest of our academic and professional careers.

 ملخص

التشفير هو علم وفن تأمين المعلومات عن طريق تحويلها لجعلها غير قابلة للقراءة

وهو نقطة حاسمة في الأمن، وتحديداً أمن تكنولوجيا لأي شخص غير مصرح له.

يستخدم العديد من الخوارزميات لتشفير المعلومات وفك حيث المعلومات،

تشفيرها وتأمينها. تهدف الأطروحة إلى تحليل ومقارنة خوارزميات التشفير

المختلفة للمساعدة في اتخاذ قرارات مستنيرة لأغراض محددة. كما تتضمن

الدراسة تطوير موقع إلكتروني لمقارنة نتائج التشفير وفك التشفير بين

. الخوارزميات

الخوارزمية.الكلمات المفتاحية: التشفير، المقارنة،

Abstract

Cryptography is the science and art of securing information by

transforming it to make it unreadable.to any unauthorized person. A

crucial point in security, specifically IT security, it uses several

algorithms for encrypting, decrypting, and securing information. The

thesis aims to analyze and compare various cryptographic algorithms

to help make informed decisions for specific purposes. The study also

includes the development of a website for comparing encryption and

decryption results between algorithms.

Keywords: encryption, algorithmic, comparison.

Résume

La cryptographie est la science et l'art de sécuriser une information en

la transformant pour la rendre illisible à toute personne non autorisée.

Point crucial de la sécurité, notamment informatique, elle utilise

plusieurs algorithmes pour chiffrer, décrypter et sécuriser l'information.

La thèse vise à analyser et comparer divers algorithmes

cryptographiques pour aider à prendre des décisions éclairées à des fins

spécifiques. L'étude comprend également le développement d'un site

Web permettant de comparer les résultats de cryptage et de décryptage

entre les algorithmes.

Mots-clés : chiffrement, comparaison, algorithme.

 Abbreviation list

AES: Advanced Encryption Standard.

CBC: Cipher Block Chaining.

CFB: Cipher Feedback.

DES: Data Encryption Standard.

ECB: Electronic Codebook.

RSA: Rivest–Shamir–Adleman.

IDS: Intrusion Detection Systems.

IPS: Intrusion Prevention Systems.

IV: initialization vector.

MD5: Message-Digest Algorithm5.

NIST: National Institute of Standards and Technology.
OFB: Output Feedback.

SHA-3: Secure Hash Algorithm Version 3.

SHA-256: Secure Hash Algorithm Version 256.
VPN: Virtual Private Network.

 List of Figures

Figure 1.2-1: The scytale [3] ... 9
Figure 2.3-1:Caesar Shift [1] ... 10
Figure 3.2-1:ECB mode [3] .. 30
Figure 3.2-2:CBC mode [3] .. 30
Figure 3.3-4:Structure générale de l’AES [3] ... 32
Figure 3.3-5: DES encryptions process [13] ... 34
Figure 3.3-7: A diagram of a 3DES encryption and decryption system .. 35
Figure 3.4-1: The asymmetric crypto system. [3] .. 35
Figure 3.4-2:Adi Shamir, Ronald Rivest and Leonard Adleman [16] Erreur ! Signet non défini.
Figure 3.4-3: RSA key for Encryption and decryption. ... 36
Figure 3.5-1Hash function. [[3] .. 37
Figure 3.5-2:Integrity check [3] .. 38
Figure 3.5-3:One SHA-3 Iteration [24] .. 39
Figure 3.5-5:MD5 algorithm [20] .. 42
Figure 3.5-6:Padding bits [20] .. 43
Figure 3.5-7:Input data to be hashed [20] .. 43
Figure 3.5-8:Data Flow with Intermediate States [20] .. 44
Figure 4.2-1:Use Case Diagram of comparison between cryptography algorithms .. 48
Figure 4.2-2:sequence Diagram of classical comparison ... 49
Figure 4.3-1:Homepage of the proposed system .. 53
Figure 4.3-2:Cryptography system category page ... 53
Figure 4.3-3:Symmetric Cryptography,3DES algorithm ... 54
Figure 4.3-4:Symmetric algo DES .. 54
Figure 4.3-5:symmetric algorithms comparison ... 55
Figure 5.4-1:Histogram explain comparison between Playfair & Vigenere using short Key & Medium text 59
Figure 5.4-2:Histogram explain comparison between Playfair & Vigenere using short Key & very long text ... 61
Figure 5.5-1:histogram explain comparison between AES, DES, 3DES using short Key and short text 64
Figure 5.5-2:Comparison between AES, DES,3DES in « ECB mode », using short text 66
Figure 5.5-3:histogram explain comparison between AES, DES, 3DES using Long text in ECB mode 67
Figure 5.5-4:Histogram explain comparison between AES, DES,3DES in CBC mode using medium text 68
Figure 5.5-5:Histogram explain Comparison between AES, DES,3DES in CBC mode using very long text 69
Figure 5.5-6:Histogram explain Comparison between AES key size in ECB mode using medium text 70
Figure 5.5-7:Histogram explain Comparison between AES key size in ECB mode using very long text 71
Figure 5.5-8:Histogram explain Comparison between AES key size in CBC mode using medium text 73
Figure 5.5-9:Histogram explain comparison between AES key size in CBC mode using long text 74
Figure 5.6-1:Histogram explain comparison between the algorithm AES and RSA using medium text. 76
Figure 5.6-2:Histogram explain comparison between algorithms AES and RSA using txt size 501 bits 78
Figure 5.7-1;Histogram explain comparison between RSA key size in « ECB mode » using text 5 80
Figure 5.8-1: Histogram explain comparison between hashing algorithms using medium text 82
Figure 5.8-2:Histogram explain Comparison between Hashing algorithms using very long Key using very long

text .. 83

 List of Table

Table 2.4-1:Example of Playfair encryption process(letters are in the same column) 13
Table 2.4-2:Example of Playfair encryption process (letters are in the same row) .. 13
Table 2.4-3:Example of Playfair encryption process(letters are neither of the above rules is true) 14
Table 3.6-1: SHA-3 Hashing Examples ... 40
Table 3.6-3: SHA-256 Hashing Examples ... 42
Table 3.6-4: MD5 Hashing Examples .. 42
Table 3.3-1:The characteristics of the material used .. 52
Table 5.4-2: Comparison between Playfair & Vigenère using short Key & medium text 59
Table 5.4-3: Comparison between Playfair & Vigenere using short Key and very long text 60
Table 5.4-5: Execution time of encryption and decryption of playfair and vignere for different text sizes 62
Table 5.5-1:Table of keys chosen from symmetric algos ... 63
Table 5.5-4:Comparison between symmetric algorithms (AES, DES,3DES) using long text 65
Table 5.5-5: keys chosen from symmetric algos mode ECB ... 66
Table 5.5-6: Comparison between AES, DES,3DES in « ECB mode », using short text...................................... 66
Table 5.5-8:Comparison between AES, DES,3DES in « ECB mode », using long text .. 67
Table 5.5-10: keys chosen from symmetric algos in CBC mode ... 67
Table 5.5-12:Comparison between AES, DES,3DES in « CBC mode », using medium text 68
Table 5.5-14:Comparison between AES, DES,3DES in « CBC mode » using Very long text 69
Table 5.5-15: keys chosen from AES algo in ECB mode ... 70
Table 5.5-16: Comparison between AES key size in « ECB mode » using medium text 70
Table 5.5-17:Comparison between AES key size in « ECB mode » ... 71
Table 5.5-19:Comparison between AES key size in « CBC mode » .. 72
Table 5.5-20:Comparison between AES key size in « CBC mode » .. 73
Table 5.6-1: keys chosen from AES & RSA algos ... 75
Table 5.6-2:Comparison between the algorithm AES and RSA using medium text. ... 76
Table 5.6-3: keys chosen from AES & RSA algos .. 77
Table 5.6-4:Comparison between algorithms AES and RSA using txt size 501 bits .. 78
Table 5.7-1:Comparison between RSA key size in « ECB mode » using text 5 ... 80
Table 5.8-1:Comparison between hashing algorithms using medium text .. 82
Table 5.8-2:Comparison between Hashing algorithms using very long text .. 83

 Glossary

In this presentation I will endeavor to always use the same terms. This paragraph

presents the terms used as well as their meaning.

• Algorithm: set of instructions for performing a task.

• Ciphertext: This is the result of encrypting the plaintext.

• Cryptography: this branch brings together all the methods which make it possible

to encrypt and decrypt a plain text in order to make it incomprehensible to

anyone who is not in possession of the key to use to decipher it.

• Cryptanalysis: it is the art of revealing plain texts that have been encrypted

without knowing the key used to encrypt the plain text.

• Cryptology: this is the science that studies secret communications. It is made up

of two complementary areas of study: cryptography and cryptanalysis.

• Decryption is the method or algorithm used to transform ciphertext into

plaintext.

• Decrypt: it is the action of finding the plain text corresponding to an encrypted

text without having the key which was used for encryption. This word should

therefore only be used in the context of cryptanalysis.

• Encryption: This is the method or algorithm used to transform plain text into

cipher text.

• Encrypt: by rereading the definition of the word decrypt, we can realize that the

word encrypt has no meaning and that its use should be forgotten. The word

encryption doesn't make any more sense either.

• Encode, decode: it is a method or algorithm allowing you to modify the

formatting of a message without introducing a secret element. Morse code is

therefore a code since it transforms letters into lines and dots without any notion

of secrecy. ASCII is also a code since it allows you to transform a letter into a

binary value.

• Hash function: algorithm that transforms data into a unique digital fingerprint.

• Key: This is the shared secret used to encrypt plaintext into ciphertext and to

decrypt ciphertext into plaintext. We can perfectly design an algorithm which

does not use a key, in this case it is the algorithm itself which constitutes the key,

and its principle must therefore in no case be revealed.

• Plain text: this is the message to be protected.

Table of Contents

1 Classical Cryptography .. 7

1.1 Introduction: ... 8

1.2 Definition of Cryptography: [1] .. 8

1.3 Classical cryptography ... 9

1.3.1 Monoalphabetic ciphers: .. 9

1.3.1.1 Caesar Cipher: ... 9

1.3.1.1.1 Working of Caesar: .. 10

1.3.2 Polyalphabetic: .. 10

1.3.2.1 Vigenère Cipher:[9] ... 11

1.3.2.2 The Playfair cipher: ... 12

1.3.2.2.1 The Playfair process cipher: .. 13

1.3.2.2.2 Rules for Encryption: ... 13

1.4 Conclusion ... 16

2 Modern cryptography ... 28

2.1 introduction: ... 29

2.2 modern encryption families: ... 29

2.2.1 Code by Blocks: ... 29

2.2.1.1 ECB Block Cipher Modes: .. 29

2.2.1.2 CBC Block Chiper Modes: [3] .. 30

2.3 Symmetric Cryptography: ... 31

2.3.1 Symmetric cryptography algorithms: .. 31

2.3.1.1 AES (advanced encryption standard): ... 31

2.3.1.1.1 Encryption: .. 31

2.3.1.1.2 Decryption: [4] .. 32

2.3.1.2 DES (Data Encryption Standard): ... 32

2.3.1.2.1 Working of the cipher: [18]... 33

2.3.1.3 3DES (Data Encryption Standard): ... 34

2.3.1.3.1 Encryption Process: ... 34

TABLE OF CONTENTS

2.3.1.3.2 Decryption Process: .. 35

2.4 Asymmetric Cryptography: ... 35

2.4.1 RSA (Rivest-Shamir-Adleman): .. 36

2.4.1.1.1 How RSA works:[14] .. 36

2.5 Hash function: ... 37

2.5.1 Principle: [3] .. 38

2.5.2 Hashing algorithms: .. 38

2.5.2.1 SHA-3: .. 38

2.5.2.1.1 How it works: [24] ... 39

2.5.2.2 SHA-256: .. 41

2.5.2.2.1 SHA-256 Algorithm :23.. 41

2.5.2.3 MD5: [20] .. 42

2.5.2.3.1 How MD5 works: [20] ... 43

2.6 Conclusion: .. 44

3 Conception &Architecture of system .. 46

3.1 Introduction: ... 47

3.2 Conception: ... 47

3.2.1 Problem: .. 47

3.2.2 Objectif: ... 47

3.2.3 Overall operation: ... 47

3.2.3.1 Use case diagram .. 48

3.2.3.2 Sequence Diagram: ... 48

3.3 Architecture of system: ... 50

3.3.1 Framework: ... 50

3.3.2 Software environment: ... 50

3.3.3 Language: .. 50

3.3.4 Another tool: ... 51

3.3.5 Hardware environment: .. 52

3.3.6 Process of system: ... 52

3.3.6.1 Homepage: .. 52

3.3.6.2 Cryptography system category page: .. 53

3.3.6.3 Symmetric Cryptography: ... 53

3.3.6.4 Algorithm category:... 54

3.4 Conclusion: .. 55

4 Experimentation and evaluation of results ... 56

TABLE OF CONTENTS

4.1 Introduction: ... 57

4.2 Cryptography algorithm comparison: ... 57

4.3 Comparison Criteria: ... 58

4.4 Comparison between classical algorithms: ... 58

4.4.1 Comparison between Playfair & Vigenère using medium text: 58

4.4.1.1 Observation: .. 59

4.4.1.2 Conclusion: .. 60

4.4.2 Comparison between Playfair & Vigenère using very long text 60

4.4.2.1 Observation: .. 61

4.4.2.2 Explanation of the differences: ... 61

4.4.2.3 Conclusion: .. 62

4.5 Comparison between symmetric algorithms: ... 62

4.5.1 Comparison between symmetric algorithms AES<128: .. 63

4.5.1.1 Observations: .. 64

4.5.1.2 Conclusion: .. 64

4.5.1.3 General conclusion: ... 65

4.5.2 Comparison between symmetric algorithms Mode ECB: ... 65

4.5.2.1 Conclusion: .. 67

4.5.3 Comparison between symmetric algorithms mode CBC: ... 67

4.5.3.1 Discussion:... 69

4.5.3.2 Conclusion: .. 69

4.5.4 Comparison between AES algorithm key size: .. 70

4.5.4.1 Comparison between AES key size in ECB mode: ... 70

4.5.4.1.1 Observations: .. 71

4.5.4.1.2 Conclusion: .. 72

4.5.4.2 Comparison between AES key size in CBC mode: ... 72

4.5.4.2.1 Conclusion ... 74

4.5.4.3 General conclusion for symmetric algorithms: ... 74

4.5.4.4 Security vs. Performance Trade-off: .. 75

4.5.4.5 Choosing the Right Algorithm and Mode: ... 75

4.6 Comparison between AES & RSA algorithms: ... 75

4.6.1 Comparison between AES and RSA using medium text: ... 76

4.6.1.1 Discussion: .. 76

4.6.1.2 Conclusion: .. 77

4.6.2 Comparison between AES and RSA using text size 501 bits:... 77

TABLE OF CONTENTS

4.6.2.1 Conclusion: .. 78

4.7 RSA key size comparison: .. 78

4.7.1 Key Size and Maximum Input Length: ... 79

4.7.2 Maximum Input Length example calculations: ... 79

4.7.3 Discussion:... 80

4.7.4 Conclusion: .. 81

4.8 Hache Algorithm Comparison: .. 81

4.8.1 Comparison between Hashing algorithms using medium text: 81

4.8.1.1 Observations ... 82

4.8.1.2 Conclusion ... 83

4.8.2 Comparison between Hashing algorithms using very long text: 83

4.8.2.1 Observation: .. 84

4.8.2.2 Conclusion: .. 84

4.8.3 Hash tables analyses: .. 84

4.9 Conclusion: .. 85

Abbreviation list .. Erreur ! Signet non défini.

List of Figures .. Erreur ! Signet non défini.

List of Table ... Erreur ! Signet non défini.

Glossary ... Erreur ! Signet non défini.

Bibliography .. 87

GENERAL INTRODUCTION

Page | 5

General Introduction

omputer security (information technology or IT security) is the process of

protecting an organization's IT (computer systems, networks, digital devices,

and data) from unauthorized access, data breaches, cyberattacks and other

malicious activities.

IT security is broad and often includes a combination of technologies and security

solutions combined to address vulnerabilities. Cryptography is indeed an essential tool

for computer security. This is done by making data unreadable by unauthorized people,

it is used in many areas of computer security, including protecting communications,

authenticating users, verifying data integrity, and securing online transactions.

So, we can say that cryptography is the science of protecting sensitive information from

disclosure, alteration or falsification. It uses mathematical techniques to transform

readable data (plain text) into an intelligible format (ciphertext). Only someone with the

appropriate decryption key can recover the original message.

 Generally, cryptography is a writing technique that uses a secret code or encryption

key to write an encrypted message, depending on mathematical techniques to transform

readable data (plain text) into an intelligible format (ciphertext). There are many

cryptographic algorithms that can be used to encrypt messages and allow recipients to

decrypt them. Some can be considered simple (e.g. moving letters of the alphabet to the

right or left for a certain number of notes), while others provide an almost absolute level

of security.

In today’s changing landscape and with the rise of cyber threats it's crucial to delve into

and contrast various cryptography algorithms to safeguard sensitive information.

Despite the abundance of algorithms selecting the suitable one, for specific purposes

can pose a challenge. Each algorithm brings its set of pros and cons in terms of

performance, security, energy usage and complexity. Having insights is key to making

informed decisions when choosing the right algorithm for each unique scenario. This

thesis sets out to offer a analysis of prevalent cryptography algorithms in use today.

The primary goals of this study are to furnish comprehensive information that aids

decision making regarding cryptography algorithm selection and sheds light on the

strengths and weaknesses in each algorithm to foster a deeper understanding of their

capabilities and limitations. To meet these objectives this thesis delves into following

questions: What're the key advantages and drawbacks associated with cryptography

C

GENERAL INTRODUCTION

Page | 6

algorithms? How does the performance of major cryptographic algorithms compare in

terms of encryption/decryption time and resource consumption? Which cryptography

algorithms provide the best flexibility and adaptability for use in varied scenarios.

In our culminating project, we aim to explore a comparison of algorithms by

developing a website that enables users to compare encryption or decryption outcomes

across algorithms along, with their metrics. The dissertation is organized in the

following manner:

• The first chapter presents classical cryptography, its algorithms and how work

each algorithm is used.

• The modern cryptography system is presented in the second chapter.

• The third chapter contains the conception and architecture of our website.

• while its realization and comparison are covered in the fourth, as well as a

detail of the key points cited in each work treated.

 We conclude our thesis with a broad statement

CHAPTER 1

1 Classical Cryptography

CLASSICAL CRYPTOGRAPHY CHAPITER 1

Page | 8

1.1 Introduction:

ryptography has evolved over the centuries, from simple methods such as letter

substitution to complex algorithms based on advanced mathematical principles. Its

fundamental role is to secure electronic communications and transactions in an

increasingly interconnected world.

The history of encryption traces a fascinating epic in which cryptographers ("crypters") and

cryptanalysts ("decryptors") engage in a fierce battle, an eternal restart of the development of

an algorithm by some, of decoding by others, of development a new, more powerful algorithm,

etc.[01]

1.2 Definition of Cryptography: [1]

 Cryptography is the set of techniques for securing communications and data by

transforming information in such a way as to make it incomprehensible to any

unauthorized person. It is based on the use of mathematical and computer algorithms to

encrypt and decrypt data, verify the authenticity of communicating parties, ensure the

integrity of information, and guarantee the non-repudiation of transactions.

 Cryptography, or the art of hiding and protecting information, has a long history

dating back to ancient times. The first traces of cryptographic techniques date back to

ancient Egypt, where hieroglyphs were carved in a way that rendered difficult reading.

The oldest known ciphers are presented under the form of hieroglyphs found on

monuments dating from almost 3,000 years BC. For a long time, hieroglyphs were

considered indecipherable, before the discovery of the famous Rosetta Stone and the

work of Jean-François Champollion made it possible to unravel its mysteries. But let's

go back to Antiquity, to the 6th century before our era, in the Greek city of Sparta and

its famous scytale, a thick stick around which the sender wound a strip of parchment to

write your message. Only the parchment was then sent to the recipient. If this person

had a stick of the same diameter, she could then wind the strip around it in order to

decrypt the message. Encryption methods of this type – which involve changing the

order of letters – fall into the category of “transposition encryption”.

The Spartans used the scytale, a cylinder around which a strip of parchment was

wrapped to write secret messages. This is what the figure 1.2-1 show.

C

CLASSICAL CRYPTOGRAPHY CHAPITER 1

Page | 9

Figure 1.2-1: The scytale [3]

1.3 Classical cryptography

Classical cryptography refers to cryptographic methods that were widely used it based

on complex mathematical algorithms. These methods were often based on substitutions,

transpositions and other simple techniques.

Substitution: is a technique in which each element of plain text, whether letters, numbers

or symbols, is replaced by another element according to a specific rule. There are

several substitution methods, each of which has its own characteristics.

There are three types of substitutions:

 ● monoalphabetic: replaces each letter of the message with another letter of the

alphabet;

 ● polyalphabetic: uses a sequence of monoalphabetic numbers (the key)

reused periodically;

 ● polygrams: replaces a group of characters in the message with one

another group of characters.

Transposition: Transposition methods involve rearranging letters or symbols in a

message without changing them.

1.3.1 Monoalphabetic ciphers:

Monoalphabetic substitution ciphers represent a foundational type of encryption where

each letter in a plaintext message is systematically replaced with a single alternative

letter or symbol, creating the ciphertext. This substitution remains consistent throughout

the encryption process. Imagine a secret codebook where each letter in the alphabet has

a corresponding code assigned to it. Encryption involves replacing each plaintext letter

with its designated code from the codebook.[8]

1.3.1.1 Caesar Cipher:

 Caeser cipher is a type of monoalphabetic cipher where every character of plain text

is mapped to another character by a distance of 3. It is essentially a type of additive

cipher where the key value is always 3. As it seen in the figure1.3-1 .

CLASSICAL CRYPTOGRAPHY CHAPITER 1

Page | 10

For example, if the plain text has a character 'a' then the value of its cipher text

counterpart will be 'd' since the value of the key is 3 in the Caeser cipher.[5]

Figure 1.3-1:Caesar Shift [1]

1.3.1.1.1 Working of Caesar:

The mathematical representation of the Caeser cipher is:

• Encryption process:

The formula for encryption of plain text to cipher text in Caeser cipher is

C=(P+3) mod 26.

Here, P is the plain text, C is the cipher text and 3 is the key because it always remains

the same in the Caeser cipher.[5]

• Decryption process:

The formula for the decryption process of cipher text to plain text in Caeser cipher is

P=(C−3) mod 26.

Here, P and C are plain text and cipher text respectively, and 3 is the key.[5]

1.3.2 Polyalphabetic:

A polyalphabetic cipher is a cryptographic method that uses multiple substitution

alphabets to encode a message. Unlike monoalphabetic ciphers, where each letter is

consistently replaced by the same letter throughout the message, this means that the

same letter in the plaintext can be encrypted to different letters in the ciphertext,

depending on its position in the message. polyalphabetic ciphers employ different

substitution rules for different parts of the message. This introduces a layer of

complexity that enhances the security of the encoded information.

One of the most well-known polyalphabetic ciphers is the Vigenère cipher, named for

the 16th-century French cryptographer Blaise de Vigenère. In the Vigenère cipher, a

keyword is repeated to generate a series of different Caesar ciphers. Each letter in the

plaintext is then shifted according to the corresponding letter in the keyword.

In the simplest systems of the Vigenère type, the key is a word or phrase that is repeated

as many times as required to encipher a message.

CLASSICAL CRYPTOGRAPHY CHAPITER 1

Page | 11

1.3.2.1 Vigenère Cipher:[9]

Vigenère Cipher is a method of encrypting alphabetic text. It uses a simple form of

polyalphabetic substitution. The encryption of the original text is done using the

Vigenère square or Vigenère table.

Vigenère Cipher is a polyalphabetic encryption which is based on:

• The same letter will be encrypted in different ways

• Process one digraph (sequence of letters) at a time

This encryption uses a key that defines the offset for each letter of the message (A: 0

notch offset, B: 1 notch, C: 2 notches, ..., Z: 25 notches)

Encryption:

Decryption:

Key:

1.3.2.2 Vigenère algorithm:

 function vigenereEncrypt(plaintext, key):

 begin

 // Convert plaintext and key to uppercase

 plaintext = uppercase(plaintext)

 key = uppercase(key)

 // Initialize variables

 encryptedText = ""

 keyIndex = 0

 // Loop through each character in the plaintext

 for each character in plaintext:

 // Calculate the offset for the current character of the plaintext

 offset = (charToNumber(character) + charToNumber(key[keyIndex])) mod 26

 // Convert the offset back to a character and append it to the encrypted text

 encryptedText += numberToChar(offset)

 // Move to the next character in the key (looping if necessary)

 keyIndex = (keyIndex + 1) mod length(key)

 return encryptedText

 end

function vigenereDecrypt(ciphertext, key):

 begin

 // Convert ciphertext and key to uppercase

 ciphertext = uppercase(ciphertext)

 key = uppercase(key)

 // Initialize variables

 decryptedText = ""

CLASSICAL CRYPTOGRAPHY CHAPITER 1

Page | 12

 keyIndex = 0

 // Loop through each character in the ciphertext

 for each character in ciphertext:

 // Calculate the offset for the current character of the ciphertext

 offset = (charToNumber(character) - charToNumber(key[keyIndex]) + 26) mod 26

 // Convert the offset back to a character and append it to the decrypted text

 decryptedText += numberToChar(offset)

 // Move to the next character in the key (looping if necessary)

 keyIndex = (keyIndex + 1) mod length(key)

 return decryptedText

 end

function charToNumber(character):

 begin

 // Convert character to its corresponding number (0-25)

 return ascii(character) - ascii('A')

 end

function numberToChar(number):

 begin

 // Convert number to its corresponding character (A-Z)

 return char((number + 26) mod 26 + ascii('A'))

 end

main()

begin

 write("Enter the plaintext: ")

 plaintext = read()

 write("Enter the key: ")

 key = read()

 // Encryption

 ciphertext = vigenereEncrypt(plaintext, key)

 write("Encrypted text: ", ciphertext)

 // Decryption

 decryptedText = vigenereDecrypt(ciphertext, key)

 write("Decrypted text: ", decryptedText)

 end

1.3.2.3 The Playfair cipher:

The Playfair cipher was the first practical digraph substitution cipher. The scheme was

invented in 1854 by Charles Wheatstone but was named after Lord Playfair who

CLASSICAL CRYPTOGRAPHY CHAPITER 1

Page | 13

promoted the use of the cipher. In playfair cipher unlike traditional cipher, we encrypt

a pair of alphabets(digraphs) instead of a single alphabet.

It was used for tactical purposes by British forces in the Second Boer War and in World

War I and for the same purpose by the Australians during World War II. This was

because Playfair is reasonably fast to use and requires no special equipment.[12]

1.3.2.3.1 The Playfair process cipher:

The Algorithm consists of 2 steps:[12]

• Generate the key Square(5×5):

• The key square is a 5×5 grid of alphabets that acts as the key for encrypting the

plaintext. Each of the 25 alphabets must be unique and one letter of the alphabet

(usually J) is omitted from the table (as the table can hold only 25 alphabets). If

the plaintext contains J, then it is replaced by I.

• The initial alphabets in the key square are the unique alphabets of the key in the

order in which they appear followed by the remaining letters of the alphabet in

order.

• Algorithm to encrypt the plain text: The plaintext is split into pairs of two letters

(digraphs). If there is an odd number of letters, a Z is added to the last letter.

1.3.2.3.2 Rules for Encryption:

If both the letters are in the same column: Take the letter below each one (going back

to the top if the bottom). As it seen in the table 1.3-1.

For example:

Diagraph: “me”

Encrypted Text: cl => m -> c

 e -> l

If both the letters are in the same row: Take the letter to the right of each one (going

back to the leftmost if at the rightmost position). As it seen in the table 1.3-2.

For example:

Diagraph: “st”

Encrypted Text: tl =>s -> t

 t -> l

If neither of the above rules is true: Form a rectangle with the two letters and take the

letters on the horizontal opposite corner of the rectangle. As it seen in the table 1.3-3

Table 1.3-1:Example of Playfair encryption process(letters are in the same column)

Table 1.3-2:Example of Playfair encryption process (letters are in the same row)

CLASSICAL CRYPTOGRAPHY CHAPITER 1

Page | 14

For example:.

Diagraph: “nt”

Encrypted Text: rq => n -> r

 t -> q

1.3.2.4 Playfair algorithm:

function generateKeySquare(key):

 begin

 key = removeDuplicates(key)

 keySquare = 5x5 grid

 alphabet = "ABCDEFGHIKLMNOPQRSTUVWXYZ"

 keyIndex = 0

 for each character in key:

 add character to keySquare

 remove character from alphabet

 for each character in alphabet:

 add character to keySquare

 return keySquare

 end

function removeDuplicates(key):

 begin

 uniqueKey = ""

 for each character in key:

 if character not in uniqueKey:

 add character to uniqueKey

 return uniqueKey

 end

function encrypt(plaintext, keySquare):

 begin

 plaintext = preprocess(plaintext)

 ciphertext = ""

 for each digraph in plaintext:

 if digraph[0] == digraph[1]:

 digraph[1] = 'Z'

 row1, col1 = getCoordinates(digraph[0], keySquare)

 row2, col2 = getCoordinates(digraph[1], keySquare)

 if row1 == row2:

 ciphertext += keySquare[row1][(col1 + 1) % 5]

 ciphertext += keySquare[row2][(col2 + 1) % 5]

 else if col1 == col2:

 ciphertext += keySquare[(row1 + 1) % 5][col1]

Table 1.3-3:Example of Playfair encryption process(letters are neither of the above rules is true)

CLASSICAL CRYPTOGRAPHY CHAPITER 1

Page | 15

 ciphertext += keySquare[(row2 + 1) % 5][col2]

 else:

 ciphertext += keySquare[row1][col2]

 ciphertext += keySquare[row2][col1]

 return ciphertext

 end

function decrypt(ciphertext, keySquare):

 begin

 plaintext = ""

 for each digraph in ciphertext:

 row1, col1 = getCoordinates(digraph[0], keySquare)

 row2, col2 = getCoordinates(digraph[1], keySquare)

 if row1 == row2:

 plaintext += keySquare[row1][(col1 - 1 + 5) % 5]

 plaintext += keySquare[row2][(col2 - 1 + 5) % 5]

 else if col1 == col2:

 plaintext += keySquare[(row1 - 1 + 5) % 5][col1]

 plaintext += keySquare[(row2 - 1 + 5) % 5][col2]

 else:

 plaintext += keySquare[row1][col2]

 plaintext += keySquare[row2][col1]

return plaintext

 end

function preprocess(text):

 begin

 text = text.replace("J", "I")

 text = text.replace(" ", "") // Remove spaces

 text = text.upper() // Convert to uppercase

 // Add 'Z' to last letter if the length is odd

 if length(text) % 2 != 0:

 text += 'Z'

 return text

 end

function getCoordinates(character, keySquare):

 begin

 for each row in keySquare:

 for each col, value in enumerate(row):

 if value == character:

 return row, col

 end

main()

begin

 write("Enter the plaintext: ")

 plaintext = read()

CLASSICAL CRYPTOGRAPHY CHAPITER 1

Page | 16

 write("Enter the key: ")

 key = read()

 keySquare = generateKeySquare(key)

 write("Plaintext: ", plaintext)

 ciphertext = encrypt(plaintext, keySquare)

 write("Ciphertext: ", ciphertext)

 write("Ciphertext: ", ciphertext)

 decryptedText = decrypt(ciphertext, keySquare)

 write("Decrypted text: ", decryptedText)

 end

1.4 Conclusion

 In the evolution of communication security, classical cryptography played a

pivotal role by employing methods like the Caesar cipher, substitution, and

transposition. Despite its historical significance, classical cryptography is now

deemed obsolete, primarily due to its substantial vulnerabilities, including

susceptibility to frequency analysis and a deficiency in secure key

implementation. That is what led to the emergence of modern cryptography,

which is based on solid mathematical foundations and sophisticated algorithms,

which we will explore in detail in the next chapter.

CHAPTER 2

2 Modern cryptography

MODERN CRYPTOGRAPHY CHAPITER 2

Page | 29

2.1 introduction:

odern cryptography comprises a wide range of techniques and algorithms

used to secure communications, protect data, and ensure the authenticity of

information in various contexts, such as online communications, financial

transactions, computer networks, and the security of private life. In other words, it aims

to make the information confidential, guarantee its authenticity, and ensure that it has

not been modified. It relies on mathematical principles and complex algorithms to

encrypt and decrypt data.

In the previous chapter, we discussed classical cryptography. In this chapter, we will

explain modern cryptography and its algorithms. We will focus on symmetric and

asymmetric cryptography, as well as hashing, detailing how they work and the

functioning of each algorithm.

2.2 modern encryption families:

Stream codes and block codes are two fundamental approaches to modern

cryptography. This approach is commonly used in secure communications over the

Internet, encrypted data storage, and other applications requiring a high level of

security. We will particularly focus on block encryption modes, highlighting two

specific modes: Electronic Codebook (ECB), Cipher Block Chaining (CBC).

2.2.1 Code by Blocks:

 In modern cryptography, block ciphers are algorithms used to secure data by

dividing it into blocks and repeatedly encrypting them. The division of data is into fixed

size blocks before encrypting them.

Each block of data is then treated as an independent unit during the encryption process.

This approach is commonly used in secure Internet communications, encrypted data

storage, and other applications requiring a high level of security. Block cipher

algorithms can work on blocks of various sizes, but they are often designed to work

with 64- or 128-bit blocks. Block cipher modes, such as ECB, CBC, CFB, and OFB,

are used to specify how blocks of data are processed and encrypted in these systems.[3]

2.2.1.1 ECB Block Cipher Modes:

 ECB (Electronic Code Book) mode is the simplest mode of use, where each block

of plain text is encrypted independently. However, this mode is considered less secure,

as it allows an attacker to infer information about the original message by analyzing the

encrypted blocks. This figure explains the ECB encryption process. [3]

M

MODERN CRYPTOGRAPHY CHAPITER 2

Page | 30

Figure 2.2-1:ECB mode [3]

2.2.1.2 CBC Block Chiper Modes: [3]

Cipher Block Chaining (CBC) mode is more secure than ECB mode because it uses the

ciphertext of the previous block to encrypt the current block. This means that each block

of plaintext is encrypted using a different key, making it more difficult for an attacker

to infer information about the original message.

This mode uses an initialization vector (IV) combined with the previous block of

ciphertext to encrypt each block of data.

Each block is first XORed with the previous encrypted block before being encrypted

itself. This figure explains the CBC encryption process.

Figure 2.2-2:CBC mode [3]

The initialization vector (IV) :

The initialization vector (IV) is used to initialize the encryption process. Its main

purpose is to disrupt recurring patterns in the plaintext that could be exploited by an

attacker to discover encryption information.

In CBC mode, the IV is combined with the first plaintext block before encryption. For

subsequent blocks, the previous cipher block is combined with the plaintext before

being encrypted. This means that each block of plaintext is encrypted in a manner

dependent on the IV and the previous block, which increases security. [3]

MODERN CRYPTOGRAPHY CHAPITER 2

Page | 31

2.3 Symmetric Cryptography:

Symmetric cryptography, also called secret key cryptography, is an encryption method

where the same key is used to encrypt and decrypt data. This method has been used

since ancient times. It relies on the use of a shared key between communicating parties

to encrypt and decrypt data. This key must be shared secretly between the sender and

the recipient. Symmetric cryptography is one of the oldest forms of cryptography and

is still widely used today due to its simplicity and effectiveness.[3]

2.3.1 Symmetric cryptography algorithms:

2.3.1.1 AES (advanced encryption standard):

The Advanced Encryption Standard (AES) is a symmetric encryption algorithm

widely used to secure sensitive data in a variety of applications, including Internet

communications, data storage, and computer system security.

AES is a block cipher that works on 128-bit blocks, using 128-, 192-, or 256-bit keys.

The number of iterations varies between 10, 12 and 14 where each round uses a key

generated from the main key.

The encryption process consists of a series of rounds, with each round comprising four

steps: byte substitution, row shifting, column shuffling, and adding a round key. These

steps are designed to provide a high level of security and resistance to various types of

attacks, such as differential and linear cryptanalysis.

2.3.1.1.1 Encryption:
 The state or block in plain text is represented by a matrix. The number of rows in this

matrix always equals 4 but the number of equal columns changes depending on the size

of the block: 4 columns correspond to a block of 128 bits, 6 columns to a block of 192

bits, and 8 columns to a block of 256 bits.[3]

AES considers each block as a 16 byte (4 byte x 4 byte = 128) grid in a column major

arrangement.
[b0 | b4 | b8 | b12 |

| b1 | b5 | b9 | b13 |

| b2 | b6 | b10| b14 |

| b3 | b7 | b11| b15]

Each round comprises of 4 steps:

• SubBytes

• ShiftRows

• MixColumns

• Add Round Key

The last round doesn’t have the MixColumns round.

The SubBytes does the substitution and ShiftRows and MixColumns performs the

permutation in the algorithm.

Here, the 16 bytes is not considered as a grid but just as 128 bits of data. [4]

MODERN CRYPTOGRAPHY CHAPITER 2

Page | 32

 The figure 2.3-1 explains the AES encryption process

Figure 2.3-1:Structure générale de l’AES [3]

After all these rounds 128 bits of encrypted data is given back as output. This process

is repeated until all the data to be encrypted undergoes this process.

2.3.1.1.2 Decryption: [4]
The stages in the rounds can be easily undone as these stages have an opposite to it

which when performed reverts the changes. Each 128 blocks goes through the 10,12 or

14 rounds depending on the key size.

The stages of each round in decryption are as follows:

• Add round key

• Inverse MixColumns.

• ShiftRows.

• Inverse SubByte.

2.3.1.2 DES (Data Encryption Standard):

The DES (Data Encryption Standard) algorithm is a symmetric-key block cipher

created in the early 1970s by an IBM team and adopted by the National Institute of

Standards and Technology (NIST). The algorithm takes the plain text in 64-bit blocks

and converts them into ciphertext using 48-bit keys.

Since it’s a symmetric-key algorithm, it employs the same key in both encrypting and

decrypting the data. If it were an asymmetrical algorithm, it would use different keys

for encryption and decryption.

MODERN CRYPTOGRAPHY CHAPITER 2

Page | 33

DES is based on the Feistel block cipher, called LUCIFER, developed in 1971 by

IBM cryptography researcher Horst Feistel. DES uses 16 rounds of the Feistel

structure, using a different key for each round.

DES became the approved federal encryption standard in November 1976 and was

subsequently reaffirmed as the standard in 1983, 1988, and 1999. [18]

2.3.1.2.1 Working of the cipher: [18]

To put it in simple terms, DES takes 64-bit plain text and turns it into a 64-bit

ciphertext. And since we’re talking about a symmetric algorithm, the same key is used

when it’s time to decrypt the text. This is what the figure 2.3-2 show.

The algorithmic process breaks down into the following steps:

1. The process begins with the 64-bit plain text block getting handed over to an

initial permutation (IP) function.

2. The initial permutation (IP) is then performed on the plain text.

3. Next, the initial permutation (IP) creates two halves of the permuted block,

referred to as Left Plain Text (LPT) and Right Plain Text (RPT).

4. Each LPT and RPT goes through 16 rounds of the encryption process.

5. Finally, the LPT and RPT are rejoined, and a Final Permutation (FP) is

performed on the newly combined block.

6. The result of this process produces the desired 64-bit ciphertext.

The encryption process step (step 4, above) is further broken down into five stages:

1. Key transformation

2. Expansion permutation

3. S-Box permutation

4. P-Box permutation

5. XOR and swap

For decryption, we use the same algorithm, and we reverse the order of the 16 round

keys.

MODERN CRYPTOGRAPHY CHAPITER 2

Page | 34

Figure 2.3-2: DES encryptions process [13]

2.3.1.3 3DES (Data Encryption Standard):
 Although it’s officially known as the Triple Data Encryption Algorithm (3DEA), it

is most commonly referred to as 3DES. This is because the 3DES algorithm uses the

Data Encryption Standard (DES) cipher three times to encrypt its data.

DES is a symmetric-key algorithm based on a Feistel network. As a symmetric key

cipher, it uses the same key for both the encryption and decryption processes. The

Feistel network makes both of these processes almost exactly the same, which results

in an algorithm that is more efficient to implement.

 DES has both a 64-bit block and key size, but in practice, the key only grants 56-bits

of security. 3DES was developed as a more secure alternative because of DES’s small

key length. In 3DES, the DES algorithm is run through three times with three keys;

however, it is only considered secure if three separate keys are used.[6]

2.3.1.3.1 Encryption Process:
The encryption process of 3DES involves the following steps:

Key Generation: Three unique keys are generated using a key derivation algorithm.

Initial Permutation: The 64-bit plaintext is subjected to an initial permutation.

Three Rounds of Encryption: The plaintext is encrypted three times, each time using a

different key, to create three layers of encryption.

Final Permutation: After the three rounds of encryption, a final permutation is applied

to the output to produce the ciphertext.[19]

https://en.wikipedia.org/wiki/Feistel_cipher
https://www.comparitech.com/blog/information-security/encryption-hashing-salting/

MODERN CRYPTOGRAPHY CHAPITER 2

Page | 35

2.3.1.3.2 Decryption Process:
The decryption process of 3DES is simply the reverse of the encryption process, with

the ciphertext being fed into the algorithm and the steps being performed in reverse

order, using the three keys in reverse order.[19]

As shown in the figure below.

Figure 2.3-3: A diagram of a 3DES encryption and decryption system

2.4 Asymmetric Cryptography:

Asymmetric cryptography plays a crucial role in computer security. This innovation

relies on the use of mathematically related but distinct key pairs: a public key for

encryption and a private key for decryption. While symmetric cryptography relies on a

single key for encryption and decryption

The public key can be freely shared with anyone, while the private key must remain

confidential to its owner. The development of asymmetric cryptography aimed to

solve the key exchange problem inherent in symmetric cryptography, where the same

key is used for encryption and decryption. The figure below explains the asymmetric

crypto system.

Figure 2.4-1: The asymmetric crypto system. [3]

MODERN CRYPTOGRAPHY CHAPITER 2

Page | 36

2.4.1 RSA (Rivest-Shamir-Adleman):

 The RSA algorithm was invented in 1977 by Ronald Rivest, Adi Shamir and Leonard

Adleman. This is the first instance of public key cryptography methods, the principle of

which was introduced as a concept by Whitfield Diffie and Martin Hellman. Currently,

it is undoubtedly the best known and most used asymmetric cryptosystem in the world.

The RSA algorithm is used for public key cryptography and is based on the fact that it

is easy to multiply two large prime numbers but difficult to factor the product. This is

the most common example of asymmetric cryptography, still considered secure, with

current technology, for sufficiently large keys (1024, 2048 or even 4096 bits).[16]

The algorithm for generating the public and private keys is the most complex part of

RSA encryption. Two large prime numbers, p and q, are generated using the Rabin-

Miller primality test. A cipher modulus n is calculated by multiplying p and q. This

number is used by both keys (public and private) and forms the link between them. Its

length, usually expressed in bits, is called the key length. The public key consists of the

modulus n and a public exponent, e, normally set to 65537, as this is not too large a

prime number. The number e need not be a secretly chosen prime, as the public key is

shared with everyone. The private key is made up of the modulus n and the private

exponent d, which is calculated using Euclid's algorithm extended to give the modular

inverse with respect to the value of the Euler index in n. [17]

2.4.1.1.1 How RSA works:[14]

Key Generation:

You need to generate public and private keys before running the functions to generate

your ciphertext and plaintext. They use certain variables and parameters, all of which

are explained below:

Choose two large prime numbers (p and q)

Calculate n = p*q and z = (p-1)(q-1)

Choose a number e where 1 < e < z

Calculate d = e-1mod(p-1)(q-1)

You can bundle private key pair as (n,d)

You can bundle public key pair as (n,e)

The figure below shown the RSA key for encryption and decryption.

Figure 2.4-2: RSA key for Encryption and decryption. [14]

MODERN CRYPTOGRAPHY CHAPITER 2

Page | 37

Encryption/Decryption Function:

Once you generate the keys, you pass the parameters to the functions that calculate

your ciphertext and plaintext using the respective key.

If the plaintext is m, ciphertext = me mod n.

If the ciphertext is c, plaintext = cd mod n

To understand the above steps better, you can take an example where p = 17 and

q=13. Value of e can be 5 as it satisfies the condition 1 < e < (p-1)(q-1).

N = p * q = 221

D = e-1mod(p-1)(q-1) = 29

Public Key pair = (221,5)

Private Key pair = (221,29)

If the plaintext(m) value is 10, you can encrypt it using the formula me mod n = 82.

To decrypt this ciphertext(c) back to original data, you must use the formula cd mod n

= 29.

2.5 Hash function:

Hashing is a computer process that takes variable-size data as input and transforms it

into a fixed-size value, usually in the form of a character string. This hash value is

unique for a given data set and is generated deterministically by a hash function. as it

seen in the figure 2.5-1.

A hash function is a method of characterizing information by reducing an input of any

size to a fixed-size fingerprint.

It must uniquely associate a hash with plaintext, ensuring that any modification of the

document will result in a modification of its hash.

The hash function must be one-way, making it impossible to recover the original

message from the hash.

In cryptography, hash functions must meet stricter constraints to ensure the security of

information exchanges.

Hashing is widely used to secure data, verify its integrity, facilitate efficient data

searching, and other IT applications.

Figure 2.5-1Hash function. [[3]

MODERN CRYPTOGRAPHY CHAPITER 2

Page | 38

2.5.1 Principle: [3]

• A hash function calculates the fingerprint y of a message x. This function must

be a one-way function.

• It must also be very sensitive so that a small modification of the message leads

to a large modification of the fingerprint.

• By sending the message accompanied by its fingerprint, the recipient can ensure

the integrity of the message by recalculating the summary upon arrival and

comparing it to that received.

• If the two summaries are different, this means that the file is no longer the same

as the original: it has been altered or modified by a third party. As shown in the

figure below.

Figure 2.5-2:Integrity check [3]

2.5.2 Hashing algorithms:

Among the existing hash functions there is the range of functions proposed

by NIST, the functions SHA-1 SHA-3 SHA-256 In this section, we will

choose the MD5 algorithm, SHA-3 and SHA- 256 to explain its definition,

characteristics and how it works.

2.5.2.1 SHA-3:

It is the latest standard released by NIST on August 5, 2015. SHA-3 is internally

different from the MD5-like structure of SHA-1 and SHA-2. NIST does not currently

plan to withdraw SHA-2 or remove it from the revised Secure Hash Standard. The

purpose of SHA-3 is that it can be directly substituted for SHA-2 in current applications

if necessary, and to significantly improve the robustness of NIST's overall hash

algorithm toolkit. [22]

 To ensure the message can be evenly divided into r-bit blocks, padding is required.

SHA-3 uses the pattern 10*1 in its padding function: a 1 bit, followed by zero or more

0 bits (maximum r − 1) and a final 1 bit. The block transformation f, which is Keccak-

f for SHA-3, is a permutation that uses XOR, AND and NOT operations, and is designed

file:///C:/Users/hp/Desktop/MFnefkha.docx%23a3

MODERN CRYPTOGRAPHY CHAPITER 2

Page | 39

for easy implementation in both software and hardware. In 2016 the same team that

made the SHA-3 functions and the Keccak algorithm introduced faster reduced-rounds

(reduced to 12 and 14 rounds, from the 24 in SHA-3) alternatives which can exploit the

availability of parallel execution because of using tree hashing: Kangaroo Twelve and

Marsupilami Fourteen. [21]

The figure below shown one SHA-3 iteration.

Figure 2.5-3:One SHA-3 Iteration [24]

2.5.2.1.1 How it works: [24]
The SHA-3 (Keccak) scheme consists of two stages:

Absorbing (absorption). The original message M is subjected to mnogoraundovaya(is

a transliteration of the Russian word "многораундовая," which means "multi-round)

the permutation f.

Squeezing (pressing). The output of the resulting permutations of the value z.

The function of Keccak consists of the following:

Keccak[r,c](M) {

Initialization and padding

for(int x=0; x<5; x++)

 for(int y=0; y<5; y++)

 S[x,y] = 0; P = M || 0x01 || 0x00 || … || 0x00;

 P = P xor (0x00 || … || 0x00 || 0x80); //Absorbing phase for all block Pi in P

for(int x=0; x<5; x++)

for(int y=0; y<5; y++)

 S[x,y] = S[x,y] xor Pi[x+5*y];

 S = Keccak-f[r+c](S); //Squeezing phase

 Z = empty string;

 do { for(int x=0; x<5; x++)

 for(int y=0; y<5; y++)

 if((x+5y)<r/w)

 Z = Z || S[x,y];

 S = Keccak-f[r+c](S) }

while output is requested

 return Z; }

MODERN CRYPTOGRAPHY CHAPITER 2

Page | 40

The Absorbing step calculates the hash value.

And at the stage of Squeezing the output of the results until the required hash length is

reached.

There absorbing is function:

Keccak-f[b](A) {for all i in 0…nr-1 A = Round[b](A, RC[i]) return A }

Here b is the value of the selected function.

And the Round () function is a pseudo-random permutation applied on each round. The

number of rounds “‘ nr ‘” is calculated from the values of r and c.

The operations performed on each round represent the following function:

Round[b](A,RC) {

 θ step

for(int x=0; x<5; x++)

C[x] = A[x,0] xor A[x,1] xor A[x,2] xor A[x,3] xor A[x,4];

for(int x=0; x<5; x++) D[x] = C[x-1] xor rot(C[x+1],1);

 for(int x=0; x<5; x++) A[x,y] = A[x,y] xor D[x];

 ρ and π steps for(int x=0; x<5; x++)

for(int y=0; y<5; y++)

 B[y,2*x+3*y] = rot(A[x,y], r[x,y]);

 χ step for(int x=0; x<5; x++)

for(int y=0; y<5; y++) A[x,y] = B[x,y] xor ((not B[x+1,y]) and B[x+2,y]);

 ι step A[0,0] = A[0,0] xor RC

 return A }

The SHA-3 digest size is always 512 bits, and thanks to hashing function guidelines, a

minor change in the input string generates a drastically different digest. This is

essential to prevent similar hash generation as much as possible, also known as a hash

collision. The table below shows that no matter how much the size of the entered text

changes, the output size remains constant

input text SHA-3 hash results

Cryptography 01c888e1b6b32ee897bb0d9a2e30f8dfd3fdaff7d638f
6f3bcf8ef500cf0bbe197b98aea768750aa0cb640e87a
7b0544a031c58180ba6202865f9d71908210d9

COMPARISON BETWEEN HASHING
ALGORITHMS

7b566ab10b174ae42aadf1960487fea548c5b20d796
49a5e06fffbecf3ad14d63be633294add8b6dc333683
7fde27dd2859a172cdeeb46f464ff2fbda7b0f855

Table 2.5-1: SHA-3 Hashing Examples

MODERN CRYPTOGRAPHY CHAPITER 2

Page | 41

2.5.2.2 SHA-256:
SHA 256 is a part of the SHA 2 family of algorithms, where SHA stands for

Secure Hash Algorithm. Published in 2001, it was a joint effort between the NSA and

NIST to introduce a successor to the SHA 1 family, which was slowly losing strength

against brute force attacks.

The significance of the 256 in the name stands for the final hash digest value, i.e.

irrespective of the size of plaintext/cleartext, the hash value will always be 256 bits.[25]

2.5.2.2.1 SHA-256 Algorithm :23

the words on for size 32 bits in this algorithm. We have 64 words of

turns of 32-bit of 8 work variables a, b, c, d, e, f, g, h of 32 bits and two

auxiliary variables of 32 bits T₁ T₂. The program is then the following:

SHA-256:

 Fin

Sortie: H₀⁽ᴺ⁾|| H₁⁽ᴺ⁾|| H₂⁽ᴺ⁾|| H₃⁽ᴺ⁾|| H₄⁽ᴺ⁾|| H₅⁽ᴺ⁾|| H₆⁽ᴺ⁾|| H₇⁽ᴺ⁾.

The SHA-256 digest size is always 256 bits, and thanks to hashing function

guidelines, a minor change in the input string generates a drastically different digest.

This is essential to prevent similar hash generation as much as possible, also known as

a hash collision. The table below shows that no matter how much the size of the

entered text changes, the output size remains constant.

MODERN CRYPTOGRAPHY CHAPITER 2

Page | 42

input text SHA-256 hash results

Cryptography b584eec728548aced5a66c0267dd520a00871b
5e7b735b2d8202f86719f61857

COMPARISON BETWEEN HASHING ALGORITHMS eaffb07942466b28de2e693853559d00458a23
34a15ecaf07206d592981a79ed

Table 2.5-2: SHA-256 Hashing Examples

2.5.2.3 MD5: [20]

The MD5 (Message-Digest Algorithm 5) is a widely used cryptographic hash function

that produces a 128-bit hash value. It was designed by Ronald Rivest in 1991 to replace

the earlier hash function MD4, and was specified in 1992 as RFC 1321.

The MD5 hash is typically represented as a sequence of 32 hexadecimal digits. Even a

small change in the message will (with overwhelming probability) result in a mostly

different hash, due to the avalanche effect.

MD5 is no longer considered secure for applications like digital signatures that rely on

collision resistance. However, it is still used in various non-cryptographic applications

like data integrity checks and partial password verification

It used to generate a 128-bit digest from a string of any length. It represents the digests

as 32 digit hexadecimal numbers. the figure 2.5-4 show.

Figure 2.5-4:MD5 algorithm [20]

Ronald Rivest designed this algorithm in 1991 to provide the means for digital signature

verification. Eventually, it was integrated into multiple other frameworks to bolster

security indexes.

The table below shows that no matter how much the size of the entered text changes,

the output size remains constant.

input text md5 hash results

Cryptography 64ef07ce3e4b420c334227eecb3b3f4c

COMPARISON BETWEEN HASHING ALGORITHMS 4ec602277613706086c8a76becc5f80d

Table 2.5-3: MD5 Hashing Examples

file:///C:/Users/hp/Desktop/MFnefkha.docx%23a20

MODERN CRYPTOGRAPHY CHAPITER 2

Page | 43

The digest size is always 128 bits, and thanks to hashing function guidelines, a minor

change in the input string generates a drastically different digest. This is essential to

prevent similar hash generation as much as possible, also known as a hash collision.

2.5.2.3.1 How MD5 works: [20]

There are four major sections of the algorithm:

• Padding Bits:

When you receive the input string, you have to make sure the size is 64 bits short of a

multiple of 512. When it comes to padding the bits, you must add one (1) first, followed

by zeroes to round out the extra characters. As figure below show.

Figure 2.5-5:Padding bits [20]

• Padding Length:
You need to add a few more characters to make your final string a multiple of 512. To

do so, take the length of the initial input and express it in the form of 64 bits. On

combining the two, the final string is ready to be hashed. As figure below show.

Figure 2.5-6:Input data to be hashed [20]

• Initialize MD Buffer:

The entire string is converted into multiple blocks of 512 bits each. You also

need to initialize four different buffers, namely A, B, C, and D. These

buffers are 32 bits each and are initialized as follows:

A = 01 23 45 67

B = 89 ab cd ef

C = fe dc ba 98

D = 76 54 32 10

• Process Each Block:

file:///C:/Users/hp/Desktop/MFnefkha.docx%23a20
file:///C:/Users/hp/Desktop/MFnefkha.docx%23a20

MODERN CRYPTOGRAPHY CHAPITER 2

Page | 44

Each 512-bit block gets broken down further into 16 sub-blocks of 32 bits each. There

are four rounds of operations, with each round utilizing all the sub-blocks, the buffers,

and a constant array value.

This constant array can be denoted as T[1] -> T[64].

Each of the sub-blocks are denoted as M[0] -> M[15]. As figure below show.

Figure 2.5-7:Data Flow with Intermediate States [20]

According to the image above, you see the values being run for a single buffer A. The

correct order is as follows:

It passes B, C, and D onto a non-linear process.

The result is added with the value present at A.

It adds the sub-block value to the result above.

Then, it adds the constant value for that particular iteration.

There is a circular shift applied to the string.

As a final step, it adds the value of B to the string and is stored in buffer A.

The steps mentioned above are run for every buffer and every sub-block. When the last

block’s final buffer is complete, you will receive the MD5 digest.

The non-linear process above is different for each round of the sub-block.

Round 1: (b AND c) OR ((NOT b) AND (d))

Round 2: (b AND d) OR (c AND (NOT d))

Round 3: b XOR c XOR d

Round 4: c XOR (b OR (NOT d))

With this, you conclude the working of the MD5 algorithm.

2.6 Conclusion:

 It has become clear that modern encryption serves as a cornerstone of secure

communications and data protection in the modern digital world. By understanding

the modern cryptographic principles and techniques presented here, we find that the

different algorithms presented have varying strengths and weaknesses in terms of

security, performance, and key management. This enables us to make informed

file:///C:/Users/hp/Desktop/MFnefkha.docx%23a20

MODERN CRYPTOGRAPHY CHAPITER 2

Page | 45

decisions about securing our sensitive information and protecting it from unauthorized

access or modification.

 This chapter has laid the foundation for understanding the basic tools of modern

cryptography, in the next chapter, we will explore in detail the concept and

architecture of our software system (website) in order to get a preview of Chapter 5 of

Comparing cryptography Algorithms. We will delve deeper into these considerations

and provide comparisons in choosing the optimal encryption method for security

needs.

CHAPTER 3

3 Conception &Architecture of system

CONCEPTION &ARCHITECTEUR OF SYSTEM CHAPITER 3

Page | 47

3.1 Introduction:

n this chapter, we attempted to create a cryptography algorithms comparison

website for academic study that compares and evaluates different encryption

methods to help you choose the most suitable one for your specific needs. So, we’ll

go through the overall architecture of our system, as well as the various diagrams. The

application will then be realized. This chapter is divided into two main sections, which

are as follows:

• The first part that talks about the architecture of our system, the comparison

application itself as well as the various diagrams, such as the use case diagrams

and the sequence diagram...etc.

• In Second part, we will begin with an overview of the tools used to achieve our

system Development tools and some screenshots on the app Implemented.

and we will conclude with a conclusion

3.2 Conception:

3.2.1 Problem:

To achieve these objectives, this thesis addresses the following issues: What are the

main strengths and weaknesses of cryptography algorithms? How does the

performance of major cryptographic algorithms compare in terms of

encryption/decryption time and resource consumption? Which cryptography

algorithms offer the best performance for use in various scenarios?

3.2.2 Objectif:
The main objectives of this research are to provide accurate and detailed information to

help make informed decisions regarding the choice of cryptography algorithms and to

clarify the advantages and disadvantages of each algorithm in order to better understand

their strengths and limitations empowering you to make informed decisions about

securing your data.

3.2.3 Overall operation:
In order to design our application, we will represent it by a defined modeling language, we
will be using the Unified Modeling Language (UML). UML is a standardized modeling
language that empowers developers to define, visualize, build, and document the various
components of a software system. This language ensures the scalability, security, and
robustness of the system during execution. As a crucial aspect of object-oriented software
development, UML employs graphic notation to create clear and concise visual models of
software systems.

I

CONCEPTION &ARCHITECTEUR OF SYSTEM CHAPITER 3

Page | 48

 There are many types of UML diagrams, we choose from them use case diagram and
Sequence diagram

3.2.3.1 Use case diagram
 A use case diagram depicts the interactions between actors and use cases as well as the
functional needs of the system. You can use them to:
• Describe the functional requirements of the system
• Describe how external things (actors) interact at the system boundary
• Describe the system response

Our use case diagram shown in the figure below.:

 Figure 3.2-1:Use Case Diagram of comparison between cryptography algorithms

3.2.3.2 Sequence Diagram:

 A sequence diagram is an organized representation of behavior as a series of sequential
steps over time. You can use it for:
• Describe workflow, message passing, and how elements generally collaborate over time to
achieve a result.
• Capture the flow of information and responsibility throughout the system, early in the
analysis; Messages between items eventually become method calls on the Class form.
• Making illustrative models for use case scenarios. By creating a sequence diagram with an
actor and items included in a Use Case, you can model the sequence of steps that the user
and system take to complete the required tasks

A sequence diagram is used in this chapter to depict how items interact with one another
over time.
The figure below shown our sequence diagram.

CONCEPTION &ARCHITECTEUR OF SYSTEM CHAPITER 3

Page | 49

Figure 3.2-2:sequence Diagram of classical comparison

In this part, we've outlined our system's design using UML sequence and use case
diagrams. Now that the foundation is laid, the next part will delve into the practical
implementation and realization of this system.

CONCEPTION &ARCHITECTEUR OF SYSTEM CHAPITER 3

Page | 50

3.3 Architecture of system:

3.3.1 Framework:

 Bootstrap:

Bootstrap is the most popular HTML, CSS, and JavaScript framework

for developing responsive, mobile-first websites. Bootstrap is a free

front-end framework for faster and easier web development. It includes

HTML and CSS based design templates for typography, forms, buttons, tables,

navigation, modals, image carousels and many others, as well as optional JavaScript

plugins Bootstrap also gives you the ability to easily create responsive designs[29]

3.3.2 Software environment:

 Visual Studio Code:

Visual Studio Code (VS Code) is a free, open-source code editor

developed by Microsoft. It is designed to be lightweight and powerful,

supporting a wide range of programming languages and extensions

[28].VS Code helps you be instantly productive with syntax

highlighting, bracket matching, auto-indentation, box selection, code snippets, and

more.

 Modelio:

Modelio is an open-source modeling environment developed by

Modeliosoft. It supports UML2, BPMN and ArchiMate standards.

Modelio offers a wide range of standards-based features for software

developers, analysts, designers, business architects and system

architects.

3.3.3 Language:

 HTML: (Hypertext Markup Language):

HTML (HyperText Markup Language) is the standard markup

language used to structure and format content on the web. It is used

to define the structure and content of web pages, including headings,

paragraphs, images, links, and other elements[30].Without HTML,

a browser would not be able to display text as elements or load images or other elements.

CONCEPTION &ARCHITECTEUR OF SYSTEM CHAPITER 3

Page | 51

CSS:

CSS (Cascading Style Sheets) is a style sheet language used to

describe the presentation of a document written in a markup

language like HTML[31]. It is used to control the layout, color, font,

and other visual aspects of a web page

 JavaScript:

JavaScript, often abbreviated as JS, is a fundamental

programming language and a core technology of the Web.

JavaScript is a lightweight interpreted or just-in-time

compiled language with first-class functions, supporting

multiple paradigms like object-oriented, imperative, and

declarative styles. It is prototype-based, single-threaded, and

dynamic, offering dynamic capabilities such as runtime object construction, variable

parameter lists, and dynamic script creation.[27]

3.3.4 Another tool:

 jQuery:

 jQuery is a popular JavaScript library that simplifies HTML

DOM manipulation, event handling, and AJAX. It can concise

and cross-browser compatible API for common web development tasks, making it a

popular choice among web developers.

 CryptoJS:

CryptoJS is A popular JavaScript library that provides a collection of

standard and secure cryptographic algorithms implemented in

JavaScript. It provides implementations of various hashing algorithms

like MD5, SHA-1, SHA-2, and SHA-3, as well as symmetric encryption

algorithms like AES, Triple DES, RC4, Rabbit, and PBKDF2. CryptoJS

is designed to be fast and have a consistent and simple interface. It is

commonly used in web applications for tasks like password hashing, cookie encryption, and

protecting sensitive data.[32]

CONCEPTION &ARCHITECTEUR OF SYSTEM CHAPITER 3

Page | 52

 Word:

Word is one of the most widely used word processing

software in the world. Belonging to Microsoft's office suite,

Word allows you to write and format text documents.

3.3.5 Hardware environment:

 When creating this website, we used the following equipment shown in this table:

Table 3.3-1:The characteristics of the material used

3.3.6 Process of system:

3.3.6.1 Homepage:

The main page of our website is seen in Figure 3.3-1 The user doesn't need to register

for an account in order to view this home page, It appears directly to the user. This

homepage features three portals. The home page itself, our different cryptographic

systems, and information about the website. This page is divided into two parts: An

illustration that gives a visual overview of the website's content that focuses on

cryptographic systems, and a paragraph gives a concise understanding of what the

website is and the services it offers.

The characteristics

Processor 11th Gen Intel(R) Core (TM) i5-1155G7 @

2.50GHz 2.50 GHz

RAM

Memoirs

16 Go

Disque dur 512 Go SSD

GPU Intel(R)Iris(R)Xe Graphics

Operating

system

Windows 11

CONCEPTION &ARCHITECTEUR OF SYSTEM CHAPITER 3

Page | 53

Figure 3.3-1:Homepage of the proposed system

3.3.6.2 Cryptography system category page:

This interface contains four main categories of cryptographic systems which is:

Classic cryptography, symmetric cryptography, asymmetric cryptography and hashing

algorithms, as seen in Figure 3.3-2 Each has a link to its own cryptographic algorithm

used

Figure 3.3-2:Cryptography system category page

3.3.6.3 Symmetric Cryptography:

The symmetric Cryptography page is shown in the figure 3.3-3. This page contains

three different interfaces, each containing the title of the algorithm used with a small

descriptive paragraph about the algorithm (DES, 3DES, AES).

CONCEPTION &ARCHITECTEUR OF SYSTEM CHAPITER 3

Page | 54

Figure 3.3-3:Symmetric Cryptography,3DES algorithm

3.3.6.4 Algorithm category:

This page gives the user to choose one of the cryptography algorithms by giving a

small definition of the algorithm, this page enables him to enter his own data to

encrypt or decrypt it for the comparison. we have an input for text and key, then an

encryption or decryption button, after that we display the results (text

encryption/decryption, execution time, complexity, memory space used, power

consumption, performance). This is what the following figure show.

Figure 3.3-4:Symmetric algo DES

Algorithm comparison page:

The comparison page is shown in the figure 3.3-5. On this page, the user can choose

and compare between algorithms, in order to know the result that each algorithm will

give. It also enables him to display the comparison results in a table.in the figure

below the comparison is between symmetric cryptography algorithm AES, DES and

3DES

CONCEPTION &ARCHITECTEUR OF SYSTEM CHAPITER 3

Page | 55

Figure 3.3-5:symmetric algorithms comparison

3.4 Conclusion:

 In this chapter, we detailed the creation of a cryptography algorithms comparison

website designed for academic purposes. The system's architecture was meticulously

outlined, including the various diagrams essential for understanding the overall design

and functionality of the application. We provided an in-depth look at use case diagrams

and sequence diagrams, which are crucial for illustrating the interactions within the

system.

 This chapter has provided a thorough exploration of the design and implementation

of a cryptography algorithms comparison website. By understanding the architectural

framework and the tools employed. In the next chapter, we'll delve into cryptography

Algorithm Comparison, and provide the comparisons' results, which will enable us to

make informed decisions about securing data.

Page | 56

CHAPTER 4

4 Experimentation and evaluation of results

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 57

4.1 Introduction:

n the realm of cryptography and data security, the efficacy and performance of

various algorithms are of paramount importance. This chapter delves into the

experimental analysis and evaluation of several cryptographic algorithms,

providing a comprehensive comparison across different categories. By systematically

assessing the strengths and weaknesses of these algorithms, this study aims to offer

valuable insights that can guide the selection and implementation of the most suitable

cryptographic techniques for specific applications.

Comparison in this context, refers to the systematic process of evaluating two or more

algorithms based on specific metrics such as performance, execution time, complexity,

memory space used and Energy consumption. The goal is to identify the relative

strengths and weaknesses of each algorithm, enabling an informed decision on which

algorithm best meets the requirements of a given application.

4.2 Cryptography algorithm comparison:

We will analyze a range of cryptographic algorithms, including classic algorithms

"Cesar Playfair and Vigenère", symmetric algorithms " AES, DES,3DES", asymmetric

algorithms "RSA", and hashing algorithms "SHA-256, MD5, SHA-3. The choice of the

most appropriate algorithm can significantly impact the security, efficiency, and overall

performance of cryptographic systems in various applications, from secure

communications to data integrity verification.

The results of encryption or decryption for each algorithm for the comparison is display

on tables with the measure of each criterion.so to study the comparison between

cryptography algorithm we just need to compare the results of the tables.

It is important to note that the results presented in these tables are for illustrative

purposes only. Actual algorithm performance may vary depending on the hardware and

software configuration used.

In this chapter, we performed several encryption and decryption operations for different

algorithms. To prove the reliability of the results we obtained, we tested them by

comparing them with the results obtained from many famous websites for encryption

and decryption, using the same text and same key. which we will mention now:

Classical algorithms:

• Cesear: Caesar cipher [10]

• Vigenère: Chiffre de Vigenère [11]

• Playfair: Chiffre de Playfair [26]

I

file:///C:/Users/hp/Desktop/M2SIC-CRYPTO-PFE.docx%23a10
file:///C:/Users/hp/Desktop/M2SIC-CRYPTO-PFE.docx%23a11
file:///C:/Users/hp/Desktop/M2SIC-CRYPTO-PFE.docx%23a26

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 58

Symmetric algorithms:

• AES: AES encryption / decryption [33]

• DES: DES encryption/decryption [34]

• 3DES: Triple DES Encryption and Decryption Online Tool. [35]

Asymmetric algorithms:

• RSA: Online RSA Key Generator [36]

Hashing algorithms:

• MD5: Online MD5 Hash Calculator [37]

• SHA-3: Online SHA3-256 Hash Calculator. [38]

• SHA-256: SHA-256 hash calculator [39]

4.3 Comparison Criteria:
Algorithms are evaluated based on five criteria:

• Execution time: Measures the time required to complete encryption or

decryption processes.in other word, the time required to execute the algorithm,

expressed in seconds.

• Memory space: The amount of memory required to execute the algorithm,

expressed in bytes.

memoryUsed = performance.memory.usedJSHeapSize; // Get used memory space

• Performance: The throughput of the algorithm, expressed in characters/ second.

textLength / executionTime) * 1000).toFixed(6)

• Energy consumption: The amount of power consumed by the algorithm,

expressed in millijoules.

executionTime * (memoryUsed / 1000)).toFixed(6)

ToFixed(6): Ensures that there are six digits after the decimal point. If the number has

fewer than six digits after the decimal, zeros are added to make up the difference.

• Complexity: Assesses the algorithm’s computational complexity and resource

requirements.

4.4 Comparison between classical algorithms:

4.4.1 Comparison between Playfair & Vigenère using medium text:

TEXT 2: COMPARISON BETWEEN CLASSIC ALGORITHMS

Key 1: sic Result:

Playfair Encryption:

bmkrctcikoihqyfwglimbiicabnemuaqfobv

Vigenere Encryption:

UWOHITAAQF JGLEGWV EDIUKQE STIGZKLPOK

Playfair Decryption:

comparisonbetwexenclassicalgorithmsz

Vigenere Decryption:

COMPARISON BETWEEN CLASSIC ALGORITHMS

file:///C:/Users/hp/Desktop/M2SIC-CRYPTO-PFE.docx%23a33
file:///C:/Users/hp/Desktop/M2SIC-CRYPTO-PFE.docx%23a34
file:///C:/Users/hp/Desktop/M2SIC-CRYPTO-PFE.docx%23a35
file:///C:/Users/hp/Desktop/M2SIC-CRYPTO-PFE.docx%23a36
file:///C:/Users/hp/Desktop/M2SIC-CRYPTO-PFE.docx%23a37
file:///C:/Users/hp/Desktop/M2SIC-CRYPTO-PFE.docx%23a38

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 59

Table below shows the result of encryption and decryption of text 2 with the selected

key, and the comparison results of the algorithms based on the previous metrics

Table 4.4-1: Comparison between Playfair & Vigenère using short Key & medium text

The execution time result is representing in the following figure.

Figure 4.4-1:Histogram explain comparison between Playfair & Vigenère using short Key & Medium text

4.4.1.1 Observation:
Execution time: Playfair is slower than Vigenère for encryption and decryption

Encryption Decryption

Playfair’s runtime ms 2,239 2,508

Vegenere’s runtime ms 0,7 0,47

2,239
2,508

0,7
0,47

0

0,5

1

1,5

2

2,5

3

EX
EC

U
TI

O
N

 T
IM

E
(M

S)

TITRE DE L'AXE

COMPARISON BETWEEN PLAYFAIR & VIGENERE
USING SHORT KEY & MEDIUM TEXT

Playfair’s runtime ms Vegenere’s runtime ms

Algorithm name
Execution
time (ms)

Memory
space
used
(Mo)

Energy
consumption
(mj)

Performance
(caractères/ms)

Algorithm
complexity

Playfair(Encryption) 2.239 9.54 22392.82 15.183434920068308 O(n)

Vigenère
(Encryption)

0.70 9.536743 178001999.999285 54.297779 O(114)

Playfair(Decryption) 2.508 9.54 25078.31 7.177518287094867 O(n)

Vigenère
(Decryption)

0.47 9.536743 357015999.999046 81.232706 O(114)

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 60

Memory space used: Playfair and Vigenère use approximately the same amount of memory.

Energy consumption: Vigenère consumes more energy than Playfair for encryption and

decryption.

Performance: Vigenère is even more efficient than Playfair in terms of encryption and decryption.

Complexity of the algorithm: Playfair is more complex than Vigenère.

4.4.1.2 Conclusion:
Based on the evaluated metrics, Vigenère appears to be a better performing encryption algorithm

than Playfair. It is faster, more energy efficient and offers better performance.

4.4.2 Comparison between Playfair & Vigenère using very long text

TEXT 4 : the size of the text used is : 4996 characters

Key 1 : sic

Result:

Playfair encryption: the result of the size of the text encrypted is : 4999 characters

Vigenère encryption: : the result of the size of the text encrypted is : 4999 characters

Table below shows the result of encryption and decryption of text 4 with the selected

key, and the comparison results of the algorithms based on the previous metrics

Table 4.4-2: Comparison between Playfair & Vigenere using short Key and very long text

The execution time result is representing in the following figure.

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 61

Figure 4.4-2:Histogram explain comparison between Playfair & Vigenere using short Key & very long text

4.4.2.1 Observation:
Execution time: Playfair is slower than Vigenère for encryption and decryption.

The difference in Playfair execution time is greater for encryption than for

decryption.

Memory space used: Playfair and Vigenère use approximately the same amount of

memory.

Energy consumption: Vigenère consumes more power than Playfair for

encryption and decryption.

Performance: Vigenère performs better than Playfair for encryption and

decryption.

Algorithm complexity: Playfair is more complex than Vigenère.

Based on the evaluated metrics, Vigenère appears to be a better performing

encryption algorithm than Playfair. It is faster, more energy consumption and offers

better performance.

From the tables analyzed previously, we can observe that:

Playfair:

• Encryption execution time Longer than decryption execution time.

• Impact of text length: Execution time increases linearly with text length.

4.4.2.2 Explanation of the differences:
Playfair: Playfair's encryption operations are more complex than decryption

operations, which explains the difference in execution time in case the txt is large

Encryption Decryption

Playfair’s runtime ms 409,28 360

Vegenere’s runtime ms 39,55 38,38

409,28

360

39,55 38,38

0

50

100

150

200

250

300

350

400

450
EX

EC
U

TI
O

N
 T

IM
E

(M
S)

TITRE DE L'AXE

COMPARISON BETWEEN PLAYFAIR & VIGENERE
USING SHORT KEY & VERY LONG TEXT

Playfair’s runtime ms Vegenere’s runtime ms

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 62

4.4.2.3 Conclusion:
The encryption execution time is always longer than the decryption execution time

for both algorithms.

The difference in Playfair execution time between encryption and decryption,

encryption is greater than decryption.

The choice between Playfair and Vigenère depends on safety and performance

requirements. If speed is the priority, Vigenère is the obvious choice. However, if

security is paramount and performance is not a crucial factor, Playfair may be an

acceptable option.

Run times shown in the tables are examples and may vary depending on the

implementation and hardware used.

Other factors, such as key length and character distribution in the text, can also

affect performance.

❖ Now we are going to change the key size:

The results are recorded in the table below: we use the same text used before but with

a long key “master two computer security and cryptography “

Short = Text 1, Medium = Text 2, Long = Text 3, Very Long = Text 4

Text Length Playfair's Runtime (ms) Vigenere's Runtime (ms)

Short Encryption: 1.023, Decryption: 1.456 Encryption : 0.16, Decryption: 0.14

Medium Encryption:2.283 , Decryption:2.411 Encryption: 0.57, Decryption: 0.41

Long Encryption: 7.561, Decryption: 7.308 Encryption: 2.04, Decryption: 1.76

Very Long Encryption: 408.880, Decryption : 359.586 Encryption: 39.47, Decryption: 38.31

Table 4.4-3: Execution time of encryption and decryption of Playfair and Vigenère for different text sizes

We obtained almost the same results as before, with a slight difference in execution

time due to the size of the key.

4.5 Comparison between symmetric algorithms:
In the code which we use to carry out the encryption and decryption of the

algorithm, it specifies the key if it’s less than the size (AES {128,192,256}, DES

{64}, 3DES {192}) it continues with 0s.

Example: AES: SICM2INF => SICM2INF00000000.

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 63

Remark:

• if we use the same encryption key of DES, we will obtain the same result, and

this is because 3DES requires key 192 if the key is less than 64 bytes it gives

the same result like DES for the encryption and decryption not for the other

factors.
Example:

For AES: SICM2INF => SICM2INF00000000

For 3DES: SICM2INF => SICM2INF0000000000000000

4.5.1 Comparison between symmetric algorithms AES<128:

The following results are used in the test, AES key less than the specified size to see

the difference. but DES and 3DES here is taking the real key size.

Here the comparison (AES key size < 128) is just for ECB mode.

Text 1: COMPARISON

Key 1: the key is represented in the following table:

Key size < 128 =64 =192

AES SICM2INF

DES SICM2INF

3DES SICM2INFORMATIQUECLASS12
Table 4.5-1:Table of keys chosen from symmetric algos

Result:

Table below shows the result of encryption and decryption of text 1 with the selected

key, and the comparison results of the algorithms based on the previous metrics

Figure 4.5-1:Comparison between symmetric algorithms (AES, DES,3DES) short text.

AES Encryption : KuAlQFI6pY4fEkCSvQR83w==

DES Encryption : l9bk3kyK0mB67u2Qa7aoBQ==

3DES Encryption : xk5E4mcaEcxPksVT+Mgp7Q==

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 64

The execution time result is representing in the following figure.

Figure 4.5-2:histogram explain comparison between AES, DES, 3DES using short Key and short text

4.5.1.1 Observations:
The table compares the performance of three symmetric encryption algorithms: AES, DES,

and 3DES.

AES is the fastest algorithm for both encryption and decryption.

DES is the slowest algorithm for both encryption and decryption.

3DES is slower than AES but faster than DES for both encryption and decryption.

AES uses the least amount of memory for both encryption and decryption.

DES uses the most amount of memory for both encryption and decryption.

3DES uses more memory than AES but less than DES for both encryption and decryption.

4.5.1.2 Conclusion:
Based on the observations above, I would recommend using AES for most applications.

AES is the most efficient algorithm in terms of both performance and memory consumption.

However, if there are concerns about the security of AES, then 3DES could be used as a

compromise between security and performance. DES should only be used if there are very

strict performance requirements and security is not a major concern.

Text 3: Symmetric encryption is an encryption method where the same key is used to both encrypt and

decrypt a message. Unlike asymmetric encryption, which uses a pair of keys (public and private),

symmetric encryption provides faster processing speed because it only requires a single key for

encryption and decryption operations.

Key 1: same key

Result:

Encryption Decryption

AES Runtime (s) 1 0,5

DES Runtime (s) 1,6 1,3

3DES Runtime (s) 1,3 0,9

1

0,5

1,6

1,31,3

0,9

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

R
U

N
TI

M
E(

S)

COMPARISON BETWEEN SEMETRIC ALGORITHM
(AES,DES,3DES)SHORT KEY, SHORT TEXT

AES Runtime (s) DES Runtime (s) 3DES Runtime (s)

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 65

Table below shows the result of encryption and decryption of text 3 with the selected

key, and the comparison results of the algorithms based on the previous metrics

Table 4.5-2:Comparison between symmetric algorithms (AES, DES,3DES) using long text

we obtained the same result from the previous table despite we change the text size

4.5.1.3 General conclusion:
Significant Speed Advantage for AES: The tables likely shows a clear advantage for AES in terms of

execution time for both encryption and decryption in all text sizes to DES and 3DES. AES is a more

modern algorithm designed for efficiency, resulting in faster processing of the all the text data.

3DES - The Middle Ground: While not as fast as AES, 3DES likely exhibits a noticeable improvement

in speed compared to DES. This is because DES applies the encryption algorithm only once, whereas

3DES applies it three times, offering some additional security but at the cost of some speed.

Minimal Performance Impact: all the text size used in the tables likely minimizes the overall

performance differences between the algorithms. For larger texts, the execution time gap between AES

and the other two algorithms would become more pronounced.

4.5.2 Comparison between symmetric algorithms Mode ECB:

For each algorithm we use the real key size (for AES 128, DES 64, 3DES 192)

Key : the key is represented in the following table:

Key size 128 =64 =192

AES SIC INFORMATIQUE

DES SICURITE

3DES Triple DES Algorithme M2

AES Encryption :

/Zfr8TsSQk39TQ1I0634J4uSp99YmUKqva1LAeJY/q6w4GcPblKiZvWSlyUe2liK

DES Encryption :

0Gw4cJD2U7x6zJFZuTDdFLLrbbeOs42WAGamYhsGiIlChcyKTyCaPg==

3DES Encryption :

3ncjbifTOmBZYS8hk4G8Y9vplHBiAx4vxRLJbOEVbnMHRR6ATTHVUA==

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 66

Table 4.5-3: keys chosen from symmetric algos mode ECB

Txt1 : COMPARISON .

Result:
AES: WhbRh+Ih4sw6WarkbS/Jew==

DES: SLtlx9ObvO9Tm7tMHkn2WQ==

3DES: jPu35wF01qRVYc00EjdNuQ==

Table below shows the result of encryption and decryption of text 1 with the selected

key, and the comparison results of the algorithms based on the previous metrics

Table 4.5-4: Comparison between AES, DES,3DES in « ECB mode », using short text

The execution time result is representing in the following figure.

Figure 4.5-3:Comparison between AES, DES,3DES in « ECB mode », using short text

Txt3

Result:

AES: the size of the encrypted text is: 448 characters

DES: the size of the encrypted text is: 440 characters

3DES: the size of the encrypted text is: 440 characters

Encryption Decryption

AESruntime (s) 0,7 0,5

DES runtime (s) 2,6 1,6

3DES runtime (s) 0,5 1,6

0,7
0,5

2,6

1,6

0,5

1,6

0

0,5

1

1,5

2

2,5

3

R
U

N
TI

M
E

(S
)

COMPARISON BETWEEN AES, DES,3DES IN « ECB
MODE », USING SHORT TEXT

AESruntime (s) DES runtime (s) 3DES runtime (s)

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 67

Table below shows the result of encryption and decryption of text 3 with the selected

key, and the comparison results of the algorithms based on the previous metrics

Table 4.5-5:Comparison between AES, DES,3DES in « ECB mode », using long text

The execution time result is representing in the following figure.

Figure 4.5-4:histogram explain comparison between AES, DES, 3DES using Long text in ECB mode

4.5.2.1 Conclusion:
In these tables we have almost the same results except the we see a small increase in the execution

time that due to the key used for these ones.

The execution time of symmetric decryption algorithms is greater than that of encryption of very

long texts.

4.5.3 Comparison between symmetric algorithms mode CBC:

For the CBC mode we use an IV (initiation vector). Its value is fixed for all the test.

IV = CRYPTO24

Key: the key is represented in the following table:

Key size =128 =64 =192

AES SIC INFORMATIQUE

DES SICURITE

3DES Triple DES Algorithme M2

Table 4.5-6: keys chosen from symmetric algos in CBC mode

Encryption Decryption

AESruntime (s) 1,6 1,2

DES runtime (s) 3,6 3

3DES runtime (s) 5 4,3

1,6
1,2

3,6
3

5
4,3

0

1

2

3

4

5

6

R
U

N
TI

M
E

(S
)

COMPARISON BETWEEN AES, DES,3DES « ECB MODE »
LONG TEXT

AESruntime (s) DES runtime (s) 3DES runtime (s)

SICURITE

 SICURITE

SIC INFORMATIQUE

SIC INFORMATIQUE

Triple DES Algorithme M2

Triple DES Algorithme M2

AES

AES

3DES

3DES

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 68

Table below shows the result of encryption and decryption of text 2 with the selected

key, and the comparison results of the algorithms based on the previous metrics

Text 2:

Table 4.5-7:Comparison between AES, DES,3DES in « CBC mode », using medium text

The execution time result is representing in the following figure.

Figure 4.5-5:Histogram explain comparison between AES, DES,3DES in CBC mode using medium text

Text 4:

Table below shows the result of encryption and decryption of text 4 with the selected

key, and the comparison results of the algorithms based on the previous metrics

Encryption Decryption

AESruntime (s) 2,3 1,6

DES runtime (s) 3,4 1,8

3DES runtime (s) 1,5 1

2,3

1,6

3,4

1,8
1,5

1

0
0,5

1
1,5

2
2,5

3
3,5

4

R
U

N
TI

M
E

(S
)

COMPARISON BETWEEN AES, DES,3DES IN « CBC
MODE »USING MEDIUM TEXT

AESruntime (s) DES runtime (s) 3DES runtime (s)

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 69

Table 4.5-8:Comparison between AES, DES,3DES in « CBC mode » using Very long text

The execution time result is representing in the following figure.

Figure 4.5-6:Histogram explain Comparison between AES, DES,3DES in CBC mode using very long text

4.5.3.1 Discussion:
CBC mode introduces some additional overhead compared to ECB mode due to the

chaining process. This might lead to a slight increase in execution time and memory

usage compared to ECB mode for the same underlying algorithm. However, for

modern processors, this overhead is usually negligible, especially for small data

sizes.

Each additional bit in the key translates to more operations the algorithm needs to

perform.

4.5.3.2 Conclusion:
While ECB mode might offer slightly better raw performance for short text with

short keys, its security vulnerabilities make it a poor choice for most encryption

applications. CBC mode, despite a small performance overhead, provides

significantly better security and is the recommended mode of operation for most

block cipher algorithms like AES, DES, and 3DES.

Encryption Decryption

AESruntime (s) 3,9 5,2

DES runtime (s) 19,6 11,8

3DES runtime (s) 11,9 14

3,9 5,2

19,6

11,811,9
14

0

5

10

15

20

25

R
U

N
TI

M
E

(S
)

COMPARISON BETWEEN AES, DES,3DES IN « CBC
MODE »USING VERY LONG TEXT

AESruntime (s) DES runtime (s) 3DES runtime (s)

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 70

4.5.4 Comparison between AES algorithm key size:

4.5.4.1 Comparison between AES key size in ECB mode:
the key is represented in the following table:

 128 192 256

AES Key
size

SIC INFORMATIQUE

SECURITY INFORMATIQUE
M2

SECURITY
INFORMATIQUE M2
UNIV DZ

Table 4.5-9: keys chosen from AES algo in ECB mode

Text 5: SYMMETRIC ALGORITHMS COMPARISON

Result :

AES Encryption (128): KireBcB0YDXjG3lJ+iBR1UyHeGGx5rJLMWrFIHSsCAk=

AES Encryption (192): 48/4qMv2HJ2QAxuMNQYTJNkuLNhFhF7P4nWedH0k7RQ=

AES Encryption (256): EW8MdaA6rNQ0xvAiSpNMabECJnz8EtcRWNg//2ChhS8=

Table below shows the result of encryption and decryption of text 5 with the selected

key, and the comparison results of the algorithms based on the previous metrics

Table 4.5-10: Comparison between AES key size in « ECB mode » using medium text

The execution time result is representing in the following figure.

Figure 4.5-7:Histogram explain Comparison between AES key size in ECB mode using medium text

Encryption Decryption

 AES (key 128) runtime(s) 2,7 1

AES (key 192 runtime(s) 0,6 0,7

AES (key 256) runtime(s) 1,3 0,6

2,7

1
0,6 0,7

1,3

0,6

0

0,5

1

1,5

2

2,5

3

R
U

N
TI

M
E

(S
)

COMPARISON BETWEEN AES KEY SIZE IN « ECB
MODE »USING MEDIUM TEXT

 AES (key 128) runtime(s) AES (key 192 runtime(s) AES (key 256) runtime(s)

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 71

Text 6: Symmetric encryption is an encryption method where the same key is used

to both encrypt and decrypt a message. Unlike asymmetric encryption, which uses a

pair of keys (public and private), symmetric encryption provides faster processing

speed because it only requires a single key for encryption and decryption operations.

Table below shows the result of encryption and decryption of text 6 with the selected

key, and the comparison results of the algorithms based on the previous metrics

Table 4.5-11:Comparison between AES key size in « ECB mode »

The execution time result is representing in the following figure.

Figure 4.5-8:Histogram explain Comparison between AES key size in ECB mode using very long text

4.5.4.1.1 Observations:
The tables show a gradual increase in execution time for AES as the key size

increases (from 128-bit to 192-bit and 256-bit) in medium and long text.

This is because larger keys require more complex key schedule calculations and

manipulations during the encryption and decryption processes. Each additional bit

in the key translates to more operations the algorithm needs to perform.

While the increase in execution time might be minimal for small data sets(text) but

it can become more noticeable for larger texts.

Encryption Decryption

 AES (key 128) runtime(s) 1,7 1

AES (key 192 runtime(s) 1,5 1,2

AES (key 256) runtime(s) 1,1 1,4

1,7

1

1,5

1,21,1

1,4

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

R
U

N
TI

M
E

(S
)

COMPARISON BETWEEN AES KEY SIZE IN « ECB
MODE »USING VERY LONG TEXT

 AES (key 128) runtime(s) AES (key 192 runtime(s) AES (key 256) runtime(s)

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 72

4.5.4.1.2 Conclusion:
The tables highlight the impact of key size on the speed of AES encryption for

medium and long text in ECB mode. Larger key sizes provide stronger security but

come at the cost of slightly slower execution times. The specific increase in

execution time will depend on the hardware used and the size of the data being

encrypted.

The ideal key size depends on your specific needs. If security is paramount, a larger

key size (192-bit or 256-bit) is recommended. However, if performance is a major

concern and the security requirements are less stringent, a smaller key size (128-bit)

might be sufficient. Most modern applications consider 128-bit AES to be secure for

most purposes, but the decision ultimately depends on the specific context and risk

tolerance.

4.5.4.2 Comparison between AES key size in CBC mode:
We use the same keys

Text 1: SYMMETRIC ALGORITHMS COMPARISON

Result:

Table below shows the result of encryption and decryption of text 1 with the selected

key, and the comparison results of the algorithms based on the previous metrics

Table 4.5-12:Comparison between AES key size in « CBC mode »

The execution time result is representing in the following figure.

Execution

Time(ms)

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 73

Figure 4.5-9:Histogram explain Comparison between AES key size in CBC mode using medium text

The table “COMPARISON BETWEEN AES key size “CBC mode” medium text”

compares the performance of the AES encryption algorithm in CBC mode with

different key sizes on medium text.

Text 6: the size of the text used is: 322 characters

Table below shows the result of encryption and decryption of text 6 with the selected

key, and the comparison results of the algorithms based on the previous metrics

Table 4.5-13:Comparison between AES key size in « CBC mode »

The execution time result is representing in the following figure.

Encryption Decryption

 AES (key 128) runtime(s) 1 0,6

AES (key 192 runtime(s) 0,3 0,5

AES (key 256) runtime(s) 0,4 0,4

1

0,6

0,3
0,5

0,4 0,4

0
0,2
0,4
0,6
0,8

1
1,2

R
U

N
TI

M
E

(S
)

COMPARISON BETWEEN AES KEY SIZE IN « CBC MODE »
USING MEDIUM TEXT

 AES (key 128) runtime(s) AES (key 192 runtime(s) AES (key 256) runtime(s)

Execution

Time(ms)

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 74

Figure 4.5-10:Histogram explain comparison between AES key size in CBC mode using long text

The table “Comparison between AES key size “CBC mode” long text” compares the

performance of the AES encryption algorithm in CBC mode with different key sizes

on long text.

4.5.4.2.1 Conclusion
CBC mode introduces a minor overhead compared to ECB mode due to the process

of chaining ciphertext blocks. This overhead translates to a small increase in

execution time.

Negligible for Modern Systems(hardware): For modern processors, especially for

small to medium data sizes like the one shown in the table, the performance

difference between ECB and CBC mode is usually negligible. While the increase in

execution time might be minimal for small data sets(text) but it can become more

noticeable for larger texts.

4.5.4.3 General conclusion for symmetric algorithms:

AES reigns supreme: Across all scenarios, AES demonstrates the best performance

in terms of execution time and memory usage. It's the most efficient algorithm for

all texts encryption.

DES lags behind: DES consistently exhibits the slowest performance among the

three algorithms, regardless of text size, key size, or mode of operation.

3DES finds a middle ground: 3DES offers a balance between AES and DES in terms

of performance. It's faster than DES but slower than AES.

Encryption Decryption

 AES (key 128) runtime(s) 0,7 0,4

AES (key 192 runtime(s) 0,8 0,7

AES (key 256) runtime(s) 0,4 0,9

0,7

0,4

0,8
0,7

0,4

0,9

0

0,2

0,4

0,6

0,8

1
R

U
N

TI
M

E
(S

)

COMPARISON BETWEEN AES KEY SIZE IN « CBC
MODE »USING LONG TEXT

 AES (key 128) runtime(s) AES (key 192 runtime(s) AES (key 256) runtime(s)

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 75

Key size impact: For AES, larger key sizes (192-bit and 256-bit) provide stronger

security but come at a slight cost in terms of execution speed compared to the smaller

128-bit key.

CBC mode overhead: CBC mode introduces a minor performance overhead

compared to ECB mode due to the chaining process. However, for modern

systems(hardware) and small to medium data sizes, this overhead is usually

negligible.

4.5.4.4 Security vs. Performance Trade-off:

ECB mode - Security Flaw: While ECB mode might offer slightly better raw

performance for specific cases (especially for short text), its security vulnerability

makes it a poor choice. Repeated patterns in the plaintext will be reflected in the

ciphertext, compromising confidentiality.

CBC mode - Security First: CBC mode addresses the security flaw of ECB and is

the recommended mode of operation for most scenarios. The slight performance

overhead is a small price to pay for significantly improved security.

4.5.4.5 Choosing the Right Algorithm and Mode:

Prioritize Security: For most applications, security should be the primary concern.

AES in CBC mode is the best choice for both short and medium text encryption,

offering excellent performance and strong security.

Performance Considerations: If raw performance is absolutely critical, and security

risks are well understood and mitigated, then DES or 3DES in ECB mode might be

considered (not recommended for most cases). However, for modern systems, the

performance difference between ECB and CBC mode for AES is usually negligible.

4.6 Comparison between AES & RSA algorithms:

For each algorithm we use the real key size (for AES 256, RSA 512)

Generated = genre automatic by algo

Key 1: the key is represented in the following table:

Key size 256 512

AES SIC INFORMATIC M2 CLASS 2023-24

RSA generated

Table 4.6-1: keys chosen from AES & RSA algos

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 76

4.6.1 Comparison between AES and RSA using medium text:
Txt2 :.
Result:

AES: yYg90lPMfErP2ToFw+ICo8zn9rWRelImLcPpSNtcvl4EfMIr46BXl4vjtoTswzXO

RSA:mvvXfKCm3j7Rx9kzuUKaazITrmEQ3Ug0x/aBxg58b3A287dipJVAOY9LPpg1xRVsN80bT3pnhxnK6k

4MoLmy/w==

Table below shows the result of encryption and decryption of text 2 with the selected

key, and the comparison results of the algorithms based on the previous metrics

Table 4.6-2:Comparison between the algorithm AES and RSA using medium text.

The execution time result is representing in the following figure.

Figure 4.6-1:Histogram explain comparison between the algorithm AES and RSA using medium text.

4.6.1.1 Discussion:

Encryption Decryption

AES runtime (ms) 0,7 0,5

RSA runtime (ms) 2,5 4,2

0,7 0,5

2,5

4,2

0

1

2

3

4

5

R
U

N
TI

M
E

M
S

COMPARISON BETWEEN THE ALGORITHM AES AND
RSA MEDIUM TEXT .

AES runtime (ms) RSA runtime (ms)

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 77

In this table we used the key size 256 bytes (maximum size) for AES and 512 bits

(minimal size) for RSA.

Encryption/Decryption Time: AES is significantly faster than RSA for both encryption

and decryption. Decryption times are also faster.

Performance: AES performs better than RSA in terms of characters/ second processed.

Memory Usage: Both AES and RSA use the same amount of memory.

Energy Consumption: AES has a lower energy consumption than RSA.

4.6.1.2 Conclusion:

Based on the results in the table, AES is a better choice than RSA for encrypting and

decrypting small text files. AES is significantly faster, performs better, and has a lower

energy consumption than RSA.

However, it's important to remember that RSA and AES are designed for different

purposes. AES is a symmetric key algorithm, which means that the same key is used for

encryption and decryption. This makes it efficient for bulk encryption of data. RSA is

an asymmetric key algorithm, which means that it uses a public key for encryption and

a private key for decryption. This makes it more suitable for secure key exchange and

digital signatures.

So, the best choice for you will depend on your specific needs. If you need to encrypt

and decrypt small text files quickly and efficiently, then AES is a good option. If you

need to securely exchange keys or create digital signatures, then RSA is a better choice.

4.6.2 Comparison between AES and RSA using text size 501 bits:

Text 7: the size of the text used is: 501 characters

the key is represented in the following table:

Key size 256 4092

AES SIC INFORMATIQUE

RSA generated

Table 4.6-3: keys chosen from AES & RSA algos

Table below shows the result of encryption and decryption of text 7 with the selected

key, and the comparison results of the algorithms based on the previous metrics

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 78

Table 4.6-4:Comparison between algorithms AES and RSA using txt size 501 bits

The execution time result is representing in the following figure.

Figure 4.6-2:Histogram explain comparison between algorithms AES and RSA using txt size 501 bits

4.6.2.1 Conclusion:
In these last table we have almost the same results except the we see a big increase in

the execution time that of RSA due to the uses a more complex mathematical structure

and the large key size (4092 bits). This increased security often comes at the cost of

speed.

4.7 RSA key size comparison:

Due to the nature of its mathematical foundations, the RSA algorithm has limitations

on the size of the input data that can be directly encrypted and decrypted. These

Encryption Decryption

AES runtime (ms) 2,9 2,2

RSA runtime (ms) 18,5 178,5

2,9 2,2
18,5

178,5

0

20

40

60

80

100

120

140

160

180

200

R
U

N
TI

M
E

M
S

COMPARISON BETWEEN ALGORITHMS AES AND RSA
USING TXT SIZE 501 BITS

AES runtime (ms) RSA runtime (ms)

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 79

limitations are related to the key size used in the algorithm. Here's a brief overview of

how it works:

4.7.1 Key Size and Maximum Input Length:

Key Size: RSA keys come in different sizes, commonly 512, 1024, 2048, 3072 or 4096

bits. The maximum length of data that can be encrypted directly is slightly less than the

key size. This is because the RSA algorithm adds padding to the plaintext to ensure

security.

4.7.2 Maximum Input Length example calculations:

PKCS#1 v1.5 Padding: Typically adds 11 bytes of padding. the 11 bytes of padding

refer to the overhead added to the plaintext to ensure secure encryption.

Rule: Maximum plaintext size=Key size in bytes−11

• 512 bit key (64 bytes): With PKCS#1 v1.5 padding:

Maximum plaintext length = 64 - 11 = 53 bytes.

• 1024 bit key (128 bytes): With PKCS#1 v1.5 padding:

Maximum plaintext length = 128 - 11 = 117 bytes.

• 2048 bit key (256 bytes): With PKCS#1 v1.5 padding:

Maximum plaintext length = 256 - 11 = 245 bytes.

• 3072 bit key (384 bytes): With PKCS#1 v1.5 padding

Maximum plaintext size = 384 bytes - 11 = 373 bytes.

• 4096 bit key (512 bytes): With PKCS#1 v1.5 padding:

Maximum plaintext length = 512 – 11 = 501 bytes.

Here we use a medium txt with key generated automatically

Table below shows the result of encryption and decryption of text 2 with the selected

key, and the comparison results of the algorithms based on the previous metrics

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 80

Table 4.7-1:Comparison between RSA key size in « ECB mode » using text 5

The execution time result is representing in the following figure.

Figure 4.7-1;Histogram explain comparison between RSA key size in « ECB mode » using text 5

4.7.3 Discussion:
Execution Time: There's a significant trade-off between security and performance. As

the key size increases, the execution time for both encryption and decryption increase

dramatically. This is because RSA relies on complex mathematical operations involving

very large numbers. These operations take longer to compute with larger keys.

Runtime
(ms) key 512

Runtime
(ms) key

1024

 Runtime
(ms) key

2048

Runtime
(ms) key

3072

Runtime
(ms) key

4096

RSA Encryption 2,7 1,2 3,7 10,6 14,6

RSA Decryption 4 21,1 33,9 155,9 190,6

2,7 1,2 3,7 10,6 14,6
4

21,1
33,9

155,9

190,6

0

50

100

150

200

250

R
u

n
ti

m
e

(m
s)

COMPARISON BETWEEN RSA key size in « ECB mode » using
text 5

RSA Encryption RSA Decryption

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 81

Performance: Performance, measured in characters/second processed, decreases with

increasing key size. This is a direct consequence of the longer execution times.

Encrypting and decrypting data becomes slower as the key size grows.

Memory Usage: Fortunately, memory usage remains relatively constant for RSA

regardless of the key size. The encryption and decryption processes primarily involve

manipulating large numbers, which doesn't require significant additional memory

allocation.

Energy Consumption: Energy consumption increases as the key size increases. The

complex mathematical operations involved in RSA become more energy-intensive with

larger keys. This can be a concern for battery-powered devices or environments where

energy efficiency is a priority.

4.7.4 Conclusion:
Larger key sizes offer better security but come at the cost of slower performance, higher

energy consumption. For small text files, the performance penalty might outweigh the

security benefit of a larger key.

Choose the key size based on your specific needs: prioritize speed for small files,

prioritize security for large data volumes. Current recommendations suggest a minimum

key size of 2048 bits for RSA. This offers a good balance between security and

performance for most use cases.

4.8 Hache Algorithm Comparison:

Hashing algorithms are not intended for encryption and decryption of text with a key.

They work unidirectionally, transforming an input (plain text) into an output (digital

fingerprint) called a “hash” or “digest”. Hashing is a unidirectional and non-reversible

process, meaning that once data has been hashed, it is not possible to recover the original

data from the hash Depending on the context and security requirements, hashing

algorithms may or may not use a key. For simple hashing of the data, no key. is required.

In this section of the chapter, we will experiment with texts of different lengths without

resorting to using a key to compare hashing algorithms.

4.8.1 Comparison between Hashing algorithms using medium text:
Txt 2:

Result:

MD5: 4ec602277613706086c8a76becc5f80d

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 82

SHA3:

984ae7505631257c078701d56e9fdfb7dcba087447c18dd7e0cecb4444041d249d874e53b22

532e1740b49489b41caa8d7bb67e48a65359ba076e1870df958ab

SHA256: f254a429ea92d0600c6f7642d632f63e6a24cc65e1804512a781d65e4b069be1

Table below shows the result of encryption and decryption of text 2 with the selected

key, and the comparison results of the algorithms based on the previous metrics

Table 4.8-1:Comparison between hashing algorithms using medium text

The execution time result is representing in the following figure.

Figure 4.8-1: Histogram explain comparison between hashing algorithms using medium text

4.8.1.1 Observations

• SHA-3 has the slowest execution time compared to MD5 and SHA-256.

• All three algorithms use approximately the same amount of memory space.

• MD5 has the highest energy consumption followed by SHA-3 and SHA-256.

• SHA-256 has the best overall performance followed by MD5 and SHA-3.

Hashing

MD5 runtime (ms) 0,5

SHA-3 runtime (ms) 1,2

SHA-256 runtime (ms) 0,3

0,5

1,2

0,3

0

0,2

0,4

0,6

0,8

1

1,2

1,4

R
U

N
TI

M
E

(M
S)

COMPARISON BETWEEN HASHING
ALGORITHMS USING SHORT KEY

MD5 runtime (ms) SHA-3 runtime (ms) SHA-256 runtime (ms)

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 83

4.8.1.2 Conclusion

• SHA-256 appears to be the most efficient algorithm among the three based on

this table. It has the fastest execution time and lowest energy consumption while

using the same amount of memory space as the other two algorithms.

• It is important to note that this table only compares the performance of these

three algorithms on medium text. The relative performance of these algorithms

could vary depending on the size and type of data being hashed.

4.8.2 Comparison between Hashing algorithms using very long text:
Txt 4:

Result:

MD5: 31b72f039c39b3f2e0bef78f08c04235

SHA3:

eb92b78a3bd4514e789626965075400fd12e44da6639c06a3d9512f5f7007648173edf018ceb

83df07b98b386d46986027d6a0cd38e4b0cd907f581f90f224ca

SHA256:

ebc55e2cbd5c94bbf8905c5fdc6c84f0383f2ff99037e29ca0fce6110821c2a9

Table below shows the result of encryption and decryption of text 4 with the selected

key, and the comparison results of the algorithms based on the previous metrics

Table 4.8-2:Comparison between Hashing algorithms using very long text

The execution time result is representing in the following figure.

Figure 4.8-2:Histogram explain Comparison between Hashing algorithms using very long Key using very long text

Hashing

MD5 runtime (ms) 1,9

SHA-3 runtime (ms) 16,5

SHA-256 runtime (ms) 1,2

1,9

16,5

1,2

0

5

10

15

20

R
U

N
TI

M
E

(M
S)

COMPARISON BETWEEN HASHING
ALGORITHMS USING VERY LONG KEY

USING VERY LONG KEY

MD5 runtime (ms) SHA-3 runtime (ms) SHA-256 runtime (ms)

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 84

4.8.2.1 Observation:

We obtain almost the same results with a small deferent in output value of the metrics.

As we said with the medium text, SHA-3 is the slowest algorithm of the three.SHA-256

is the fastest algorithm of the three, SHA-3 is the best performing algorithm of the three.

It has the same average memory consumption as MD5 and SHA-3 and the same

complexity.

4.8.2.2 Conclusion:
In these last table we have almost the same results except the we see a big increase in

the execution time that of SHA-3 due to the uses a more complex mathematical structure

compared to SHA-256. SHA-3 involves more processing rounds compared to SHA-256

to achieve its higher level of security. Each round adds to the overall execution time.

This increased security often comes at the cost of speed.

4.8.3 Hash tables analyses:

When choosing a hashing algorithm, consider both data size and your specific needs:

• For smaller datasets: If speed is crucial, SHA-256 might be preferable, especially

if security offered by SHA-256 is sufficient for your application.

• For very large datasets: The performance gap between SHA-256 and SHA-3

might narrow. Here, the choice could depend on:

• Security requirements: If paramount, SHA-3 might be a better option despite

potentially slower speed.

• Processing power constraints: If processing power is limited, SHA-256 might be

a more practical choice, even for large datasets.

• Overall, understanding the trade-off between speed and security, as well as the

impact of data size, is crucial for selecting the most suitable hashing algorithm

for your application.

EXPERIMENTATION AND EVALUATION OF RESULTS CHAPTER 4

Page | 85

4.9 Conclusion:

 We analyzed and compared several cryptographic algorithms in this research, with

particular focus on hashing, symmetric, asymmetric, and classic cryptography. Each

type of algorithm has unique properties designed to meet particular performance and

security requirements. The best cryptographic algorithm to utilize will depend on the

particular needs of the user. Asymmetric algorithms are necessary for safe exchanges

and public key management, while symmetric algorithms work well in situations

needing high performance and centralized key management. Hash functions are still

necessary to guarantee the authenticity and integrity of data. Considering the advantages

and disadvantages of every algorithm, decision-makers, or users, can choose the

cryptographic algorithms that are most appropriate for their particular requirements.

GENERAL CONCLUSION

Page | 86

General Conclusion

n conclusion, this dissertation provides a holistic view of computer security, from

its fundamental principles to advanced cryptographic techniques and system

architecture.

Experimentation and evaluation of cryptographic algorithms form a significant part of

the study. Various algorithms are compared based on performance, execution time,

memory used, energy consumption, and complexity for different applications. The

comparisons cover both classical and modern algorithms. Cryptography, a cornerstone

of computer security, is explored in depth. Classical cryptographic methods such as

Caesar, Playfair, and Vigenère ciphers are reviewed, followed by an extensive analysis

of modern cryptographic techniques including symmetric algorithms (AES, DES,

3DES) and asymmetric algorithms (RSA), as well as hash functions (MD5, SHA-3,

SHA-256).

To further advance the field of computer security, especially in cryptographic algorithm

comparison, we want to focus on the following future directions: incorporating

comparisons of the Elliptic Curve Cryptography (ECC) algorithm, which presents

unique challenges and opportunities due to its efficiency and security features.

Additionally, we aim to study the cryptanalysis of each algorithm and create a website

dedicated to cryptanalysis, algorithm robustness, and techniques for key breaking to

evaluate the extent of each algorithm's resistance.

I

Page | 87

 Bibliography

[1]: Thawte (2013),Histoire du chiffrement et de ses méthodes .Retrieve it from Thawte.fr :
 history-cryptography.pdf (thawte.fr)

[2] : Cisco Systems(2024), What Is IT Security? .Retrieve it from Cisco.com :
http://www.cisco.com/c/en/us/products/security/what-is-it-security.html

[3] : Cryptographie, Dr. BENIDRIS Fatima zohra (Juin 2020)Cryptographie..Retrieve it from :

 e-biblio.univ-mosta:

http://ebiblio.univmosta.dz/bitstream/handle/123456789/19428/PINF05.pdf?isAllowed=y&sequence=

1

[4] :Geeksforgeeks(22 May, 2023), Advanced Encryption Standard (AES)..Retrieve it from
geeksforgeeks.org : https://www.geeksforgeeks.org/advanced-encryption-standard-

aes/?fbclid=IwAR3mbrp-

JMJurYWsE31pchjOKCEFOHdDQ0utBismyAIKu1hBEEHTP6wdRds_aem_AftKg2a2YuCISBI1kU

PyNBqLP23CYykRAj_8uLidjYFlVW8kZ5B5WqyGM-_K1fj4sVYYeb1TFdME7e6VWVAzDZ5e

[5] : Scaler Topics (2024)Monoalphabetic Cipher. Retrieve it from scaler.com
 https://www.scaler.com/topics/monoalphabetic-cipher/

[6] :Comparitech (2018)What is 3DES encryption and how does DES work?Retrieve it from
comparitech.com:

https://www.comparitech.com/blog/information-security/3des

encryption/#The_history_of_3DES_encryption

[7]: Geeksforgeeks, (07-04- 2023), What is Information Security? Retrieve it from: geeksforgeeks.org

https://www.geeksforgeeks.org/what-is-information-security/

[8] : GeeksforGeeks, (08-05-2024). what-is-monoalphabetic cipher. Retrieve it from:

geeksforgeeks.org https://www.geeksforgeeks.org/what-is-monoalphabetic-cipher/

[9] : Département d’informatique Université de Batna 2-Dr. Khaled HAMOUID-Cryptographie
Retrieve it from staff.univ-batna2.dz :
https://staff.univ-batna2.dz/sites/default/files/hamouid_khaled/files/crypto1-2022.pdf

[10]: Planetcalc, Caesar cipher Retrieve it from: planetcaljournc.com,

https://planetcalc.com/1434/

https://www.thawte.fr/assets/documents/guides/history-cryptography.pdf
http://www.cisco.com/c/en/us/products/security/what-is-it-security.html
http://www.cisco.com/c/en/us/products/security/what-is-it-security.html
http://e-biblio.univ-mosta.dz/bitstream/handle/123456789/19428/PINF05.pdf?isAllowed=y&sequence=1
http://ebiblio.univmosta.dz/bitstream/handle/123456789/19428/PINF05.pdf?isAllowed=y&sequence=1
http://ebiblio.univmosta.dz/bitstream/handle/123456789/19428/PINF05.pdf?isAllowed=y&sequence=1
https://www.geeksforgeeks.org/playfair-cipher-with-examples/?ref=gcse&fbclid=IwAR2E5RCyABM1SRPrdAeL-c7cvsh0NWTc8lbVEeyTj1JdsVZL0OukebftSMs
https://www.geeksforgeeks.org/advanced-encryption-standard-aes/?fbclid=IwAR3mbrp-JMJurYWsE31pchjOKCEFOHdDQ0utBismyAIKu1hBEEHTP6wdRds_aem_AftKg2a2YuCISBI1kUPyNBqLP23CYykRAj_8uLidjYFlVW8kZ5B5WqyGM-_K1fj4sVYYeb1TFdME7e6VWVAzDZ5e
https://www.geeksforgeeks.org/advanced-encryption-standard-aes/?fbclid=IwAR3mbrp-JMJurYWsE31pchjOKCEFOHdDQ0utBismyAIKu1hBEEHTP6wdRds_aem_AftKg2a2YuCISBI1kUPyNBqLP23CYykRAj_8uLidjYFlVW8kZ5B5WqyGM-_K1fj4sVYYeb1TFdME7e6VWVAzDZ5e
https://www.geeksforgeeks.org/advanced-encryption-standard-aes/?fbclid=IwAR3mbrp-JMJurYWsE31pchjOKCEFOHdDQ0utBismyAIKu1hBEEHTP6wdRds_aem_AftKg2a2YuCISBI1kUPyNBqLP23CYykRAj_8uLidjYFlVW8kZ5B5WqyGM-_K1fj4sVYYeb1TFdME7e6VWVAzDZ5e
https://www.geeksforgeeks.org/advanced-encryption-standard-aes/?fbclid=IwAR3mbrp-JMJurYWsE31pchjOKCEFOHdDQ0utBismyAIKu1hBEEHTP6wdRds_aem_AftKg2a2YuCISBI1kUPyNBqLP23CYykRAj_8uLidjYFlVW8kZ5B5WqyGM-_K1fj4sVYYeb1TFdME7e6VWVAzDZ5e
https://www.scaler.com/topics/monoalphabetic-cipher/
https://www.scaler.com/topics/monoalphabetic-cipher/
https://www.scaler.com/topics/monoalphabetic-cipher/
https://www.comparitech.com/blog/information-security/3des%20encryption/#The_history_of_3DES_encryption
https://www.comparitech.com/blog/information-security/3des%20encryption/#The_history_of_3DES_encryption
https://www.geeksforgeeks.org/what-is-information-security/
https://staff.univ-batna2.dz/sites/default/files/hamouid_khaled/files/crypto1-2022.pdf
https://staff.univ-batna2.dz/sites/default/files/hamouid_khaled/files/crypto1-2022.pdf
https://planetcalc.com/1434/

Page | 88

[11]: Planetcalc, Chiffre de Vigenère. Retrieve it from : planetcalc.com

https://fr.planetcalc.com/2468/

[12] : Geeksforgeeks(13 Apr, 2023),Playfair Cipher with Examples.Retrieve it from
geeksforgeeks.org :

https://www.geeksforgeeks.org/playfaircipherwithexamples/?ref=gcse&fbclid=IwAR2E5RCyABM1S

RPrdAeLc7cvsh0NWTc8lbVEeyTj1JdsVZL0OukebftSMs

[13]: ResearchGate .Retrieve it from: researchgate.net https://www.researchgate.net/figure/Block-

Diagram-showing-working-of-DES-DES-algorithm-consists-of-the-following-steps_fig1_324045946

[14]: Simplilearn (29-05-2024). RSA Algorithm: Secure Your Data with Public-Key Encryption. Retrieve

it from: simplilearn.com https://www.simplilearn.com/tutorials/cryptography-tutorial/rsa-algorithm

[15] Silicon(2024),Qu'est-ce que le chiffrement asymétrique ?Retrieve it from : fiches-

pratiques.silicon.fr

https://fiches-pratiques.silicon.fr/Thematique/cybersecurite-1338/FichePratique/Tout-savoir-sur-le-

chiffrementasymetrique365810.htm?fbclid=IwZXh0bgNhZW0CMTAAAR0qxHIilUa7BJanMWMIF

psaMfIoj_K5khzEm5lSsYb3Ry6E7R309r_QA_aem_AZIF849be5UBDm4UTFFcr7j1CUWvUhbJfEr

Kqxum65SyKS05ssbQDhRg8AWXhsd1npqklrl8fx_k_va-VxEhK

[16] Lotmani Z., Ismail E. Y.(2013). de l’Université de Mostaganem (Master dissertation, Université

Abdelhamid Ibn Badis Mostaganem)..Retrieve it from : e-biblio.univ-mosta.dz
http://e-biblio.univ-

mosta.dz/bitstream/handle/123456789/9370/MINF26.pdf?sequence=1&isAllowed=y&fbclid=IwZXh

0bgNhZW0CMTAAAR1Vx3PBOq1tVsc2GqTXqXNLREzW8BuZTL3oavoLpLXcQzwcSMAQEG

TkGR0_aem_ATqNyTlGTwiZceCGrZ8Mydzzd-

346MGVJRf3nVoFrPrIHvMBHuzJE8HbnKg7rCz6fbfFNwuUhNNgkPQyJLIlCk6-

[17] lemagit-TechTarget- (2007 - 2024),RSA (algorithme) .Retrieve it from : lemagit.fr
https://www.lemagit.fr/definition/RSA-algorithme

[18] Simplilearn (09-02-2024). What-is-des. Retrieve it from: simplilearn.com

https://www.simplilearn.com/what-is-des-article#initial_permutation_ip

[19] Medium(2023),TripleDES(3DES)Encryption Features,Process,Advantages,and Applications
 Retrieve it from :medium.com
https://cyberw1ng.medium.com/triple-des-3des-encryption-features-process-advantages-and-

applications-2023-587e5a092789

 [20]Simplilearn,Shruti M (Oct 20, 2023) Message-Digest Algorithm 5: Overview and How
Does it Work? Retrieve it from :simplilearn.com
https://www.simplilearn.com/tutorials/cyber-security-tutorial/md5-

algorithm#what_is_the_md5_algorithm

[21] Pittalia, P. P. (2019). A comparative study of hash algorithms in cryptography. International

Journal of Computer Science and Mobile Computing, 8(6), 147-152.

https://fr.planetcalc.com/2468/
https://www.geeksforgeeks.org/playfair-cipher-with-examples/?ref=gcse&fbclid=IwAR2E5RCyABM1SRPrdAeL-c7cvsh0NWTc8lbVEeyTj1JdsVZL0OukebftSMs
https://www.geeksforgeeks.org/playfaircipherwithexamples/?ref=gcse&fbclid=IwAR2E5RCyABM1SRPrdAeLc7cvsh0NWTc8lbVEeyTj1JdsVZL0OukebftSMs
https://www.geeksforgeeks.org/playfaircipherwithexamples/?ref=gcse&fbclid=IwAR2E5RCyABM1SRPrdAeLc7cvsh0NWTc8lbVEeyTj1JdsVZL0OukebftSMs
https://www.researchgate.net/figure/Block-Diagram-showing-working-of-DES-DES-algorithm-consists-of-the-following-steps_fig1_324045946
https://www.researchgate.net/figure/Block-Diagram-showing-working-of-DES-DES-algorithm-consists-of-the-following-steps_fig1_324045946
https://www.simplilearn.com/tutorials/cryptography-tutorial/rsa-algorithm
https://fiches-pratiques.silicon.fr/Thematique/cybersecurite-1338/FichePratique/Tout-savoir-sur-le-chiffrementasymetrique365810.htm?fbclid=IwZXh0bgNhZW0CMTAAAR0qxHIilUa7BJanMWMIFpsaMfIoj_K5khzEm5lSsYb3Ry6E7R309r_QA_aem_AZIF849be5UBDm4UTFFcr7j1CUWvUhbJfErKqxum65SyKS05ssbQDhRg8AWXhsd1npqklrl8fx_k_va-VxEhK
https://fiches-pratiques.silicon.fr/Thematique/cybersecurite-1338/FichePratique/Tout-savoir-sur-le-chiffrementasymetrique365810.htm?fbclid=IwZXh0bgNhZW0CMTAAAR0qxHIilUa7BJanMWMIFpsaMfIoj_K5khzEm5lSsYb3Ry6E7R309r_QA_aem_AZIF849be5UBDm4UTFFcr7j1CUWvUhbJfErKqxum65SyKS05ssbQDhRg8AWXhsd1npqklrl8fx_k_va-VxEhK
https://fiches-pratiques.silicon.fr/Thematique/cybersecurite-1338/FichePratique/Tout-savoir-sur-le-chiffrementasymetrique365810.htm?fbclid=IwZXh0bgNhZW0CMTAAAR0qxHIilUa7BJanMWMIFpsaMfIoj_K5khzEm5lSsYb3Ry6E7R309r_QA_aem_AZIF849be5UBDm4UTFFcr7j1CUWvUhbJfErKqxum65SyKS05ssbQDhRg8AWXhsd1npqklrl8fx_k_va-VxEhK
https://fiches-pratiques.silicon.fr/Thematique/cybersecurite-1338/FichePratique/Tout-savoir-sur-le-chiffrementasymetrique365810.htm?fbclid=IwZXh0bgNhZW0CMTAAAR0qxHIilUa7BJanMWMIFpsaMfIoj_K5khzEm5lSsYb3Ry6E7R309r_QA_aem_AZIF849be5UBDm4UTFFcr7j1CUWvUhbJfErKqxum65SyKS05ssbQDhRg8AWXhsd1npqklrl8fx_k_va-VxEhK
http://e-biblio.univ-mosta.dz/bitstream/handle/123456789/9370/MINF26.pdf?sequence=1&isAllowed=y&fbclid=IwZXh0bgNhZW0CMTAAAR1Vx3PBOq1tVsc2GqTXqXNLREzW8BuZTL3oavoLpLXcQzwcSMAQEGTkGR0_aem_ATqNyTlGTwiZceCGrZ8Mydzzd-346MGVJRf3nVoFrPrIHvMBHuzJE8HbnKg7rCz6fbfFNwuUhNNgkPQyJLIlCk6-
http://e-biblio.univ-mosta.dz/bitstream/handle/123456789/9370/MINF26.pdf?sequence=1&isAllowed=y&fbclid=IwZXh0bgNhZW0CMTAAAR1Vx3PBOq1tVsc2GqTXqXNLREzW8BuZTL3oavoLpLXcQzwcSMAQEGTkGR0_aem_ATqNyTlGTwiZceCGrZ8Mydzzd-346MGVJRf3nVoFrPrIHvMBHuzJE8HbnKg7rCz6fbfFNwuUhNNgkPQyJLIlCk6-
http://e-biblio.univ-mosta.dz/bitstream/handle/123456789/9370/MINF26.pdf?sequence=1&isAllowed=y&fbclid=IwZXh0bgNhZW0CMTAAAR1Vx3PBOq1tVsc2GqTXqXNLREzW8BuZTL3oavoLpLXcQzwcSMAQEGTkGR0_aem_ATqNyTlGTwiZceCGrZ8Mydzzd-346MGVJRf3nVoFrPrIHvMBHuzJE8HbnKg7rCz6fbfFNwuUhNNgkPQyJLIlCk6-
http://e-biblio.univ-mosta.dz/bitstream/handle/123456789/9370/MINF26.pdf?sequence=1&isAllowed=y&fbclid=IwZXh0bgNhZW0CMTAAAR1Vx3PBOq1tVsc2GqTXqXNLREzW8BuZTL3oavoLpLXcQzwcSMAQEGTkGR0_aem_ATqNyTlGTwiZceCGrZ8Mydzzd-346MGVJRf3nVoFrPrIHvMBHuzJE8HbnKg7rCz6fbfFNwuUhNNgkPQyJLIlCk6-
http://e-biblio.univ-mosta.dz/bitstream/handle/123456789/9370/MINF26.pdf?sequence=1&isAllowed=y&fbclid=IwZXh0bgNhZW0CMTAAAR1Vx3PBOq1tVsc2GqTXqXNLREzW8BuZTL3oavoLpLXcQzwcSMAQEGTkGR0_aem_ATqNyTlGTwiZceCGrZ8Mydzzd-346MGVJRf3nVoFrPrIHvMBHuzJE8HbnKg7rCz6fbfFNwuUhNNgkPQyJLIlCk6-
http://e-biblio.univ-mosta.dz/bitstream/handle/123456789/9370/MINF26.pdf?sequence=1&isAllowed=y&fbclid=IwZXh0bgNhZW0CMTAAAR1Vx3PBOq1tVsc2GqTXqXNLREzW8BuZTL3oavoLpLXcQzwcSMAQEGTkGR0_aem_ATqNyTlGTwiZceCGrZ8Mydzzd-346MGVJRf3nVoFrPrIHvMBHuzJE8HbnKg7rCz6fbfFNwuUhNNgkPQyJLIlCk6-
https://www.techtarget.com/html/terms_of_use_fr.html
https://www.lemagit.fr/definition/RSA-algorithme
https://www.lemagit.fr/definition/RSA-algorithme
https://www.simplilearn.com/what-is-des-article#initial_permutation_ip
https://cyberw1ng.medium.com/triple-des-3des-encryption-features-process-advantages-and-applications-2023-587e5a092789
https://cyberw1ng.medium.com/triple-des-3des-encryption-features-process-advantages-and-applications-2023-587e5a092789
https://www.simplilearn.com/tutorials/cyber-security-tutorial/md5-algorithm#what_is_the_md5_algorithm
https://www.simplilearn.com/tutorials/cyber-security-tutorial/md5-algorithm#what_is_the_md5_algorithm

Page | 89

[22] "Announcing Request for Candidate Algorithm Nominations for a New Cryptographic Hash

Algorithm (SHA-3) Family [U.S. Federal Register Vol. 72 No. 212)]" (PDF). November 2, 2007.

Archived (PDF) from the original on March 31, 2011. Retrieved July 18, 2017.

[23] PIERRE, BARTHELEMY, ROBERT, ROLLAND, et PASCAL, VERON. Cryptographie: principes

et mises en œuvre/2ème édition revue et augmentée. Lavoisier, 2012.

[24] Bitcoinwiki,(December 21, 2023).SHA-3 ,Retrieve it from : bitcoinwiki.org

https://bitcoinwiki.org/wiki/sha-3#References

[25]Simplilearn, Baivab K. J. ,(Aug 29, 2023).A Definitive Guide to Learn The SHA-256.Retrieve

it from: simplilearn.com
https://www.simplilearn.com/tutorials/cyber-security-tutorial/sha-256-

algorithm#what_is_the_sha256_algorithm

[26] Planetcalc.Chiffre de Playfair Retrieve it from : planetcalc.com https://fr.planetcalc.com/7751/

[27] W3schools ,JavaScript Tutorial .Retrieved from:w3schools.com,
https://www.w3schools.com/js/default.asp

[28] Code, Visual Studio.Learn to code with Visual Studio Code .Retrieved from:
code.visualstudio https://code.visualstudio.com/docs

[29] W3schools ,Bootstrap Tutorial .Retrieved from:w3schools.com,
https://www.w3schools.com/bootstrap/default.asp

[30] W3schools ,HTML Tutorial .Retrieved from:w3schools.com,
https://www.w3schools.com/html/default.asp

[31] W3schools ,CSS Tutorial .Retrieved from:w3schools.com,
https://www.w3schools.com/css/default.asp

[32] CryptoJS .Retrieved from: cryptojs.gitbook.io ,https://cryptojs.gitbook.io/docs

[33] the-x.cn(2022), AES encryption / decryption. Retrieve it from: https://the-x.cn/en-

US/cryptography/Aes.aspx

[34] the-x.cn (2022), DES encryption/decryption. Retrieve it from: https://the-x.cn/en-

US/cryptography/Des.aspx

[35] devglan, Triple DES Encryption and Decryption Online Tool. Retrieve it from: devglan.com

https://www.devglan.com/online-tools/triple-des-encrypt-decrypt

https://bitcoinwiki.org/wiki/sha-3#References
https://www.simplilearn.com/tutorials/cyber-security-tutorial/sha-256-algorithm#what_is_the_sha256_algorithm
https://www.simplilearn.com/tutorials/cyber-security-tutorial/sha-256-algorithm#what_is_the_sha256_algorithm
https://fr.planetcalc.com/7751/
https://www.w3schools.com/js/default.asp
https://code.visualstudio.com/docs
https://www.w3schools.com/bootstrap/default.asp
https://www.w3schools.com/html/default.asp
https://www.w3schools.com/css/default.asp
https://cryptojs.gitbook.io/docs
https://the-x.cn/en-US/cryptography/Aes.aspx
https://the-x.cn/en-US/cryptography/Aes.aspx
https://the-x.cn/en-US/cryptography/Des.aspx
https://the-x.cn/en-US/cryptography/Des.aspx
https://www.devglan.com/online-tools/triple-des-encrypt-decrypt

Page | 90

[36] jsencrypt, Online RSA Key Generator. Retrieve it from: travistidwell.com

https://travistidwell.com/jsencrypt/demo/

[37] md5calc, Online MD5 Hash Calculator. Retrieve it from: md5calc.com

https://md5calc.com/hash#google_vignette

[38] md5calc, Online SHA3-256 Hash Calculator. Retrieve it from: md5calc.com,

https://md5calc.com/hash/sha3-256

[39] xorbin, SHA-256 hash calculator. Retrieve it from: xorbin.com, https://xorbin.com/tools/sha256-

hash-calculator

https://travistidwell.com/jsencrypt/demo/
https://md5calc.com/hash#google_vignette
https://md5calc.com/hash/sha3-256
https://xorbin.com/tools/sha256-hash-calculator
https://xorbin.com/tools/sha256-hash-calculator

