

 الجمـهورية الجزائرية الديمقراطية الشعبيـة
 وزارة التعليم العالي والبحث العلمي

 مـولاي الطـاهـر د. سعــيـدة جـامعـة
 لعلوماكـليـة

 قسم: الإعلام الآلي

Promotion 2023 - 2024

Mémoire de Master

Spécialité : Computer Security and Cryptography

Presented by :

• Aouissi Mohamed Elamine

• Boufenik Omrane

 Supervior :

• Dr. Mebarka Yahlali

Thème
Android malware detection:

Feature Extraction Issue

Dedication

I would like to dedicate this work to my loving family, whose unwavering

support and encouragement have been my guiding light throughout this

journey, Your belief in me has been my greatest strength, and I am forever

grateful for your love, patience, and understanding.

To my parents, thank you for your endless sacrifices and for always believing in

my dreams, Your unconditional love and encouragement have shaped me into

the person I am today.

To my siblings, thank you for your constant support and for being my pillars of

strength, Your presence in my life brings me joy and inspiration every day.

To all my friends, Especially my colleague BOUFENIK OMRANE thank

you for your friendship, and support, Your encouragement has kept me going

during the toughest times.

To my best friend Djab Allah Mokeddem whose unwavering support have

been my guiding light, Your friendship is a constant source of strength and

inspiration. Finally,This work is dedicated to each and every one of you.

With love and gratitude,

AOUISSI MOHAMED ELAMINE

i

Dedication

I dedicate this work to my family, especially to my father and mother who

were the reason for who I am today. I dedicate this dissertation to all my

teachers, my colleagues, and my university family. Without forgetting my

partner amine and all my best friends.

To my cherished friend Djab Allah, Thank you, for your constant support and

encouragement.

BOUFENIK OMRANE

ii

Acknowledgements

First and foremost, I am immensely thankful to God for His blessings,
guidance, and grace throughout this journey, Without His divine assistance,

none of this would have been possible.

Second, I am immensely thankful to my supervisor, Dr.Mebarka Yahlali, for
her invaluable guidance, support, and encouragement throughout this journey,
Her expertise and wisdom have been instrumental in shaping this research and

pushing me to strive for excellence.

I would like to express my sincere gratitude to the professors who generously
gave their time and expertise to review and give feedback on my thesis, I

greatly appreciate them for their valuable guidance, and contributions which
will be helpful in shaping the quality of my research.

I am deeply grateful to all my family, friends, and colleagues who have
supported and encouraged me along the way, Their unwavering belief in me

has been a constant source of inspiration.

Lastly, I would like to thank all the participants who generously contributed
their time and knowledge to this research, Your involvement has been

invaluable, and I am truly thankful for your contributions.

With sincere thanks and gratitude.

iii

Contents

Dedication . i
Dedication . ii
Acknowledgements . iii
Abbreviations . 1
General Introduction . 2

I Mobile By Android 4
I.1 Introduction . 5
I.2 Mobile applications . 5

I.2.1 Mobile Operating Systems 5
I.3 Android System . 6

I.3.1 Android System Architecture 6
I.3.2 The Android apps . 7

I.4 Android System Security . 10
I.5 Limitations of Android Security Mechanisms 11
I.6 Android malware . 11

I.6.1 Definitions . 12
I.6.2 Malware Life cycle . 12
I.6.3 Malware Family . 13
I.6.4 Malware Detection Techniques 14

I.7 Countermeasures . 15
I.8 Conclusion . 16

II Features extraction 17
II.1 Introduction . 18
II.2 Dimension reduction . 18

II.2.1 Feature Selection . 18

iv

II.2.2 Feature Extraction . 19
II.3 Feature Selection . 20

II.3.1 Categorization of attributes of selection methods 20
II.3.2 Feature-Selection Methods 22
II.3.3 Advantages of selecting features 23

II.4 Feature Extraction . 23
II.4.1 Role of attribute extraction 24
II.4.2 Methods of Extracting Attributes 24
II.4.3 Comparison between Features Extraction methods 35

II.5 difference between Feature Selection and Feature Extraction . . . 36
II.6 Conclusion . 36

IIIContribution and Implementation 37
III.1Introduction . 38
III.2Datasets . 38

III.2.1The datasets used . 39
III.3The Implementation Tools . 40

III.3.1JupyterLab . 40
III.3.2Python . 40
III.3.3Dataset management (libraries) 40

III.4Performance Evaluation . 41
III.4.1Validation Methods . 42
III.4.2Performance Measures . 43

III.5Extraction techniques . 44
III.6Experimentations . 45

III.6.1DATASET DREBIN . 45
III.6.2DATASET TUANDROMD 51
III.6.3DATASET MALGENOME 57

III.7Method proposal . 63
III.8Application overview . 65
III.9Conclusion . 69
General conclusion . 70
Annex . 76

v

List of Figures

I.1 iOS [4] . 6
I.2 Android (OS) [4] . 6
I.3 The architecture of the Android OS [5] 7
I.4 Exemple Intent-Filter dans Manifest Android [6]. 9
I.5 File AndroidManifest.xml.[6] . 9
I.6 Android permission types [1]. 10
I.7 Life cycle of malware. 12

II.1 Attribute Selection Process Extracted 19
II.2 Extract Attributes Process . 19
II.3 Feature selection process . 20
II.4 Wrapper methods for feature selection 21
II.5 Hybrid Model for Feature Selection 22
II.6 The process of feature extraction 24
II.7 PCA – Maximum variance directions 25
II.8 PCA Construct the Principal Components 26
II.9 steps of SVD . 30
II.10The LDA feature extraction process 32
II.11ICA principle . 33
II.12The process of transforming the original data on a non-linear entity

space . 33
II.13before and after application Isomap 34
II.14Dimensionality reduction technique: t-SNE 35
II.15Comparison of different Dimensionality Reduction Methods . . . 35
II.16comparison between Feature Selection and Feature Extraction . . 36

III.1DREBIN-215 dataset details . 39

vi

III.2TUANDROMD dataset details 39
III.3Malgenome dataset details . 39
III.4Example on sampling . 42
III.5Example on cross validation . 43
III.6Confusion matrix . 43
III.31proposed method architecture: ICA-KPCA with Best 64
III.32proposed method architecture: IM-ICA with Best 65
III.33Interface Application ”Feature Extractor App” Tab 67
III.34Interface Application ”About” Tab 68

vii

List of Abbreviations

API Application Programming Interface. 7
APK Android Application Package. 2
AVG Anti-Virus Guard. 16

DAC Discretionary Access Control. 10
DR Dimensionality Reduction. 36

GID Group ID. 10

ICA Independent Component Analysis. 32
IDS Intrusion Setection System. 16
IG Information Gain. 22
IM Information Mutuelle. 64
iOS iPhone Operating System. 5
ISOMAP Isometric mapping. 34

KPCA Kernal PCA. 33

LDA Linear Discriminant Analysis. 31

OS Operating System. 2

PCA Principal Component Analysis. 24

SMS Short Message Service. 7
SVD Singular Value Decomposition. 30

t-SNE t-Distributed Stochastic Neighbor Embedding. 34

UID User ID. 10

XNU X is Not Unix. 5

General Introduction

General Introduction
Nowadays, with the advancement of technology, computers have been replaced
by more portable devices like smart wristbands, smart mobile devices, tablets,
ect.
The Android OS is one of the most popular operating systems used on these
devices, users can easily download serval apps on their mobile devices via the
Android App Store.
Certainly, mobile devices make life easier but these connected devices are con-
stantly collecting our data (usage, location, communications and more), users
are often unaware of how much and what type of data is collected, And if this
data got into the wrong hand, Our identity and privacy would be stripped away
from us.
Malware developers try to access to the personal information through these apps,
They can access user’s devices by injecting malware into an APK file that rep-
resents an extension of Android-based applications.
Several works have been developed in the field of machine learning for android
malware detection, the first work related to Android security is therefore fo-
cused on analyzing the security limits under Android and on a way to overcome
them, However, this type of approach has one main limitation: it cannot detect
and learn new attacks, other work is based on information flows [1], where it is
necessary to learn how attacks take place by directly analyzing malicious appli-
cations and using the knowledge base acquired during learning to detect these
malwares, the complexity of a classification algorithm has grown significantly
these last decade when the mass of data (number of samples in the database as
well as the size of their description) has greatly increased.
Current technology, which enables real-time analytics to allow faster and more
responsive decision-making, produces a strong need to process and analyze huge
datasets in a real-time manner, the complexity of an algorithm becomes the key
concern to reduce the dimension of the data, Consequently, feature selection or
features extraction could affect the quality of machine learning model.
Objective : The objective of this work is to illustrate the importance of di-
mension reduction of the data set by extraction in the case of Android malware
detection data sets.
We have tested and compared several approaches on several data sets and finally
we have proposed a new approach based on the studied approaches.
Organization: The work is organized as follows:
ChapterI: Mobile Application Security This chapter presents the security
of mobile applications and the Android security model and its features, as well as

2

General Introduction

Android app permissions, malware detection works and techniques on Android
ChapterII: Features extraction This chapter introduce dimension reduction
problem.
We present the different features extraction methods proposed in the literature.
ChapterIII: Contribution and Implementation Chapter III explains the
experiment settings, such as the chosen datasets, the classification model, the
evaluation over the model after the applying feature extraction algorithm and
finally the proposed approach.

3

Chapter I

Mobile By Android

4

Chapter I: Mobile By Android

I.1 Introduction
Malware keeps increasing for mobile apps Without a doubt, as a result, re-
searchers are spending significant resources to improve malware detection tech-
niques, in order to understand the behavior of these malicious software and
analyze those of Android, it is necessary to take an interest in the functioning
of the OS itself, in this chapter, we first present mobile applications with a fo-
cus on the most popular mobile operating systems, then, we continue with the
Android operating system by specifying its architecture, as well as the develop-
ment strategies for Android applications, finally, we present the security of this
system.

I.2 Mobile applications
Mobile apps consist of a set of programs that run on a mobile device and perform
certain tasks for the user, the mobile app can be used in most mobile devices,
including inexpensive and basic mobile devices, the mobile app has multiple
uses for its vast field of operation, such as calling, sending messages, browsing,
chatting, communicating on social networks, audio, video, etc. [2]

I.2.1 Mobile Operating Systems
Just like a computer has an Operating System (OS), mobile devices also have an
Operating System known as mobile OS, mobile OS is the software that provides
an environment in which the user of the mobile device runs application programs
conveniently and efficiently[3].

• IOS

iPhone Operating System (iOS) is a mobile OS developed by Apple, it
was originally called iPhone OS, but was renamed iOS in June 2009, iOS
currently runs on iPhone, iPod touch and iPad, which they share the foun-
dations: an XNU kernel based on the Mach micro-kernel, the various Unix
and Cocoa services, etc. iOS has 4 layers of abstractions similar to MacOS
[4]:

⋄ A layer < OS kernel >.
⋄ A layer < Services kernel >.
⋄ A layer < Media >.
⋄ A layer < Cocoa >.

5

Chapter I: Mobile By Android

Figure I.1: iOS [4]

• Android

Launched in 2005 by the start-up of the same name and then bought by
Google in 2007, Android is a mobile OS based on a Linux kernel, it is
considered a ’software stack’ that behaves like an operating system [4].

Figure I.2: Android (OS) [4]

I.3 Android System
I.3.1 Android System Architecture
The Android OS is a stack of software components that can be divided into four
layers (Figure I.3), each layer performs a specific set of tasks and communicates
to the other layers via clearly defined interfaces.

1. Kernel layer: provides basic system features such as process management,
memory management, device management including camera, display, key-
board, etc, The reason for choosing the Linux kernel for Android OS is that
Linux is really good for basic operations such as networking. [5]

2. Native Library Layer: At the top of the Linux kernel layer are the native
Android libraries, this layer allows the device to handle different types of
data that are hardware specific, it has two essential parts; one is the Android
library and the second is the Android runtime, all these libraires are written
in C++ programming language. [5]

6

Chapter I: Mobile By Android

3. Application Framework Layer: The application structure layer is above
the native library layer, the application layer provides a major application
programming interface (API) and higher-level services in the form of java
classes. Application developers are allowed access to all API structures for
core programs that simplify the reuse of these components, these APIs are
open to everyone to create Android apps. [5]

4. Application Layer: In Android architecture, the application layer is the
top layer, these include both native application to pre-installed with each
device, such as: SMS client, web browser contact manager, etc. An average
Android device user would primarily interact with this layer for basic func-
tions such as making phone calls, sending text messages, capturing images,
browsing the web, playing videos and audios. [5]

Figure I.3: The architecture of the Android OS [5]

I.3.2 The Android apps
An Android app is specifically developed for mobile devices using the Android
system, they are very variable in nature such as games, mobile commerce, utility,
information service [6], to understand how an Android app works we will present
its architecture, communication between components (Intents), Intent-filter and
Android packages, as well as AndroidManifest.XML.

• Architecture of an Android application
An Android application can contain several components, each of them can
be an input point into the program, there are four types of components
that carry information through messages called Intents [1].

7

Chapter I: Mobile By Android

1. Activity:
is one of the building blocks of Android OS, simply put, activity is a
screen with which the user interacts, every activity in Android has a
life cycle as created, started, resumed, paused, stopped or destroyed,
these different states are known as Activity Life cycle. [1]

2. ContentProvider:
used to share data of an application, which serves as an interface be-
tween the application wishing to access the data. They are stored in a
local SQLite database but no restrictions are imposed on how to store
this data. [1]

3. Service:
performs tasks in the background, it is used to run long internal tasks
or to run a task at the request of an application. [1]

4. BroadcastReceiver:
used to listen to messages in wide distribution on the system, when a
new SMS is received by the mobile device, the system sends a broadcast
message to notify the different SMS sending and receiving applications.
[1]

⋄ Intents: the intent ensure and facilitate interaction between Android
components. An Intent is an object used to start an operation or send
a data set to another component, an Intent is a message with an action
request and optionally, data made to another. [1]

⋄ Intent-Filter: Structured description of the intent values to be matched,
an Intent-Filter can match actions, categories, and data (via its type,
schema, and/or path) in an Intent, it also includes a ”priority” value
used to order multiple matching filters. [6]

8

Chapter I: Mobile By Android

Figure I.4: Exemple Intent-Filter dans Manifest Android [6].

⋄ Android Package: The objects contain version information about
the implementation and specification of a Java package, this version
information is retrieved and made available by the Loaderinstance class.
[7]

⋆ AndroidManifest.xml: The AndroidManifest.xml file describes
the essential information in the application (APK file), some im-
portant parts that can be mentioned are [8]: Package name, Ap-
plication Components, Permissions manifestes, figure I.5 shows an
example of the AndroidManifest.xml file of an Android Studio1 ap-
plication .

Figure I.5: File AndroidManifest.xml.[6]
1Development environment to develop Android mobile applications.

9

Chapter I: Mobile By Android

I.4 Android System Security
Android natively implements some mechanisms that offer a certain level of se-
curity.

1. Permissions
The purpose of a permission is to protect the privacy of an Android user,
Android apps must have permission to access to user sensitive data (such
as contacts and calls), as well as certain system features (such as camera
and internet), depending on the functionality, the system can automatically
grant permission or can prompt the user to approve the request [9]. Each
permission corresponds to a Linux kernel GID2, each GID has access to
the OS resources required to execute the behaviors associated with this
permission, for each permission granted, Android adds an app UID (User
ID) to the corresponding group, the application obtains the privileges to
act with the requested permission [9].

Figure I.6: Android permission types [1].

2. User Unique Identifier (UID)
Role-based input control is introduced as a user ID (UID), by assigning one
UID per Android application at the time of installation and forcing them
to run only through this UID, each application is stored in a separate file
space from other applications [9].

3. Discretionary Access Control (DAC) and sandboxing
The DAC mechanism allows user access control to files and directories,
it works in an invisible way for app developers and users. It separates

2Group ID: is used to manage multiple users in a regular Linux system

10

Chapter I: Mobile By Android

applications from system resources, in effect, it is used to allow or not
applications to access system resources [10].

4. Administration of the Android device
Android offers an API that enables the development of applications to ad-
minister mobile devices, the API allows to increase the security policy on
passwords (exp: size, expiration and number of times has re-entered the
password), impose encryption of partitions (enable/ disable WI-FI, Blue-
tooth, etc.), request the creation of a new password, lock the mobile device,
etc. [1]

I.5 Limitations of Android Security Mechanisms
1. Abuse of permission

Permissions give applications access to sensitive mobile device resources , if
the user wants to install an application, he must grant it all requested per-
missions, if they filter access to these resources, there is no use verification
of these resources, only application developers can ensure that there will be
no abuse. Simple attacks also use permissions incorrectly, and this is the
case for malware that aims to leak sensitive data from the mobile device
[1].

2. Permissions:
delegation and collusion attacks A delegation attack consists of delegating
the execution of a task requiring permission that the malicious application
does not have to another application, for example, an application that does
not have permission to communicate on the network could use the browser
to input information or download files, a collusion attack is a cooperation
between several applications to lead an attack [1].

3. Software vulnerabilities:
privilege elevation Like all current systems; Android system also has soft-
ware vulnerabilities, exploiting some of them increases the privileges of an
application and performs sensitive operations related to personal informa-
tion.[1]

I.6 Android malware
In its different form, malicious applications represent a major problem affecting
the Android operating system, This section describes the malware lifecycle, its
family and the detection techniques.

11

Chapter I: Mobile By Android

I.6.1 Definitions
• A malware: a malware is a program or code with the main purpose of

harming a given system.

• A malware sample: malware sample is an Android application that con-
tains this malware, to analyze a malware is also to analyze one or more of
its samples to extract the information related to this malware, to detect a
malware is to decide if a given application is a sample of a malware [1].

I.6.2 Malware Life cycle
Malware for mobile platforms in general and Android in particular replicates
the behavior of viruses encountered on desktop computers, their life cycle is
structured around seven main phases [11]:

Figure I.7: Life cycle of malware.

1. Create: step in which the programmer designs and implements all the
malicious code that will be included in the malware.

2. Gestation: step in which the malicious application infiltrates and installs
into the system. It stays inactive throughout this step, that is why its
presence remains completely unknown to the user.

3. Reproduction or infection: the malware reproduces itself a significant
number of times before manifesting in this phase. The malware author seeks
to remotely control devices and access to private data. Malware spreads
through file sharing or social engineering techniques on Android. It uses
SMS, Bluetooth, Wifi as a means of communication and often disguises
itself as normal application.

12

Chapter I: Mobile By Android

4. Activation: some malware activates its destruction routine when certain
conditions are met (the internal countdown reaches for example). Acti-
vation can also be done remotely, the goal of this phase is to gradually
appropriate all device resources.

5. Discovery: the user notices strange behavior and suspects the presence of
a malicious application, this strange behavior may include performance loss,
changes in the web browser home page, or unavailability of some system
functions.

6. Assimilation: antivirus software updates its virus database after the dis-
covery of new malware. If possible, a solution or antidote is also proposed
to eliminate this threat.

7. Disposal: this is the phase where the antivirus discovers the malware,
prompts the user to remove it, it marks the death of the malware.

I.6.3 Malware Family
There are millions of different malwares. These malwares have different features,
they can be classified by family [12]:

• Backdoors: allows the execution of remotely controlled operations that
damage the device.

• Commercial Spyware: sends sensitive information without users’ autho-
rization such as tracking information.

• Data collection: extracts information about installed applications, user
accounts or files from the device without user permission.

• Downloader hostile: downloads other harmful applications, although it
does not include any code.

• SMS Fraud: provides interfaces that look like reliable sources, it uses
these interfaces to request authentication or billing information that allows
the user to send it to a third party.

• Ransomware: fully or partially controls the mobile or mobile data by
locking the device or encrypting the data in order to demand the ransom
to remove the control.

• Spam: delivers unwanted commercial messages to the user’s contacts.

13

Chapter I: Mobile By Android

• Spyware: steals contacts, images, files, email content, call logs, message
logs and browser history. In addition, recording phone or audio calls.

• Trojan: this type of application appears as a benign application because
it hides its harmful actions against the user.

I.6.4 Malware Detection Techniques
Various techniques are focused on detecting Android malware, we will present
above the detection techniques of the latter and these tools.
Static analysis:
Static analysis filters out parts of the application without actually running them,
this technique integrates analysis based on signatures, permissions, and compo-
nents. The signature-based strategy draws features and creates distinctive signs
to identify specific malware, therefore, it is not enough to recognize the varia-
tion or unidentified malware. The permissions-based policy recognizes permis-
sion requests to distinguish malware. Component-based techniques decompile
the application to draw and inspect the byte code definition and connections
of important components (i.e., activities, services, etc.) to identify exposures,
the main drawbacks of static analysis are the lack of actual execution paths and
appropriate execution conditions, in addition, there are problems with the oc-
currence of code obfuscation and dynamic code loading. [13]
Static analysis tools:
Among the static analysis tools for applications under Android [14]:

• Androguard: is a framework that analyzes Android applications.

• IDA pro version 6.1: is a disassemble, a software used to translate machine
code into a readable format.

• APKInspector: graphical interface tool to analyze an Android applica-
tion.

• Dex2jar: A tool designed to perform the work of converting an Android
application in dex format to a file of Java class format.

• Jd-gui: is a standalone graphical utility that displays the Java source codes
of <.class> files. (Java).

• JAD: Java decompiler.

• Dexdump: decompiles JAVA files in DEX3 format.
3Used to run applications developed for Android OS

14

Chapter I: Mobile By Android

• Smali: assembler/ disassembler for the DEX format used by dalvik4.

Dynamic Analysis:
Dynamic analysis technique includes running the application on a virtual ma-
chine or physical device, in the middle of the exam, the behavior of the appli-
cation is monitored and can be dissected, dynamic analysis gives a less abstract
application perspective than static analysis, code paths executed during exe-
cution are a subset of each unique accessible path, the main objective of the
analysis is to achieve high code inclusion, because every possible event must
be enabled to monitor any possible malicious behavior, the main disadvantages
of dynamic analysis are that dynamic analysis requires considerable resources
compared to static analysis, which prevents it from being distributed on mobile
devices with limited resources. In addition, dynamic analysis is responsible for
low-code coverage. Recently, the malware has tried to recognize the emulator
and other dynamic analysis frameworks and refrain from exposing their payloads
[13].
Dynamic analysis tools:
There are a number of tools to perform dynamic analysis of an Android appli-
cation, these are used to test malicious applications in a protected environment
[14].

• Droidbox: tool for Android Sandbox5 applications.

• Mobile Sandbox: tool for mobile applications that are available online.

Hybrid Analysis:
The hybrid analysis technique includes the consolidation of static and dynamic
features collected during application review and data drawing while the appli-
cation is running, Nevertheless, this would increase the accuracy of the identifi-
cation, the main disadvantage of hybrid scanning, it consumes the resources of
the Android system and takes a long time to perform the scan [13].

I.7 Countermeasures
Security is primordial and systems must be put in place to prevent all external
and internal threats, this section describes an overview of the countermeasures
that can be applied to reduce the risk of attacks against the Android system,
among them:

4Is a virtual machine that executes files in Dalvik Executable(.dex) format
5Sand box: is a security feature that prevents Access from executing certain potentially dangerous expressions,

these insecure expressions are blocked, so that the database is «reliable» (its content is enabled)

15

Chapter I: Mobile By Android

• Antivirus: antivirus is security software mainly used on mobile devices.
The popularity gained on computers has contributed to increase the level of
confidence gained by mobile users, Avast, AVG and F-Secure are examples
of renowned antivirus in Android, they face new constraints brought about
by the rapid evolution of malicious applications, like desktop platforms,
their effectiveness is closely linked to their detection methods [11].

• Firewall: using a firewall on Android mobile devices may not be as critical
as a PC, but it can be useful to manage Internet access for better security,
data optimization and performance [15].

• Intrusion detection: an intrusion detection system (IDS) is a detection
mechanism to discover attempts to compromise a system. Potentially, this
can prevent such attempts, in this case, the system is called intrusion pre-
vention system, intrusion detection mechanisms applied to Android mobile
devices are based on the same principles as mechanisms used in other sys-
tems (personal computers and computer networks). although systems differ
considerably in type and architecture, the foundations of attack protection
remain the same. this allows the adoption of techniques and their use in
the Android security zone [16].

• Malware analysis: Malware analysis deals with the study of how malware
works and possible results of infection with a given specific malware. it is
important to know that malware can have different features, each malicious
feature is designed by attackers to enter the system through different sources
to infect without user consent [17].

I.8 Conclusion
In this chapter, we presented an overview of mobile applications in general, and
particularly the Android system, where we explained how this platform works
and its architecture. We were then interested in the security mechanisms pro-
posed by this system that provide a certain level of security. Then we defined
Android malware, its lifecycle, its family and these detection techniques, finally,
we concluded with the countermeasures that are applied to reduce the risk of
attacks against this system, in the next chapter, we will study about dimension-
ality reduction and its usefulness in protecting the Android system.

16

Chapter II

Features extraction

17

ChapterII: Feature Extraction

II.1 Introduction
Automatic data classification is an important concept that is part of the data
analysis process, the complexity of the classifier has significantly increased when
the description of data has greatly augmented.
The reduction of dimensions is one of the most classic solutions of this problem,
its objective is to select or extract an optimal subset of relevant characteris-
tics according to a predefined criterion, this step makes the whole data more
representative and improves the performance of the detection algorithm (classi-
fier). In this chapter, we are interested in the dimension reduction, within the
framework of the automatic classification for a decision-making purpose.

II.2 Dimension reduction
Dimension reduction is an essential step in the data preprocessing process (fil-
tering, cleaning, etc.), indeed, for data belonging to a high-dimensional space,
certain attributes provide no information or even express noise, others are re-
dundant or correlated.
This makes decision algorithms complex, inefficient, less generalizable and dif-
ficult to interpret. Methods for reducing the dimension of representation space
can be divided into attribute extraction methods and attribute selection meth-
ods.
In feature selection, information can be lost since some features should be ex-
cluded, however, in feature extraction, the dimension can be decreased without
losing much initial feature dataset [18]
The main objectives of dimension reduction are:

• Identification of relevant attributes

• Reduce the size of data

• Prediction accuracy improvement

• Reduction of necessary storage space

• Avoiding overfitting

• Reduce executing and training time

II.2.1 Feature Selection
Attribute selection methods offer to choose a subset of attributes from the orig-
inal set, the latter contains the essential information to represent the objects, in

18

ChapterII: Feature Extraction

machine learning, the goal is to choose a subset of attributes to categorize/group
objects, the attribute selection approach is preferred in areas where the origi-
nal (unprocessed) attributes are required to maintain the physical properties of
attributes [19]

Figure II.1: Attribute Selection Process Extracted
[20]

II.2.2 Feature Extraction
The main idea is to transform the initial set of attributes into a new set, this
new set of attributes better maintains the original information, if the extraction
process produces a set of attributes larger than the original, the method is called
attribute generation[19].

Figure II.2: Extract Attributes Process
[20]

In the machine learning community, these dimensioning methods can also fall
into two categories: methods for supervised1 learning and other for unsuper-
vised2 learning.
In recent decades, the study of methods for extracting attributes in general has

1Supervised: supervised learning aims to categorize objects in classes where the number of classes is known a
priori

2Unsupervised: The goal of unsupervised learning is to group objects into clusters according to their similarity
(the number of classes is unknown)

19

ChapterII: Feature Extraction

progressed enormously [21], the approach of attribute selection in the case of
supervised learning is also well studied [22].

II.3 Feature Selection
Feature selection is used to reduce the dimensionality impact on the dataset
through finding the subset of features which efficiently defines the data [23], it
selects the important and relevant features to the mining task from the input
data and removes redundant and irrelevant features [24], it is useful for detect-
ing a good subset of features that is appropriate for the given problem [24], the
main objective of feature selection is to construct a subset of features as small
as possible but represents all vital characteristics of the input data [26].
Feature selection algorithm phase is divided into two-phase:(1) Subset Genera-
tion and (2) Subset Evaluation, in subset generation, we need to generate subset
from the input dataset and in subset evaluations we have to check whether the
generated subset is optimal or not [27]. “FigureII.3” shows the feature selec-
tion process

Figure II.3: Feature selection process
[27]

II.3.1 Categorization of attributes of selection methods
Feature selection methods are classified into three classes:

1. Filters Methods

evaluate features without calling any classification algorithm, filter models
uses statistical properties of variables to remove the variables that are not
informative, these models can be ‘Univariate’ or ‘multivariate’, in the Uni-
variate scheme [26] each feature is ranked independently of feature space
while the multivariate scheme evaluates features in batch, filter models are

20

ChapterII: Feature Extraction

easily scalable to very high dimensional datasets, computationally simple
and fast, the cons of filter models are that they totally ignore the effect of
selected feature subset on performance of induction algorithm [28].

Pros:

• It works faster than wrapper
• Scalable
• Classifier independent

Cons:

• The interaction between classifiers is neglected
• The dependency among the features is ignored

2. Wrappers Methods

use a predetermined learning algorithm to evaluate the quality of selected
features and offer a simple and powerful way to address the problem of
feature selection, the accuracy measured by this algorithm is very high as
this method considers the interaction between feature subset searches and
model selection, this method is more demanding than filter methods. [29]

Figure II.4: Wrapper methods for feature selection
[30]

Pros:

• Interacts with classifier
• Consider the dependence among features
• Higher performance accuracy than filter

21

ChapterII: Feature Extraction

Cons:

• Classifier specific
• Need expensive computation

3. Hybrid models

are combination of both filter models and wrapper models, they include the
features this two models, they are less computationally intensive and they
include the interaction with model construction.[31]

Figure II.5: Hybrid Model for Feature Selection
[31]

Pros:

• The performance accuracy is higher than filter
• Better computational complexity than wrapper

Cons:

• Classifier specific

II.3.2 Feature-Selection Methods
1. Information Gain (IG): One of the most commonly used univariate

methods for evaluating attributes is the IG filter, it assesses features based
on the information gained and examines each feature individually. The In-
formation Gain filter employs a symmetrical measure, it sorts all features
in a methodical manner and necessitates the establishment of a threshold
for selecting a specific number of features based on the obtained order. [32].

2. Chi-squared: The Chi-squared test for feature selection is a statistical
technique used to identify the most relevant features for a given set of data
for a target variable, it works by comparing the observed distribution of the
values of a characteristic with the expected distribution under the assump-
tion of independence between the characteristic and the target variable and
selecting those characteristics for which the difference between the observed
and expected distributions is the largest [33].

22

ChapterII: Feature Extraction

3. Relief: Relief is a feature-selection method that serves as an individual
evaluation filter. It computes a proxy statistic for each feature, which can
estimate its quality or relevance to the target concept, these statistics are
known as feature weights, or informally, as feature scores[34].

4. ANOVA: ANOVA is a widely recognized statistical method used for com-
paring multiple independent means, this technique evaluates features by
computing the ratio of variances between and within groups and then ranks
them accordingly [35].

5. Symmetric Uncertainty: Symmetric uncertainty is a means of determin-
ing the fitness of features for selection, it involves computing the relation-
ship between the feature and the target class. [36].

6. Recursive Feature Elimination (RFE): Recursive feature elimination
is a recursive greedy optimization approach, where features are selected
by recursively taking a smaller and smaller subset of features, Now, an
estimator is trained with each set of features, and the importance of each
feature is determined using coef attribute [37].

II.3.3 Advantages of selecting features
There are various advantages of feature selection process: [38]

• Improved accuracy

• Simple models are easier to interpret.

• Shorter training times

• reduce Overfitting

• Easier to implement by software developers

II.4 Feature Extraction
Feature extraction aims to compress the data with the goal of maintaining most
of the relevant information, Feature extraction is an important component of
classification system, A well-defined feature extraction algorithm makes the clas-
sification process more effective and efficient.

23

ChapterII: Feature Extraction

Figure II.6: The process of feature extraction
[39]

II.4.1 Role of attribute extraction
Feature extraction allows machine learning models to improve their performance
by [40]:

• Reduces redundant data: feature extraction cuts noise, removing re-
dundant and unnecessary data. This enables machine learning programs to
focus on the most relevant data.

• Improves model accuracy: the accuracy of machine learning models is
improved when they use only the data required to train the model to its
intended business use. The inclusion of peripheral data negatively affects
the model’s accuracy.

• Accelerates learning:The inclusion of training data that does not directly
contribute to solving the business problem decelerate the learning process,
models trained on highly relevant data learn faster and make more accurate
predictions.

• More efficient use of computing resources: Trimming out peripheral
data increases speed and efficiency, with less data to sort, compute resources
are not dedicated to processing tasks that do not generate additional value.

II.4.2 Methods of Extracting Attributes
Several variants of the methods exist and deal with the extraction of variables.
Among the best known methods are:
Linear Methods

• Principal Component Analysis (PCA):
PCA [41] is an unsupervised linear transformation technique that is pri-
marily used for feature extraction and dimensionality reduction, it aims to
find the directions of the maximum variance in large data and projects the
data on a new subspace with dimensions equal to or less than the original.

24

ChapterII: Feature Extraction

The formula employed to calculate variance (var(x)) and covariance(Cov(x,
y)) are expressed as follows:[42]

◦ Var(x) serves as a metric of variability, defines the dataset’s degree of
dispersion.

◦ Cov(x, y) captures the covariance between variables x and y
◦ xi represents the value of x in the ith dimension
◦ x̄ and ȳ denote their respective mean values
◦ The covariance matrix contains:

1. variance of dimensions as the main diagonal elements
2. covariance of dimensions as the off-diagonal elements

In the diagram below, note the directions of the maximum variance of the
data, this is represented using PCA1 (first maximum variance) and PC2
(second maximum variance).

Figure II.7: PCA – Maximum variance directions
[43]

PCA provides good data representation, removes redundancies However,
the user may find some difficulties in calculating the covariance and covari-
ance matrix.

⋄ How PCA Constructs the Principal Components
As there are as many principal components as there are variables in
the data, principal components are constructed in such a manner that
the first principal component accounts for the largest possible variance
in the data set. For example, let’s assume that the scatter plot of our

25

ChapterII: Feature Extraction

data set is as shown below, can we guess the first principal component ?
Yes, it’s approximately the line that matches the purple marks because
it goes through the origin and it’s the line in which the projection of the
points (red dots) is the most spread out. Or mathematically speaking,
it’s the line that maximizes the variance (the average of the squared
distances from the projected points (red dots) to the origin).

Figure II.8: PCA Construct the Principal Components

The second principal component is calculated in the same way, with
the condition that it is uncorrelated with (i.e., perpendicular to) the
first principal component and that it accounts for the next highest
variance. This continues until a total of p principal components have
been calculated, equal to the original number of variables.

⋄ Step-by-Step Explanation of PCA
▷ Step 1: Standardization The aim of this step is to standard-

ize the range of the continuous initial variables so that each one
of them contributes equally to the analysis. More specifically, the
reason why it is critical to perform standardization prior to PCA, is
that the latter is quite sensitive regarding the variances of the initial
variables. That is, if there are large differences between the ranges
of initial variables, those variables with larger ranges will dominate
over those with small ranges (for example, a variable that ranges
between 0 and 100 will dominate over a variable that ranges be-
tween 0 and 1), which will lead to biased results, So, transforming

26

ChapterII: Feature Extraction

the data to comparable scales can prevent this problem. Mathe-
matically, this can be done by subtracting the mean and dividing
by the standard deviation for each value of each variable.

Where

and

Once the standardization is done, all the variables will be trans-
formed to the same scale.

▷ Step 2: Covariance Matrix Computation The aim of this step
is to understand how the variables of the input data set are varying
from the mean with respect to each other, or in other words, to
see if there is any relationship between them. Because sometimes,
variables are highly correlated in such a way that they contain re-
dundant information. So, in order to identify these correlations, we
compute the covariance matrix. The covariance matrix is a p × p
symmetric matrix (where p is the number of dimensions) that has
as entries the covariances associated with all possible pairs of the
initial variables. For example, for a 3-dimensional data set with 3
variables x, y, and z, the covariance matrix is a 3×3 data matrix of
this from:

27

ChapterII: Feature Extraction

Where

Since we have standardized the dataset, so the mean for each
feature is 0 and the standard deviation is 1.
and :Cov(a,a)=Var(a) | (Cov(a,b)=Cov(b,a))

▷ Step 3: Compute the eigenvectors and eigenvalues
Eigenvectors and eigenvalues are the linear algebra concepts that
we need to compute from the covariance matrix in order to deter-
mine the principal components of the data. What you first need to
know about eigenvectors and eigenvalues is that they always come
in pairs, so that every eigenvector has an eigenvalue. Also, their
number is equal to the number of dimensions of the data. What
you first need to know about eigenvectors and eigenvalues is that
they always come in pairs, so that every eigenvector has an eigen-
value. Also, their number is equal to the number of dimensions of
the data. By ranking your eigenvectors in order of their eigenval-
ues, highest to lowest, you get the principal components in order of
significance.
Principal Component Analysis Example:
Let’s suppose that our data set is 2-dimensional with 2 variables x,y
and that the eigenvectors and eigenvalues of the covariance matrix
are as follows:

28

ChapterII: Feature Extraction

If we rank the eigenvalues in descending order, we get �1>�2, which
means that the eigenvector that corresponds to the first principal
component (PC1) is v1 and the one that corresponds to the sec-
ond principal component (PC2) is v2. After having the principal
components, to compute the percentage of variance (information)
accounted for by each component, we divide the eigenvalue of each
component by the sum of eigenvalues. If we apply this on the exam-
ple above, we find that PC1 and PC2 carry respectively 96 percent
and 4 percent of the variance of the data.

▷ Step 4: Create a Feature Vector
Example:
Continuing with the example from the previous step, we can either
form a feature vector with both of the eigenvectors v1 and v2:

Or discard the eigenvector v2, which is the one of lesser significance,
and form a feature vector with v1 only:

Discarding the eigenvector v2 will reduce dimensionality by 1, and
will consequently cause a loss of information in the final data set.
But given that v2 was carrying only 4 percent of the information,
the loss will be therefore not important and we will still have 96
percent of the information that is carried by v1.

▷ Step 5: Recast the Data Along the Principal Components
Axes
In this step, which is the last one, the aim is to use the feature
vector formed using the eigenvectors of the covariance matrix, to
reorient the data from the original axes to the ones represented by
the principal components (hence the name Principal Components
Analysis). This can be done by multiplying the transpose of the
original data set by the transpose of the feature vector.
FinalDataSet = ·FeatureV ectorT ∗·StandardizedOriginalDataSetT

29

ChapterII: Feature Extraction

• Singular Value Decomposition (SVD) :
In Machine Learning, one of the most important concepts of linear algebra
is singular value decomposition (SVD) [44]. The idea is to break down a
matrix into the single product of 3 other matrices. SVD is similar to PCA,
but more general.
PCA assumes that the input matrix is square, while SVD does not have
this assumption. The general formula of SVD is:

M = UΣV T

⋄ M is the original matrix we want to decompose M[m*n] (or a data
frame with m rows and n columns)

⋄ U is m * m orthogonal matrix, a left singular values of M(columns
are left singular vectors). These vectors form an orthogonal basis for
the column space of M.

⋄ Σ is m * r diagonal matrix containing singular values.
⋄ V is a right singular vectors of M.These vectors form an orthogonal

basis for the row space of M.
⋄ r is the rank of the matrix M.

Figure II.9: steps of SVD
[44]

This method is generally used for image compression and data denoising.
For dimensionality reduction, a truncated version of SVD is often used.
Select the top k largest singular values in Σ. These columns can be selected
from Σ and the rows selected from V t. A new matrix B can be reconstructed
from the original matrix M using the following formula:

B = U ∗ Σ

30

ChapterII: Feature Extraction

B = V t ∗ A, where Σ only contains the top k columns in the original Σ
based on singular values and V t contains the top k rows of the original
V t corresponding to the singular values. SVD allows for dimensionality
reduction by retaining only the most significant singular values and vectors
but the computing the full SVD for large matrices can be computationally
expensive.

• Linear Discriminant Analysis (LDA):
The origin of LDA [45] is different from PCA. PCA is an unsupervised learn-
ing method that transforms the original features into a set of new features.
LDA is a type of supervised learning technique where the classes of data
points are predetermined. LDA computes “linear discriminants” (Where
the linear name comes from) determining the directions that serve as axes
to maximize separation between multiple classes. The model predicts that
all observations in a region belong to the same class of the dependent vari-
able.
LDA achieves the objective in three main stages:

1. First, it calculates the separability between the different classes of the
dependent variable, called variance between classes, as shown in(1) of
“Figure II.10”.

2. Second, it calculates the distance between the mean and the samples
of each class, called intra-class variance, as shown in (2).

3. Then, it constructs the lower dimension space with this criterion: max-
imize the inter-class variance and minimize the intra-class variance.

31

ChapterII: Feature Extraction

Figure II.10: The LDA feature extraction process
[45]

It can work well even when the number of features is much larger than
the number of training samples. However, it assumes that the covariance
matrices of the different classes are equal (the features within each class are
normally distributed), which may not be true in some datasets.

• Independent Component Analysis (ICA)[46]
is a method used for dimensionality reduction, Unlike Principal Compo-
nent Analysis (PCA), which seeks orthogonal and decorrelated axes that
best represent the data, ICA is an unsupervised method that looks for axes
that are statistically independent from each other (and therefore decorre-
lated, but not necessarily orthogonal). While PCA assumes only decorre-
lation of signals, ICA’s concept of independence is stronger. Introduced by
Jeanny Herault and Christian Jutten in 1985, ICA was initially used for
blind source separation problems but has since found applications in data
analysis, compression, Bayesian detection, source localization, and blind
identification and deconvolution. While not strictly a dimensionality re-
duction tool, ICA can effectively reduce dimensions and has been recently
used in natural scene classification. In practice, ICA is often combined
with PCA, as it requires centered data and PCA preprocessing to obtain
a diagonal matrix before transforming data into a space where dimensions
are independent.

32

ChapterII: Feature Extraction

Figure II.11: ICA principle

Nonlinear methods
• Kernel PCA (KPCA)

PCA applies linear transformation, KPCA [47] extends PCA to non-linearity.
It first maps the original data to a non-linear (usually larger) feature space,
and then applies the PCA to extract the main components of this space
(see Figure II.12). The graph on the left shows that the blue and red
points cannot be separated using a linear transformation. But if all the
points are projected on a 3D space, the result becomes linearly separable!
We then apply PCA to separate the components.

Figure II.12: The process of transforming the original data on a non-linear entity space
[45]

KPCA is more complex to implement than classic PCA but it is generally
more effective in finding the main directions of the data.

33

ChapterII: Feature Extraction

• Isometric mapping (ISOMAP)
A nonlinear dimensionality reduction method used in data analysis and
machine learning is called ISOMAP [48], abbreviation for isometric map-
ping. Isomap was developed to maintain the inherent geometry of high-
dimensional data in place of conventional techniques such as principal com-
ponent analysis (PCA). Isomap creates a low-dimensional representation,
usually a two-dimensional or three-dimensional map, focusing on preserv-
ing paired distances between data points. This technique works particularly
well to extract the underlying structure of large, complex data sets, such as
speech recognition, image analysis, and biological systems. Isomap’s ability
to highlight the fundamental relationships found in the data allows finding
models and ideas in a variety of scientific and technical fields.

Figure II.13: before and after application Isomap

• Integration of stochastic neighbors distributed by t (t-SNE):
t-Distributed Stochastic Neighbor Embedding or t-SNE [49]is a dimension-
ality reduction technique well suited for data visualization. Contrary to
PCA which simply maximizes the variance, t-SNE minimizes the diver-
gence between two distributions. Essentially, it recreates the distribution
of a high-dimensional space in a low-dimensional space rather than max-
imizing variance or even using a kernel trick. We can get a high-level
understanding of t-SNE in three simple steps:

◦ It first creates a probability distribution for the high-dimensional sam-
ples.

◦ Then, it defines a similar distribution for the points in the low-dimensional
embedding.

◦ Finally, it tries to minimize the KL-divergence between the two distri-
butions.

34

ChapterII: Feature Extraction

Figure II.14: Dimensionality reduction technique: t-SNE
[49]

II.4.3 Comparison between Features Extraction methods

Figure II.15: Comparison of different Dimensionality Reduction Methods
[50]

35

ChapterII: Feature Extraction

II.5 difference between Feature Selection and Feature Ex-
traction

Figure II.16: comparison between Feature Selection and Feature Extraction
[51]

II.6 Conclusion
In this chapter, we mentioned Dimensionality Reduction and its role in dealing
with big data (which contains many numbers of attributes). DR consists of two
main methods, ‘Features selection and Features extraction’. Both have the main
task, which leads to reduced dataset dimensions. Each technique has different
algorithms that are Probably applied to different datasets. In the next chapter,
we will study feature extraction closely while testing some methods, including
inferring their importance in improving classifier performance

36

Chapter III

Contribution and Implementation

37

Chapter III: Contribution and Implementation

III.1 Introduction
In this chapter, we discuss the crucial process of feature extraction in machine
learning. Feature extraction is a fundamental step that aims to identify and
meaningfully represent the essential information contained in a data set. This
simplifies the complexity of the data while preserving the most relevant aspects
for the construction of efficient models. When working with large or complex
data sets, the presence of many features can be challenging. Feature extraction
aims to select the most informative aspects while eliminating noise or redun-
dancies, making the task of machine learning algorithms easier. In the case
of Malaware detection; the datasets contain observations with missing values,
unequal distribution between classes, and specially a multitude of variables.
The extraction of the characteristics then becomes crucial to prepare the data
for the construction and interpretation of the models. In this chapter, we will
explore the different techniques of feature extraction, focusing on their impact
on model performance. We will evaluate these techniques using several perfor-
mance measures such as accuracy, recall, and we will also consider the time
required for these operations.

III.2 Datasets
Is a valuable resource for researchers interested in studying malware detection
on Android devices. It provides comprehensive information about the different
types of permissions associated with Android apps and can be used to train ma-
chine learning algorithms to detect malicious apps. Among the most important
variables in the dataset are:

• App Permissions: represents the different permissions requested by each
Android app.

• Application type: indicates whether an application is goodware or malware.

• Package name: represents the unique name assigned to each Android app
package.

• File size: the size of the application installation file.

• Minimum version of the SDK: minimum version of Android required for the
application to work.

• Target SDK version: the version of Android for which the application was
developed.

38

Chapter III: Contribution and Implementation

III.2.1 The datasets used
1. DREBIN

Dataset consisting of feature vectors of 215 attributes extracted from 15,036
applications (5,560 malware apps from Drebin project and 9,476 benign
apps)[52], The dataset has been used to develop and evaluate multilevel
classifier fusion approach for Android malware detection.

Figure III.1: DREBIN-215 dataset details

2. TUANDROMD
Tundromd dataset contains 4465 instances and 241 attributes. The target
attribute for classification is a category (malware vs goodware), (N.B: This
is the preprocessed version of Tundromd)[53]

Figure III.2: TUANDROMD dataset details

3. Malgenome
Dataset consisting of feature vectors of 215 attributes extracted from 3799
applications (1260 malware apps from Android malgenome project and 2539
benign apps). The dataset has been used to develop and evaluate multilevel
classifier fusion approach for Android malware detection.[54]

Figure III.3: Malgenome dataset details

39

Chapter III: Contribution and Implementation

III.3 The Implementation Tools
III.3.1 JupyterLab
JupyterLab is the latest web-based interactive development environment for
code, data notebooks. JupyterLab is a simple interface which allows users to
configure and arrange workflows in machine learning, scientific computing, com-
putational journalism, and data science.[55]

III.3.2 Python
Python is an interpreted, object-oriented, high-level programming language with
dynamic semantics, Its high-level built in data structures, combined with dy-
namic typing and dynamic binding, make it very attractive for Rapid Application
Development, as well as for use as a scripting or glue language to connect ex-
isting components together. Python’s simple, easy to learn syntax emphasizes
readability and therefore reduces the cost of program maintenance, Python sup-
ports modules and packages, which encourages program modularity and code
reuse, the Python interpreter and the extensive standard library are available in
source or binary form without charge for all major platforms, and can be freely
distributed [56].

III.3.3 Dataset management (libraries)
The main libraries used in the code are:

⋄ Pandas
Pandas is a popular Python library for data manipulation and analysis. It
provides data structures and functions for efficiently handling and analyzing
structured data, primarily in the form of tables or DataFrames. Pandas is
widely used in data science, data analysis, and data preprocessing tasks[57].
we used this library to store our dataset in memory.

⋄ NumPy
NumPy is a Python library used for working with arrays. It also has func-
tions for working in domain of linear algebra, fourier transform, and matri-
ces, NumPy was created in 2005 by Travis Oliphant, it is an open-source
project and you can use it freely, NumPy aims to provide an array object
that is up to 50x faster than traditional Python lists. NumPy stands for
Numerical Python.[58]

⋄ Matplotlib
Matplotlib is a comprehensive library for creating static, animated, and

40

Chapter III: Contribution and Implementation

interactive visualizations in Python, Matplotlib makes easy things easy and
hard things possible.[59]

⋄ Scikit-Learn
Scikit-Learn is a Python library specialized in Data Science work. It is
an easily accessible, powerful library that fits naturally into the broader
ecosystem of Python-based data science tools.
Scikit-learn provides a variety of supervised and unsupervised algorithms:
[60]

▷ SVC (): A support vector classifier (SVC) from the scikit-learn library
(sklearn) that performs classifications using support vectors in high-
dimensional space.

▷ neighbors.KNeighborsClassifier(): A supervised learning algorithm from
the scikit-learn library (sklearn) that performs classifications based on
the k closest examples in feature space.

▷ tree.DecisionTreeClassifier(): A supervised learning algorithm from
the scikit-learn library (sklearn) that builds a decision tree from train-
ing data to perform classifications

▷ RandomForestClassifier(): A supervised learning algorithm from
the scikit-learn library (sklearn) that builds an ensemble of multiple
decision trees and then uses majority voting to make classifications.

▷ traintestsplit splitting the dataset into training and testing): A func-
tion in the scikit-learn library (sklearn) that allows you to split a
dataset into two distinct parts: a training set used to fit the model
and a training set used to tune the model and a test used to evaluate
the performance of the model.

III.4 Performance Evaluation
Regardless of the type of learning used, after the learning phase, a template will
be created. It is necessary to verify the proper functioning and generalization
of this model. Evaluating the prediction of a model with the same data that
was used for learning is not useful. To properly evaluate a model, it must be
tested on data that was not part of the learning data. Prediction results should
be compared to values of known results.

41

Chapter III: Contribution and Implementation

III.4.1 Validation Methods
To validate learning models correctly, two validation methods are used: sampling
and cross validation.[22]

• Sampling:
Sampling consists of dividing the collected set of data into two parts: one for
learning and the other for testing. Different sampling techniques are used
depending on the nature and size of the data set: random, rejection and
preferential, Figure III.4 shows a simple example of a sample where the
data set of 16 individuals is divided into two equal parts; one for learning
(8 individuals) and one for testing (8 individuals).[61]

Figure III.4: Example on sampling

• Cross-Validation
Cross validation is a technique used in machine learning to evaluate the
performance of a model on unseen data. It involves dividing the available
data into multiple folds or subsets, using one of these folds as a validation
set, and training the model on the remaining folds. This process is repeated
multiple times, each time using a different fold as the validation set. Finally,
the results from each validation step are averaged to produce a more robust
estimate of the model’s performance. Cross validation is an important step
in the machine learning process and helps to ensure that the model selected
for deployment is robust and generalizes well to new data.[61]

42

Chapter III: Contribution and Implementation

Figure III.5: Example on cross validation

III.4.2 Performance Measures
Confusion matrix
A confusion matrix, also called an error matrix, is an N x N matrix used to
evaluate the performance of a classification model, where N is the number of
target classes, The matrix compares the actual target values with those predicted
by the machine learning model, This gives us an overall view of the performance
of our classification model and the types of errors it makes, It has 4 essential
values [61]

Figure III.6: Confusion matrix

According to the confusion matrix: the true positive (VP) indicates the number
of individuals in the validation set who are correctly classified in C1, unlike the
false negative (FN) which indicates the number of individuals in C1 who are
misclassified in C2m A true negative (VN) shows the number of individuals who
are correctly classified in C2 while the false positive (FP) indicates the number of

43

Chapter III: Contribution and Implementation

individuals in C2 who are misclassified in C1, The following is a list of measures
generally adopted for model comparison and validation:

• Accuracy
The accuracy parameter determines the correct prediction rate among all
positive and negative classes.

Accuracy = TP+TN
TP+TN+FP+FN

• precision
This is the proportion of the individuals of ci that were actually correctly
identified by the model.

Precision: = TP
TP+FP

• Recall:
This is the proportion of class Ci individuals that were actually identified
by the mode.

Recall = TP
TP+FN

• F1-score
This is the harmonic mean between precision and recall.

F1 = 2»Precision»Recall
Precision+Recall

III.5 Extraction techniques
• Principal Component Analysis (PCA)

• Singular Value Decomposition (SVD)

• Independent Component Analysis(ICA)

• Kernel PCA (KPCA)

44

Chapter III: Contribution and Implementation

III.6 Experimentations
III.6.1 DATASET DREBIN
Method 01: Principal Component Analysis (PCA)

G1: Decision Tree Classifier G2: K-Nearest Neighbor Classifier

G3: Random Forest Classifier G4: SVM Classifier

The result of the PCA method for Drebin dataset

45

Chapter III: Contribution and Implementation

Best results

Discussion:
Application of PCA on Derbin dataset has improved the performance of classi-
fiers with reduction in the number of attributes (from 15% to 55%) we obtained
the best results:
DecisionTreeClassifier:
With 19 attrubites (15%) among 215, we obtained an F1-Score 95.73% and Ac-
curacy 93.27%
KNeighborsClassifier
With 25 attrubites (20%) among 215, we obtained an F1-Score 98.05% and Ac-
curacy 96.94%
RandomForestClassifier
With 38 attrubites (30%) among 215, we obtained an F1-Score 97.35% and Ac-
curacy 97.78%
SVC
With 70 attrubites (55%) among 215, we obtained an F1-Score 98.6% and Ac-
curacy 97.87%
Method 02: Singular Value Decomposition (SVD)

G1: Decision Tree Classifier G2: K-Nearest Neighbor Classifier

46

Chapter III: Contribution and Implementation

G3: Random Forest Classifier G4: SVM Classifier

The result of the SVD method for Drebin dataset

Best results

Discussion:
The best results with SVD are observed between 15% and 35% of attributs:
DecisionTreeClassifier:
With 19 attrubites 15% among 215, we obtained an F1-Score 95.5% and Accu-
racy 92.97%
KNeighborsClassifier
With 25 attrubites 20% among 215, we obtained an F1-Score 98.05% and Accu-
racy 96.94%
RandomForestClassifier
WIth 38 attrubites 30% among 215, we obtained an F1-Score 97.33% and Ac-
curacy 95.78%
SVC

47

Chapter III: Contribution and Implementation

With 70 attrubites 55% among 215, we obtained an F1-Score 98.37% and Accu-
racy 97.43%
Method 03: Independent Component Analysis(ICA)

G1: Decision Tree Classifier G2: K-Nearest Neighbor Classifier

G3: Random Forest Classifier G4: SVM Classifier

The result of the ICA method for Drebin dataset

48

Chapter III: Contribution and Implementation

Best results

Discussion:
ICA has also improved the performance of the different classifier. We have ob-
tained :
DecisionTreeClassifier:
With 25 attrubites 20% among 215, we obtained an F1-Score 95.84% and Accu-
racy 93.52%
KNeighborsClassifier
With 38 attrubites 30% among 215, we obtained an F1-Score 98.06% and Accu-
racy 96.94%
RandomForestClassifier
With 122 attrubites 95% among 215, we obtained an F1-Score 97.77% and Ac-
curacy 96.45%
SVC
With 58 attrubites 45% among 215, we obtained an F1-Score 98.48% and Accu-
racy 97.61%
Method 04: Kernel PCA (KPCA)

G1: Decision Tree Classifier G2: K-Nearest Neighbor Classifier

49

Chapter III: Contribution and Implementation

G3: Random Forest Classifier G4: SVM Classifier

The result of the KPCA method for Drebin dataset

Best results

Discussion:
With KPCA we have also noticed an improvement in results:
DecisionTreeClassifier:
With 19 attrubites 15% among 215, we obtained an F1-Score 95.86% and Accu-
racy 93.52%
KNeighborsClassifier
With 32 attrubites 25% among 215, we obtained an F1-Score 98.05% and Accu-
racy 96.94%
RandomForestClassifier
With 19 attrubites 15% among 215, we obtained an F1-Score 97.49% and Accu-
racy 96.02%
SVC

50

Chapter III: Contribution and Implementation

With 77 attrubites 60% among 215, we obtained an F1-Score 98.6% and Accu-
racy 97.8%

Synthesis:
the best method according to accuracy, F1 score, and low percentage is Kernel
PCA (KPCA)
F1 Score: 98.6%
Accuracy: 97.8%

Second-Best Method is Independent Component Analysis (ICA) with:
Accuracy: 97.61%
F1 Score: 98.48%

III.6.2 DATASET TUANDROMD
Method 01: Principal Component Analysis (PCA)

G1: Decision Tree Classifier G2: K-Nearest Neighbor Classifier

G3: Random Forest Classifier G4: SVM Classifier

51

Chapter III: Contribution and Implementation

The result of the PCA method for Tuandromd dataset

Best results

Discussion:
Application of PCA on Tuandromd dataset has improved the performance of
classifiers with reduction in the number of attributes (from 5% to 55%) we ob-
tained the best results:
DecisionTreeClassifier:
With 132 attrubites 55% among 215, we obtained an F1-Score 94.23% and Ac-
curacy 90.98%
KNeighborsClassifier
With 12 attrubites 5% among 215, we obtained an F1-Score 97.06% and Accu-
racy 95.49%
RandomForestClassifier
With 48 attrubites 20% among 215, we obtained an F1-Score 97.12% and Accu-
racy 95.49%
SVC
With 84 attrubites 35% among 215, we obtained an F1-Score 97.58% and Accu-
racy 96.8724%

52

Chapter III: Contribution and Implementation

Method 02: Singular Value Decomposition (SVD)

G1: Decision Tree Classifier G2: K-Nearest Neighbor Classifier

G3: Random Forest Classifier G4: SVM Classifier

The result of the SVD method for Tuandromd dataset

Best results

53

Chapter III: Contribution and Implementation

Discussion:
The best results with SVD are observed between 15% and 35% of attributs:
DecisionTreeClassifier:
With 12 attrubites 5% among 215, we obtained an F1-Score 94.12% and Accu-
racy 90.98%
KNeighborsClassifier
With 12 attrubites 5% among 215, we obtained an F1-Score 97.09% and Accu-
racy 95.49%
RandomForestClassifier
With 24 attrubites 10% among 215, we obtained an F1-Score 96.62% and Accu-
racy 94.74%
SVC
With 84 attrubites 35% among 215, we obtained an F1-Score 97.58% and Accu-
racy 96.24%
Method 03: Independent Component Analysis(ICA)

G1: Decision Tree Classifier G2: K-Nearest Neighbor Classifier

G3: Random Forest Classifier G4: SVM Classifier

54

Chapter III: Contribution and Implementation

The result of the ICA method for Tuandromd dataset

Best results

Discussion:
ICA has also improved the performance of the different classifier. We have ob-
tained:
DecisionTreeClassifier:
With 12 attrubites 5% among 215, we obtained an F1-Score 92.93% and Accu-
racy 89.47%
KNeighborsClassifier
With 12 attrubites 5% among 215, we obtained an F1-Score 97.56% and Accu-
racy 96.24%
RandomForestClassifier
With 12 attrubites 10% among 215, we obtained an F1-Score 96.08% and Accu-
racy 93.98%
SVC
With 24 attrubites 10% among 215, we obtained an F1-Score 96.6% and Accu-
racy 94.74%

55

Chapter III: Contribution and Implementation

Method 04: Kernel PCA (KPCA)

G1: Decision Tree Classifier G2: K-Nearest Neighbor Classifier

G3: Random Forest Classifier G4: SVM Classifier

The result of the KPCA method for Tuandromd dataset

Best results

56

Chapter III: Contribution and Implementation

Discussion:
With KPCA we have also noticed an improvement in results:
DecisionTreeClassifier:
With 84 attrubites 35% among 215, we obtained an F1-Score 94.12% and Accu-
racy 90.98%
KNeighborsClassifier
With 12 attrubites 5% among 215, we obtained an F1-Score 97.06% and Accu-
racy 95.49%
RandomForestClassifier
With 24 attrubites 10% among 215, we obtained an F1-Score 97.12% and Accu-
racy 95.59%
SVC
With 84 attrubites 35% among 215, we obtained an F1-Score 97.58% and Accu-
racy 96.24%

Synthesis:
the best method according to accuracy, F1 score, and low percentage is Kernel
PCA (KPCA)
Accuracy: 96.24% F1 Score: 97.58%

Second-Best Method is Independent Component Analysis (ICA) with:
F1 Score: 97.56%
Accuracy: 96.24%

III.6.3 DATASET MALGENOME
Method 01: Principal Component Analysis (PCA)

G1: Decision Tree Classifier G2: K-Nearest Neighbor Classifier

57

Chapter III: Contribution and Implementation

G3: Random Forest Classifier G4: SVM Classifier

The result of the PCA method for Malgenome dataset

Best results

Discussion:
Application of PCA on Malgenome dataset has improved the performance of
classifiers with reduction in the number of attributes (from 5% to 40%) we ob-
tained the best results: DecisionTreeClassifier:
With 10 attrubites 5% among 215, we obtained an F1-Score 96.27% and Accu-
racy 93.91%
KNeighborsClassifier
With 32 attrubites 15% among 215, we obtained an F1-Score 98.17% and Accu-
racy 96.96%
RandomForestClassifier
With 10 attrubites 5% among 215, we obtained an F1-Score 97.45% and Accu-
racy 95.74%

58

Chapter III: Contribution and Implementation

SVC
With 86 attrubites 40% among 215, we obtained an F1-Score 98.77% and Accu-
racy 97.97%

Method 02: Singular Value Decomposition (SVD)

G1: Decision Tree Classifier G2: K-Nearest Neighbor Classifier

G3: Random Forest Classifier G4: SVM Classifier

The result of the SVD method for Malgenome dataset

59

Chapter III: Contribution and Implementation

Best results

Discussion:
The best results with SVD are observed between 5% and 45% of attributs:
DecisionTreeClassifier:
With 10 attrubites 5% among 215, we obtained an F1-Score 96.77% and Accu-
racy 94.73%
KNeighborsClassifier
With 64 attrubites 30% among 215, we obtained an F1-Score 98.29% and Accu-
racy 97.16%
RandomForestClassifier
With 10 attrubites 5% among 215, we obtained an F1-Score 97.32% and Accu-
racy 95.54%
SVC
With 96 attrubites 45% among 215, we obtained an F1-Score 98.65% and Accu-
racy 97.77%
Method 03: Independent Component Analysis (ICA)

G1: Decision Tree Classifier G2: K-Nearest Neighbor Classifier

60

Chapter III: Contribution and Implementation

G3: Random Forest Classifier G4: SVM Classifier

The result of the ICA method for Malgenome dataset

Best results

Discussion:
ICA has also improved the performance of the different classifier. we have ob-
tained :
DecisionTreeClassifier:
With 19 attrubites 85% among 215, we obtained an F1-Score 95.73% and Accu-
racy 95.54%
KNeighborsClassifier
With 25 attrubites 30% among 215, we obtained an F1-Score 98.3% and Accu-
racy 97.16%
RandomForestClassifier
With 38 attrubites 60% among 215, we obtained an F1-Score 97.82% and Accu-
racy 96.35%

61

Chapter III: Contribution and Implementation

SVC
With 70 attrubites 15% among 215, we obtained an F1-Score 98.9% and Accu-
racy 98.17%
Method 04: Kernel PCA (KPCA)

G1: Decision Tree Classifier G2: K-Nearest Neighbor Classifier

G3: Random Forest Classifier G4: SVM Classifier

The result of the KPCA method for Malgenome dataset

62

Chapter III: Contribution and Implementation

Best results

Discussion:
With KPCA we have also noticed an improvement in results:
DecisionTreeClassifier:
With 32 attrubites (15%) among 215, we obtained an F1-Score 96.42% and Ac-
curacy 94.12%
KNeighborsClassifier
With 64 attrubites (30%) among 215, we obtained an F1-Score 98.29% and Ac-
curacy 97.16%
RandomForestClassifier
With 10 attrubites (5%) among 215, we obtained an F1-Score 97.57% and Ac-
curacy 95.94%
SVC
With 86 attrubites (40%) among 215, we obtained an F1-Score 98.9% and Ac-
curacy 98.17%

Synthesis
the best method according to accuracy, F1 score, and low percentage is Kernel
PCA (KPCA)
F1 Score: 98.9%
Accuracy: 98.17%

Second-Best Method is Independent Component Analysis (ICA) with:
Accuracy: 97.97%
F1 Score: 98.77%

III.7 Method proposal
The ICA and KPCA methods have given the best results the next step aims to
test the effect of merging two dimension reduction methods

1. Extraction / Extraction:
In this phase we will do a hypridation of the ICA and KPCA method

63

Chapter III: Contribution and Implementation

according to the architecture illustrated in figure III.31

Figure III.31: proposed method architecture: ICA-KPCA with Best

2. Extraction/Selection
Selection / Extraction
this step aims to marge the ICA method with Information Mutuelle (IM)
selection method which is considered as the best selection method according
to the results obtained in [60],(Figures III.32

64

Chapter III: Contribution and Implementation

Figure III.32: proposed method architecture: IM-ICA with Best

Best results
After combining different methods around 21 times, we arrived at this KPCA
60% followed by ICA on malgenome dataset is the best resultants

Discussion:

In the defferent hybrdation we observed a decrease in classifier performance
classifiers performance compared to the individual methods we have also noted
that feature extraction better than feature selection method.
the feature extraction method have imporved the model perfermence
without lossing important informtion

III.8 Application overview
The “Feature Extractor” application provides a comprehensive platform for an-
alyzing and processing the dataset. It features an easy-to-use user interface with

65

Chapter III: Contribution and Implementation

two primary tabs: “Feature Extraction Application” and “About”.

Tab 1: The application interface titled “Feature Extraction Application” fa-
cilitates dataset selection, feature percentage specification, classifier selection,
feature extraction method selection, and data selection. Users can browse and
select datasets, define range and augment feature percentages, choose classifiers
including DecisionTreeClassifier, KNeighborsClassifier, RandomForestClassifier,
and SVC, select feature extraction methods such as PCA, SVD, ICA, and Ker-
nel PCA, and specify sample data size relative to hybridization methods. The
layout is organized with labels, input fields, checkboxes, radio buttons, and a
“Run” button to perform the feature extraction process. The footer displays
copyright information for the application.

66

Chapter III: Contribution and Implementation

Figure III.33: Interface Application ”Feature Extractor App” Tab

Tab 2: titled ”About” provides an overview of the application’s features and
functionalities. It describes how users can utilize the app for dataset processing,
feature extraction, classification, and result saving. Key features highlighted
include dataset selection via browsing, flexible feature selection parameters such
as start percentage, end percentage, and increment, a variety of classification
algorithms to choose from, feature extraction methods including PCA, SVD,

67

Chapter III: Contribution and Implementation

ICA, and KPCA, options for data selection including using all data or specifying
a sample volume, and the simplicity of initiating the feature extraction and
classification process with the ”Run” button. Additionally, users are informed
about the capability to save analysis results as an HTML file for easy access and
sharing. The footer displays the version information and copyright details of the
application.

Figure III.34: Interface Application ”About” Tab

68

Chapter III: Contribution and Implementation

III.9 Conclusion
In this chapter, we undertook a comprehensive exploration of feature extrac-
tion methods and classification algorithms for Android malware detection. We
meticulously tested various dimensionality reduction techniques, including PCA,
ICA, KPCA, and SVD, to discern their effectiveness in extracting relevant at-
tributes from datasets. Subsequently, we evaluated multiple classification al-
gorithms, such as decision trees, k-nearest neighbors, support vector machines,
and random forests, to gauge their performance in classifying malware instances.
Following these analyses, we pursued a hybridization approach, combining two
feature extraction methods to leverage their respective strengths and enhance
detection capabilities. The results of these hybridization experiments provided
valuable insights into the synergistic effects of integrating multiple techniques.
Lastly, we provided a detailed overview of the application interface, ensuring
clarity and ease of use for users interacting with our system.
Overall, this chapter serves as a pivotal component of our research, laying the
groundwork for subsequent chapters while offering valuable findings and method-
ologies to advance the field of Android malware detection.

69

General conclusion

General conclusion
In this thesis, we deeply investigated the issue of feature extraction in Android
malware detection, using a variety of techniques including Principal Compo-
nent Analysis (PCA), Independent Component Analysis (ICA), Kernel Principal
Component Analysis (KPCA), Singular Value Decomposition (SVD). Here are
the main conclusions from our study:

KPCA has shown superior performance compared to other feature extraction
techniques. Its ability to identify and extract the most relevant features was
impressive, making it an ideal choice for Android malware detection.

Our experiments with PCA and SVD also provided interesting insights, although
these methods did not surpass ICA in terms of overall performance.

By hybrdation ICA and KPCA, we noticed a decrease in classifier performance
compared to the individual methods.

By combining the ICA extraction method and the MI selection method, we also
noticed a decrease in classifier performance compared to the individual methods

These conclusions have significant implications for developing more effective and
reliable malware detection systems on Android platforms. By using feature ex-
traction techniques like ICA. We can enhance user security and mitigate the
risks associated with malicious applications.

As for future research perspectives, we plan to apply our individual approach
of extraction methods to other datasets to evaluate their generalizability, In
addition, we aim to investigate more feature extraction methods and propose new
techniques to reduce the number of features while maintaining detection quality.
By exploring these avenues, we aim to continually improve the performance and
efficiency of malware detection systems on Android devices.

70

Bibliographie

71

Bibliographie

• [1]: Radoniaina Andriatsimandefitra and Ratsisahanana Caract. Caracter-
isation et détection de malware Android basses sur les flux d’information.
Radoniaina Andriatsimandefitra Ratsisahanana.2015.

• [2]: M. Verleysen and D. François, ”The curse of dimensionality in datam
mining and time series prediction,” in International Work-Conference on
Artificial Neural Networks, 2005, pp. 758-770: Springer.

• [3]: Pankaj Gupta, Piyush Kumar, Saksham Wason, and Vishal Yadav.
Operating System. 2(2) :37–46, 2014.

• [4]: Solène LIMOUSIN. Android et ios. https://www.supinfo.com/
articles/single/ 9003-android-ios, 2019. Consulted the Janury 29,2020.

• [5]: Umer Farooq. Android Operating System Architecture. Consulted the
(July) :2–8, 2018.

• [6]: Intents and intent filters https://developer.android.com/guide
/components/intents-filters Consulted the Janury 22,2020.

• [7]: Package. https://developer.android.com/reference/java/lang/Package.
Consulted the Janury 22,2020.

• [8]: Long Nguyen-Vu, Jinung Ahn, and Souhwan Jung. Android Fragmen-
tation in Malware Detection. Computers and Security, 87 :101573, 2019.

• [9]: Bernard Lebel. Analyse de maliciels sur android par l’analyse de la
memoire vive. https://corpus.ulaval.ca/jspui/bitstream/20.500.11794
/29851/1/34353.pdf, 2018. Consulted the Janury 27,2020

• [10]: Jonathan TELLIER À L’Obtention D E La. Technologies de l’information
m. ing. La gestion de l’ identité fédérée et hiérarchique pour le paradigme.
22 DÉCEMBRE 2011

• [11]: Franklin Tchakounte. A Malware Detection System for Android. Jour-
nal of Chemical Information and Modeling, 53(9) :1689–1699, 2015.

• [12]: Dina Saif, S. M. El-Gokhy, and E. Sallam. Deep Belief Networks-
based framework for malware detection in Android systems. Alexandria
Engineering Journal, 57(4) :4049–4057, 2018

• [13]: Abdelmonim Naway and Yuancheng Li. International Journal of Com-
puter Science and Mobile Computing A Review on The Use of Deep Learn-
ing in Android Malware Detection. International Journal of Computer
Science and Mobile Computing, 7(12) :42–58, 2018.

72

Bibliographie

• [14]: Cédric Bertrand. Les malwares sous Android. 2012.

• [15]: Meilleures applications de pare-feu android pour une meilleure sécurité
internet sur les téléphones. https://www.digitalprivatevault.com/blogs/best-
android-firewall-apps-for-better-internet-security-on-phones, 2019. Consulted
the Mars 02,2020.

• [16]: Martin Borek, Gideon Creech, and Unsw Canberra. Intrusion Detec-
tion System for Android: Linux kernel system calls analysis. 2017.

• [17]: What is malware analysis? defining and outlining the process of
malware analysis. https://enterprise.comodo.com/blog/what-is-malware-
analysis/, 2018. Consulted the Juin 06,2020.

• [18]:M. Verleysen and D. François, ”The curse of dimensionality in datam
mining and time series prediction,” in International Work-Conference June
2005

• [19]: Ngoc Bich Dao. Réduction de dimension de sac de mots visuels grâce
à l’analyse formelle de concepts.Traitement des images [eess.IV]. Université
de La Rochelle, 2017. Français. NNT: 2017LAROS010.tel-01753800

• [20]: Guérif, S. (2006). Réduction de dimension en apprentissage numé-
rique non supervisée. PhD thesis, Université Paris 13. [-]

• [21]: H. Hotelling. Analysis of a complex of statistical variables into princi-
pal components. Journal of Educational Psychology, vol. 24, no. 6, pages
417–441,1933.

• [22]: J. R. Quinlan. Induction of Decision Trees. Machine Learning, vol.
1,no. 1, pages 81–106, 1986.

• [23]: D. L. Padmaja and B. Vishnuvardhan, ”Comparative study of feature
subset selection methods for dimensionality reduction on scientific data,” in
2016 IEEE 6th International Conference on Advanced Computing (IACC),
2016, pp. 31-34: IEEE.

• [24]: A. S. Eesa, Z. Orman, and A. M. A. Brifcani, ”A novel feature-selection
approach based on the cuttlefish optimization algorithm for intrusion de-
tection systems,” Expert Systems with Applications, vol. 42, no. 5, pp.
2670-2679, 2015.

• [25]: P. Jindal and D. Kumar, ”A review on dimensionality reduction tech-
niques,” International journal of computer applications, vol. 173, no. 2,
pp. 42-46, 2017.

73

Bibliographie

• [26]: Jiliang Tang, Salem Alelyani and Huan Liu, “Feature Selection for
Classification: A Review”, In Data classification: Algorithms and Applica-
tions, pp. 1-37, 2014.

• [27]: U. M. Khaire and R. Dhanalakshmi, ”Stability of feature selection
algorithm: A review,” Journal of King Saud University-Computer and In-
formation Sciences, 2019.

• [28]: M. Ramaswami and R. Bhaskaran, “A Study on Feature Selection
Techniques in Educational Data Mining”, Journal of Computing, Vol. 1,
No. 1, pp. 7-11, 2009.

• [29]: R. Kohavi and G.H. John, “Wrappers for Feature Subset Selection”,
Artificial Intelligence, Vol. 97, No. 1-2, pp. 273–324, 1997.

• [30]: Zebari et al. / Journal of Applied Science and Technology Trends Vol.
01, No. 02, pp. 56 –70, (2020)

• [31]: Samina Khalid, Tehmina Khalil and Sharmila Nasreen, “A Survey of
Feature Selection and Feature Extraction Techniques in Machine Learning”,
In Proceedings of 46 Conference on Science and Information, pp. 372-378,
2014.

• [32]: Bolón-Canedo, V.; Sánchez-Maroño, N.; Alonso-Betanzos, A. Feature
Selection for High-Dimensional Data; Springer: Berlin/Heidelberg, Ger-
many, 2015.

• [33]: Liu, H.; Setiono, R. Chi2: Feature selection and discretization of nu-
meric attributes. In Proceedings of the 7th IEEE International Conference
on Tools with Artificial Intelligence, Herndon, VA, USA, 5–8 November
1995; pp. 388–391. [CrossRef]

• [34]: Urbanowicz, R.J.; Meeker, M.; La Cava,W.; Olson, R.S.; Moore, J.H.
Relief-based feature selection: Introduction and review. J.Biomed. Inform.
2018, 85, 189–203. [CrossRef]

• [35]: Nasiri, H.; Alavi, S.A.. A novel framework based on deep learning
and ANOVA feature selection method for diagnosis of COVID-19 cases
from chest X-ray images. Comput. Intell. Neurosci. 2022, 2022, 4694567.
[CrossRef] [PubMed]

• [36]: Singh, B.; Kushwaha, N.; Vyas, O.P. A feature subset selection tech-
nique for high dimensional data using symmetric uncertainty. J. Data Anal.
Inf. Process. 2014, 2, 95. [CrossRef]

74

Bibliographie

• [37]: https://www.javatpoint.com/feature-selection-techniques-in
-machine-learning March 07, 2024

• [38]: https://www.kaggle.com/code/prashant111/comprehensive-
guide-on-feature-selection March 11, 2024

• [39]: R. Zebari, A. Abdulazeez, D. Zeebaree, D. Zebari, and J. Saeed, “A
Comprehensive Review of Dimensionality Reduction Techniques for Feature
Selection and Feature Extraction,” J. Appl. Sci. Technol. Trends, vol. 1,
no. 2, pp. 56–70, 2020, doi: 10.38094/jastt1224.

• [40]: https://www.snowflake.com/guides/feature-extraction-machine
-learning/ February 6, 2024

• [41]: I. T. Jolliffe, Principal Component Analysis, Springer, 2nd ed., 2002.

• [42]: https://medium.com/nerd-for-tech/dimensionalityreduction-techniques-
pca-lca-and-svd- f2a56b097f7c February 10, 2024

• [43]: https://medium.com/@manan_7/pca-intuition-behind-it-6629644fee53
March 1, 2024

• [44]: https://blent.ai/blog/a/acp-tout-savoir

• [45]: https://complex-systems-ai.com/analyse-des-donnees/les-techniques-
de-reduction-de-dimension/ March 3, 2024

• [46]: Jutten, 1987 Jutten, Chritian. 1987. Calcul neuromimétique et traite-
ment du signal - Analyse en composantes indépendantes. Thèse d’état,
Institut National Polytechnique de Grenoble.

• [47]: Schölkopf, B., Smola, A., and Müller, K.-R. (1998). Nonlinear compo-
nent analysis as a kernel eigenvalue problem. Neural Computation, 10:1299
1319. [-]

• [48]: https://www.geeksforgeeks.org/isomap-a-non-linear-dimensionality-
reduction-technique/ March 5, 2024

• [49]: https://neptune.ai/blog/dimensionality-reduction April 2, 2024

• [50]: Omprakash Sain ,A Review on Dimension Reduction Techniques in
Data Mining Vol.9, No.1, 2018

• [51]: https://www.geeksforgeeks.org/difference-between-feature-selection-and-
feature-extraction/ April 4, 2024

75

Bibliographie

• [52]: https://figshare.com/articles/dataset/Android_malware_dataset_for
_machine_learning_2/5854653/1?file=10391991 March 4, 2024

• [53]: https://archive.ics.uci.edu/dataset/855/tuandromd+
(tezpur+university+android+malware+dataset) March 5, 2024

• [54]: https://figshare.com/articles/dataset/Android_malware_dataset_
for_machine_learning_1/5854590?file=10391910 March 6, 2024

• [55]: https://docs.jupyter.org/en/latest/, March 10, 2024

• [56]: https://www.python.org/doc/essays/blurb/ March 10, 2024

• [57]: https://medium.com/@trilogicalshelp/pandas-simplifying-
data-manipulation-in-python-affabced5434 April 20, 2024

• [58]: https://www.w3schools.com/python/numpy/numpy_intro.asp March
22, 2024

• [59]: https://matplotlib.org/ March 19, 2024

• [60]: Abdelaziz KEDDARI, Fatma HOUACINE Thèse Détection de mali-
ciels Android: Problème de Sélection d’attributs, Université de Saida, 2022-
2023.

• [61]: Abdelhakim Hannousse and Salima Yahiouche, Handling webshell at-
tacks: A systematic mapping and survey, Computers & Security, Vol. 108,
pp. 1-26, 2021.

76

Abstract
 The diverse growth of Android malware in recent years has led to extensive research in the field of malware analysis

and detection, and theories from a wide range of scientific knowledge areas have been applied to solve this problem.

Algorithms from the machine learning paradigm have been particularly explored, and several feature extraction such as

Principal Component Analysis (PCA), Singular Value Decomposition (SVD), Independent Component Analysis (ICA)

,Kernel PCA (KPCA) and feature selection methods such as Information mutuelle (IM) have been proposed to represent

malware as feature vectors for use in machine learning algorithms. In this paper we present a comparison between

several feature extraction techniques. When examining the results, it was noted that dimensionality reduction

techniques have a positive impact on classification performance in general, especially individual extraction methods

such as Independent Component Analysis (ICA), Kernel PCA (KPCA)

Keywords: Android, feature extraction, feature selection, PCA, SVD, ICA, KPCA, IM, dimensionality reduction, machine

learning.

 ملخص
امج ي مجال تحليل البر

ة إلى إجراء أبحاث مكثفة ف ي السنوات الأخبر
ي تعمل بنظام اندروييد ف

امج الضارة الت أدى النمو المتنوع للبر

الضارة واكتشافها، وتم تطبيق نظريات من مجموعة واسعة من مجالات المعرفة العلمية لحل هذه المشكلة. تم استكشاف

ات مثل)تحليل المكونات الرئيسية، تحليل الخوارزميات من نموذج التعلم الآ اح العديد من استخراج المبر
لىي بشكل خاص، وتم اقب

امج الضارة كموجهات ات مثل)المعلومات المتبادلة(لتمثيل البر القيمة المفردة، تحليل المكونات المستقلة(وطرق اختيار المبر

ي
. نقدم ف ي خوارزميات التعلم الآلىي

ات لـ استخدامها ف ات. عند فحص النتائج مبر هذا البحث مقارنة بير عدة تقنيات لاستخراج المبر

ي على أداء التصنيف بشكل عام، وخاصة طرق الاستخلاص الفردية مثل تحليل لوحظ أن تقنيات تقليل الأبعاد لها تأثبر إيجابر

 المكونات المستقلة.

ات، تحليل المكونات الرئيسية، تحليل القيمة المفردة، تحليل الكلمات المفتاحية: ات، اختيار المبر أندرويد، استخلاص المبر

 . المكونات المستقلة، المعلومات المتبادلة، تقليل الأبعاد، التعلم الآلىي

Résumé
La croissance diversifiée des logiciels malveillants Android au cours des dernières années a conduit à des recherches

approfondies dans le domaine de l'analyse et de la détection des logiciels malveillants, et des théories issues d'un large

éventail de domaines de connaissances scientifiques ont été appliquées pour résoudre ce problème. Les algorithmes du

paradigme d'apprentissage automatique ont été particulièrement explorés, et plusieurs extractions de fonctionnalités

telles que Analyse en composantes principales (PCA), Décomposition en valeurs singulières (SVD), Analyse en

composants indépendants (ICA), PCA du noyau (KPCA) et des méthodes de sélection de fonctionnalités telles que as

mutuelle Information (MI) ont été proposés pour représenter les logiciels malveillants comme vecteurs de

fonctionnalités à utiliser dans les algorithmes d'apprentissage automatique. Dans cet article, nous présentons une

comparaison entre plusieurs techniques d’extraction de caractéristiques. Lors de l'examen des résultats, il a été noté

que les techniques de réduction de dimensionnalité ont un impact positif sur les performances de classification en

général, en particulier les méthodes d'extraction individuelles telles que l'analyse en composants indépendants (ICA), la

PCA du noyau (KPCA).

Mots clés: Android, extraction de fonctionnalités, sélection de fonctionnalités, ACP, SVD, ICA, KPCA, MI, réduction de

dimensionnalité, apprentissage automatique.

