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ABSTRACT

Abstract

Cloud computing provides scalability and cost-efficiency but poses risks like internet dependency

and security vulnerabilities. Fog computing decentralizes resources to the network edge, enhanc-

ing latency, bandwidth efficiency, and real-time data processing, ideal for low-latency applications

compared to centralized cloud models. Ensuring data consistency in this environment, partic-

ularly when accessing files with multiple replicas, requires access to the most recent version.

We propose a strategy that improves this process by focusing on user access to specific parts

of a file rather than the entire replica. By dividing files into blocks, each containing a specific

version, users can access the latest version of only the required block, enhancing data consistency,

performance, and availability in a distributed file system within the Fog Computing environment.

To achieve this, we implemented rigorous synchronization methods. We explored both centralized

and distributed approaches for managing data synchronization, detailing a process that allows

efficient access to the latest available file version. This strategy ensures that users consistently

access the most recent data, optimizing system performance and enhancing the overall user

experience.

Résumé

Le Cloud Computing offre évolutivité et rentabilité, mais présente des risques comme la dépen-

dance à l’internet et des vulnérabilités de sécurité. Le Fog Computing décentralise les ressources

vers la périphérie du réseau, améliorant la latence, l’efficacité de la bande passante et le traite-

ment des données en temps réel, idéal pour les applications à faible latence par rapport aux

modèles cloud centralisés. Assurer la cohérence des données dans cet environnement, en partic-

ulier lors de l’accès à des fichiers avec plusieurs répliques, nécessite d’accéder à la version la plus

récente. Nous proposons une stratégie qui améliore ce processus en se concentrant sur l’accès

des utilisateurs à des parties spécifiques d’un fichier plutôt qu’à l’intégralité de la réplique. En

divisant les fichiers en blocs, chacun contenant une version spécifique, les utilisateurs peuvent

accéder à la dernière version du seul bloc requis, améliorant ainsi la cohérence des données, la

performance et la disponibilité dans un système de fichiers distribué au sein de l’environnement

Fog Computing. Pour y parvenir, nous avons mis en œuvre des méthodes de synchronisation
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rigoureuses. Nous avons exploré des approches centralisées et distribuées pour gérer la syn-

chronisation des données, détaillant un processus permettant un accès efficace à la dernière

version disponible des fichiers. Cette stratégie garantit que les utilisateurs accèdent toujours aux

données les plus récentes, optimisant les performances du système et améliorant l’expérience

utilisateur globale.
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1
GENERAL INTRODUCTION

1.1 Introduction

1.1.1 Context

C loud computing has revolutionized data and application management by providing

scalable resources and services via the internet, offering benefits like cost efficiency and

scalability. However, it suffers from drawbacks such as latency and bandwidth issues due

to centralized data centers, which can hinder real-time applications and increase vulnerability to

cyber-attacks.

In contrast, fog computing extends cloud capabilities to the network edge, closer to users. This

proximity enables faster data processing, reduces latency, and supports real-time applications like

IoT and autonomous vehicles. By processing data locally, fog computing minimizes bandwidth

demands on central servers and enhances security and reliability through its decentralized

architecture. A critical aspect of fog computing is data replication, which involves strategically

duplicating data across distributed nodes to enhance system efficiency and reliability. This

decentralized approach reduces latency, improves fault tolerance, and optimizes performance.

Dynamic replication strategies adapt to changing conditions, and consistency models ensure

data synchronization. Security measures are essential to protect replicated information, making

data replication vital for achieving optimal performance and responsiveness at the network edge.

In this thesis we will present our strategy for ensuring data consistency in a Fog Computing

environment. Our objective is to ensure that each user always accesses the most recent version

of the files. To achieve this, we ensure that users access the latest files through rigorous syn-

chronization methods. Our approach involves dividing the replica into blocks, with each block

containing a specific version.We propose two solutions: centralized and distributed. In the cen-
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tralized approach each fog node will begin by calculating its local ideal vector based on the data

replicas it holds, ensuring local consistency without constant communication with other nodes.

This local ideal vector will then be sent to the cloud. The cloud, upon receiving the local ideal

vectors from all fog nodes, will calculate a global ideal vector, providing a consolidated view of the

system’s state and facilitating the detection of inconsistencies and anomalies. The global ideal

vector will then be sent back to all fog nodes to start the updating process. The synchronization

can be triggered in three ways: a method based on the number of modifications, a periodic method,

or a hybrid synchronization method. In a distributed synchronization approach, fog nodes will

communicate directly with each other to avoid latency and bandwidth issues associated with

centralized synchronization. Each fog node will construct a matrix reflecting the local data state,

calculate a local ideal vector, and exchange these vectors with other nodes. Upon receiving the

local ideal vectors from other nodes, each fog node will construct a global ideal vector, ensuring a

coherent view of the data across all nodes. Finally, after verifying the completeness of the received

vectors, each node will update its data to align with the global ideal vector, ensuring system-wide

consistency.

To evaluate our strategy, we extended the IFogSim simulator to facilitate comparative anal-

yses of distributed and centralized strategies. We conducted multiple series of experiments

to gather data, analyze results, and interpret findings. Key metrics including execution time,

energy consumption, and network usage are evaluated under varying conditions. This thesis is

structured into four main chapters, summarized as follows:

1.2 Organization work

Our thesis consists of four chapters:

Chapter 01: In this chapter, we discussed cloud computing and its disadvantages, as well as fog

computing and its advantages.

Chapter 02: Focus on data replication in fog computing, detailing how it strategically duplicates

data across distributed nodes to enhance system efficiency, reliability, and consistency in

distributed computing environments.

Chapter 03: This chapter will provide a detailed description of our proposed strategy.

Chapter 04: This final chapter will outline the implementation steps of the proposed approach.

We will detail the evaluation study of this strategy. Experimental results will be interpreted.

Finally, a summary and perspectives will conclude our work.

2
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2
CLOUD AND FOG COMPUTING

2.1 Introduction

Fog computing infrastructures play a crucial role in the Internet ecosystem. Leveraging

their robust storage and computational capabilities, coupled with their proximity to

end-users, they enable the processing of data close to its point of origin. This chapter

serves to provide comprehensive definitions and explanations of key concepts utilized throughout

this thesis. Additionally, it offers a detailed exploration of the evolution necessary to establish

the fog computing infrastructure as we recognize it today.

2.2 Cloud computing

Cloud computing is an evolution of cluster and grid computing, which originally centralized

resources for high-performance computing. The other advantage of cloud computing is its layered

architecture that allows customers to purchase services at different levels of abstractions com-

monly known as IaaS, PaaS and SaaS [16]. Software as a Service (SaaS) delivers customer-facing

applications like accounting software, database applications, and email services, with users

interacting with the software without managing the underlying technical infrastructure of the

cloud. Platform as a Service (PaaS) furnishes a development platform for application developers,

offering programming environments and tools to create applications. Users have the ability

to develop applications using these tools and configure and manage the technical aspects of

the cloud platform. Infrastructure as a Service (IaaS) provides cloud infrastructure services

such as managing servers, storage, and network devices. Users of IaaS have the flexibility to

3
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manage, modify, or configure the cloud infrastructure according to their specific requirements.

Though cloud computing has so many advantages, it also suffers from certain shortcomings too.

These shortcomings include the requirement of high capacity (bandwidth) client access link, high

latency and security. [17][9][12]

2.3 Disadvantages of Cloud Computing

2.3.1 The Bandwidth:

The bandwidth required to move this to the Cloud is enormous, and the costs would be so

significant that it is more advantageous to purchase the storage ourselves rather than pay

someone else to handle it.

2.3.2 Security:

Storing data in the cloud can pose security issues, as the data is stored on third-party servers

that may be vulnerable to hacker attacks. Companies must take additional security measures to

protect their data.

2.3.3 Availability:

Cloud computing relies on Internet availability. If your Internet connection is down, you cannot

access your data stored in the cloud.

2.3.4 Costs:

Although cloud computing can be cost-effective, it depends on how you use it. If you use a lot

of data, costs can quickly increase. Dependency on the Provider: When using cloud computing,

you rely on the cloud service provider to store and manage your data. If the service provider

experiences downtime or ceases its operations, you may lose access to your data. Confidentiality:

Data stored in the cloud is often accessible to other users of the same cloud service. Companies

must take measures to protect their sensitive and confidential data.

2.4 Fog computing

fog computing is a decentralized computing infrastructure that extends the capabilities of cloud

computing by bringing computation, storage, and networking resources closer to the edge of the

network, typically within the proximity of end-users and IoT devices. This architecture enables

faster data processing, reduced latency, and improved efficiency by distributing computing

tasks across a network of edge devices and fog nodes. Fog computing is more advanced and its

performance better than cloud computing for handling user requests and emerging standards [20].
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The term "Fog Computing" was introduced by the Cisco Systems as new model to ease wireless

data transfer to distributed devices in the Internet of Things (IoT) network paradigm [8][4]. Thus

fog computing can provide better quality of service in terms of delay, power consumption, reduced

data traffic over the Internet etc [5]. Other similar concepts where the computing resources have

been proposed to be located closer to the users to overcome the limitations of cloud computing

include cloudlets and edge computing [14][1].

2.5 Characteristics of Fog Computing

• Low inertness, edge area and area mindfulness: Fog processing arrangement better admin-

istrations to end clients at the edge of the network.

• Geographical Distribution: Fog computing application, objective, and services are widely

distributed.

• Real time interactions: speedy services need real time interaction in Fog computing.

• Heterogeneity: Fog computing supports heterogeneous devices and support nodes in a wide

variety of environments.

• Interoperability: Fog gives a wide range of services so for that purpose Fog devices incorpo-

rate for streaming of services [10].

• Scalability: The cloud might become the bottleneck if the data generated by end devices are

constantly transferred to it [3].

2.5.1 The functioning of fog computing

Fog nodes are installed near IoT (Internet of Things) devices or users that generate data. These

nodes can be routers, switches, gateways, or IoT devices. Data is gathered from sensors, IoT

devices, or nearby users, and then processed on local Fog nodes. Fog nodes can also store data

locally to reduce latency and improve availability. Processed data can be transferred to the cloud

for long-term storage, analysis or further processing. Fog computing applications are designed to

run on local Fog nodes, rather than on remote servers in the cloud. This allows for a faster and

more efficient response to data processing requests. Fog nodes can be managed and monitored

remotely from a Fog management center, which can be located in the cloud or on-premises.
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Figure 2.1: fog computing.

2.6 Cloud computing vs fog computing

Cloud computing is infrastructure based and required hardware and software to manage task

and processing where Fog utilizes resources of devices on edge but it will not replace cloud

computing at present time, which is top of all business and provide employment to the world. It

was concluded that cloud computing and Fog computing have own characteristics to process data

burdens and preferences but are the supplement to each other [18] In this section Fog and cloud

computing comparison is given in table 2.1:

[11]
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2.7. CONCLUSION

Parameters Fog Computing Cloud Computing
Goal Enhance proficiency

and execution of
process that should be

transported to the
cloud for handling,
investigation and

storage

Give a request of
greatness change in
the practical, powerful
provisioning of IT
administrations

Abstraction Level High High
scalability Degree High High
Support of Multitask Yes Yes
Transparency Level High High
Run time Real time services Real time services
Transmission Device to device Device to Cloud
Infrastructure Flexible 3 models (PaaS, IaaS,

SaaS)
Resource Unlimited Unlimited
Type of service CPU, network,

memory, bandwidth,
device, storage

IaaS, PaaS, SaaS,
Everything as a
service

Number of users Unlimited Unlimited
Security Possible, determined Undefined
Response Time Low
High

Low High

Table 2.1: Fog vs Cloud Computing.

3

2.7 Conclusion

Fog computing represents a major evolution in distributed computing, bringing data processing

closer to the network edge to meet the requirements of modern applications. Its benefits include

faster processing, reduced latency, and better resilience to network outages. However, it poses

challenges in terms of managing distributed resources, data consistency, and security. Despite

this, its potential to enhance performance and efficiency of applications makes it a promising

technology for the future of distributed computing.
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3
DATA REPLICATION AND CONSISTENCY

3.1 Introduction

In fog computing , data replication involves strategically duplicating data across distributed

nodes to enhance system efficiency and reliability. This decentralized approach reduces la-

tency, improves fault tolerance, and optimizes performance. Dynamic replication strategies

adapt to changing conditions, while consistency models govern data synchronization. Security

measures are crucial for safeguarding replicated information. Overall, data replication in Fog

Computing plays a pivotal role in achieving optimal performance and responsiveness at the

network edge.

3.2 Definition

Data replication (duplication of data across multiple nodes) is an effective solution for achieving

good performance and better data availability. The main objective of replication is to facilitate

access to data, while increasing availability, either because the data is copied to different sites

allowing requests to be distributed, or because a site can take over when the main server collapses.

Parallel processing of access requests improves performance by letting users access data in a

neighboring node to avoid accessing data in a remote site. Replication also provides better failure

resilience and response time [13].
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3.3 Types of replication

3.3.1 Synchronous replication

In fog computing, synchronous replication ensures that when a transaction updates a primary

replica, all of its secondary replicas are also updated in the same transaction. This ensures that

all data is kept at the same update level, ensuring that the latest version of the data is provided

regardless of which replica is accessed. Disadvantages of synchronous replication in the context

of fog computing include the need to manage resource-intensive transactions and the complexity

of a site’s failure management algorithms. This is why asynchronous replication is often preferred

in fog computing.

3.3.2 Asynchronous replication

In fog computing, asynchronous replication implies that certain local sub-operations carried out

following a global update are accomplished in independent transactions and deferred in time.

Copy update transactions can be initiated as soon as possible or at predetermined times, such as

evenings or weekends. The advantage of asynchronous replication in fog computing is the ability

to update data at selected times, while allowing access to previous versions before upgrading.

However, access to the latest version is not guaranteed, which can be a disadvantage in certain

situations.

3.3.3 State-Based Approach

In this approach, the source replica is updated first. Then, the subsystem transmits the state of

the updated replica to all other replicas by merging the delivered state with the local state of

each replica. This ensures that all replicas are aligned with the most recent version of the data.

3.3.4 Operation-Based Approach

In this approach, the subsystem sends the update operation and its parameters to all replicas.

Each replica then executes the operation locally to update its own data based on the provided

parameters. This approach is often used when update operations are complex or when data needs

to be updated transactionally across all replicas.

3.4 Advantages of replication

An improvement in reliability or operational safety:

• If one copy fails, it is still possible to obtain the data from another copy.
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• Redundancy provides better protection against file corruption.

An enhancement in performance:

• Distributing the workload among multiple servers.

• Geographic scalability by bringing servers closer to clients.

Data availability:

• Data is available locally rather than through network connections; it is accessible

locally even in the absence of a connection to a central server, ensuring users are not

cut off from their data in case of long-distance network connection failure.

Response time:

Replication improves polling request response times for two reasons:Requests are

processed on a local server without access to a wide area network, which accelerates

throughput. Furthermore, local processing reduces the load on the central database

server, which makes it possible to use less processor.

3.5 Replication issues

Despite all the advantages it provides, the replication technique raises a certain number of

problems which we will address briefly in what follows [6].

Choice of data to replicate:
Determine which data should be replicated on fog nodes to ensure adequate availability and

performance. Degree of replication: Define how many replicas of each data should be created to

ensure sufficient availability and resilience of the system. Replication timing:
Choose the optimal time to replicate data based on the system workload and availability require-

ments.

Replica placement:
Determine where to place replicas in the fog to ensure optimal response times and efficient

resource utilization.

Management of replica consistency:
Ensure data consistency among different replicas distributed across the fog, despite updates and

distributed read/write operations. System partitioning: Manage network failures or partitions to

ensure that data replicas converge to a consistent state and maintain system availability.
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Choice of the best replica:
Select the best replica from a data consistency perspective during query processing to ensure

accurate and reliable results.

3.6 Data Consistency Challenges and Approaches in Distributed
Computing Environments: Grids, Cloud, and Fog Computing

3.6.1 Grid Computing

In recent years, there has been a significant increase in the volume of information processed,

necessitating the development of large-scale networks and the geographical distribution of in-

formation worldwide. Consequently, researchers have conceptualized grids that leverage the

computing power and storage capacity of multiple processing units interconnected by networks.

In a grid, databases are numerous, autonomous (under strict local control), and highly hetero-

geneous in terms of size and complexity. Additionally, client stations can be mobile terminals

that work in offline mode and occasionally synchronize with the databases on the network. Data

management in such a context presents significant challenges, as techniques must scale while

supporting new needs related to data autonomy, heterogeneity, and node mobility within the grid.

Maintaining data consistency is one of the primary tasks in designing and managing databases.

In a centralized system, this task is relatively easy because the data is located in a specific

place, and updates are performed locally without competition, simplifying data management.

However, in large-scale distributed systems like grids, managing consistency becomes challenging

because data is distributed across geographically distant sites. The databases are fragmented

across these sites, with some being replicated in multiple locations. These sites are intercon-

nected, forming a network, and communicate via messages. Regardless of the chosen architecture,

updates are performed through remote queries, and read/write requests are concurrent. Thus,

update propagation time, fault tolerance, and concurrency management must be considered.

Effective methods are needed to maintain data consistency during updates. In a grid, replication

improves data availability and access performance. Generally, replicated data must meet two

important quality criteria: freshness and consistency with the base data. Consistency is ensured

when all copies of a data item are identical at any given moment. However, ensuring replica

consistency in grids is a significant challenge. Numerous studies have been conducted in this area,

revealing that maintaining strong replica consistency is costly in terms of system performance.

To preserve performance, consistency must be relaxed, making the trade-off between consistency

and performance a persistent challenge to overcome.
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3.6.2 Cloud

Data storage in the Cloud requires a reliable and appropriate infrastructure to ensure that all

resources can be used and shared efficiently, thereby reducing issues related to data consistency.

Consistency management is defined as the control of access to provide a view that abstracts

replication, distribution, and concurrent access to shared data. Effective management of data

copies in terms of update propagation is necessary. The overhead induced by maintaining this

consistency can significantly impact system performance. Therefore, it is crucial to ensure the

mutual consistency of a set of replicas within acceptable timeframes. There are two types of

consistency:

••• Strong Consistency: Replicas exhibit strong consistency when any query to any copy reflects

the result of all previous modifications.

• Weak Consistency: Replicas exhibit weak consistency if it is tolerated that a query may not

reflect all previous modifications, with the guarantee that all changes will eventually be

propagated within a finite period.

3.6.3 Fog Computing

Data consistency in the context of Fog Computing is a critical aspect to consider in distributed

environments. Fog Computing extends the capabilities of Cloud Computing by deploying compu-

tational, storage, and processing resources closer to the network edges, thereby reducing latency

and improving data usage efficiency. However, replicating data across multiple nodes in a Fog

Computing environment introduces specific challenges regarding consistency. Here are some key

points regarding data consistency in Fog Computing:

• Low Latency: Fog Computing can support real-time services (e.g., gaming, video stream-

ing) by ensuring low latency.

• Geographical Distribution and Large Scale: Fog Computing can provide distributed

computing and storage resources for large-scale and widely distributed applications [2].

Data consistency must be managed considering this distribution to ensure a unified and

coherent view.

• Flexibility and Heterogeneity: Fog Computing enables collaboration across different

physical environments and infrastructures among multiple services [19]. Consistency

strategies must be adapted to account for this heterogeneity.

• Bandwidth Constraints: Some Fog nodes may have bandwidth constraints. Consistency

mechanisms must minimize bandwidth usage while ensuring data consistency.

13



`CHAPTER 3. DATA REPLICATION AND CONSISTENCY

Data consistency in Fog Computing requires a thoughtful approach, taking into account

the specific characteristics of this distributed environment. Designers must choose appropriate

consistency models, replication mechanisms, and conflict management strategies to meet the

requirements of applications and end-users.

3.7 Conclusion

In conclusion, data replication in fog computing presents a pivotal strategy for enhancing data

availability, reliability, and performance in distributed edge environments. By strategically

duplicating data across fog nodes, organizations can mitigate latency, improve fault tolerance, and

ensure seamless access to critical information. However, effective data replication strategies must

consider factors such as network bandwidth, storage capacity, and data consistency requirements

to optimize resource utilization and minimize overhead. As fog computing continues to evolve,

innovative approaches to data replication will play a crucial role in maximizing the efficiency and

resilience of edge computing infrastructures.
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STRATEGY PROPOSED

4.1 Introduction

In the evolving context of Fog Computing, effective management of replicated data is

crucial for ensuring the availability, reliability, and consistency of distributed data. This

chapter focuses on a key strategy to address this challenge: managing the coherence of

replicated data across various Fog Computing nodes. This approach aims to optimally synchronize

files among the different entities of Fog Computing, including edge devices. By ensuring this

synchronization, it allows users to always access the most recent and accurate version of the

data, regardless of their location within the extended Fog network.

4.2 Objective

The primary objective of this strategy is to ensure that each data copy, replicated across various

nodes in the Fog network, is systematically updated with the most recent version of information.

This guarantees complete and coherent synchronization of files among all entities in the Fog

Computing environment. By maintaining this rigorous synchronization, the strategy aims to

provide a smooth, reliable, and uninterrupted user experience, allowing users to access the most

up-to-date data in real time, regardless of their location within the distributed Fog network.
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4.3 Strategy Proposed

When a user wants to access a file with multiple replicas, it is imperative to ensure access to

the most recent version available. This requirement may necessitate synchronization among

different Fog Computing nodes to retrieve the latest version. To improve this process, we propose

a strategy based on the idea that users often need to access a specific part of the file rather

than the entire replica. Our approach involves dividing the replica into blocks, with each block

containing a specific version. Consequently, it is not necessary to access the most recent version of

the entire file, but only the required block. Thus, the user can access the latest version of the part

of the file they wish to view. This approach improves data consistency in a distributed file system

within the Fog Computing environment while optimizing data performance and availability. The

proposed strategy focuses on the following key elements:

• File Version Management: Files are associated with specific versions, and their version

number is incremented with each modification, whether it is the addition, deletion, or

modification of blocks.

• Block Version Management: For each modified data block, version numbers are incre-

mented individually, allowing their evolution to be tracked autonomously.

4.4 Request processing

4.4.1 Read requests

When a Fog node receives a read request, the process of handling these requests can be detailed

as follows:

1. Data Localization: Ensure that data is stored on appropriate Fog nodes, ideally dis-

tributed geographically to minimize latency for end users. This strategic data distribution

allows for a quick response to user requests by reducing transmission delays.

2. Block Version Management: Implement a block version management system to track

data modifications. In a blockchain-like architecture, each new version of data results in

the addition of a new block to the chain. The most recent version of the data is always

stored in the latest block, enabling quick access to the latest information.

3. Processing Read Requests:

(1) Receiving the Read Request: When a read request is received by the local Fog

node, it triggers the processing to retrieve the requested data. The Fog node acts as

an intermediary between the end user and the distributed storage system.
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(2) Consulting the Head of the Blockchain: The local Fog node consults the head of the

blockchain to identify the most recent block. The head of the blockchain corresponds

to the last block added, containing the most recent data. This step is crucial to ensure

that the user receives the current version of the data.

(3) Data Retrieval: Once the most recent block is identified, the local Fog node retrieves

the data from this block. Depending on the structure of the blockchain (e.g., a tree

structure), the Fog node might need to navigate through this structure to extract the

specific requested data.

4. Data Transmission to the User: Once the data is retrieved, the local Fog node transmits

it to the user who issued the read request. Data transmission must be conducted through

secure communication protocols to ensure the integrity and confidentiality of the data

during the transfer.

5. End of the Request: After transmitting the data to the user, the read request is considered

complete. The local Fog node is then ready to process other requests or perform other tasks.

4.4.2 Write Requests

The process of handling write requests in a fog computing environment, particularly when

updating data in a blockchain, can be described in detail as follows:

1. Receiving the Write Request: When a write request is received by the local Fog node, the

processing begins to update the data. This initial step involves receiving and acknowledging

the user’s request to modify the data.

2. Consulting the Head of the Blockchain: The local Fog node consults the head of the

blockchain to identify the most recent block, which contains the latest version of the data.

The head of the blockchain is the reference point for the current state of the data.

3. Validating the Request: Before updating the data, the request is validated to ensure

that the appropriate rules and permissions are followed. This step involves verifying access

rights and compliance with security and data management policies.

4. Updating the Data in the Existing Block: Once the request is validated, the local Fog

node proceeds to update the data directly in the most recent block. This may involve adding,

modifying, or deleting existing information in this block. The update is done in a manner

that ensures the integrity and consistency of the data.

5. Incrementing the Block Version: After updating the data in the existing block, the block

version is incremented to reflect the changes made. This can be achieved by incrementing
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a version number or adding a version indicator to the block itself, ensuring that the most

recent version of the data is always easily identifiable.

4.5 Management of Available Blocks and Waiting States

The process begins by initializing and then verifying if a local replica of the recent data block

exists. If a local replica is found, the block is accessed directly. If not, the system enters a waiting

state where it periodically checks for the block’s local availability. During this waiting state, if

the block becomes available locally, it is accessed immediately. If the block is still not found and a

timeout occurs, the system checks for the block in neighboring fogs. If a neighboring fog has the

replica, the block is accessed via connection to that fog. If no replica is found in the neighboring

fogs, the process finishes. This loop continues until the block is successfully accessed or the

process concludes, prioritizing local access, followed by periodic rechecks, and finally attempting

to access from neighboring fogs if necessary.
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Figure 4.1: processing requests.
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4.6 Synchronization

Synchronization between replicas containing versions in Fog Computing refers to the coordination

process aimed at aligning the different versions of replicated data distributed across the nodes

in the Fog network. This synchronization ensures that each replica has the latest version of

the data, thereby ensuring consistency and up-to-date information throughout the distributed

system. Synchronization between replicas in Fog Computing can indeed vary depending on the

desired or required level of consistency for the distributed data. This consistency can be classified

into several levels, generally described as strong, medium, and weak:

• Strong Consistency:
"Read One Write All" (ROWA) is a data consistency model in distributed systems where
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any write made to one data replica must be propagated to all other replicas before any

subsequent read can occur.

• Medium Consistency:

In distributed systems, medium consistency involves regular synchronization of data

between replicas, thereby reducing the risk of divergence between versions.

• Weak Consistency:

Weak consistency allows delays in the propagation of updates between replicas, permitting

temporary differences between distributed copies. This can lead to different or outdated

results when reads are performed on different replicas within a given time frame.

4.6.1 Synchronization Methods

Data synchronization of replicated data in distributed environments such as Fog Computing is

essential to ensure data consistency and accessibility. Three main approaches are often used to

manage this synchronization effectively.

• Periodic Synchronization: Implement scheduled synchronization at regular intervals or

triggered by an event between replicated nodes.

• Modification-Based Synchronization: Define a modification threshold for each node.

When a node reaches this threshold, it triggers synchronization with other nodes to dissem-

inate the changes. This reduces the frequency of synchronizations while ensuring data is

regularly updated based on node activity.

• Hybrid Synchronization: In this approach, both scheduled synchronizations at regular

intervals and synchronizations triggered by specific events (such as reaching a modification

threshold on a node) are used. The idea is to leverage the advantages of both methods: peri-

odic synchronization maintains regular data updates, ensuring overall system consistency

at predefined intervals, while modification-based synchronization responds reactively to

changes. This hybrid approach provides an efficient and precise solution for determining

the optimal timing of file version synchronization in a Fog environment. By considering

both the frequency of modifications and an optimal synchronization period, it becomes

possible to effectively determine the ideal timing for synchronization.
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Figure 4.2: Hybrid synchronization.

9

4.6.2 Adaptive Synchronization Strategies in Fog Computing Environments

To ensure data consistency and reliability in a distributed environment, we implement a syn-

chronization process at the level of each Fog node. Within this framework, we represent versions

of different replicas in a matrix, where rows correspond to data block versions and columns to

different replicas. After each read request, the block version remains unchanged, while a write

request increments the block version. Our goal is to optimize this process to minimize impact

on user network access. During synchronization, user access is temporarily blocked to ensure

consistent and efficient data updates. With this aim, we propose two synchronization methods:

centralized and distributed.
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4.6.3 Centralized synchronization

In this framework of centralized synchronization, Fog nodes communicate with a central entity,

often the Cloud, to ensure data consistency across the entire network. During this process, user

access to Fog nodes and the Cloud is restricted, thereby ensuring that operations proceed in a

controlled and secure manner.
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Figure 4.3: centralized synchronization in the fog.
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Figure 4.4: centralized synchronization in the fog.

4.6.3.1 Synchronization Triggering

• Modification-Based Method: When a Fog node detects that the number of modifications

to a block reaches a predefined threshold, it sends its local ideal vector to the Cloud. Upon

receiving this vector, the Cloud triggers a global synchronization by requesting other Fog

nodes to construct and send their local ideal vectors.

• Periodic Method: If synchronization is scheduled to occur at regular intervals, the first

Fog node to reach the predefined interval sends its local ideal vector to the Cloud. Upon

receiving this vector, the Cloud initiates the same procedure, requesting other Fog nodes to

construct and send their local ideal vectors.
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4.6.3.2 Synchronization Process

• Process on Fog Nodes:

1. Calculation of the Local Ideal Vector: Each Fog node calculates its local ideal

vector based on the replicas it holds. These replicas contain the versions of the data

blocks, thus ensuring local consistency without requiring constant communication

with other nodes.

2. Sending the Local Ideal Vector to the Cloud: Once calculated, each Fog node

sends its local ideal vector to the Cloud.

3. Reception of the Global Ideal Vector from the Cloud.

4. Initiation of the Update.

• Process on the Cloud:

1. Reception of Local Ideal Vectors from Fog Nodes: The Cloud receives the local

ideal vectors from all Fog nodes. This centralization of data allows for a compre-

hensive analysis of the system’s state, facilitating decision-making and performance

optimization.

2. Calculation of the Global Ideal Vector: Using the received local ideal vectors, the

Cloud calculates a global ideal vector. This ensures a consolidated and accurate view

of the system’s state, which can help in detecting inconsistencies and anomalies.

3. Sending the Global Ideal Vector to Fog Nodes: Once calculated, the global ideal

vector is sent to all Fog nodes.

• Advantages:

1. Global Data Consistency: By centralizing the synchronization process around a

central entity, typically the Cloud, centralized synchronization ensures global data

consistency across the entire network.

2. Ease of Management: By concentrating the coordination and management of data

within the Cloud, centralized synchronization simplifies the supervision and adminis-

tration of the system, thereby reducing operational complexity.

• Disadvantages:

1. Potential Latency: Data exchanges between Fog nodes and the Cloud can cause de-

lays, especially in environments where latency is crucial. This situation can negatively

impact real-time performance and system responsiveness.

2. Bandwidth Requirements: Frequent communication between Fog nodes and the

Cloud requires adequate bandwidth, which can become an obstacle in large-scale

networks or environments where connectivity is limited.
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4.6.4 Distributed synchronization

In distributed synchronization, Fog nodes communicate directly with each other to avoid issues

posed by centralized synchronization, such as latency and bandwidth consumption. This process

involves temporarily blocking user access to ensure data consistency. Here’s how it unfolds:

• Application of Synchronization Method:
Each Fog node applies an appropriate synchronization method, either based on a periodic

time interval or triggered by a certain number of modifications.

• Construction of the Matrix:
During this process, each Fog node constructs a matrix based on the replicas and versions

of the data blocks it holds. This matrix reflects the local state of the data.

• Calculation of the Local Ideal Vector:
After constructing the matrix, each Fog node calculates a local ideal vector, representing

the optimal state of the data based on available local information.

• Exchange of Vectors between Fog Nodes:
Each Fog node sends its local ideal vector to all other Fog nodes in the network. This

exchange allows each node to share its local state with others.

• Construction of the Global Ideal Vector:
When a Fog node receives local ideal vectors from (n-1) other nodes, it uses this information

to construct a global ideal vector, reflecting a consistent view of the data across all nodes.

• Completeness Test and Update:
Each Fog node waits to receive all ideal vectors from other nodes. Once all vectors are

received, the node checks completeness and, if all conditions are met, updates its data to

align with the global ideal vector.

This approach to distributed synchronization enhances responsiveness and reduces band-

width requirements by eliminating dependence on a central entity. It also allows for faster

and more efficient data updates across the network of Fog nodes.

4.7 Example

In this example, we consider three Fog environments, each associated with a matrix based on

replicas and versions of data blocks. Each Fog environment executes a specific process to produce

a local ideal vector, representing the most recent version of data blocks for each row. This vector

is then sent to all other Fog nodes. When a Fog node receives local ideal vectors from other nodes

(n-1 vectors, where n represents the total number of Fog nodes), it calculates a global ideal vector
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Figure 4.5: Distributed synchronization.
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by comparing the local ideal vectors and selecting the most recent version of data blocks. Here

are the initial matrices for each Fog environment:

Fog1

Row1 : [25,5,9]

Row2 : [2,4,8]

Row3 : [1,6,7]

Fog2

Row1 : [11,13]

Row2 : [10,18]

Row3 : [16,17]

Fog3

Row1 : [11,13,15]

Row2 : [12,14,12]

Row3 : [26,27,29]

Process of calculating the local ideal vector for each Fog:

• Fog 1:

– Row 1: [25,5,9] (sorted) => Most recent version: 25

– Row 2: [2,4,8] (sorted) => Most recent version: 8

– Row 3: [1,6,7] (sorted) => Most recent version: 7

– Local Ideal Vector: [25,8,7]

• Fog 2:

– Row 1: [11,13] (sorted) => Most recent version: 13

– Row 2: [10,18] (sorted) => Most recent version: 18
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– Row 3: [16,17] (sorted) => Most recent version: 17

– Local Ideal Vector: [13,18,17]

• Fog 3:

– Row 1: [11,13,15] (sorted) => Most recent version: 15

– Row 2: [12,14,12] (sorted) => Most recent version: 14

– Row 3: [26,27,29] (sorted) => Most recent version: 29

– Local Ideal Vector: [15,14,29]

• Local Ideal Vectors:

– Local Ideal Vector of Fog 1: [25,8,7]

– Local Ideal Vector of Fog 2: [13,12,17]

– Local Ideal Vector of Fog 3: [15,18,29]

• Calculation of the Global Ideal Vector: By comparing the local ideal vectors and

selecting the most recent versions for each element:

– Global Ideal Vector: [25,18,29]

• Updated Matrices for each Fog:

– fog 1:

[25,25,25]

[18,18,18]

[29,29,29]

– fog 2:

[25,25]

[18,18]

[29,29]

– fog 3: [25,25,25]

[18,18,18]

[29,29,29]
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4.8 Optimization of Distributed Synchronization with the Vague
Algorithm

To improve distributed synchronization and minimize complexity, we have used the distributed

Vague algorithm. The Vague algorithm offers an efficient solution for managing distributed

systems, particularly in synchronization of updates. Its main advantages include optimized data

dissemination across the network, significant latency reduction through hierarchical message

management, efficient bandwidth usage by limiting data exchanges, increased robustness against

failures, and adaptability to the different needs of distributed applications. Overall, it enhances

the performance and reliability of distributed systems while maintaining precise and consistent

data synchronization.

4.9 Integration of Distributed Synchronization with the Vague
Algorithm

To further enhance the efficiency and robustness of distributed synchronization, we integrate

the distributed synchronization process with the Vague algorithm. This combined approach

leverages the hierarchical and efficient data dissemination capabilities of the Vague algorithm

while maintaining the detailed steps of distributed synchronization. Here’s how the integration

works:

• Vague Algorithm Structure:
The Vague algorithm structures the network of Fog nodes into a hierarchical system. Each

level in the hierarchy has nodes that manage synchronization for the nodes directly below

them, creating a multi-tiered network.

• Triggered Synchronization Methods:
Each Fog node at the lowest level of the hierarchy applies a synchronization method based

on a periodic time interval or triggered by a certain number of modifications.

• Construction of the Local Matrix:
Each Fog node constructs a matrix reflecting the local state of the data based on the replicas

and versions of the data blocks it holds.

• Calculation of the Local Ideal Vector:
After constructing the matrix, each Fog node calculates a local ideal vector, representing

the optimal state of the data based on available local information.

• Hierarchical Exchange of Vectors
Instead of each Fog node sending its local ideal vector to all other nodes, the exchange is

managed hierarchically:
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– Local ideal vectors are first sent to the immediate upper-level nodes in the hierarchy.

– Upper-level nodes aggregate the vectors and pass them further up the hierarchy until

they reach the top level.

– The top-level node constructs a global ideal vector and disseminates it back down the

hierarchy.

• Construction of the Global Ideal Vector:
Each top-level node constructs the global ideal vector using the aggregated information

from all lower-level nodes. This vector reflects a consistent view of the data across the

entire network.

• Dissemination and Update:

– The global ideal vector is disseminated back down the hierarchy, with each level

ensuring that all nodes below them receive the updated vector.

– Each Fog node, upon receiving the global ideal vector, checks for completeness and

updates its data to align with the global ideal vector.

By integrating the distributed synchronization process with the Vague algorithm, we achieve a

more efficient, robust, and scalable synchronization mechanism for Fog Computing environments,

enhancing overall performance and user experience.

4.10 Conclusion

In this chapter, we have detailed our strategy for ensuring data consistency in a Fog Computing

environment. The primary objective of this strategy is to ensure that each user always accesses

the most recent version of the files. We began by describing the process that allows the user to

efficiently access the latest available version. To ensure data consistency, we implemented rigorous

synchronization based on various methods. We presented two approaches for managing data

synchronization: centralized and distributed. Furthermore, we proposed an improvement to the

distributed strategy by integrating the vague algorithm. This approach optimizes synchronization

and the dissemination of updates in Fog Computing environments, thus offering improved

performance in terms of latency reduction, efficient bandwidth usage, and system robustness. In

summary, our strategy ensures reliable and consistent data management across all Fog entities,

resulting in an optimized user experience.
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SIMULATION

5.1 Introduction

In the previous chapter, we presented our strategy for managing the coherence of replicated

data in Fog computing and detailed its functioning. This chapter is dedicated to the imple-

mentation phase of this strategy with the aim of evaluating its performance and validating

the proposed strategy. To achieve this, we extended the IFogSim simulator, which is developed in

Java. We conducted several series of experiments, the results and interpretations of which are

discussed in this chapter.

5.2 IFogSim simulator

IFogSim is a simulator specifically designed to model and analyze Fog Computing and Internet

of Things (IoT) environments, iFogSim allows researchers and developers to simulate various

resource management policies, task allocation, and data processing to optimize the performance

of IoT applications. By providing a detailed platform to evaluate the impacts of latency, energy

consumption, and bandwidth usage, iFogSim facilitates academic research, the development of

IoT solutions, and the teaching of Fog Computing concepts. iFogSim is a Java based open-source

simulation tool for simulating fog computing scenarios. It is developed by Harshit Gupta and the

team at the Cloud Computing and Distributed Systems (CLOUDS) Lab University of Melbourne

Australia [7].
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Language used: Java.

IDE used: Eclipse.

5.3 Java programming language

Java is an object-oriented programming language created by James Gosling and Patrick Naughton,

employees of Sun Microsystems, with the support of Bill Joy (co-founder of Sun Microsystems

in 1982). It was officially introduced on May 23, 1995, at SunWorld. Sun Microsystems was

later acquired by Oracle Corporation in 2009, which now owns and maintains Java [15]. The

primary feature of the Java language is that software written in Java can be easily portable

across multiple operating systems such as UNIX, Windows, Mac OS, or GNU/Linux, with or

without modifications. The platform guarantees the portability of applications developed in Java

[15].

Today, Java has become an indispensable direction in the world of programming [15].

5.4 Development environment

Eclipse is an integrated development environment (IDE) released as open-source by Sun in

June 2000. In addition to Java, Eclipse supports various other languages such as Python, C,

C++, JavaScript, XML, Ruby, PHP, and HTML. It is available for download at https://www.

eclipse.org/downloads. Eclipse includes all the features of a modern IDE (color-coded editor,

multi-language projects, refactoring, graphical interface editor, and web page editor). Designed

in Java, Eclipse is available on Windows, Linux, Solaris, Mac OS, or as a platform-independent

version (requiring a Java virtual machine). Furthermore, Eclipse is open-source and can be

downloaded directly from http://java.sun.com. It is powerful and compatible with all new

Java technologies (Java EE technologies, databases, UML, XML, etc.).

5.5 Simulation configuration

Before any simulation, the first action to perform is the configuration of the simulated infrastruc-

ture. We implemented a control panel.

5.6 Launching simulations and viewing results

To highlight the contributions of our approaches, we will focus on the following metrics: execution

time, energy consumed, and network usage. To study the behavior of our proposals and analyze

the results obtained from the simulation, we will compare both strategies: centralized and

distributed. Several series of simulations were launched.
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5.6.1 Simulation 1

In this simulation, we created 10 IoT devices and set the number of replicas per fog node to 4.

We then varied the number of fog nodes from 2 to 8. Our study focused on examining the impact

of these variations on three critical metrics: execution time, energy consumption, and network

usage, to gain a comprehensive understanding of system efficiency under different conditions.

5.6.1.1 Execution time

fog number 2 3 4 5 6 7 8
distributed strategy 84 215 369 149 397 298 438
centralized strategy 108 218 190 212 366 366 503

Table 5.1: Impact of the number of fogs on the execution time.

Figure 5.1: Impact of the number of fogs on the execution time.
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fog number 2 3 4 5 6 7 8
distributed strategy 1000518,395 752071,5153 667003,6737 556116,823 476806,2251 417552,0022 355762,452
centralized strategy 1003318,024 796827,2479 670843,2635 596499,6726 471912,2581 392407,9319 367262,2001

Table 5.2: Impact of the number of fogs on the energy consumed.

Figure 5.2: Impact of the number of fogs on the energy consumed.

5.6.1.2 Energy consumed

5.6.1.3 Network usage

fog number 2 3 4 5 6 7 8
distributed strategy 20 34,5 40 44,5 54,5 75 80
centralized strategy 25 59,5 75 109,5 154,5 114,5 155

Table 5.3: Impact of the number of fogs on the network usage.
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Figure 5.3: Impact of the number of fogs on the network usage.

5.6.1.4 General Observations

The analysis demonstrates that the distributed strategy significantly outperforms the centralized

strategy in terms of execution time, energy consumption, and network usage. The distributed

strategy achieves lower execution times and reduced network usage, with decreasing energy

consumption as the number of fog nodes increases, indicating greater overall efficiency. In contrast,

the centralized strategy consistently exhibits higher execution times, energy consumption, and

network usage. Regarding latency, the centralized strategy requires communication with a central

entity, often the Cloud, which introduces significant delays due to the round-trip time needed for

data transmission. Conversely, the distributed strategy allows nodes to communicate directly,

reducing transmission distance and time, resulting in faster synchronization and more responsive

systems. In terms of bandwidth consumption, the centralized strategy involves sending data to

and from the Cloud, consuming substantial bandwidth, especially with large data blocks or high

network activity. The distributed strategy reduces overall bandwidth usage by enabling direct

data sharing between Fog nodes, avoiding the need for a central data route. Energy efficiency

also favors the distributed strategy. The centralized approach’s constant communication with

the Cloud increases energy consumption due to the need to maintain connections and handle
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large data volumes. The distributed strategy, however, manages synchronization locally, leading

to reduced energy consumption through less data transmission over long distances and fewer

connections to maintain.

Overall, the distributed strategy is more efficient and superior.

5.6.2 Simulation 2

In this simulation, we created 2 nodes of fog and set the number of replicas per fog node to 4.

Then we varied the number of IoT devices from 10 to 100, to analyze the three metrics.

5.6.2.1 Execution time

Number of IOT devices 10 20 30 40 50 60 70 80 90 100
Distributed strategy 190 132 299 155 141 165 232 276 244 278
Centralized strategy 329 645 528 503 251 451 383 462 389 418

Table 5.4: Impact of number of IOT devices on the execution time.

Figure 5.4: Impact of number of IOT devices on the execution time.
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5.6.2.2 Energy Consumed

Number of IOT devices 10 20 30 40 50 60 70 80 90 100
Distributed strategy 1003165.795 1000851.046 1000631.542 1007443.354 997911.0667 997911.0667 997911.0667 997911.0667 997911.0667 999844.4
Centralized strategy 1003045.488 1004267.617 1008245.664 1007441.838 999244.4 998244.4 998244.4 998244.4 998244.4 997911.07

Table 5.5: Impact of number of IOT devices on the Energy Consumed.

Figure 5.5: Impact of the number of IOT devices on the Energy Consumed.

Number of IOT devices 10 20 30 40 50 60 70 80 90 100
Distributed strategy 30 70 165 120 150 180 208.5 240 265.5 297
Centralized strategy 35 230 675 118.5 147 178.5 210 383 265.5 298.5

Table 5.6: Impact of the number of IOT devices on the Network Usage.
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Figure 5.6: Impact of the number of IOT devices on the Network Usage.

5.6.2.3 General Observations

• Execution Time: The distributed strategy performs better with lower execution times

compared to the centralized strategy as the number of IoT devices increases.

• Energy Consumed: Both strategies show a similar trend of decreasing and stabilizing

energy consumption with the increase in IoT devices, with the centralized strategy showing

a slightly more consistent trend.

• Network Usage: The distributed strategy shows lower network usage compared to the

centralized strategy, although both strategies see an increase in network usage as the

number of IoT devices increases.

These observations suggest that the distributed strategy generally performs better in terms

of execution time and network usage, while both strategies have a similar performance in terms

of energy consumption.
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5.6.3 Simulation 3

Our study aimed to evaluate the impact of three critical metrics: execution time, energy consump-

tion, and network usage. This comprehensive analysis helps us understand system efficiency

under varying conditions. In this simulation, we created 2 nodes of fog and set the number of IOT

devices to 10 , Then we varied the number of replicas from (‘,8,12,16,20,24,28), to analyze the

three metrics.

Number of replicas 4 8 12 16 20 24 28
Distributed strategy 204 217 292 155 242 320 196
Centralized strategy 280 145 233 316 301 166 316

Table 5.7: Impact of number of replicas on the execution time .

Figure 5.7: Impact of number of replicas on the execution time.

5.6.3.1 Energy consumed
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Number of replicas 4 8 12 16 20 24 28
Distributed strategy 1000845.202 1001741.212 1000133.215 1000177.152 1001487.222 1000789.919 1000789.919
Centralized strategy 1000247.832 1000600.657 1001820.388 1000603.038 1002586.767 1002311.9 1002500.009

Table 5.8: Impact of number of replicas on the energy consumed.

Figure 5.8: Impact of number of replicas on the energy consumed.

5.6.3.2 Network usage

Number of replicas 4 8 12 16 20 24 28
Distributed strategy 30 39.5 15 15 15 25 10
Centralized strategy 20 40 70 30 70 55 15

Table 5.9: Impact of number of replicas on the network usage.
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Figure 5.9: Impact of number of replicas on the network usage.

5.6.3.3 General Observations

• Execution Time: The distributed strategy generally performs better (lower execution

time) than the centralized strategy as the number of replicas increases.

• Energy Consumed: The distributed strategy tends to consume more energy compared to

the centralized strategy, but the difference reduces with an increasing number of replicas.

• Network Usage: The distributed strategy starts with higher network usage but becomes

more efficient (lower network usage) with more replicas, whereas the centralized strategy

has a fluctuating network usage trend.

5.6.4 Simulation 4

In this simulation, we created 2 nodes of fog and set the number of IOT devices to 10 and number

of replicas to 4 , Then we varied the threshold of modification from 3 to 21 to analyze its impact

on three key performance metrics. This study focused on understanding how these variations

affect execution time, energy consumption, and network usage.
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5.6.4.1 Execution time

Threshold Of Modification 3 6 9 12 15 18 21
Distributed strategy 139 79 92 82 154 119 82
Centralized strategy 399 156 162 201 140 87 153

Table 5.10: Impact of threshold of modification on the execution time.

Figure 5.10: Impact of threshold of modification on the execution time .

5.6.4.2 Energy consumed

Threshold Of Modification 3 6 9 12 15 18 21
Distributed strategy 1000843.905 1000842.062 1000852.404 1000812.422 999167.1792 997491.9805 998495.1582
Centralized strategy 1002633.878 1001570.896 1001447.749 1000519.221 1000485.652 1000819.806 1000846.158

Table 5.11: Impact of threshold of modification on the energy consumed.
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Figure 5.11: Impact of threshold of modification on the energy consumed.

5.6.4.3 Network usage

Threshold Of Modification 3 6 9 12 15 18 21
Distributed strategy 25 15 30 12 20 25 30
Centralized strategy 25 50 55 25 20 10 15

Table 5.12: Impact of threshold of modification on the network usage.
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Figure 5.12: Impact of threshold of modification on the network usage.

5.6.4.4 General Observations

• Execution Time: The distributed strategy performs better with lower execution times

across most threshold of modification.

• Energy Consumed: Both strategies have similar energy consumption patterns, though

the distributed strategy is slightly more stable.

• Network Usage: The distributed strategy is generally more consistent, while the central-

ized strategy fluctuates more significantly.

These observations suggest that the distributed strategy might be more efficient in terms of

execution time and network usage stability, while both strategies consume a similar amount of

energy.

5.7 Conclusion

In this chapter, we presented the implementation of our application and the results obtained.

Additionally, we conducted several series of simulations to compare the two strategies: distributed
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and centralized, while varying different metrics such as execution time, energy consumed, and

network usage. The comparison results showed that the Distributed Strategy outperforms the

Centralized Strategy in terms of execution time and network usage, making it more efficient

and superior overall. While the centralized strategy shows a slight edge in terms of energy

consumption consistency, the distributed strategy’s benefits in execution time and network usage

make it the better choice for handling larger numbers of IoT devices or replicas.
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General conclusion

Our study highlighted the transformative potential of fog computing as it brought data

processing closer to the network edge, resulting in enhanced performance marked by

faster processing, reduced latency, and improved resilience to network disruptions.

Despite facing challenges in resource management, data consistency, and security, fog computing

demonstrated its advantage by strategically replicating data across distributed nodes. This

approach significantly strengthened data availability, reliability, and overall system performance

by mitigating latency and enhancing fault tolerance.

Our research focused on developing a robust strategy for maintaining data consistency

within fog computing environments, ensuring seamless access to the latest file versions through

meticulous synchronization methods. To ensure that users accessed the latest files through

rigorous synchronization methods, our approach involved dividing the replica into blocks, with

each block containing a specific version. We proposed two solutions : centralized and distributed.In

the centralized approach, each fog node calculated its local ideal vector based on its data replicas,

ensuring local consistency. These vectors were sent to the cloud, which then calculated a global

ideal vector to detect inconsistencies and anomalies. The global vector was sent back to all fog

nodes for synchronization, triggered by the number of modifications, a periodic method, or a

hybrid method. In the distributed approach, fog nodes communicated directly to avoid centralized

latency and bandwidth issues. Each node exchanges vectors with other nodes, and constructs

a global ideal vector to ensure data consistency across the system. We enhanced the IFogSim

simulator to evaluate our strategies. Our experiments showed that distributed approaches

generally outperform centralized ones in execution time and network usage, despite consistent

energy consumption. These results validate the effectiveness of our approach, significantly

enhancing fog computing’s capabilities in optimizing distributed infrastructures. Looking ahead,

we aim to optimize synchronization time by reducing update operations. After constructing the

ideal vector following the previously described process, we proceed to compare each block in

each matrix with the corresponding values of the ideal vector. Only blocks that do not match the

ideal vector values will be updated, allowing for more efficient synchronization and reduced time

requirements. By minimizing update time, we improve availability. Additionally, we propose a
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hybrid synchronization approach combining local and global synchronization to avoid prolonged

user access interruptions. Each fog environment performs local synchronization using a hybrid

method (periodic and modification-based), ensuring that only the fog node reaching a specified

period or modification threshold is blocked, while others continue functioning normally. During

local synchronization, a local ideal vector is constructed, containing the most recent block of each

replica. Even if some fog nodes have not reached the specified period or modification threshold,

global synchronization is initiated using the periodic method. The local ideal vectors are then

compared to form a global ideal vector, representing the most recent blocks. This global ideal

vector is used for updates, ensuring efficient and consistent data synchronization across all fog

environments while minimizing user service interruptions.
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