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 بسم الله الرحمن الرحيم
الحمد لله الذي علم بالقلم، علم الإنسان ما لم يعلم، والصلاة والسلام على سيدنا محمد، خير 

 .معلم للبشرية، وعلى آله وصحبه أجمعين

فع من تعالى العلماء ور إن طلب العلم فريضة، وبه تسمو الأمم وترتقي، وقد شرف الله

 :شأنهم، فقال في محكم تنزيله

" ُ الهذِينَ آمَنوُا مِنكُمْ وَالهذِينَ أوُتوُا الْ  ُ بِمَا تعَْمَلوُنَ يَرْفعَِ اللَّه بيِر  خَ عِلْمَ دَرَجَاتٍ ۚ وَاللَّه " 

( 11سورة المجادلة، الآية  ) 

دائمفقد كان دعاؤنا الوإيماناً منا بأن التوفيق أولاً وأخيرًا من الله عز وجل،  : 

ِ زِدْنِي عِلْمًا"  "رَب 

( 114سورة طه، الآية  ) 

م به علينا من وفي ختام هذا العمل المتواضع، لا يسعنا إلا أن نحمد الله ونشكره على ما أنع

 :توفيق، ونقول كما قال سليمان عليه السلام

" ِ أوَْزِعْنِي أنَْ أشَْكُرَ نِعْمَتكََ الهتِي  يه أنَْعمَْتَ عَلَ رَب  ..." 

( 19سورة النمل، الآية  ) 

ة في بناء نسأل الله أن يكون هذا الجهد خالصًا لوجهه الكريم، وأن ينفع به، ويجعله لبن

 مستقبل علمي مشرق
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Abstract 

 

This work addresses an inverse problem in channel biophysics: 

reconstructing the transition matrix of a Markov model governing ion 

channel states from observed trajectories. Using a Metropolis Monte Carlo 

(MCMC) approach, we estimate the matrix by minimizing the mismatch 

between predicted and observed state transitions. Simulations reveal that 

temperature in MCMC critically affects convergence and accuracy. Among 

several tested values, a moderate temperature (T = 1.0) achieved the 

closest match to the true matrix, demonstrating that careful temperature 

control is essential for accurately capturing ion channel dynamics from data. 
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Résume 

 

Ce travail traite un problème inverse en biophysique des canaux 

ioniques : la reconstruction de la matrice de transition d’un modèle de 

Markov à partir de trajectoires observées. En utilisant une méthode de 

Monte Carlo par algorithme de Metropolis (MCMC), nous estimons la matrice 

en minimisant l'écart entre les transitions d'état prédites et observées. Les 

simulations montrent que la température dans l’algorithme MCMC influence 

fortement la convergence et la précision. Parmi les différentes températures 

testées, une température modérée (T = 1.0) fournit la meilleure estimation 

de la matrice réelle, soulignant l’importance du contrôle de la température 

pour modéliser avec précision la dynamique des canaux ioniques à partir 

des données. 
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 ملخص

الحيوية لقنوات الأيونات، تتمثل في إعادة بناء يتناول هذا العمل مسألة عكسية في الفيزياء 

مصفوفة الانتقال لنموذج ماركوف انطلاقاً من مسارات الحالات المرصودة. استخدمنا 

لتقدير المصفوفة من خلال  (MCMC) طريقة مونتي كارلو عبر خوارزمية متروبوليس

ن درجة الحرارة في تقليل الفرق بين الانتقالات المتوقعة والمرصودة. أظهرت المحاكاة أ

تؤثر بشكل كبير على سرعة التقارب ودقة النتائج. ومن بين القيم  MCMC خوارزمية

أفضل تطابق مع المصفوفة الحقيقية،  (T = 1.0) المختبرة، حققت درجة الحرارة المتوسطة

مما يبرز أهمية التحكم بدرجة الحرارة لتمثيل ديناميكية قنوات الأيون بدقة انطلاقاً من 

  لبياناتا
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General introduction 

Markov chains are a class of stochastic models that describe systems 

transitioning between a finite or countable number of states according to 

probabilistic rules. First introduced by Andrey Markov in the early 20th 

century, they are characterized by the Markov property, which asserts that 

the future state of the system depends only on the present state and not 

on the sequence of events that preceded it [1]. Mathematically, a discrete-

time Markov chain (DTMC) is defined by a set of states S = {𝑠1𝑠2 … 𝑠𝑛 } and 

a transition matrix P where each element 𝑝𝑖𝑗represents the probability of 

transitioning from state sis_i to state sjs_j in one time step. These models 

have become foundational in various domains such as physics, biology, 

finance, and artificial intelligence [2]. 

The power of Markov chains lies not only in their simplicity but also in their 

ability to model equilibrium behavior through long-run distributions. The 

stationary distribution of a Markov chain describes the probability of finding 

the system in each state after a large number of transitions, assuming the 

chain is irreducible and aperiodic. In statistical physics, for instance, Markov 

chains underpin models such as the Ising model for ferromagnetism and 

are central to approaches in computational biology for modeling molecular 

evolution and protein folding [3]. 

Monte Carlo Simulation 

Monte Carlo (MC) simulations are a class of computational algorithms that 

rely on repeated random sampling to obtain numerical results. When 

combined with Markov chains, they form Markov Chain Monte Carlo (MCMC) 

methods, which are widely used for sampling from complex probability 

distributions. The most popular MCMC algorithms include the Metropolis-

Hastings algorithm and the Gibbs sampler, both of which construct a Markov 

chain whose stationary distribution corresponds to the target distribution of 

interest [4]. 
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These simulation techniques are indispensable in fields where analytical 

solutions are infeasible due to high dimensionality or complex interactions. 

For example, in Bayesian statistics, MCMC allows for estimation of posterior 

distributions that are otherwise computationally intractable [5]. Similarly, 

in materials science and statistical mechanics, Monte Carlo methods provide 

estimates of thermodynamic quantities and help simulate systems near 

equilibrium [6]. 

While traditional applications of Markov chains and MCMC involve forward 

modeling—using known transition probabilities to simulate behavior—there 

is growing interest in the inverse Markov chain problem. This involves 

deducing the transition matrix or the generator of a Markov process from 

observed data, such as empirical state transitions or stationary distributions 

[7]. 

The inverse problem is of great importance in data-driven modeling, 

particularly when the underlying stochastic dynamics are not directly 

observable. Applications range from inferring hidden transition networks in 

biological systems to estimating the movement patterns in social or 

economic systems [8]. Several approaches have been developed, including 

maximum likelihood estimation, Bayesian inference, and regularized 

optimization techniques, to reconstruct the most likely Markov model given 

partial or noisy data [9]. 

Recent advances have extended inverse problems to non-equilibrium 

systems and coarse-grained representations, enabling more accurate 

reconstructions even in the presence of temporal correlations or sampling 

limitations. For example, in molecular dynamics, inverse methods are used 

to determine effective transition rates between conformational states, 

enabling reduced models for large biomolecular systems [10]  
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1.1Introduction 

A Markov chain is a type of stochastic process used to model systems that 

evolve over time where the outcome at any given time depends only on the 

current state — not the sequence of events that preceded it. This 

characteristic is called the Markov property, or memory lessness. 

 

 

 

 

 

 

 

 

Figure (1.1) Representing a two-state Markov process. The numbers are 

the probability of changing from one state to another stat 

Markov chains provide a mathematical framework to (Fig. 1.1) study 

random processes where: Time is discrete (i.e., steps happen one at a 

time). The system is in one of a finite (or countable) number of states, and 

the transition from one state to another is governed by a set of fixed 

probabilities. Transition Probabilities: Probabilities of moving from one state 

to another, denoted as P (i, j), the probability of moving from state i to 

state j. The transition Matrix (P) is a matrix representing all the transition 

probabilities between states. Initial Distribution: The starting probability of 

being in each state 
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1.2 Definition 

A Markov chain is a mathematical stochastic model that describes a 

sequence of possible events or states in which the outcome of each event 

depends only on the current state (positions that the system can be in), not 

on the events that preceded it [1]. This property is called the Markov 

property, or the "memory less" property. The Transition Probabilities are 

the probabilities of moving from one state to another. These probabilities 

are typically represented in a matrix form, called the transition matrix [2]. 

We distinguish two types of Markov Chains: Discrete-Time Markov Chain: 

The system transitions from one state to another are in discrete time 

steps.[3] Continuous-Time Markov Chain: The system transition can be at 

any point in time.[4] 

1.3 History 

Markov chains are a fundamental concept in mathematics, statistics, and 

probability theory. Their history dates back to work in the field of probability 

and linear algebra in the early 20th century. Before Markov chains, concepts 

related to conditional probabilities and the evolution of stochastic systems 

were already under discussion. The name "Markov chain" comes from the 

Russian mathematician Andrey Markov, who developed these ideas in the 

early 20th century. In 1906, Markov introduced what is now known as 

Markov chains in his paper "On the chain of probabilities in phenomena that 

follow a law of dependence". He studied stochastic processes where the 

future depends only on the current state, and not on past states 

This concept revolutionized probability by allowing complex systems to be 

modeled in a simpler and more understandable way. Markov also developed 

the notion of Markov property, which means that the probability of 

transition from one state to another depends only on the current state (and 

not on how one arrived at that state). Markov's work has been refined over 

the decades by other mathematicians. For example, Kolmogorov made 
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major contributions in the 1930s to formalize Markov chains using modern 

concepts of probability and state space. 

In the 1940s and 1950s, Markov chains began to be used in fields such as 

queuing theory, dynamical systems analysis, and statistical physics. Markov 

chains are a fundamental concept in mathematics, statistics, and probability 

theory. Their history dates back to work in the field of probability and linear 

algebra in the early 20th century.Before Markov chains, concepts related to 

conditional probabilities and the evolution of stochastic systems were 

already under discussion. The name "Markov chain" comes from the Russian 

mathematician Andrey Markov, who developed these ideas in the early 20th 

century. In 1906, Markov introduced what is now known as Markov chains 

in his paper "On the chain of probabilities in phenomena that follow a law 

of dependence". He studied stochastic processes where the future depends 

only on the current state, and not on past states. This concept 

revolutionized probability by allowing complex systems to be modeled in a 

simpler and more understandable way. Markov also developed the notion 

of Markov property, which means that the probability of transition from one 

state to another depends only on the current state (and not on how one 

arrived at that state). Markov’s work has been refined over the decades by 

other mathematicians. For example, Kolmogorov made major contributions 

in the 1930s to formalize Markov chains using modern concepts of 

probability and state space.In the 1940s and 1950s, Markov chains began 

to be used in fields such as queuing theory, dynamical systems analysis, 

and statistical physics. "Zur Theoria der Markoff Chen Ketten. «German 

publication that extended the theory, especially in continuous-time Markov 

processes.[5] 
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1.4 Example of a Simple Markov Chain 

Consider a weather system (Table 1.1) with two possible states: Sunny (S), 

and Rainy (R). The transition probabilities might look like this 

From/to Sunny(s) Rainy(R) 

Sunny(s) 0.8 0.2 

Rainy(R) 0.4 0.6 

Table 1.1 Example of transition matrix 

The associated transition matrix is then 

𝑇 = [
0.8 0.2
0.4 0.6

] (1.1) 

                   

Figure (1.2) Graph of transition 

We Start at an initial state (e.g., Sunny). Then, we use the transition 

probabilities to determine the next state (e.g., if Sunny, Fig. (1.2) the next 

state could be Sunny with probability 0.8 or Rainy with probability 0.2). We 

repeat these two steps to evolve the system over time. 
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1.5 Applications of Markov Chains 

1.5.1 Physics 

Markovian systems appear extensively in thermodynamics and statistical 

mechanics, whenever probabilities are used to represent unknown or 

unmodelled details of the system, if it can be (Fig. (1.3)) assumed that the 

dynamics are time-invariant, and that no relevant history need be 

considered which is not already included in the state description. For 

example, a thermodynamic state operates under a probability distribution 

that is difficult or expensive to acquire. Therefore, Markov Chain Monte 

Carlo method can be used to draw samples randomly from a black-box to 

approximate the probability distribution of attributes over a range of 

objects. 

  

 

 

 

 

 

 

Figure (1.3) Mechanics electromagnetics Multiphysics Particle physics 

Thermodynamics Simulation 

1.5.2 Weather Prediction 

Markov Chains model weather patterns by representing different weather 

states (e.g., sunny, rainy) and the probabilities of transitioning between 

them. Let P be the transition matrix, then we have 

https://en.wikipedia.org/wiki/Thermodynamics
https://en.wikipedia.org/wiki/Statistical_mechanics
https://en.wikipedia.org/wiki/Statistical_mechanics
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P =[
𝒑𝒔𝒖𝒏𝒏𝒚→𝒔𝒖𝒏𝒏𝒚 𝒑𝒔𝒖𝒏𝒏𝒚→𝒓𝒂𝒊𝒏𝒚

𝒑𝒓𝒂𝒊𝒏𝒚→𝒔𝒖𝒏𝒏𝒚 𝒑𝒓𝒂𝒊𝒏𝒚→𝒓𝒂𝒊𝒏𝒚
] 

 

(1.2) 

1.5.3 Google PageRank 

PageRank uses a Markov Chain to rank web pages based on their link 

structure. 

π = πp 

 

(1.3) 

1.5.4 Text Generation (Markov Chain Text Models) 

Markov Chains generate text by modeling the probability of a word 

following another, based on observed frequencies. 

 P (𝜔𝑛+1∣𝜔𝑛)=probability of next word given current word P(𝜔𝑛)word  

1.5.5 Solar irradiance variability 

Inventory and Queueing Systems 

                                       Xn+1=f (Xn), demand with probabilistic demand” 

1.5.6 Speech recognition 

Hidden Markov models have been used in automatic speech 

recognition systems.[6]  

1.5.7 Queueing theory 

Markov chains are the basis for the analytical treatment of queues 

(queueing theory). Agner Krarup Erlang initiated the subject in 

1917.[1] This makes them critical for optimizing the performance of 

telecommunications networks, where messages must often compete for 

limited resources (such as bandwidth).[8] Numerous queueing models use 

continuous-time Markov chains. For example, an M/M/1 queue is a CTMC 

on the non-negative integers where upward transitions from i to i + 1 occur 

at rate λ according to a Poisson process and describe job arrivals, while 

https://en.wikipedia.org/wiki/Hidden_Markov_model
https://en.wikipedia.org/wiki/Speech_recognition#Hidden_Markov_models
https://en.wikipedia.org/wiki/Speech_recognition#Hidden_Markov_models
https://en.wikipedia.org/wiki/Queueing_theory
https://en.wikipedia.org/wiki/Agner_Krarup_Erlang
https://en.wikipedia.org/wiki/M/M/1_queue
https://en.wikipedia.org/wiki/Poisson_process
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transitions from i to i – 1 (for I > 1) occur at rate μ (job service times are 

exponentially distributed) and describe completed services (departures) 

from the queue. 

1.6 Probability properties 

Discrete-time Markov chain is a sequence of random variables 𝑋1, 𝑋2, 𝑋3, … 

with the Markov property, namely that the probability of moving to the next 

state depends only on the present state and not on the previous states 

       𝑃( 𝑋𝑛+1 = 𝑥|𝑋𝑛 = 𝑥𝑛 , 𝑋𝑛−1 = 𝑥𝑛−1, … , 𝑋0 = 𝑥0) =  𝑃( 𝑋𝑛+1 = 𝑥|𝑋𝑛

= 𝑥𝑛) 

 

(1.4) 

probabilities are well defined, that is 

𝑃( 𝑋1 = 𝑥1 , 𝑋2 = 𝑥2, … , 𝑋𝑛 = 𝑥𝑛) > 0 (1.5) 

The possible values of Xi form a countable set S called the state space of 

the chain. Time-homogeneous Markov chains are processes were 

( 𝑋𝑛+1 = 𝑥| , 𝑋𝑛 = 𝑦) = 𝑃( 𝑋𝑛 = 𝑥| , 𝑋𝑛−1 = 𝑦) (1.6)) 

for all n. The probability of the transition is independent of n. Stationary 

Markov chains are processes were 

𝑃( 𝑋0 = 𝑥0 , 𝑋1 = 𝑥1, … , 𝑋𝑘 = 𝑥𝑘) = 𝑃( 𝑋𝑛 = 𝑥0 , 𝑋𝑛+1 = 𝑥1, … , 𝑋𝑛+𝑘 = 𝑥𝑘) (1.7) 

for all n and k. Every stationary chain can be proved to be time-

homogeneous by Bayes' rule. A necessary and sufficient condition for a 

time-homogeneous Markov chain to be stationary is that the distribution 

of 𝑋0 is a stationary distribution of the Markov chain. A Markov chain with 

memory (or a Markov chain of order m) where m is finite, is a process 

satisfying 

       𝑃( 𝑋𝑛+1 = 𝑥|𝑋𝑛 = 𝑥𝑛 , 𝑋𝑛−1 = 𝑥𝑛−1, … , 𝑋0 = 𝑥0) =  𝑃( 𝑋𝑛+1 = 𝑥|𝑋𝑛

= 𝑥𝑛 , 𝑋𝑛−1 = 𝑥𝑛−1, … , 𝑋𝑛−𝑚 = 𝑥𝑛−𝑚) =  

(1.8) 

https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Markov_property
https://en.wikipedia.org/wiki/Conditional_probability
https://en.wikipedia.org/wiki/Countable_set
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In other words, the future state depends on the past m states. It is possible 

to construct a chain (𝑌𝑛) from (𝑋𝑛) which has the 'classical' Markov property 

by taking as state space the ordered m-tuples of X values, i.e. 

𝑌𝑛 = ( 𝑋𝑛, 𝑋𝑛−1, … 𝑋𝑛−𝑚+1) (1.9) 

1.7 Other properties 

1.7.1 Stationary Distribution 

 

 

Figure 1.5 :  Periodicity is an irreducible class property. 

A stationary distribution π is a probability (fig (1.5)) distribution over the 

states that remain unchanged after transitions. The stationary distribution 

satisfies 

𝜋𝑇 = 𝜋 (1.10) 

Where π is the row vector representing the stationary distribution, and T is 

the transition matrix. This ensures that the probability distribution π is 

invariant under the transition matrix. 

1.7.2 Irreducibility 

A Markov Chain is irreducible if it is possible to reach any state from any 

other state. For irreducibility, for any pair of states (i, j), there must exist 

some 𝑛 > 0 such that 
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𝑃𝑛(𝑖, 𝑗) > 0 (1.11) 

This means that there is a non-zero probability of transitioning from state i 

to state j in a finite number of steps. 

1.7.3 Ergodicity 

A Markov Chain is ergodic if it is irreducible and a periodic, meaning the 

chain will eventually reach the stationary distribution, regardless of the 

initial state. If a chain is ergodic, it satisfies the condition that, for any state 

i, there is a nonzero probability of reaching any state j in a finite number of 

steps, and that state i will eventually return with probability  

𝑃𝑛(𝑖; 𝑗) > 0   𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛 ≥ 1 (1.12) 

where 𝑃𝑛(𝑖; 𝑗) is the probability of reaching state j from state iii in N steps. 

The ergodicity condition guarantees that the chain will eventually converge 

to a stationary distribution. 

1.7.4 Reversibility 

Description: A Markov Chain is reversible if it satisfies the detailed balance 

equations, meaning that the rate of transition from state iii to state j is the 

same as from state j to state iii, weighted by the stationary distribution. 

𝜋𝑖𝑃𝑖𝑗 =  𝜋𝑗𝑃𝑖𝑗             ∀𝑖 , 𝑗 (1.13) 

This equation ensures that the process is reversible and in equilibrium when 

the chain reaches the stationary distribution π 

1.7.5 Absorbing States 

Description: A state is absorbing if, once entered, the system cannot leave 

it. An absorbing Markov Chain contains at least one absorbing state. 

Let P be the transition matrix. If a state iii is absorbing, the probability of 

transitioning to another state from iii is zero:  
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𝑃𝑖𝑗=1; 𝑃𝑖𝑗=0   for I≠ 𝑗 

 

(1.14) 

If Q is the submatrix of the transition matrix corresponding to transient 

states and RRR is the matrix of transitions from transient to absorbing 

states, the fundamental matrix NNN is given by 

                                    N=(I-Q)-1                (1.5) 

This matrix helps calculate the expected number of visits to each transient 

state before absorption. 

1.7.6 Transience and Recurrence 

Description: States can be either recurrent (eventually revisited) or 

transient (never revisited). For a state to be recurrent, the expected 

number of steps to return to state iii should be finite: 

 

𝐸𝑖 = ∑  n. P(Xn = i|𝑥0 = i)

∞

n=1

 

 

(1.16) 

 

 If  finite, state i is recurrent. If 𝐸𝑖 is infinite, state iii is transient. 

1.7.7 Periodic States 

Description: A state iii is periodic if there exists an integer d>1 such that  

If the period of a state iii is did, it satisfies:  

                              D=gad {n:𝑃𝑛 (i; i) >0} 

 

(1.17) 

A Markov Chain is aperiodic if all states have period 1, meaning the 

process can return to any state at irregular time intervals. 
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1.7.8 Convergence to Stationarity 

Description: For an ergodic Markov Chain, the chain will converge to the 

stationary distribution regardless of the starting distribution. 

 (Convergence): The convergence of the chain to its stationary distribution 

can be measured by the total variation distance between the current 

distribution  and the stationary distribution π 

 
dtv(un, π) = 1/2 ∑ |pn(𝑖) − 𝜋(𝑖)|

𝑖

 
(1.18) 

 

 

 

this distance approaches zero if the chain is ergodic. 

1.7.9 Mixing Time 

Description: The mixing time of a Markov Chain is the time it takes for the 

chain to come close to its stationary distribution. The mixing time is the 

smallest time such that the total variation distance between the 

distribution and the stationary distribution π\piπ is less than ϵ\epsilonϵ:  

 ⅆ𝑇𝑣
(𝑝𝑡, 𝜋) <∈ (1.19) 

This gives an upper bound on how quickly the chain "forgets" its initial 

state and reaches the stationary distribution.  

1.8 Conclusions  

In a Markov chain, future states depend only on the current state, 

and not on the sequence of events that preceded it. This simplifies modeling 

and analysis but also limits its application in systems where the history is 

important. The system evolves based on a set of transition probabilities, 

which are typically represented in a matrix form (transition matrix). The 

probability of moving from one state to another can be calculated using 

these transition matrices. While Markov chains are powerful, they may not 

be suitable for modeling systems where past states or more complex 

dependencies influence future behavior. Also, for certain chains, 
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convergence to a steady state may not always occur or could take an 

impractically long time. 
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2.1 Introduction 

This Monte-Carlo method, or the Monte-Carlo method, is an algorithmic 

method that is used to calculate a numeric value applied in the use of 

advanced algorithms, it is the easiest of the probabilistic techniques. 

 

 

 

 

 

 

 

 

Figure (2.1) :Monte Carlo Simulation: What It Is, How It Works, History, 4 

Key Step 

 The Monte-Carlo methods are participatory utilizes to (fig 2.1) calculate 

integrals of larger dimensions than 1 (in particular, to calculate surfaces 

and volumes). These are suitable for use in specific physics, or simulations 

cause problems that allow for the signal format or the sensitivity of the 

detector. Comparison of the best simulations in these simulations may allow 

you to provide information on specific characteristics, including new parts. 
The Monte-Carlo simulation method allows us to introduce a statistical 

estimate of the risk in a precise financial decision. It consists of isolating 

the variables in the projector, telling you the difference or the margin, and 

it affects one of the possibilities. Because of these factors, a large number 

of household tires, which will affect the previous pre-determined risk 

factors, will have an effect, in order to find out the risk of occurrence of the 

results. Here is the example, the selection of the collection mode in the 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.investopedia.com%2Fterms%2Fm%2Fmontecarlosimulation.asp&psig=AOvVaw1uumrY7HOgor7cX7WOiw2s&ust=1747320053936000&source=images&cd=vfe&opi=89978449&ved=0CBcQjhxqFwoTCMDK0cqYo40DFQAAAAAdAAAAABAE
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.investopedia.com%2Fterms%2Fm%2Fmontecarlosimulation.asp&psig=AOvVaw1uumrY7HOgor7cX7WOiw2s&ust=1747320053936000&source=images&cd=vfe&opi=89978449&ved=0CBcQjhxqFwoTCMDK0cqYo40DFQAAAAAdAAAAABAE
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public private partnership (PPP) cadre can be analyzed by the Monte Carlo 

method, so that it can calculate the risk sharing between public and private 

actors. On parle de “risks valorizes” or “values à risk». The veritable 

development of Monte-Carlo methods has the greatest effect on the 

impulsion of John von Neumann and Stanislaw Ulam notation, when the 

Second World War, and searches on the automatic bomb fabrication. It also 

uses specific methods to solve the needs of parts in the Monte-Carlo N-

Particle transport (MCNP) cadre.the name of these methods, which helps all 

those who have practiced at the Monte-Carlo Casino, was created in 1947 

by Nicholas Metropolis1, and was originally published in 1949 in a co-written 

article with Stanislaw Ulam2. 

2.2 Convergence and Statistical Accuracy 

After a sufficient number of iterations, the results of the Monte Carlo 

simulation converge to a stable value, which can be considered an 

estimate of the true result.: this convergence helps assess the accuracy of 

the simulation and provides a way to quantify uncertainty in predictions. 

2.2.1 Output Analysis 

Once the simulations have been completed, the output (i.e., the results of 

each trial) is analyzed using statistical methods. The outputs may be used 

to calculate metrics like the mean, variance, percentiles, or probabilities of 

certain outcomes, helping to draw conclusions about the system's 

behavior or make informed decisions. 

2.2.2 Sensitivity Analysis 

Definition: Sensitivity analysis involves studying how sensitive the results 

of the simulation are to changes in the input variables. Purpose: This helps 

identify which variables have the most significant impact on the outcome, 

allowing for better risk management and prioritization of factors in a model. 
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2.2.3 Variance Reduction Techniques 

These are methods used to reduce the number of simulations needed to 

achieve a certain level of accuracy. Examples include importance 

sampling, stratified sampling, and antithetic variates. Variance reduction 

techniques can make Monte Carlo simulations more efficient by lowering 

computational costs without sacrificing accuracy. 

2.2.4 Sampling Methods 

 There are different ways to generate random samples for the simulation. 

Common sampling techniques include: Simple Random Sampling: 

Randomly selecting inputs for each simulation from the distribution. 

Stratified Sampling: Dividing the population into subgroups (or strata) and 

sampling within each subgroup to reduce variance. Latin Hypercube 

Sampling: A statistical method to ensure that all areas of the input space 

are sampled more evenly. 

2.3 Steps in a Monte Carlo Simulation 

Monte Carlo simulations are typically used to model complex systems and 

estimate the impact of uncertainty or variability. The process involves a 

series of well-defined steps to simulate and analyze the system. Here’s a 

breakdown of the typical steps involved  

2.3.1 Define the Problem or System 

The objective is clearly outline what you are trying to model or analyze and 

identify the system's variables, inputs, and outputs, and what is the goal of 

the simulation. For example, estimating the probability of a specific 

outcome, optimizing a decision, or evaluating risk 
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2.3.4 Identify Input Variables and Define Probability 

Distributions 

 Identify the uncertain variables in your system and specify their probability 

distributions. Each input will be treated as a random variable with a known 

distribution (e.g., normal, uniform, or exponential).Use historical data, 

expert opinions, or assumptions to define the distributions of each uncertain 

variable. If modeling stock price, you may assume the returns follow a 

normal distribution with a mean of 5% and a standard deviation of 10%. 

2.3.5 Generate Random Samples 

Objective: For each uncertain variable, generate random values according 

to the defined probability distributions. These values represent possible 

outcomes of the uncertain inputs. Random sampling can be done using tools 

like random number generators. For each input, you may use methods like 

inverse transform sampling, rejection sampling, or other techniques 

depending on the distribution. 

2.3.6 Run the Simulation (Perform One Trial) 

Objective: Use the randomly generated input values to simulate one 

possible outcome of the system. Calculate the output or result for that trial. 

Details to consider: Apply the input values to the model and calculate the 

desired output, which could be a profit, cost, risk, or some other metric. If 

simulating an investment's future value, use the randomly generated return 

and time period to calculate the investment's final value. 

 2.4 Repeat the Simulation (Multiple Trials) 

Run the simulation many times (e.g., 1,000, 10,000, or more) with different 

random samples each time. This helps to capture the variability and 

uncertainty in the system. The more trials you run, the more accurate and 



 35 

reliable your results will be. Each iteration uses a new set of random 

samples, providing a broad range of possible outcomes. 

2.4.1 Analyze the Results 

After performing a large number of trials, analyze the results to make 

inferences or decisions. Common statistical analyses include calculating the 

mean, standard deviation, percentiles, and probabilities. Visualization 

methods such as histograms, boxplots, or cumulative distribution functions 

(CDFs) can also help interpret the results. 

2.4.2 Make Decisions Based on Results 

Use the insights gained from the simulation to make informed decisions, 

assess risks, or determine the best course of action.the results help in 

understanding the risk and uncertainty in the system, guiding decision-

making under uncertainty. You may use these results to set expectations, 

adjust strategies, or optimize choices. 

2.4.3 Validate and Refine the Model (Optional) 

 Validate the simulation results and refine the model if necessary. 

Compare the simulation results to real-world data (if available) or use 

expert judgment to ensure that the model's assumptions are reasonable. 

If discrepancies arise, you may adjust the input distributions or the model 

itself. 
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2.5  Applications of Monte Carlo Simulations 

2.5.1: Monte Carlo integration 

 

Figure (2.2): Monte Carlo method applied to approximating the value 

of π 

A classic example is estimating the (fig (2.2)) integral of a function f(x) over 

an interval [ a.b] 

∫ 𝒇(x) dx ≈
𝑏 − 𝑎

𝑁
∑ 𝑓(𝑥𝑖)

𝑁

𝑖=1

𝒃

𝒂

 
 

(2.1) 

Where : 

xi are random samples uniformly drawn from the interval [a, b]: 

N is the number of samples 

2.5.2 estimating π using Monte Carlo 

A common introductory example involves estimating π by simulating 

points in a unit square and checking how many fall inside a quarter circle    
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𝜋 ≈ 4 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛𝑠𝑖ⅆ𝑒 𝑞𝑢𝑎𝑟𝑡𝑒𝑟 𝑐𝑖𝑟𝑐𝑙𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑜𝑖𝑛𝑡𝑠
 

 

 

(2.2) 

If we randomly generate (xi. Yi) such that 0≤ xi. Yi ≤ 1 then a point is 

inside the quarter circle if: 

x2 + y2 ≤ 1 (2.3) 

2.5.3 General Monte Carlo Estimation Formula 

To estimate the expected value E[f(X)] for a random variable X: 

E [f(x)]≈
1

𝑁
∑ 𝑓(𝑥𝑖)𝑁

𝑖=1   

(2.4) 

2.5.4  Finance and Investment 

Monte Carlo Simulation is used to forecast the possible returns of a 

financial portfolio by simulating random paths of asset prices over time, 

capturing market volatility and uncertainty. 

2.5.5 Project Management 

Uncertainty in task durations is modeled to estimate the likelihood of project 

completion dates using Monte Carlo simulation. A software company 

simulates uncertain task durations to assess the probability of delivering a 

product on time. 

𝑇 = ∑ 𝑡𝑖

𝑛

𝑖=1

 

 

(2.5) 

2.5.6 Healthcare and Medicine 

Monte Carlo simulations model how radiation interacts with tissues to 

calculate dose distributions more accurately than deterministic methods. 

Physicians use Monte Carlo-based treatment planning to adjust tumor 

doses in proton therapy. 
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𝐷 = ∑
𝐸𝑖

𝑚

𝑛

𝑖=1

 

 

(2.6) 

Verhaegen, F., & Suenens, J. (2003). "Monte Carlo modelling of external 

radiotherapy photon beams." Physics in Medicine and Biology, 48(21), 

R107. 

https://doi.org/10.1088/0031-9155/48/21/R01 [1] 

2.5.7 Environmental Science 

Monte Carlo simulations are used to estimate the likelihood of extreme 

rainfall and flooding by generating thousands of random weather 

scenarios. 

2.6 Conclusion 

The main purpose of this chapter is to present algorithms based on various 

Monte Carlo methods and techniques, in addition to studying Markov chains. 

We have followed the chronological order of events in the evolution and 

introduction of the various approaches to approximating integrals, either 

analytically, numerically, or by simulation. The criticisms made of the first 

two approaches point us toward the simulation approach, whose adaptive 

preferential sampling methods and MCMC methods prevail over the other 

techniques we have presented. 
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3.1 Introduction 

We present a biophysics example of a transition matrix in a Markov 

process, modeling ion channel gating dynamics. It is a classic application in 

neurobiology and electrophysiology. [1, 2] In traditional (direct) 

applications, the transition probability matrix is given, and the evolution of 

the system is simulated or analyzed from this known matrix. However, in 

many practical situations, we observe only the system trajectories—

sequences of visited states—without direct access to the transition 

probabilities themselves. The challenge in such cases is to infer the 

transition matrix that best explains the observed dynamics. This is an 

inverse problem, and it is typically solved in this chapter using Metropolis 

alghorithm. 

3.2 Ion channel 

Ion channels are specialized proteins embedded in cell membranes 

that allow ions (e.g., K⁺, Na⁺, Ca²⁺, Cl⁻) to pass in and out of cells. They 

play critical roles in: Electrical signaling (e.g., nerve impulses, Metropolis, 

N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). 

Equation of state calculations by fast computing machines. Journal of 

Chemical Physics, 21(6), 1087–1092.[2] muscle contraction), Maintaining 

cellular homeostasis (e.g., pH, volume), and Sensory processes (e.g., 

hearing, taste). Channels switch between open (conducting) 

and closed (non-conducting) states, controlled by: 

 Voltage (e.g., voltage-gated Na⁺ channels in neurons). 

 Ligands (e.g., neurotransmitters like GABA activating Cl⁻ channels). 

 Mechanical force (e.g., hair cells in the inner ear). 

3.3 Markov model 

3.3.1 Continuous matrix Q 
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A potassium (K⁺) ion channel fluctuates between three conformational 
states: 

 Closed (C) – Channel is shut, no ions pass. 

 Open (O) – Channel allows ion flow. 

 Inactivated (I) – Channel is blocked (temporarily non-conducting). 

The transition rate matrix Q for a potassium (K⁺) ion channel describes the 

stochastic switching between its conformational states (e.g., Closed, Open, 

Inactivated). Below, we rigorously derive the elements of Q and explain 

their biophysical meaning. Experimental data [3] suggests the 

following transition rates (per millisecond): 

C → O: Rate = 0.3 ms⁻¹ 

O → C: Rate = 0.4 ms⁻¹ 

O → I: Rate = 0.1 ms⁻¹ 

I → C: Rate = 0.2 ms⁻¹ 

Where, no direct transitions C ↔ I or I → O are allowed in this model. Then, 

we get the channel Q matrix 

𝑄 = [
−0.3 0.3 0
0.4 −0.5 0.1
0.2 0 −0.2

]                                                         (3.1) 

Where, rows sum to 0, and diagonal entries 𝑄𝑖𝑖 are negative (to ensures 

probability conservation). The off-diagonal elements 𝑄𝑖≠𝑗 are the transition 

rates from state i to j. Then, we have: 

 Fast activation: High C→O rate (𝑄𝐶𝑂 = 0.3) ensures quick response to 

depolarization. 

 Slow inactivation: Low O→I rate (𝑄𝑂𝐼 = 0.1) prevents premature channel 

blockage. 

 Recovery: I→C rate (𝑄𝐼𝐶 = 0.2) determines refractory period. 
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3.3.2 Discrete matrix P 

For a small-time step Δt (e.g., 0.1 ms), the transition probability 

matrix P is approximated as 

𝑃 ≈ 𝐼 + 𝑄Δ𝑡       (3.2) 

where I is the identity matrix. For Δ𝑡 = 0.1 𝑚𝑠, we get  

𝑃 = [
0.97 0.03 0
0.04 0.95 0.01
0.02 0 0.98

]      (3.3) 

We note that all rows sums to 1. The probability of staying in Closed (C) for 

0.1 ms is 97%, the probability of the transition C → O in 0.1 ms is 3%. Note 

also that 𝑃𝑖𝑖 ≈ 1 implies slow dynamics. 

3.3.3 Steady-State Probabilities 

The steady state 𝜋 is given by one of the two following equations 

𝜋. 𝑄 = 0 or 𝜋. 𝑃 =𝜋      (3.4) 

If 𝜋 = [𝜋𝐶 , 𝜋𝑂 , 𝜋𝐼], then we get  

[𝜋𝐶 , 𝜋𝑂 , 𝜋𝐼] [
0.97 0.03 0
0.04 0.95 0.01
0.02 0 0.98

] = [𝜋𝐶 , 𝜋𝑂 , 𝜋𝐼]    (3.5) 

This gives with the condition 𝜋𝐶 + 𝜋𝑂 + 𝜋𝐼 = 1 

[𝜋𝐶 , 𝜋𝑂 , 𝜋𝐼] = [0.52,0.32,0.16]     (3.6) 

At equilibrium, the channel spends 52% time Closed, 32% Open, and 16% 

Inactivated. 

3.3.4 Validation by iterations 

Let’s start with a chosen state noted W0 = [1,0,0]. If we fix the absolute 

tolerance at 10-4, and using the iteration formula 

𝑾𝒊+𝟏 = 𝑷. 𝑾𝒊       (3.7) 

we get 188 states such that  

𝑾𝟏𝟖𝟖 ≈[0.5270,0.3170,0.1560] ≈ [0.52,0.32,0.16]   (3.8) 
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We can increase the precision by performing more iterations (i.e., more 

than 188).  

3.4 Inverse Estimation of a Markov Transition 

Matrix  

3.4.1 Metropolis Algorithm 

The Metropolis Monte Carlo (MC) algorithm, originally developed for 

simulating physical systems at thermal equilibrium (Metropolis et al., 1953), 

has been widely adapted for solving inverse problems through probabilistic 

sampling. By defining an appropriate energy or cost function related to the 

accuracy of a guessed transition matrix, the Metropolis algorithm allows one 

to stochastically explore the space of possible] Kirkpatrick, S., Gelatt, C. D., 

& Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 

220(4598), 671–680. 

[4] matrices and converge to a good approximation of the unknown true 

matrix. We consider the three-state system (section 3.3) with the known 

transition matrix eq. (3.3), which we will attempt to rediscover solely from 

state trajectory data. The goal is to estimate the transition matrix using 

only the set of transient state vectors. 

3.4.2 Energy Function  

To guide the optimization of the estimated transition matrix, we define an 

energy (or cost or error) function that quantifies how poorly a candidate 

matrix reproduces the trajectory. Specifically, the energy function is 

𝐸(𝑃) = ∑ ‖𝑊𝑖+1 −𝑊𝑖. 𝑃𝑒‖2𝑁−1
𝑖=1      (3.9) 

Where Pe is the estimated transition matrix. This is the sum of squared 

Euclidean distances between the actual next state (3.7) and the predicted 
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next state obtained using Pe. Minimizing this function corresponds to finding 

a matrix that best maps each current state to its observed successor. This 

approach is related to maximum likelihood estimation under Gaussian noise 

assumptions  

3.4.3 Methodology 

In our context, Metropolis algorithm is used in python code (see annex) to 

sample from the space of valid stochastic matrices in such a way that 

matrices with lower energy values are favored. The steps are as follows: 

(a) Initialization: 

We start with a randomly initialized matrix where each row is sampled from 

a uniform distribution, ensuring that rows sum to 1 and all entries are 

positive. An initial temperature is set to control acceptance of higher-energy 

moves. The temperature (which is not a physical parameter in general) is 

gradually reduced according to a cooling schedule controlled by a decay 

factor. 

(b) Perturbation: 

A small Gaussian perturbation is applied to a randomly chosen entry in the 

matrix Pe, followed by row normalization to maintain the stochasticity 

constraint (sum of each row equals 1). The perturbed matrix is accepted 

with probability: Accept with probability  

𝑃𝑟 = min (1, exp (−∆𝐸(𝑃)/𝑇))     (3.10) 

This means that when the new configuration is better (lower energy), we 

always accept it, and when it's worse, we might still accept it especially if 

the temperature is high or the energy increase is small. This helps the 

system escape local minima and explore the space better. Note that the 

temperature T is a control parameter in the acceptance rule that determines 

how tolerant the system is to unfavorable or "bad" moves during the 
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optimization process. When T is large, the system is more permissive, 

allowing most moves to be accepted, Norris, J. R. (1997). Markov Chains. 

Cambridge University Press [5] including those that worsen the objective 

function. This promotes exploration of the solution space. As T decreases, 

the system becomes more selective, increasingly favoring only those moves 

that improve the solution. In the limit of very small T, almost only better 

moves are accepted, guiding the system toward convergence. 

(c) Cooling: 

At each iteration, the temperature is updated from the set {10.0, 1.0, 0.1, 

0.01}, thereby reducing the probability of accepting worse solutions as the 

optimization progresses. 

(d) Convergence 

The procedure runs for a fixed number of iterations (e.g., 3000), after which 

the matrix with the lowest recorded] Gilks, W. R., Richardson, S., & 

Spiegelhalter, D. (1995). Markov Chain Monte Carlo in Practice. Chapman 

and Hall/CRC [6] energy is selected as the estimated transition matrix. To 

quantify how close each estimated matrix Pe is to the true transition matrix 

P, we compute the Frobenius norm of the difference between them 

ⅆ = √∑ (𝑃𝑖𝑗 − 𝑃𝑒𝑖𝑗)
2

𝑖𝑗      (3.11) 

This distance measure provides a scalar value summarizing the total 

deviation across all matrix entries. A smaller distance implies a more 

accurate estimate. 
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3.4.4 Results 

The figure 3.1 shows the energy function E(P) versus the number of 

Metropolis iterations for four different initial temperatures: 10.0, 1.0, 0.1, 

0.01. All temperature profiles demonstrate convergence of the energy 

function toward zero, indicating that the algorithm successfully reduces 

prediction error over time. 

 

Figure 3.1Energy convergence curves 

T D p_11 p_12 p_13 p_21 p_22 p_23 p_31 p_32 p_33 

P(Exact) 00 0.97 0.03 0 0.04 0.95 0.01 0.02 0 0.98 

1 0.058 0.961 0.039 0.000 0.066 0.922 0.012 0.000 0.034 0.966 

0.01 0.084 0.959 0.041 0.000 0.066 0.911 0.023 0.000 0.054 0.946 

10 0.101 0.951 0.049 0.000 0.077 0.897 0.026 0.008 0.055 0.937 

0.1 0.108 0.957 0.043 0.000 0.066 0.901 0.033 0.008 0.067 0.925 

Table 3.1 Measured distances from Pe to P 

 T = 0.01 shows the fastest drop and lowest final energy, suggesting 

quick convergence. However, its Frobenius distance (Table 3.1) to the 

true matrix is not the smallest, revealing that it may have converged 

to a local minimum. 
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 T = 1.0 achieves the smallest Frobenius distance (0.058), meaning 

the estimated matrix is closest to the true transition matrix, even 

though it converges slightly slower than T = 0.01. 

 T = 10.0 allows for broader exploration (due to a high acceptance rate 

of worse proposals), but its final distance (0.101) is worse than lower 

temperatures, confirming that too much randomness delays fine 

convergence. 

 T = 0.1 shows slightly less stability than T = 1.0 and T = 0.01, ending 

with the worst fit (distance = 0.108), despite acceptable energy 

decay. 

This behavior aligns with theoretical expectations from simulated annealing: 

moderate temperatures balance exploration and convergence well, while 

very high or low temperatures can lead to suboptimal estimation. 

3.4.5 Conclusion 

The Metropolis Monte Carlo method successfully reconstructs a Markov 

transition matrix from a time series of state vectors. Temperature 

significantly impacts the qualité and speed of convergence: 

 T = 1.0 delivers the best compromise between exploration and 

convergence, yielding the closest match to the true matrix. 

 Very low temperatures (T = 0.01) converge fast but may miss the 

global minimum. 

 Very high temperatures (T = 10.0) prolong exploration, potentially 

delaying convergence. 

Hence, for similar inverse estimation problems, a moderate initial 

temperature with annealing (like T = 1.0) is recommended to ensure 

accurate and stable estimation. 
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General Conclusion 

In this study, we addressed the inverse problem of estimating the transition 

matrix Pe governing a three-state Markov model, representative of ion 

channel conformational states (e.g., open, closed, inactive). Using synthetic 

trajectories derived from a known matrix P, we applied the Metropolis Monte 

Carlo algorithm with various temperature settings to reconstruct the 

underlying dynamics. The energy convergence curves demonstrate that the 

algorithm efficiently minimizes the prediction error E(P) for all tested 

temperatures. However, convergence behavior and final accuracy were 

highly dependent on the temperature: 

 T = 1.0 yielded the lowest Frobenius distance (D = 0.058) from the 

true matrix, striking an effective balance between exploration and 

exploitation during sampling. The estimated transition matrix closely 

approximated biologically meaningful values (e.g., high self-transition 

probabilities for stable states). 

 T = 0.01, although converging fastest in terms of energy, achieved 

only moderate reconstruction accuracy (D = 0.084), indicating that 

too rapid convergence can trap the algorithm in local minima, missing 

subtle dynamics—such as low-probability transitions between inactive 

and active states. 

 T = 10.0 enabled broader exploration but led to slower convergence 

and higher final error (D = 0.101), emphasizing the cost of excessive 

stochasticity in fine-tuning dynamic models. 

 T = 0.1 produced the least accurate estimate (D = 0.108), underlining 

that intermediate temperatures without proper annealing can perform 

worse than both high and low extremes. 

These findings illustrate the critical role of temperature tuning in the 

Metropolis method when applied to biophysical Markov models. Accurate 

estimation of ion channel kinetics depends not only on minimizing the 
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energy function but also on appropriately managing exploration during 

sampling. In practical applications—such as fitting models to patch-clamp 

recordings or molecular simulations—our results recommend using a 

moderate temperature with controlled annealing to optimize convergence 

and matrix fidelity. 
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Annex: Python code 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

 

# True transition matrix T 

T_true = np.array([ 

    [0.97, 0.03, 0.00], 

    [0.04, 0.95, 0.01], 

    [0.02, 0.00, 0.98] 

]) 

 

# Initial state 

W0 = np.array([1.0, 0.0, 0.0]) 

 

# Generate trajectory of 188 steps 

num_steps = 188 

W_list = [W0] 

for _ in range(num_steps - 1): 

    W_next = W_list[-1] @ T_true 

    W_list.append(W_next) 

W_array = np.array(W_list) 

 

# Energy function 

def energy(P, W_seq): 

    return sum(np.linalg.norm(W_seq[i+1] - W_seq[i] @ 

P)**2 for i in range(len(W_seq)-1)) 

 

# Metropolis algorithm with fixed starting matrix 
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def metropolis(W_seq, P_start=None, T_init=1.0, 

alpha=0.99, min_temp=1e-4, max_iter=3000): 

    P = P_start.copy() if P_start is not None else 

np.random.dirichlet(np.ones(3), size=3) 

    T = T_init 

    E_list = [] 

    for _ in range(max_iter): 

        i, j = np.random.randint(0, 3, size=2) 

        P_new = P.copy() 

        delta = np.random.normal(0, 0.01) 

        P_new[i, j] = np.clip(P_new[i, j] + delta, 0, 

1) 

        P_new[i] = P_new[i] / P_new[i].sum() 

        E_old = energy(P, W_seq) 

        E_new = energy(P_new, W_seq) 

        if E_new < E_old or np.random.rand() < np.exp(-

(E_new - E_old) / T): 

            P = P_new 

        E_list.append(E_new) 

        T = max(T * alpha, min_temp) 

    return P, E_list 

 

# Fixed initial matrix P0 

P_init = np.random.dirichlet(np.ones(3), size=3) 

 

# Simulate for various temperatures 

temperatures = [10.0, 1.0, 0.1, 0.01] 

results = {} 

final_matrices = {} 
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for T_init in temperatures: 

    P_est, E_curve = metropolis(W_array, T_init=T_init, 

max_iter=3500, P_start=P_init) 

    results[T_init] = E_curve 

    final_matrices[T_init] = P_est 

 

# Plot energy convergence 

fig1, ax1 = plt.subplots(figsize=(8, 6)) 

for T_init, E_curve in results.items(): 

    ax1.plot(E_curve, label=f"T={T_init}") 

ax1.set_xlabel("Iteration") 

ax1.set_ylabel("Energy E(P)") 

ax1.set_title("Energy Convergence for Different 

Temperatures") 

ax1.legend() 

ax1.grid(True) 

fig1.tight_layout() 

fig1.savefig("energy_curves.png") 

 

# Create sorted table of estimated matrices 

data_rows = [] 

for T_init, P in final_matrices.items(): 

    distance = np.linalg.norm(P - T_true, ord='fro') 

    row = {"Temperature": T_init, "Distance to T": 

round(distance, 6)} 

    for i in range(3): 

        for j in range(3): 

            row[f"p_{i+1}{j+1}"] = round(P[i, j], 6) 

    data_rows.append(row) 
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df = pd.DataFrame(data_rows) 

df_sorted = df.sort_values(by="Distance to T") 

df_sorted.to_csv("transition_matrix_table.csv", 

index=False) 
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