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Abstract

This work addresses an inverse problem in channel biophysics:
reconstructing the transition matrix of a Markov model governing ion
channel states from observed trajectories. Using a Metropolis Monte Carlo
(MCMC) approach, we estimate the matrix by minimizing the mismatch
between predicted and observed state transitions. Simulations reveal that
temperature in MCMC critically affects convergence and accuracy. Among
several tested values, a moderate temperature (T = 1.0) achieved the
closest match to the true matrix, demonstrating that careful temperature

control is essential for accurately capturing ion channel dynamics from data.




Résume

Ce travail traite un probleme inverse en biophysique des canaux
ioniques : la reconstruction de la matrice de transition d’un modele de
Markov a partir de trajectoires observées. En utilisant une méthode de
Monte Carlo par algorithme de Metropolis (MCMC), nous estimons la matrice
en minimisant I'écart entre les transitions d'état prédites et observées. Les
simulations montrent que la température dans l'algorithme MCMC influence
fortement la convergence et la précision. Parmi les différentes températures
testées, une température modérée (T = 1.0) fournit la meilleure estimation
de la matrice réelle, soulignant I'importance du contréle de la température
pour modéliser avec précision la dynamique des canaux ioniques a partir

des données.
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General introduction

Markov chains are a class of stochastic models that describe systems
transitioning between a finite or countable number of states according to
probabilistic rules. First introduced by Andrey Markov in the early 20th
century, they are characterized by the Markov property, which asserts that
the future state of the system depends only on the present state and not
on the sequence of events that preceded it [1]. Mathematically, a discrete-
time Markov chain (DTMC) is defined by a set of states S = {s;s,...s,, } and
a transition matrix P where each element p;;represents the probability of
transitioning from state sis_i to state sjs_j in one time step. These models
have become foundational in various domains such as physics, biology,

finance, and artificial intelligence [2].

The power of Markov chains lies not only in their simplicity but also in their
ability to model equilibrium behavior through long-run distributions. The
stationary distribution of a Markov chain describes the probability of finding
the system in each state after a large number of transitions, assuming the
chain is irreducible and aperiodic. In statistical physics, for instance, Markov
chains underpin models such as the Ising model for ferromagnetism and
are central to approaches in computational biology for modeling molecular

evolution and protein folding [3].
Monte Carlo Simulation

Monte Carlo (MC) simulations are a class of computational algorithms that
rely on repeated random sampling to obtain numerical results. When
combined with Markov chains, they form Markov Chain Monte Carlo (MCMC)
methods, which are widely used for sampling from complex probability
distributions. The most popular MCMC algorithms include the Metropolis-
Hastings algorithm and the Gibbs sampler, both of which construct a Markov
chain whose stationary distribution corresponds to the target distribution of
interest [4].




These simulation techniques are indispensable in fields where analytical
solutions are infeasible due to high dimensionality or complex interactions.
For example, in Bayesian statistics, MCMC allows for estimation of posterior
distributions that are otherwise computationally intractable [5]. Similarly,
in materials science and statistical mechanics, Monte Carlo methods provide
estimates of thermodynamic quantities and help simulate systems near

equilibrium [6].

While traditional applications of Markov chains and MCMC involve forward
modeling—using known transition probabilities to simulate behavior—there
is growing interest in the inverse Markov chain problem. This involves
deducing the transition matrix or the generator of a Markov process from

observed data, such as empirical state transitions or stationary distributions

[7].

The inverse problem is of great importance in data-driven modeling,
particularly when the underlying stochastic dynamics are not directly
observable. Applications range from inferring hidden transition networks in
biological systems to estimating the movement patterns in social or
economic systems [8]. Several approaches have been developed, including
maximum likelihood estimation, Bayesian inference, and regularized
optimization techniques, to reconstruct the most likely Markov model given

partial or noisy data [9].

Recent advances have extended inverse problems to non-equilibrium
systems and coarse-grained representations, enabling more accurate
reconstructions even in the presence of temporal correlations or sampling
limitations. For example, in molecular dynamics, inverse methods are used
to determine effective transition rates between conformational states,

enabling reduced models for large biomolecular systems [10]
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Chapter 1

Generalities about

the Markov chain




1.1Introduction

A Markov chain is a type of stochastic process used to model systems that
evolve over time where the outcome at any given time depends only on the
current state — not the sequence of events that preceded it. This

characteristic is called the Markov property, or memory lessness.

0.3

0.7

0.4

0.6

Figure (1.1) Representing a two-state Markov process. The numbers are

the probability of changing from one state to another stat

Markov chains provide a mathematical framework to (Fig. 1.1) study
random processes where: Time is discrete (i.e., steps happen one at a
time). The system is in one of a finite (or countable) number of states, and
the transition from one state to another is governed by a set of fixed
probabilities. Transition Probabilities: Probabilities of moving from one state
to another, denoted as P (i, j), the probability of moving from state i to
state j. The transition Matrix (P) is a matrix representing all the transition
probabilities between states. Initial Distribution: The starting probability of

being in each state




1.2 Definition

A Markov chain is a mathematical stochastic model that describes a
sequence of possible events or states in which the outcome of each event
depends only on the current state (positions that the system can be in), not
on the events that preceded it [1]. This property is called the Markov
property, or the "memory less" property. The Transition Probabilities are
the probabilities of moving from one state to another. These probabilities
are typically represented in a matrix form, called the transition matrix [2].
We distinguish two types of Markov Chains: Discrete-Time Markov Chain:
The system transitions from one state to another are in discrete time
steps.[3] Continuous-Time Markov Chain: The system transition can be at

any point in time.[4]
1.3 History

Markov chains are a fundamental concept in mathematics, statistics, and
probability theory. Their history dates back to work in the field of probability
and linear algebra in the early 20th century. Before Markov chains, concepts
related to conditional probabilities and the evolution of stochastic systems
were already under discussion. The name "Markov chain" comes from the
Russian mathematician Andrey Markov, who developed these ideas in the
early 20th century. In 1906, Markov introduced what is now known as
Markov chains in his paper " On the chain of probabilities in phenomena that
follow a law of dependence". He studied stochastic processes where the

future depends only on the current state, and not on past states

This concept revolutionized probability by allowing complex systems to be
modeled in a simpler and more understandable way. Markov also developed
the notion of Markov property, which means that the probability of
transition from one state to another depends only on the current state (and
not on how one arrived at that state). Markov's work has been refined over

the decades by other mathematicians. For example, Kolmogorov made




major contributions in the 1930s to formalize Markov chains using modern

concepts of probability and state space.

In the 1940s and 1950s, Markov chains began to be used in fields such as
queuing theory, dynamical systems analysis, and statistical physics. Markov
chains are a fundamental concept in mathematics, statistics, and probability
theory. Their history dates back to work in the field of probability and linear
algebra in the early 20th century.Before Markov chains, concepts related to
conditional probabilities and the evolution of stochastic systems were
already under discussion. The name "Markov chain" comes from the Russian
mathematician Andrey Markov, who developed these ideas in the early 20th
century. In 1906, Markov introduced what is now known as Markov chains
in his paper "On the chain of probabilities in phenomena that follow a law
of dependence". He studied stochastic processes where the future depends
only on the current state, and not on past states. This concept
revolutionized probability by allowing complex systems to be modeled in a
simpler and more understandable way. Markov also developed the notion
of Markov property, which means that the probability of transition from one
state to another depends only on the current state (and not on how one
arrived at that state). Markov’s work has been refined over the decades by
other mathematicians. For example, Kolmogorov made major contributions
in the 1930s to formalize Markov chains using modern concepts of
probability and state space.In the 1940s and 1950s, Markov chains began
to be used in fields such as queuing theory, dynamical systems analysis,
and statistical physics. "Zur Theoria der Markoff Chen Ketten. «German
publication that extended the theory, especially in continuous-time Markov

processes.[5]




1.4 Example of a Simple Markov Chain

Consider a weather system (Table 1.1) with two possible states: Sunny (S),

and Rainy (R). The transition probabilities might look like this

From/to | Sunny(s) | Rainy(R)

Sunny(s) | 0.8 0.2

Rainy(R) | 0.4 0.6

Table 1.1 Example of transition matrix

The associated transition matrix is then

0.8 0.2 (1.1)
0.4 0.6

0.2

N
[
N

r-|

0,8Csunny ainy O 04

Figure (1.2) Graph of transition

0.6

We Start at an initial state (e.g., Sunny). Then, we use the transition
probabilities to determine the next state (e.g., if Sunny, Fig. (1.2) the next
state could be Sunny with probability 0.8 or Rainy with probability 0.2). We

repeat these two steps to evolve the system over time.




1.5 Applications of Markov Chains
1.5.1 Physics

Markovian systems appear extensively in thermodynamics and statistical
mechanics, whenever probabilities are used to represent unknown or
unmodelled details of the system, if it can be (Fig. (1.3)) assumed that the
dynamics are time-invariant, and that no relevant history need be
considered which is not already included in the state description. For
example, a thermodynamic state operates under a probability distribution
that is difficult or expensive to acquire. Therefore, Markov Chain Monte
Carlo method can be used to draw samples randomly from a black-box to
approximate the probability distribution of attributes over a range of

objects.

Figure (1.3) Mechanics electromagnetics Multiphysics Particle physics

Thermodynamics Simulation

1.5.2 Weather Prediction

Markov Chains model weather patterns by representing different weather
states (e.g., sunny, rainy) and the probabilities of transitioning between

them. Let P be the transition matrix, then we have



https://en.wikipedia.org/wiki/Thermodynamics
https://en.wikipedia.org/wiki/Statistical_mechanics
https://en.wikipedia.org/wiki/Statistical_mechanics

P = Psunny-sunny Psunny-rainy (1.2)
prainy—>sunny prainy—>rainy

1.5.3 Google PageRank

PageRank uses a Markov Chain to rank web pages based on their link

structure.

T = TIp (1.3)

1.5.4 Text Generation (Markov Chain Text Models)

Markov Chains generate text by modeling the probability of a word

following another, based on observed frequencies.

P (w,4+1lw,)=probability of next word given current word P(w,)word
1.5.5 Solar irradiance variability

Inventory and Queueing Systems

Xn+1=f (Xn), demand with probabilistic demand”

1.5.6 Speech recognition

Hidden Markov models have been used in automatic speech

recognition systems.[6]

1.5.7 Queueing theory

Markov chains are the basis for the analytical treatment of queues
(queueing theory). Agner Krarup Erlang initiated the subject in
1917.[1] This makes them critical for optimizing the performance of
telecommunications networks, where messages must often compete for
limited resources (such as bandwidth).[8] Numerous queueing models use
continuous-time Markov chains. For example, an M/M/1 queue is a CTMC
on the non-negative integers where upward transitions from /7to 7+ 1 occur

at rate A according to a Poisson process and describe job arrivals, while



https://en.wikipedia.org/wiki/Hidden_Markov_model
https://en.wikipedia.org/wiki/Speech_recognition#Hidden_Markov_models
https://en.wikipedia.org/wiki/Speech_recognition#Hidden_Markov_models
https://en.wikipedia.org/wiki/Queueing_theory
https://en.wikipedia.org/wiki/Agner_Krarup_Erlang
https://en.wikipedia.org/wiki/M/M/1_queue
https://en.wikipedia.org/wiki/Poisson_process

transitions from /7to /- 1 (for 7> 1) occur at rate v (job service times are
exponentially distributed) and describe completed services (departures)

from the queue.

1.6 Probability properties

Discrete-time Markov chain is a sequence of random variables X;, X,, X5, ...
with the Markov property, namely that the probability of moving to the next

state depends only on the present state and not on the previous states

P(Xn+1 = %Xy = %5, X1 = Xn—1, ., Xo = X9) = P(Xp41 = x[Xy (1.4)

= Xp)

probabilities are well defined, that is
P(X1=x1,X2=x2,...,Xn=xn)>0 (1.5)

The possible values of X;form a countable set S called the state space of

the chain. Time-homogeneous Markov chains are processes were
(Xn+1=x|;Xn=y)=P(Xn=x|:Xn—1=y) (16))

for all n. The probability of the transition is independent of n. Stationary

Markov chains are processes were
P(Xy=x0,Xy =%, ., X =x) =P(X,, = %0, Xp41 = X1, o0, Xk = Xi) (1.7)

for all nand k. Every stationary chain can be proved to be time-
homogeneous by Bayes' rule. A necessary and sufficient condition for a
time-homogeneous Markov chain to be stationary is that the distribution
of X, is a stationary distribution of the Markov chain. A Markov chain with
memory (or a Markov chain of order m) where m is finite, is a process

satisfying

P(Xni1 = XX =X, Xn1 = X1, o, Xo = Xg) = P(Xpy1 = x|Xy (18)

=Xp, Xn-1 = Xn—1, e, Xnem = Xnom) =



https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Markov_property
https://en.wikipedia.org/wiki/Conditional_probability
https://en.wikipedia.org/wiki/Countable_set

In other words, the future state depends on the past m states. It is possible
to construct a chain (Y,,) from (X,) which has the 'classical' Markov property

by taking as state space the ordered m-tuples of X values, i.e.

Yo = (Xn Xn-1, - Xn-m+1) (1.9)
1.7 Other properties

1.7.1 Stationary Distribution

L =

Figure 1.5 : Periodicity is an irreducible class property.

A stationary distribution n is a probability (fig (1.5)) distribution over the
states that remain unchanged after transitions. The stationary distribution

satisfies
nlT =1 (1.10)

Where n is the row vector representing the stationary distribution, and Tis
the transition matrix. This ensures that the probability distribution n is

invariant under the transition matrix.

1.7.2 Irreducibility

A Markov Chain is irreducible if it is possible to reach any state from any
other state. For irreducibility, for any pair of states (/, j), there must exist

some n > 0 such that




P"(i,j) > 0 (1.11)

This means that there is a non-zero probability of transitioning from state /

to state jin a finite number of steps.

1.7.3 Ergodicity

A Markov Chain is ergodic if it is irreducible and a periodic, meaning the
chain will eventually reach the stationary distribution, regardless of the
initial state. If a chain is ergodic, it satisfies the condition that, for any state
/, there is a nonzero probability of reaching any state jin a finite number of

steps, and that state /7 will eventually return with probability
P"(i;j) >0 forsomen =1 (1.12)

where P™(i;j) is the probability of reaching state j from state iii in N steps.
The ergodicity condition guarantees that the chain will eventually converge

to a stationary distribution.

1.7.4 Reversibility

Description: A Markov Chain is reversible if it satisfies the detailed balance
equations, meaning that the rate of transition from state iii to state j is the

same as from state j to state iii, weighted by the stationary distribution.
T[iPij = T[]Pl] Vi ,j (113)

This equation ensures that the process is reversible and in equilibrium when

the chain reaches the stationary distribution n

1.7.5 Absorbing States

Description: A state is absorbing if, once entered, the system cannot leave

it. An absorbing Markov Chain contains at least one absorbing state.

Let P be the transition matrix. If a state iii is absorbing, the probability of

transitioning to another state from iii is zero:




Pl]=11 Pl]=0 for I-'/:] (1.14)

If Qis the submatrix of the transition matrix corresponding to transient
states and RRR is the matrix of transitions from transient to absorbing

states, the fundamental matrix NNN is given by

N=(I-Q)* (1.5)

This matrix helps calculate the expected number of visits to each transient

state before absorption.

1.7.6 Transience and Recurrence

Description: States can be either recurrent (eventually revisited) or
transient (never revisited). For a state to be recurrent, the expected

number of steps to return to state iii should be finite:

- 1.16
E, = Z n.P(Xn =i|x, = i) ( )

n=1

If finite, state i is recurrent. If E; is infinite, state iii is transient.

1.7.7 Periodic States

Description: A state iii is periodic if there exists an integer d>1 such that

If the period of a state iii is did, it satisfies:

D=gad {n:P"™ (i; i) >0} (1.17)

A Markov Chain is aperiodic if all states have period 1, meaning the

process can return to any state at irregular time intervals.




1.7.8 Convergence to Stationarity

Description: For an ergodic Markov Chain, the chain will converge to the

stationary distribution regardless of the starting distribution.

(Convergence): The convergence of the chain to its stationary distribution
can be measured by the total variation distance between the current

distribution and the stationary distribution n

(1.18)
dtv(uy,, m) = 1/22 Ip" (@) — (D]

this distance approaches zero if the chain is ergodic.
1.7.9 Mixing Time

Description: The mixing time of a Markov Chain is the time it takes for the
chain to come close to its stationary distribution. The mixing time is the
smallest time such that the total variation distance between the

distribution and the stationary distribution n\pin is less than e\epsilone:
dr,(p',m) <€ (1.19)

This gives an upper bound on how quickly the chain "forgets" its initial

state and reaches the stationary distribution.

1.8 Conclusions

In a Markov chain, future states depend only on the current state,
and not on the sequence of events that preceded it. This simplifies modeling
and analysis but also limits its application in systems where the history is
important. The system evolves based on a set of transition probabilities,
which are typically represented in a matrix form (transition matrix). The
probability of moving from one state to another can be calculated using
these transition matrices. While Markov chains are powerful, they may not
be suitable for modeling systems where past states or more complex

dependencies influence future behavior. Also, for certain chains,




convergence to a steady state may not always occur or could take an

impractically long time.

References

[1] A. A. Markov (1906) "Rasprostranenie zakona bol'shih chisel na
velocity, zavisyaschie drug to druga". Izvestiya Fiziko-matematicheskogo

obschestva pri Kazanskom Universiteit, 2-ya seriya, volume 15, pp.

[2] A. A. Markov (1971). Extension of the limit theorems of probability
theory to a sum of variables connected in a chain". reprinted in Appendix
B of: R. Howard. Dynamic Probabilistic Systems, volume 1: Markov
Chains. John Wiley and Sons [3] Classical Text in Translation: Markov, A. A.
(2006). An Example of Statistical Investigation of the Text Eugene Onegin
Concerning the Connection of Samples in Chains". Science in

Context. 19 (4) Translated by Link, David: 591-600

[4] S. P. Meyn and R. L. Tweedie (1993) Markov Chains and Stochastic
Stability. London: Springer-Verlag ISBN 0-387-19832-6. online: MCSS .

Second edition to appear, Cambridge University Press, 2009

[5]S. P. Meyn. Control Techniques for Complex Networks. Cambridge
University Press, 2007. ISBN 978-0-521-88441-9. Appendix contains
abridged Meyn & Tweedie. online: CTCN

[6] "Student Chapters". Society for Industrial and Applied Mathematics.
Retrieved 30 August 2017 Markov Chains" by J. R. Norris (1998) - This
paper provides an in-depth explanation of the theory behind Markov

chains and their mathematical properties.

[7] Markov Chains" by J. R. Norris (1998) - This paper provides an in-
depth explanation of the theory behind Markov chains and their

mathematical properties.



https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-387-19832-6
https://web.archive.org/web/20100619010320/https:/netfiles.uiuc.edu/meyn/www/spm_files/book.html
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-521-88441-9
https://web.archive.org/web/20100619011046/https:/netfiles.uiuc.edu/meyn/www/spm_files/CTCN/CTCN.html
http://www.siam.org/students/chapters/

Chapter 2

Monte Carlo

simulation




2.1 Introduction

This Monte-Carlo method, or the Monte-Carlo method, is an algorithmic
method that is used to calculate a numeric value applied in the use of

advanced algorithms, it is the easiest of the probabilistic techniques.

Monte Carlo
Simulation

[mdn-té ‘kdr-16 sim-ya-la-shan]

A model used to predict
the probability of a variety
of outcomes when the
potential for random
variables is present.

2 Investopedia

Figure (2.1) :Monte Carlo Simulation: What It Is, How It Works, History, 4
Key Step

The Monte-Carlo methods are participatory utilizes to (fig 2.1) calculate
integrals of larger dimensions than 1 (in particular, to calculate surfaces
and volumes). These are suitable for use in specific physics, or simulations
cause problems that allow for the signal format or the sensitivity of the
detector. Comparison of the best simulations in these simulations may allow
you to provide information on specific characteristics, including new parts.
The Monte-Carlo simulation method allows us to introduce a statistical
estimate of the risk in a precise financial decision. It consists of isolating
the variables in the projector, telling you the difference or the margin, and
it affects one of the possibilities. Because of these factors, a large number
of household tires, which will affect the previous pre-determined risk
factors, will have an effect, in order to find out the risk of occurrence of the

results. Here is the example, the selection of the collection mode in the
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public private partnership (PPP) cadre can be analyzed by the Monte Carlo
method, so that it can calculate the risk sharing between public and private
actors. On parle de “risks valorizes” or “values a risk». The veritable
development of Monte-Carlo methods has the greatest effect on the
impulsion of John von Neumann and Stanislaw Ulam notation, when the
Second World War, and searches on the automatic bomb fabrication. It also
uses specific methods to solve the needs of parts in the Monte-Carlo N-
Particle transport (MCNP) cadre.the name of these methods, which helps all
those who have practiced at the Monte-Carlo Casino, was created in 1947
by Nicholas Metropolisl, and was originally published in 1949 in a co-written

article with Stanislaw Ulam2.
2.2 Convergence and Statistical Accuracy

After a sufficient number of iterations, the results of the Monte Carlo
simulation converge to a stable value, which can be considered an
estimate of the true result.: this convergence helps assess the accuracy of

the simulation and provides a way to quantify uncertainty in predictions.

2.2.1 Output Analysis

Once the simulations have been completed, the output (i.e., the results of
each trial) is analyzed using statistical methods. The outputs may be used
to calculate metrics like the mean, variance, percentiles, or probabilities of
certain outcomes, helping to draw conclusions about the system's

behavior or make informed decisions.

2.2.2 Sensitivity Analysis

Definition: Sensitivity analysis involves studying how sensitive the results
of the simulation are to changes in the input variables. Purpose: This helps
identify which variables have the most significant impact on the outcome,

allowing for better risk management and prioritization of factors in a model.




2.2.3 Variance Reduction Techniques

These are methods used to reduce the number of simulations needed to
achieve a certain level of accuracy. Examples include importance
sampling, stratified sampling, and antithetic variates. Variance reduction

techniques can make Monte Carlo simulations more efficient by lowering

computational costs without sacrificing accuracy.

2.2.4 Sampling Methods

There are different ways to generate random samples for the simulation.
Common sampling techniques include: Simple Random Sampling:
Randomly selecting inputs for each simulation from the distribution.
Stratified Sampling: Dividing the population into subgroups (or strata) and
sampling within each subgroup to reduce variance. Latin Hypercube

Sampling: A statistical method to ensure that all areas of the input space

are sampled more evenly.

2.3 Steps in a Monte Carlo Simulation

Monte Carlo simulations are typically used to model complex systems and
estimate the impact of uncertainty or variability. The process involves a
series of well-defined steps to simulate and analyze the system. Here’s a

breakdown of the typical steps involved

2.3.1 Define the Problem or System

The objective is clearly outline what you are trying to model or analyze and
identify the system's variables, inputs, and outputs, and what is the goal of
the simulation. For example, estimating the probability of a specific

outcome, optimizing a decision, or evaluating risk




2.3.4 Identify Input Variables and Define Probability
Distributions

Identify the uncertain variables in your system and specify their probability
distributions. Each input will be treated as a random variable with a known
distribution (e.g., normal, uniform, or exponential).Use historical data,
expert opinions, or assumptions to define the distributions of each uncertain
variable. If modeling stock price, you may assume the returns follow a

normal distribution with a mean of 5% and a standard deviation of 10%.

2.3.5 Generate Random Samples

Objective: For each uncertain variable, generate random values according
to the defined probability distributions. These values represent possible
outcomes of the uncertain inputs. Random sampling can be done using tools
like random number generators. For each input, you may use methods like
inverse transform sampling, rejection sampling, or other techniques

depending on the distribution.
2.3.6 Run the Simulation (Perform One Trial)

Objective: Use the randomly generated input values to simulate one

possible outcome of the system. Calculate the output or result for that trial.

Details to consider: Apply the input values to the model and calculate the
desired output, which could be a profit, cost, risk, or some other metric. If
simulating an investment's future value, use the randomly generated return

and time period to calculate the investment's final value.

2.4 Repeat the Simulation (Multiple Trials)

Run the simulation many times (e.g., 1,000, 10,000, or more) with different
random samples each time. This helps to capture the variability and

uncertainty in the system. The more trials you run, the more accurate and




reliable your results will be. Each iteration uses a new set of random

samples, providing a broad range of possible outcomes.

2.4.1 Analyze the Results

After performing a large number of trials, analyze the results to make
inferences or decisions. Common statistical analyses include calculating the
mean, standard deviation, percentiles, and probabilities. Visualization
methods such as histograms, boxplots, or cumulative distribution functions

(CDFs) can also help interpret the results.

2.4.2 Make Decisions Based on Results

Use the insights gained from the simulation to make informed decisions,
assess risks, or determine the best course of action.the results help in
understanding the risk and uncertainty in the system, guiding decision-
making under uncertainty. You may use these results to set expectations,

adjust strategies, or optimize choices.

2.4.3 Validate and Refine the Model (Optional)

Validate the simulation results and refine the model if necessary.
Compare the simulation results to real-world data (if available) or use
expert judgment to ensure that the model's assumptions are reasonable.
If discrepancies arise, you may adjust the input distributions or the model

itself.




2.5 Applications of Monte Carlo Simulations
2.5.1: Monte Carlo integration

e r —4— i

Figure (2.2): Monte Carlo method applied to approximating the value
of i

A classic example is estimating the (fig (2.2)) integral of a function f(x) over
an interval [ a.b]

b b—a > )
Lf(x)dxz—N ;f(xl) (2.1)
Where :

xi are random samples uniformly drawn from the interval [a, b]:

N is the number of samples

2.5.2 estimating n using Monte Carlo

A common introductory example involves estimating n by simulating

points in a unit square and checking how many fall inside a quarter circle




Number of points inside quarter circle

~ 4
T total number of boints (2.2)

If we randomly generate (xi. Yi) such that 0<xi.Yi < 1 then a point is
inside the quarter circle if:
x2+y?<1 (2.3)

2.5.3 General Monte Carlo Estimation Formula

To estimate the expected value E[f(X)] for a random variable X:
1
E [f(x)]~ =3I, f(x)
(2.4)
2.5.4 Finance and Investment

Monte Carlo Simulation is used to forecast the possible returns of a
financial portfolio by simulating random paths of asset prices over time,

capturing market volatility and uncertainty.

2.5.5 Project Management

Uncertainty in task durations is modeled to estimate the likelihood of project
completion dates using Monte Carlo simulation. A software company
simulates uncertain task durations to assess the probability of delivering a

product on time.

(2.5)

=Y

n
i=1

2.5.6 Healthcare and Medicine

Monte Carlo simulations model how radiation interacts with tissues to

calculate dose distributions more accurately than deterministic methods.

Physicians use Monte Carlo-based treatment planning to adjust tumor

doses in proton therapy.




= Ei (2.6)
D = le

Verhaegen, F., & Suenens, J. (2003). "Monte Carlo modelling of external
radiotherapy photon beams." Physics in Medicine and Biology, 48(21),
R107.

https://doi.org/10.1088/0031-9155/48/21/R01 [1]

2.5.7 Environmental Science

Monte Carlo simulations are used to estimate the likelihood of extreme
rainfall and flooding by generating thousands of random weather

scenarios.

2.6 Conclusion

The main purpose of this chapter is to present algorithms based on various
Monte Carlo methods and techniques, in addition to studying Markov chains.
We have followed the chronological order of events in the evolution and
introduction of the various approaches to approximating integrals, either
analytically, numerically, or by simulation. The criticisms made of the first
two approaches point us toward the simulation approach, whose adaptive
preferential sampling methods and MCMC methods prevail over the other

techniques we have presented.
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Inverse Markov
problem by monte
Carlo simulation




3.1 Introduction

We present a biophysics example of a transition matrix in a Markov
process, modeling ion channel gating dynamics. It is a classic application in
neurobiology and electrophysiology. [1, 2] In traditional (direct)
applications, the transition probability matrix is given, and the evolution of
the system is simulated or analyzed from this known matrix. However, in
many practical situations, we observe only the system trajectories—
sequences of visited states—without direct access to the transition
probabilities themselves. The challenge in such cases is to infer the
transition matrix that best explains the observed dynamics. This is an
inverse problem, and it is typically solved in this chapter using Metropolis

alghorithm.

3.2 Ion channel

Ion channels are specialized proteins embedded in cell membranes
that allow ions (e.g., K*, Na*, Ca2*, ClI") to pass in and out of cells. They
play critical roles in: Electrical signaling (e.g., nerve impulses, Metropolis,
N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953).
Equation of state calculations by fast computing machines. Journal of
Chemical Physics, 21(6), 1087-1092.[2] muscle contraction), Maintaining
cellular homeostasis (e.g., pH, volume), and Sensory processes (e.g.,
hearing, taste). Channels switch between open (conducting)

and closed (non-conducting) states, controlled by:

» Voltage (e.g., voltage-gated Na* channels in neurons).
« Ligands (e.g., neurotransmitters like GABA activating CI~ channels).

o Mechanical force (e.g., hair cells in the inner ear).

3.3 Markov model
3.3.1 Continuous matrix Q




A potassium (K*) ion channel fluctuates between three conformational
states:

e Closed (C) - Channel is shut, no ions pass.
e Open (O) - Channel allows ion flow.

e Inactivated (I) - Channel is blocked (temporarily non-conducting).

The transition rate matrix Q for a potassium (K*) ion channel describes the
stochastic switching between its conformational states (e.g., Closed, Open,
Inactivated). Below, we rigorously derive the elements of Q@ and explain
their biophysical meaning. Experimental data [3] suggests the

following transition rates (per millisecond):

C - 0O: Rate = 0.3 ms™?
O -> C: Rate = 0.4 ms™?
O ->1I: Rate = 0.1 ms™?
I > C: Rate = 0.2 ms™?

Where, no direct transitions C« Ior I - O are allowed in this model. Then,
we get the channel Q matrix
—-0.3 0.3 0
Q=104 -05 0.1 ] (3.1)
0.2 0 —-0.2
Where, rows sum to 0, and diagonal entries Q;; are negative (to ensures
probability conservation). The off-diagonal elements Q,..; are the transition

rates from state /to j. Then, we have:

o Fast activation: High (-0 rate (Qq, = 0.3) ensures quick response to
depolarization.

« Slow inactivation: Low O-7rate (Q, = 0.1) prevents premature channel
blockage.

o Recovery: I~Crate (Q,c = 0.2) determines refractory period.




3.3.2 Discrete matrix P

For a small-time step Af(e.g., 0.1 ms), the transition probability

matrix P is approximated as
P~ 1+ QAt (3.2)
where Iis the identity matrix. For At = 0.1 ms, we get
097 0.03 0
P= [0.04 0.95 0.01] (3.3)
002 0 0098

We note that all rows sums to 1. The probability of staying in Closed (C) for
0.1 ms is 97%, the probability of the transition C - O in 0.1 ms is 3%. Note

also that P; = 1 implies slow dynamics.

3.3.3 Steady-State Probabilities

The steady state = is given by one of the two following equations
n.Q=00rmnP=n (3.4)
If m = [n.,mp,m;], then we get
0.97 0.03 0

[nc,no,n,][om 0.95 0.01]=[nc,no,n,] (3.5)
002 0 098

This gives with the condition n; +my + 7, =1
[7¢, o, ;] = [0.52,0.32,0.16] (3.6)

At equilibrium, the channel spends 52% time Closed, 32% Open, and 16%

Inactivated.

3.3.4 Validation by iterations

Let’s start with a chosen state noted Wo = [1,0,0]. If we fix the absolute
tolerance at 104, and using the iteration formula

Wi+1 =PWl (37)
we get 188 states such that

W 188 =[0.5270,0.3170,0.1560] ~ [0.52,0.32,0.16] (3.8)




We can increase the precision by performing more iterations (i.e., more
than 188).

3.4 Inverse Estimation of a Markov Transition
Matrix

3.4.1 Metropolis Algorithm

The Metropolis Monte Carlo (MC) algorithm, originally developed for
simulating physical systems at thermal equilibrium (Metropolis et al., 1953),
has been widely adapted for solving inverse problems through probabilistic
sampling. By defining an appropriate energy or cost function related to the
accuracy of a guessed transition matrix, the Metropolis algorithm allows one
to stochastically explore the space of possible] Kirkpatrick, S., Gelatt, C. D.,
& Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science,
220(4598), 671-680.

[4] matrices and converge to a good approximation of the unknown true
matrix. We consider the three-state system (section 3.3) with the known
transition matrix eq. (3.3), which we will attempt to rediscover solely from
state trajectory data. The goal is to estimate the transition matrix using

only the set of transient state vectors.
3.4.2 Energy Function

To guide the optimization of the estimated transition matrix, we define an
energy (or cost or error) function that quantifies how poorly a candidate

matrix reproduces the trajectory. Specifically, the energy function is
E(P) = X} Wiy y —W,. Pell? (3.9)

Where Pe is the estimated transition matrix. This is the sum of squared

Euclidean distances between the actual next state (3.7) and the predicted




next state obtained using Pe. Minimizing this function corresponds to finding
a matrix that best maps each current state to its observed successor. This
approach is related to maximum likelihood estimation under Gaussian noise

assumptions

3.4.3 Methodology

In our context, Metropolis algorithm is used in python code (see annex) to
sample from the space of valid stochastic matrices in such a way that

matrices with lower energy values are favored. The steps are as follows:
(a) Initialization:

We start with a randomly initialized matrix where each row is sampled from
a uniform distribution, ensuring that rows sum to 1 and all entries are
positive. An initial temperature is set to control acceptance of higher-energy
moves. The temperature (which is not a physical parameter in general) is
gradually reduced according to a cooling schedule controlled by a decay

factor.
(b) Perturbation:

A small Gaussian perturbation is applied to a randomly chosen entry in the
matrix Pe, followed by row normalization to maintain the stochasticity
constraint (sum of each row equals 1). The perturbed matrix is accepted

with probability: Accept with probability

Pr = min(1, exp(—AE(P)/T)) (3.10)

This means that when the new configuration is better (lower energy), we
always accept it, and when it's worse, we might still accept it especially if
the temperature is high or the energy increase is small. This helps the
system escape local minima and explore the space better. Note that the
temperature T is a control parameter in the acceptance rule that determines

how tolerant the system is to unfavorable or "bad" moves during the




optimization process. When 7 is large, the system is more permissive,
allowing most moves to be accepted, Norris, J. R. (1997). Markov Chains.
Cambridge University Press [5] including those that worsen the objective
function. This promotes exploration of the solution space. As 7 decreases,
the system becomes more selective, increasingly favoring only those moves
that improve the solution. In the limit of very small 7, almost only better

moves are accepted, guiding the system toward convergence.

(¢) Cooling:

At each iteration, the temperature is updated from the set {10.0, 1.0, 0.1,
0.01}, thereby reducing the probability of accepting worse solutions as the

optimization progresses.

(d) Convergence

The procedure runs for a fixed number of iterations (e.g., 3000), after which
the matrix with the lowest recorded] Gilks, W. R., Richardson, S., &
Spiegelhalter, D. (1995). Markov Chain Monte Carlo in Practice. Chapman
and Hall/CRC [6] energy is selected as the estimated transition matrix. To
quantify how close each estimated matrix Pe is to the true transition matrix

P, we compute the Frobenius norm of the difference between them

This distance measure provides a scalar value summarizing the total
deviation across all matrix entries. A smaller distance implies a more

accurate estimate.




3.4.4 Results

The figure 3.1 shows the energy function A P) versus the number of

Metropolis iterations for four different initial temperatures: 10.0, 1.0, 0.1,

0.01. All temperature profiles demonstrate convergence of the energy

function toward zero, indicating that the algorithm successfully reduces

prediction error over time.
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Figure 3.1Energy convergence curves

A D p 11 | p 12 | p 13| p 21 | p 22| p23 | p 31| p 32| p 33
P(Exact) 00 0.97 0.03 0 0.04 | 0.95 | 0.01 0.02 0 0.98
1 0.058 0.961 | 0.039 | 0.000 | 0.066 | 0.922 | 0.012 | 0.000 | 0.034 | 0.966

Table 3.1 Measured distances from Pe to P

T = 0.01 shows the fastest drop and lowest final energy, suggesting

quick convergence. However, its Frobenius distance (Table 3.1) to the

true matrix is not the smallest, revealing that it may have converged

to a local minimum.




e T = 1.0 achieves the smallest Frobenius distance (0.058), meaning
the estimated matrix is closest to the true transition matrix, even
though it converges slightly slower than T = 0.01.

« T =10.0 allows for broader exploration (due to a high acceptance rate
of worse proposals), but its final distance (0.101) is worse than lower
temperatures, confirming that too much randomness delays fine
convergence.

« T =0.1shows slightly less stability than T=1.0and T = 0.01, ending
with the worst fit (distance = 0.108), despite acceptable energy
decay.

This behavior aligns with theoretical expectations from simulated annealing:
moderate temperatures balance exploration and convergence well, while

very high or low temperatures can lead to suboptimal estimation.

3.4.5 Conclusion

The Metropolis Monte Carlo method successfully reconstructs a Markov
transition matrix from a time series of state vectors. Temperature

significantly impacts the qualité and speed of convergence:

e« T = 1.0 delivers the best compromise between exploration and
convergence, yielding the closest match to the true matrix.

o Very low temperatures (T = 0.01) converge fast but may miss the
global minimum.

« Very high temperatures (T = 10.0) prolong exploration, potentially

delaying convergence.

Hence, for similar inverse estimation problems, a moderate initial
temperature with annealing (like T = 1.0) is recommended to ensure

accurate and stable estimation.
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General Conclusion

In this study, we addressed the inverse problem of estimating the transition

matrix Pe governing a three-state Markov model, representative of ion

channel conformational states (e.g., open, closed, inactive). Using synthetic

trajectories derived from a known matrix P, we applied the Metropolis Monte

Carlo algorithm with various temperature settings to reconstruct the

underlying dynamics. The energy convergence curves demonstrate that the

algorithm efficiently minimizes the prediction error E(P) for all tested

temperatures. However, convergence behavior and final accuracy were

highly dependent on the temperature:

T = 1.0 yielded the lowest Frobenius distance (D = 0.058) from the
true matrix, striking an effective balance between exploration and
exploitation during sampling. The estimated transition matrix closely
approximated biologically meaningful values (e.g., high self-transition
probabilities for stable states).

T = 0.01, although converging fastest in terms of energy, achieved
only moderate reconstruction accuracy (D = 0.084), indicating that
too rapid convergence can trap the algorithm in local minima, missing
subtle dynamics—such as low-probability transitions between inactive
and active states.

T = 10.0 enabled broader exploration but led to slower convergence
and higher final error (D = 0.101), emphasizing the cost of excessive
stochasticity in fine-tuning dynamic models.

T = 0.1 produced the least accurate estimate (D = 0.108), underlining
that intermediate temperatures without proper annealing can perform

worse than both high and low extremes.

These findings illustrate the critical role of temperature tuning in the

Metropolis method when applied to biophysical Markov models. Accurate

estimation of ion channel kinetics depends not only on minimizing the




energy function but also on appropriately managing exploration during
sampling. In practical applications—such as fitting models to patch-clamp
recordings or molecular simulations—our results recommend using a
moderate temperature with controlled annealing to optimize convergence

and matrix fidelity.




Annex: Python code

import numpy as np
import matplotlib.pyplot as plt

import pandas as pd

# True transition matrix T
T true = np.array ([
[0.97, 0.03, 0.00],
[0.04, 0.95, 0.01],
[0.02, 0.00, 0.98]

# Initial state
W0 = np.array([1.0, 0.0, 0.0])

# Generate trajectory of 188 steps
num steps = 188
W list = [WO]
for in range(num steps - 1):
W next = W list[-1] @ T true
W list.append (W next)

W array = np.array(W list)

# Energy function
def energy (P, W seq):
return sum(np.linalg.norm(W seql[i+l] - W seqg[i] @

P)**2 for i in range (len (W seq)-1))

# Metropolis algorithm with fixed starting matrix




def metropolis (W seq, P start=None, T init=1l.0,
alpha=0.99, min temp=le-4, max iter=3000):
P = P start.copy() if P start is not None else

np.random.dirichlet (np.ones(3), size=3)

T = T init
E list = []
for in range(max iter):
i, J = np.random.randint (0, 3, size=2)

P new = P.copy()
delta = np.random.normal (0, 0.01)
P new[i, Jj] = np.clip(P newl[i, j] + delta, O,

P new[i] = P new[i] / P newl[i].sum()

E old = energy (P, W seq)

E new = energy (P new, W seq)

if E new < E old or np.random.rand() < np.exp (-
(E new - E old) / T):

P = P new
E list.append(E new)
T = max(T * alpha, min temp)

return P, E list

# Fixed initial matrix PO

P init = np.random.dirichlet (np.ones(3), size=3)

# Simulate for various temperatures
temperatures = [10.0, 1.0, 0.1, 0.01)]
results = {}

final matrices = {}




for T init in temperatures:

P est, E curve = metropolis (W array, T init=T init,
max iter=3500, P start=P init)

results[T init] = E curve

final matrices[T init] = P est

# Plot energy convergence

figl, axl = plt.subplots(figsize=(8, 6))

for T init, E curve in results.items():
axl.plot (E curve, label=f"T={T init}")

axl.set xlabel ("Iteration")

axl.set ylabel ("Energy E(P)")

axl.set title("Energy Convergence for Different

Temperatures")

axl.legend()

axl.grid(True)

figl.tight layout ()

figl.savefig("energy curves.png")

# Create sorted table of estimated matrices
data rows = []
for T init, P in final matrices.items():

distance = np.linalg.norm(P - T true, ord='fro')

row = {"Temperature": T init, "Distance to T":
round (distance, 6)}

for i in range(3):

for j in range(3):
row[f"p {i+1}{j+1}"] = round(P[i, jI, 6)

data rows.append (row)




df = pd.DataFrame (data rows)
df sorted = df.sort values(by="Distance to T")

df sorted.to csv("transition matrix table.csv"

index=False)
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