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Abstract

Within the framework of the impact parameter formalism, the variational approach based
on the fractional form of the Schwinger variational principle is applied to evaluate the total
cross sections for the direct excitation of the hydrogen atom to the states n = 2 and n = 3 by
proton (H+) impact. The study was conducted in the energy range from 1 keV to 200 keV,
including the intermediate energy domain around 50 keV. Our theoretical predictions are in
good agreement with the various available experimental results, particularly those of Park
et al. and Barnett et al., as well as with several theoretical models such as TCES, POHC,
UOHC, SCE, TDSE, and TCAO.
Keywords: Atomic collisions, Schwinger variational principle, Atomic excitation, Cross
sections

Résumé

Dans le cadre du formalisme du paramètre d’impact, l’approche variationnelle basée sur la
forme fractionnaire du principe variationnel de Schwinger est appliquée pour l’évaluation des
sections efficaces totales d’excitation directe de l’atome d’hydrogène vers les états n = 2 et
n = 3 par impact de protons (H+). L’étude a été réalisée dans la gamme d’énergie allant
de 1 keV à 200 keV, incluant le domaine des énergies intermédiaires autour de 50 keV.
Nos prédictions théoriques sont en bon accord avec les différentes données expérimentales
disponibles, notamment celles de Park et al. et de Barnett et al., ainsi qu’avec plusieurs
modèles théoriques comme TCES, POHC, UOHC, SCE, TDSE et TCAO.
Mots clés : Collisions atomiques, Principe variationnel de Schwinger, Excitation atomique,
Sections efficaces
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General Introduction

Atomic collisions concern the study of phenomena induced by the relative motion of
charged particles (atoms, ions, electrons, etc.) in interaction. Elementary processes such as
excitation, ionization, and electron transfer arising in atomic collisions have attracted great
interest for a long time. A considerable amount of theoretical work has been devoted to the
study and understanding of the scattering of atoms and ions [9, 40].

The proton–hydrogen collision remains a reference for the development of new atomic
scattering theories. There are three primary inelastic processes: target excitation, electron
capture by the projectile, and direct ionization.

The study of these fundamental processes of atomic collision between the proton and
the hydrogen atom is of great interest in various branches of physics, including astrophysical
plasmas and the physics of thermonuclear fusion plasmas.

At intermediate collision energies, the three inelastic processes — excitation, electron
capture, and ionization — can occur with comparable probabilities [17] and thus must be
treated simultaneously. While the Close-Coupling approximation has been applied to address
this, the results remain inconclusive and sometimes unsatisfactory. Indeed, in this energy
region, the behaviour of the electronic wave function becomes more complex than at low
energy (where transfer dominates) or at high energy (where excitation and ionization are
predominant). The scattering wave function must therefore represent all these processes at
the same time, which is a major theoretical difficulty.

One of the most promising approaches is the Schwinger variational principle, which
offers a rigorous and non-perturbative mathematical framework for approximating scattering
amplitudes.

In order to investigate the direct electronic excitation of hydrogen-like atoms by impact
of ions at intermediate velocities, this variational approach was introduced [7,18]. Even when
helium-like ions impinging on different rare gases were excited at 400 MeV Fe24+(1s2) [63],
34 MeV/nucleon Kr34+ [11], and 13.6 MeV/u Ar16+(1s2) [1], it was demonstrated to be highly
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GENERAL INTRODUCTION

effective in forecasting the saturation of cross sections when the projectile charge was raised.
However, due to neutral projectiles, these results were achieved by ignoring the interaction
between excitation and capture channels.

In the case of the excitation of a hydrogen atom by proton impacts at intermediate and
low velocities, it should not be possible to ignore the coupling between excitation and capture
channels. The objective of this study is to apply a fractional form of the Schwinger variational
principle to compute total excitation cross sections of the hydrogen atom induced by proton
impact in the intermediate energy domain target in the cross sections. Specifically, we aim
to analyze transitions to the n = 2 and n = 3 excited states, using basis sets of increasing
complexity (ranging from 5 to 14 states) to assess convergence and accuracy. Our results
are critically compared with experimental data—such as those of Park et al. and Barnett et
al.—and with outcomes from other theoretical models, including the Close-Coupling, Time-
Dependent Schrödinger Equation (TDSE), and Sturmian Two-Center Expansion (TCES)
approaches. The rationale for this work is twofold:

• First, to demonstrate the effectiveness of the Schwinger variational method in resolving
the longstanding inconsistencies in intermediate-energy excitation cross sections.

• Second, to provide a benchmark dataset that can be used to validate or challenge
existing theoretical and experimental results.

By doing so, this study contributes to the refinement of collision models and advances our
understanding of ion-atom interaction dynamics.
This thesis is organized as follows:

• Chapter 1 presents the theoretical foundations of ion-atom collision processes and
surveys existing approaches.

• Chapter 2 introduces the Schwinger variational formalism and details the derivation
of the fractional amplitude expression.

• Chapter 3 describes the numerical implementation and outlines the basis sets used.

• Chapter 4 presents and discusses the results of our calculations, followed by a com-
parison with existing theoretical and experimental data.

• Appendices provide supplementary derivations and detailed tabulations of the matrix
elements and cross-section results.

This thesis concludes with a general conclusion and some suggestions regarding the work.

2



Chapter 1

Theoretical Foundations of Atomic
Collisions

1.1 Fundamental collision processes:

During ion-atom collisions, a portion of the kinetic energy of motion is transferred
to both electron clouds, leading to a rearrangement of the states of one or more electrons,
corresponding to processes such as excitation, ionization, or capture (Figure 1.1). [1]

1.1.1 Direct Single-Electron Processes:

In the study of collisions between a projectile ion P and an atomic or molecular targetT ,
the "active" electrons of the target are those that, during the interaction, can undergo tran-
sitions from an initial orbital T to another orbital within T (excitation), to the continuum
(ionization), or to an orbital of P (capture). Conversely, "passive" electrons are those that
retain their quantum states throughout the collision.

To facilitate the analysis of these three fundamental processes, a single-electron model
is adopted, wherein the concept of an "active electron" serves to characterize single-electron
processes and define the relevant impact velocity regimes.

3



CHAPTER 1. THEORETICAL FOUNDATIONS OF ATOMIC COLLISIONS

Figure 1.1: Collision system.

1.1.1.1 Ionization:

In this process, the interaction is sufficiently intense, resulting in substantial energy
transfer. As a consequence, the transferred energy may be sufficient to dislodge an electron
from the target atomT , leading to the formation of an ion-electron pair (a positively charged
ion and a free electron) within the medium.

1.1.1.2 Excitation:

In contrast, if the interaction is insufficient to induce the ionization, only excitation
occurs, wherein the electron undergoes a transition from an initial quantum state to a less
tightly bound final state. This process is relatively unlikely for biological targets.

1.1.1.3 Capture:

The single capture process refers to the relocation of an electron from a bound state of
the target atom T to a bound state of the projectile P without the simultaneous emission of
radiation. This phenomenon, also known as charge transfer, is particularly significant in the
context of heavy-ion collision dynamics.

1.2 Impact velocity regimes:

For each collision system, these various processes are characterized by cross-sections
that, for a given projectile ion and target, depend on the collision energy, as shown in figure
(I-2) for the case of a proton in a hydrogen system. According to the speed of the projectile

4
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Figure 1.2: Capture, excitation, and ionization cross sections as a function of energy for p + H
collisions. Extracted from Vernhet et al., 1996)

(vp), the relative importance of these dynamic processes differs. The collision theory classifies
three regimes according to the value of the parameter defined as K, defined as:

K =
Zp
ZT
× Ve
Vp

(1.1)

Where:

• Ve is the velocity of the electron in an atomic (or molecular) target layer,

• Vp is the velocity of the incident ion (projectile) ,

• Zp and ZT are the atomic numbers (charges) of the projectile and the target, respec-
tively.

Three regimes are distinguished:

5



CHAPTER 1. THEORETICAL FOUNDATIONS OF ATOMIC COLLISIONS

1.2.1 Low-impact velocity regime (K » 1):

This regime, also called the strong interaction regime, is reached when the collision
velocity (Vp) is much lower than that of the active electron (Ve). The theory adapted to this
regime is based on the hypothesis of the formation of a transient quasi-molecule during the
collision and relies on representing electronic states using molecular bases. One of its models
is Continuum Distorted Wave (CDW) model, where the target continuum wave is distorted
by the projectile wave.

1.2.2 High-velocity impact regime (K « 1)

This regime, also called the perturbative regime, is reached at high collision velocities
(Vp » Ve) and for large asymmetries (Zp « ZT). A first-order perturbation theory, such as
the Plane Wave Born Aapproximation (PWBA), becomes reliable for accurately evaluating
the total cross-sections of ionization and excitation reactions.

1.2.3 Intermediate impact velocity regime (K ≈ 1)

Quasi-symmetric regime, where we observe:

• Strong coupling between capture and excitation channels.

• Cross-sections of different atomic processes are close to their maximum values.

• Multiple processes have non-negligible probabilities.

The ionization process becomes increasingly significant as the impact velocity increases.
This process is mainly due to electrons ejected with low kinetic moments around the target
and the projectile. Electron capture is the dominant process in the low-velocity collision
regime. In contrast, ionization and excitation prevail at high collision velocities.

1.3 Main theoretical methods developed:

Determining the wave function that depicts the scattering wave is the most important
aspect of a collision problem since it includes all of the information on the system’s state.
Over the past decades, a number of approximations have been used to address the problem.

6
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We will now briefly present the main theoretical approaches that have been used so far
to study the excitation processes in light systems.

1.3.1 Born Approximation:

Initially, it should be noted that the Born approximation is essentially a perturbative
expansion of the wave function or the scattering amplitude in powers of the interaction
potential.

In this approach we start with the time-independent Schrödinger equation to derive the
integral equations of the wave function. We must then consider the appropriate boundary
conditions related to large distances. That is, a specific choice of the Green’s function and the
homogeneous solution of the differential equation determines the definition of the boundary
conditions. The same result can also be obtained by using the time-dependent Schrödinger
equation and Green’s function. [34]

In an atom-ion collision, the transition of an electron is considered from the initial state
|a〉 in the entrance channel to the final state |b〉 in the exit channel.
In this perturbation treatment, the matrix element of transition Tβα .can be expresses as:

Tβα = 〈β|Vβ|ψ+
a 〉 (1.2)

Where |Ψ+
α 〉 represents the eigenvector of the total Hamiltonian H in the exit channel and

satisfies the Lippmann-Schwinger equation:

|ψ+
a 〉 = |α〉+G+Vα|α〉 (1.3)

Where:

G+ = lim
ε→0

(E −H + iε)−1 (1.4)

is the Green operator, where E is the total energy of the system, and H is the total
Hamiltonian of the system. This Hamiltonian can be written as:

H = Hα + Vα = Hβ + Vβ (1.5)

|α〉, Hα, Vα

7



CHAPTER 1. THEORETICAL FOUNDATIONS OF ATOMIC COLLISIONS

are respectively the eigenvector, the Hamiltonian of the particles without interaction,
and the interaction potential in the input channel.

|β〉, Hβ, Vβ are respectively the eigenvector, the Hamiltonian of the particles without
interaction, and the interaction potential in the output channel.

Using the general identity relating the inverses of two operators and with the help of
equation (I-5), we can write G+ in the form:

G+ = G+
α +G+

αVαG
+ (1.6)

Where

G+
α = lim

ε→0
(E −Hα + iε)−1 (1.7)

From equation (I-6), we can easily derive the following series:

G+ = G+
α

+∞∑
n=0

(VαG
+
α )n (1.8)

By substituting the expression G+ into equation (I-3), we obtain:

Tβα = 〈β|Vβ

[
1 +G+

α

+∞∑
n=0

(VαG
+
α )nVα

]
|α〉 (1.9)

Thus, by retaining only the first term, we obtain the first-order Born approximation
(Born-I):

TB1
βα = 〈β|Vβ|α〉 (1.10)

The first-order Born approximation is only valid for atomic collisions with high-energy
ions. Similarly, the second-order Born approximation consists of retaining only the first two
terms of series (I-9):

TBIIβα = 〈β|Vβ + VβG
+
αVα|α〉 (1.11)

And so on, the N th order of the Born approximation consists of retaining only the first
N terms of the series.

The Born approximation is only valid and provides good results when the kinetic energy
of the incident ion is very high compared to the interaction potential.

8



CHAPTER 1. THEORETICAL FOUNDATIONS OF ATOMIC COLLISIONS

1.3.2 VPS Approximation (Vainshtein, Presnyakov, and Sobelman):

A new approach was developed in the early 1960s by Vainshtein, Presnyakov, and
Sobelman, known as the "VPS approximation," to address the distortions of the outgoing
wave function describing the collisional system.

This method considers the interaction between the projectile and the active electron,
as well as between the projectile and the target nucleus, to ensure compatibility with the
conditions of the collision process. McCarroll and Crothers proposed a slightly different
version of the initial approach, which was applied in 1966 by McCarroll and Salin to proton-
hydrogen collisions.

1.3.3 Coupled-Channels Approximation (Close-Coupling):

Another alternative to the Born approximation is the coupled-channel approximation,
where the scattering wave function is expanded in terms of a basis of wave functions represent-
ing the different reaction channels. This leads to a system of coupled differential equations
for the expansion coefficients. [34] We assume that the projectile follows a straight-line trajec-
tory and is perpendicular to the momentum transfer of the target, according to the following
equations:

~R = ~ρ+ z (1.12)

ż = vt (1.13)

~ρ · ~v = 0 (1.14)

Where:

• ~R is the projectile-target distance.

• ~V is the projectile’s incident velocity.

• ~ρ is the impact parameter.

• t Is the time arbitrarily set to zero when ~R = ~ρ.

The Schrödinger equation can be written as{
−iv ∂

∂z
+H(z) + V (~R(z))

} ∣∣ψ+(~ρ, ~z)
〉

= 0 (1.15)

9
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where H is the electronic Hamiltonian of the system without interaction potential,
which is responsible for the electronic transition. The wave function can be approximated
by expanding it over a truncated basis of eigenstates {|χi〉}, which are the eigenvectors of H.
We assume:

∣∣ψ+(~ρ, ~z)
〉

=
n∑
k=1

ak(~ρ, ~z)|χk〉 exp (−iεkz/v) (1.16)

where εk represents the eigenenergy of the eigenstate χk.

By substituting the above expression for |ψ+(~ρ, ~z)〉 into equation (1-13), we obtain a
system of coupled differential equations for the functions aj(~ρ, ~z), after projection onto 〈χj|:

i
∂

∂z
aj(~ρ, ~z) =

n∑
k=1

Vjk
(
~R(z)

)
exp
(
i (εj − εk)

z

v

)
ak(~ρ, ~z) (1.17)

where the matrix elements Vjk
(
z
)
are given by:

Vjk
(
~R(z)

)
= 〈χj|V

(
~R(z)

)
|χk〉 (1-16)

With the asymptotic conditions:

aj(~ρ, z(t→ −∞)) = δji (1-17)

The index i corresponds to the initial state of the system in the entrance channel.

aj(~ρ, t) =

t∫
−∞

dt
n∑
k=1

Vjk
(
~R(t)

)
exp
(
i(εj − εk)t

)
ak(~ρ, t) (1.18)

The probability of transition into a particular reaction channel f is given by the coeffi-
cient of the wave function expansion in this channel. It is therefore

P = |af (~ρ,+∞)|2 (1.19)

We will now briefly present the different choices of basis that have been made, which
depend both on the velocity and the asymmetry of the collision:

• Single-Centered Expansion (SCE): The scattering wave function is expanded using

10
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a basis of atomic states, which are the eigenvectors of the target Hamiltonian. This
basis is referred to as "single-centered," meaning it is centered on the target.

• Two-Centered Atomic Orbital (TCAO): In the low-velocity regime, the capture
cross-sections become large. As a result, capture channels that involve projectile states
are open, and the wave function cannot be expanded solely using the target states.
During excitation through transitions via intermediate states centered on the projec-
tile (and thus through capture channels), the traditionally used method consists of
expanding |ψ+(~ρ, ~z)〉 using a so-called "two-centered" basis. [1]

∣∣ψ+(~ρ, ~z)
〉

=
n∑
k=1

ak
(
~ρ, ~z
)
|χck〉 exp

(
−i εk

z

v

)
+

m∑
j=1

bj
(
~ρ, ~z
)
|χpl 〉 exp

(
−i εl

z

v

)
(1.20)

|χck〉 and |χ
p
l 〉 are, respectively, the eigenstates of the target and the projectile.

• One-and-a-Half Centered Expansion (OHCE): In this method, the ionization of
the target due to capture by the projectile is represented by including a few functions
centered on the projectile in the expansion of the scattering wave function over the
target orbitals

1.3.4 Glauber Approximation:

This approach was developed by Glauber in the late 1950s. It is one of the formulations
of the eikonal approximation. It also allows for the introduction of interaction potential effects
in the wave function describing the final state of the system. The eikonal approximation
assumes that the projectile moves in a straight line and the momentum transfer of the target
is perpendicular to the projectile’s trajectory.

The influence of the interaction potential on the scattering wave function is manifested
by a deformation of the plane wave representing the projectile when it approaches or moves
away from the target.

1.3.5 Variational approach:

Several methods have been developed to provide models suitable for studying the col-
lision process. We cite the Cheshire model, established in 1968 [48], in which the author

11
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developed the interaction and function of onde on spherical harmonics; the Bransden and
Coleman model of second-order potential, proposed in 1972 [8] and based on the method of
coupled routes; and the model of pseudo-states, first used by Reading et al. in 1976 [12], then
again by Fichard et al. [16], and finally by Swafford et al 1977 [61].the model of Scheshire
and Sullivan [12] in which these authors developed the interaction and the wave function on
a set of spherical harmonics.

The majority of the approaches described so far, primarily concerning the study of high-
energy collisions (with the exception of the coupled equations method, whose application can
be extended to the medium energy domain), have revealed their limitations in accounting
for coupling effects either because calculations become very complex with the inclusion of
continuum states or because the approaches themselves are inaccurate.

Another alternative emerged with the development of a new approach:
the variational principle of Schwinger, which was introduced by Schwinger in 1950

to remedy these shortcomings.It constitutes a powerful and effective tool for studying the
proton-hydrogen atom collision or, more generally, for studying the collision of multicharged
ions with atoms at intermediate speeds.

In 1979, Luchessse and McKoy [41] applied the Schwinger variational principle to the
electronic diffusion, in which the main object is to show that the Schwinger variational
approach gives excellent solutions to the diffusion problems without requiring some develop-
ments on important basis. Thereafter, Lucchese, Watson, and V. McKoy [42] developed this
approach in the case of the elastic diffusion of electrons by molecules; indeed, their objective
was to show that the amplitude of diffusion deducted from this variational principle converges
quickly in relation to the basis on which the diffusion wave function is developed.

To investigate the electronic excitation of atoms by ion collisions, a variational method
based on the Schwinger variational principle was presented years ago. This approach that
has been implemented within the impact parameter framework successfully predicted the
saturation of the excitation of ions by neutral projectiles at intermediate impact velocities(B.
Brendlé et al. 1985 [10],K. Wohrer et al. 1986 [66],M. Bouamoud 1988 [7],R. Gayet and M.
Bouamoud 1989 [18],B. Lasri 1998 [33],B. Lasri, M. Bouamoud and R. gayet 2004 [35],B.
Lasri, A Bouserhane, M. Bouamoud et R. Gayet (2005) [38] ,B. Lasri, M. Bouamoud et R.
Gayet (2006) [36], B. Lasri, M. Bouamoud et J. Hanssen [37] )
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Chapter 2

Schwinger Variational Approach for
collision Theory

2.1 Introduction:

Variational approaches have demonstrated their efficacy during the last few decades as
a crucial investigative tool in theoretical physics, especially for the investigation of atomic
collision processes, and in chemistry, for instance, in resolving the bound state issue. These
variational methods can be divided into two groups for collision problems: those based on the
Lippmann-Schwinger equation (the variational method, which Schwinger himself presented
in his lectures at Harvard University and was published in 1947 ) [26] and those based on the
Schrödinger equation (the Hulthén-Khon method [24,30], the so-called R-matrix variational
method ) [55,57].

One of the most interesting approaches is the one proposed by J. Schwinger, hence the
name "Schwinger variational principle," for calculating the scattering amplitude. It is thus
based on the Lippmann-Schwinger integral equations.

The variational principle of Schwinger consists of obtaining a stationary form of the
transition amplitude with respect to small variations of the scattering states.

In this chapter, the stationary expressions of the transition amplitude in the case of a
collision have been presented.
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2.2 Stationary Forms of the Transition Amplitude:

During a collision between two particles, the scattering states |ψ+
α 〉 and |ψ−β 〉 , which

are eigenvectors of the total Hamiltonian of the system, satisfy the incoming and outgoing
wave conditions, respectively. These states are defined, in the case of a collision without
rearrangement, by the Lippmann-Schwinger equations:

|ψ+
α 〉 = |α〉+G+

c |ψ+
α 〉 (2.1a)

|ψ−β 〉 = |β〉+G−c Vc|ψ−β 〉 (2.1b)

|α〉 and |β〉 respectively denote the initial and final states of the target, and G+
c is the

Green’s operator defined by:

G+
c = (E −Hc + iε)−1 (2.1c)

E is the total energy of the system.
If we denote by Hc the Hamiltonian of the non-interacting particles and by Vc the

interaction potential in channel C , the total Hamiltonian of the system can be written as:

H = Hc + Vc (2.2)

The transition amplitude, defined as the transition matrix element, is written as:

Tβα = 〈β|T |α〉 (2.3)

Furthermore, from the Lippmann-Schwinger equations (2.1a,b), it can also be deduced
that the transition amplitude given by the previous relation can be written in three forms:

Tβα = 〈β|Vc|ψ+
a 〉 (2.4a)

= 〈ψ−β |Vc|α〉 (2.4b)

= 〈ψ−β |Vc − VcG
+
c Vc|ψ+

a 〉 (2.4c)

It can be easily observed that, from a simple combination of the previous expressions
(2.4a-c), a new form Tβα called the bilinear form of Schwinger’s variational principle [56], is
written as:
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Tβα = 〈β|VC
∣∣ψ+

α

〉
+
〈
ψ−β
∣∣VC |α〉 − 〈ψ−β ∣∣VC − VCG+

CVC
∣∣ψ+

α

〉
(2.5)

This last expression is stationary with respect to small arbitrary variations |δψ+
α 〉 and〈

δψ−β
∣∣ of the vectors|ψ+

α 〉 and
〈
ψ−β
∣∣ around their exact values.

Indeed, by differentiating relation (2.5), we obtain:

δTβα =
[
〈β| −

〈
ψ−β
∣∣+
〈
ψ−β
∣∣VCG+

C

]
VC
∣∣δψ+

α

〉
+
〈
δψ−β

∣∣VC [|α〉 − ∣∣ψ+
α

〉
+G+

CVC
∣∣ψ+

α

〉]
(2.6)

Knowing that |ψ+
α 〉 and 〈ψ−β | satisfying the Lippmann-Schwinger integral equations

(2.1a,b), relation (2.6) indeed gives:

δTβα = 0 (2.7)

Thus, we will say that the error made Tβα is quadratic with respect to the one made
on the scattering states.

Note that equations (2.4a-c) are exact expressions for the transition amplitude. This
means that an exact amplitude is obtained when the exact scattering states |ψ+

α 〉 and 〈ψ−β |
are used.

Following the same procedure mentioned above and using equations (2.4a-c),

We can obtain a new stationary representation of the transition amplitude Tβα in the
fractional form of Schwinger’s variational principle:

Tβα =
〈β|VC |ψ+

α 〉
〈
ψ−β
∣∣VC |α〉〈

ψ−β
∣∣VC − VCG+

CVC |ψ+
α 〉

(2.8)

Taking into account the equivalent expressions (2.4a-c) for the transition amplitude
during the differentiation of this expression, it can always be verified that

δΓβα =
[
〈β| −

〈
ψ−β
∣∣+
〈
ψ−β
∣∣VCG+

C

]
VC
∣∣δψ+

α

〉
+
〈
δψ−β

∣∣VC [|α〉 − ∣∣ψ+
α

〉
+G+

CVC
∣∣ψ+

α

〉]
= 0

(2.9)

is identical to expression (2.6), which means that it Tβα is also stationary with respect
to small arbitrary variations of the scattering states |ψ+

α 〉 and
〈
ψ−β
∣∣ around their exact values.

Moreover, this fractional form has the advantage of being independent of the normaliza-
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tion chosen for the scattering states. It is important to recall that this variational principle,
like the bilinear form given by equations (2.5), automatically introduces the correct boundary
conditions (i.e., it does not require trial wave functions to satisfy the boundary conditions
as in the Hulthén-Kohn method [24]) and only uses trial wave functions in the region where
the interaction occurs. As a first illustration, the Born approximation (Born-I) consists in
replacing, respectively in expression (2.8), the unknown exact vectors |ψ+

α 〉 and
〈
ψ−β
∣∣ with

the trial vectors |α〉 and 〈β|, that is:

∣∣ψ+
α

〉
= |α〉 (2.10a)

and

〈
ψ−β
∣∣ = 〈β| (2-10b)

With this simple choice of trial functions, the fractional expression of the transition
amplitude becomes:

Tβα =
〈β|VC |α〉〈β|VC |α〉
〈β|VC − VCG+

CVC |α〉
(2.11)

under another formulation:

Tβα = TBI

[
1

1− T̄BII

TBI

]
(2.12)

such as:

TBI corresponds to the first-order Born approximation for the transition amplitude.
The second-order Born approximation for the transition amplitude, denoted TBII, is such
that:

TBII = TBl + T̄BII (2.13)

We can emphasize that in the case where the ratio
∣∣∣ T̄BII

TBI

∣∣∣ is small compared to 1, and
using the expansion of expression (2.12)((1− ε)−1 ∼= (1 + ε) ε < 1), we obtain:

Tβα = TBI + T̄BII + . . . . . . .. (2.14)

We observe that in this expansion, the first two terms correspond to the 2nd-order Born
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approximation.

Consequently, we can conclude that in the case of sufficiently high energies for which
the Born series converges, the Schwinger variational principle could provide a better approx-
imation than the 2nd-order Born approximation.

An evaluation of the transition amplitude in its fractional form, given by equation (2.8),
and the use of approximation (2.10 a,b) with more complex choices have been carried out for
3S1 in a nucleon-nucleon collision described by a Yukawa potential [24] or a Gaussian potential
[56]. The variational result is indeed more accurate than the 2nd-order Born approximation.
However, this statement is meaningless at low energy, where the Born series does not converge.

In fact, the first Born approximation gives cross sections that are less accurate than
the variational estimate based on a simple choice (2.10a,b). Such an example illustrates
the difficulties that can arise when a poor choice of trial functions is used in the variational
principle. The application of the variational expression (2.12) to weaker interactions provides
more satisfactory results [56].

2.3 Approximated variational amplitude in the Schwinger

formalism

As the scattering states |ψ+
α 〉 and

〈
ψ−β
∣∣ cannot be known exactly, we take as trial states

the vectors
∣∣∣ψ̃+

α

〉
and

〈
ψ̃−β

∣∣∣, such that:

∣∣∣ψ̃+
α

〉
=
∣∣ψ+

α

〉
+
∣∣δψ+

α

〉
(2.15a)

and

〈
ψ̃−β

∣∣∣ =
〈
ψ−β
∣∣+
〈
δψ−β

∣∣ (2.15b)

Expanding
∣∣∣ψ̃+

α

〉
and

〈
ψ̃−β

∣∣∣ in terms of the states of a truncated basis {|i〉} and {〈j|},
respectively (these two sets are not necessarily identical, but they have the same finite di-
mension N):
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∣∣∣ψ̃+
α

〉
=

N∑
i=1

ãi|i〉 (2.16a)

〈
ψ̃−β

∣∣∣ =
N∑
j=1

b̃∗j〈j| (2.16b)

The coefficients ãi and b̃j, which are components of the approximated scattering states,
are determined by solving the equation δTβα = 0.

Substituting these trial states into expression (2.8), we obtain the approximated tran-
sition amplitude T̃βα:

T̃βα =
〈β|VC

∣∣∣ψ̃+
α

〉〈
ψ̃−β

∣∣∣VC |α〉〈
ψ̃−β

∣∣∣VC − VCG+
CVC

∣∣∣ψ̃+
α

〉 (2.17)

From equations (2.6) and (2.15a,b), we derive the following equation:

δTβα =
[
〈β| −

〈
ψ̃−β − δψ

−
β

(
1− VCG+

C

)]
VC
∣∣δψ+

α

〉
+
〈
δψ−β

∣∣VC ||α〉− (1−G+
CVC

) ∣∣∣ψ̃+
α − δψ+

α

〉]
(2.18)

It is easy to show that for any first-order variation in |δψ+
α 〉 and

〈
δψ−β

∣∣, we have δTβα = 0.

Now, using the equation δΓβα = 0 and replacing the vectors
∣∣∣ψ̃+

α

〉
and

〈
Ψ̃−β

∣∣∣ by their
previous expansions in equations (2.16a,b), we obtain the following two coupled equations
for the coefficients ãi and b̃j: 〈j|VC |α〉 −

∑N
i=1 ãiα〈j|VC − VCG

+
CVC |i〉 = 0

〈β|VC |i〉 −
∑N

j=1 b̃
∗
j〈j|VC − VCG+

CVC |i〉 = 0
(2.19)

Let D be the square matrix of dimension N whose elements are:

Dji = 〈j|VC − VCG+
CVC |i〉 (2.20)

and let Vα and Vβ be column vectors with elements:

〈Vα〉j = 〈j|VC |α〉 (2.21a)
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|Vβ|i = 〈i|VC |β〉 (2.21b)

Defining ã and b̃ as column vectors with elements ãi and b̃j, the coupled equations in
system (2.19) can be written in matrix form as:

Vα = D · ã (2.22a)(
V ∗β
)t

= b̃∗ ·D (2.22b)

or, using matrix algebra properties:

ã = D−1 · Vα (2.23a)

b̃∗ =
(
V ∗β
)t ·D−1 (2.23b)

These equations provide solutions for the components ãi and b̃j of the trial states
∣∣∣ψ̃+

α

〉
and

〈
ψ̃−β

∣∣∣.
Finally, substituting these trial states into expression (2.17) for the approximated tran-

sition amplitude T̃βα, we obtain:

T̃βα =
N∑
i=1

N∑
j=1

〈β|VC |i〉
(
D−1

)
ij
〈j|VC |α〉 (2.28)

where Dji = 〈j|V − V G+
T V |i〉, and (D−1)ij is the matrix element of D−1, the inverse of

matrix D relative to the basis vectors |i〉 and |j〉.
In conclusion, we have determined the approximated transition amplitude T̃βα in terms

of the approximated scattering states, which have been expanded in a finite-dimensional
vector subspace of size N .
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Chapter 3

Schwinger Variational Treatment for the
Atomic Excitation of Ions

3.1 Introduction

Understanding the mechanisms of atomic collisions by ion impact constitutes the main
interest of researchers for testing the theoretical methods and models designed to study and
test these collision processes. This will require a reliable theory that adequately describes the
interaction of the nuclei with the electrons via the Coulomb force because of its long range.
Even for the simplest cases,this collision problem cannot be solved. For this reason, the
theory of ion-atom collision has concentrated on developing techniques, methods, and ap-
proximations in which various types of ion-atom collisions can be described. The excitation
process in ion-atom collisions has received considerable interest over the past decades (Gayet
and Hanssen, 1992, 1994 [19] [20]. However, in recent years, as demonstrated by R. Gayet
and B. Brendlé (1985) [10], R. Gayet and M. Bouamoud (1988, 1989) [7] [18], and B. Lasri et
al. (1998, 2004) [33] [35], new techniques have been developed based on the fractionele vorm
van Schwingers variatieprincipe. The computed cross-sections show excellent agreement with
available experimental data.
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3.2 Schwinger Variational Amplitude for Direct Excita-

tion

In the formalism of the impact parameter, specially adapted to direct excitation, the
calculation of the variational transition amplitude was previously described by M. Bouamoud
(1988) [7], R. Gayet and M. Bouamoud (1989) [18], B. Lasri (1998) [33], and B. Lasri, M.
Bouamoud, and R. Gayet (1998) [35]. Thus, our primary objective in this section is to apply
Schwinger’s variational principle to the excitation of a hydrogenoid system by ion impact at
intermediate speeds.
Since the main contribution to the considered transition occurs at small angles (for example,
< 10−3 for a H+ → H type collision at an energy of 50 keV), the projectile can be assumed to
follow a straight-line trajectory. Therefore, this problem can be treated within the framework
of the eikonal approximation. [28] The eikonal method is a semi-classical approach that
assumes the nuclei move in a classical manner, while the motion of the electrons is treated
quantum mechanically.
For this, let us consider a collision between a projectile of mass MP and charge ZP and a
target of massMT and chargeZT . In the impact parameter method based on the description of
the relative motion of the nuclei following a classical straight-line trajectory, the internuclear
separation is given by:

~R = ~ρ+ ~z (3.1a)

~z = ~v.t (3.1b)

~ρ · ~v = 0 (3.1c)

Where:
~R is the internuclear distance.
~ρ is the impact parameter.
−→v is the relative velocity of the projectile.
t is the time, arbitrarily set to zero when ~R = ~ρ.
The geometry of the system is described by the following figure, 3-1.

With:

• ~X as the position of the electron relative to the target T .
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Figure 3.1: Collisional System

• ~s as the position of the electron relative to the projectile P .

By adopting a center-of-mass frame for the projectile-target system, the total Hamil-
tonian of the system in the case of a single rearrangement channel c is given by:

H = HC + VC (3.2)

HC is the Hamiltonian of the non-interacting particles, given by HC = HT + TP , with:

HT =
∆x

2
− ZT

x
(3.3a)

and

TP =
1

2µ
∆R (3.3b)

where µ represents the reduced mass, given by:

µ =
MP (MT + 1)

MP +MT + 1
(3.4)

VC is the interaction potential between the colliding particles. This potential is ex-
pressed as:

VC =
ZPZT
R
− ZP

S
(3.5)

The inter-cluster potential Vint is defined by the long-range Coulomb interaction between
the projectile and the target, namely:
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Vint =
ZP (ZT − 1)

R
(3.6)

where ZP and ZT represent the charge of the projectile and the charge of the target,
respectively. In 1972, R. K. Janev and A. Salin [27], and later in 1979, D. Z. Belkic, R.
Gayet, and A. Salin [5], demonstrated that the total cross-sections are independent of the
inter-cluster potential Vint given by equation (3.6).

In the calculation of the transition amplitude, the influence of this potential is reduced
to a phase factor dependent on the impact parameter ~ρ, given by: ρ

2iZP (ZT−1)
v .

However, its contribution to the differential cross-section must be reintroduced. This
leads us to neglect the influence of the inter-cluster potential when calculating the transition
amplitude, and thus define the interaction responsible for the excitation as:

V = VC −
ZP (ZT − 1)

R
(3.7a)

= ZP

(
1

R
− 1

S

)
(3.7b)

Dans une collision sans réarrangement, et selon le formalisme du paramètre d’impact, les
états de diffusion |ψ+

α (z)〉 et
∣∣ψ−β (z)

〉
, vecteurs propres de l’hamiltonien total du système,

satisfaisant respectivement aux conditions d’onde sortante et entrante, sont définis grâce aux
équations de Lippmann-Schwinger iconales [28]:

∣∣ψ+
α (z)

〉
= |α(z)〉+

∫ +∞

−∞
dz′G+

T (z − z′)V (z′)
∣∣ψ+

α (z′)
〉

(3.8a)

∣∣ψ−β (z)
〉

= |β(z)〉+

∫ +∞

−∞
dz′G−T (z − z′)V (z′)

∣∣ψ−β (z′)
〉

(3.8b)

where V is the interaction potential between the projectile and the target. |α(z)〉 and |β(z)〉
are the initial and final states of the target, respectively.

These scattering states are solutions of the Schrödinger equation in the impact
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parameter method, namely:{
−iv ∂

∂z
+HT (z) + V

} ∣∣ψ+
α (z)

〉
= 0 (3.9a){

−iv ∂

∂z
+HT (z) + V

} ∣∣ψ−β (z)
〉

= 0 (3.9b)

It should be noted that the notations |ψ+
α (z)〉 ,

∣∣ψ−β (z)
〉
, |α(z)〉 and |β(z)〉 mean that the

scattering states |ψ+
α 〉 and

∣∣ψ−β 〉 as well as |α〉 and |β〉 do not depend only on the electronic
coordinates ~x but also on the z component of ~R. The states |α(z)〉 and |β(z)〉, which represent
the initial and final states of the target, respectively, are solutions of the eikonal Schrödinger
equation with only the target Hamiltonian HT :

{
−iv ∂

∂z
+HT (z)

}
|α(z)〉 = 0 (3.10a){

−iv ∂
∂z

+HT (z)

}
|β(z)〉 = 0 (3.10b)

By considering a configuration space where the origin of the coordinates is at the nucleus of
the target, we obtain:

α(z) = 〈~x, z | α(z)〉 = e−i
εα
v
zφα(~x) (3.11a)

β(z) = 〈~x, z | β(z)〉 = e−i
ε
v
zφβ(~x) (3.11b)

where εα and εβ represent the eigenenergies of the states φα and φβ, respectively. ~x is
the distance separating the nucleus and the electron, i.e., the set of electronic coordinates.

The Green’s functions G†T (z − z′) and G−T (z − z′) correspond to the eikonal Green’s
function G±C associated with the Hamiltonian HC . G†T (z − z′) satisfies the following equa-
tion:

(
−iv ∂

∂z
+HT

)
G+
T (z − z′) = −δ (z − z′) (3.12)
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with the initial conditions:

G+
T (z) = 0 z < 0

G−T (z) = 0 z > 0
(3.13b)

By solving equation (3.12), we can directly and generally show that we have:

G±T (z − z′) |ν (z′)〉 = − i
v
|ν(z)〉θ (z − z′) (ν = α, β) (3.14)

where θ (z − z′) is the Heaviside function. and which gives for |α(z)〉:

G+
T (z − z′) |α (z′)〉 =

 i
v
|α(z)〉 z > z′

0 z < z′
(3.15a)

Similarly, for |β(z)〉, we find:

G+
T (z − z′) |β (z′)〉 =

− i
v
|β(z)〉 z > z′

0 z < z′
(3.15b)

Now, if we denote by the notation [ | ] the integration over electronic coordinates, we
can show that the transition amplitude is written as:

aβα(~ρ) = lim
z→+∞

⌊
β(z) | ψ+

α (z)
⌋

= lim
z→+∞

⌊
ψ−β (z) | α(z)

⌋
(3.16)

That is:

aβα(~ρ) = δβα + lim
z→+∞

∫ z

−∞
d
[
β(z) | ψ+

α (z)
]

(3.17a)

or

aβα(~ρ) = δβα + lim
z→+∞

∫ z

−∞

dz

dz
d
[
β(z) | ψ+

α (z)
]

(3.17b)

From equations (3.9a,b), (3.10), and replacing V(z) with the initial and final states, we
obtain:

{
−iv ∂

∂z
+HT (z) + V

} ∣∣ψ±β (z)
〉

= 0 ⇒ ∂

∂z

∣∣ψ+
α (z)

〉
= − i

v
(HT + V )

∣∣ψ+
α (z)

〉
(3.18a)
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and {
−iv ∂

∂z
+HT (z)

}
|β(z)〉 = 0⇒ ∂

∂z
|β(z)〉 =

i

v
HT |β(z)〉 (3.18b)

Thus, the transition amplitude takes the form:

aβα = δβα −
i

v

∫ +∞

−∞
dz
[
β(z) |HT + V −HT |ψ+

α (z)
]

(3.19a)

= δβα −
i

V

∫ +∞

−∞
dz
[
β(z)|V |ψ+

α (z)
]

(3.19b)

From the Lippman-Schwinger equations (2.1a,b) and the expression (3.16) of the transition
amplitude aβα(~ρ), this latter is written in other forms:

aβα(~ρ) = δβα −
i

v

∫ +∞

−∞
dz
[
β(z)|V |ψ+

α (z)
]

(3.20a)

= δβα −
i

v

∫ +∞

−∞
dz
[
ψ−β (z)|V |α(z)

]
(3.20b)

= δβα −
i

v

∫ +∞

−∞
dz
[
ψ−β (z)

∣∣V − V G+
T V
∣∣ψ+

α (z)
]

(3.20b)

By replacing |α(z)〉 in (3.20b) with the form given by the Lippman-Schwinger equation
(3.8a), we obtain:

aβα(~ρ) =δβα −
i

v

∫ +∞

−∞
dz
[
ψ−β (z)|V |ψ+

α (z)
]

+
i

v

∫ +∞

−∞
dz

[
ψ−β (z)|V |

∫ +∞

−∞
dz′G+

T (z − z′)V (z′)ψ+
α (z′)

]
(3.21)

And subsequently, using the relations (3.20a,b) and (3.21), it follows in a completely analo-
gous way to the establishment of the quantum variational form (2.8):

aβα(~ρ) =

(
− i

v

) ∫ +∞
−∞ dz [β(z)|V |ψ+

α (z)]
(
− i

v

) ∫ +∞
−∞ dz

[
ψ−β (z)|V |α(z)

](
− i

v

) ∫ +∞
−∞ dz

[
ψ−β (z)

∣∣∣V {| ψ+
α (z)]−

∫ z
−∞ dz

′G+
T (z − z′)V (z′)

∣∣∣ψ+
α (z′)

〉]} (3.22)

Finally, if we adopt the notation ( | ) which indicates that the integration is per-
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formed over the electronic coordinates as well as the coordinate Z of ~R, i.e., (k|Θ|k′) =∫ +∞
−∞ dz [k|Θ|k′] where Θ denotes an operator, and for cases where α 6= β, the expressions
(3.20a,-c) and (3.22) can be written in a condensed form:

aβα(~ρ) = − i
v

(
β|V |ψ+

α

)
(3.23a)

= − i
v

(
ψ−β |V |α

)
(3.23b)

= − i
v

(
ψ−β
∣∣V − V G+

T V
∣∣ψ+

α

)
(3.23c)

Now, from these three forms of aβα(~ρ) and in a completely analogous way to the es-
tablishment of the variational form (2.8) in the case of a direct collision (a single rearrange-
ment channel), we obtain the variational transition amplitude in its so-called eikonal form of
Schwinger’s variational principle, namely:

aβα(~ρ) =

(
− i

v

)
(β|V |ψ+

α )
(
− i

v

) (
ψ−β |V |α

)(
− i

v

) (
ψ−β
∣∣V − V G+

T V
∣∣ψ+

α

) (3.24)

which is stationary for small arbitrary variations of the scattering states |ψ+
α 〉 and∣∣ψ−β 〉 around their exact values. And since these scattering states are not known exactly,

in a manner almost similar to the one previously established in Chapter 2, we arrive at an
approximate form of the variational transition amplitude ãβα(~ρ):

ãβα(~ρ) =

(
− i

v

) (
β|V |ψ̃+

α

)(
ψ̃−β |V |α

)
(
ψ̃−β
∣∣V − V G+

T V
∣∣ ψ̃+

α

) (3.25)

During the expansion of the approximate scattering states | ψ̃+
α

)
and

∣∣∣ψ̃−β ∣∣∣ on the
truncated basis {i〉} and {j〉} respectively, the two basis sets are not necessarily identical,
but they must have the same finite dimension N .

Then, by employing the stationarity condition, δãβα(~ρ) = 0, we arrive at separating two
finite series of linear equations for the expansion coefficients: one for | ψ+

α ) and the other for∣∣ψ−β ∣∣. Solving these series of linear equations provides approximate solutions for | ψ+
α ) and∣∣ψ−β ∣∣, denoted as | ψ̃+

α

)
and

(
ψ̃−β | .

Finally, replacing the scattering states | ψ+
α ) and

〈
ψ−β
∣∣ with their approximate expres-

sions in equation (3.25) leads to the following more practical form of the transition amplitude:
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ãβα(~ρ) =

(
− i

v

) N∑
i=1

N∑
j=1

(β|V |i)
(
D−1

)
ij

(j|V |α) (3.26)

where (D−1)ij is the (i, j) element of the matrix D−1, the inverse of the matrix D

defined by the element:

Dji =
(
j
∣∣V − V G+

T V
∣∣ i) (3.27)

Remark:

Note that all the target states have been taken into account in the representation of the
Green’s operator. We have also found a way to include all the states of the discrete spectrum
and those of the continuum.

When developing the approximate scattering states
∣∣∣ψ̃+

α

〉
and

∣∣∣ψ̃−β ∣∣∣, we have chosen
a basis consisting only of the set of target states (discrete spectrum) and have ignored the
inclusion of capture states on the projectile. This assumes that the effect of the coupling
between capture and excitation, which exists in the energy domain of interest, must be weak
for the variational principle to remain valid. This is true when the charge of the projectile is
lower than that of the target nucleus.

To evaluate the variational transition amplitude, two types of matrix elements must be
computed:

• Matrix elements of type (j|V |i), called Born-I.

• Matrix elements of type
(
j
∣∣V G+

T V
∣∣ i), called Born-II.

3.3 From the eikonal transition amplitude to the total

excitation cross-section

In this section, we are going to determine the simplified forms of the transition ampli-
tude and the total cross-section for the excitation of an atom by the impact of a proton or a
bare ion, using the variational amplitude obtained within the impact parameter formalism.
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3.3.1 Eikonal Transition Amplitude:

Indeed, the quantum transition amplitude corresponding to the process α→ β is given
by:

Tβα = 〈β|V
∣∣ψ+

α

〉
(3.28)

At first order in 1
µ
, where µ represents the reduced mass of the colliding system, the

scattering wave function is written as [46] [47]:

ψ+
α (~R, ~x) ≈ ei

~kα·~Rψ+E
α (~ρ, ~z, ~x) (3.29)

where ψ+E
α is the eikonal wave function.

Consequently, we obtain the quantum transition amplitude in its eikonal form, namely:

Tβα =

∫
d~Rd~xei~q·

~Rφ∗β(~x)V (~R, ~x)ψ+E
α (~ρ, ~z, ~x) (3.30)

where ~q represents the momentum transfer which can be expressed through its two
components, longitudinal and transverse, with respect to the initial velocity −→v , namely:

~q = ~kα − ~kβ (3.31a)

~q = qv · ~v + ~η (3.31b)

and ~η is the transverse momentum transfer such that ~η · −→v = 0.

In the center of mass frame, the conservation of energy is written as:

k2
α

2µ
+ εα =

k2
β

2µ
+ εβ (3.32)

εα and εβ denote the energies of the initial and final bound states, respectively.
It can be shown that for values of µ � 1, the longitudinal momentum transfer takes the
following form:

qv =
εβ − εα

v
+O

(
1

µ

)
(3.33)
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And using the relation ~R = ~ρ+ ~z, we obtain:

~q · ~R ≈ εβ − εα
v

z + ~η · ~ρ (3.34)

Now, by substituting this approximate expression of ~q · ~R into the transition amplitude
given by relation (3.30), we obtain the following form:

Tβα(~η) =

∫
d2~ρei·~η·~ρ

(
β|V |ψ+E

α

)
(3.35)

where the eigenvectors |α〉 and |β〉 satisfy the expression:

〈~x, z | k〉 = e−i
εk
v

zφk(~x) (3.36)

with (k = α, β) and the notation ( | | ) indicates that the integration is performed over
the electronic coordinates and the z-component of ~R.

Thanks to the notation: (k|Θ|k′) =
∫ +∞
−∞ dz [k|Θ|k′] where Θ denotes an operator, and

for cases where α 6= β, the expression (2.20a) then becomes:

aβα(~ρ) = − i
v

(
β|V |ψ+

α

)
(3.37)

Using expression (3.21a) and form (3.36), the transition amplitude in the iconal ap-
proximation becomes [5]:

Tβα(~η) = iv

∫
d2~ρei~η·~ρρ2i

ZP (ZT−1)
v aβα(~ρ) (3.38)

Note that in this last expression, the contribution of the inter-aggregate potential (3.6),
which translates into a phase factor ρ2i

ZP (ZT−1)
v depending on the impact parameter, has been

reintroduced.

3.4 Iconal Cross Sections:

For an excitation process, the differential cross-section is given by the relation:

dσβα
dΩ

=
µ2

4π2

kα
kβ
|Tβα(~η)|2 (3.39)

where Ω is the solid angle ” sin(θ)dθdφ′′.
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In the case where the incident energy is much greater than the energy difference
(εα − εβ) between the target states |α〉 and |β〉, and in the case of a small longitudinal
momentum transfer (kα

kβ
≈ 1), the expression (3.39) for the differential cross-section becomes,

based on relation (3.32):

dσβα
dΩ

=

∣∣∣∣µTβα(~η)

2π

∣∣∣∣ (3.40)

Consequently, the total effective cross-section will be:

σβα =

∫ 2π

0

dφβ

∫ π

0

sin (θβ) dθβ

∣∣∣∣µTβα(~η)

2π

∣∣∣∣2 (3.41)

By differentiating ~q2 calculated from expressions (3.31a,b) and based on a case of small
momentum transfer kα

kβ
≈ 1, we can write:

ηdη ≈ µ2v2 sin (θβ) dθβ (3-42)

Taking into account that φβ ≡ φη, the total cross-section is written as:

σβα =

∫ 2π

0

dρη

∫ +∞

0

dηη

∣∣∣∣Tβα(~η)

2πv

∣∣∣∣2 (3.43)

Now, by replacing Tβα(~η) with its expression (3.38), and applying the two-dimensional
Fourier transform, we obtain:

σβα =

∫
d2ρ |aβα(~ρ)|2 (3.45)

And since the system exhibits azimuthal symmetry, the total cross-section becomes:

σβα = 2π

∫ +∞

0

dρρ |aβα(~ρ)|2 (3.45)

This expression determines the total effective cross-section for an excitation process. It
remains valid as long as the impact parameter method is justified.

It was previously emphasized that the amplitude aβα(~ρ) is variational, and that an
approximate form denoted ãβα(~ρ) is completely determined by expression (3.26) when the
approximate scattering states are developed in a vector subspace of dimension N
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3.5 Remark:

Since it ãβα(~ρ) does not require any integration over the impact parameter ~ρ, we were
able to overcome a major difficulty, namely the divergence that appears in the evaluation of
matrix elements of the type (i|V |j) and

(
i
∣∣V G+

T V
∣∣ j) between certain degenerate hydrogenoid

states during a quantum calculation when integrating over the impact parameter ~ρ.

32



Chapter 4

Evaluation of Born-type matrix elements
for transition amplitude.

In order to determine the variational transition amplitude ãβα(~ρ), it is essential to
evaluate two categories of matrix elements:

• matrix elements of the type (i|V |j), known as Born-I.

• matrix elements of the type
(
i
∣∣V G+

T V
∣∣ j), known as Born-II.

The vectors |i〉 and |j〉 are solutions of the Schrödinger equation with the target Hamiltonian
HT.

It is useful to recall that the notation (‖) indicates that the integration is carried out
over the z-component of ~R as well as over the electronic coordinates ~x of the target.

4.1 Calculation of Born-I matrix elements:

At the beginning, it should be noted that in the model introduced previously in Chapter
3, the matrix elements of the type (i|V |j), called Born-1, are expressed by:

(i|V |j) =

∫ +∞

−∞
dz〈i|V |j〉 (4.1)

where the vectors |i〉 and |j〉 are given by equations (3.10a,b), or in a more general
form:

〈~x, z | k〉 = e−i
ε
v
zφk(~x) with (k = i, j) (4.2)
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which allows us to write that:

(i|V |j) =

∫ +∞

−∞
dz

∫
d~xei

εi
V
zφ∗i (~x)V (~R, ~x)e−

εj
v
zφj(~x) (4.3)

If we write:

Wij(~ρ, z) =

∫
d~x φ∗i (~x)V (~R, ~x)φj(~x) (4.4)

The elements of the Born-I type will be given by:

(i|V |j) =

∫ +∞

−∞
dze

iεi−εj
V

zWij(~ρ, z) (4.5)

Where εi and εj respectively denote the energies associated with the electronic states
|φi〉 and |φj〉. On the other hand, and in Appendix 2, it is shown that Wij(~ρ, z) can be
written as follows:

Wij(~ρ, z) = ei(mj−mi)φRWij(ρ, z) (4.6)

mi and mj respectively represent the magnetic quantum numbers of the states |φi〉 and
|φj〉, and φR is the azimuthal angle relative to the impact parameter ~ρ.

In what follows, and in order to simplify the writing, the dependencies on ~ρ (in modulus
and in angle) will be implicit.

Let us recall first the various symmetry properties of the elements Wij , which will
be very useful in the development of simplified forms of the matrix elements to be treated
numerically, and which will reduce the computation time as well as the memory space for
storing results.

Wij(z) = W ∗
ij(z) (4.7a)

Wij(z) = Wji(z) (4.7b)

Wij(−z) = (−1)li+lj+mi−mjWij(z) (4.7c)

W−i,−j(z) = (−1)mi−mjWij(z) (4.7d)

In this last expression, the indices −i,−j respectively mean the simultaneous change of
mi and mj to −mi and −mj.
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It is also important to note that the use of these symmetry properties makes it possible
to reduce the number of matrix elements to be calculated numerically, and to restrict the
integration interval over z from ]−∞,+∞[ to values of z > 0 only.

If we write:

dij =
εi − εj

v
(4.8)

it follows that:

(i|V |j) =

[∫ 0

−∞
dz +

∫ +∞

0

dz

]
eidijzWij(z) (4.9)

Let us define the function Gij(x, y) as follows:

Gij(x, y) =

∫ y

x

dzeidijzWij(z) (4.10)

Referring to the symmetry properties of the elements Wij(z) (4.7a-d), we deduce the
following properties for the function Gij:

Gij(−x,−y) = (−1)li+lj+mi−mjG∗ij(x, y) (4.11)

Gij(x, y) = G∗ji(x, y) (4.12)

where G∗ij is the conjugate function of Gij.
Consequently, expression (4.9) becomes:

(i|V |j) = Gij(0,+∞) + (−1)li+lj+mi+mjG∗ij(0,+∞) (4.13)

where the integration interval ] −∞,+∞ [ is reduced to an integration over the interval
[0,+∞[.

Since we can define a simpler asymptotic form of Wij(ρ, z), denoted W as
ij (ρ, z) , for

a given impact parameter ρ and sufficiently large values of z (with z being positive), the
calculation of Gij(0,+∞) is simplified. We divided the integration interval over z into two:
an interval [0, z̃ij] as small as possible where the integration over z is performed numerically,
and another [z̃ij,+∞[ in which the integration is done analytically.

For a given transition j → i, we can define an asymptotic region by the value z̃ij ≥ 0

such that:
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Wij(ρ, z) ≈ W as
ij (ρ, z)

(
z ≥ z̃ij and z̃ij ≥

3

2
ρ

)
(4.14)

and therefore we will have:

Gij(0,+∞) = Gij (0, z̃ij) +Gas
ij (0, z̃ij) (4.15)

where

Gij (0, z̃ij) =

∫ z̃ij

0

dzeidijzWij(z) (4.16)

and

Gas
ij (z̃ij) = Gas

ij (z̃ij,+∞) =

∫ +∞

z̃ij

dzeidijzW as
ij (z) (4.17)

The function Gij (0, z̃ij) is computed numerically, while the function Gas
ij (z̃ij) is calcu-

lated analytically .

4.2 Calculation of Born-II matrix elements:

The major difficulty of the Schwinger variational principle lies in the evaluation of
second-order matrix elements denoted

(
i
∣∣V G+

T V
∣∣ j) and called Born-II elements.

In order to properly describe the physical processes, we focused all our efforts on a suit-
able representation of G+

T ; a necessary condition for the accurate evaluation of the elements(
i
∣∣V G+

T V
∣∣ j).

The subspace of states generated by the bases |i〉 and |j〉 must be carefully chosen to
properly describe the scattering states. On the other hand, a poor representation of the
operator G+

T leads to an error in the calculation of these elements which significantly alters
the transition amplitude and consequently the physical predictions.

Aware of this problem, we focused on developing an approach capable of properly
describing the different physical phenomena. However, we have invested all our efforts, both
analytical and numerical, to achieve an adequate description of G+

T and consequently a better
evaluation of the Born-II matrix elements.

G+
T (z, z′) =

(
− i

v

)
exp

(
− i

v

∫ z

z′
HT (u)du

)
θ (z − z′) (4.18)
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where θ (z − z′) is the Heaviside function.
Now, by substituting the form (4.18) of the operator G+

T into the matrix element(
i
∣∣V G+

T V
∣∣ j) and introducing the closure relations respectively for the discrete and con-

tinuum spectra:

∑
ν

|v〉〈v| = 1 and
∫
dv|v〉〈v| = 1 (4.19)

we can then write:

(
i
∣∣V G+

T V
∣∣ j) =

∣∣∣∣∑+

∫∫
v

(i|V |v)

(
− i

v

)
θ (z − z′) (v|V |j) (4.20)

The symbol b
∑

+c means the summation over all discrete states as well as those of the
continuum of the target [7, 38]. Just like the vectors |j〉, the vectors |ν〉 have the form:

〈~x, z | k〉 = e−i
εk
v
zφk(~x) (k = v, j) (4.21)

By expanding expression (3.20), and using the property of the θ function:

θ (z − z′) =

1 z ≥ z′

0 z < z′
(4.22)

we can express the term
(
i
∣∣V G+

T V
∣∣ j) in two equivalent forms:

(
i
∣∣V G+

T V
∣∣ j) =

(
− i

v

)[∑
+

∫ ] ∫ +∞

−∞
dzeidivzWiν(z)

∫ z

−∞
dz′eidvjz

′
Wνj (z′) (4.23)

or

(
i
∣∣V G+

T V
∣∣ j) =

(
− i

v

)[∑
+

∫ ] ∫ +∞

−∞
dz′eidijzWvj (z′)

∫ +∞

z′
dzeidivz

′
Wiv(z) (4.24)

From expression (4.14), and by defining the asymptotic regions by the values z̃iv and
z̃vj, two cases can be considered:

• z̃iv > z̃vj: it is easier to use relation (3.23) in the calculation of the matrix elements(
i
∣∣V G+

T V
∣∣ j). Indeed, the integration over z is analytical beyond z̃vj, so as soon as

37



CHAPTER 4. EVALUATION OF BORN-TYPE MATRIX ELEMENTS FOR TRANSITION AMPLITUDE.

z > z̃vj the double integration reduces to a single integral.

• z̃iv < z̃vj: in this case, it is advantageous to use the form (4.24). It should be
noted that the use of the symmetry relations of Wij (4.7a-d) and those of the elements
〈i|V G+

T V |j〉 , allow us to return to form (4.23), and
subsequently to set up a unique numerical processing program in order to calculate the
matrix elements.

By considering only the case z̃iv > z̃vj, we then have:

(
i
∣∣V G+

T V
∣∣ j) =

(
− i

v

)[∑
+

∫ ]
v

Hv
ij (4.25)

with:

Hv
ij =

∫ +∞

−∞
dzei

εi−εv
v

zWiv(ρ, z)

∫ z

−∞
dz′ei

εv−εj
v

z′Wvj (ρ, z′) (4.26a)

or in another form:

Hv
ij =

∫ +∞

−∞
dz′ei

εv−εj
v

z′Wvj (ρ, z′)

∫ +∞

z′
dzei

εi−εv
v

zWiv(ρ, z) (4.26b)

Now, using the symmetry properties Wij as well as that of the function Gij defined by
expression (4.10), we can write:

Hv
ij(−∞,+∞) = G∗vj(0,+∞)

{
(−1)lv+lj+mv−mjGiv(0,+∞) + (−1)li+lj+mi−mjG∗iv(0,+∞)

}
+Hv

ij(0,+∞) + (−1)li+lj+mi−mj+1Hv∗

ij (0,+∞) (4.27)

where

Hv
ij(0,+∞) = Hv

ij (0, z̃ij) +Hv
ij (z̃vj, z̃iv) +Hv

ij (z̃iv,+∞) (4.28)

and the function Hν
ij is defined as:

Hv
ij(x, y) =

∫ y

x

dz eidijzWiv(z)Gvj(0, z) (4.29)

Consequently, the integrals of expression (4.27) will have the following three character-
istics:
(1) Hν

ij (0, z̃vj) is the result of a numerical double integration.
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(2) Hv
ij (z̃vj, z̃iv) is the result of a numerical single integration.

(3) Hν
ij (z̃iν ,+∞) reduces to an analytical expression called "Hvas

ij (z̃iv) defined as follows":

Hvas

ij (z̃iv) =

∫ +∞

z̃iv

dzeidivzW as
iv (z)Gas

vj(z) (3.30)

where Gas
vj(z) is given by expression (4.17).

It is important to note that for very large values of ν, the principal quantum number of the
states|ν〉, rounding errors lead to instability in computation. Thus, to
Taking into account all the states of the discrete spectrum, we have sought a development
method 1

v3
like the one introduced by Bethe and Salpeter [6], which allows us to limit the

numerical calculations to not-too-high ν states and guarantees the stability of the results for
each pair of states |i〉 and|j〉.

Our work is not restricted to discrete states; we have extended it to continuum states. It
was therefore necessary to precisely determine the region of the continuum located above the
ionization threshold that effectively contributes. This consists in determining the energy εv
called the cutoff energy, the energy after which the contribution of continuum states becomes
totally negligible (see chapter 5).

According to R. Schakeshaft [58], B. Lasri 1998 [33], B. Lasri, M. Bouamoud, and R.
Gayet [35], this contribution from the continuum is weak but not negligible.

Based on the behavior of the radial function Rvl for large values of ν with fixed l and
ν � 1, we show that Hv

ij can be approximated by the following expression:

Hv
ij =

1

v3
Exp

{
− l(l + 1)(2l + 1)

6v2

}[
A+

B

v2

]
(3.31)

where A and B denote constants depending on |i〉 and |j〉.
For sufficiently large values of v, the exponential term equals 1 in expression (3.31), and
consequently the sum over ν becomes:

+∞∑
v=ϑ0

Hv
ij = Hv0

ij + A

+∞∑
k=1

1

(v0 + k)3 +B
+∞∑
k=1

1

(v0 + k)5 (3.32)

where the constants A and B are determined in detail in appendix 1-2. v0: denotes the
value of ν from which the elements Hv

ij follow the v−3 law of expression (4.30).

Referring to the Riemann zeta functions ζ(3) and ζ(5), the summations over k can be
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written:

+∞∑
k=1

1

(v0 + k)3 = ζ(3)−
v0∑
k=1

1

k3
(3.33a)

+∞∑
k=1

1

(v0 + k)5 = ζ(5)−
v0∑
k=1

1

k5
(3.33b)
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Chapter 5

Excitation of the Hydrogen Atom by
Proton Impact at Intermediate Energies

5.1 Introduction

The past few years have seen very vigorous developments in the study of single-electron
collision processes in intermediate velocity ranges. The collisions of multi-charged ions with
atoms are being studied in many disciplines like plasma physics, biophysics, and astrophysics.
The work in nuclear and biological physics with highly charged ion beams from accelerators
has turned out to be a novel fascinating area of the physics of atomic collisions. Such collisions
are also frequent in astrophysical environments – for instance, the plasma screening effects
on resonant Compton scattering of photons by hydrogenic ions in Lorentzian astrophysical
plasmas. [39]

In the case of Helium-like and Hydrogen-like ions, total excitation cross sections have
been observed to saturate at increments with the neutral atom’s nuclear charge. This has
been observed experimentally Wohrer et al 1986 [66], Xu et al 1988 [67], Tiwari et al 1998 [62].
Phenomenon of growth saturation was modeled theoretically by Brendlé and Gayet 1985 [10],
Bouamoud 1988 [7], Bouamoud and Gayet 1989 [18], Lasri, Bouamoud, and Gayet 2004 [35].

Due to the relative simplicity of the excitation and charge transfer processes that allow
the population of excited states of the hydrogen atom colliding with protons, the P-H system
has often been used to test various models and approximations in atomic collision theory.

Hydrogen emissions (Hydrogen-line) play a very important role in astrophysical inter-
pretation and analysis, particularly Balmer-α (Hα at 656 nm) and Balmer-β (Hβ at 486 nm),
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which serve as detectors of auroral protons. The Balmer-α emission from non-radiative colli-
sions around supernovae is important to understand, since at these impact velocities and in
most theoretical approaches, proton impact excitation to levels n = 2 and n = 3 dominates
electronic excitation [29,32,49].

Balmer-α emission: H∗(n = 3)→ H∗(n = 2) + hν

Recently, the collision process between the hydrogen atom and protons has been exten-
sively studied experimentally over a wide range of collision energies (Donnelly et al. 1991 [14],
Hughes et al. 1992 [23], Detleffsen et al. 1994 [13], Gilbody 1995 [21], Higgins et al. 1996 [22],
Werner and Schatner 1996 [64]). Since then, numerous intensive theoretical studies employ-
ing various models (Slim 1993 [59], Ramillon and McCarroll 1993 [53], Ford et al. 1993 [15],
Slim and Ermolaev 1994 [60], McLaughlin et al. 1995 [50], Kuang and Lin 1996 [31], Brendan
McLaughlin et al. 1997 [49], F. Martin 1999 [45],lasri(1998) [33],Lasri et al(2004) [35]) have
been carried out to better understand the processes of capture, excitation, and ionization.

In this section, we aim to study the excitation mechanism of the hydrogen atom by
proton impact at energies ranging from 1 keV to 200 keV in the laboratory frame, in order to
make a meaningful comparison between our theoretical results and the experimental results
of Park et al [52]. and Barnett et al. [2], obtained using a technique known as the energy-loss
spectrometry method. This is a spectroscopic method based on analyzing the energy lost
by incident protons after collision. We also compare our results with other results obtained
from different theoretical models, among which we mention those based on the close-coupling
method, which continues to attract significant interest from researchers around the world to
this day.

5.2 Close Coupling methods :

Close Coupling is an approach widely used in various fields of collision physics and
recognized as one of the most reliable theoretical methods. It has been applied mainly in
the low- and intermediate-energy range, where multiple scattering effects are so significant
that perturbative approaches are no longer valid. For ion-atom collision, the total collision
wavefunction is usually developed as a linear combination of adiabatic atomic orbitals AO or
adiabatic molecular orbitals (MO) with some appropriate translation factors. A single-center
expansion (SCE) is no longer satisfactory outside the high-energy range, where electron
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capture plays an important role.
The development (AO) based on the eigenfunctions of the target and the projectile

is adequate in the energy region where the speed of the projectile is comparable to that of
the bound electron. Thanks to the rapid advancement of computers, the number of states
used in the development has been significantly increased. Currently, it is possible to directly
calculate the total ionization cross sections through a large number of pseudo-continuum
states on both the target and the projectile. 5tochima 1993, 1994 [4, 17].

The time-dependent wave function, in the Single-Center Expansion (SCE) and the
Two-Center Expansion (TCE), is developed respectively and in a standard manner as follows:

ψSCE(~r, t) =

NT∑
i=1

ai(t)ψ
T
i (~rT , t) (4.1)

ψTCE(~r, t) =

NT∑
i=1

ai(t)ψ
T
i (~rT , t) +

N∑
i=NT+1

ai(t)ψ
P
i (~rP , t) (4.2)

where ψTi (~rT, t) and ψiP (~rP, t) denote the atomic orbital of the target and the pro-
jectile, respectively, with appropriate electronic translation factors. ~rT , ~rP , and ~r denote the
electronic coordinates with respect to the nucleus of the target, the projectile, and the origin
of the coordinate system, respectively.

In 1978, Shakeshaft [58] introduced a new version using a two-center expansion (Two-
Centre Expansion, TCE), employing 35 hydrogenic states with l ≤ 2 on each center. This
approach is known as TCES (Two-Centre Expansion with Sturmian functions).

Recently, Ford et al. (1993) [15] developed the (SCE) method by including states with
angular momenta greater than l=6.

Although the cross sections resulting from both the SCE and TCE methods are gener-
ally above the experimental data, their behavior closely resembles the average trend of the
experimental cross sections.

Later, in 1994, Slim and Ermolaev [60] presented an asymmetric two-center expansion
TCE consisting of 50 states on the target and only a dominant 1s capture state on the
projectile; this approach is referred to as TCE. They observed that the excitation cross
sections for the n=2 level of the hydrogen atom by proton impact become unstable in two-
center close-coupling calculations and showed that the use of pseudo-continuum states on
each of the two centers produces false oscillatory structures.

In 1997, Toshima [11] demonstrated that the false oscillatory structure is caused by
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strong coupling between the pseudo-continuum states (discretized continuum states) of the
projectile and the bound states of the target.

5.3 The Variational Approach Used in This Work:

Our work focuses on deriving, using our theoretical frame work, new and more precise
total cross sections for the direct excitation of hydrogen atom when a proton of moderate
energy impacts it, while also drawing attention to the subtle profound discrepancy between
numerous theoretical investigations and the experimental data concerning them .

In several theoretical approaches, and during the evaluation of the scattering amplitude,
there are two main sources of errors. Either in the choice of the appropriate approximation
method for the calculation or in the use of an imprecise input wave function to describe the
target. Recently, the variational model based on the fractional form of Schwinger’s Variational
Principle has proven successful with a good estimation of total effective cross-sections for the
excitation of the n=2 and n=3 levels of the hydrogen atom by proton impact at intermediate
energies. Our theoretical predictions remain in very good agreement with other theoretical
and experimental results.

This variational method, which offers an interesting approach for calculating effective
cross-sections of proton scattering by atoms, is widely adopted at intermediate energies and
could then be applied to low energies. Such a method has the major advantage of being
independent of the normalization chosen for the wave functions, which are only required
in the interaction region. Despite these favorable characteristics, the Schwinger method was
usually applied only to elastic scattering but rarely to the calculation of effective cross-sections
for atomic excitation by electron impact.

To start with, let us take into account that we already have developed a systematic
method for studying the excitation of the hydrogen atom by proton impact at intermediate
speeds, keeping in mind that this model can be extended to other studies, such as the
excitation of hydrogenoid atoms by ion impact at intermediate speeds where ZT � ZP .

let’s recall that the variational transition amplitude of Schwinger is stationary with
respect to small variations of the scattering states |ψ+

α 〉 and
〈
ψ−β
∣∣ around their exact values.

However, an inaccurate evaluation of the Green operator G+
T means a poor evaluation of

the second-order matrix elements
(
i
∣∣V G+

T V
∣∣ j). which directly leads to fatal errors in the

transition amplitude.
In what follows, and as a first illustration, we are interested on the excitation of the
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hydrogen atom by proton impact ( ZP = ZT = 1 ) at energies ranging from 1 keV to 200
keV in the laboratory frame, with the aim of carrying out a detailed comparison between our
results and the experimental data. [52], [2].

In 1984, Brendlé [10] developed this variational approach for the excitation of ions and
atoms by the impact of bare nuclei at intermediate speeds using a basis composed only of
two vectors representing the only initial and final states, although the choice of this basis did
not exactly satisfy the asymptotic conditions and proved to be insufficient.

Additionally, Bouamoud [7, 18] adopted this variational method and developed a new
computational code in Fortran that calculates the total excitation cross sections using a basis
consisting of five target states, including only the contribution of the discrete spectrum of
this target in the representation of the Green’s operator.

In 1998, B. Lasri [33]expanded the 2-state basis to a 5-state basis by including the entire
discrete spectrum of the target as well as that of the continuum. However, the contribution
of continuum states to the total excitation cross sections turns out to be small but not
negligible. Thus, to study the excitation of the n = 2, n = 3 levels of the hydrogen atom
by proton impact, the scattering wave functions |ψ+

α 〉et
∣∣ψ−β 〉 have been developed on a basis

composed of 5 states
{

1 s, ns, npo,npt1 , np−1

}
.

In the present work, during the course of our development, we did not limit ourselves
to a basis of five states; instead, we expanded this basis first to 10 and then to 14 states,
in order to describe the scattering wave function adequately and in a more comprehensive
manner. Consequently, the basis used for the excitation of the n = 2 level of the hydrogen
atom by proton impact is:

{1s, 2s, 2p0, 2p1, 2p−1, 3s, 3p0, 3p1, 3p−1, 3d0, 3d1, 3d−1, 3d2, 3d−2}.

On the other hand, to study the excitation of the n = 3 level, we initially considered it
sufficient to use a basis consisting of only 10 states:

{1s, 3s, 3p0, 3p1, 3p−1, 3d0, 3d1, 3d−1, 3d2, 3d−2}.

The results we present here concern the excitation of the hydrogen atom by proton impact
for the levels n = 2 and n = 3. For this purpose, a computer program was developed to
calculate the total excitation cross sections by integrating over the impact parameter ρ using
Simpson’s method for the variational transition amplitude ãβα(~ρ).
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To achieve this, the Fortran-based calculation program is divided into two main parts:

• The first part allows for the determination of the (i|V |j) elements, referred to as Born-I
type, as well as the second-order elements

(
i
∣∣V G+

T V
∣∣ j), referred to as Born-II type,

for various states (i, j). These elements will be used subsequently to determine the Dj

elements of the matrix D to be inverted, which is defined as:

Dji =
(
j
∣∣V − V G+

T V
∣∣ i)

• The second part determines the matrix D to be inverted and then obtains the values
of the variational transition amplitude ãβα(~ρ), as given by equation (3-27), and conse-
quently the total excitation cross sections after integration over the impact parameter
ρ.

In the first case, using a 5-state expansion denoted as Schw55, we consider B1 and B2

as two basis sets where the five basis states used for the excitation of level n = 2 and n = 3

are:
{1s, 2s, np0, np+1, np−1}

Thus, the matrix D to be inverted can be defined as follows:

1s 2s 2p0 2p−1 2p1

1s

2s

2p0

2p−1

2p1



X X X X ξ

X X X ξ

X X ξ

X X

ξ


Similarly, in a second case, the fourteen basis states used in our development for study-

ing the excitation of the n = 2 levels are:

{1s, 2s, 2p0, 2p1, 2p−1, 3s, 3p0, 3p1, 3p−1, 3d0, 3d1, 3d−1, 3d2, 3d−2} .
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This development, according to our new 14-state Schwinger approach, will be referred to
as Schw1414 throughout the remainder of this work. Consequently, the matrix D to be
inverted is given as follows:

1s 2s 2p0 2p−1 2p1 3s 3p0 3p−1 3p1 3d0 3d1 3d−1 3d2 3d−2

1s

2s

2p0

2p−1

2p1

3s

3p0

3p−1

3p1

3d0

3d1

3d−1

3d2

3d−2



X X X X ξ X X X ξ X X ξ X ξ

X X X ξ X X X ξ X X ξ X ξ

X X ξ X X X ξ X X ξ X ξ

X X X X X X X X X X X

ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

X X X ξ X X ξ X 0

X X ξ X X ξ X ξ

X X X X X X X

ξ ξ ξ ξ ξ ξ

X X ξ X ξ

X X X X

ξ ξ ξ

X X

ξ


X: denote the elements to be calculated.
ξ: denote the elements deduced by symmetry rules.
The elements below the diagonal are all directly derived from the upper elements.

The elements below the diagonal are all directly deduced from the upper elements.
Once the elements Dji =

(
j
∣∣V − V G+

T V
∣∣ i) of the matrix D to be inverted are calcu-

lated, we can determine the value of the variational transition amplitude ãβα(~ρ) (Eq. 3.27)
and consequently deduce the total excitation cross section by integrating over the impact
parameter ρ.

It is worth recalling one of the most important consequences of the symmetry operations,
which significantly reduced the computational time. Thus, a 14 × 14 matrix that would
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normally require the calculation of 196 elements only needs 65 elements. This resulted in a
considerable gain in computation time.

5.4 Resultats and discussions:

5.4.1 Excitation of the Level n = 2:

In our case, five theoretical approaches that directly stem from our new procedure have
been addressed:

1. First-order Born approximation, denoted Born-I,

2. Second-order Born approximation, denoted Born-II,

3. Schwinger-Born approximation (Schw-B) where B1 = {|α〉} and B2 = {|β〉},

4. Schwinger approximation with 5 basis states, denoted Schw55, after including the con-
tribution of the target’s continuum states.
(The notation Schw55D refers to our theoretical results without the inclusion of the
contribution from the target’s continuum states).
The two basis sets are: B1 = B2 = {|α〉1, |β〉} and three degenerate states with
{|β〉}, more precisely, B1 = B2 = {1s, ns, np0, np+1, np−1} in the case of the tran-
sition 1s→ n = 2,3.

5. . Schwinger approximation with 14 basis states, denoted Schw1414, where B1 = B2 =

{1s, 2s, 2p0, 2p1, 2p−1, 3s, 3p0, 3p1, 3p−1, 3d0, 3d1, 3d−1, 3d2, 3d−2}.

Let us highlight that in all of our Schw55 and Schw1414 computations, we included
both the discrete spectrum and the target continuum.

These theoretical results were compared to the experimental data of Park et al. (1976)
[52] (Figure 4-3), which were normalized to the Born approximation at 200 keV by Bates [3]
for the state n=2, which means a value ofσ = 6.63 × 10−17 cm2 , and then renormalized to
our theoretical results at 200 keV, multiplied by a factor of 0.91.

We also compared our results with the experimental results of Morgan et al. (1973),
Detlefsen et al. (1994) [23], Higgins et al. (1996) [22, 51] (Fig. 4-1, Fig. 4-2), and with
those of Barnett [2] (Fig. 4-4) obtained using spectroscopic measurement techniques; as well
as with other recent theoretical results, among which we mention the following: Shakeshaft

48



CHAPTER 5. EXCITATION OF THE HYDROGEN ATOM

(1978) [58], which were obtained using a two-centre expansion approach known as TCES
(Sturmian Two-Centre Expansion), involving 35 hydrogen-like pseudo-states of the Sturmian
type on each centre.

Lüde et al. (1982) [43] presented results obtained from a numerical solution of the
time-dependent wave function within the impact parameter formalism, using an expansion
over a pseudo-basis set of the Hylleraas type. This procedure will hereafter be referred to as
TDSE (Time-Dependent Schrödinger Equation).

In 1994, Slim and Ermolaev [44] developed a new approach based on an asymmetric
two-centre expansion consisting of 50 states on the target and a single 1s capture state on
the projectile. In what follows, this approach will be referred to as TCE51.

In Tables 4-1, 4-2, 4-3, and 4-4, as well as in Figures 4-1, 4-2, 4-3, and 4-4, our various
theoretical results for the total excitation cross sections of the 2s, 2p, and n = 2 states
of the hydrogen atom by proton impact are presented. These results were obtained using
the different theoretical procedures mentioned previously: Born-I, Born-II, Schwinger-Born
(Schw-B), Schwinger55D (Schw55D), Schwinger55 (Schw55), and Schwinger1414 (Schw1414).
They are compared with the available experimental data and with other theoretical model
results cited above.
Excitation of the (1s, 2s) state of the hydrogen atom:
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Table 5.1: Cross sections from various models for the excitation of the hydrogen atom (1s, 2s) state. All values are scaled to
10−17

E (keV)
Exp.

Morgan

et al

Err.

Morgan

Exp.

Higins

et al.

Err.

Higins

Shakeshaft

(TCES)

Lüdde

et al

(TDSE)

Ford

(SCE)

Slim

(TCE51)

Martin

(CC)

Schw

55D

Schw

55
Born I

Schw

1414

2 - - - - - 0.12 - - - 0.48334 0.4833 0.48334 0.36372

4 - - - - - 0.47 - - - 1.5966 1.5966 1.5966 1.1556

5 0.5890 0.1626 - - - - - - - - - - -

6 0.6003 0.1586 - - - 0.93 - - - 2.268 2.268 - 1.7025

7 0.5928 0.1465 - - - - - - - - - - -

8 0.5587 0.1598 - - - 0.19 - - - - - - 2.0348

9 6.0014 0.16012 - - - - - - - - - - -

10 0.515 0.16001 0.61 0.1 - - - - - - - - -

12 0.587 0.14675 - - - - - - - 2.7372 2.7372 4.4127 -

15 0.862 0.2155 - - 0.88 - 0.95 - - 2.7035 2.7294 - 2.4696

16 - - - - 0.9 - - - - - -

20 1.04 0.26 1.05 0.09 - - - - - 2.539 2.5562 - 2.4669

25 1.06 0.65 - - 1.56 - - - - - 2.8839 -

30 - - 1.25 0.11 - - 1.8 1.73 1.91 2.1311 2.136 2.5245 2.1902

40 - - 1.39 0.08 2.1 - 2.01 - 1.7744 1.7724 2.0149 1.886

45 - - - - - - 1.76 - - 1.6248 1.6203 1.8288 -

50 - - 1.32 0.07 1.79 - - 1.98 1.62 1.4937 1.4886 1.6738 1.6346

60 - - 1.22 0.08 1.32 - 1.52 1.82 - 1.2877 1.284 1.4306 1.4289



65 - - - - - - - - - 1.2062 1.2025 1.3335 -

70 - - 1.12 0.07 - - - - 1.1352 1.1317 1.2486 -

75 - - - - 1.19 - - 1.58 - 1.0736 1.0706 1.739 -

80 - - 1.04 0.07 - - 1.24 - - 1.0183 1.0155 1.1076 1.1296

85 - - - - - - - 1.41 - 0.9689 - - -

90 - - 0.94 0.05 - - - - 1 - - - -

100 - - 0.87 0.07 - - 1.02 1.2 - - - - 9.2902

105 - - - - - - - - - 0.81389 0.8115 0.8635 -

125 - - - - - - 0.829 - - 0.70299 - 0.73376 -

145 - - - - 0.8 - - 0.82 - 0.61914 0.6179 0.63795 -

150 - - - - - - 0.694 - - 0.6012 0.6001 0.6177 -

160 - - - - - - - - - - - - 0.60211

200 - - - - 0.49 - 0.519 0.56 0.501 0.4661 0.465 0.46935 0.48707
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Figure 5.1: Total Excita�on Cross Sec�ons to the 2s State of the Hydrogen Atom in 10−17 cm2 

                    by Proton Impact Compared with Various Theore�cal and Experimental Results 
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Table 5.2: Total excitation cross sections to the 2p state of the hydrogen atom by proton impact (in cm2). All values are scaled
to 10−17.

E (keV)
Exp.

Morgan

et al

Err.

Morgan

Detlefsen

et al.

Err.

Detlefsen

Shakeshaft

(TCES)

Lüdde

et al

(TDSE)

Ford et al

(SCE)

Slim et al

(TCE51)

Schw

55D

Schw

55
Born I

Schw

1414

10 - - - - - - - - - - - 1.7642

11 2.35 0.282 - - - - - - - - - -

12 - - - - - - - - 1.6124 1.6124 - -

14 - - - - - 1.98 - - - - - -

15 2.81 0.3372 - - 2.46 - 2.58 - 1.8928 1.8808 - 2.4114

16 - - - - - 2.58 - - - - - -

20 3.65 0.438 - - - - - - 2.4694 2.4871 - 3.4292

25 - - - - 4.85 6.58 - - - - - -

30 5.5 0.66 - - - - 5.78 6.82 4.1707 4.243 - 5.371

40 - - 6.29 0.7548 6.89 - - 8.04 5.9566 6.0525 - 6.7689

45 - - - - - 7.41 - 6.633 6.722 - -

50 - - 8.94 1.0728 6.88 - - 8.39 7.101 7.1893 - 7.5804

60 - - 9.25 1.11 7.29 - 7.92 8.42 7.6254 7.7055 - 7.9536

65 - - - - - - - - 7.7346 7.8057 11.784 -

70 - - 9.27 1.1124 - - - - 7.7801 7.8437 11.371 -

75 - - - - 7.97 - - 8.22 7.7798 7.8365 10.986 -

80 - - 8.66 1.0392 - - 7.89 - 7.7463 7.7984 10.627 7.997

85 - - - - - - - 8.08 7.689 - 10.291 -



90 - - 9.14 1.0968 - - - - - - - -

100 - - 8.21 0.9852 - - 7.62 7.86 - - - 7.6528

105 - - - - - - - - - 7.3636 9.1415 -

120 - - 8.12 97.44 - - - - - - - -

125 - - 7.17 86.04 - - 7.13 - 6.9017 - 8.2274 -

140 - - 7.26 - - - - - - - - 6.7577

145 - - - - 6.53 - - 6.89 - 6.4971 - -

150 - - 7.2 86.4 - - 6.64 - 6.3721 6.3928 7.3207 -

160 - - 7.23 86.76 - - - - - - - 6.3197

175 - - 6.74 80.88 - - - - - - - -

180 - - 6.83 81.96 - - - - - - - -

200 - - 6.36 76.32 5.55 - 5.79 5.91 5.4598 5.4688 6.0094 5.5997
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Figure 5.2: Total Excita�on Cross Sec�ons to the 2p State of the Hydrogen Atom in 10−17 cm2 

                     by Proton Impact Compared with Various Theore�cal and Experimental Results 
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Table 5.3: Total Excitation Cross Sections to the n = 2 Level of the Hydrogen Atom by Proton Impact (in 10−17 cm)

E (keV)
Exp.

Park

et al

Exp

Barnett et

al

Ford et

al.

Lüdde

et al

(TDSE)

Born I Born II Schw-B Schw55D Schw55
Schw

1414

6 - - - 4.06 - - - - - 2.552734

8 - - - 2.67 - - - - - 3.247978

10 - - - - - - - 4.107596 4.1 3.790326

12 - - - - - - - 4.349572 4.349572 -

14 - - - 3.08 - - - - - -

15 3.44±0.4 3.1213±0.4 3.53 - - - - 4.596292 4.61019 4.880948

20 5.36±0.2 4.7502±0.4 - - - - - 5.00835 5.04321 5.8959

25 6.63±0.44 6.0424±0.4 - - - - - 5.585288 - -

30 7.86±0.5 7.1799±0.4 7.58 - - - - 6.30171 6.37903 7.56984

35 8.47±0.78 - - - - - - 7.05283 - -

40 9.64±0.83 8.7269±0.4 - - - - 7.731 7.82491 8.65498

45 9.9±0.97 - 9.17 - - - - 8.25778 8.34227 -

50 10.53±0.64 9.555±0.4 - - - - - 8.59475 8.67789 9.21497

55 10.59±0.25 9.737±0.4 - - - - - 8.80807 - -

60 10.74±0.64 9.737±0.4 9.440001 - - - - 8.91292 8.98945 9.38251

65 10.19±0.66 - - - 13.11764 - - 8.94084 9.00817 -

70 10.26±0.84 9.373±0.4 - - 12.62018 - 13.06544 8.91528 8.97543 -

75 10.26±0.27 - - - 12.16065 - 12.54475 8.85333 8.90713 -

80 9.75±0.38 8.8452±0.4 9.13 - 11.735 - 12.07277 8.7646 8.8197 9.12664



85 9.47±0.7 - - - 11.33971 - 11.64157 8.657946 - -

95 9.32±0.55 - - - 10.62754 - 10.87887 8.412093 - -

100 - 8.099±0.4 8.639999 - - - - - - 8.582943

105 8.88±0.29 - - - 10.00498 11.67194 10.223 8.145659 8.175125 -

125 8.47±0.24 - 7.959 - 8.961185 10.21359 9.138772 7.604658 - -

145 7.75±0.58 - - - 8.123102 9.10424 8.27584 7.094026 7.115095 7.420156

150 - 6.8068±0.4 7.334 - 7.93846 8.86623 8.086249 6.973273 6.992948 -

165 7.27±0.31 - - - 7.433435 8.226015 7.568416 6.6282 - -

180 - - - - 6.855059 7.510742 6.97635 6.210342 - -
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Figure 5.3: Total excita�on cross sec�ons of the hydrogen atom to the level n = 2 (in 10−17 cm2),    

                     compared with the experimental results of Park et al. 
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Figure 5.4: Total excita�on cross sec�ons of the hydrogen atom to the level n = 2 (in 10−17 cm2),    

                     compared with the experimental results of Barne3 et al. 
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5.4.1.1 Interpretation of the results

The total excitation cross sections of the 2s , 2p, and n = 2 states of the hydrogen atom
by proton impact appear respectively in the previous tables (4.1→ 3) as well as in the figures
(4.1→ 3), where they are compared with the available experimental data as well as with other
results based on different theoretical procedures. Our present calculations are carried out with
basis sets {|i〉} and {|j〉}, initially composed of 5 basis states {1s, 2s, 2p0, 2p+1, 2p−1}, then
extended to 14 states {1s, 2s, 2p0, 2p+1, 2p−1, 3s, 3p0, 3p+1, 3p−1, 3d0, 3d+1, 3d−1, 3d+2, 3d−2}.
An automatic procedure was established to ensure greater accuracy.

In all the figures, our various results and theoretical predictions made with atomic-type
basis sets are compared with several available experimental results such as those of Morgan
et al. (1973) [51], Detlefsen et al. (1994) [13], and Higins et al. (1996) [22] for the 2s and
2p states, and those of Park et al. (1976) [52] and Barnett et al [25]. for n = 2 and n = 3.
The comparison is mainly made around the maximum located near 40 keV, the range of
intermediate energies where the coupling between excitation and capture channels occurs
(Gayet, 1983) [17].

The present total excitation cross sections to the 2s state shown in 4 − 1 and repro-
duced in the figure 4− 1 reveal that the Schw55 results, which refer to the 5-state Schwinger
approach, show a peak around 12 keV, which significantly overestimates the total cross sec-
tions at low energy. However, expanding the basis from 5 to 14 states (Schw1414 results)
introduced a slight shift of the peak to around 15 keV. But from 40 keV onward, both pro-
cedures converge almost similarly to the experimental data of Higgins et al [14]. as well as
results obtained using various recent theoretical approaches: (TCES) Shakeshaft (1978) [58],
(TDSE) Lüde et al. (1982) [43], (SCE) Ford et al. (1993) [15], (TCE51) Slim and Ermolaev
(1994) [60], (CC) Martin (1999) [44].

The examination of Figure 4-2 and Table 4-2 related to the total excitation cross sections
to the 2p state of the hydrogen atom by proton impact once again reveals that the effect of
expanding the basis from 5 to 14 states is clearly visible. The results are comparable and
sometimes significantly better than those given by various authors: Shakeshaft [58], Lüde et
al. [43], Ford et al. (1993) [65], Slim and Ermolaev (1994) [60], and Martin (1999) [44].

Almost all theoretical predictions, except for the first Born approximation (Born-I),
show reasonable agreement with the experiment for the excitation of the 2p state over a
wide range of impact energies. Unlike the 2s excitation, the Schw55 cross sections for the 2p

state are slightly smaller below 30 keV, while those of Schw1414 show very good agreement
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with the experiment. The TCE51 values remain consistently too large. This is mainly due
to strong coupling between excitation and capture in the intermediate energy range. The
first-order Born approximation (Born-I) agrees very well with experimental results beyond
80 keV, but is significantly higher at energies below 70 keV.

It is essential to note that the theoretical results provided by the first- and second-order
Born approximations as well as the Schwinger-Born approximation greatly overestimate the
total excitation cross sections of the n = 2 level in the low and intermediate energy ranges but
show the same trend as experimental results at high energies. This indicates that excitation
then becomes an independent channel and a direct process resulting from the interaction
between the projectile and the active electron.

However, at energies below 40 keV, the multipole terms of the interaction contribute
to the excitation of the 2p state, leading to contributions at smaller impact parameters.
Consequently, the coupling influence between excitation and capture on the 2p excitation is
no longer negligible. This influence could explain the underestimation of the total excitation
cross sections of the 2p state given by Schw55 at energies below 40 keV.

During the development of the propagator in the matrix elements of Born-II, which
appears in calculations based on the fractional form of the Schwinger variational principle
where the basis was expanded from 5 states (Schw55) to 14 states (Schw1414), the results
obtained by Schw1414 are significantly better than those by Schw55 and show very good
agreement with almost all experimental results and with other results obtained from different
theoretical models.

The contribution of the continuum near the ionization threshold to the total excitation
cross sections is small. This allows us to conclude that the contribution of intermediate target
states can be ignored, as was the case in previous applications (Brendlé et al. (1985) [10];
Bouamoud and Gayet (1989) [18]; Chabot et al. (1991) [11]). This conclusion gives more
confidence in the results reported in these previous publications.

On the other hand, comparing experimental data with our cross sections for excitation
of the 2s and 2p sublevels of hydrogen atoms by proton impact shows that the current
fractional form application of the Schwinger principle must be limited to an impact energy
range where the capture process is negligible. This is expected since the capture process
is explicitly ignored in all Schwinger principle applications done so far. In the previous
applications mentioned above, a neutral atom acted as the projectile. In that case, it is
possible to use the present variational approach at intermediate impact velocities because
electronic capture occurs, at minimum, as a two-step process (projectile ionization followed
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by electron transfer), whose probability is much smaller than that of one-step processes
(Chabot et al. (1991) [11]).

For excitation of an H atom by a bare ion, the current variational approach can be im-
proved by including at least one 1s capture state in the expansions of |ψ+

α 〉 and
∣∣ψ−β 〉.. Based

on the TCE51 calculations by Slim and Ermolaev (1994) [59], a more significant improvement
would come from accounting for the full continuum of intermediate states. However, due to
scaling laws linked to the projectile’s nuclear charge, our new theoretical approach remains
a powerful tool to study excitation of Fe24+ and Kr34+ at 400 MeV and 34MeV/nucleon in
collisions with various atoms. Therefore, the Born-I and Born-II matrix elements must be
recalculated when the projectile’s charge changes for a given target. Still, the variational prin-
ciple should guarantee precise transition probabilities for all states included in the truncated
basis on which |ψ+

α 〉 and
∣∣ψ−β 〉 are expanded.
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5.4.2 Excitation of the level n = 3

It should be recalled that during a previous calculation (Lasri 1998) [33], which con-
stituted the subject of a Magister thesis, and using a 5-state basis, we observed a shift
toward lower energies, still following the same trend as the experimental results of Park et
al. (1978) [52] and those of Barnett et al. (1990) [25].

This behavior can be explained by the fact that in the calculations of total excitation
cross sections of the 3p state, the 5 basis states are {1S, 3S, 3p0, 3p+1, 3pp1} , but for the
excitation of the 3d state, only the two-state variational approach was used, the initial and
final states (Schw22). Thus, instead of inverting a matrix of order 5, we have a matrix of
order 2.

Therefore, for the excitation to the 3 d0 state, the basis will include {1S, 3 d0} , and
for the excitation to the 3 d1, 3 d−1 , 3 d2, and 3 d−2 states, the basis states are respectively
{15, 3 d1} {15, 3 d−1} {1 s, 3 d2} {1 s, 3 d−2}.

What was concluded from this is that, in order to properly describe the excitation of
the level n = 3, all intermediate states must be included; this led us to expand the basis to
10 states in order to obtain an adequate representation of the wave function. Thus, the basis
will include: {1 s, 3 s13p0, 3p1, 3p−1, 3 d0, 3 d1, 3 d−1, 3 d2, 3 d−2}; and subsequently, the D
matrix to be inverted can be written as follows:

The symmetry operations considerably reduced the computation time. Thus, for a
10× 10 matrix, which would normally require the calculation of about a hundred elements,
only 34 elements need to be computed, resulting in a significant saving in machine time.
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The new results, referred to below as Schw1010, relate to our new variational procedure
using a basis composed of 10 states for the excitation of the level n = 3 (1s→ n = 3). These
results are presented in Table VI-4 and illustrated in Figures 4-5 and 4-6, where they are
compared with the various available experimental results.

The experimental results of Park et al. (1978) [52] were renormalized using the same
procedure described previously, by multiplying them by a factor of 0.925. The theoretical
results obtained from various theoretical procedures cited so far include those of Shakeshaft
(1978) [58], based on the TCE (Two-Centre Expansion) method using 35 hydrogen-like states
with l ≤ 2 on each center; those of Reading et al. (1981) [32], based on the SCE (Single-
Centred Expansion) theoretical method in its various forms, OHCE (One and a Half Centred
Expansion), namely the perturbative form POHC, or the unitary form UOHC.

We also compared our results with those provided by Lüde (1981) [43], using a semi-
classical procedure called TDSE (Time Dependent Schrödinger Equation), and the recent
results of Ermolaev et al. (1991) [15], TCAO (Two Center Atomic Orbital).
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Table 5.4: Part 1 – Total Excitation Cross Sections to the n = 3 Level of the Hydrogen Atom by
Proton Impact (in 10−17 cm2)

E (keV)
Exp.

Park

et al

Exp

Barnett et

al

Park

Norm

Shakeshaft

(TCES)

Reading

et al.

(POHC)

Reading

et al

(UOHC)

Reading

et al

(SCE)

1 - - - - - - -

2 - - - - - - -

4 - - - - - - -

6 - - - - - - -

8 - - - - - - -

10 - - - - - - -

14 - - - - - - -

15 1.1±0.5 1.09±0.4 1.00827 0.86 0.78 0.91 3.1

20 1.3±0.2 1.29±0.4 1.191592 - - - -

25 1.55±0.2 1.53±0.4 1.420744 - - - -

30 1.86±0.2 1.8±0.4 1.704893 1.8 1.8 1.6 2.7

35 2.11±0.3 - 1.934045 - - - -

40 2.35±0.2 2.33±0.4 2.154031 - - - -

45 2.52±0.2 - 2.309855 - - - -

50 2.58±0.2 2.54±0.4 2.364851 - - - -

55 2.59±0.2 - 2.374017 - - - -

60 2.47±0.2 2.51±0.4 2.264024 2.1 2.1 2 2.2

70 2.59±0.2 2.42±0.4 - - - - -

75 2.31±0.2 - 2.117367 - - - -

80 2.32±0.2 2.32±0.4 2.126533 - - - -

85 2.47±0.4 - 2.264024 - - - -

95 2.22±0.3 - 2.034872 - - - -

100 - - - 1.5 1.7 1.7 1.7

105 2.13±0.3 - 1.952377 - - - -

125 2.01±0.2 - 1.842384 - - - -



145 1.72±0.3 - 1.576568 - - - -

165 1.73±0.2 - 1.585734 - - - -

185 1.38 - 1.26492 - - - -

200 1.41 - 1.292419 - - - -

Table 5.5: Part 2 – Total Excitation Cross Sections to the n = 3 Level of the Hydrogen Atom by
Proton Impact (continued)

E (keV)
Ludde

et al

(TDSE)

Born-I Born-II S-B
Schw

55D

Schw

55

Schw

1010

1 0.04 - - - - - -

2 0.03 - - - - - -

4 0.15 - - - - - 0.589532

6 0.18 - - - - - -

8 0.12 - - - - - -

10 - - - - - - 1.40447

14 0.49 - - - - - -

15 - - - 1.423407 1.738419 1.862076 1.664672

20 - - - 1.984773 1.943322 2.068858 1.85552

25 - - - 2.411578 2.050087 2.175066 -

30 - - - 2.721797 2.098338 2.219837 2.045799

35 - - - 2.923836 2.109984 2.226436 -

40 - 3.153922 - 3.035077 2.098451 2.21 2.079762

45 - 2.997385 - 3.078195 2.072053 2.176702 -

50 - 2.854782 - 3.072709 2.036169 2.135075 2.053729

55 - 2.724985 - 3.035314 1.995012 2.088162 -

60 - 2.606696 - 2.976462 1.95042 2.037963 1.996003

70 - 2.399577 - 2.82463 1.857702 1.9.4953 1.924301

75 - - - - - - -



80 - 2.22451 - 2.657291 1.765705 1.83399 1.847372

85 - - - - - - -

95 - 2.007631 - 2.414259 1.63489 1.691028 -

100 - - - - - - 1.69657

105 - 1.886481 3.105721 2.266423 1.554557 1.60378 -

125 - 1.68566 2.615784 2.009458 1.415709 1.45573 -

145 - - - - - - -

165 - 1.394767 1.990742 1.628507 1.197203 1.223062 -

185 - 1.285585 1.779237 1.486055 1.111372 1.132745 -

200 - 1.214787 1.648346 1.394621 1.054853 1.073547 1.159314
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Figure 5.5: Total Excita�on Cross Sec�ons to the n=3 level of the Hydrogen Atom in 10−17cm2       

                    by Proton Impact Compared with Various Theore�cal and Experimental Results 
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The examination of the two preceding figures reveals a clear improvement compared
to our previous calculations conducted in 1998 [33], with a slight shift toward lower energies
while still following the same trend as the experimental results of Park et al. (1978) [52] and
Barnett et al. (1990) [54]. Starting from 40 keV, a very good agreement is observed between
the experimental data and the various theoretical predictions previously mentioned, based
on different theoretical approaches (TC-S, POHC, UOHC, SCE, TDSE, TCAO). As for the
results derived from Schw-B, they overestimate the experimental results despite having the
same general trend with a peak around 50 keV, and the same applies to those of Born-I and
Born-II, which also overestimate the various empirical results.

Regarding the various results obtained from different works carried out using various
theoretical procedures, it can be said that the majority are in perfect agreement with the
experimental results, except for those of SCE by Reading et al, which, below 50 keV, diverge
by giving results significantly higher than the available experimental data.

In conclusion, it can be said that the decision to increase the basis on which the Green’s
propagator is expanded, from 5 states to 10 basis states, led to a better representation of the
wave function and thus allowed us to obtain good results that remain in perfect agreement
with the various available results, whether theoretical or experimental.
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Figure 5.6: Total Excita�on Cross Sec�ons to the n=3 level of the Hydrogen Atom in 10−17cm2       

                    by Proton Impact Compared with Various Theore�cal and Experimental Results. 
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General Conclusion

This thesis presented a variational approach based on the fractional form of the Schwinger
variational principle to investigate the excitation of the hydrogen atom by proton impact in
the intermediate energy range (1 keV to 200 keV). This system serves as a meaningful test case
for the theoretical model, particularly in the regime where the coupling between excitation
and capture channels is strong.

We have tried to improve the agreemcross-tween the excitation cross section data of
the hydrogen atom by proton impact and our model using the variational impact parameter
approach. Total excitation cross sections for transitions to the n = 2 and n = 3 states were
computed and compared with available experimental data and theoretical models.

The results indicate that, in the energy range where the coupling is significant, projectile
capture states can be effectively described by accurate continuum target states.

Finally, this variational approach will be able to become a powerful tool to investigate
the excitation process in atomic collisions in the energy range from low to high energies. In
particular, it remains a highly effective investigative tool for examining excitation processes
in atomic collision studies within the intermediate impact velocity regime.
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Appendix A

Eikonal Approximation of the Target
Green’s Operator.

A.1 Eikonal form of Green’s operator G+
T

Analogous to the treatment of the Schrödinger equation for time-dependent collision
theory [20][36], the following equation can be deduced in the eikonal approximation for the
Green operator G+

C associated with the Hamiltonian HC given by expression (II.1a). The
eikonal operator verifies the equation:[

− i v ∂

∂z
+ HT (z)

]
G+
T (z, z′) = − δ

(
z − z′

)
(A.1)

wWherev is the impact velocity, and HT (z) is the target Hamiltonian, with the initial
condition:

G+
T (z, z′) = 0 for z < z′ . (A.2)

Solving equation (A.1) without a second member gives

G+
T (z, z′) = exp

{
− i

v

∫ z

z0

HT (u) du
}
G+
T (z0, z

′) (A.3)

where z0 is arbitrary subject toz0 > z′.

Now, to solve the full equation (with the delta term), take
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APPENDIX A. EIKONAL APPROXIMATION OF THE TARGET GREEN’S OPERATOR.

G+
T (z, z′) = exp

{
− i

v

∫ z

z0

HT (u) du
}
k(z0, z

′) , (A.4)

and vary the “constant” k(z0, z
′). By substituting (A.4) into (A.1), one finds

− i v exp
{
− i

v

∫ z

z0

HT (u) du
} ∂

∂z
k(z0, z

′) = − δ
(
z − z′

)
, (A.5)

which implies

k(z0, z
′) = − i

v
exp
{
i
v

∫ z′

z0

HT (u) du
}
θ
(
z − z′

)
. (A.6)

Hence, the eikonal approximation of the G+
T operator becomes:

G+
T (z, z′) = − i

v
exp
{
− i

v

∫ z

z′
HT (u) du

}
θ
(
z − z′

)
, (A.7)

where θ(z − z′) is the Heaviside step function.

B



Appendix B

Analytical Evaluation of Coulomb
Matrix Elements between Hydrogenic
States.

B.1 Analytical Calculation of the Matrix ElementsWij(~R)

The elements Wij(~R) are given by the following relationship:

Wij(~R) =

∫
d~xϕ∗i (~x)V (~R, ~x)ϕj(~x) (B.1)

where

V (~R, ~x) = Zp

[
1

R
− 1

|~R− ~x|

]
(B.2)

and ϕi(~x) and ϕj(~x) denote hydrogenoid functions, generally given by:

ϕk(~x) ≡ ϕnklkmk(~x) = Rnklk(x)Y mk
lk

(x̂) (B.3)

such that

Rnklk(x) = e
−ZT x

nk

nk−lk−1∑
µ=0

Bkµx
lk+µ (B.4)

where:
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APPENDIX B. ANALYTICAL EVALUATION OF COULOMB MATRIX ELEMENTS BETWEEN
HYDROGENIC STATES.

Bkµ =
1√
2

[(nk + lk)!(nk − lk − 1)!]1/2
(2ZT )(lk+µ+3)/2

nlk+µ+2
k

(−1)µ

(nk − lk − 1− µ)!(2lk + 1 + µ)!µ!

(B.5)
Y mk
lk

(x̂) is a spherical harmonic:

Y mk
lk

(x̂) =

[
2lk + 1

4π

]1/2 [
(lk −mk)!

(lk +mk)!

]1/2

(−1)mkPmk
lk

(cos θx)e
imkϕx (B.6)

with associated Legendre functions:

Pmk
lk

(x) = (1− x2)mk/2
dmk

dxmk
Plk(x), mk ≥ 0 (B.7)

P−mklk
(x) = (−1)mk

(lk −mk)!

(lk +mk)!
Pmk
lk

(x), −mk < 0 (B.8)
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