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« Identification of new drugs destined for Alzheimer’s patients »

Abstract

The inhibition of acetylcholinesterase (AChE) continues to be a key therapeutic approach in
Alzheimer's disease treatment. This study employs advanced computational methods to
evaluate the AChE-inhibiting potential of hybrid derivatives combining donepezil and tacrine
structures. Using robust 3D-QSAR modeling (R? = 0.82, Q? = 0.738), the analysis revealed
significant structure-activity relationships (SAR), with steric factors playing a major role
(46.05%) in influencing inhibitory potency. These findings facilitated the rational design of
new derivatives, using a high-activity reference compound for structural refinement based on

contour map analysis.

Molecular docking studies identified compound D1 as the most promising candidate,
demonstrating strong interactions with key AChE residues (TYR72, ASP74, and TRP286) and
an excellent docking score of -11.70 kcal/mol. Further validation through MM-GBSA
calculations confirmed its high binding affinity (AG = -52.43 kcal/mol) and complex stability.
In silico ADME/Tox assessments indicated favorable oral bioavailability, adherence to

Lipinski and Veber drug-likeness rules, and minimal toxicity risks.

Density functional theory (DFT) analysis (B3LYP/6-311G) revealed a well-balanced HOMO-
LUMO energy gap (3.85 eV), suggesting electronic stability and optimal reactivity. Molecular
electrostatic potential (MEP) maps and density-of-states analyses further clarified charge

distribution and orbital contributions relevant to target binding.

Overall, this study highlights the donepezil-tacrine hybrid scaffold as a versatile
pharmacophore for AChE inhibition and identifies D1 as a promising anti-Alzheimer's lead

compound worthy of further experimental investigation.

Keywords: Alzheimer's disorder, Donepezil-tacrine hybrids, AChE inhibition, 3D-QSAR,
molecular docking, MM-GBSA, ADME/Tox, DFT, electronic properties.

« Identification de nouveaux médicaments destinés aux malades atteints d’Alzheimer »
Résumé

L'inhibition de I'acétylcholinestérase (AChE) reste une approche thérapeutique clé dans le
traitement de la maladie d'Alzheimer. Cette étude utilise des méthodes de calcul avancées

pour évaluer le potentiel d'inhibition de I'AChE de dérivés hybrides combinant les structures
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du donépézil et de la tacrine. En utilisant une modélisation 3D-QSAR robuste (R? = 0,82, Q?
= 0,738), l'analyse a révélé des relations structure-activité (SAR) significatives, les facteurs
stériques jouant un rdéle majeur (46,05%) dans l'influence de la puissance inhibitrice. Ces
résultats ont facilité la conception rationnelle de nouveaux dérivés, en utilisant un composé de

référence a forte activité pour l'affinement structurel basé sur 'analyse des cartes de contours.

Les ¢études de docking moléculaire ont identifi¢ le composé D1 comme le candidat le plus
prometteur, démontrant de fortes interactions avec les résidus clés de 'AChE (TYR72, ASP74
et TRP286) et un excellent score de docking de -11,70 kcal/mol. Une validation
supplémentaire par des calculs MM-GBSA a confirmé son affinité de liaison élevée (AG = -
52,43 kcal/mol) et la stabilité du complexe. Les évaluations ADME/Tox in silico ont indiqué
une biodisponibilité orale favorable, le respect des regles de Lipinski et Veber en matiere de

ressemblance avec les médicaments et des risques de toxicité minimes.

L'analyse de la théorie de la fonctionnelle de la densité (DFT) (B3LYP/6-311G) a révélé un
écart énergétique HOMO-LUMO bien équilibré (3,85 eV), ce qui suggere une stabilité
¢lectronique et une réactivité optimale. Les cartes du potentiel électrostatique moléculaire
(MEP) et les analyses de la densité d'états ont permis de clarifier davantage la distribution des

charges et les contributions orbitales pertinentes pour la liaison a la cible.

Dans l'ensemble, cette étude met en évidence 1'échafaudage hybride donépézil-tacrine en tant
que pharmacophore polyvalent pour I'inhibition de I'AChE et identifie D1 comme un composé

phare anti-Alzheimer prometteur qui mérite des recherches expérimentales plus approfondies.

Mots-clés : Maladie d’Alzheimer, Hybrides donepezil-tacrine, Inhibition de I’AChE, 3D-
QSAR, Docking moléculaire, MM-GBSA, ADME/Tox, DFT, Propriétés électroniques.
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General introduction

General introduction

Memory and learning are essential cognitive functions that shape human behavior, allowing
individuals to adapt to their environment, draw from past experiences, and anticipate future
outcomes. However, these abilities can decline due to aging, traumatic brain injuries,
psychiatric disorders (such as addiction, anxiety, depression, and schizophrenia), or chronic

neurological conditions, most notably neurodegenerative diseases like Alzheimer’s disease

(AD) [1].

Alzheimer’s disease represents a growing global health crisis with profound medical, social,
and economic consequences. Recent estimates from the 2022 World Alzheimer Report
indicate that more than 55 million people currently live with AD or related dementias—a
number projected to nearly triple to 138 million by 2050 [2]. The progressive nature of the

disease severely impacts patients' independence, often depriving them of a fulfilling later life

[3].

To date, no cure exists for AD. Available treatments focus on symptom management and fall
into two main categories: acetylcholinesterase (AChE) inhibitors and NMDA receptor
antagonists [4]. Among the first-generation AChE inhibitors, tacrine was discontinued due to
safety concerns, while donepezil emerged as a preferred option due to its enhanced selectivity
and tolerability. Galantamine, another key drug in this class, not only inhibits AChE but also

enhances cholinergic signaling by modulating nicotinic receptors [5].

Developing new AD therapies through traditional drug discovery is an expensive and lengthy
process, often taking over a decade and billions of dollars, with high failure rates in late-stage
trials. To overcome these challenges, computational approaches have become indispensable in
early drug discovery. In silico methods enable rapid screening of large compound libraries,
prediction of ADME/Tox properties, and optimization of lead molecules before synthesis [6].
These techniques significantly reduce costs and improve success rates by prioritizing

compounds with favorable pharmacokinetics and minimal toxicity risks [7].
This investigation pursues three principal scientific aims:

v' To systematically evaluate the structure-activity relationships governing molecular
recognition through:

% Comprehensive analysis of ligand-enzyme interactions

1



General introduction

¢ Quantitative assessment of inhibitory potential
% Determination of key pharmacophoric features
v" To rationally design and computationally characterize novel small-molecule inhibitors
targeting acetylcholinesterase (AChE) with optimized binding affinities.
v’ To establish the drug development potential of lead compounds by:
% Computational prediction of pharmacokinetic properties
% Assessment of bioavailability parameters

¢+ Evaluation of toxicity profiles

This tripartite approach integrates molecular design, biological evaluation, and

pharmaceutical profiling to advance therapeutic candidates for Alzheimer's disease treatment.

The dissertation adopts a systematic three-chapter organization designed to progressively

develop and substantiate its scientific inquiry

v' Chapter 1 establishes the theoretical framework, providing: reviews
neurodegenerative diseases, emphasizing AD pathology, and introduces tacrine-

donepezil hybrid molecules as a therapeutic strategy.

v Chapter 2 presents the computational methodology, encompassing: outlines the in

silico methodology, including 3D-QSAR modeling and molecular docking studies.

v Chapter 3 delivers the research outcomes through: the design of new hybrid
compounds, supported by 3D-QSAR predictions, docking analyses, DFT-based

electronic structure assessments, and ADME-Tox profiling.

The work concludes with a synthesis of key findings and their therapeutic implications,

followed by proposed directions for future investigation.
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Chapter 01 : Neurodegenerative diseases.

| Introduction

The term neurodegeneration refers to neuronal loss marked by progressive neuronal cell

death, accompanied by cognitive and motor dysfunctions depending on the brain area affected

[1].

Neurodegenerative diseases (NDs) are serious health conditions that impact the brain and
nervous system, making them among the most debilitating disorders affecting humans. In
recent years, they have become the fourth leading cause of death globally, following heart
disease, cancer, and stroke [2]. 50 million people worldwide are suffering from

neurodegenerative diseases, and this number is projected to rise to 130 million by 2050 [3].

NDs are a vast and varied group of disorders that are classified as being primarily caused by
the progressive loss of function or structural integrity of neurons and associated cell types in
the nervous system. The pathogenesis of these disorders is still unclear, but researchers
propose a complex interplay of genetic, epigenetic, and environmental factors. Until now,

there have been no effective therapies developed to slow, halt, or prevent any NDs [4].

II. Different majors of neurodegenerative diseases

Among the most recognized neurodegenerative diseases are:

II.1 Parkinson’s disease
Parkinson’s disease (PD) was first described in 1817 by Dr. James Parkinson, a British

physician, who documented six cases of a disorder he referred to as the “shaking palsy” [5].

PD is a progressive neurodegenerative disorder that affects both movement and other body
functions [6]. It causes slowness of movement, muscle stiffness, tremors, and walking
difficulties (Figure 1) due to the loss of dopamine-producing neurons in the brain [7]. A key

feature of PD is the buildup of abnormal protein clumps, called Lewy bodies, in nerve cells

[8].

Besides movement problems, PD also leads to memory issues, mood changes, sleep problems,
and difficulties with automatic body functions like blood pressure control [9]. There is no
cure, but treatments such as medications, physical therapy, and deep brain stimulation can

help manage symptoms [10].
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Parkinson's Disease Symptoms

Stooped posture
Masked Face

Back ng:dity\
! Forward tilt of trunk

Flexed elbows
and wrists

Reduced arm swing

Hand tremor

Tremors X

in the legs \\ Slightly flexed

hip and knees

— Shuffling, short
stepped gait

Figure 1: Parkinson’s disease symptoms [11]

I1.2  Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) was initially recognized as a motor neuron disorder in
1869 [12]. It is a fatal ND characterized by the progressive degeneration of upper and lower

motor neurons, leading to muscle weakness, paralysis, and ultimately, respiratory failure [13].

Most people with ALS first notice weakness in their arms or legs (75% of cases), while others
start with trouble speaking or swallowing [14]. The disease is linked to the abnormal buildup
of a protein called TDP-43 in nerve cells, though some genetic forms involve other proteins

like SOD1 and FUS [15].

II.3 Huntington’s disease
In his paper "On Chorea.", Dr. George Huntington, an American physician, has described

Huntington’s disease (HD), in 1872.

HD is a progressive ND that affects movement, cognition, and behaviour, eventually leading
to severe disability and premature death [16]. It is an autosomal dominant genetic disorder

caused by an expanded CAG trinucleotide repeat in the HTT gene, which results in the
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production of mutant huntingtin protein (mHTT) [17]. This abnormal protein leads to the
progressive loss of neurons, particularly in the caudate nucleus and putamen, regions of the

brain essential for motor control.

HD symptoms (Figure 2) typically appear in mid-life but can manifest at any age. The disease
begins with subtle changes in coordination, personality, and cognition, followed by the onset
of chorea, characterized by involuntary, dance-like movements [18]. As HD progresses,
patients experience rigidity, bradykinesia, cognitive decline, psychiatric disturbances, and

difficulty swallowing [19].

HUNTINGTON'S DISEASE SYMPTOMS

.. "

"*4’5

Involuntary Cognitive Emotional Impaired
Movements Decline Changes Coordination
(Chorea)
= L) & i
[ B %@ oL ;1 8
- A\ \ : g \M““\I”Wn:'ﬂ"\l“"Ml
g - "
Mood Swings Difficulty Unsteady Gait Slurred Speech

Concentrating

Figure 2: Huntington's disease symptoms [20].

I1.4 Alzheimer’s disease
In 1906, the German doctor Alois Alzheimer discovered a new disease, later named

"Alzheimer's disease (AD)" [21].

AD is a ND characterized by a gradual decline in cognitive functions, leading to loss of
independence. This deterioration is primarily associated with two types of brain lesions:
neurofibrillary tangles, which develop inside neurons, and senile plaques, which accumulate

outside nerve cells [22].
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III. Alzheimer’s disorder

III.1 Overview

Identified in 1906 by Alois Alzheimer (Figure 3), the disease was first described after the
study of Auguste Deter, a patient suffering from severe cognitive impairment. Her autopsy
revealed two characteristic lesions: amyloid plaques and neurofibrillary tangles. It was not
until 1910 that Emil Kraepelin officially named the disease in honour of his colleague,

Alzheimer.

It was only in the 1980s that the nature of these lesions was clarified: amyloid-p (AP) was
identified as the main component of senile plaques (SP), and tau protein was recognized as
responsible for neurofibrillary tangles. Further discoveries followed, including the association

of the disease with hippocampal atrophy, cholinergic neuron loss, and synapse degeneration.

The 20th century thus marked major scientific advances that progressively improved the

understanding of this disease’s mechanisms [23].

Alzheimer's discovery of a Identification of Ap Cognitive deficits are
specific disease of the peptide in senile associated with the loss of
cerebral cortex plaques (Glenner) synapses (Dekosky Terry)
1906 1984 1990

Discovery of a loss of Tau is abnormally Identification of the
cholinergic neurons phosphorylated in main genetic risk
(Davies, Bowen) NFTs (Grundke-Igbal) factor Apoed (Roses)
1976 1986 1993

1910 1985 1991
Kraepelin named this Identification of the Identification of a gene
pathology ‘Alzheimer's protein in NFTs(Brion) responsible for familial
disease’. forms (APP) (Goate)

1980 1987 1995
Discovery of hippocampal  Identification of fragments  Identification of 2 other genes
atrophy and reduced AP42 and 43 responsible for familial forms
metabolism (Kang) (PS1 and PS2)(Sherrington)

Figure 3:Main discoveries related to AD in the 20th century (non-exhaustive list) [23].
I11.2 Symptoms of AD
AD is marked by cognitive decline, with memory loss being the primary symptom (Figure 4).

Early signs include mild difficulty recalling recent events, which gradually extends to older
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memories. Patients often experience disorientation, language impairments (aphasia), difficulty
performing everyday tasks (apraxia), trouble recognising familiar people or objects (agnosia),
and a lack of motivation or emotional response (apathy). Mood disturbances, anxiety, and

aggression may also arise.
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Figure 4: AD’s symptoms [24].
AD progresses through three stages:

a. Asymptomatic Phase (10-25 years before diagnosis): Brain damage occurs without

noticeable symptoms due to neural compensation.

b. Mild Cognitive Impairment Phase (3—5 years before diagnosis): Cognitive decline

becomes evident but does not yet significantly affect daily life.

c¢. Dementia Phase: Symptoms worsen, leading to severe memory loss, behavioural

changes, complete loss of independence, and full reliance on caregivers [25].

IT1.3 Neuropathological characteristics
Before the technological and scientific advancements of the 1980s, AD could only be
definitively recognised after death. This diagnosis relied on detecting pronounced brain

atrophy and microscopic features such as SP and neurofibrillary tangles during an autopsy
[26].
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II1.3.1 Macroscopic lesions
During an autopsy, one of the first noticeable signs of AD is brain atrophy (Figure 5),

indicating significant neuron loss.

However, this shrinkage is not uniform. It primarily affects the hippocampus, which is linked
to cognitive decline, as well as the cerebral cortex, including the entorhinal cortex and
amygdala. As the cortex shrinks, the brain's ventricles expand. Some of these changes also
happen in other diseases. For example, hippocampal atrophy can occur in Parkinson's disease

and vascular dementia [27].

Brain Atrophy in Advanced Alzheimer’s Disease

Figure 5: Brain Atrophy in Advanced AD [28].

I11.3.2 Microscopic Features

I11.3.2.1 Neurofibrillary degeneration

Neurofibrillary degeneration (NFD) occurs due to the intracellular aggregation of abnormally
phosphorylated tau proteins. Under normal conditions, tau proteins play a crucial role in
stabilizing microtubules, essential components of the neuronal cytoskeleton, particularly
within axons. Their function is regulated by their phosphorylation state. In the provided
image, NFD is indicated by a black arrow, while the adjacent oval structure represents a SP,

identified using Bielschowsky silver staining [29].

The progression of NFD follows a characteristic spatial and temporal pattern that aligns with

the clinical course of AD. It initially appears in the transentorhinal cortex, then spreads to the

10
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hippocampus, temporal cortex, and progressively to polymodal and unimodal cortical areas,

ultimately affecting the entire brain in the later stages of the disease [30].

I11.3.2.2 Amyloid Plaques
Amyloid plaques develop as a result of the buildup of AP peptide, which is generated from the

cleavage of the amyloid precursor protein (APP) (Figure 6). APP, a transmembrane

glycoprotein, can be processed through two distinct pathways.

In the non-amyloidogenic pathway, APP is initially cleaved by a-secretase and then by vy-
secretase, yielding non-toxic fragments such as P3 peptide, a soluble region (sAPP) and an
amyloid intracellular domain (AICD). The y-secretase complex, crucial for this process, is
composed of presenilin, nicastrin, and two co-factors, with presenilin being vital for

maintaining its stability.

In contrast, the amyloidogenic pathway involves the cleavage of APP by [-secretase
(BACEY1), producing a C99 fragment. This fragment is subsequently processed by y-secretase,
leading to the creation of the AP peptide. When AP accumulates in the extracellular space, it
forms oligomers that eventually clump together into amyloid plaques, a key characteristic of

AD [31].
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Figure 6: Amyloid precursor protein processing pathways [32].
II1.3.3 Neuron and synapse loss
In AD, the accumulation of AP plaques triggers neuronal death in the nucleus basalis of
Meynert, which decreases the production and release of acetylcholine (ACh). This process
also elevates acetylcholinesterase (AChE) activity, disrupts muscarinic ACh signalling, and

weakens cholinergic function. These disruptions indirectly impact N-methyl-D-aspartate

11
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(NMDA) receptors, leading to excessive glutamate activity and contributing to further

neuronal damage.

As plaques build up in regions such as the basal ganglia, temporal lobe, and neocortex, they
impair memory and executive functions. Furthermore, the loss of neurons in the medial cortex
and locus coeruleus reduces serotonin and norepinephrine levels. This decline in
neurotransmitter activity results in symptoms like dysphoria and insomnia, stemming from

altered serotonergic and adrenergic signalling in the brain [33].

I11.4 Role of Glycogen Synthase Kinase-3 in AD

Glycogen Synthase Kinase-3 beta (GSK-3B) plays a crucial role in the progression of AD
through multiple pathological mechanisms. One of its primary functions is the abnormal
hyperphosphorylation of the tau protein, which contributes to the formation of neurofibrillary
tangles, a key hallmark of the disease. GSK-3f participates in the amyloidogenic pathway by
influencing the production of AP peptides through its regulation of presenilin 1 (PS1) and
beta-secretase (BACE-1), enzymes critical for amyloid precursor protein (APP) cleavage.
This dysregulation exacerbates AP accumulation, further promoting neurotoxicity. GSK-3f
contributes to neuroinflammation by enhancing the release of pro-inflammatory cytokines
such as IL-1, IL-6, and TNF-a, thereby amplifying neuronal damage. Its role extends to
synaptic dysfunction, as it regulates key transcription factors involved in synaptic plasticity,
memory formation, and cognitive functions. GSK-3p activity is also linked to neuronal
degeneration due to its involvement in NMDA receptor hyperactivation, which leads to
excessive calcium influx and neuronal death. Collectively, these findings underscore the

significant role of GSK-3p in the neurodegenerative processes associated with AD [34].

ITIL.5 Role of Butyrylcholinesterase in AD

Butyrylcholinesterase (BuChE), also referred to as pseudocholinesterase or non-specific
cholinesterase, is a serine hydrolase responsible for hydrolysing choline esters. The presence
of BuChE was first recognized in 1932 when an enzyme capable of catalysing the hydrolysis
of choline esters was identified. This enzyme is widely distributed in the human brain, with
high expression in white matter, glial cells, and certain neuronal populations. Its enzymatic
activity extends to the hydrolysis of acetylcholine, long-chain acylated polypeptides, various
esters, amides, and aromatic amines, as well as the detoxification of highly toxic synthetic
organophosphates. While BuChE is associated with multiple physiological and pathological
functions, including its involvement in AD, its role in cholinergic neurotransmission and

immune modulation is particularly significant due to its ability to hydrolyse acetylcholine.

12
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I11.6 Role of AChE in AD
AChE has a significant impact on AD by breaking down Ach (Figure 7), a key
neurotransmitter involved in memory and learning. Reduced cholinergic activity is a hallmark

of AD and is associated with cognitive decline in patients [35].

ACHhE inhibitors, such as donepezil, rivastigmine, and galantamine, are commonly used to
slow down ACh degradation and temporarily improve synaptic transmission. However, these

treatments do not halt disease progression.

Figure 7: Crystal Structure of Recombinant Human Acetylcholinesterase in Complex with
Donepezil (PDB code:4EY7) [36].

Beyond its enzymatic function, AChE also interacts with f-amyloid peptides, promoting their
aggregation and the formation of amyloid plaques, which may accelerate neurodegeneration
[37]. This dual role of AChE, in both cholinergic transmission and amyloid pathology, makes

it a key target for developing new therapeutic strategies.
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1.7 Treatment for AD
Current therapeutic approaches for AD primarily aim to slow disease progression and
alleviate symptoms rather than provide a cure. Pharmacological treatments include AChE
inhibitors (Figure 8), such as donepezil, galantamine, and rivastigmine, which enhance
cholinergic neurotransmission, as well as memantine, an NMDA receptor antagonist, which
helps regulate glutamate activity to mitigate cognitive decline. In recent years, the Food and
Drug Administration (FDA) approval of monoclonal antibodies like aducanumab, which
targets AP plaques, has sparked both optimism and controversy due to concerns about its

clinical efficacy.
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Figure 8: Current treatments used for AD.
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Beyond conventional treatments, novel therapeutic strategies seek to modify disease
progression by addressing key pathological mechanisms. AP-targeting therapies focus on
reducing AP accumulation through secretase inhibitors, immunotherapies, and strategies that

enhance its clearance.

Likewise, tau-targeted interventions are under investigation, given the strong correlation

between tau pathology and neurodegeneration [38].

IV.  Design of novel Donepezil-Tacrine hybrids as new agents against AD

Ningwei and colleagues [39] recognized that existing treatments for AD typically focus on a
single factor, despite the disease's complex and multifactorial nature. To address this
limitation, they aimed to design new multifunctional compounds capable of targeting several
key pathological mechanisms including oxidative stress and neuroinflammation
simultaneously. This approach was expected to enhance therapeutic effectiveness while

minimizing potential neurotoxic side effects.

In order to achieve this purpose, Ningwei et al. designed and synthesised a series of novel

compounds as possible multifunctional agents.

The molecules A1-A6, B1-B20 and C1-C8 (Figure 9) were synthesised through multi-step
reactions involving commercially available reagents and key intermediates with variations in

the final steps to introduce different structural features and substituents.
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Figure 9: Design strategy of donepezil-tacrine hybrids.

The hybrid compounds synthesised were designed with different R groups to explore the
structure-activity relationship (SAR) and enhance their inhibitory potential against Human
acetylcholinesterase (hAChE). The choice of substituents such as methyl and halogens was
guided by prior research highlighting their effect on biological activity and drug-like
properties, and to evaluate this influence, they used Ellman’s method to perform biological

assays with the resulting inhibitory activities summarized and compared in Table 1.

Table 1: hAChE inhibitory activities of target compounds A1-C8. [39]

X
AN~ N
Al —-A6 B1-B20
Inhibition@100 Inhibition@100
Compound R nM (%) Compound R nM (%)
hAChE hAChE
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V. Conclusion

Neurodegenerative diseases, particularly Alzheimer’s disease (AD), represent a profound
global health challenge characterized by progressive neuronal degeneration and cognitive
impairment. Despite significant advancements in understanding AD’s pathological
mechanisms such as amyloid-f plaque accumulation, neurofibrillary tangles, and cholinergic
dysfunction current therapies remain palliative, targeting symptoms rather than halting disease

progression.

The development of multifunctional compounds, exemplified by donepezil-tacrine hybrids,
marks a promising shift toward addressing AD’s multifactorial nature. These hybrids aim to
simultaneously target key pathological pathways, including cholinergic deficits, oxidative
stress, and neuroinflammation, offering potential advantages over single-target therapies.
However, translating these innovations into clinically effective treatments necessitates further

research to optimize their efficacy, safety, and pharmacokinetic profiles.

Collaborative efforts across disciplines, coupled with innovative therapeutic strategies, are
essential to overcome the limitations of current approaches. Future research should prioritize
elucidating novel molecular targets and refining drug design methodologies to develop
disease-modifying therapies capable of altering AD’s trajectory. Addressing these challenges
will be critical to improving outcomes for the growing population affected by

neurodegenerative disorders.
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Introduction

Drug design, also called rational drug design, is the process of developing new drugs. It
involves three main steps: identifying a biological target, understanding its structure and
function, and then designing a drug molecule that interacts with the target in a beneficial way.
Several factors are considered, such as the specificity of the target, the possibility of targeting
a single target or several targets, and the minimum affinity required for binding to the target.
Polypharmacology, i.e. the ability of a drug to bind to several targets, can improve the
efficacy of the drug, but it can also lead to adverse effects. Drug design is a complex process
that aims to find new treatments for specific diseases by interacting in a targeted way with

biological targets [1].

Before initiating the drug design phase, various strategies of drug discovery are applied to
identify potential candidate molecules (figure 1). One such strategy is discovery by chance,
illustrated by the case of penicillin, whose antibiotic properties were first observed in vitro by
Alexander Fleming in 1928 and later confirmed in vivo by Chain and Florey in 1940. Another
approach is discovery based on empirical data, as exemplified by aspirin, derived from
compounds found in willow leaves that were traditionally used for pain relief by ancient

civilisations such as the Sumerians [2].

A more targeted method involves the discovery based on the knowledge of a physiological
process or molecular target. For instance, understanding the role of the angiotensin-converting
enzyme (ACE) in the renin-angiotensin system led to the development of ACE inhibitors.
Researchers also rely on discovery from existing molecules, guided by structure—activity
relationships (SAR), which explore how changes in a molecule's structure affect its biological
activity. This approach also includes the concept of prodrugs, which are inactive compounds

that must be metabolised in the body to release the active drug [3].

Screening and selection processes are used to evaluate large libraries of chemical compounds,
even when their pharmacological properties are initially unknown. This high-throughput
strategy (HTS) allows researchers to identify novel bioactive molecules that can then be

further optimised through rational drug design.
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Early Drug Discovery
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Figure 1: Stages of the Drug Discovery Process [4].

II. Quantitative structure-activity relationships

II.1 History

Quantitative Structure-Activity/Property Relationships (QSAR/QSPR) have gained significant
importance in various sectors such as pharmaceuticals, chemicals, and cosmetics, particularly
due to advances in computational resources. These methods are primarily applied to the
rational design of new compounds and chemical entities [5]. While the term QSAR was
formally introduced in the 1960s through the work of Corwin Hansch and Free & Wilson,
who linked chemical structure to biological activity through mathematical models, the

foundational concepts date back much earlier.

In the late 19th century, Alexander Crum-Brown and Thomas Fraser first explored the
connection between molecular structure and physiological activity. Similarly, Richet
identified the relationship between toxicity and physicochemical properties, while Meyer and
Overton demonstrated a linear correlation between lipophilicity and biological activity in
certain compounds. These early findings laid the groundwork for the development of QSAR

as a formal scientific approach.
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In recent years, the field of QSAR has advanced with the availability of extensive data and the
development of powerful computational tools. Modern QSAR models play a crucial role in
drug discovery by helping to prioritize molecules for testing, thereby reducing both time and
costs in the development process. These models are also used to screen large chemical
libraries and predict biological activity, toxicity and receptor interactions, making them a key

component of contemporary drug development [6].

II.2  Definition

QSAR is a computational methodology that models how molecular structure influences
biological activity and physicochemical properties through mathematical relationships [7].
This approach is based on the fundamental principle that a compound's biological effects are
determined by its structural characteristics, enabling the prediction of various endpoints

including pharmacological activity, toxicity and receptor binding affinity [8].

QSAR models employ statistical techniques to correlate molecular descriptors (quantitative
representations of structural features) with experimental measurements of biological activity
or chemical properties [9]. These models can be developed for specific chemical classes or
more broadly applied to diverse compound sets. The methodology has become particularly
valuable in pharmaceutical research and chemical safety assessment, where it helps predict

compound behaviour while potentially reducing experimental testing requirements [10].

The modelling process establishes quantitative relationships between structural parameters
and biological endpoints, with the goal of identifying key molecular features that influence
activity [11] . By systematically analysing these structure-activity correlations, QSAR
provides a powerful approach for compound optimization, hazard assessment and rational

molecular design [12].

II.3 QSAR methodology

QSAR methodology (figure 2) is built on the idea that a compound’s biological activity can be
explained by the combined influence of its structural or physicochemical characteristics.
Traditional QSAR techniques, such as Free Wilson analysis, involve assigning values based
on the presence or absence of specific chemical groups and linking these to biological
responses. Hansch analysis, on the other hand, focuses on numerical descriptors like
lipophilicity, electronic effects, and steric properties to model how compounds behave in
biological systems. These classical methods usually apply linear regression to identify

meaningful correlations. In more advanced approaches like 3D QSAR, specifically
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Comparative Molecular Field Analysis (CoMFA), the 3D shapes of molecules are aligned,
and their interaction energies with a hypothetical probe are measured across a spatial grid.
These interaction patterns are then analysed using statistical techniques like partial least
squares to create predictive models. Altogether, these QSAR methods help researchers
understand how molecular features influence biological activity and support the design of

more effective drug candidates [13].
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Figure 2: General methodology of QSAR [14].
QSAR establishes a mathematical relationship between molecular properties, known as
descriptors, and biological activity. This relationship is expressed by the model:

[Biological activity] = f [descriptors]

Where the function (f) quantitatively maps descriptor values to the observed biological

response.

1.4 Molecular descriptors
Molecular descriptors are the result of mathematical procedures that transform chemical
information encoded within a molecular structure into a numerical representation, which their

dimensionality can be used to identify the QSAR model type as following (figure 3):
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Figure 3: Molecular descriptors used in QSAR modelling [15].

0D descriptors, which fall under the constitutional category, are obtained from molecular
formulas and contain basic characteristics, like atom counts or molecular weight, without
considering atom connectivity, while 1D descriptor depend on molecular substructures.
Physicochemical and pharmacokinetic properties are frequently modelled using 2D
descriptors, which are topological in nature and rely on molecular graphs to present atom
connectivity. 3D descriptors, categorised as geometrical, are derived from the spatial 3D
coordinates of atoms, and serve to capture molecular features such as size, shape, and atom
distribution. The 4D models extend this approach by considering dynamic ensembles of
molecular conformations to account for structural flexibility. In addition to these, electronic
descriptors, such as HOMO/LUMO energies and dipole moments, are utilised to characterise
the electronic structure and bonding properties of molecules. The utilisation of
thermodynamic descriptors, including enthalpy of formation and molar refractivity, facilitates

the correlation of molecular structure with energetic and chemical behaviour.

Finally, it is important to note that certain descriptors integrate multiple dimensions and are
classified as hybrid, offering a more comprehensive representation of molecular properties
[16].
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II.5 Statistical methods
Statistics is the study of groups of similar objects by analysing their characteristics, called
variables. A statistical model links the target variable to the weighted combination of these

characteristics [17]. The main tools used to build such models include:

I1.5.1 Multiple Linear Regression
Multiple linear regression (MLR) is a method used to understand the relationship between
several factors and a response variable, assuming a linear relationship. It is simple to interpret

but can be unstable in cases where the variables are dependent on each other.

I1.5.2 Partial Least Squares

Partial Least Squares (PLS) is a statistical technique that allows to create models of the
relationships between a set of predictor variables and one or more response variables. It
projects the data into a hidden space to maximise the similarity between the explanatory
variables and the response, which makes it effective for collinear data or large numbers of

data.

11.5.3 Artificial neural networks

In QSAR studies, artificial neural networks (ANNs) are used with a wide range of
architectures and techniques, including different ways to represent chemical structures, pre-
process data, select relevant descriptors, train models, and interpret predictions. These
components together define the computational methods applied in the field. The concept of a
computational method is more specific than just the architecture or type of neural network, as
it also includes how the model is trained and how results are handled, even if the underlying

network structure is similar [18].

I1.5.4 Support Vector Machines

Support Vector Machines (SVM) creates the optimal hyper planes for classification or
regression, using kernel functions to handle non-linear separation. It is effective in high-

dimensional spaces where the margin is clearly defined.

I11.6 Model validation

Confirming the validity of QSAR models is a key but complicated part of statistical analysis.
It is important to ensure that the model is statistically sound and can reliably predict the
biological activity. Since every model is developed within a defined analytical scope, it must

be interpreted and used strictly within that boundary [19]. Using the model outside its
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intended scope should be done with caution, as the further you go from that scope, the risk of

error increases.

To prevent mistakes during validation and use, it's important to define the model’s limits,
check its reliability, measure how well it predicts both known and new data, and make sure

it’s only applied within a specific chemical space [20].

I1.6.1 Internal validation

The internal validation of a QSAR model is performed using the training dataset. The initial
step involves the evaluation of the model's precision in replicating the characteristics of the
training data. The second step uses cross-validation to assess the model's quality and
robustness by simulating a situation in which it predicts new, unseen data. In this process, the
training set is divided into two parts: a calibration set to build the model, and a validation set

to test how well the model predicts data it wasn't trained on [21].

11.6.1.1 Leave-One-Out procedure

The method is based on the principle of eliminating one molecule at a time from the training
set. In each round, a single molecule is removed to form the validation set, while the
remaining (n-1) molecules are used to build the model. The process is repeated until every

molecule has been used once as the validation set.

11.6.1.2 Leave-Many-Out procedure

It involves splitting the data set into multiple sections. One section is designated as an internal
test set, while the remaining sections make up the training set. The trained model is then used
to predict the properties of the molecules in each excluded group. This process is repeated p

times, with p representing the total number of groups of molecules that are excluded [22].

11.6.2 External validation

The efficacy of a QSAR model is determined by its capacity to accurately predict the
activity/property of compounds from an external test set, comprising compounds not utilised

in the development of the model.

The objective of a suitable QSAR model is not only to predict the activity of the training set

compounds, but also to predict the activities of the test molecules [23].
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I1.6.3 Statistical parameters

11.6.3.1 Determination coefficient R2

The coefficient of determination, R?, is a measure of the degree of relationship between the
dependent variable (biological activity) and the independent variable (molecular descriptor). A

value of R? close to 1 indicates a satisfactory fit of the regression model [24].

11.6.3.2 Prediction coefficient Q2

The prediction coefficient Q? indicates how accurate the predictions are, as it reflects the

predictive power of a regression model.

11.6.3.3 Test Fischer F

The Fischer test is utilised to substantiate the correlation between biological activity and the
molecular descriptor, by quantifying the ratio between the variance of biological activity

explicable and inexplicable by the regression model [25].

11.6.3.4 Standard Deviation SD

Is a measure of how dispersed the data is in relation to the mean. Low, or small, standard
deviation indicates data are clustered tightly around the mean, and high, or large, standard
deviation indicates data are more spread out. A standard deviation close to zero indicates that
data points are very close to the mean, whereas a larger standard deviation indicates data

points are spread further away from the mean.

III. Molecular Docking

III.1 An overview
Molecular docking is a technique in which a small organic molecule, known as a 'ligand’,

interacts with the active site of a macromolecule (protein), known as a 'receptor’.

The purpose of this technique is to determine the most effective method of attaching the
ligand-receptor complex (figure 4), leading to the prediction of the "bioactive" conformation
of the ligand within its receptor. Each relative conformation resulting from docking is

associated with energy, defined as the 'Score'.
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Active site Active site

Figure 4: Illustration of the interaction between a molecule (ligand) and a protein (Target)
[26].

The molecular docking simulation is based principally on the ligand-protein association,

which can be considered rigid, flexible or semi-flexible.

II1.1.1 Rigid docking

In rigid body docking, the protein and ligand are both held fixed, and the algorithm searches
for the most favourable pose by systematically sampling all possible translations and rotations
of the ligand within the binding pocket and scoring each position by energy. Any poses that
clash with the active site are discarded, leaving only those that fit well. This method is very
fast computationally and effectively filters out large or poorly complementary molecules
before more detailed (and expensive) analyses because it only considers rigid movements

[27].

IT1.1.2 Semi-flexible docking

The system here is divided into two regions: a flexible region which contain the ligand and
flexible residues near the binding site and a rigid region which is the remaining protein
structure. Semi-flexible docking approaches are widely used due to their efficiency,
employing randomized search algorithms such as Monte Carlo simulations and genetic

algorithms, which are categorized as stochastic methods.

These techniques balance computational accuracy and speed by allowing partial flexibility in

the binding site while keeping the rest of the protein fixed [28].

I11.1.3 Flexible docking

This approach indirectly accounts for protein flexibility by minimizing repulsive forces,
enabling the ligand to interact more deeply with the protein surface. During enzymatic

reactions, the protein dynamically adjusts its conformation to better accommodate the ligand,
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fostering precise interactions while avoiding steric clashes. These adaptations enhance
structural compatibility between the ligand and protein, optimizing conditions for hydrogen

bond formation and improving binding efficiency [29].

II1.2 Methodology

There are multiple steps in the process starting with target selection which are usually a
protein structure can be gotten from protein data bank (PDB). Ligand preparation involves
generating 3D conformations for small molecules and considering all forms as tautomer, to
produce a chemically accurate structure. For protein preparation, the target structure must be
refined by restoring all missing atoms as hydrogen while removing anything that is
unnecessary like crystallographic solvents. The next step generates the receptor grid to
represent the binding site and the related physicochemical properties (figure 5). There are a
few docking models to use, mostly involving algorithms like rigid/flexible docking to provide
a prediction for ligand poses that can be scored using binding energy or empirical scoring
functions. After docking ligand interaction analysis identifies critical residues and interaction

types (e.g. hydrogen bonds, n-n stacking) to validate binding modes.
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| Preparation Analyze with the
[* \using LigPrep 4—1’ Ligand Interaction Diagram
Y

Y

Protein
Preparation
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—
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Grid \Y : : G e i o M et

Generation ) 4

Figure 5: Molecular docking steps using Maestro Schrodinger [30].
ITI.3 Scoring

The docking score measures how strongly a ligand binds to a protein. It estimates the energy

change (AG) when the free protein and ligand combine to form a complex, calculated as:
AG= AGcomplexe - AGligand - AGprotein

This score reflects ligand’s binding to its target, not biological activity. Scores should not be

directly compared to experimental activity measurements but instead validated against
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experimental binding data. Even if scores and experimental results disagree, this does not
mean the scoring method is flawed, as experimental data often covers a narrow range

compared to theoretical predictions.
Scoring functions have two main roles:
e Identifying the best-fitting ligand conformation.
e Ranking molecules to highlight those with the strongest predicted binding.

However, docking has limitations. Key challenges include modeling hydrogen bonds, energy
changes, and water interactions during binding. Scoring functions simplify these complexities
and cannot account for all molecular interactions, so results should be interpreted cautiously

in drug discovery [31].

IV. Principles of ADME/Toxicity

After entering the body, a drug must overcome the ADME/Tox barriers (Absorption,
Distribution, Metabolism, Excretion, and Toxicity) to reach its therapeutic target effectively.
Each of these physiological processes can reduce the drug's active concentration, making it
essential for the compound to maintain sufficient levels to exert a meaningful biological
effect. Focusing only on enhancing a molecule's affinity for its target may lead to failure in
clinical settings if it’s pharmacokinetic and safety profiles are poor. Thus, successful drug
development requires a balanced optimization of both target engagement and ADME/Tox
characteristics [32]. These properties depend not only on the drug’s chemical structure but
also on its interactions with transport proteins, metabolic enzymes, and plasma proteins. Since
approximately 80% of marketed drugs are administered orally, it is particularly important to
understand the dynamic and interdependent nature of ADME/Tox processes along the
gastrointestinal tract. Computational tools, such as SAR models, play a crucial role in
predicting how compounds will behave in the body, helping researchers prioritize candidates

with favourable profiles and reduce late-stage failures [33].

IV.1 Toxicity
As the name implies, this filter evaluates the toxicity of a compound along with its
metabolites. Today, toxicity and insufficient efficacy are the primary reasons for drug

development failures. Various forms of toxicity are examined, including AMES mutagenicity,
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hERG I channel inhibition, acute oral toxicity in rats (LD50), liver toxicity, and skin

sensitization [34].

IV.2 Lipinski's Rule
Lipinski's Rule of Five is a widely used guideline for evaluating whether a chemical

compound is likely to be orally bioavailable.

Derived from the analysis of drugs that successfully passed Phase II clinical trials, this rule
helps identify compounds that may have poor absorption or permeability, rather than

definitively labelling them as drug-like or not [35].

The rule focuses on key physicochemical properties that influence passive intestinal

permeability and outline five main criteria:
» Molecular weight < 500 g/Mol
» LogP (lipophilicity) <5
» Hydrogen bond donors <5
» Hydrogen bond acceptors < 10
» Rotatable bonds < 15

IV.3 Ghose rule

The Ghose Rule defines drug-likeness based on the quantitative and qualitative analysis of
known drugs, aiming to identify compounds with favorable pharmacological profiles. This
rule is widely used in medicinal chemistry for filtering drug-like candidates in virtual

screening and combinatorial library design. The key criteria are:
> Quantitative Characterization:

e Molecular weight between 160 and 480 g/Mol.

e Log P (octanol-water partition coefficient) calculated between -0.4 and 5.6.

e Molar refractivity between 40 and 130, reflecting molecular volume and
polarizability.

e Total number of atoms between 20 and 70.
> Qualitative Characterization:

e Analysis of the occurrence of functional groups.
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e Identification of important substructures, such as benzene rings and

heterocycles, common in drug molecules.

These criteria were established through the profiling of the Comprehensive Medicinal
Chemistry database, ensuring a practical definition of drug-like molecules based on empirical

data [36].

IV.4 Veber rule

The rule of Veber, proposed by Veber et al. in 2002, provides criteria for predicting the oral
bioavailability of drug candidates by focusing on molecular flexibility and polarity rather than
molecular weight alone. Through the analysis of over 1100 compounds, the study found that

good oral bioavailability is associated with the following key molecular properties:
e 10 or fewer rotatable bonds.
 Polar surface area (PSA) of 140 A2 or less.
e Atotal of 12 or fewer hydrogen bond donors and acceptors.

These properties were shown to strongly influence passive membrane permeability, which is
essential for oral absorption. The study demonstrated that reducing molecular flexibility and
limiting polar surface area enhances the probability of a compound being orally bioavailable,

offering a practical guideline for drug design [37].
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V. Conclusion

This chapter has outlined the fundamental computational methodologies employed in modern
drug design, emphasizing their critical role in streamlining the discovery and optimization of
therapeutic candidates. Quantitative Structure-Activity Relationship (QSAR) modeling,
molecular docking, and ADME/Tox profiling serve as powerful tools to predict biological
activity, elucidate ligand-receptor interactions, and assess pharmacokinetic properties,
respectively. These approaches not only enhance the efficiency of drug development but also

reduce reliance on costly and time-consuming experimental trials.

The integration of statistical validation techniques ensures the reliability and applicability of
QSAR models, while advanced docking strategies provide insights into binding affinities and
molecular interactions. Furthermore, adherence to drug-likeness rules (e.g., Lipinski’s, Ghose,
and Veber) aids in prioritizing compounds with favorable bioavailability and safety profiles.

Collectively, these computational frameworks bridge theoretical and experimental research,
offering a robust foundation for rational drug design. Future advancements in machine
learning and multi-scale modeling hold promise for further refining predictive accuracy and

accelerating the development of novel therapeutics.
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Introduction

Alzheimer's disease (AD) represents one of the most complex and devastating
neurodegenerative disorders, characterized by progressive cognitive decline, memory loss,
and functional impairment. Despite decades of research, current therapeutic strategies
primarily AChE inhibitors and NMDA receptor antagonists offer only symptomatic relief
without halting disease progression. The multifactorial nature of AD, involving amyloid-f
aggregation, tau pathology, oxidative stress, and neuro-inflammation, demands innovative
approaches that simultaneously target multiple pathological pathways.

Ningwei et al. [1] pursued the development of multifunctional therapeutic agents designed to
exert simultaneous effects on multiple disease pathways. Their approach specifically aimed to
attenuate oxidative stress and neuro-inflammation, two central drivers of neurodegeneration,
in order to achieve improved therapeutic outcomes with reduced neurotoxic side, effects

compared to traditional single-target drugs [2].

This chapter presents a comprehensive computational investigation of novel donepezil-tacrine
hybrid derivatives designed to address these challenges. Leveraging advanced methodologies
including 3D-QSAR modeling, molecular docking, ADME/Tox profiling, MM-GBSA binding
free energy calculations, and density functional theory (DFT) analyses, we systematically
evaluate the inhibitory potential, binding interactions, and drug-like properties of these
compounds. The integration of these techniques enables the rational design of multifunctional
agents with optimized AChE inhibition, improved pharmacokinetics, and reduced toxicity

risks.

II. Materials and Methods

II.1 3D QSAR

II.1.1 Data base

The study incorporated 34 compounds exhibiting AChE inhibitory activity [1]. The molecular
structures of these AChE inhibitors, along with their respective pICso values, are compiled in
Table 1. The ICso values were then transformed into pICso values, which were used as the

dependent variable in this study. The molecules are divided into 2 sets : training set and test

set in the ratio (75:25).
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Table 1: The chemical structures and the observed activity (pIC50) data of the compounds.

Al —A6 B1-B20
Compound R pICso Compound R pICso
Al Q 7.63395079 B1 Q 7.524764777
F F
CF3 CF3
A2 8 8.095284455 B2 8 7.85823677
CFs3 CF;
A3 @g- 7.928117993 B3 @g- 7.51484665
R R
Ad - 7.875169851 B4 - 7.335452038
F F
F F
AS F - 7.438898616 B5 F - 7.203078925
F F
A6 ,0@§— 7.970616222 B6 ,0@§— 7.143512787
FsC FaC
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B7 7.235450281 B4 7.252899069
F Cl Cl
Cl
Cl
BS t- 8.390405591 BI5 L@g_ 7.056703385
Cl
F
CF,
BY F = 7.190440285 B16 ©§_ 7.169796401
F
F CN
B10 ©§_ 7.73754891 B17 @;_ 7.150949309
B11 m@%— 7.169218924 B18 CNOE— 7.130123187
B12 @é— 7.247721015 B19 /o@é— 7.170760572
B13 FO%— 7.149966742 B20 7.089215565
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o)
OH K\ N | R
X N =
N~
C1-C8
§ F
C1 Q 8.54515514 C5 F §— 7.821598658
F
F
CFs
C2 & 8.308918508 C6 FC,O@é— 8.09420412
3
CF,
C3 @g— 8.330683119 C7 CN@%— 7.547906751
F
C4 §— 8.096367484 C8 /OOé— 7.560036064
F

I1.1.2 Optimisation and alignment

The molecules are optimised using the tool Ligprep which is a versatile ligand preparation
tool integrated within the Maestro interface of the Schrodinger software suite [3], designed to
efficiently generate high-quality small molecule structures for structure-based workflows such
as virtual screening, molecular docking, and other computational modelling applications. It
aims to produce accurate 3D representations of ligands by systematically expanding
tautomeric forms, ionization states, ring conformations, and stereoisomers, ensuring
comprehensive coverage of all relevant chemical states of a molecule [4]. Then the molecules

are aligned using the Common Scaffold Alignment module (Maximum Common
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Substructure). Since the molecule C1 is the most active (IC50=2.85 nM ), it is used as a

reference for aligning the other molecules.

Figure 1: Molecules alignment. (A): Molecule C1; (B) Molecules alignment.
I1.1.3 3D Field based QSAR

The 3D Field-Based QSAR method involves constructing a model based on five Gaussian
fields that represent key molecular properties: hydrogen bond acceptors (HBA), hydrogen
bond donors (HBD), steric, electrostatic, and hydrophobic interactions. These fields are
mapped onto a three-dimensional grid surrounding the molecules in the training set. To ensure
the relevance of the input data, variables with minimal variation were excluded. Model
building was carried out using PLS analysis, where the Gaussian field descriptors served as
independent variables and the biological activity (pICso) was used as the dependent variable.
The predictive performance of the model was evaluated using LOO cross-validation, which
provided the Q? value. Additional statistical parameters, such as R?, standard error of estimate

(SEE), and F values, were used to assess the quality of the model fit.

I1.2  Design of new compounds

Due to its high biological activity, the compound C1 is chosen as the reference structure in
order to create a set of molecules focusing the modifications on the R group. These changes
aim to enhance binding affinity, improve pharmacokinetic properties and reduce potential
toxicity. The newly designed compounds are then evaluated using a 3D QSAR model to

predict their biological activity and identify promising candidates for further development.
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II.3 Molecular docking

Molecular docking was performed to analyse the interactions between the designed
compounds and the target protein. The protein's crystal structure of AChE was obtained from
the Protein Data Bank (PDB) (PDB ID: 4EY7) and selected as the receptor, then was prepared
using Schrodinger’s Protein Preparation Wizard. During the process of protein preparation
minimisation, the OPLS4 force field was employed to refine the structure and resolve any
steric clashes. After preparation, a receptor grid was generated to define the active site for
docking. The ligands were then docked into this site using the Ligand Docking tool to
evaluate binding conformations, interaction energies and key molecular contacts. This process
facilitated the identification of promising compounds with strong predicted affinities for the

target.

I1.4 ADME/Tox and drug likeness prediction
In the course of drug discovery process, it is of the crucial importance to conduct early

ADME/Tox (absorption, distribution, metabolism, excretion, and toxicity) profiling.

These proprieties were calculated using SwissADME website [5] and for toxicity pkCSM
website [6]. Pharmacokinetic parameters, which facilitate prediction of a drug's behaviour
within the body, were also considered as part of the ADME analysis to optimise drug-likeness

and efficacy.

II.5 MM-GBSA approach

The MM-GBSA (Molecular Mechanics - Generalized Born Surface Area) approach is used to
calculate the binding free energies between ligands and receptors. It calculates important
energy values for the free receptor, free ligand, and their complex in the best possible states.
From these, the binding energy (AG Bind) and the strain energies for both the receptor and the
ligand are calculated. The strain-free binding energy (AG Bind NS) excludes conformational
strain, offering a clearer view of interaction strength [7].This is depicted by the following

equation, which uses the OPLS4 force field and the VSGB solvent model.
Here, the binding free energy for each complex was determined using the following equation:
AGving= Gcomplex - (Gprotein + Gligand)

where Giigand represents the free energy of the ligand, Gprotein 18 the target protein’s free energy
value, Geomplex corresponds to the free energy of the ligand-protein complex, and AGyind

indicates the resulting binding free energy [8].
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I1.6 Density Functional Theory (DFT) calculation

The Gaussian input files for the molecules C1 and D1 were generated using the GaussView 5
program [9], and their quantum chemical calculations were carried out with the Gaussian
09W package [10]. Geometry optimisations were performed at the DFT/B3LYP/6-311G basis
set level of theory. The highest occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) energies, as well as the energy gaps, were calculated to evaluate
the electronic properties of the optimised structures. Furthermore, the total density of states
(TDOS) and the partial density of states (PDOS) were computed using Multiwfn (the
Multifunctional Wavefunction Analyser) [11] in order to examine the contribution of

individual elements to the molecular orbitals.

III. Results and discussion

II1.1 3D QSAR

PLS regression was applied to investigate the structure—activity relationship of the compounds
under study. This statistical technique effectively minimises the difference between
experimental and predicted biological activities. The determination coefficient (R?=0.82),
which exceeds the commonly accepted threshold of 0.6 [12], demonstrates a strong
correlation between the molecular descriptors and the biological activity which is expressed
as plCso. The model’s statistical validity is further supported by a high Fisher test value
F=103.9 and a low standard deviation of error SD= 0(.1831, indicating good internal

consistency and predictive accuracy.

The percentage contributions of the molecular fields to the model were as follows:
steric (46.05%), hydrophobic (23.96%), electrostatic (12.80%), hydrogen bond acceptor
(11.37%), and hydrogen bond donor (5.79%). These results suggest that steric and
hydrophobic interactions are the primary factors influencing biological activity, while
hydrogen bonding and electrostatic effects play a lesser, though still relevant, role.
Model validation was conducted using the LOO cross-validation approach [13], which
involves systematically excluding one compound at a time from the dataset and reconstructing
the model. The cross-validated coefficient Q?>=0.738> 0.5, confirms the model’s robustness

and satisfactory predictive performance.
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Table 2: Observed and calculated activities.

Molecule Observed pICso Calculated pICso Residual
Al 7.63395079 7.822 -0.18805
A2 8.095284455 8.105 -0.00972
A3 7.928117993 7.774 0.154118
A4 7.875169851 7.685 0.19017
AS 7.438898616 7.520 -0.0811
A6 7.970616222 7.708 0.262616
B1 7.235450281 7.275 -0.03955
B2 8.390405591 7.617 0.773406
B3 7.190440285 7.097 0.09344
B4 7.73754891 7.605 0.132549
BS 7.169218924 7.293 -0.12378
B6 7.247721015 7.256 -0.00828
B7 7.149966742 7.284 -0.13403
B8 7.524764777 7.458 0.066765
B9Y- 7.85823677 7.826 0.032237
B10 7.51484665 7.503 0.011847
B11 7.335452038 7.357 -0.02155
B12 7.203078925 7.195 0.008079
B13 7.143512787 7.401 -0.25749
B14 7.252899069 7.347 -0.0941
B15 7.056703385 7.079 -0.0223
B16 7.169796401 7.211 -0.0412
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B17 7.150949309 7.153 -0.00205
B18 7.130123187 7.007 0.123123
B19 7.170760572 6.984 0.186761
B20 7.089215565 7.229 -0.13978
C1 8.54515514 8.079 0.466155
C2 8.308918508 8.537 -0.22808
C3 8.330683119 8.160 0.170683
C4 8.096367484 7.968 0.128367
Cs 7.821598658 7.903 -0.0814
Ceé 8.09420412 8.102 -0.0078
C7 7.547906751 7.616 -0.06809
C8 7.560036064 7.687 -0.12696

Contour map analysis (Figure 2) is commonly used to identify molecular fragments that are
favourable or unfavourable for biological activity. The activity of molecules is influenced by
various  physicochemical properties, including hydrophobic, steric, electrostatic
characteristics, as well as hydrogen bond donor and acceptor capabilities. These properties
vary from one molecule to another depending on their specific substituents, which can alter
the overall physicochemical profile and, consequently, impact biological activity. Among the
studied compounds, C1 exhibited the highest biological activity and was therefore selected as

the reference structure for generating the contour map.
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Figure 2: Gaussian distributions: (A) steric, (B) hydrophobic, (C) electrostatic, (D) H-bond
donor and (E) H-bond acceptor.

The steric field is the principal factor contributing to activity with 46.05%, indicating that
incorporating bulky groups in green regions enhances target binding and molecular fit.
Conversely, areas absent of green contours imply that introducing additional larger
substituents in these positions would be neutral or unfavourable.

The hydrophobic field shows that yellow regions are favourable for hydrophobic substituents,
such as alkyl groups. In contrast, grey regions support the presence of hydrophilic or polar
groups, which could enhance solubility or favour beneficial polar interactions with the target
environment.

Red areas in the electrostatic field favour electronegative atoms such as O or N, which
facilitate favourable electrostatic interactions with the positively charged regions of the target.
Meanwhile, blue regions are favourable for electropositive groups, such as protonated amines
or electron-deficient moieties, as their presence is predicted to enhance biological activity.

The HBD field indicates that cyan regions are favourable for hydrogen bond donors, such as
NH or OH groups. Their strategic placement could strengthen key hydrogen bonding

interactions with the biological target. Purple regions in this field indicate areas where donor
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groups may still be tolerated or neutral. Conversely, the HBA field demonstrates that purple
regions are favourable for hydrogen bond acceptors, such as O or N atoms capable of
donating lone pairs. In contrast, red regions in this field are unfavourable for such
functionalities, likely due to steric hindrance or desolvation penalties.

Finally, these contour maps are a valuable resource for the rational design of more potent and

selective novel compounds

II1.2 Design of new compounds

A rational modification of the R group was conducted based on steric field analysis. A total of
twenty derivatives were constructed by introducing variations at the R position to optimise
molecular interactions within the active site using MarvinSketch [14]. The steric field
revealed that the incorporation of bulky substituents near the R position can enhance
biological activity, provided they are placed in regions where such volume is favourable.
Guided by this, larger groups were suggested to R in order to strengthen the binding affinity
through improved steric complementarity with the target. However, careful attention was paid
to the overall molecular weight of the newly designed compounds to ensure that it remained
around or below 500 g/mol, thus ensuring respect for Lipinski's rule of five and the

maintenance of desirable drug-like properties.

ITI1.3 Molecular docking

Among the twenty compounds evaluated for anti-Alzheimer activity as AChE inhibitors,
compound D1 exhibited the highest binding affinity with the enzyme, with a docking score of
-11.696 kcal/mol. Analysis of the D1-AChE complex revealed several key interactions within
the active site. D1 formed a hydrogen bond with TYR72 at a distance of 8.30 A,
corresponding to a hydrophobic interaction, as well as a hydrophilic hydrogen bond with
ASP74. A significant m-cation interaction with TRP286 was also observed at 5.88 A,
contributing to hydrophobic stabilisation of the complex . Additionally, a hydrogen bond with
a structural water molecule (Hz0) at 6.72 A further supported the ligand’s orientation and
binding stability within the pocket.

These interactions indicate a strong and specific binding mode for compound D1. The
combination of high docking affinity and diverse non-covalent interactions identifies D1 as
the most promising candidate for AChE inhibition.

The compound C1 have a docking score of -9.674 kcal/mol and formed a hydrogen bond with

a structural water molecule , a salt bridge between NH and GLU292 and m-cation interaction
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with TRP286. Compound D1 exhibits superior AChE inhibition properties compared to C1

due to its enhanced binding affinity and diverse interactions.

111.4 ADME/Tox and drug likeness prediction

Comprehensive evaluation of ADME/Tox characteristics and pharmacokinetic parameters at
an early stage of drug discovery is crucial for predicting in vivo performance, improving
drug-like properties and identifying potential safety or efficacy issues prior to synthesis and
experimental testing. Accordingly, the five highest scoring docked compounds underwent
detailed profiling of ADME/Tox properties. Their compliance with established drug-likeness
filters, including Lipinski's Rule of Five, Veber's Criteria and Ghose's Guidelines, was also
assessed to determine the potential for oral bioavailability and suitability as lead candidates

(Table 3).

Table 3: Drug-likeness, and Medicinal Chemistry Parameters of compounds D1, C1.

MW Rotatable . . .
Mol (g/mol) HBA HBD Bonds SA Lipinski Veber
D1 507.07 6 2 8 4.48 Yes Yes
Cl 524.63 5 2 8 4.27 Yes Yes

Whereas, MW: molecular weight; Rotatable Bonds : the number of single non-ring bonds around which the molecule can

freely rotate; SA: Synthetic Accessibility

Table 4: Predicted ADME/Tox parameters for the compounds D1, C1.

Model Unit D1 C1
Intestinal Numeric
Absorption absorption (% Absorbed) 88.85  91.166
(human)
e e BBB Numeric
Distribution permeability (log BB) -0.589  -1.037
CYP3A4 Categorical
substrate (Yes/No) Yes Yes
Metabolism
CYP2D6 Categorical
inhibitor (YesNoy ~ Yes  No
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Total Numeric
Excretion (log ml 1.312  0.787
Clearance .
/min/kg)
. . AMES Categorical
Toxicity toxicity (Yes/No) No Yes

I11.4.1 Absorption
Poor intestinal absorption is typically defined as a value below 30%. However, compound D1
displays predicted human intestinal absorption with 88.85%, suggesting excellent oral

bioavailability.

111.4.2 Distribution

The predicted blood brain barrier (BBB) permeability (logBB) value of compound D1 is

-0.589 . This result indicate moderate to low passive diffusion across the BBB. While the
compound is unlikely to cross the BBB efficiently (logBB > 0.3), its value is not low enough
to suggest complete exclusion from the brain (logBB < -1). This suggests limited, though not
negligible, brain exposure an attribute that may be beneficial for drugs intended for peripheral
targets, but which may require further optimisation for central nervous system (CNS)

applications.

111.4.3 Metabolism

Compound D1 is predicted to be substrates of CYP3A4, indicating it is primarily metabolised
by CYP3A4 and may be less affected by genetic variability. Furthermore, the inhibition
profile indicates that while CYP2D6 inhibition is observed in compound D1,

111.4.4 Excretion

The predicted total clearance of D1 value (log (CLtot) is 1.048 suggest high elimination rates,
generally higher than the control (0.787). This implies efficient excretion, which reduces the

risk of accumulation but may require dose adjustments to maintain therapeutic levels.

II1.4.5 Toxicity

Toxicity predictions indicated that compound D1 poses no AMES toxicity, suggesting a low
risk of mutagenicity. This result reinforces its safety profile from a genotoxicity perspective
and supports its suitability for further biological evaluation. The absence of predicted

mutagenic potential highlights D1 as a promising candidate for subsequent in vitro and in
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vivo investigations, aligning with favourable ADME/Tox characteristics observed during
simulation of human metabolic behaviour.

II1.5 MM-GBSA

The MM-GBSA binding free energy components, including van der Waals energy (vdW),
lipophilic energy (Lipo), Coulombic energy (electrostatic), covalent binding contributions,

and solvation energy (solv GB), were calculated (Table 5).
The total binding free energy (AG Bind) values for the compounds D1 and C1.

Table 5: The relative binding-free energies (kcal/mol) obtained by Prime MM—-GBSA.

Compound AGBind AGLipo AG coulomb AGcovalent AGsolv AGvaw
D1 -52.43 -32.95 -28.20 11.87 44.05 -43.24
C1 -49.83 -33.71 -37.38 3.54 75.98 -50.73

Among the compounds, DI demonstrates a notable binding affinity of -52.43 kcal/mol,
principally driven by substantial van der Waals (-43.24 kcal/mol) and lipophilic (-32.95
kcal/mol) interactions. Electrostatic (Coulombic) energy (-28.20 kcal/mol) further supports
binding, indicating key polar or charged contacts within the binding site. Despite opposing
contributions from solvation (44.05 kcal/mol) and covalent (11.87 kcal/mol) energies, these
are outweighed by the dominant non-covalent forces that stabilise the ligand-receptor
complex.

The MM-GBSA results demonstrate that strong van der Waals and lipophilic interactions are
pivotal in stabilising binding, while electrostatic interactions enhance specificity. Though
desolvation penalties oppose binding, they are effectively compensated by positive

interactions, confirming that compound D1 exhibit high binding affinities.

I11.6 Density Functional Theory (DFT) calculation

The electronic properties of compounds C1 and D1 were investigated using DFT calculations
at the B3LYP/6-311G theoretical level. The optimised molecular structures were then used to
calculate the HOMO and LUMO energies and the corresponding energy gaps. These values
provide valuable insight into the molecules' chemical reactivity and electronic characteristics.
Visual representations of the HOMO and LUMO orbitals for both compounds are presented in
figure 4.
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For compound C1, the HOMO energy is -4.1685 eV, the LUMO energy is -1.1520 eV and the
energy gap is 3.0165 eV. Compound D1, in comparison, exhibits HOMO and LUMO energies
of'-5.5955 eV and -1.7469 eV respectively, corresponding to an energy gap of 3.8486 eV.

The energy gap (AEgsp) is an indicator of a chemical compound's reactivity and stability. A
smaller energy gap, as observed in compound C1, suggests higher electronic reactivity and
greater potential to facilitate electronic transitions, enhancing its interaction with biological

targets. However, the larger energy gap of compound D1 indicates a more chemically stable

and less reactive nature.

T 5
LUMO el
U C1 5 LMo
AEq,;=3.8485824 eV AE,,,=3.8589222 eV
A 4 L
HOMO

Figure 3: The geometries of the HOMO and LUMO orbitals, along with the value of the
energy gap values.

Molecular electrostatic potential (MEP) maps of compounds D1 and C1 show how
electrostatic charge is distributed across each molecule. They highlight potential sites for
electrophilic and nucleophilic interactions. Red regions (electron-rich) are mainly located
around nitrogen and oxygen atoms, indicating zones favourable to electrophilic attack. In
contrast, blue regions (electron-poor) mark areas favourable to nucleophilic attack, typically
near hydrogen atoms or areas of low electron density.
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A key structural difference between the two compounds lies in their halogen substituents: D1
contains chlorine and C1 contains fluorine. Both halogens are positioned near coloured
electrostatic surfaces and influence local polarity due to their electronegative nature. Yellow
regions represent intermediate potentials and indicate moderately polar zones.

Despite the variation in halogens, both compounds exhibit broadly similar electrostatic
profiles, with reactive regions associated with heteroatoms. However, the specific halogen

present may affect the molecule’s reactivity and binding interactions subtly.

The DOS analysis reveals significant electronic differences between C1 and D1 that help to
explain their different bioactivities. While both compounds exhibit significant PDOS
contributions near the frontier orbitals (—4 to 0 eV), D1 exhibits a slightly broader HOMO—
LUMO gap (3.85 eV versus 3.84 e¢V), indicating greater thermodynamic stability and reduced
inherent reactivity.

Fragments 2 and 3 in D1 show localised PDOS peaks near the HOMO region (~—5.6 eV),
suggesting optimised orbital alignment for interaction with AChE. In contrast, C1 displays
more dispersed PDOS signals, which is consistent with greater reactivity but reduced target
specificity. Additionally, the deeper-energy PDOS fragment (1) of D1 (—16 to —8 eV) suggests
better stabilisation of core electrons, which correlates with its superior metabolic stability in
ADME predictions.

Together, these electronic features account for DI1’s stronger docking affinity of —11.7
kcal/mol compared to C1’s —9.7 kcal/mol, as well as its enhanced drug-like profile, thereby

reinforcing its potential as the more promising therapeutic candidate.
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IV. Conclusion

This comprehensive computational study explored the potential of novel donepezil-tacrine
hybrid derivatives as multifunctional agents for Alzheimer's disease (AD) treatment. By
integrating advanced techniques such as 3D-QSAR modeling, molecular docking, ADME/Tox
profiling, MM-GBSA binding free energy calculations, and DFT analyses, the research
systematically evaluated the inhibitory potential, binding interactions, and drug-like properties
of these compounds.

The 3D-QSAR model demonstrated a strong correlation (R*> = 0.82) between molecular
descriptors and biological activity (pICso), with steric (46.05%) and hydrophobic (23.96%)
interactions identified as the primary contributors to AChE inhibition. The model's robustness
was confirmed by cross-validation (Q* = 0.738), ensuring its reliability for predicting the
activity of newly designed compounds. Guided by steric field analysis, twenty derivatives
were rationally designed, with modifications focused on the R group to optimize binding
affinity while maintaining compliance with Lipinski’s Rule of Five.

Molecular docking revealed that compound D1 exhibited the highest binding affinity (-11.696
kcal/mol), forming critical interactions with AChE residues (TYR72, ASP74, and TRP286)
and structural water molecules. This superior performance compared to the reference
compound C1 (-9.674 kcal/mol) underscores DI1's potential as a more effective AChE
inhibitor.

ADME/Tox predictions further highlighted DI1's favourable pharmacokinetic profile,
including high intestinal absorption (88.85%), moderate BBB permeability (logBB = -0.589),
and low toxicity risks (no AMES toxicity or hERG inhibition). MM-GBSA calculations
reinforced these findings, with D1 exhibiting strong binding free energy (-52.43 kcal/mol),
driven by van der Waals and lipophilic interactions.

DFT analyses provided additional insights into D1's electronic properties, revealing a HOMO-
LUMO gap (3.85 eV) indicative of chemical stability. The MEP and DOS analyses identified
key electrophilic and nucleophilic regions, further elucidating D1's interaction potential with
biological targets.

In summary, this study identifies D1 as a promising lead compound for AD therapy,
combining potent AChE inhibition, favourable drug-like properties, and low toxicity. Future
work should focus on synthesizing and experimentally validating D1's efficacy in vitro and in

vivo to advance its development as a multifunctional anti-AD agent. The integrated
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computational approach employed here offers a robust framework for rational drug design,

accelerating the discovery of novel therapeutics for complex neurodegenerative disorders
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General conclusion

This comprehensive study integrates computational and theoretical approaches to explore
novel donepezil-tacrine hybrid derivatives as multifunctional agents for Alzheimer’s disease
(AD) treatment. By combining insights from neurodegenerative disease pathology (Chapter
1), advanced drug design methodologies (Chapter 2), and computational evaluations (Chapter
3), the research provides a robust framework for developing next-generation AD therapeutics.

Below is a detailed synthesis of the key findings and their implications.

Alzheimer’s disease is a multifactorial disorder characterized by amyloid-p plaques,
neurofibrillary tangles, cholinergic dysfunction, and neuroinflammation. Current therapies,
such as acetylcholinesterase (AChE) inhibitors (e.g., donepezil) and NMDA antagonists (e.g.,
memantine), offer symptomatic relief but fail to halt disease progression. The limitations of
single-target therapies underscore the need for multifunctional agents that address AD’s
complex pathology. The design of donepezil-tacrine hybrids by Ningwei et al. represents a
promising strategy, targeting AChE inhibition while mitigating oxidative stress and

neuroinflammation.

The study employed a suite of computational tools to optimize drug design:

v QSAR Modeling: A 3D-QSAR model (R? = 0.82, Q> = 0.738) identified steric
(46.05%) and hydrophobic (23.96%) interactions as critical for AChE inhibition,
guiding the rational design of 20 derivatives.

v Molecular Docking: Compound D1 exhibited the highest binding affinity (-11.696
kcal/mol), forming key interactions with AChE residues (TYR72, ASP74, TRP286)
and structural water molecules.

v' ADME/Tox Profiling: DI demonstrated favorable pharmacokinetics (88.85%
intestinal absorption, logBB = -0.589) and low toxicity (no AMES mutagenicity or
hERG inhibition), complying with Lipinski’s and Veber’s rules.

v' MM-GBSA/DFT Analyses: D1’s binding energy (-52.43 kcal/mol) and electronic
properties (HOMO-LUMO gap = 3.85 eV) confirmed its stability and target
specificity.

While computational results are promising, translational steps are essential:
v Experimental Validation: Synthesis and in vitro/in vivo testing of D1 to confirm AChE

inhibition and safety.
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v Disease-Modifying Potential: Investigations into DI1’s effects on amyloid-p
aggregation and tau phosphorylation.
v Clinical Adaptability: Refinement of BBB permeability and metabolic stability for
CNS delivery.
Finally, this work exemplifies the power of integrating computational drug design with
neurodegenerative disease biology. By leveraging QSAR, docking, and ADME/Tox profiling,
the study identifies D1 as a lead compound with balanced efficacy and safety. The
methodologies outlined here not only advance AD research but also provide a template for
tackling other complex diseases. Collaborative efforts between computational and
experimental researchers will be pivotal in translating these findings into clinically viable

therapies, addressing the urgent global need for effective AD treatments.
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