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« Identification of new drugs destined for Alzheimer’s patients » 

Abstract  

The inhibition of acetylcholinesterase (AChE) continues to be a key therapeutic approach in 

Alzheimer's disease treatment. This study employs advanced computational methods to 

evaluate the AChE-inhibiting potential of hybrid derivatives combining donepezil and tacrine 

structures. Using robust 3D-QSAR modeling (R² = 0.82, Q² = 0.738), the analysis revealed 

significant structure-activity relationships (SAR), with steric factors playing a major role 

(46.05%) in influencing inhibitory potency. These findings facilitated the rational design of 

new derivatives, using a high-activity reference compound for structural refinement based on 

contour map analysis. 

Molecular docking studies identified compound D1 as the most promising candidate, 

demonstrating strong interactions with key AChE residues (TYR72, ASP74, and TRP286) and 

an excellent docking score of -11.70 kcal/mol. Further validation through MM-GBSA 

calculations confirmed its high binding affinity (ΔG ≈ -52.43 kcal/mol) and complex stability. 

In silico ADME/Tox assessments indicated favorable oral bioavailability, adherence to 

Lipinski and Veber drug-likeness rules, and minimal toxicity risks. 

Density functional theory (DFT) analysis (B3LYP/6-311G) revealed a well-balanced HOMO-

LUMO energy gap (3.85 eV), suggesting electronic stability and optimal reactivity. Molecular 

electrostatic potential (MEP) maps and density-of-states analyses further clarified charge 

distribution and orbital contributions relevant to target binding. 

Overall, this study highlights the donepezil-tacrine hybrid scaffold as a versatile 

pharmacophore for AChE inhibition and identifies D1 as a promising anti-Alzheimer's lead 

compound worthy of further experimental investigation. 

Keywords: Alzheimer's disorder, Donepezil-tacrine hybrids, AChE inhibition, 3D-QSAR, 

molecular docking, MM-GBSA, ADME/Tox, DFT, electronic properties. 

« Identification de nouveaux médicaments destinés aux malades atteints d’Alzheimer » 

Résumé 

L'inhibition de l'acétylcholinestérase (AChE) reste une approche thérapeutique clé dans le 

traitement de la maladie d'Alzheimer. Cette étude utilise des méthodes de calcul avancées 

pour évaluer le potentiel d'inhibition de l'AChE de dérivés hybrides combinant les structures 
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du donépézil et de la tacrine. En utilisant une modélisation 3D-QSAR robuste (R² = 0,82, Q² 

= 0,738), l'analyse a révélé des relations structure-activité (SAR) significatives, les facteurs 

stériques jouant un rôle majeur (46,05%) dans l'influence de la puissance inhibitrice. Ces 

résultats ont facilité la conception rationnelle de nouveaux dérivés, en utilisant un composé de 

référence à forte activité pour l'affinement structurel basé sur l'analyse des cartes de contours. 

Les études de docking moléculaire ont identifié le composé D1 comme le candidat le plus 

prometteur, démontrant de fortes interactions avec les résidus clés de l'AChE (TYR72, ASP74 

et TRP286) et un excellent score de docking de -11,70 kcal/mol. Une validation 

supplémentaire par des calculs MM-GBSA a confirmé son affinité de liaison élevée (ΔG ≈ -

52,43 kcal/mol) et la stabilité du complexe. Les évaluations ADME/Tox in silico ont indiqué 

une biodisponibilité orale favorable, le respect des règles de Lipinski et Veber en matière de 

ressemblance avec les médicaments et des risques de toxicité minimes. 

L'analyse de la théorie de la fonctionnelle de la densité (DFT) (B3LYP/6-311G) a révélé un 

écart énergétique HOMO-LUMO bien équilibré (3,85 eV), ce qui suggère une stabilité 

électronique et une réactivité optimale. Les cartes du potentiel électrostatique moléculaire 

(MEP) et les analyses de la densité d'états ont permis de clarifier davantage la distribution des 

charges et les contributions orbitales pertinentes pour la liaison à la cible. 

 

Dans l'ensemble, cette étude met en évidence l'échafaudage hybride donépézil-tacrine en tant 

que pharmacophore polyvalent pour l'inhibition de l'AChE et identifie D1 comme un composé 

phare anti-Alzheimer prometteur qui mérite des recherches expérimentales plus approfondies. 

 

Mots-clés : Maladie d’Alzheimer, Hybrides donepezil-tacrine, Inhibition de l’AChE, 3D-

QSAR, Docking moléculaire, MM-GBSA, ADME/Tox, DFT, Propriétés électroniques. 

 » تحديد أدوية جديدة مُخصصة لمرضى الزهايمر «

 ملخص

إستراز كولين  الأستيل  إنزيم  تثبيط  الزهايمر (AChE) يعُد  مرض  علاج  في  مستمرًا  محوريًا  علاجيًا   .نهجًا 

توظف هذه الدراسة طرقًا حسابية متقدمة لتقييم القدرة التثبيطية لمشتقات هجينة تجمع بين بنى دوائيتي دونيبيزيل وتاكرين.  

نمذجة خلال  البنية   (Q² = 0.738, R² = 0.82)قوية  3D-QSAR ومن  بين  هامة  علاقات  عن  التحليلات  كشفت   ،

 .% في التأثير على قوة التثبيط46.05، حيث لعبت العوامل الفراغية دورًا رئيسيًا بنسبة (SAR) والنشاط
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مكّنت هذه النتائج من التصميم العقلاني لمشتقات جديدة، باستخدام مركب مرجعي عالي النشاط لتوجيه تحسين البنية استناداً  

 .إلى تحليل خرائط الكنتور

الواعدين، إذ أظهر تفاعلات قوية مع   D1حددت دراسات الالتحام الجزيئي المركب    الاحماض الامينية كأكثر المرشحين 

بلغت   (TYR72,ASP74, TRP286) الرئيسية AChE نزيملإ ممتازة  ارتباط  درجة   .kcal/mol 11.70-وحقق 

 بلغت طاقة الربط الحرة ، حيثMM-GBSA وقد تم تأكيد تقارب المركب واستقرارية معقده عبر حسابات

 (ΔG ≈ −52.43 kcal/mol) ،   مما يدل على تقارب وثبات عال. 

والسمية والإخراج  والتمثيل  والتوزيع  الامتصاص  لخصائص  الحاسوبية  التقييمات  المركب  (ADME/Tox) أظهرت  أن 

السمية   من  منخفضة  مستويات  مع  الدوائي،  للتشابه  و"فيبر"  "ليبينسكي"  بقواعد  ويلتزم  جيد،  فموي  حيوي  بتوافر  يتمتع 

 .المتوقعة

الكثافة دالة  نظرية  تحليل  المنهجية (DFT) أظهر  الأعلى   B3LYP/6-311G باستخدام  المدار  بين  متوازنة  طاقة  فجوة 

المشغول (HOMO) المشغول غير  الأدنى  استقرار   3.85بمقدار   (LUMO) والمدار  إلى  يشير  مما  فولت،  إلكترون 

 .إلكتروني وتفاعل مثالي

الكهروستاتيكي الجهد  خرائط  أوضحت  والمساهمات  (MEP) كما  الشحنات  توزيع  الإلكترونية  الحالات  كثافة  وتحليلات 

 .المدارية ذات العلاقة بالارتباط مع الهدف البروتيني

لدونيبيزيل الهجين  الهيكل  على  الضوء  الدراسة  هذه  تسلط  عام،  الاستخدامات  -بشكل  متعددة  دوائية  فلكة  بوصفه  تاكرين 

 .كقائد دوائي واعد ضد الزهايمر يستحق المزيد من الدراسة والتطوير التجريبي D1، وترُشح المركب  AChE لتثبيط

 :الكلمات المفتاحية

، MM-GBSA، الالتحام الجزيئي، AChE ،3D-QSAR تاكرين، تثبيط-مرض الزهايمر، مشتقات دونيبيزيل

ADME/Tox ،DFTالخصائص الإلكترونية ،. 
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General introduction 

 

Memory and learning are essential cognitive functions that shape human behavior, allowing 

individuals to adapt to their environment, draw from past experiences, and anticipate future 

outcomes. However, these abilities can decline due to aging, traumatic brain injuries, 

psychiatric disorders (such as addiction, anxiety, depression, and schizophrenia), or chronic 

neurological conditions, most notably neurodegenerative diseases like Alzheimer’s disease 

(AD) [1]. 

Alzheimer’s disease represents a growing global health crisis with profound medical, social, 

and economic consequences. Recent estimates from the 2022 World Alzheimer Report 

indicate that more than 55 million people currently live with AD or related dementias—a 

number projected to nearly triple to 138 million by 2050 [2]. The progressive nature of the 

disease severely impacts patients' independence, often depriving them of a fulfilling later life 

[3]. 

To date, no cure exists for AD. Available treatments focus on symptom management and fall 

into two main categories: acetylcholinesterase (AChE) inhibitors and NMDA receptor 

antagonists [4]. Among the first-generation AChE inhibitors, tacrine was discontinued due to 

safety concerns, while donepezil emerged as a preferred option due to its enhanced selectivity 

and tolerability. Galantamine, another key drug in this class, not only inhibits AChE but also 

enhances cholinergic signaling by modulating nicotinic receptors [5]. 

Developing new AD therapies through traditional drug discovery is an expensive and lengthy 

process, often taking over a decade and billions of dollars, with high failure rates in late-stage 

trials. To overcome these challenges, computational approaches have become indispensable in 

early drug discovery. In silico methods enable rapid screening of large compound libraries, 

prediction of ADME/Tox properties, and optimization of lead molecules before synthesis [6]. 

These techniques significantly reduce costs and improve success rates by prioritizing 

compounds with favorable pharmacokinetics and minimal toxicity risks [7]. 

This investigation pursues three principal scientific aims:  

✓ To systematically evaluate the structure-activity relationships governing molecular 

recognition through: 

❖ Comprehensive analysis of ligand-enzyme interactions 
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❖ Quantitative assessment of inhibitory potential 

❖ Determination of key pharmacophoric features 

✓ To rationally design and computationally characterize novel small-molecule inhibitors 

targeting acetylcholinesterase (AChE) with optimized binding affinities. 

✓ To establish the drug development potential of lead compounds by: 

❖ Computational prediction of pharmacokinetic properties 

❖ Assessment of bioavailability parameters 

❖ Evaluation of toxicity profiles 

This tripartite approach integrates molecular design, biological evaluation, and 

pharmaceutical profiling to advance therapeutic candidates for Alzheimer's disease treatment. 

The dissertation adopts a systematic three-chapter organization designed to progressively 

develop and substantiate its scientific inquiry 

✓ Chapter 1 establishes the theoretical framework, providing: reviews 

neurodegenerative diseases, emphasizing AD pathology, and introduces tacrine-

donepezil hybrid molecules as a therapeutic strategy. 

✓ Chapter 2 presents the computational methodology, encompassing: outlines the in 

silico methodology, including 3D-QSAR modeling and molecular docking studies. 

✓ Chapter 3 delivers the research outcomes through: the design of new hybrid 

compounds, supported by 3D-QSAR predictions, docking analyses, DFT-based 

electronic structure assessments, and ADME-Tox profiling. 

The work concludes with a synthesis of key findings and their therapeutic implications, 

followed by proposed directions for future investigation. 
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I. Introduction 

The term neurodegeneration refers to neuronal loss marked by progressive neuronal cell 

death, accompanied by cognitive and motor dysfunctions depending on the brain area affected 

[1]. 

Neurodegenerative diseases (NDs) are serious health conditions that impact the brain and 

nervous system, making them among the most debilitating disorders affecting humans. In 

recent years, they have become the fourth leading cause of death globally, following heart 

disease, cancer, and stroke [2]. 50 million people worldwide are suffering from 

neurodegenerative diseases, and this number is projected to rise to 130 million by 2050 [3]. 

NDs are a vast and varied group of disorders that are classified as being primarily caused by 

the progressive loss of function or structural integrity of neurons and associated cell types in 

the nervous system. The pathogenesis of these disorders is still unclear, but researchers 

propose a complex interplay of genetic, epigenetic, and environmental factors. Until now, 

there have been no effective therapies developed to slow, halt, or prevent any NDs [4]. 

II. Different majors of neurodegenerative diseases 

Among the most recognized neurodegenerative diseases are: 

II.1 Parkinson’s disease 

Parkinson’s disease (PD) was first described in 1817 by Dr. James Parkinson, a British 

physician, who documented six cases of a disorder he referred to as the “shaking palsy” [5]. 

PD is a progressive neurodegenerative disorder that affects both movement and other body 

functions [6]. It causes slowness of movement, muscle stiffness, tremors, and walking 

difficulties (Figure 1) due to the loss of dopamine-producing neurons in the brain [7]. A key 

feature of PD is the buildup of abnormal protein clumps, called Lewy bodies, in nerve cells 

[8]. 

Besides movement problems, PD also leads to memory issues, mood changes, sleep problems, 

and difficulties with automatic body functions like blood pressure control [9]. There is no 

cure, but treatments such as medications, physical therapy, and deep brain stimulation can 

help manage symptoms [10]. 
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Figure 1: Parkinson’s disease symptoms [11] 

II.2 Amyotrophic Lateral Sclerosis  

Amyotrophic lateral sclerosis (ALS) was initially recognized as a motor neuron disorder in 

1869 [12]. It is a fatal ND characterized by the progressive degeneration of upper and lower 

motor neurons, leading to muscle weakness, paralysis, and ultimately, respiratory failure [13]. 

Most people with ALS first notice weakness in their arms or legs (75% of cases), while others 

start with trouble speaking or swallowing [14]. The disease is linked to the abnormal buildup 

of a protein called TDP-43 in nerve cells, though some genetic forms involve other proteins 

like SOD1 and FUS [15]. 

II.3 Huntington’s disease 

In his paper "On Chorea.", Dr. George Huntington, an American physician, has described 

Huntington’s disease (HD), in 1872.  

HD is a progressive ND that affects movement, cognition, and behaviour, eventually leading 

to severe disability and premature death [16]. It is an autosomal dominant genetic disorder 

caused by an expanded CAG trinucleotide repeat in the HTT gene, which results in the 
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production of mutant huntingtin protein (mHTT) [17]. This abnormal protein leads to the 

progressive loss of neurons, particularly in the caudate nucleus and putamen, regions of the 

brain essential for motor control. 

HD symptoms (Figure 2) typically appear in mid-life but can manifest at any age. The disease 

begins with subtle changes in coordination, personality, and cognition, followed by the onset 

of chorea, characterized by involuntary, dance-like movements [18]. As HD progresses, 

patients experience rigidity, bradykinesia, cognitive decline, psychiatric disturbances, and 

difficulty swallowing [19]. 

 

Figure 2: Huntington's disease symptoms [20]. 

II.4 Alzheimer’s disease  

In 1906, the German doctor Alois Alzheimer discovered a new disease, later named 

"Alzheimer's disease (AD)" [21]. 

AD is a ND characterized by a gradual decline in cognitive functions, leading to loss of 

independence. This deterioration is primarily associated with two types of brain lesions: 

neurofibrillary tangles, which develop inside neurons, and senile plaques, which accumulate 

outside nerve cells [22]. 
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III. Alzheimer’s disorder  

III.1 Overview 

Identified in 1906 by Alois Alzheimer (Figure 3), the disease was first described after the 

study of Auguste Deter, a patient suffering from severe cognitive impairment. Her autopsy 

revealed two characteristic lesions: amyloid plaques and neurofibrillary tangles. It was not 

until 1910 that Emil Kraepelin officially named the disease in honour of his colleague, 

Alzheimer. 

It was only in the 1980s that the nature of these lesions was clarified: amyloid-β (Aβ) was 

identified as the main component of senile plaques (SP), and tau protein was recognized as 

responsible for neurofibrillary tangles. Further discoveries followed, including the association 

of the disease with hippocampal atrophy, cholinergic neuron loss, and synapse degeneration. 

The 20th century thus marked major scientific advances that progressively improved the 

understanding of this disease’s mechanisms [23]. 

 

Figure 3:Main discoveries related to AD in the 20th century (non-exhaustive list) [23]. 

III.2 Symptoms of AD 

AD is marked by cognitive decline, with memory loss being the primary symptom (Figure 4). 

Early signs include mild difficulty recalling recent events, which gradually extends to older 
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memories. Patients often experience disorientation, language impairments (aphasia), difficulty 

performing everyday tasks (apraxia), trouble recognising familiar people or objects (agnosia), 

and a lack of motivation or emotional response (apathy). Mood disturbances, anxiety, and 

aggression may also arise. 

 

Figure 4: AD’s symptoms [24]. 

AD progresses through three stages: 

a. Asymptomatic Phase (10–25 years before diagnosis): Brain damage occurs without 

noticeable symptoms due to neural compensation. 

b. Mild Cognitive Impairment Phase (3–5 years before diagnosis): Cognitive decline 

becomes evident but does not yet significantly affect daily life. 

c. Dementia Phase: Symptoms worsen, leading to severe memory loss, behavioural 

changes, complete loss of independence, and full reliance on caregivers [25]. 

III.3 Neuropathological characteristics 

Before the technological and scientific advancements of the 1980s, AD could only be 

definitively recognised after death. This diagnosis relied on detecting pronounced brain 

atrophy and microscopic features such as SP and neurofibrillary tangles during an autopsy 

[26]. 
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III.3.1 Macroscopic lesions 

During an autopsy, one of the first noticeable signs of AD is brain atrophy (Figure 5), 

indicating significant neuron loss.  

However, this shrinkage is not uniform. It primarily affects the hippocampus, which is linked 

to cognitive decline, as well as the cerebral cortex, including the entorhinal cortex and 

amygdala. As the cortex shrinks, the brain's ventricles expand. Some of these changes also 

happen in other diseases. For example, hippocampal atrophy can occur in Parkinson's disease 

and vascular dementia [27]. 

 

Figure 5: Brain Atrophy in Advanced AD [28]. 

III.3.2 Microscopic Features 

III.3.2.1  Neurofibrillary degeneration 

Neurofibrillary degeneration (NFD) occurs due to the intracellular aggregation of abnormally 

phosphorylated tau proteins. Under normal conditions, tau proteins play a crucial role in 

stabilizing microtubules, essential components of the neuronal cytoskeleton, particularly 

within axons. Their function is regulated by their phosphorylation state. In the provided 

image, NFD is indicated by a black arrow, while the adjacent oval structure represents a SP, 

identified using Bielschowsky silver staining [29]. 

The progression of NFD follows a characteristic spatial and temporal pattern that aligns with 

the clinical course of AD. It initially appears in the transentorhinal cortex, then spreads to the 
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hippocampus, temporal cortex, and progressively to polymodal and unimodal cortical areas, 

ultimately affecting the entire brain in the later stages of the disease [30]. 

III.3.2.2 Amyloid Plaques 

Amyloid plaques develop as a result of the buildup of Aβ peptide, which is generated from the 

cleavage of the amyloid precursor protein (APP) (Figure 6). APP, a transmembrane 

glycoprotein, can be processed through two distinct pathways. 

In the non-amyloidogenic pathway, APP is initially cleaved by α-secretase and then by γ-

secretase, yielding non-toxic fragments such as P3 peptide, a soluble region (sAPP) and an 

amyloid intracellular domain (AICD). The γ-secretase complex, crucial for this process, is 

composed of presenilin, nicastrin, and two co-factors, with presenilin being vital for 

maintaining its stability. 

In contrast, the amyloidogenic pathway involves the cleavage of APP by β-secretase 

(BACE1), producing a C99 fragment. This fragment is subsequently processed by γ-secretase, 

leading to the creation of the Aβ peptide. When Aβ accumulates in the extracellular space, it 

forms oligomers that eventually clump together into amyloid plaques, a key characteristic of 

AD [31]. 

 

Figure 6: Amyloid precursor protein processing pathways [32]. 

III.3.3 Neuron and synapse loss 

In AD, the accumulation of Aβ plaques triggers neuronal death in the nucleus basalis of 

Meynert, which decreases the production and release of acetylcholine (ACh). This process 

also elevates acetylcholinesterase (AChE) activity, disrupts muscarinic ACh signalling, and 

weakens cholinergic function. These disruptions indirectly impact N-methyl-D-aspartate 
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(NMDA) receptors, leading to excessive glutamate activity and contributing to further 

neuronal damage. 

As plaques build up in regions such as the basal ganglia, temporal lobe, and neocortex, they 

impair memory and executive functions. Furthermore, the loss of neurons in the medial cortex 

and locus coeruleus reduces serotonin and norepinephrine levels. This decline in 

neurotransmitter activity results in symptoms like dysphoria and insomnia, stemming from 

altered serotonergic and adrenergic signalling in the brain [33]. 

III.4 Role of Glycogen Synthase Kinase-3β  in AD 

Glycogen Synthase Kinase-3 beta (GSK-3β) plays a crucial role in the progression of AD 

through multiple pathological mechanisms. One of its primary functions is the abnormal 

hyperphosphorylation of the tau protein, which contributes to the formation of neurofibrillary 

tangles, a key hallmark of the disease. GSK-3β participates in the amyloidogenic pathway by 

influencing the production of Aβ peptides through its regulation of presenilin 1 (PS1) and 

beta-secretase (BACE-1), enzymes critical for amyloid precursor protein (APP) cleavage. 

This dysregulation exacerbates Aβ accumulation, further promoting neurotoxicity. GSK-3β 

contributes to neuroinflammation by enhancing the release of pro-inflammatory cytokines 

such as IL-1, IL-6, and TNF-α, thereby amplifying neuronal damage. Its role extends to 

synaptic dysfunction, as it regulates key transcription factors involved in synaptic plasticity, 

memory formation, and cognitive functions. GSK-3β activity is also linked to neuronal 

degeneration due to its involvement in NMDA receptor hyperactivation, which leads to 

excessive calcium influx and neuronal death. Collectively, these findings underscore the 

significant role of GSK-3β in the neurodegenerative processes associated with AD [34]. 

III.5 Role of Butyrylcholinesterase in AD 

Butyrylcholinesterase (BuChE), also referred to as pseudocholinesterase or non-specific 

cholinesterase, is a serine hydrolase responsible for hydrolysing choline esters. The presence 

of BuChE was first recognized in 1932 when an enzyme capable of catalysing the hydrolysis 

of choline esters was identified. This enzyme is widely distributed in the human brain, with 

high expression in white matter, glial cells, and certain neuronal populations. Its enzymatic 

activity extends to the hydrolysis of acetylcholine, long-chain acylated polypeptides, various 

esters, amides, and aromatic amines, as well as the detoxification of highly toxic synthetic 

organophosphates. While BuChE is associated with multiple physiological and pathological 

functions, including its involvement in AD, its role in cholinergic neurotransmission and 

immune modulation is particularly significant due to its ability to hydrolyse acetylcholine. 
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III.6 Role of AChE in AD 

AChE has a significant impact on AD by breaking down Ach (Figure 7), a key 

neurotransmitter involved in memory and learning. Reduced cholinergic activity is a hallmark 

of AD and is associated with cognitive decline in patients [35]. 

AChE inhibitors, such as donepezil, rivastigmine, and galantamine, are commonly used to 

slow down ACh degradation and temporarily improve synaptic transmission. However, these 

treatments do not halt disease progression.  

 

Figure 7: Crystal Structure of Recombinant Human Acetylcholinesterase in Complex with 

Donepezil (PDB code:4EY7) [36]. 

Beyond its enzymatic function, AChE also interacts with β-amyloid peptides, promoting their 

aggregation and the formation of amyloid plaques, which may accelerate neurodegeneration 

[37]. This dual role of AChE, in both cholinergic transmission and amyloid pathology, makes 

it a key target for developing new therapeutic strategies.  
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III.7 Treatment for AD 

Current therapeutic approaches for AD primarily aim to slow disease progression and 

alleviate symptoms rather than provide a cure. Pharmacological treatments include AChE 

inhibitors (Figure 8), such as donepezil, galantamine, and rivastigmine, which enhance 

cholinergic neurotransmission, as well as memantine, an NMDA receptor antagonist, which 

helps regulate glutamate activity to mitigate cognitive decline. In recent years, the Food and 

Drug Administration (FDA) approval of monoclonal antibodies like aducanumab, which 

targets Aβ plaques, has sparked both optimism and controversy due to concerns about its 

clinical efficacy. 

  

  

 

 

Figure 8: Current treatments used for AD. 
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Beyond conventional treatments, novel therapeutic strategies seek to modify disease 

progression by addressing key pathological mechanisms. Aβ-targeting therapies focus on 

reducing Aβ accumulation through secretase inhibitors, immunotherapies, and strategies that 

enhance its clearance. 

Likewise, tau-targeted interventions are under investigation, given the strong correlation 

between tau pathology and neurodegeneration [38]. 

IV.  Design of novel Donepezil-Tacrine hybrids as new agents against AD 

Ningwei and colleagues [39] recognized that existing treatments for AD typically focus on a 

single factor, despite the disease's complex and multifactorial nature. To address this 

limitation, they aimed to design new multifunctional compounds capable of targeting several 

key pathological mechanisms including oxidative stress and neuroinflammation 

simultaneously. This approach was expected to enhance therapeutic effectiveness while 

minimizing potential neurotoxic side effects. 

In order to achieve this purpose, Ningwei et al. designed and synthesised a series of novel 

compounds as possible multifunctional agents. 

The molecules A1–A6, B1–B20 and C1–C8 (Figure 9) were synthesised through multi-step 

reactions involving commercially available reagents and key intermediates with variations in 

the final steps to introduce different structural features and substituents. 
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Figure 9: Design strategy of donepezil-tacrine hybrids. 

The hybrid compounds synthesised were designed with different R groups to explore the 

structure-activity relationship (SAR) and enhance their inhibitory potential against Human 

acetylcholinesterase (hAChE). The choice of substituents such as methyl and halogens was 

guided by prior research highlighting their effect on biological activity and drug-like 

properties, and to evaluate this influence, they used Ellman’s method to perform biological 

assays with the resulting inhibitory activities summarized and compared in Table 1. 

Table 1: hAChE inhibitory activities of target compounds A1-C8. [39] 

 

A1 – A6 

 

B1 – B20 

Compound R 

Inhibition@100 

nM (%) 

hAChE 

Compound R 

Inhibition@100 

nM (%) 

hAChE 
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Tacrine - 24.69±4.27 Donepezil - 56.14±2.18 

A1 

 

23.23 ±0.2 B1 

 

29.87 ±0.2 

A2 

 

8.03 ±0.1 B2 

 

13.86 ±0.1 

A3 
 

11.8 ±0.3 B3 
 

30.56 ±0.4 

A4 

 

13.33 ±0.3 B4 

 

46.19 ±0.3 

A5 

 

36.40 ±0.2 B5 

 

62.65 ±0.3 

A6 
 

10.70 ±0.3 B6 
 

71.86 ±0.1 

B7 

 

58.15 ±0.3 B14 

 

55.86 ±0.3 
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B8 

 

4.07 ±0.1 B15 
 

87.76 ±0.2 

B9 

 

64.5 ±0.1 B16 

 

67.64 ±0.2 

B10 

 

18.3 ±0.3 B17 

 

70.64 ±0.1 

B11 
 

67.73 ±0.2 B18 
 

74.11 ±0.2 

B12 
 

56.53 ±0.2 B19 
 

67.49 ±0.4 

B13 
 

70.8 ±0.3 B20 

 

81.43 ±0.3 

 

C1-C8 
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C1 

 

2.85±0.3 C5 

 

15.08±0.1 

C2 

 

4.91±0.3 C6 
 

8.05±0.3 

C3 
 

4.67±0.3 C7 
 

28.32±0.3 

C4 

 

8.01±0.2 C8 
 

27.54±0.1 
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V. Conclusion 

Neurodegenerative diseases, particularly Alzheimer’s disease (AD), represent a profound 

global health challenge characterized by progressive neuronal degeneration and cognitive 

impairment. Despite significant advancements in understanding AD’s pathological 

mechanisms such as amyloid-β plaque accumulation, neurofibrillary tangles, and cholinergic 

dysfunction current therapies remain palliative, targeting symptoms rather than halting disease 

progression. 

The development of multifunctional compounds, exemplified by donepezil-tacrine hybrids, 

marks a promising shift toward addressing AD’s multifactorial nature. These hybrids aim to 

simultaneously target key pathological pathways, including cholinergic deficits, oxidative 

stress, and neuroinflammation, offering potential advantages over single-target therapies. 

However, translating these innovations into clinically effective treatments necessitates further 

research to optimize their efficacy, safety, and pharmacokinetic profiles. 

Collaborative efforts across disciplines, coupled with innovative therapeutic strategies, are 

essential to overcome the limitations of current approaches. Future research should prioritize 

elucidating novel molecular targets and refining drug design methodologies to develop 

disease-modifying therapies capable of altering AD’s trajectory. Addressing these challenges 

will be critical to improving outcomes for the growing population affected by 

neurodegenerative disorders. 
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I. Introduction 

Drug design, also called rational drug design, is the process of developing new drugs. It 

involves three main steps: identifying a biological target, understanding its structure and 

function, and then designing a drug molecule that interacts with the target in a beneficial way. 

Several factors are considered, such as the specificity of the target, the possibility of targeting 

a single target or several targets, and the minimum affinity required for binding to the target. 

Polypharmacology, i.e. the ability of a drug to bind to several targets, can improve the 

efficacy of the drug, but it can also lead to adverse effects. Drug design is a complex process 

that aims to find new treatments for specific diseases by interacting in a targeted way with 

biological targets [1]. 

Before initiating the drug design phase, various strategies of drug discovery are applied to 

identify potential candidate molecules (figure 1). One such strategy is discovery by chance, 

illustrated by the case of penicillin, whose antibiotic properties were first observed in vitro by 

Alexander Fleming in 1928 and later confirmed in vivo by Chain and Florey in 1940. Another 

approach is discovery based on empirical data, as exemplified by aspirin, derived from 

compounds found in willow leaves that were traditionally used for pain relief by ancient 

civilisations such as the Sumerians [2]. 

A more targeted method involves the discovery based on the knowledge of a physiological 

process or molecular target. For instance, understanding the role of the angiotensin-converting 

enzyme (ACE) in the renin-angiotensin system led to the development of ACE inhibitors. 

Researchers also rely on discovery from existing molecules, guided by structure–activity 

relationships (SAR), which explore how changes in a molecule's structure affect its biological 

activity. This approach also includes the concept of prodrugs, which are inactive compounds 

that must be metabolised in the body to release the active drug [3]. 

Screening and selection processes are used to evaluate large libraries of chemical compounds, 

even when their pharmacological properties are initially unknown. This high-throughput 

strategy (HTS) allows researchers to identify novel bioactive molecules that can then be 

further optimised through rational drug design. 
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Figure 1: Stages of the Drug Discovery Process [4]. 

II. Quantitative structure-activity relationships  

II.1 History 

Quantitative Structure-Activity/Property Relationships (QSAR/QSPR) have gained significant 

importance in various sectors such as pharmaceuticals, chemicals, and cosmetics, particularly 

due to advances in computational resources. These methods are primarily applied to the 

rational design of new compounds and chemical entities [5]. While the term QSAR was 

formally introduced in the 1960s through the work of Corwin Hansch and Free & Wilson, 

who linked chemical structure to biological activity through mathematical models, the 

foundational concepts date back much earlier. 

In the late 19th century, Alexander Crum-Brown and Thomas Fraser first explored the 

connection between molecular structure and physiological activity. Similarly, Richet 

identified the relationship between toxicity and physicochemical properties, while Meyer and 

Overton demonstrated a linear correlation between lipophilicity and biological activity in 

certain compounds. These early findings laid the groundwork for the development of QSAR 

as a formal scientific approach. 
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In recent years, the field of QSAR has advanced with the availability of extensive data and the 

development of powerful computational tools. Modern QSAR models play a crucial role in 

drug discovery by helping to prioritize molecules for testing, thereby reducing both time and 

costs in the development process. These models are also used to screen large chemical 

libraries and predict biological activity, toxicity and receptor interactions, making them a key 

component of contemporary drug development [6]. 

II.2 Definition 

QSAR is a computational methodology that models how molecular structure influences 

biological activity and physicochemical properties through mathematical relationships [7]. 

This approach is based on the fundamental principle that a compound's biological effects are 

determined by its structural characteristics, enabling the prediction of various endpoints 

including pharmacological activity, toxicity and receptor binding affinity  [8]. 

QSAR models employ statistical techniques to correlate molecular descriptors (quantitative 

representations of structural features) with experimental measurements of biological activity 

or chemical properties [9]. These models can be developed for specific chemical classes or 

more broadly applied to diverse compound sets. The methodology has become particularly 

valuable in pharmaceutical research and chemical safety assessment, where it helps predict 

compound behaviour while potentially reducing experimental testing requirements [10]. 

The modelling process establishes quantitative relationships between structural parameters 

and biological endpoints, with the goal of identifying key molecular features that influence 

activity [11] . By systematically analysing these structure-activity correlations, QSAR 

provides a powerful approach for compound optimization, hazard assessment and rational 

molecular design [12]. 

II.3 QSAR methodology  

QSAR methodology (figure 2) is built on the idea that a compound’s biological activity can be 

explained by the combined influence of its structural or physicochemical characteristics. 

Traditional QSAR techniques, such as Free Wilson analysis, involve assigning values based 

on the presence or absence of specific chemical groups and linking these to biological 

responses. Hansch analysis, on the other hand, focuses on numerical descriptors like 

lipophilicity, electronic effects, and steric properties to model how compounds behave in 

biological systems. These classical methods usually apply linear regression to identify 

meaningful correlations. In more advanced approaches like 3D QSAR, specifically 
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Comparative Molecular Field Analysis (CoMFA), the 3D shapes of molecules are aligned, 

and their interaction energies with a hypothetical probe are measured across a spatial grid. 

These interaction patterns are then analysed using statistical techniques like partial least 

squares to create predictive models. Altogether, these QSAR methods help researchers 

understand how molecular features influence biological activity and support the design of 

more effective drug candidates [13]. 

 

 

Figure 2: General methodology of QSAR [14]. 

QSAR establishes a mathematical relationship between molecular properties, known as 

descriptors, and biological activity. This relationship is expressed by the model: 

[Biological activity] = f [descriptors] 

 Where the function (f) quantitatively maps descriptor values to the observed biological 

response. 

II.4 Molecular descriptors 

Molecular descriptors are the result of mathematical procedures that transform chemical 

information encoded within a molecular structure into a numerical representation, which their 

dimensionality can be used to identify the QSAR model type as following (figure 3): 
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Figure 3: Molecular descriptors used in QSAR modelling [15]. 

0D descriptors, which fall under the constitutional category, are obtained from molecular 

formulas and contain basic characteristics, like atom counts or molecular weight, without 

considering atom connectivity, while 1D descriptor depend on molecular substructures. 

Physicochemical and pharmacokinetic properties are frequently modelled using 2D 

descriptors, which are topological in nature and rely on molecular graphs to present atom 

connectivity. 3D descriptors, categorised as geometrical, are derived from the spatial 3D 

coordinates of atoms, and serve to capture molecular features such as size, shape, and atom 

distribution. The 4D models extend this approach by considering dynamic ensembles of 

molecular conformations to account for structural flexibility. In addition to these, electronic 

descriptors, such as HOMO/LUMO energies and dipole moments, are utilised to characterise 

the electronic structure and bonding properties of molecules. The utilisation of 

thermodynamic descriptors, including enthalpy of formation and molar refractivity, facilitates 

the correlation of molecular structure with energetic and chemical behaviour.  

Finally, it is important to note that certain descriptors integrate multiple dimensions and are 

classified as hybrid, offering a more comprehensive representation of molecular properties 

[16]. 
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II.5 Statistical methods  

Statistics is the study of groups of similar objects by analysing their characteristics, called 

variables. A statistical model links the target variable to the weighted combination of these 

characteristics [17]. The main tools used to build such models include: 

II.5.1 Multiple Linear Regression 

Multiple linear regression (MLR) is a method used to understand the relationship between 

several factors and a response variable, assuming a linear relationship. It is simple to interpret 

but can be unstable in cases where the variables are dependent on each other. 

II.5.2 Partial Least Squares 

Partial Least Squares (PLS) is a statistical technique that allows to create models of the 

relationships between a set of predictor variables and one or more response variables. It 

projects the data into a hidden space to maximise the similarity between the explanatory 

variables and the response, which makes it effective for collinear data or large numbers of 

data. 

II.5.3 Artificial neural networks 

In QSAR studies, artificial neural networks (ANNs) are used with a wide range of 

architectures and techniques, including different ways to represent chemical structures, pre-

process data, select relevant descriptors, train models, and interpret predictions. These 

components together define the computational methods applied in the field. The concept of a 

computational method is more specific than just the architecture or type of neural network, as 

it also includes how the model is trained and how results are handled, even if the underlying 

network structure is similar [18]. 

II.5.4 Support Vector Machines 

Support Vector Machines (SVM) creates the optimal hyper planes for classification or 

regression, using kernel functions to handle non-linear separation. It is effective in high-

dimensional spaces where the margin is clearly defined. 

II.6 Model validation 

Confirming the validity of QSAR models is a key but complicated part of statistical analysis. 

It is important to ensure that the model is statistically sound and can reliably predict the 

biological activity. Since every model is developed within a defined analytical scope, it must 

be interpreted and used strictly within that boundary [19]. Using the model outside its 
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intended scope should be done with caution, as the further you go from that scope, the risk of 

error increases.  

To prevent mistakes during validation and use, it's important to define the model’s limits, 

check its reliability, measure how well it predicts both known and new data, and make sure 

it’s only applied within a specific chemical space [20]. 

II.6.1 Internal validation 

The internal validation of a QSAR model is performed using the training dataset. The initial 

step involves the evaluation of the model's precision in replicating the characteristics of the 

training data. The second step uses cross-validation to assess the model's quality and 

robustness by simulating a situation in which it predicts new, unseen data. In this process, the 

training set is divided into two parts: a calibration set to build the model, and a validation set 

to test how well the model predicts data it wasn't trained on [21]. 

II.6.1.1 Leave-One-Out procedure 

The method is based on the principle of eliminating one molecule at a time from the training 

set. In each round, a single molecule is removed to form the validation set, while the 

remaining (n-1) molecules are used to build the model. The process is repeated until every 

molecule has been used once as the validation set. 

II.6.1.2 Leave-Many-Out procedure 

It involves splitting the data set into multiple sections. One section is designated as an internal 

test set, while the remaining sections make up the training set. The trained model is then used 

to predict the properties of the molecules in each excluded group. This process is repeated p 

times, with p representing the total number of groups of molecules that are excluded [22]. 

II.6.2 External validation 

The efficacy of a QSAR model is determined by its capacity to accurately predict the 

activity/property of compounds from an external test set, comprising compounds not utilised 

in the development of the model. 

 The objective of a suitable QSAR model is not only to predict the activity of the training set 

compounds, but also to predict the activities of the test molecules [23]. 
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II.6.3 Statistical parameters 

II.6.3.1 Determination coefficient R2  

The coefficient of determination, R2, is a measure of the degree of relationship between the 

dependent variable (biological activity) and the independent variable (molecular descriptor). A 

value of R2 close to 1 indicates a satisfactory fit of the regression model [24]. 

II.6.3.2 Prediction coefficient Q2 

The prediction coefficient Q² indicates how accurate the predictions are, as it reflects the 

predictive power of a regression model. 

II.6.3.3 Test Fischer F 

The Fischer test is utilised to substantiate the correlation between biological activity and the 

molecular descriptor, by quantifying the ratio between the variance of biological activity 

explicable and inexplicable by the regression model [25]. 

II.6.3.4 Standard Deviation SD 

Is a measure of how dispersed the data is in relation to the mean. Low, or small, standard 

deviation indicates data are clustered tightly around the mean, and high, or large, standard 

deviation indicates data are more spread out. A standard deviation close to zero indicates that 

data points are very close to the mean, whereas a larger standard deviation indicates data 

points are spread further away from the mean. 

III. Molecular Docking 

III.1 An overview 

Molecular docking is a technique in which a small organic molecule, known as a 'ligand', 

interacts with the active site of a macromolecule (protein), known as a 'receptor'. 

The purpose of this technique is to determine the most effective method of attaching the 

ligand-receptor complex (figure 4), leading to the prediction of the "bioactive" conformation 

of the ligand within its receptor. Each relative conformation resulting from docking is 

associated with energy, defined as the 'Score'.  
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Figure 4:  Illustration of the interaction between a molecule (ligand) and a protein (Target) 

[26]. 

The molecular docking simulation is based principally on the ligand-protein association, 

which can be considered rigid, flexible or semi-flexible. 

III.1.1 Rigid docking 

In rigid body docking, the protein and ligand are both held fixed, and the algorithm searches 

for the most favourable pose by systematically sampling all possible translations and rotations 

of the ligand within the binding pocket and scoring each position by energy. Any poses that 

clash with the active site are discarded, leaving only those that fit well. This method is very 

fast computationally and effectively filters out large or poorly complementary molecules 

before more detailed (and expensive) analyses because it only considers rigid movements 

[27]. 

III.1.2 Semi-flexible docking 

The system here is divided into two regions: a flexible region which contain the ligand and 

flexible residues near the binding site and a rigid region which is the remaining protein 

structure. Semi-flexible docking approaches are widely used due to their efficiency, 

employing randomized search algorithms such as Monte Carlo simulations and genetic 

algorithms, which are categorized as stochastic methods.  

These techniques balance computational accuracy and speed by allowing partial flexibility in 

the binding site while keeping the rest of the protein fixed [28]. 

III.1.3 Flexible docking 

This approach indirectly accounts for protein flexibility by minimizing repulsive forces, 

enabling the ligand to interact more deeply with the protein surface. During enzymatic 

reactions, the protein dynamically adjusts its conformation to better accommodate the ligand, 
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fostering precise interactions while avoiding steric clashes. These adaptations enhance 

structural compatibility between the ligand and protein, optimizing conditions for hydrogen 

bond formation and improving binding efficiency [29]. 

III.2 Methodology 

There are multiple steps in the process starting with target selection which are usually a 

protein structure can be gotten from protein data bank (PDB). Ligand preparation involves 

generating 3D conformations for small molecules and considering all forms as tautomer, to 

produce a chemically accurate structure. For protein preparation, the target structure must be 

refined by restoring all missing atoms as hydrogen while removing anything that is 

unnecessary like crystallographic solvents. The next step generates the receptor grid to 

represent the binding site and the related physicochemical properties (figure 5). There are a 

few docking models to use, mostly involving algorithms like rigid/flexible docking to provide 

a prediction for ligand poses that can be scored using binding energy or empirical scoring 

functions. After docking ligand interaction analysis identifies critical residues and interaction 

types (e.g. hydrogen bonds, π-π stacking) to validate binding modes. 

 

Figure 5: Molecular docking steps using Maestro Schrodinger [30]. 

III.3 Scoring  

The docking score measures how strongly a ligand binds to a protein. It estimates the energy 

change (ΔG) when the free protein and ligand combine to form a complex, calculated as: 

ΔG= ΔGcomplexe - ΔGligand - ΔGprotein 

This score reflects ligand’s binding to its target, not biological activity. Scores should not be 

directly compared to experimental activity measurements but instead validated against 
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experimental binding data. Even if scores and experimental results disagree, this does not 

mean the scoring method is flawed, as experimental data often covers a narrow range 

compared to theoretical predictions. 

Scoring functions have two main roles: 

• Identifying the best-fitting ligand conformation. 

• Ranking molecules to highlight those with the strongest predicted binding. 

However, docking has limitations. Key challenges include modeling hydrogen bonds, energy 

changes, and water interactions during binding. Scoring functions simplify these complexities 

and cannot account for all molecular interactions, so results should be interpreted cautiously 

in drug discovery [31]. 

IV. Principles of ADME/Toxicity 

After entering the body, a drug must overcome the ADME/Tox barriers (Absorption, 

Distribution, Metabolism, Excretion, and Toxicity) to reach its therapeutic target effectively. 

Each of these physiological processes can reduce the drug's active concentration, making it 

essential for the compound to maintain sufficient levels to exert a meaningful biological 

effect. Focusing only on enhancing a molecule's affinity for its target may lead to failure in 

clinical settings if it’s pharmacokinetic and safety profiles are poor. Thus, successful drug 

development requires a balanced optimization of both target engagement and ADME/Tox 

characteristics [32]. These properties depend not only on the drug’s chemical structure but 

also on its interactions with transport proteins, metabolic enzymes, and plasma proteins. Since 

approximately 80% of marketed drugs are administered orally, it is particularly important to 

understand the dynamic and interdependent nature of ADME/Tox processes along the 

gastrointestinal tract. Computational tools, such as SAR models, play a crucial role in 

predicting how compounds will behave in the body, helping researchers prioritize candidates 

with favourable profiles and reduce late-stage failures [33]. 

IV.1 Toxicity 

As the name implies, this filter evaluates the toxicity of a compound along with its 

metabolites. Today, toxicity and insufficient efficacy are the primary reasons for drug 

development failures. Various forms of toxicity are examined, including AMES mutagenicity, 
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hERG I channel inhibition, acute oral toxicity in rats (LD50), liver toxicity, and skin 

sensitization [34]. 

IV.2 Lipinski's Rule 

Lipinski's Rule of Five is a widely used guideline for evaluating whether a chemical 

compound is likely to be orally bioavailable. 

Derived from the analysis of drugs that successfully passed Phase II clinical trials, this rule 

helps identify compounds that may have poor absorption or permeability, rather than 

definitively labelling them as drug-like or not [35].  

The rule focuses on key physicochemical properties that influence passive intestinal 

permeability and outline five main criteria: 

➢ Molecular weight ≤ 500 g/Mol 

➢ LogP (lipophilicity) ≤ 5 

➢ Hydrogen bond donors ≤ 5  

➢ Hydrogen bond acceptors ≤ 10  

➢ Rotatable bonds ≤ 15  

IV.3 Ghose rule 

The Ghose Rule defines drug-likeness based on the quantitative and qualitative analysis of 

known drugs, aiming to identify compounds with favorable pharmacological profiles. This 

rule is widely used in medicinal chemistry for filtering drug-like candidates in virtual 

screening and combinatorial library design. The key criteria are: 

➢ Quantitative Characterization: 

• Molecular weight between 160 and 480 g/Mol. 

• Log P (octanol-water partition coefficient) calculated between -0.4 and 5.6. 

• Molar refractivity between 40 and 130, reflecting molecular volume and 

polarizability. 

• Total number of atoms between 20 and 70. 

➢ Qualitative Characterization: 

• Analysis of the occurrence of functional groups. 
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• Identification of important substructures, such as benzene rings and 

heterocycles, common in drug molecules. 

These criteria were established through the profiling of the Comprehensive Medicinal 

Chemistry database, ensuring a practical definition of drug-like molecules based on empirical 

data [36]. 

IV.4 Veber rule 

The rule of Veber, proposed by Veber et al. in 2002, provides criteria for predicting the oral 

bioavailability of drug candidates by focusing on molecular flexibility and polarity rather than 

molecular weight alone. Through the analysis of over 1100 compounds, the study found that 

good oral bioavailability is associated with the following key molecular properties: 

• 10 or fewer rotatable bonds. 

• Polar surface area (PSA) of 140 Å² or less. 

• A total of 12 or fewer hydrogen bond donors and acceptors. 

These properties were shown to strongly influence passive membrane permeability, which is 

essential for oral absorption. The study demonstrated that reducing molecular flexibility and 

limiting polar surface area enhances the probability of a compound being orally bioavailable, 

offering a practical guideline for drug design [37]. 
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V. Conclusion  

This chapter has outlined the fundamental computational methodologies employed in modern 

drug design, emphasizing their critical role in streamlining the discovery and optimization of 

therapeutic candidates. Quantitative Structure-Activity Relationship (QSAR) modeling, 

molecular docking, and ADME/Tox profiling serve as powerful tools to predict biological 

activity, elucidate ligand-receptor interactions, and assess pharmacokinetic properties, 

respectively. These approaches not only enhance the efficiency of drug development but also 

reduce reliance on costly and time-consuming experimental trials. 

The integration of statistical validation techniques ensures the reliability and applicability of 

QSAR models, while advanced docking strategies provide insights into binding affinities and 

molecular interactions. Furthermore, adherence to drug-likeness rules (e.g., Lipinski’s, Ghose, 

and Veber) aids in prioritizing compounds with favorable bioavailability and safety profiles. 

Collectively, these computational frameworks bridge theoretical and experimental research, 

offering a robust foundation for rational drug design. Future advancements in machine 

learning and multi-scale modeling hold promise for further refining predictive accuracy and 

accelerating the development of novel therapeutics. 
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I. Introduction 

Alzheimer's disease (AD) represents one of the most complex and devastating 

neurodegenerative disorders, characterized by progressive cognitive decline, memory loss, 

and functional impairment. Despite decades of research, current therapeutic strategies 

primarily AChE inhibitors and NMDA receptor antagonists offer only symptomatic relief 

without halting disease progression. The multifactorial nature of AD, involving amyloid-β 

aggregation, tau pathology, oxidative stress, and neuro-inflammation, demands innovative 

approaches that simultaneously target multiple pathological pathways. 

Ningwei et al. [1] pursued the development of multifunctional therapeutic agents designed to 

exert simultaneous effects on multiple disease pathways. Their approach specifically aimed to 

attenuate oxidative stress and neuro-inflammation, two central drivers of neurodegeneration, 

in order to achieve improved therapeutic outcomes with reduced neurotoxic side, effects 

compared to traditional single-target drugs [2]. 

This chapter presents a comprehensive computational investigation of novel donepezil-tacrine 

hybrid derivatives designed to address these challenges. Leveraging advanced methodologies 

including 3D-QSAR modeling, molecular docking, ADME/Tox profiling, MM-GBSA binding 

free energy calculations, and density functional theory (DFT) analyses, we systematically 

evaluate the inhibitory potential, binding interactions, and drug-like properties of these 

compounds. The integration of these techniques enables the rational design of multifunctional 

agents with optimized AChE inhibition, improved pharmacokinetics, and reduced toxicity 

risks.  

II. Materials and Methods 

II.1 3D QSAR 

II.1.1 Data base 

The study incorporated 34 compounds exhibiting AChE inhibitory activity [1]. The molecular 

structures of these AChE inhibitors, along with their respective pIC50 values, are compiled in 

Table 1. The IC50 values were then transformed into pIC50 values, which were used as the 

dependent variable in this study. The molecules are divided into 2 sets : training set and test 

set in the ratio (75:25). 
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Table 1: The chemical structures and the observed activity (pIC50) data of the compounds. 

 

A1 – A6 

 

B1 – B20 

Compound R pIC50 Compound R pIC50 

A1 

 

7.63395079 B1 

 

7.524764777 

A2 

 

8.095284455 B2 

 

7.85823677 

A3 
 

7.928117993 B3 
 

7.51484665 

A4 

 

7.875169851 B4 

 

7.335452038 

A5 

 

7.438898616 B5 

 

7.203078925 

A6 

 

7.970616222 B6 

 

7.143512787 
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B7 

 

7.235450281 B14 

 

7.252899069 

B8 

 

8.390405591 B15 
 

7.056703385 

B9 

 

7.190440285 B16 

 

7.169796401 

B10 

 

7.73754891 B17 

 

7.150949309 

B11 
 

7.169218924 B18 
 

7.130123187 

B12 
 

7.247721015 B19 
 

7.170760572 

B13 
 

7.149966742 B20 

 

7.089215565 
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C1-C8 

C1 

 

8.54515514 C5 

 

7.821598658 

C2 

 

8.308918508 C6 

 

8.09420412 

C3 
 

8.330683119 C7 
 

7.547906751 

C4 

 

8.096367484 C8 
 

7.560036064 

 

II.1.2 Optimisation and alignment 

The molecules are optimised using the tool Ligprep which is a versatile ligand preparation 

tool integrated within the Maestro interface of the Schrödinger software suite [3], designed to 

efficiently generate high-quality small molecule structures for structure-based workflows such 

as virtual screening, molecular docking, and other computational modelling applications. It 

aims to produce accurate 3D representations of ligands by systematically expanding 

tautomeric forms, ionization states, ring conformations, and stereoisomers, ensuring 

comprehensive coverage of all relevant chemical states of a molecule [4]. Then the molecules 

are aligned using the Common Scaffold Alignment module (Maximum Common 
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Substructure). Since the molecule C1 is the most active (IC50=2.85 nM ), it is used as a 

reference for aligning the other molecules. 

 

Figure 1: Molecules alignment. (A): Molecule C1; (B) Molecules alignment. 

II.1.3 3D Field based QSAR 

The 3D Field-Based QSAR method involves constructing a model based on five Gaussian 

fields that represent key molecular properties: hydrogen bond acceptors (HBA), hydrogen 

bond donors (HBD), steric, electrostatic, and hydrophobic interactions. These fields are 

mapped onto a three-dimensional grid surrounding the molecules in the training set. To ensure 

the relevance of the input data, variables with minimal variation were excluded. Model 

building was carried out using PLS analysis, where the Gaussian field descriptors served as 

independent variables and the biological activity (pIC50) was used as the dependent variable. 

The predictive performance of the model was evaluated using LOO cross-validation, which 

provided the Q² value. Additional statistical parameters, such as R², standard error of estimate 

(SEE), and F values, were used to assess the quality of the model fit.  

II.2 Design of new compounds 

Due to its high biological activity, the compound C1 is chosen as the reference structure in 

order to create a set of molecules focusing the modifications on the R group. These changes 

aim to enhance binding affinity, improve pharmacokinetic properties and reduce potential 

toxicity. The newly designed compounds are then evaluated using a 3D QSAR model to 

predict their biological activity and identify promising candidates for further development. 

A B 
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II.3 Molecular docking  

Molecular docking was performed to analyse the interactions between the designed 

compounds and the target protein. The protein's crystal structure of AChE was obtained from 

the Protein Data Bank (PDB) (PDB ID: 4EY7) and selected as the receptor, then was prepared 

using Schrodinger’s Protein Preparation Wizard. During the process of protein preparation 

minimisation, the OPLS4 force field was employed to refine the structure and resolve any 

steric clashes. After preparation, a receptor grid was generated to define the active site for 

docking. The ligands were then docked into this site using the Ligand Docking tool to 

evaluate binding conformations, interaction energies and key molecular contacts. This process 

facilitated the identification of promising compounds with strong predicted affinities for the 

target. 

II.4 ADME/Tox and drug likeness prediction 

In the course of drug discovery process, it is of the crucial importance to conduct early 

ADME/Tox (absorption, distribution, metabolism, excretion, and toxicity) profiling. 

These proprieties were calculated using SwissADME website [5] and for toxicity pkCSM 

website [6]. Pharmacokinetic parameters, which facilitate prediction of a drug's behaviour 

within the body, were also considered as part of the ADME analysis to optimise drug-likeness 

and efficacy. 

II.5 MM-GBSA approach 

The MM-GBSA (Molecular Mechanics - Generalized Born Surface Area) approach is used to 

calculate the binding free energies between ligands and receptors. It calculates important 

energy values for the free receptor, free ligand, and their complex in the best possible states. 

From these, the binding energy (ΔG Bind) and the strain energies for both the receptor and the 

ligand are calculated. The strain-free binding energy (ΔG Bind NS) excludes conformational 

strain, offering a clearer view of interaction strength [7].This is depicted by the following 

equation, which uses the OPLS4 force field and the VSGB solvent model. 

Here, the binding free energy for each complex was determined using the following equation: 

ΔGbind= Gcomplex – (Gprotein + Gligand) 

where Gligand represents the free energy of the ligand, Gprotein is the target protein’s free energy 

value, Gcomplex corresponds to the free energy of the ligand-protein complex, and ΔGbind 

indicates the resulting binding free energy [8]. 
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II.6 Density Functional Theory (DFT) calculation 

The Gaussian input files for the molecules C1 and D1 were generated using the GaussView 5 

program [9], and their quantum chemical calculations were carried out with the Gaussian 

09W package [10]. Geometry optimisations were performed at the DFT/B3LYP/6-311G basis 

set level of theory. The highest occupied molecular orbital (HOMO) and lowest unoccupied 

molecular orbital (LUMO) energies, as well as the energy gaps, were calculated to evaluate 

the electronic properties of the optimised structures. Furthermore, the total density of states 

(TDOS) and the partial density of states (PDOS) were computed using Multiwfn (the 

Multifunctional Wavefunction Analyser) [11] in order to examine the contribution of 

individual elements to the molecular orbitals. 

III. Results and discussion 

III.1 3D QSAR 

PLS regression was applied to investigate the structure–activity relationship of the compounds 

under study. This statistical technique effectively minimises the difference between 

experimental and predicted biological activities. The determination coefficient (R2=0.82), 

which exceeds the commonly accepted threshold of 0.6 [12], demonstrates a strong 

correlation between the molecular descriptors and the biological activity which is expressed 

as pIC₅₀. The model’s statistical validity is further supported by a high Fisher test value 

F=103.9 and a low standard deviation of error SD= 0.1831, indicating good internal 

consistency and predictive accuracy. 

The percentage contributions of the molecular fields to the model were as follows:                     

steric (46.05%), hydrophobic (23.96%), electrostatic (12.80%), hydrogen bond acceptor 

(11.37%), and hydrogen bond donor (5.79%). These results suggest that steric and 

hydrophobic interactions are the primary factors influencing biological activity, while 

hydrogen bonding and electrostatic effects play a lesser, though still relevant, role. 

Model validation was conducted using the LOO cross-validation approach [13], which 

involves systematically excluding one compound at a time from the dataset and reconstructing 

the model. The cross-validated coefficient Q2=0.738> 0.5, confirms the model’s robustness 

and satisfactory predictive performance. 
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Table 2: Observed and calculated activities. 

Molecule Observed pIC50 Calculated pIC50 Residual 

A1 7.63395079 7.822 -0.18805 

A2 8.095284455 8.105 -0.00972 

A3 7.928117993 7.774 0.154118 

A4 7.875169851 7.685 0.19017 

A5 7.438898616 7.520 -0.0811 

A6 7.970616222 7.708 0.262616 

B1 7.235450281 7.275 -0.03955 

B2 8.390405591 7.617 0.773406 

B3 7.190440285 7.097 0.09344 

B4 7.73754891 7.605 0.132549 

B5 7.169218924 7.293 -0.12378 

B6 7.247721015 7.256 -0.00828 

B7 7.149966742 7.284 -0.13403 

B8 7.524764777 7.458 0.066765 

B9- 7.85823677 7.826 0.032237 

B10 7.51484665 7.503 0.011847 

B11 7.335452038 7.357 -0.02155 

B12 7.203078925 7.195 0.008079 

B13 7.143512787 7.401 -0.25749 

B14 7.252899069 7.347 -0.0941 

B15 7.056703385 7.079 -0.0223 

B16 7.169796401 7.211 -0.0412 
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B17 7.150949309 7.153 -0.00205 

B18 7.130123187 7.007 0.123123 

B19 7.170760572 6.984 0.186761 

B20 7.089215565 7.229 -0.13978 

C1 8.54515514 8.079 0.466155 

C2 8.308918508 8.537 -0.22808 

C3 8.330683119 8.160 0.170683 

C4 8.096367484 7.968 0.128367 

C5 7.821598658 7.903 -0.0814 

C6 8.09420412 8.102 -0.0078 

C7 7.547906751 7.616 -0.06809 

C8 7.560036064 7.687 -0.12696 

Contour map analysis (Figure 2) is commonly used to identify molecular fragments that are 

favourable or unfavourable for biological activity. The activity of molecules is influenced by 

various physicochemical properties, including hydrophobic, steric, electrostatic 

characteristics, as well as hydrogen bond donor and acceptor capabilities. These properties 

vary from one molecule to another depending on their specific substituents, which can alter 

the overall physicochemical profile and, consequently, impact biological activity. Among the 

studied compounds, C1 exhibited the highest biological activity and was therefore selected as 

the reference structure for generating the contour map. 
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Figure 2: Gaussian distributions: (A) steric, (B) hydrophobic, (C) electrostatic, (D) H-bond 

donor and (E) H-bond acceptor. 

The steric field is the principal factor contributing to activity with 46.05%, indicating that 

incorporating bulky groups in green regions enhances target binding and molecular fit. 

Conversely, areas absent of green contours imply that introducing additional larger 

substituents in these positions would be neutral or unfavourable. 

The hydrophobic field shows that yellow regions are favourable for hydrophobic substituents, 

such as alkyl groups. In contrast, grey regions support the presence of hydrophilic or polar 

groups, which could enhance solubility or favour beneficial polar interactions with the target 

environment. 

Red areas in the electrostatic field favour electronegative atoms such as O or N, which 

facilitate favourable electrostatic interactions with the positively charged regions of the target. 

Meanwhile, blue regions are favourable for electropositive groups, such as protonated amines 

or electron-deficient moieties, as their presence is predicted to enhance biological activity. 

The HBD field indicates that cyan regions are favourable for hydrogen bond donors, such as 

NH or OH groups. Their strategic placement could strengthen key hydrogen bonding 

interactions with the biological target. Purple regions in this field indicate areas where donor 
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groups may still be tolerated or neutral. Conversely, the HBA field demonstrates that purple 

regions are favourable for hydrogen bond acceptors, such as O or N atoms capable of 

donating lone pairs. In contrast, red regions in this field are unfavourable for such 

functionalities, likely due to steric hindrance or desolvation penalties. 

Finally, these contour maps are a valuable resource for the rational design of more potent and 

selective novel compounds 

III.2 Design of new compounds 

A rational modification of the R group was conducted based on steric field analysis. A total of 

twenty derivatives were constructed by introducing variations at the R position to optimise 

molecular interactions within the active site using MarvinSketch [14]. The steric field 

revealed that the incorporation of bulky substituents near the R position can enhance 

biological activity, provided they are placed in regions where such volume is favourable. 

Guided by this, larger groups were suggested to R in order to strengthen the binding affinity 

through improved steric complementarity with the target. However, careful attention was paid 

to the overall molecular weight of the newly designed compounds to ensure that it remained 

around or below 500 g/mol, thus ensuring respect for Lipinski's rule of five and the 

maintenance of desirable drug-like properties. 

III.3 Molecular docking  

Among the twenty compounds evaluated for anti-Alzheimer activity as AChE inhibitors, 

compound D1 exhibited the highest binding affinity with the enzyme, with a docking score of 

-11.696 kcal/mol. Analysis of the D1-AChE complex revealed several key interactions within 

the active site. D1 formed a hydrogen bond with TYR72 at a distance of 8.30 Å, 

corresponding to a hydrophobic interaction, as well as a hydrophilic hydrogen bond with 

ASP74. A significant π-cation interaction with TRP286 was also observed at 5.88 Å, 

contributing to hydrophobic stabilisation of the complex . Additionally, a hydrogen bond with 

a structural water molecule (H₂O) at 6.72 Å further supported the ligand’s orientation and 

binding stability within the pocket. 

These interactions indicate a strong and specific binding mode for compound D1. The 

combination of high docking affinity and diverse non-covalent interactions identifies D1 as 

the most promising candidate for AChE inhibition.  

The compound C1 have a docking score of -9.674 kcal/mol and formed a hydrogen bond with 

a structural water molecule , a salt bridge between NH and GLU292 and π-cation interaction 
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with TRP286. Compound D1 exhibits superior AChE inhibition properties compared to C1 

due to its enhanced binding affinity and diverse interactions. 

III.4 ADME/Tox and drug likeness prediction 

Comprehensive evaluation of ADME/Tox characteristics and pharmacokinetic parameters at 

an early stage of drug discovery is crucial for predicting in vivo performance, improving 

drug-like properties and identifying potential safety or efficacy issues prior to synthesis and 

experimental testing. Accordingly, the five highest scoring docked compounds underwent 

detailed profiling of ADME/Tox properties. Their compliance with established drug-likeness 

filters, including Lipinski's Rule of Five, Veber's Criteria and Ghose's Guidelines, was also 

assessed to determine the potential for oral bioavailability and suitability as lead candidates 

(Table 3). 

Table 3: Drug-likeness, and Medicinal Chemistry Parameters of compounds D1, C1. 

Mol 
MW 

(g/mol) 
HBA HBD 

Rotatable 

Bonds 
SA Lipinski Veber 

D1 507.07 6 2 8 4.48 Yes Yes 

C1 524.63 5 2 8 4.27 Yes Yes 

Whereas, MW: molecular weight; Rotatable Bonds : the number of single non-ring bonds around which the molecule can 

freely rotate; SA: Synthetic Accessibility 

Table 4: Predicted ADME/Tox parameters for the compounds D1, C1. 

 Model Unit D1 C1 

Absorption 

Intestinal 

absorption 

(human) 

Numeric 

 (% Absorbed) 
88.85 91.166 

Distribution 
BBB 

permeability 

Numeric  

(log BB) 
-0.589 -1.037 

Metabolism 

CYP3A4 

substrate 

Categorical 

(Yes/No) 
Yes Yes 

CYP2D6 

inhibitor 

Categorical 

(Yes/No) 
Yes No 
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Excretion 
Total 

Clearance 

Numeric  

(log ml 

/min/kg) 

1.312 0.787 

Toxicity 
AMES 

toxicity 

Categorical 

(Yes/No) 
No Yes 

III.4.1 Absorption 

Poor intestinal absorption is typically defined as a value below 30%. However, compound D1 

displays predicted human intestinal absorption with 88.85%, suggesting excellent oral 

bioavailability. 

III.4.2 Distribution 

The predicted blood brain barrier (BBB) permeability (logBB) value of compound D1 is 

 -0.589 . This result indicate moderate to low passive diffusion across the BBB. While the 

compound is unlikely to cross the BBB efficiently (logBB > 0.3), its value is not low enough 

to suggest complete exclusion from the brain (logBB < -1). This suggests limited, though not 

negligible, brain exposure an attribute that may be beneficial for drugs intended for peripheral 

targets, but which may require further optimisation for central nervous system (CNS) 

applications. 

III.4.3 Metabolism 

Compound D1 is predicted to be substrates of CYP3A4, indicating it is primarily metabolised 

by CYP3A4 and may be less affected by genetic variability. Furthermore, the inhibition 

profile indicates that while CYP2D6 inhibition is observed in compound D1, 

III.4.4 Excretion 

The predicted total clearance of D1 value (log (CLtot) is 1.048 suggest high elimination rates, 

generally higher than the control (0.787). This implies efficient excretion, which reduces the 

risk of accumulation but may require dose adjustments to maintain therapeutic levels. 

III.4.5 Toxicity 

Toxicity predictions indicated that compound D1 poses no AMES toxicity, suggesting a low 

risk of mutagenicity. This result reinforces its safety profile from a genotoxicity perspective 

and supports its suitability for further biological evaluation. The absence of predicted 

mutagenic potential highlights D1 as a promising candidate for subsequent in vitro and in 
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vivo investigations, aligning with favourable ADME/Tox characteristics observed during 

simulation of human metabolic behaviour. 

III.5 MM-GBSA 

The MM-GBSA binding free energy components, including van der Waals energy (vdW), 

lipophilic energy (Lipo), Coulombic energy (electrostatic), covalent binding contributions, 

and solvation energy (solv GB), were calculated (Table 5).  

The total binding free energy (ΔG Bind) values for the compounds D1 and C1. 

Table 5: The relative binding-free energies (kcal/mol) obtained by Prime MM–GBSA. 

Compound ∆GBind ∆GLipo ∆Gcoulomb ∆Gcovalent ∆Gsolv  ∆GvdW 

D1 -52.43 -32.95 -28.20 11.87 44.05 -43.24 

C1 -49.83 -33.71 -37.38 3.54 75.98 -50.73 

Among the compounds, D1 demonstrates a notable binding affinity of -52.43 kcal/mol, 

principally driven by substantial van der Waals (-43.24 kcal/mol) and lipophilic (-32.95 

kcal/mol) interactions. Electrostatic (Coulombic) energy (-28.20 kcal/mol) further supports 

binding, indicating key polar or charged contacts within the binding site. Despite opposing 

contributions from solvation (44.05 kcal/mol) and covalent (11.87 kcal/mol) energies, these 

are outweighed by the dominant non-covalent forces that stabilise the ligand-receptor 

complex. 

The MM-GBSA results demonstrate that strong van der Waals and lipophilic interactions are 

pivotal in stabilising binding, while electrostatic interactions enhance specificity. Though 

desolvation penalties oppose binding, they are effectively compensated by positive 

interactions, confirming that compound D1 exhibit high binding affinities. 

III.6 Density Functional Theory (DFT) calculation 

The electronic properties of compounds C1 and D1 were investigated using DFT calculations 

at the B3LYP/6-311G theoretical level. The optimised molecular structures were then used to 

calculate the HOMO and LUMO energies and the corresponding energy gaps. These values 

provide valuable insight into the molecules' chemical reactivity and electronic characteristics. 

Visual representations of the HOMO and LUMO orbitals for both compounds are presented in 

figure 4. 
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For compound C1, the HOMO energy is -4.1685 eV, the LUMO energy is -1.1520 eV and the 

energy gap is 3.0165 eV. Compound D1, in comparison, exhibits HOMO and LUMO energies 

of -5.5955 eV and -1.7469 eV respectively, corresponding to an energy gap of 3.8486 eV. 

The energy gap (ΔEgap) is an indicator of a chemical compound's reactivity and stability. A 

smaller energy gap, as observed in compound C1, suggests higher electronic reactivity and 

greater potential to facilitate electronic transitions, enhancing its interaction with biological 

targets. However, the larger energy gap of compound D1 indicates a more chemically stable 

and less reactive nature. 

 

 

Figure 3: The geometries of the HOMO and LUMO orbitals, along with the value of the 

energy gap values. 

Molecular electrostatic potential (MEP) maps of compounds D1 and C1 show how 

electrostatic charge is distributed across each molecule. They highlight potential sites for 

electrophilic and nucleophilic interactions. Red regions (electron-rich) are mainly located 

around nitrogen and oxygen atoms, indicating zones favourable to electrophilic attack. In 

contrast, blue regions (electron-poor) mark areas favourable to nucleophilic attack, typically 

near hydrogen atoms or areas of low electron density. 

D1 C1 
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A key structural difference between the two compounds lies in their halogen substituents: D1 

contains chlorine and C1 contains fluorine. Both halogens are positioned near coloured 

electrostatic surfaces and influence local polarity due to their electronegative nature. Yellow 

regions represent intermediate potentials and indicate moderately polar zones. 

Despite the variation in halogens, both compounds exhibit broadly similar electrostatic 

profiles, with reactive regions associated with heteroatoms. However, the specific halogen 

present may affect the molecule’s reactivity and binding interactions subtly. 

The DOS analysis reveals significant electronic differences between C1 and D1 that help to 

explain their different bioactivities. While both compounds exhibit significant PDOS 

contributions near the frontier orbitals (−4 to 0 eV), D1 exhibits a slightly broader HOMO–

LUMO gap (3.85 eV versus 3.84 eV), indicating greater thermodynamic stability and reduced 

inherent reactivity. 

Fragments 2 and 3 in D1 show localised PDOS peaks near the HOMO region (~−5.6 eV), 

suggesting optimised orbital alignment for interaction with AChE. In contrast, C1 displays 

more dispersed PDOS signals, which is consistent with greater reactivity but reduced target 

specificity. Additionally, the deeper-energy PDOS fragment (1) of D1 (−16 to −8 eV) suggests 

better stabilisation of core electrons, which correlates with its superior metabolic stability in 

ADME predictions. 

Together, these electronic features account for D1’s stronger docking affinity of −11.7 

kcal/mol compared to C1’s −9.7 kcal/mol, as well as its enhanced drug-like profile, thereby 

reinforcing its potential as the more promising therapeutic candidate. 
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IV. Conclusion 

This comprehensive computational study explored the potential of novel donepezil-tacrine 

hybrid derivatives as multifunctional agents for Alzheimer's disease (AD) treatment. By 

integrating advanced techniques such as 3D-QSAR modeling, molecular docking, ADME/Tox 

profiling, MM-GBSA binding free energy calculations, and DFT analyses, the research 

systematically evaluated the inhibitory potential, binding interactions, and drug-like properties 

of these compounds. 

The 3D-QSAR model demonstrated a strong correlation (R² = 0.82) between molecular 

descriptors and biological activity (pIC₅₀), with steric (46.05%) and hydrophobic (23.96%) 

interactions identified as the primary contributors to AChE inhibition. The model's robustness 

was confirmed by cross-validation (Q² = 0.738), ensuring its reliability for predicting the 

activity of newly designed compounds. Guided by steric field analysis, twenty derivatives 

were rationally designed, with modifications focused on the R group to optimize binding 

affinity while maintaining compliance with Lipinski’s Rule of Five. 

Molecular docking revealed that compound D1 exhibited the highest binding affinity (-11.696 

kcal/mol), forming critical interactions with AChE residues (TYR72, ASP74, and TRP286) 

and structural water molecules. This superior performance compared to the reference 

compound C1 (-9.674 kcal/mol) underscores D1's potential as a more effective AChE 

inhibitor. 

ADME/Tox predictions further highlighted D1's favourable pharmacokinetic profile, 

including high intestinal absorption (88.85%), moderate BBB permeability (logBB = -0.589), 

and low toxicity risks (no AMES toxicity or hERG inhibition). MM-GBSA calculations 

reinforced these findings, with D1 exhibiting strong binding free energy (-52.43 kcal/mol), 

driven by van der Waals and lipophilic interactions. 

DFT analyses provided additional insights into D1's electronic properties, revealing a HOMO-

LUMO gap (3.85 eV) indicative of chemical stability. The MEP and DOS analyses identified 

key electrophilic and nucleophilic regions, further elucidating D1's interaction potential with 

biological targets. 

In summary, this study identifies D1 as a promising lead compound for AD therapy, 

combining potent AChE inhibition, favourable drug-like properties, and low toxicity. Future 

work should focus on synthesizing and experimentally validating D1's efficacy in vitro and in 

vivo to advance its development as a multifunctional anti-AD agent. The integrated 
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computational approach employed here offers a robust framework for rational drug design, 

accelerating the discovery of novel therapeutics for complex neurodegenerative disorders 
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General conclusion 

This comprehensive study integrates computational and theoretical approaches to explore 

novel donepezil-tacrine hybrid derivatives as multifunctional agents for Alzheimer’s disease 

(AD) treatment. By combining insights from neurodegenerative disease pathology (Chapter 

1), advanced drug design methodologies (Chapter 2), and computational evaluations (Chapter 

3), the research provides a robust framework for developing next-generation AD therapeutics. 

Below is a detailed synthesis of the key findings and their implications. 

Alzheimer’s disease is a multifactorial disorder characterized by amyloid-β plaques, 

neurofibrillary tangles, cholinergic dysfunction, and neuroinflammation. Current therapies, 

such as acetylcholinesterase (AChE) inhibitors (e.g., donepezil) and NMDA antagonists (e.g., 

memantine), offer symptomatic relief but fail to halt disease progression. The limitations of 

single-target therapies underscore the need for multifunctional agents that address AD’s 

complex pathology. The design of donepezil-tacrine hybrids by Ningwei et al. represents a 

promising strategy, targeting AChE inhibition while mitigating oxidative stress and 

neuroinflammation. 

The study employed a suite of computational tools to optimize drug design: 

✓ QSAR Modeling: A 3D-QSAR model (R² = 0.82, Q² = 0.738) identified steric 

(46.05%) and hydrophobic (23.96%) interactions as critical for AChE inhibition, 

guiding the rational design of 20 derivatives. 

✓ Molecular Docking: Compound D1 exhibited the highest binding affinity (-11.696 

kcal/mol), forming key interactions with AChE residues (TYR72, ASP74, TRP286) 

and structural water molecules. 

✓ ADME/Tox Profiling: D1 demonstrated favorable pharmacokinetics (88.85% 

intestinal absorption, logBB = -0.589) and low toxicity (no AMES mutagenicity or 

hERG inhibition), complying with Lipinski’s and Veber’s rules. 

✓ MM-GBSA/DFT Analyses: D1’s binding energy (-52.43 kcal/mol) and electronic 

properties (HOMO-LUMO gap = 3.85 eV) confirmed its stability and target 

specificity. 

While computational results are promising, translational steps are essential: 

✓ Experimental Validation: Synthesis and in vitro/in vivo testing of D1 to confirm AChE 

inhibition and safety. 
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✓ Disease-Modifying Potential: Investigations into D1’s effects on amyloid-β 

aggregation and tau phosphorylation. 

✓ Clinical Adaptability: Refinement of BBB permeability and metabolic stability for 

CNS delivery. 

Finally, this work exemplifies the power of integrating computational drug design with 

neurodegenerative disease biology. By leveraging QSAR, docking, and ADME/Tox profiling, 

the study identifies D1 as a lead compound with balanced efficacy and safety. The 

methodologies outlined here not only advance AD research but also provide a template for 

tackling other complex diseases. Collaborative efforts between computational and 

experimental researchers will be pivotal in translating these findings into clinically viable 

therapies, addressing the urgent global need for effective AD treatments. 

 


