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Résumé 

Dans ce travail, nous présentons une étude de la commandedirecte de la puissance d'une 

génératrice asynchrone à double alimentation, qui peut être insérée dans le système éolien. 

L‘objectif de cette étude est de contrôler directement la puissance active et réactive par la 

technique contrôle direct de puissance (DPC), et nous avons extrait les résultats de simulation 

à l'aide du programme MATLAB/Simulink, qui a montré une bonne et excellente efficacité 

pour le contrôle de la puissance du générateur et le découplage entre les axes qd  . 

Mots clés: Énergie éolienne ;GADA ; Commande Vectorielle ; Contrôle Direct de la 

Puissance ;  Turbine éolienne à deux masses ;  Convertisseur d‘électronique de puissance 

Abstract 

In this work, we present a study of the power control of a double-fed asynchronous generator, 

which can be inserted in the wind system. The objective of this study is to directly control the 

active and reactive power by the direct power control (DPC) technique, and we extracted the 

simulation results using the MATLAB/Simulink program, which showed good and excellent 

efficiency for generator power control and a decoupling between qd  axes. 

Key words: Wind power; DFIG; Vector Command; Direct Power Control; Tow mass wind 

turbine; power electronic convertor.  

 ملخص

الهذفمن  .نقذمذراستللتحكمفيالطاقتلمىلذغيزمتشامنمشدوجالتغذيت،والذييمكنإدخالهفينظامالزياح،فيهذاالعمل

نتائجالمحاكاة  DPCهذهالذراستهىالتحكمالمباشزفيالقذرةالنشطتوالمتفاعلتبىاسطتتقنيتالتحكمالمباشزفيالقذرة

 dqباستخذامبزنامجماتلابسيملينكىالتيأظهزتكفاءةجيذةوممتاسةللتحكمفيطاقتالمىلذوفصلالمحاور

 طاقتالزياح،النمذجت،مىلذغيزمتشامنثنائيالتغذيت،التحكمالمباشزفيالاستطاعت : مفتاحيتكلمات

نمذجة الجزء الميكانيكي للعنفة و الكهربائي للمولدة ثنائية التغذي.dqبينمحاور
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V
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(N.m/rd/s) Coefficient de frottements visqueux internes de l‘arbre lent, 

II. Grandeurs et paramètres mécaniques de la génératrice : 

a) Grandeurs mécaniques de la génératrice : 

hs
T

 
(N.m) Couple de l‘arbre rapide,  

opths
T

,  
(N.m) Couple de l‘arbre rapide optimal,  

emT
 

(N.m) Couple électromagnétique,  

g  
 

(rd.s
-1

) Vitesse de rotation de la génératrice, 

s  
 

(rd.s
-1

) Vitesse de synchronisme, 

s  
 

(rd) Position angulaire du stator de la génératrice, 

t  
(rd) Position angulaire du rotor de la génératrice, 

g  
 

(rd) Position angulaire de la génératrice, 

p
 (-) Nombre de paires de pôles, 

g  (-) Glissement, 

b) Paramètres mécaniques de la génératrice en (SI) : 

gJ
 

(Kg. m
2
) Inertie du rotor de la génératrice, 

gf  
(Nm/rd/s) Coefficient de frottements visqueux de la génératrice, 

III. Grandeurs et paramètres électrique de la génératrice : 

a) Grandeurs électrique au Stator en (SI) 

,,, ,, scsbsa vvv  
(V) Tensions statoriques triphasées, 

,,sabcV  (V) Vecteur des tensions statoriques triphasées,  

,, , sqsd vv  (V) Tensions statoriques diphasées dans le repère  q,d , 
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sdqV  (V) Vecteur des tensions  statoriques diphasées dans le repère  qd, , 

,,, ,, scsbsa iii  (A) Courants statoriques triphasés, 

,,sabcI  (A) Vecteur des courants statoriques triphasés, 

,, , sqsd ii  (V) Courants statoriques diphasées dans le repère  q,d , 

,sdqI  (V) Vecteur des Courants statoriques diphasées dans le repère  qd, , 

b) Grandeurs électrique au Rotor en (SI) 

,,, ,, rcrbra vvv  (V) Tensions rotoriques triphasées, 

,,rabcV  (V) Vecteur des tensions rotoriques triphasées,  

,, , rqrd vv  (V) Tensions rotoriques diphasées dans le repère  q,d , 

,rdqV  (V) Vecteur des tensions rotorique diphasées dans le repère  qd, , 

,,, ,, rcrbra iii  (A) Courants rotoriques triphasés, 

,,rabcI  (A) Vecteur des courants rotoriques triphasés, 

,, , rqrd ii  (V) Courants rotoriques diphasées dans le repère  q,d , 

,rdqI  (V) Vecteur des courants rotoriques diphasées dans le repère  qd,  

c) Grandeurs magnétique au Stator en (SI) 

,,, ,, csbsas   (Wb) Flux magnétiques au stator, 

,,sabc  (Wb) Vecteur de flux magnétiques au stator, 

,, , sqsd   (Wb) Flux statoriques diphasés dans le repère tournant  q,d , 

d) Grandeurs magnétique au Rotor en (SI) 

,,, ,, crbrar   (Wb) Flux magnétiques au rotor, 

,,rabc  (Wb) Vecteur de flux magnétiques au rotor, 

,, , rqrd   (Wb) Flux rotoriques diphasés dans le repère tournant  q,d , 

f) Paramètres électrique de génératrice en (SI) 

,sR  ( ) Résistances statorique par phase, 

,rR  ( ) Résistances rotorique par phase, 

,sL  (H) Inductance cyclique statorique, 

,rL  (H) Inductance cyclique rotorique, 

,mL  (H) Inductance cyclique mutuelle (entre stator et rotor), 


 

(-) 
Coefficient de dispersion : 

)/( rsm LLL21 
, 
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IV. Grandeurs et paramètres du CCR : 

a) Grandeurs du CCR : 

lclbla
v,v,v  (V) Tensions d‘alimentation du CCR, 

labc
V

,
 (V) Vecteur des tensions d‘alimentation triphasées du CCR,  

lclbla
i,i,i  (A) Courants absorbée par le CCR, 

labc
I

,
 (A) Vecteur des courants absorbés par le CCR, 

fcfbfa
v,v,v  (V) Tensions triphasées d‘entées du redresseur, 

fabc
V

,
 (V) Vecteur des tensions d‘alimentation triphasées du CCR,  

cba S,S,S  (-) Etats des interrupteurs du redresseur dans le repère (a, b, c),  

dc
V  (V) Tension de la sortie du redresseur (Bus continu), 

dc
i  (A) Courants  de la sortie du redresseur (Bus continu), 

ci  (A) Courants  du condensateur,  

ch
i  (A) Courants  de charge, 

b) Paramètres du CCR : 

f
R  ( ) Résistance de la ligne de connexion, 

f
L  

(H) Inductance de la ligne de connexion, 

ch
R  ( ) Résistance de charge, 

C  (H) Capacité de condensateur, 

V. Grandeurs et paramètres du CCM : 

a) Grandeurs du CCM : 

condbondaond
vvv

,,,
,,  (V) Tensions délivrées par l‘onduleur, 

ondabc
V

,
 (V) Vecteur des tensions délivrées par l‘onduleur,  

condbondaond
iii

,,,
,,  (A) Courants délivrés par l‘onduleur, 

ondabc
I

,
 (V) Vecteur des courants délivrés par l‘onduleur,  

cba F,F,F  (-) Etats des interrupteurs de l‘onduleur dans le repère (a, b, c),  

b) Paramètres du CCM : 

l
R  ( ) Résistance de filtre, 

l
L  (H) Inductance de filtre, 

VI. Repère : 

fr
T

,
 

(s) Constante de temps du convertisseur coté réseau,  

rT
 

(s) Constante de temps rotorique, 
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cba SSS ,,  
Axes liés aux enroulements triphasés statoriques, 

cba RRR ,,  
Axes liés aux enroulements triphasés rotoriques, 

d
S , qS  Axes liés aux enroulements  biphasés statoriques, 

d
R , qR

 
Axes liés aux enroulements  biphasés rotoriques, 

),( qd
 

Axes de référentiel de Park (tournant à la vitesse de synchronisme), 

),( 
 

Axes de référentiel de Concordia (fixe au stator), 

 (rd) Position angulaire du rotor par rapport au stator, 

s (rd) Position angulaire du stator par rapport à l‘axe )(d , 

r (rd) Position angulaire du rotor par rapport à l‘axe )(d , 

VII. Transformation : 

s  Opérateur de LAPLACE, 

P  Transformation de PARK
dqabc

XX  , 

C  Transformation de Concordia
dqabc

XX  , 

VIII. Grandeurs de commande : 

g
 

(rd.s
-1

) Vitesse de rotation de la génératrice de référence, 

g  
 

(rd) Position angulaire de la génératrice de référence, 

emT
 

(N.m) Couple électromagnétique de référence, 

hsT
 

(N.m) Couple de l‘arbre rapide de référence, 

sdv
 

(V) Tension statoriques directe de référence, 

sqv
 

(V) Tension statoriques en quadratures de référence, 

rdi
 

(A) Courant rotorique direct de référence, 

rqi
 

(A) Courant rotorique en quadrature de référence, 

sP
 

(MW) Puissance active de référence du stator de la GADA, 

sQ
 

(MVar) Puissance réactive de référence du stator de la GADA, 

fP
 

(MW) Puissance active de référence du CCR, 

fQ
 

(MVar) Puissance réactive de référence du CCR, 

IX. Nomenclateur : 

En Français 
 

Nomenclateur : 

MAS
 

Machine Asynchrone, 

GACE
 

Génératrice Asynchrone à Cage d‘Ecureuil, 
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GARB
 

Génératrice Asynchrone à Rotor Bobiné, 

GADA
 

Génératrice Asynchrone à Double Alimentation, 

MADA
 

Machine Asynchrone à Double Alimentation, 

GSAP
 

Génératrice Synchrone à Aimant Permanents, 

GSRB
 

Génératrice Synchrone à Rotor Bobiné, 

CCM Convertisseur Côte Machine, 

CCR Convertisseur Côte Réseau, 

CM Côte Machine, 

CR Côte Réseau, 

MLI Modulation de Largeur d‘Impulsion, 

PI Proportionnel-Intégral, 

En Anglais
 

 

AC Alternative Current, 

DC Direct Current, 

GTO GateTurn-Off  Thyristor, 

IGBT Insulated-GateBipolar Transistor, 

PWM Pulse Width Modulation 

FACTS Flexible Alternatif Curent Transmission System, 

MPPT Maximum Power Point Tracking, 

FAST Fatigue, Aerodynamic, Structures, and Turbulence, 

DPC Direct Power Control, 
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Introduction Générale 

Laproduction d‘énergie électrique revêt une importance capitale, et il est primordial de trouver des 

solutions pour en produire davantage, de manière plus propre et plus durable. La consommation 

d‘énergie a considérablement augmenté au cours du siècle dernier, en raison de l‘industrialisation 

massive. Les prévisions concernant les besoins énergétiques pour les années à venir ne font que 

confirmer, voire accentuer, cette tendance, notamment compte tenu de l‘évolution démographique et 

du développement de certaines zones géographiques. 

D‘une part, les gisements des ressources énergétiques traditionnelles, principalement d‘origine fossile, 

ne peuvent être exploités que pour quelques décennies, ce qui laisse présager une situation de pénurie 

énergétique imminente à l‘échelle mondiale. Pour répondre aux besoins énergétiques de la société 

actuelle, il est donc nécessaire de mettre en place des solutions adaptées et diversifiées. Actuellement, 

deux approches principales peuvent être envisagées : 

1. Réduire la consommation des équipements et augmenter la productivité des centrales énergétiques, 

en améliorant leur efficacité. 

2. Rechercher et développer de nouvelles sources d‘énergie. 

C‘est dans ce contexte que s‘inscrit notre étude, qui porte sur l‘une des énergies renouvelables en plein 

développement actuellement : l‘énergie éolienne, laquelle occupe une place particulière. En effet, cette 

source d‘énergie est appelée à se développer fortement dans de nombreuses régions. Toutefois, sa 

grande variabilité, due aux fluctuations de la vitesse du vent, peut affecter de manière significative la 

qualité de la tension et du courant injecté dans le réseau.Une grande partie des éoliennes installées 

aujourd‘hui sont équipées de machines asynchrones à double alimentation (GADA). Ce type de 

génératrice permet une production d‘électricité à vitesse variable, ce qui permet de mieux exploiter les 

ressources éoliennes dans différentes conditions de vent. De plus, si ces éoliennes peuvent fournir des 

services système au réseau, tels que la fourniture de puissance réactive pour la correction du facteur de 

puissance, ou encore l‘amélioration de la qualité de l‘énergie par le filtrage des harmoniques de 

courant, leur intégration dans le réseau sera certainement facilitée. C‘est donc dans ce cadre que nous 

allons développer notre étude, qui porte sur la Commande DPC d‘une Machine Asynchrone à Double 

Alimentation (GADA) destinée au système éolien. 

Dans le premier chapitre, nous présentons les derniers développements dans le domaine de 

l‘énergie éolienne, depuis le début de son exploitation, en donnant également une définition de cette 

énergie. Nous mettons en évidence les différents types d‘éoliennes et leur évolution au cours des 

dernières décennies, ainsi que les diverses combinaisons machine-transformateur utilisées dans les 

systèmes à base de MADA. 

Le deuxième chapitre est consacré à la modélisation de la turbine éolienne à deux masses, plus 

précisément de sa partie mécanique. Nous y abordons la conversion de l‘énergie cinétique du vent en 

énergie électrique, ainsi que la conception d‘une éolienne à axe horizontal : description, principe de 

fonctionnement, etc. Nous y modélisons ensuite la turbine et présentons sa stratégie de contrôle, basée 
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sur la technique MPPT (Maximum Power Point Tracking) avec asservissement de la vitesse 

mécanique. 

Le troisième chapitre traite la modélisation de la partie électrique du système éolien. Nous y 

présentons la stratégie de commande vectorielle avec orientation du flux statorique, accompagnée 

d‘une simulation côté machine. 

Le dernier chapitre est dédié au contrôle direct de la puissance (DPC) pour la conversion de 

l‘énergie éolienne, basée sur un générateur asynchrone à vitesse variable. Nous mettrons en œuvre une 

simulation du contrôle direct de la puissance côté réseau, et analyserons ses performances.Finalement, 

la stratégie NewDPC sera appliquée au système afin d‘étudier l‘impact de cette méthode sur le 

comportement du système et d‘analyser les résultats observés. 

Enfin, on termine ce mémoire  par une conclusion générale, résumant les principaux résultats 

obtenus.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Chapitre I 

 

Etat d‘art sur le système de conversion 

de  l‘énergie éolienne 
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I.1. Introduction 

L'électricité est l'énergie la plus importante et le plus exploitée quotidiennement par l'être humain, et 

ce besoin en énergie électrique augment d‘année en année. Cette nécessité implique de trouver des 

ressources inépuisables et écologiques, parmi ces ressources renouvelable, le vent a été utilisé depuis des 

siècles pour moudre les grains, avancer les bateaux, pomper de l'eau, et actuellement il est utilisé pour 

produire de l'électricité à base des éoliennes.  

Dans ce chapitre, nous aborderons l'historique de l'énergie éolienne, ainsi que leurs statistiques 

annuelles concernant la capacité installée mondiale. Puis, nous allons présenter les différents axes du 

système éolien et leur constitution. Par la suite, nous allons présenter les types de convertisseurs 

électromécaniques, machines électrique, utilisées pour la conversion de l‘énergie éolienne en l‘énergie 

électrique, ainsi que leur principe de fonctionnement. A la fin de ce chapitre, nous allons présenter les 

avantages et les inconvénients de chacune des machines employées dans le système de conversion 

d‘énergie éolienne. 

I.2. Définition de l'énergie éolienne  

L'énergie éolienne est une source d'énergie renouvelable, qui dépend du vent. Le soleil chauffe 

inégalement la terre, ce qui crée des zones de températures et de pression atmosphérique différentes tout 

autour du globe. De ces différences de pression naissent des mouvements d'air, appelés vent. L‘énergie 

éolienne permet de produire l'électricité par l'intermédiaire les éoliennes grâce à la force du vent[Deh -19]. 

La Figure I.1, représente le principe de la conversion de l‘énergie éolienne.  

 

Figure I.1 : Principe de la conversion de l‘énergie éolienne. 

 

I.3.Historique 

L'humanité utilise l'énergie éolienne depuis des millénaires pour remplir diverses travaux par exemple: 

pour naviguer (voiliers), pour voler (cerfs-volants, parapentes), pour actionner des mécanismes (moulins, 

pompes à eau pour irriguer).  

Tout au long de l'histoire, l'énergie éolienne a pris plusieurs stations pour son développement, Là où la 

première fois pour convertir l'énergie cinétique des masses d'air en énergie électrique remonte à la fin du 

19ème siècle. Parmi les pionniers on peut citer Poul La Cour au Danemark qui a associé une dynamo à 

une éolienne en 1891. Vers les années 1950 Johannes Jul devient aussi un pionnier dans l'utilisation de 

1'énergie éolienne en construisant les premières éoliennes produisant du courant alternatif. Après la 

fabrication du premier aérogénérateur, les ingénieurs danois ont amélioré cette technologie durant la 1ère 

et la 2ème guerre mondiale avec une grande échelle.   

énergie 
cinétique du 

vent

énergie

mecanique

énergie 
électrique



Chapitre I____________________________________________ Etat de d‘art sur le système d‘énergie éolienne 
 

4 
 

 C‘est principalement la première crise pétrolière en 1973 contribua à éveiller 1'intérêt pour 1'énergie 

éolienne dans plusieurs pays. Les USA ont notamment lancé en Californie une opération à grande échelle 

entre les années 1980 et 1986, débuté avec des turbines de moyenne puissance (55 kW), puis 144  

machines (avec un total de 7 MW) en 1981 et 4687 machines d‘une puissance totale de (386 MW) en 

1985[khe-22]. 

    Aujourd‘hui, les études portent sur l‘amélioration de l‘aérogénérateur ainsi que sur la chaîne de 

conversion de l‘énergie du vent en énergie électrique exploitable par le réseau. Les premières 

éoliennes ont été basées sur une génératrice asynchrone liée aux pâles par 1'intermédiaire d‘une boite 

de vitesse, fonctionnant à vitesse fixe et directement reliée au réseau (pas d‘interface électronique).  

Cette technologie est surtout employée au Danemark dans les années 1970. Les systèmes les plus 

récents se dirigent d‘une part vers la vitesse variable pour maximiser la puissance captée du vent avec 

1'insertion de dispositifs de l‘électronique de puissance entre la génératrice et le réseau, et d‘autre part 

vers l'utilisation de génératrices spéciales tournant à basse vitesse afin de s'affranchir du réducteur de 

vitesse [khe-22]. 

I.4. Dernièresstatistiques de la capacité mondiale installée de l'énergie éolienne 

Actuellement, l'énergie éolienne est l'une des sources d'énergie les plus développées et connaît une 

croissance rapide dans de nombreux pays à travers le monde.  La Figure I.2, représente les statistiques de 

la capacité mondiale de l'énergie éolienne à la fin 2023 [Mer-21]. 

  

Figure I. 2: statistiques de la capacité mondiale de l'énergie éolienne.  
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I.5.Avantages et inconvénients de l’énergie éolienne 

Les avantages et inconvénients de l‘énergie éolienne sont donnés par le tableau I.1 :  

Tableau I.1 :Avantages et inconvénients de l‘énergie éolienne [Khe-22]. 

Avantages Inconvénients 

 

 Diminution de l'émission de CO2.  

 Ne nécessite pas beaucoup de surface 

comme pour le cas des panneaux 

solaires.  

 Adaptée naturellement aux périodes de 

consommation d‘énergie de certains pays 

: le vent est plus fort en hiver où la 

demande d‘électricité est la plus forte.  

 Elle est gratuite puisque ne nécessite pas 

une énergie ou une matière première.  

 La durée de vie des éoliennes modernes 

est maintenant de 20 à 25 ans, ce qui est 

comparable à de nombreuses autres 

technologies de production d'énergie 

conventionnelles.  

 

 

  Le bruit : il a nettement diminué, 

notamment le bruit mécanique qui a 

pratiquement disparu grâce aux progrès 

réalisés au niveau du multiplicateur 

  L‘impact sur les oiseaux : certaines 

études montrent que ceux-ci évitent les 

aérogénérateurs. D‘autres études disent que les 

sites éoliens ne doivent pas être implantés sur 

les parcours migratoires des oiseaux, afin que 

ceux-ci ne se fassent pas attraper par les 

aéroturbines. 

  Le coût élève de l‘énergie éolienne par 

rapport aux sources d‘énergie classiques. 

 

I.6. Principe de fonctionnement d’une éolienne 

Pour convertir l'énergie du vent en énergie électrique, les turbines éoliennes doivent transformer une 

partie de l‘énergie cinétique du vent en électricité. Dans un système éolien, la partie mécanique sert à 

capter l'énergie cinétique du vent et à la convertir en énergie mécanique disponible sur l‘arbre de 

transmission. Cette dernière est ensuite transformée en énergie électrique via une génératrice. 
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Figure I. 3 : Conversion de l'énergie cinétique du vent 

I.7. Différents axes dans le système éolien 

    Il existe différentes façons de classer les turbines éoliennes mais celles-ci appartiennent 

principalement à deux groupes selon l‘orientation de leur axe de rotation : celles à axe horizontal et 

celles à axe vertical [Tal-22]. 

I.7.1 Eoliennes à axe vertical  

Les éoliennes à axe vertical (en anglais : Vertical Axis Wind Turbine — VAWT) sont très peu utilisées 

de nos jours, car elles sont moins performantes que celles à axe horizontal. Elles tournent en moyenne 

de 2 à 8 fois moins vite qu‘une éolienne tripale classique de même rayon. Les VAWT fonctionnent sur 

le même principe que les roues hydrauliques, avec une direction du vent perpendiculaire à l‘axe de 

rotation.La conception verticale offre l‘avantage de placer la machinerie au sol (accès plus facile à la 

génératrice et au multiplicateur, ce qui facilite la maintenance et l‘entretien), mais cela implique que 

l‘éolienne fonctionne avec des vents proches du sol, généralement moins forts qu‘en altitude, car 

freinés par le relief.En raison de leur axe vertical, ces éoliennes présentent une symétrie de révolution, 

ce qui leur permet de capter le vent quelle que soit sa direction, sans avoir besoin d‘orienter le rotor. 

En revanche, ce type d‘éolienne ne peut pas démarrer automatiquement : il faut la lancer dès 

l‘apparition d‘un vent suffisamment fort pour permettre la production. 

En ce qui concerne leur implantation, elles ont une emprise au sol plus importante que les éoliennes à 

tour, car elles sont haubanées sur de grandes distances [Mou-14].  
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En effet, les câbles des haubans doivent passer au-dessus des pales, ce qui nécessite un espace latéral 

important. Cela représente un inconvénient majeur, notamment sur un site agricole.Les principaux 

capteurs à axe vertical sont : le rotor de Savonius, le rotor de Darrieus classique et le rotor de Darrieus 

en forme de H. [Mou-14]. 

I.7.1.1.Rotor de Savonius 

       Inventé par le finlandais Siguard Savonius en 1924, ce rotor est basé sur le principe de "traînée 

différentielle" utilisé dans les anémomètres: les efforts exercés par le vent sur chacune des faces sur la 

conversion éolienne UDL-SBA25 d'un corps creux sont d'intensité différente, il en résulte alors un 

couple moteur entraînant la rotation de l'ensemble. L'effet est ici renforcé par la circulation d'air entre 

deux demi-cylindres qui augmente le couple moteur voir la Figure I.4. 

 

 Figure I.4 : Éolienne de Savonius. 

De ce fait, l‘aérogénérateur à rotor de Savonius est complètement insensible à la direction du vent 

dans un plan horizontal. La valeur de la vitesse réduite peu élevée environ 8 fois moins que pour les 

tripales classiques offre des caractéristiques intéressantes du point de vue de l‘acoustique et de la 

sécurité, cet aspect étant fortement lié à la vitesse linéaire en bout de pales. Toutefois, ces propriétés 

impliquent l'usage d'une génératrice à grand nombre de pôles et très souvent des machines sur mesure. 

Le démarrage à faible vitesse de vent est également un point fort. Ainsi, malgré une certaine 

faiblesse du coefficient de puissance   (0.15 à 0.2), les avantages précédents auxquels s‘ajoute une 

"certaine" esthétique en font une solution bien adaptée aux sites urbains. 
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Les dimensions géométriques d‘une telle voilure sont limitées. En effet, vu les efforts mécaniques 

devant être supportés par le mat, les éoliennes de type Savonius ne peuvent pas être de taille trop 

imposantes. C‘est pour cette raison qu‘elles sont utilisées dans l‘éolien de petite puissance. 

I.7.1.2. Rotor de Darrieus 

      Conçue par l‘ingénieur français George Darrieus en 1931, l‘´eolienne de Darrieus est caractérisée 

par ses pales de rotor en forme de "C" qui la font ressembler un peu à un «batteu d‘oeufs» voir la 

figure I. 5. Le rotor de Darrieus fonctionne grâce à la portance et se base sur le fait qu'un profil placé 

dans un écoulement d'air selon différents angles figure I. 5 est soumis à des forces de direction et 

d'intensité variables. La résultante de ces forces génère alors un couple moteur entraînant la rotation du 

dispositif. Ces forces sont crées par la combinaison de la vitesse propre de déplacement du profil et de 

la vitesse du vent. Cela signifie que la rotation du dispositif ne peut pas s'amorcer d'elle-même. 

Lorsqu'elle est à l'arrêt, l‘éolienne doit donc être lancée par un dispositif annexe (ex. montage d'une 

petite éolienne Savonius sur son même rotor). Cependant, ceci ne constitue qu‘un inconvénient mineur 

dans le cas d‘une éolienne raccordée au réseau, étant donné qu‘il est alors possible d‘utiliser la 

génératrice comme un moteur absorbant du courant du réseau pour démarrer l‘´eolienne  [Dji-15]. 

 

Figure I.5 - Éolienne de Darrieus. 

I.7.1.3. Le rotor type-H 

      D‘autre type de rotor vertical est connu sous l‘appellation de rotor en "H" ou le rotor de Musgrove, 

dont les lames prennent une forme de "H"   voir la  Figure I. 6. Ce type de rotor peut démarrer seule, 

produise de l‘énergie dès les très faibles vents (1m/s), ne nécessite pas de régulation mécanique et 

résiste à des vents violents.  
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Figure I.6.Le rotor type-H 

 

      On trouve désormais des éoliennes à axes verticaux développées pour la production d‘électricité 

dans les zones isolées. Ce sont des machines de faible puissance, de 100W à 25kW Elles sont 

destinées à des utilisations permanentes. Par exemple la charge de batteries servant à alimenter un 

chalet en montagne. Elles sont de conception simple et robuste et ne nécessitent pas ou peu 

d‘entretien. 

      Même si quelques grands projets industriels ont été réalisés, les VAWT restent toutefois 

marginales et peu utilisées voire actuellement abandonnées. En effet la présence du capteur d'énergie 

près du sol l'expose aux turbulences et au gradient de vent ce qui réduit son efficacité. 

      Elles sont de plus exposées à des problèmes d'aéroélasticité dus aux fortes contraintes qu'elles 

subissent, la surface qu'elles occupent au sol est très importante pour les puissances élevées, et la 

présence d‘un dispositif auxiliaire de démarrage est nécessaire. La majorité des VAWT tourne à faible 

vitesse, ce qui est très pénalisant dans les applications de génération d‘électricité avec connexion au 

réseau public  (50 ou 60Hz) car la boite de vitesses doit permettre une importante démultiplication. Le 

faible rendement aérodynamique (autrement dit un faible coefficient de puissance) et la quantité de 

vent réduite qu‘elles reçoivent au niveau du sol constituent les principaux handicaps des VAWT face 

aux HAWT [Dji-15]. 

I.7.2. Eoliennes à axe horizontal  

       Les éoliennes(En anglais : Horizontal Axe Wind Turbine (HAWT))   à axe horizontal sont basées 

sur la technologie ancestrale des moulins à vent. Elles sont constituées de plusieurs pales profilées 

aérodynamiquement à la manière des ailes d'avion.  Dans ce cas, la portance n'est pas utilisée pour 

maintenir un avion en vol mais pour générer un couple moteur entraînant la rotation. La plupart des 

éoliennes installées sont à axe horizontal, voir la Figure I. 7. Ce choix présente plusieurs avantages, 

comme la faible vitesse d‘amorçage (cut-in) et un coefficient de puissance relativement élevé 

[GWEC]. Toutefois, la boite de vitesses  multiplicateur) et la génératrice doivent être installées en haut 
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de la tour, ce qui pose des problèmes mécaniques et économiques. Par ailleurs un organe 

supplémentaire pour l‘orientation des pales face au vent est fortement nécessaire. 

       Selon son nombre de pales, une HAWT est dite mono-pale, bipale, tripale ou multi-pale. Une 

éolienne mono-pale est moins coûteuse car les matériaux sont en moindre quantité et, par ailleurs, les 

pertes aérodynamiques par poussée sont minimales. Cependant, un contre poids est nécessaire et ce 

type d‘éolienne n‘est pas très utilisé à cause de cela. Tout comme les rotors mono-pales, les rotors 

bipales doivent être munis d‘un rotor basculant pour éviter que l‘éolienne ne reçoive des chocs trop 

forts chaque fois qu‘une pale de rotor passe devant la tour [Bou-19]. Donc, pratiquement toutes les 

turbines éoliennes installées ou à installer prochainement sont du type tripale. Celles-ci sont plus 

stables car la charge aérodynamique est relativement uniforme et elles présentent le coefficient de 

puissance le plus élevé actuellement (proche de 0.48). 

 

  

Figure I.7 : éoliennes  horizontales. 

      Suivant leur orientation en fonction du vent, les HAWT sont dites en « amont » (up-wind) ou en « 

aval » (down-wind). La Figure I. 8,  montre les deux types mentionnés. Les premières ont le rotor face 

au vent; puisque le flux d‘air atteint le rotor sans obstacle, le problème de « l‘ombre de la tour » (tower 

shadow) est bien moindre. Néanmoins, un mécanisme d‘orientation est essentiel pour maintenir en 

permanence le rotor face au vent. Les éoliennes à rotor en aval n‘ont pas besoin de ce mécanisme 

d‘orientation mais le rotor est placé de l‘autre coté de la tour: il peut donc y avoir une charge inégale 

sur les pales quand elles passent dans l‘ombre de la tour. De ces deux types d‘éoliennes celle en amont 

est largement prédominante [Dje-15].   
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Figure. I.8 :Turbines éoliennes en amont et en aval. 

I.8. Classement des éoliennes  

      Il existe essentiellement deux technologies des éoliennes, celle dont la vitesse est constante et celle 

dont la vitesse est variable. La partie suivante décrit d‘une manière assez générale le fonctionnement 

de ces deux procédés. [Ban-22]. 

I.8.1. Eolienne à vitesse fixe  

      Les éoliennes à vitesse fixe sont les premières à avoir été développées. Dans cette technologie, la 

génératrice est directement couplée au réseau. Sa vitesse mécanique est alors imposée par la fréquence 

du réseau et par le nombre de paires de pôles de la génératrice. La technologie inhérente aux éoliennes 

à vitesse fixe est bien maîtrisée. En effet, c‘est une technologie qui a fait preuve d‘une simplicité 

d‘implantation, une fiabilité et un faible coût     Cela permet une installation rapide de centaines de 

KW de génération éolienne La configuration à vitesse fixe peut être représentée d‘une manière 

simplifiée par le schéma de la Figure I.10 . 
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Figure I.10 : Eolienne à vitesse fixe. 

I.8.2. Eoliennes à vitesse variable 

 Le principe de fonctionnement  

La configuration de Figure I.11, est basée sur une machine asynchrone à double alimentation et à 

rotor bobiné. La vitesse variable est réalisée par l‘intermédiaire des convertisseurs de puissance, situés 

au circuit rotorique [Ban-22]. 

 

Figure I.11 - Eolienne fonctionnant à vitesse variable 

I.9. Différentes types des machines utilisées dans la conversion d’énergie éolienne : 

    Dans le contexte de la conversion d'énergie éolienne, deux types principaux de machines sont 

utilisés pour transformer l'énergie mécanique en énergie électrique : les machines synchrones et les 

machines asynchrones. Ces deux types de machines diffèrent principalement par la façon dont elles 

interagissent avec le réseau électrique et la manière dont elles contrôlent leur vitesse de rotation. Voici 

un aperçu de ces deux types de machines, ainsi que des références pour chaque technologie [Gamesa]. 
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I.9.1. Machines Synchrone (ou générateurs synchrones) 

     Les générateurs synchrones tournent à une vitesse fixe, en synchronisation avec la fréquence du 

réseau électrique. Cela signifie que la vitesse du générateur est directement liée à la fréquence du 

réseau, ce qui permet un contrôle précis de la production d'énergie. 

I.9.1.1. Caractéristiques principales des machines synchrones  

 Vitesse constante  

La vitesse de rotation est synchronisée avec la fréquence du réseau (50 Hz ou 60 Hz, en fonction de 

la région). 

 Stabilité de la tension et de la fréquence 

Ces générateurs assurent une meilleure stabilité de la tension et de la fréquence du réseau 

électrique. 

 Utilisation dans des applications de grande puissance  

Les machines synchrones sont souvent utilisées pour les parcs éoliens offshores et les grandes 

installations. 

I.9.1.2. Types de machines synchrones dans l'éolien  

 Générateur synchrone à aimants permanents  

Ces générateurs sont de plus en plus utilisés dans les éoliennes modernes. Ils sont plus compacts et   

plus efficaces car ils n'ont pas besoin d'excitation externe (les aimants permanents fournissent 

l'excitation)  

I.9.2. Machines Asynchrone (ou générateurs asynchrones) 

Les générateurs asynchrones, également appelés générateurs à induction, ne sont pas directement 

synchronisés avec la fréquence du réseau électrique. Leur vitesse de rotation varie en fonction des 

conditions du vent et de la charge. Ce type de machine est plus simple et plus économique que les 

machines synchrones, mais il nécessite un contrôle plus sophistiqué pour s'adapter aux fluctuations de 

la vitesse du vent. 

I.9.2.1. Caractéristiques principales des machines asynchrones 

 Vitesse variable : La vitesse de rotation varie légèrement en fonction de la charge et de la vitesse 

du vent, mais elle reste proche de la fréquence du réseau. 

 Pas d'excitation externe nécessaire : Contrairement aux machines synchrones, les générateurs 

asynchrones n'ont pas besoin d'un système d'excitation externe. 

 Système de régulation de la puissance : Ces machines nécessitent des systèmes de conversion de 

fréquence (comme des convertisseurs de fréquence) pour réguler l'électricité produite et l'adapter 

au réseau. 

 Coût réduit : Moins complexes et moins coûteux que les générateurs synchrones 
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I.9.2.2. Types  des machines asynchrones dans l'éolien  

 Générateur asynchrone à rotor bobiné : 

Ce type de générateur est utilisé dans les systèmes à vitesse variable. Il est connecté au réseau via 

un convertisseur de fréquence pour permettre un contrôle efficace de l'énergie  

 Générateur asynchrone à cage d'écureuil :  

Ces  générateurs sont simples et utilisés principalement dans des systèmes plus petits ou dans des 

installations de parc éolien de taille modeste. Ce type de générateur est souvent utilisé dans des 

éoliennes à petite échelle ou pour des installations hybrides avec des contrôles externes. 

 Machine asynchrone  à double alimentation :  

Ce type de générateur asynchrone utilisé dans les éoliennes modernes pour convertir l'énergie 

éolienne en électricité. Elle combine la simplicité des générateurs asynchrones avec la flexibilité de la 

vitesse variable, ce qui permet une régulation plus efficace de l'énergie produite. 

 Principales caractéristiques d'une machine asynchrone à double alimentation  

 Alimentation à deux sources 

 Stator (partie fixe du générateur) : Alimenté par le réseau électrique (grille) pour la 

conversion de l'énergie mécanique en énergie électrique. 

 Rotor (partie tournante) : Alimenté par un convertisseur électronique de puissance 

(généralement un convertisseur à fréquence variable), ce qui permet de réguler la vitesse du 

rotor indépendamment de la vitesse de rotation du vent. 

 Vitesse variable  

Contrairement aux générateurs synchrones qui ont une vitesse fixe (synchrone), la machine 

asynchrone à double alimentation permet au rotor de tourner à une vitesse légèrement 

différente de celle du stator. Cette vitesse variable permet d'optimiser la conversion d'énergie 

en fonction de la vitesse du vent, ce qui améliore l'efficacité de l'éolienne. 

 Contrôle de la puissance  

Le convertisseur électronique connecté au rotor permet de contrôler la puissance réactive 

échangée avec le réseau, ainsi que la puissance active produite par la  machine. Cela permet une 

meilleure régulation de la production d'électricité et une adaptation dynamique aux variations de 

la vitesse du vent. 
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 Avantages et Inconvénient de la GADA 

Les avantages et inconvénients de la GADA  sont donnés par le tableau I.2 :  

Tableau I.2 : Avantages et Inconvénient de la machine asynchrone [Bou-19]. 

Avantages Inconvénients 

 Moins de pertes par rapport à générateurs 

asynchrones à rotor en cage d'écureuil 

 Elle permet une plus grande flexibilité 

dans l'exploitation des éoliennes,  

 La possibilité de fonctionner la MADA 

comme un filtre actif pour les 

harmoniques de courant grâce à la 

commande indirecte des puissances 

active et réactive par les courants 

rotorique  

 La possibilité de modifier les 

caractéristiques du bobinage rotorique de 

la machine  

 La possibilité de fonctionner à couple 

constant au-delà de la vitesse nominale 

 La MADA se comporte comme une 

machine synchrone et l‘on peut pratiquer 

des rapports de démagnétisation très 

importants (de l‘ordre de 1 à 6).  

 Elle est plus volumineuse qu'une MAS à 

cage de puissance équivalente grâce à la 

présence du système bagues-balais .  

  Le surcoût engendré par la maintenance 

due à l‘emploi d‘un multiplicateur de 

vitesse et du système bagues-balais de la 

MADA, comparativement aux autres 

machines telles que  la machine 

synchrone à aimants permanents et la 

machine à réluctance variable .  

  L'aspect multi-convertisseurs, augmente 

le nombre de convertisseurs (redresseurs 

et deux onduleurs ou un redresseur et 

deux onduleurs) et par conséquent le 

prix. Pourtant certaines études prétendent 

le contraire.  

 

I.10. Conclusion 

Ce chapitre nous a permis de découvrir le système de conversion de l'énergie éolienne. Tout 

d'abord, nous avons commencé par définir cette énergie et présenté son histoire. Puis, nous avons 

également énuméré ses avantages et inconvénients de cette source d‘énergie. Ainsi que, nous avons 

abordé les différents axes dans le système de l‘énergie éolienne. Par la suite,  nous avons présenté la 

constitution, le principe de fonctionnement et les avantages et  les inconvénients des machines 

électriques utilisées dans le système éolien. 

Dans le chapitre suivant se concentrera sur la modélisation et le contrôle  de la partie mécanique à 

l'aide de la technique de suivi du point de puissance maximale (MPPT). 
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Modélisation et contrôle de la partie 
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II.1.Introduction 

La modélisation  de la  chaîne de conversion  éolienne est une étape primordiale dans la 

compréhension du système éolien. Dans ce chapitre, nous nous intéresserons essentiellement à la 

modélisation de la partie mécanique de la turbine éolienne à deux masses, basée sur la génératrice 

asynchrone à double alimentation, qui reste la machine la plus utilisée dans les systèmes éoliens à 

vitesse variable. Nous aborderons également le contrôle de la turbine éolienne pour l'extraction 

maximale  de la puissance  aérodynamique. Cette  modélisation  permet en premier  lieu de 

comprendre le  comportement  dynamique et l'interaction électromécanique de la génératrice avec la 

turbine. Des  simulations sous Matlab/Simulink  suivront  pour l'extraction  des grandeurs  

constitutives de cette turbine. [Ban-22]. 

II.2.Conversion d’énergie cinétique du vent en énergie électrique 

L‘énergie cinétique du vent est convertie en énergie électrique à l‘aide d‘un ensemble de dispositifs 

mécaniques et électriques. Cette conversion s‘effectue en deux étapes : 

 Au niveau de la turbine, les pales de l‘éolienne convertissent une partie de l‘énergie cinétique 

du vent en énergie mécanique, disponible sur l‘arbre de rotation. 

 Au niveau de la génératrice, l‘énergie mécanique transmise par l‘arbre de transmission est 

transformée en énergie électrique, ensuite injectée dans le réseau électrique. 

 

Figure II.1: Schéma fonctionnel d‘un système de conversion d‘énergie éolienne. 

L'énergie cinétique du vent vE dans une parcelle d'air de massem circulant à la vitesse du vent V

dans la directionx  est donnée par [Muy-08]: 

22 )(
2

1

2

1
VSxmVEv   (II.1) 
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Avec : 


 
: La densité de l’air  3mKg ,  

S : La surface balayée par les pales  2m ,  

V  : La vitesse du vent  1 sm ,
 

x  : L'épaisseur de la parcelle déplaçant à la vitesse du vent m .  

Le schéma de déplacement du vent est représenté sur la Figure II. 2. 

 

Figure II. 2 : Déplacement du vent. 

La puissance de sortie du vent d'une turbine idéale vP  est la dérivée temporelle de l'énergie 

cinétique, est donne par l‘expression suivante [Ker-17] : 

32

2

1

2

1
SVV

dt

dx
S

dt

dE
P v

v    (II.2) 

II.3.Conception d’une éolienne à axe horizontal 

Les éoliennes à axe horizontal sont les plus répandues. Elles se distinguent notamment par le 

nombre de pales, qui varie selon l‘objectif visé. Néanmoins, la configuration à trois pales demeure la 

plus courante. Ce type d‘éolienne est composé d‘une hélice montée perpendiculairement au vent sur 

un mât, avec des pales profilées de manière aérodynamique, semblables aux ailes d‘un avion. En 

conséquence, ces turbines doivent constamment être orientées face au vent pour fonctionner de 

manière optimale. On distingue deux modes principaux de fonctionnement pour les éoliennes à axe 

horizontal : à vitesse fixe ou à vitesse variable. Dans le cadre de ce travail, nous avons opté pour le 

mode à vitesse variable, car il permet une production d‘énergie plus importante grâce à un facteur de 

puissance amélioré sur une large plage de vitesses de rotation. Ce mode présente également l‘avantage 

d‘un coût réduit et d‘un rendement supérieur, grâce à une meilleure extraction de la puissance 

maximale. La configuration d‘une éolienne à axe horizontal est représentée sur la Figure II. 3. 
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Figure II. 3 :Principaux composants d'une éolienne à axe horizontal [Yar-16, Sai-21.a]. 
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II.4.Modélisation de la turbine éolienne 

II.4.1.Modèle du vent 

     Le vent est une ressource naturelle inépuisable, mais son exploitation reste complexe en raison de 

son caractère aléatoire, causé par les variations soudaines de vitesse qui entraînent des fluctuations de 

la puissance produite. Divers modèles de vitesse du vent ont été proposés dans la littérature, parmi 

lesquels on distingue quatre types : le vent en échelons, le vent périodique, le vent à vitesse aléatoire et 

celui basé sur des données météorologiques. Dans ce chapitre, nous nous concentrerons sur les deux 

derniers types : le vent aléatoire et celui issu de mesures météorologiques. 

 Modèle du vent aléatoire : Il est généralement modélisé par des variations complexes et 

aléatoires avec des effets déterministes et des fluctuations stochastiques en raison de la 

turbulence : 

  
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


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


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2
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

                                     (II.3) 

Avec : 

0
A

 
: La valeur moyenne du vent  1sm ,  

i
A  : L’amplitude de chaque turbulence  1 sm ,  

i
T/2  : La pulsation de chaque turbulence  1srd . 

La Figure II. 4, montre la variation de la vitesse du vent dans un espace de temps de (10s) entre les 

deux valeurs maximale et minimale, respectivement 1
max 1.12  smV et 125  smV .

min
, d‘une 
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 Figure II.4 : Profil de la vitesse du vent en utilisant le modèle aléatoire. 

Modèle du vent issu des relevés effectués par un organisme météorologique  

le simulateur FAST (Fatigue, Aerodynamic, Structures, and Turbulence) du Laboratoire Américain 

NREL
1
, qui était décrit dans [Jon-05, Bel-10], permet de prendre en compte ces différentes 

                                                                 
1 National Renewable Energy Laboratory (NREL), situé à Golden (Colorado) aux États-Unis est le principal laboratoire 

national du département de l'Énergie des États-Unis. 
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Profil de la vitesse du vent en utilisant le modèle aléatoire
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problématiques. L‘utilisation de FAST étant compliquée, les algorithmes ont toujours subi une 

première validation avec un modèle simplifié du vent, c‘est pour cela que le laboratoire Danois RISØ
2
 

a développé un modèle équivalent dont l‘implémentation de la vitesse du vent, en 

MATLAB/Simulink, est basée sur le spectre de Kaimal [Man-05]. La vitesse du vent est calculée 

comme une moyenne de la vitesse du vent en point fixe sur l'ensemble du rotor et prend en compte 

l'ombre de la tour et les turbulences de rotation. L‘intensité de la turbulence est le rapport suivant 

[Mun-08] :  

0
V

I




Avec la variance : 


T

dttV
T

0

2 1
)(

 

Ainsi, une distribution de vent turbulent peut être générée par un processus gaussien. Par 

conséquent, le spectre de Von Karman et celui de Kaimal sont deux modèles notamment utilisés et 

respectant aux normes déterminées par la Commission Electrotechnique Internationale (CEI) [Mih-

04]. 

Spectre de Von Karman : 

 

   6
5

21 



T

K
 

Spectre de Kaimal : 

 

3
5

1 


T

K
 

Où K  est un paramètre lié à la variance et T détermine la bande passante de la turbulence. 

Le profil de la vitesse du vent en utilisant ce modèle est représenté sur la Figure II. 5. 
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 Figure II. 5 : Profil de la vitesse du vent en utilisant le modèle de FAST d‘intensité I=14 %. 

 

                                                                 
2 Risø DTU National Laboratory for Sustainable Energy, situé à Roskilde au Denmark. 
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II.4.2.Puissance aérodynamique 

Le physicien A. Betz
3
a démontré que l‘on pouvait lier la puissance aérodynamique fourni par le 

système éolien à la puissance du vent vP , et l‘exprimée par l'équation suivante [Sai-21.a] : 

vpaer PCP   (II.4) 

Où Cp est le coefficient de puissance. Son expression théorique est donnée par [Poi-03] : 

2
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C p  (II.5) 

Où : 

1
V

 
: La vitesse du vent en amont de la turbine  1sm ,  

2
V  :La vitesse du vent en aval de la turbine  1sm .  

Le coefficient de puissance pC  représente le rendement aérodynamique de la turbine éolienne. Il 

dépend des caractéristiques de la turbine, son expression est donnée par [Ker-17]: 
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p ,(                                                                 (II.6) 

D‘où : 
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
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
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 (II.7) 

Les coefficients ),...,( 61kC
k

sont donnés par : 

51760
1

.C , 116
2
C , 40

3
.C , 5

4
C , 21

5
C et 00680

6
.C

 

Tel que : 

R
 
: Rayon des pales m ,  

  :Vitesse relative de la turbine, 

 :Angle d’orientation des pales   , 

t  :Vitesse de rotation de la turbine  1 srd . 

Donc, la puissance aérodynamique apparaissant au niveau du rotor de la turbine s‘écrit alors: 

3

2

1
SVCP paer  ),(   (II.8) 

                                                                 
3
Albert Betz (1885–1968) était un physicien allemand et un pionnier de la technologie des éoliennes. 
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Connaissant la vitesse de la turbine, le couple aérodynamique est donc directement déterminé 

par l‘équitation suivant: 

 
t

T
p

t

aer
aer

VS
C

P
T









1

2

3

, (II.9) 

II.4.3.Dispositif d’entraînement 

Le schéma du modèle de la turbine éolienne à deux masses est présenté à la Figure II. 7 [Bou-06.b]. 

 

Figure II.7 : Schéma du modèle de la turbine éolienne à deux masses. 

La dynamique du rotor de la turbine est caractérisée par une équation différentielle du premier 

ordre [Bou-06.b] : 

ttlsaer
t

t
fTT

dt

d
J 


  (II.10) 

Avec : 

tJ : L’inertie du rotor de la turbine  mKg  , 

lsT :Le couple mécanique sur l’arbre lent  Nm , 

tf :Lecoefficient de frottements visqueux du rotor de la turbine [ Nm /rd /s ]. 

Le couple mécanique de l‘arbre lent 
ls

T résulte des effets de frottements et de torsion générés par 

les écarts entre la vitesse de rotation de la turbine t et celle de l‘arbre lent ls d‘une part, et entre la 

position angulaire du rotor de la turbine t  et celle de l‘arbre lent 
ls
 d‘autre part [Bou-06.c] : 

)()(
lstlslstlsls

-K-BT  (II.11) 

Où : 

lsB : Le coefficient de torsion de l’arbre lent [Nm /rd ], 

lsK : Le coefficient de frottements visqueux internes de l’arbre lent [ Nm /rd /s ]. 

 

tJ  

gJ  
hsT  lsls

T ,  lsB  

lsK

 

gf  

gn  

t
f  

taer
T ,  



 

gemT ,  

Arbre de la turbine Arbre lent Arbre rapide 

ls
T : Low speed torque, 

hs
T  : High speed torque. 
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Le couple
ls

T de vitesse ls  de l'arbre lent est transmis via le multiplicateur de vitesse, de rapport gn

, pour produire un couple mécanique hs
T de vitesse g sur l‘arbre rapide

 
[Bou-06.b] : 










 

lsgg

lsghs

n

TnT 1

(II.12) 

La relation entre les positions angulaires g et
ls
 , est donnée par : 

lsgg n  (II.13) 

La génératrice est entraînée par le couple mécanique de l‘arbre rapide 
hs

T et freiné par le couple 

électromagnétique emT et les frottements visqueux ggf  . La dynamique du rotor de la génératrice est  

donnée par :  

ggemhs

g
g fTT

dt

d
J 


(II.14) 

Où : 

lsggem
g

lsls
gg fnT

n

T

dt

d
nJ 


             (II.15) 

Avec : 

gJ : L’inertie de la génératrice  mKg  , 

gf : Lecoefficient de frottements visqueux de la génératrice [ Nm /rd /s ] 

II.5.Contrôle de la turbine éolienne à vitesse variable 

II.5.1.Objectifs du contrôle de la turbine éolienne à vitesse variable 

L'objectif du contrôle de la turbine éolienne à vitesse variable, lorsque la vitesse du vent est en 

dessous de la vitesse nominale, est de maximiser la puissance aérodynamique en utilisant les 

différentes stratégies de maximisation de puissance. Cette puissance est maximisée à travers le 

contrôle du couple électromagnétique. À une vitesse du vent au-dessus de la vitesse nominale, 

l'objectif du contrôle est de limiter la puissance aérodynamique transmise à la génératrice et de 

maintenir la turbine dans ses limites de fonctionnement en utilisant les différentes stratégies du 

contrôle. En effet, lorsque la vitesse du vent au-dessus de la vitesse nominale, le rendement 

aérodynamique de la turbine doit être limitée la puissance aérodynamique nominale du système éolien. 

Cela correspond à une réduction de coefficient de puissance. Ceci peut être obtenu principalement 

avec deux types de contrôles : passif et actif. Le contrôle passif améliore les performances des 

éoliennes et réduit les charges sans dépense d'énergie externe, alors que le contrôle actif nécessite une 

énergie externe ou une alimentation auxiliaire. Des exemples de contrôle passif et actif sont étudiés 

dans les références [Lie-00, Yen-16].En effet, un contrôle efficace des turbines éoliennes à vitesse 

variable peut améliorer les caractéristiques dynamiques, augmenter la durée de vie de l‘éolienne et 

réduire la charge transitoire sur l'arbre de transmission [Bel-08]. De nombreuses techniques ont été 
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proposées pour l'extraction maximale ou la limitation de la puissance aérodynamique de la turbine 

éolienne à vitesse variable au cours de la dernière décennie [Bou-06.b, Bou-07, Pur-11, Jun-13,Raj-

15].Généralement, le contrôle de la turbine éolienne passe par trois zones de fonctionnement 

différentes qui dépendent de la vitesse du vent, de la vitesse maximale de la génératrice admissible et 

de la puissance désirée, comme illustré sur la Figure II.8. 

 

Vitesse du vent [m/s] 

Figure II. 8 : Zones de fonctionnement d‘un système éolien à vitesse variable. 

 Zone (I): dans cette zone, la génératrice est à l‘arrêt, car la vitesse du vent n‘est pas 

suffisamment élevée pour faire fonctionner le système éolien, et donc elle ne produit aucune 

puissance électrique. 
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 (II.23) 

 Zone (II) : cette zone est caractérisée par un fonctionnement à des vitesses du vent, inférieures 

ou égales à la vitesse nominale. Pour cette raison, on cherche à maximiser la puissance 

aérodynamique afin d‘extraire le maximum de la puissance aérodynamique. Avec cette 

stratégie, on cherche le point de puissance maximale pour chaque vitesse du vent, c‘est la 

MPPT (En anglais : Maximum Power Point Tracking).Cette zone s'appelle est caractérisée par 

un fonctionnement à charge partielle. Dans ce cas, il est à noter que l'angle d‘orientation des 

pales doit être constant et égale toujours à zéro (  0 ), et la vitesse relative de la turbine est 

à sa valeur optimale ( opt ). Dans cette zone : 
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 Zone (III) : cette zone est caractérisée par un fonctionnement à des vitesses, du vent, 

supérieures à la vitesse nominale. Elle s‘appelle zone de fonctionnement à charge nominale Dans 

 

100 

80 

60 

40 

20 

100 

80 

60 

40 

20 

0 0 

Zone (I) Zone (II) 

Charge partielle 

Zone (III) 

Charge nominale 
Zone (IV) 

D
ém

ar
ra

g
e 

P
u

is
sa

n
ce

 a
ér

o
d

y
n

a
m

iq
u

e 
(%

) 

M
is

e 
en

 d
ra

p
ea

u
  

C
o

ef
fi

ci
en

t 
d

e 
p

u
is

sa
n

ce
 (

%
) 

Mode de fonctionnement 
MPPT 

Mode de fonctionnement 
Orientation des pales 

minV  

Cp maximum 

nV  maxV  



Chapitre II____________________________________ modélisation et contrôle de la partie mécanique(turbine)  
  

25 
  

cette zone, une action de contrôle est utilisée sur les aubes de la turbine pour maintenir la puissance 

aérodynamique aerP  dans sa valeur de la puissance nominale, pour assurer la sécurité de la 

génératrice et limiter les charges mécaniques transmises à la nacelle et à la tour. Si la vitesse du vent 

dépasse la vitesse maximale, le système de contrôle ajuste l‘angle de calage des pales à la valeur   

 90 ) pour arrêter la génératrice. C‘est la mise en drapeau. Dans cette zone : 











naer

maxn

PP

VVV
                                                           (II.25) 

II.5.2.Conception de la stratégie de contrôle de la turbine éolienne à vitesse variable 

Avec l'augmentation de la taille des éoliennes, la conception de la stratégie de contrôle devient de 

plus en plus importante. Par conséquent, les stratégies utilisées pour contrôler la vitesse et l'angle 

d'orientation des pales doivent être soigneusement conçus, afin  d‘atteindre les objectifs du cahier de 

charge. Les éoliennes à vitesse variable permettent de faire varier la vitesse du rotor de la génératrice 

en fonction de la vitesse du vent. Il existe cependant une multitude de stratégies possibles permettant 

de définir cette relation. La manière la plus évidente de définir une stratégie de contrôle serait de 

spécifier la vitesse du rotor de la turbine tout simplement en fonction de la vitesse du vent ; c'est-à-dire 

de définir la vitesse de référence de la turbine en fonction de la vitesse du vent. 

II.5.3.Caractéristiques de puissance et de couple aérodynamique de la turbine éolienne 

La vitesse du vent appliquée sur les pales de la turbine éolienne, entraîne sa mise en rotation et crée 

une puissance et un couple aérodynamique sur de la turbine.Les caractéristiques de la puissance et du 

couple aérodynamique en fonction de la vitesse de rotation de la génératrice sont données par des 

courbes telles que celles des Figures II.9 et II.10 [Bue-81]. 
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Vitesse de rotation de la génératrice [rad/s] 

Figure II. 9: Courbes typiques de la puissance aérodynamique d‘une éolienne en fonction de la vitesse de 

rotation de la génératrice pour différentes vitesses du vent. 
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Vitesse de rotation de la génératrice [rad/s]. 

Figure II. 10 : Courbes typiques du couple aérodynamique d‘une éolienne en fonction de la vitesse de 

rotation de la génératrice sous différentes vitesses de vent. 

En utilisant l'équation (II.8), les caractéristiques de puissance aérodynamique-vitesse de la 

génératrice d‘une éolienne de grande puissance, 1.5 MW, pour différentes vitesses de vent sont 

représentées par les courbes de la Figure. II.9.  

En utilisant l'équation (II.10) et les caractéristiques de la Figure II.9, nous obtenons les caractéristiques 

couple aérodynamique-vitesse de rotation de la génératrice. Ces caractéristiques,un angle de calage 

des pales nul, sont représentées par des courbes de la Figure. II.10.  

II.6.Contrôle de la turbine éolienne à vitesse variable en dessous de la puissance nominale 

II.6.1.Contrôle direct en vitesse 

Dans cette section, nous nous intéresserons par le contrôle de la turbine éolienne à deux masses en 

régime transitoire et permanent. Les deux approches précédentes, contrôle indirect en vitesse et 

contrôle par retour du couple aérodynamique, sont valables uniquement lorsque la turbine éolienne à 

deux masses fonctionne en régime permanent. Afin d‘améliorer le comportement dynamique de la 

poursuite de la courbe de rendement maximal, la commande dans la zone de fonctionnement à charge 

partielle peut être réalisée par le contrôle direct en vitesse de rotation de la génératrice. 

Généralement, la vitesse de rotation de la génératrice est proportionnelle à la vitesse de rotation de la 

turbine éolienne à une seule masse, donc le choix de la vitesse de rotation de référence de la 

génératrice est très facile. Par contre et pour la turbine éolienne à deux masses, la vitesse de rotation de 

la génératrice n‘est pas propositionnelle avec la vitesse de rotation de la turbine éolienne. 

Pour les turbines éoliennes à deux masses, avant de choisir le type de contrôle,  

Lorsque la turbine fonctionne sur la courbe de rendement optimal, l‘équation dynamique du rotor de la 

turbine (II.10) s‘écrit comme suite: 

optlsoptttoptaer

optt

t
TfT

dt

d
J

,,,

,



                                                                                       (II.26) 

Dans les conditions optimales, le couple optimal de l‘arbre lent s‘écrit comme suit [Ben-23]: 
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(II.27) 
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Où : 

g

g

optr n


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,
(II.28) 

En divisant l‘équation (II.27) par gn , il vient : 

 eqeq
g

optls
KB
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 (II.29) 

Où : 
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Avec : 

eqB : Le coefficient de torsion équivalent [ Nm /rd ]. 

eqK : Le coefficient de frottements visqueux équivalent [ Nm /rd /s ]. 

En utilisant (II.12), le couple optimal de l‘arbre rapide est donnée par :    

g

optls

opths n

T
T

,

,
  (II.30) 

Définissant la grandeur de référence suivante : 

opthshs
TT

,

*   (II.31) 

Où : 

 eqeqhs
KBT *

(II.32) 

Appliquant la transformation de la PLACE sur l‘équation (II.32), elle devient : 

)(

*

sKB

T

eqeq

hs
L 
 (II.33) 

Combinant les deux équations (II.27) et (II.33), la position angulaire de référence g , peut s‘écrire :    

)(

*

,
*

sKB

Tn
n

eqeq

hsg

optrgg


 (II.34) 

En utilisant la loi d‘un corps en rotation : 

dt

d
 (II.35) 
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La vitesse de référence de la génératrice peut être facilement déduite à partir de l'équation (II.35), 

comme suit : 

dt

d g
g

*
*


 (II.36) 

Finalement, le schéma bloc de calcul de la vitesse de référence de la génératrice est illustré sur la 

Figure II.13. 

 

Figure II.11 : Schéma bloc de calcul de la vitesse de référence de la génératrice )( *
g . 

II.6.2. Contrôle direct en vitesse par contrôleur Proportionnel-Intégral 

Dans la configuration en mode conventionnel, la vitesse de la génératrice doit être asservie par un 

contrôleur Proportionnel-Intégral (PI). Afin de suivre la vitesse de référence de la génératrice, la 

servocommande de vitesse utilisant le couple électromagnétique de référence *
emT est utilisée : 
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La boucle de régulation de la vitesse de la génératrice g est représentée par la Figure II.14. 

 

Figure II.12 : Schéma bloc de régulation de la vitesse de la génératrice. 

Nous pouvons écrire la fonction de transfert en boucle fermée sous la forme mathématique 

suivante : 

hsgg TsGsH  )()( *  (II.38) 
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Où : )(sH est la fonction de transfert liée à la vitesse de référence : 

gigpgg

gigp

KsKfsJ

KsK
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
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,,

,,

)(
)(

2
 (II.39) 

Et )(sG est la fonction de transfert liée à la perturbation : 

gigpgg KsKfsJ

s
sG

 


,,

)(
2

 (II.40) 

Pour baisser l‘effet de la perturbation, représentée par le couple de l‘arbre rapide
hs

T , nous allons 

intérêt à choisir une valeur élevée pour le gain gpK , . L‘autre gain g,i
K

  est choisi de manière à avoir 

une fonction de transfert du 2
éme

 ordre, ayant une pulsation naturelle et un coefficient d‘amortissement 

optimal, comme suit : 
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Donc, pour imposer un temps de réponse et un facteur d‘amortissement, nous trouvons : 

























g

n

gi
gp

gngi

f
K

K

JK

1

1

2

1

2

,

,
,

,,
)(

 (II.42) 

Le schéma de contrôle direct en vitesse par le régulateur PI est représenté sur la Figure II.15.  

 

Figure II. 13 : Schéma bloc de la maximisation de la puissance extraite par le contrôle direct en vitesse en 

utilisant le contrôleur PI classique. 

 

0  

V  

Angle d’orientation 

 des pales  

Vent  

*
g  Turbine éolienne à deux masses  

g  

  

  

Bloc de contrôle direct en vitesse par le régulateur PI     

Calcul de la vitesse de référence  

de la génératrice (Figure II.13) *
g  

*
emT  g  

s

K
K

g,i
g,p


   



Chapitre II____________________________________ modélisation et contrôle de la partie mécanique(turbine)  
  

30 
  

II.6.3. Résultats de simulation de contrôle de la turbine éolienne à deux masses et interprétations 

Afin d‘évaluer la commande MPPT par le contrôleur classique de type PI  appliquée à la turbine 

éolienne à deux masses, nous allons réalisés une série de simulations l‘environnement sous 

Matlab/Simulink. Cette évaluation à effecteur par le premier profil du vent, illustré sur la Figure II.4. 

Cette   allure très fluctuée et stochastique est obtenue en utilisant le modèle décrit par l‘équation II.3. 

Les paramètres de la turbine éolienne utilisés dans la simulation sont donnés en annexe. 

II.6.3.a .Résultats de simulation 

La Figure II.16,  Illustre résultats de simulation de contrôle direct en vitesse par contrôleur PI.  
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Figure II-14 : Résultats de Contrôle direct en vitesse par contrôleur Proportionnel-Intégral. 
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II.6.3.b. Interprétation des résultats  

À partir de l‘analyse des résultats de simulation obtenus, nous pouvons déduire plusieurs points 

importants. En ce qui concerne la vitesse de la turbine, les résultats ont montré qu‘elle est 

proportionnelle à la vitesse du vent. On constate également que le rapport de vitesse suit la référence 

optimale imposée, et que le coefficient de puissance atteint le coefficient de puissance maximal requis. 

Finalement, les résultats de la simulation nous ont permis de vérifier l‘efficacité et la fiabilité de la 

stratégie de contrôle MPPT. 

II.7. Conclusion 

Ce chapitre a été consacré à la modélisation de la turbine éolienne à deux masses, plus précisément 

à sa partie mécanique. Nous avons commencé par étude sur la conversion de l‘énergie cinétique du 

vent en énergie électrique, ainsi que sur la conception d‘une éolienne à axe horizontal : sa description, 

son principe de fonctionnement, etc. Par la suite, nous avons modélisé la turbine éolienne et présenté 

sa stratégie de contrôle, qui repose sur la technique MPPT avec asservissement de la vitesse 

mécanique. Après l‘analyse des résultats de simulation nous ont permis de vérifier l‘efficacité et la 

fiabilité de la stratégie de contrôle proposé. Technique a pour principal objectif de réguler la vitesse de 

la turbine afin de la maintenir à une valeur optimale, permettant ainsi de générer la puissance 

maximale.  Enfin, le chapitre suivant sera consacré à la modélisation de la partie électrique de la 

turbine 
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III.1. Introduction 

Dans le cadre de l‘exploitation de l‘énergie éolienne, la maîtrise du comportement 

électromécanique des générateurs est essentielle pour assurer un fonctionnement efficace, stable et 

conforme aux exigences du réseau électrique. Ce chapitre est dédié à la modélisation de la partie 

électrique du système éolien, ainsi qu'à la mise en œuvre de la commande vectorielle appliquée au 

générateur à double alimentation (GADA), technologie largement adoptée dans les systèmes éoliens à 

vitesse variable. 

Dans la première partie de ce chapitre, nous nous intéresserons à la modélisation de la partie 

électrique du système éolien. Nous expliquerons les raisons pour lesquelles les systèmes éoliens 

utilisant une machine asynchrone à double alimentation sont les plus répandus pour la production 

d‘énergie électrique. Par la suite, nous rappellerons les notions, le principe de fonctionnement et les 

modes de fonctionnement de la machine asynchrone à double alimentation associées aux 

convertisseurs d‘électronique de puissance dans un contexte éolien. 

Dans la seconde partie, nous abordons la stratégie de commande vectorielle de GADA,  La 

commande vectorielle par orientation du flux permet d'améliorer les performances en régime à vitesse 

variable, en assurant le contrôle des puissances active et réactive statoriques. Ce travail propose une loi 

de commande pour la GADA basée sur l‘orientation du flux statorique. 

III.2. Description et modélisation de la GADA connectée au réseau électrique équilibré 

III.2.1. Description de la GADA 

La GADA est généralement constituée de deux ensembles de bobinages triphasés : l‘un placé sur le 

stator et l‘autre sur le rotor. Dans le domaine de l‘énergie éolienne, les enroulements du stator sont 

directement connectés au réseau électrique, tandis que ceux du rotor sont couplés au réseau à travers 

des convertisseurs électroniques de puissance. Ces derniers, appelés Convertisseur Côté Machine 

(CCM) et Convertisseur Côté Réseau (CCR), sont modélisés comme des sources de tension. Leur rôle 

principal consiste à adapter la fréquence entre celle du réseau et celle du rotor, ce qui permet à la 

génératrice de fonctionner à vitesse variable. 

Dans les systèmes de conversion d‘énergie éolienne, la GADA est particulièrement prisée en raison 

de ses nombreux atouts. L‘un des plus significatifs est la possibilité de dimensionner les convertisseurs 

électroniques de manière à ne traiter qu‘environ 30 % de la puissance nominale de la machine. Cela 

permet une variation de la vitesse de rotation autour de la vitesse de synchronisme sur une plage 

d‘environ ±30 %. 
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La Figure III.1 illustre la configuration typique d‘un tel système de conversion d‘énergie éolienne. 

 

Figure III.1 : Structure d'un système de conversion d'énergie éolienne basé sur la GADA. 

III.3. Modélisation de la machine asynchrone double alimentation  

Pour commander la machine asynchrone à double alimentation, comme bien d‘autres procédés, il 

faut disposer d‘un modèle avec une connaissance plus ou moins précise des éléments le constituant. 

Mathématiquement, on peut représenter laMADA par un modèle entré sortie sous forme de fonction 

de transfert ou encore sous forme d‘équations en variables d'état [Rab-17]. On représente la machine 

asynchrone double alimentation par six équations électriques et une seule équation mécanique qui 

concerne la dynamique du rotor. La MADA peut être schématisée par la Figure III.2. 

 

Figure III.2 : Représentation électrique des enroulements d'une machine asynchrone triphasée. 
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III.3.1. Hypothèses simplificatrices 

Pour notre étude, nous considérons les hypothèses simplificatrices suivantes [Nau-08][Chik13]: 

Le circuit magnétique n'est pas saturé, ce qui permet d'exprimer les flux comme étant linéaires par 

rapport aux courants. 

 Les pertes par hystérésis et par courants de Foucault sont négligées. 

 Les forces magnétomotrices générées par chacune des phases des deux armatures sont 

supposées avoir une répartition sinusoïdale. 

 Les résistances sont considérées comme constantes, indépendamment de la température, et 

l'effet de peau est ignoré. 

 L'entrefer est supposé constant. 

 Les inductances propres sont constantes. 

Ainsi, tous les coefficients des inductances propres sont considérés comme constants, tandis que les 

coefficients des inductances mutuelles ne dépendent que de la position relative des enroulements [Bri-

10]. 

III.3.2. Equations électriques  

La loi de Faraday, qui exprime la tension aux bornes d‘une bobine, est donnée la relation suivante : 

                                                                                                                                          (III.6) 

 Pour le stator  

                                                                                                                          (III.7) 

Ou :                                               
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Avec : 

 ,  , ,  

,  , ,  

Et : 

 
 : Vecteur des tensions instantanées des phases a, b et c statoriques. 

: Vecteur des courants instantanées des phases a, b et c statoriques. 

: Vecteur des flux instantanées des phases a, b et c statoriques. 

 : Vecteur des tensions instantanées des phases a, b et c rotoriques. 

: Vecteur des courants instantanées des phases a, b et c rotoriques. 

: Vecteur des flux instantanées des phases a, b et c rotoriques. 

et  : Résistance d‘une phase statorique et d‘une phase rotorique, respectivement. 

III.3.3. Equations Magnétiques (la relation entre le flux et courant) 

Pour le stator et rotor : 

                                                                                                          (III.11) 

 Et  

Où la matrice des inductances statoriques etrotoriques est donnée par : 
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Avec :  

ssl , rrl  : Inductances  propres d‘une phase statorique et d‘une phase rotorique, respectivement ;  

ssm ,  rrm : Inductances  mutuelles entre deux phases statorique et entre deux phases rotorique, 

respectivement ; 
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srm  : Valeur maximale de l‘inductance mutuelle entre phase statorique et phase rotorique ; 

III.3.4.Equation Mécanique  

L‘équation mécanique s‘écrit par la relation suivante : 




 f
dt

d
JCC emg                                                                                                           (III.13) 

III.4. Transformation de PARK  

III.4.1. Définition   

La transformation de Park permet de convertir un système triphasé ),,( cba vers un système 

biphasé ),( qd . Cette transformation s‘applique sur les courants, les tensions et les flux à travers 

un changement de variables  faisant intervenir l‘angle   de rotation électrique entre l‘axe d du 

repère diphasé et le repère fixe lié à la phase du stator. 

 

 

Figure III.3 : Repérage angulaire du système d‘axes ),( qd  associé au stator de la MAS. 

 

Figure III.4 : Repérage angulaire du système d‘axes ),( qd associé au rotor de la MAS. 

aR


 

b
S


 

cR


 

rav  

rb
v  

rcv  

rai  

rb
i  

rci  

rqv  
dq

i  

rdi  

rd
v  

sS


 

s


 

rQ


 

r  

b
R


 

rD


 

r  

s  

sS


 R


 


R


 

  

aS


 

b
S


 
cS


 

sav  

sb
v  

scv  

sai  

sb
i  

sci  

sqv  sqi  

sd
i  

sd
v  

sD


 

s


 

s


 

sQ


 

s  



 
Chapitre III ________________________________ Modélisation  et commande de la partie électrique (GADA) 

  

37 
 

 

 

 































































2
1

2
1

2
1

3

4

3

2
3

4

3

2













 sinsinsin

coscoscos

3

2
)(p                                                              (III.14) 

 

 


































































2
1

3

4

3

4

2
1

3

2

3

2
2

1

1

















sincos

sincos

)sin(cos

3

2
)(p                                                                 (III.15) 

Le changement des variables (tensions, courants, flux) est défini par la transformation suivante: 
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Remarque (III.1) :Cette transformation est fréquemment employée dans les problèmes de 

commande des machines électriques. Elle préserve l‘invariance de la puissance, bien qu‘elle n‘assure 

pas celle des amplitudes des grandeurs [Chik-13][Mez-06]. 

III.4.2. Choix de référentiel de Park 

Suivant la constitution et le principe de fonctionnement de la MADA, nous trouvons trois choix 

utiles pour le référentiel )( qd   : 

 Référentiel fixe au stator (référentiel stationnaire 0
dt

d s ) : Ce référentiel est fréquemment utilisé 

dans l‘étude des observateurs. 

 Référentiel fixé au rotor (référentiel tournant  P
dt

d
S

r 


0 ) : Il est 

principalement utilisé dans l‘étude des régimes transitoires. 

  Référentiel fixé au champ tournant statorique (référentiel tournant à la vitesse de pulsation 

statorique s
s

dt

d



  ) : Ce référentiel est souvent utilisé dans l‘étude et la synthèse des lois de 

commande. Les axes sont désigné par ( qd , ). C‘est ce dernier référentiel que nous allons utiliser 

en vue de l‘étude de la commande vectorielle à flux statorique orienté. Ce choix permet de définir 

une pulsation de glissement rsg   . 
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III.4.3. Modèle diphasé de la MADA 

III.4.3.1. Equations électriques 

Selon la transformation de Park, et en appliquant la loi des mailles aux composantes des vecteurs 

statorique et rotoriques dans le repère tournant, on obtient le système d'équations (III.17), lequel 

représente le modèle de la machine asynchrone à double alimentation dans le repère ),( qd lié au 

champ tournant. 
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

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


                                                                                                          (III.17) 

III.4.3.2.  Equations électromagnétiques   

De façon analogue, on peut déterminer les expressions des flux statoriques et rotoriques. 





















sqrqrrq

sdrdrrd

rqsqssq

rdsdssd

iMiL

iMiL

iMiL

iMiL









                                                                                                                 (III.18) 

Où sL  et 
rL sont respectivement les inductances statorique et rotorique, et M est l‘inductance 

mutuelle statorique et rotorique. 

Les expressions des courants en fonctions des flux sont comme suit : 
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                                                                                                           (III.19) 

srrrrrrsssss mMmlLmlL
2

3
 ,,                                                                                      (III.20) 

III.4.3.3. Couple électromagnétique 

À ces équations s‘ajoute l‘équation générale du couple électromagnétique, dérivée de l‘expression 

donnée par : 

     r
T

sem IM
dt

d
IC









                                                                                                             (III.21) 
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)(),,,( sdsqsqsdsqsdsqsdem iipiiC                                                                                (III.22) 

En appliquant la transformation de Park à cette équation, on obtient l‘expression suivante : 

)(),,,( rqsdsqrdrqrdsqsdem iiiiMpiiiiC                                                                              (III.23) 

En utilisant les expressions (III.21), (III.22) et (III.23), d‘autres expressions du couple 

électromagnétique peuvent être retrouvées :                                            

)(
.

),,,( rqsdrdsq
s

sqsdrqrdem ii
L

Mp
iiC                                                                             (III.24) 

III.4.3.4. Puissances active et réactive (statorique, rotorique) 

En négligeant les pertes de puissance dues à la résistance statorique, les puissances active et 

réactive s‘expriment comme suit[Chik-13] [Bel-14]: 


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)(

)(

sqsdsdsqs

sqsqsdsds

ivivQ

ivivP
                                                                                                               (III.25)                                                                                               

De la même façon, on peut exprimer la puissance active et réactive rotoriques comme suit:  

                                                                                                               (III.26) 

Étant donné que la fréquence des tensions statorique est imposée par le réseau électrique, celle de 

la pulsation des courants rotorique est donnée par : 

                                                                                                                               (III.27) 

III.4.3.5. Modèle d’état de la MADA 

Le modèle d'état de Park de la MADA peut être exprimé sous la forme matricielle suivante 

[Chik-13]: 
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Avec :  

                                                                          (III.29) 
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Où : 

  : Est le coefficient de dispersion.   

III.5. Redresseur à MLI (à deux niveaux et trois bras) 

III.5.1.  Structure et principe de fonctionnement 

Etant donné que la GADA produit une tension à fréquence et à amplitude variables, des dispositifs 

d‘électronique de puissance supplémentaires sont nécessaires pour satisfaire les besoins demandés par 

les gestionnaires des réseaux électriques [Qua-13]. La méthode, souvent utilisée, est de redresser et 

filtrer la tension du réseau électrique pour fournir la tension du bus continue qui sert comme tension 

d‘entrée de l‘onduleur du côté machine.Contrairement aux redresseurs classiques, les redresseurs à 

Modulation de Largeur d‘Impulsions (MLI) sont réalisés à l‘aide de semi-conducteurs commandés à 

l‘ouverture et à la fermeture. La possibilité de la commande à l‘ouverture permet un contrôle total du 

convertisseur, parce que les interrupteurs peuvent être commutés, selon les besoins, aussi bien à la 

fermeture qu‘à l‘ouverture avec une fréquence assez élevée [Bou-09]. Le pont redresseur est constitué 

de trois bras. Chaque bras se compose  de deux transistors bipolaires avec deux diodes antiparallèles 

(Figure III. 5).  

 

Figure III. 5: Structure du redresseur à MLI.  

Les interrupteurs d‘électronique de puissance sont constitués, en fonction de la puissance 

commutée, de GTO (Gate Turn Off), de MOSFET de puissance ou d'IGBT (Insulated Gate Bipolar 

Transistor), associés en parallèle avec une diode. Cette diode assure la continuité du courant lors du 

changement de sens de ce dernier (Figure III. 5). 

III.5.2. Représentation du redresseur à MLI dans le système triphasé 

Ce convertisseur est constitué de trois bras, chacun connecté à une phase du réseau électrique  

équipé de deux interrupteurs [Ata-19, Sai-21.a]. 
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Prenant les trois phases et en appliquant la loi des mailles : 
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                                                                                                            (III.30) 

D‘un autre côté, les tensions
abcf

V
,

 sont reliées à la tension du bus continu par : 
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                                                                                                  (III.31) 

L‘équation (III.31) peut se mettre sous la forme matricielle suivante : 
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                                                                                                    (III.32) 

Où est l‘état des deux interrupteurs du même bras (
i

B ), supposé parfait, telle que ( c,b,ai  ).  

Les fonctions 
i

S  sont définies par :    
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On remplace l‘équation (III.32) dans (III.30), nous aurons : 
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                                                                                    (III.33) 

Ou sous forme matricielle suivante : 
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                 (III.34) 

D‘où la forme matricielle condensée :  

           
abcdcabclfabclfabcl

SKVIRI
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,,,
                                                                     (III.35) 
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Avec : 

   T
lclbalabc,l

V,V,VV   : Vecteur des tensions triphasées d’alimentation,
 

   T
lclbalabc,l

i,i,iI   : Vecteur des courants triphasés absorbés par le redresseur,
 

   Tcbaabc
S,S,SS   : Vecteur des états des interrupteurs du redresseur dans le repère a, b et 

c,
 

 
f

R  : Résistance de la ligne de connexion,
 

 
f

L  : Inductance de la ligne de connexion, 

Le courant de sortie du redresseur est donné par : 

lcclbblaadc
iSiSiSi                                                                                                               (III.36) 

L‘application de la loi des courants de Kirchhoff à la sortie du pont permet d‘établir la relation 

suivante : 

chdcc iii 
                                                                                                                                   (III.37) 

Donc, le modèle du redresseur dans le repère (a, b, c) est donné par le système d‘équation suivant : 
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      (III.38) 

Avec :   

ch
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C                                                                                             (III.39) 

Où : 

ch
R  : est la résistance de charge,

 

C  : est la capacité de condensateur. 

Sous la forme généralisée, l‘équation (III.39) s‘écrit : 
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                                                 (III.40) 

III.6. Onduleur à MLI (à deux niveaux et trois bras) 

III.6.1.  Structure et principe de fonctionnement 

L'onduleur de tension est un convertisseur statique destiné à transformer l'énergie électrique d'une 

source de tension continue en une source de tension alternative, avec une amplitude et une fréquence 

ajustables. Il existe différentes structures d'onduleurs, chacune étant adaptée à un type d'application 
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spécifique ou à des performances particulières [Chik-13][Lab-06].  Dans cette étude, nous avons choisi 

un onduleur de tension à deux niveaux, contrôlé par la technique de Modulation de Largeur 

d'Impulsion (MLI). La modulation sinus-triangle a été sélectionnée pour générer les impulsions 

permettant de contrôler les tensions rotoriques de la GADA. La Figure III.6 présente le schéma de 

principe d'un onduleur triphasé, qui fonctionne par commutation forcée et est généralement conçu à 

base de transistors. 

 

Figure III. 6: Structure d‘onduleur triphasé à MLI. 

III.6.2. Représentation de l’onduleur de tension dans le système triphasé 

Dans le cadre de notre étude, nous considérons le cas idéal d‘un onduleur triphasé à deux niveaux 

de tension, modélisé par des interrupteurs parfaits à commutation instantanée. 

Les tensions
c,ondb,onda,ond

v,v,v  qui sont reliées à la tension d‘entrée continu
dc

V  et les états des 

interrupteurs de l‘onduleur, sont donnés par : 
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                                                                                              (III.41) 

Avec 
i

F est l‘état des deux interrupteurs du même bras (
i

K ), supposé parfait, telle que ( c,b,ai  ).  
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En appliquant la loi des mailles entre les tensions de sortie de l‘onduleur et les tensions rotoriques 

triphasées, nous pouvons écrire : 
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  (III.42) 

En remplaçant l‘équation (III.41) dans l‘équation (III.42), on obtient : 
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Sous la forme matricielle, l‘équation (III.43) devient : 
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    D‘où la forme matricielle condensée :  

           rabcdcondlondl
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d
L                                                                                (III.45) 

Avec : 
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iiiI
,,,

,,  : Vecteur des courants triphasés d’alimentation,
 

 
l

R  : Résistance de la ligne (Filtre),
 

 
l

L  : Inductancede la ligne (Filtre). 

D‘après la loi des nœuds, le courant d'entrée de l'onduleur est donné par : 
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D‘où la forme condensée suivante : 
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III.7. Commande vectorielle 

III.7.1. Principe de la commande vectorielle 

Pour assurer un découplage entre le couple et le flux, il est nécessaire de connaître l'amplitude et la 

phase du flux, ce qui nécessite leur estimation ou mesure à partir des signaux de tensions et de 

courants statoriques. Des capteurs comme des sondes à effet Hall ou des spires de mesure peuvent être 

utilisés dans l'entrefer de la machine. Bien que cette technique soit moins sensible aux variations de 

paramètres, elle présente des inconvénients : les capteurs sont fragiles, sensibles aux vibrations et à la 

chaleur, et leurs signaux sont perturbés par des harmoniques dont la fréquence varie avec la vitesse, 

nécessitant des filtres complexes et coûteux. Ainsi, cette méthode n'est pas optimale. En revanche, la 

méthode directe permet de réguler indépendamment et directement les puissances actives (Ps) et 

réactives (Qs) de la GADA. 

 

Figure III.7:Schéma deprincipe dudécouplagedelaGADApar analogieavecla MCC. 

 

III.7.2. Synthèse de la commande à flux orienté de la GADA 

Pour réguler les puissances de la GADA, nous adoptons le modèle électrique suivant : 
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Avec : 
sr LL

M 2

1  est le facteur de dispersion.    

 



 
Chapitre III ________________________________ Modélisation  et commande de la partie électrique (GADA) 

  

46 
 

Le couple électromagnétique est donné par  

)(
.

),,,( rqsdrdsq
s

sqsdrqrdem ii
L

Mp
iiC                                                                           (III.49) 

III.7.2.1. Orientation de flux statorique 

La machine asynchrone constitue un système multi variable régi par des équations différentielles 

[Mal-14]. Le principe de l‘orientation du flux statorique consiste à aligner ce flux selon l‘axe «d» du 

référentiel tournant, comme illustré dans la Figure III.8. Ainsi, le flux est callé sur l‘axe d, tandis que 

la tension statorique est projetée sur l‘axe «q ». Cette configuration permet de simplifier le modèle de 

commande, ce qui facilite la mise en œuvre des lois de commande. 

 

Figure III.8 : Orientation du flux statorique. 

Grâce à cette orientation, on obtient un modèle simplifié de la GADA, ce qui permet également de 

simplifier le dispositif de commande associé. 

0 sqssd
                                                                                                                        (III.50) 

On peut donc formuler les équations des tensions statoriques et rotoriques de la machine de la 

manière suivante : 
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 Tensions rotoriques : 
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En remplaçant l‘équation (III.51) dans l‘équation (III.52), nous obtenons le modèle suivant :    
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En posant les aE  suivantes : 
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Nous obtenons alors : 
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D‘après l‘application de transformation de Laplace sur l‘équation (III.55),  nous obtenons : 
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L‘équation (III.57) permet de représenter le schéma bloc du modèle simplifié des courants 

rotoriques de la GADA, comme illustré dans la Figure III.9. 

 

Figure III.9 : Modèle simplifié des courants rotoriques de la GADA. 

 

Dans le repère de Park, les puissances statoriques active et réactive d‘une GADA s‘écrivent : 
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En négligeant la chute de tension statorique ss iR  et en supposant que le réseau reste parfaitement 

stable, avec une seule tension sV qui conduit au stator un flux constant s , Les tensions peuvent être 

déduites de la manière suivante [Ben-14] : 
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En utilisant la formule (III.58), les puissances sont données par : 
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D‘après l‘équation (III.60), Les relations flux-courants de stator et de rotor sont exprimées par  
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Après orientation du flux statoriques, nous obtenons :  
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En remplacent l‘équation (III.60) dans l‘équation (III.63), nous obtenons : 
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Cette dernière équation peut être représentée par le schéma bloc suivant : 

 

Figure III.10 : Modèle simplifié des puissances statoriques de la GADA. 

 

III.7.3. Modèle simplifié de la GADA avec orientation du flux statorique  

Dans ces conditions, un modèle simplifié des enroulements rotoriques de la GADA peut être établi, 

tel qu‘illustré dans la Figure III.11. 

 

Figure III.11 : Modèle réduit des puissances statoriques de la GADA. 

 

Dans ce schéma bloc, nous considérons les tensions rotoriques rqrd
vv , comme variables de 
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ii ,  comme variables d‘état intermédiaires. On constate que 
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contrôlé par la régulation du courant
rd

i  . Et la puissance active peut être contrôlée par la régulation du 

courant rqi  [Mok-13]. 

III.7.3.1. Estimation du flux statorique ssd    

En raison des inconvénients liés à l‘utilisation de capteurs pour mesurer le flux statorique, Hasse a 

proposé une méthode fondée sur le modèle dynamique du flux magnétique, permettant son estimation 

à partir de grandeurs facilement mesurables, telles que les tensions et les courants. 

 Estimation de 
sd
  à partir de l’équation différentielle  

A partir du modèle orienté de la machine : 
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D‘après la transformation de Laplace, nous obtenons : 
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 Estimation de sd  à partir de la mesure des courants   

A partir de l‘équation (III.61), le flux statorique directe s‘écrit : 

rdsdssd
MiiL 

                                                                                                                    (III.68) 

 Estimation de sd  à partir du régime permanent   

D‘après le modèle de base de laGADA: 
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d
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Si nous négligeons les chutes de tension sqs iRv  , nous pouvons écrire : 
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d
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Pour 0sq    

0
sdssqv                                                                                                                                 (III.71) 

Après avoir simplifié, on obtient : 
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III.7.4. Mise en évidence des termes de couplage 

Les termes représentant le couplage entre les axes « d » et « q » sont donnés par l‘équation (III.54). 

En substituant l‘équation (III.63) dans l‘équation (III.54), on obtient : 













s
s

rdsrqa

rqsrda

Vg
L

M
igLE

igLE





,

,

                                                                                                    (III.74) 

Avec : 

                                                                                                  (III.75) 

III.8. Réglage des puissances statoriques de la GADA 

L‘application de la commande vectorielle aux machines asynchrones à double alimentation 

(MADA) dans le domaine de l‘énergie éolienne requiert une performance dynamique élevée, 

notamment pour le contrôle précis du couple et de la vitesse [Nau-08]. 

 La première approche, dite méthode directe, consiste à négliger les termes de couplage entre 

les axes et à utiliser un correcteur indépendant sur chaque axe afin de réguler séparément les 

puissances active et réactive. Dans cette configuration, les correcteurs de puissance agissent 

directement sur les tensions rotoriques de la machine. 

 La seconde approche, appelée méthode indirecte, prend en compte les termes de couplage et 

les compense à l‘aide d‘un système de commande à double boucle. Ce système permet de réguler à la 

fois les puissances et les courants rotoriques. 

III.9.Réglage des puissances statoriques par la commande vectorielle directe 

Dans ce contexte, la connaissance à la fois de l‘amplitude du flux et de sa phase est indispensable 

pour garantir le découplage entre le couple et le flux, quel que soit le régime transitoire considéré. En 

effet, le flux est ici régulé par contre-réaction, ce qui implique qu‘il doit être soit mesuré, soit estimé à 

partir des signaux de tension statorique et de courant. 

Pour accéder à l‘information sur l‘amplitude et la phase du flux, l‘utilisation de capteurs 

spécifiques, tels que des sondes à effet Hall ou des spires de mesure, placés sous les dents du stator 

(dans l‘entrefer de la machine), peut être envisagée[Chik-13]. Cette technique présente l‘avantage 

d‘être relativement insensible aux variations des paramètres de la machine. Toutefois, elle présente 

également plusieurs inconvénients : les capteurs sont mécaniquement fragiles, et leur fonctionnement 

est compromis dans des environnements sévères, notamment en présence de fortes vibrations ou de 

surchauffes. En outre, les signaux mesurés sont souvent perturbés par des harmoniques, et leur 

fréquence varie avec la vitesse de rotation, ce qui impose l‘utilisation de filtres adaptatifs. Ces 

exigences techniques, combinées au coût élevé du matériel (capteurs, conditionneurs, filtres, etc.), 

rendent cette solution peu optimale. 
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Dans le cadre de la méthode directe, l‘approche de régulation vise à commander de manière 

indépendante et directe les puissances actives et réactive de la GADA [Rab-17, Nau-08, Bel-14]. 

III.9.1. Schéma bloc en boucle ouverte 

Par la substitution des courants rotoriques de l‘équation (III.57) dans l‘équation (III.64), nous 

obtenons : 
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Avec : 
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D‘après le modèle des puissances (III.76), le contrôle des puissances de la GADA revient alors à 

contrôler les deux puissances sP et sQ par les deux composantes 
rd

v et rqv . 

 

Figure III.12 : Modèle réduit des puissances statoriques de la GADA. 

III.9.2. Schéma bloc de la régulation 

Pour réguler les puissances statorique (active et réactive) de la machine, nous allons mettre en place 

une boucle de régulation pour chaque puissance avec un correcteur indépendant, tout en compensant 

les termes de perturbation qui sont présents dans le schéma bloc de la Figure III.12. Nous obtenons, 

ainsi, un découplage par compensation, qui permet de rendre les axesd et q complètement 

indépendants. 
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Figure III.13 : Contrôle des puissances statoriques de la GADA. 

Nous aboutissons alors aux schémas blocs simples et identiques pour les deux puissances statoriques : 

 

Figure III.14 : Boucle de régulation de la puissance sQ  après découplage. 

 

 

Figure III.15 : Boucle de régulation de la puissance sP  après découplage. 

III.9. 3. Synthèse des correcteurs 

Le régulateur Proportionnel-Intégral (PI) utilisé pour le contrôle des puissances active et réactive 

de la GADA se distingue par sa simplicité de mise en œuvre et sa rapidité, tout en garantissant des 

performances satisfaisantes. L‘action proportionnelle permet d‘ajuster la réactivité du système, tandis 

que l‘action intégrale contribue à supprimer l‘erreur statique entre la valeur de consigne et la grandeur 

asservie. La fonction de transfert du correcteur PI est donnée par : 

s
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D‘après les figures (III.14, III.15), la fonction de transfert en boucle ouverte )(sF et donnée par : 
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Et : 

r

r
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L
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La boucle de régulation du courant rdi est représentée par la Figure III.16 : 

 

Figure III.16 : Système de régulation par un correcteur PI. 

La fonction transfert en boucle fermé (FTBF) s'écrit de la manière suivante : 

 

T

KA

T

KA
ss

ksK
T

A

FTBF
ip

ip










 





1

2

                                                                                       (III.82) 

Le dimensionnement du correcteur est réalisé en appliquant la méthode d‘imposition des pôles. 

Étant donné que le polynôme caractéristique de l‘équation (III.82) est d‘ordre deux, deux pôles à partie 

réelle négative sont choisis. Ainsi, le dénominateur des fonctions de transfert correspondantes prend la 

forme suivante : 

2
00

2 2)(   ssD                                                                                                      (III.83) 

Ainsi, nous obtenons les paramètres du correcteur, en fonction de l‘amortissement  et la pulsation 
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Par substitution des coefficients de l‘équation (III.80) dans (III.84), et avec 50
0
  et

90. , nous obtenons les paramètres suivants du correcteur PI: 

 Correcteur de la puissance sP  

 0
    

sPp
K

,  
sPiK ,  

Correcteur PI 50 0.9 1.0888 e-5 0.0007 

Tableau III-1 : Paramètres du correcteur PIde la puissance statorique active. 

 

 Correcteur de la puissance sQ  

 0
    

sQpK ,  
sQiK ,  

Correcteur PI 50 0.9 1.0888 e-5 0.0007 

Tableau III-2 : Paramètres du correcteur PI de la puissance statorique réactive. 

III.9.4. Schéma bloc de la régulation des puissances statoriques de la GADA 

La Figure ci-dessous illustre le schéma de simulation. La machine est directement raccordée au 

réseau électrique via le stator, tandis que le circuit rotorique est alimenté par l‘intermédiaire d‘un 

convertisseur à modulation de largeur d‘impulsion (MLI). Les écarts entre les puissances de référence 

et celles mesurées au niveau du stator sont traités par l‘algorithme de commande adopté, afin de 

générer les tensions de référence du rotor. Ces tensions, combinées à celles appliquées à l‘entrée du 

convertisseur MLI, sont exploitées par la méthode de modulation retenue pour synthétiser les signaux 

de commande destinés aux interrupteurs bidirectionnels du convertisseur [Bel-14]. 



 
Chapitre III ________________________________ Modélisation  et commande de la partie électrique (GADA) 

  

56 
 

 

Figure III.17 : Schéma bloc de la commande vectorielle directe de réglage des puissances statoriques de la GADA. 

III.9.5. Simulation par la méthode directe  

III.9.5.1. Résultats de simulation 

Dans cette première étape, nous allons tester la commande vectorielle directe des puissances 

statorique active et réactive de la GADA, en utilisant le contrôleur  classique de type PI. Une étude de 

simulation a été réalisée à l'aide du logiciel MATLAB/Simulink. Les paramètres de la GADA utilisé 

pour la simulation sont donnés par  à l‘annexe A. Dans ce cas et pour calculée les gains des correcteurs 

PI, nous suivrons la méthode d‘imposition des pôles. Les Figures III.18, III.19, illustrent les 
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référence est négative, indiquant un fonctionnement en mode générateur, tandis que la puissance 

réactive peut être négative (régime inductif) ou positive (régime capacitif). 
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 a)                            Temps [s]  b)                               Temps [s] 

Figure III.18 :Profil de trajectoire de la puissance 

active de référence
*

sP . 

Figure III.19 : Profil de trajectoire de la puissance 

réactive de référence
*
sQ . 

III.9.5.2. Résultats de simulation et interprétation  

La Figure III. 20, représente Résultats de simulation de commande vectorielle directe de la GADA 

en utilisant le contrôleur PI, avec onduleur. 
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Figure III. 20: Résultats de simulation de commande vectorielle directe de la GADA en utilisant le 

contrôleur PI, avec onduleur. 

D‘après les résultats de simulation présentés dans la Figure III.20, On observe que les puissances 

statoriques active et réactive ( ss QP , )  générées par la GADA suivent correctement leurs références (

**, ss QP ), avec une erreur très faible. Par ailleurs, on remarque que les courants ( rqsq ii , ) sont 

proportionnelles à la puissance active sP  générée par la GADA, tandis que les courants (
rdsd

ii , ) sont 

proportionnelles à la puissance réactive sQ , car la puissance active est directement liée au courant 

rotorique quadrature rqi . La forme d‘onde des courants de phase est presque sinusoïdale aussi bien 

pour le courant statorique que pour le courant rotorique. D‘après ces résultats, nous confirmons que la 

puissance active est régulée par les composantes en quadrature du courant statorique et rotorique

),( sqrq ii , tandis que la puissance réactive est contrôlée par les composantes directes de ces courants

),(
rdsd

ii . 

III.10. Réglage des puissances statoriques par la commande vectorielle indirecte 

En raison des inconvénients associés à la commande vectorielle directe, la commande vectorielle 

indirecte est souvent considérée comme une solution plus appropriée. Proposée initialement par Hasse, 

cette méthode repose sur l‘estimation de la position du vecteur de flux, sans nécessiter la mesure ou 

l‘estimation de son amplitude. L‘amplitude du flux est ainsi régulée en boucle ouverte[Chik-13]. 

Les tensions ou courants nécessaires à l‘orientation du flux et au découplage sont calculés à partir 

d‘un modèle dynamique de la machine en régime transitoire. Le développement des microprocesseurs 

a grandement contribué à la mise en œuvre et à la popularisation de cette méthode. Toutefois, elle 

demeure sensible aux variations des paramètres de la machine. 

Il convient de noter que la commande vectorielle indirecte est généralement plus simple à 

implémenter et plus largement utilisée que la commande directe, bien que le choix entre les deux 

dépende largement de l‘application considérée [Nau-08, Rab-17]. 
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III.10.1.Réglage indirect sans boucle de régulation 

La commande sans boucle de régulation de puissance consiste à contrôler les puissances actives et 

réactive de manière indirecte, en agissant sur les composantes directe et quadrature du courant 

rotorique à l‘aide de correcteurs PI. Les consignes de courant sont directement déterminées à partir des 

puissances que l‘on souhaite imposer à la machine. Les courants ainsi obtenus sont les suivants : 
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Selon l'équation (III.85), nous pouvons établir le schéma bloc simplifié, qui lié les courants 

rotoriques et les tensions rotorique. 

 

Figure III.21 : Modèle simplifié des courants rotoriques de la GADA. 

III.10.2. Schéma bloc de réglage indirect  avec la régulation  

L‘analyse de la Figure précédente (III.21) permet de constater que les tensions rqrd vv , sont liées 

aux courants rotoriques rqrd
ii ,  par les termes qada

EE ,,
, . L‘équation (III.81) est non linéaire à cause 

des termes de couplages. Donc, il est essentiel de faire un découplage pour commander séparément les 

courants. Le découplage par compensation est utilisé dans ce cas. Pour rendre les axes d et q

complètement indépendants, il est nécessaire d‘ajouter des termes identiques de découplage mais de 

signe opposé à la sortie des correcteurs comme le montre la Figure III.22. 
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Figure III.22 : Découplage par addition des termes de compensation. 

Les équations suivantes sont utilisées pour contrôler les puissances par les courants rotoriques:
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L‘expression des courants rotoriques nous obtenons comme suite : 
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En remplace équation (III.90) dans l‘équation (III.89) 
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rqî  

+ 

+ 
- 

- 

Reg (
rd

i ) 
+ + 

q,aE  

+ 
+ 

Reg ( rqi ) 

d,a
E  

*
,rd

v
1

 

*
,rq

v
1

 

ird
  

irq
  

Modèle réduit de la GADA Régulation des courants rotoriques   

rqi  















 rr RsL

1
 

d,a
E  

q,aE  

- 

- 















 rr RsL

1
 

rd
i  

+ 

+ 



 
Chapitre III ________________________________ Modélisation  et commande de la partie électrique (GADA) 

  

61 
 

Donc, le bloc de régulation de la Figure devient : 

 
Figure III.23 : Schéma bloc de la régulation des puissances statoriques de la GADA. 

III.10.3. Synthèse des correcteurs 

Le schéma bloc permettant la régulation des puissances à l‘aide des courants rotoriques se présente 

comme suit : 

 
Figure III.24 : Découplage par addition des termes de compensation. 

 

D‘après le découplage, nous aboutissons aux schémas blocs simples et identiques pour les deux 

courants rotorique : 

 

Figure III.25 : Boucle de régulation du courant rqi  après découplage. 
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Figure III.26 : Boucle de régulation du courant rdi  après découplage. 

 Correcteur du courant 
rd

i   

 La tension 
1,rd

v  fournie par le correcteur du courant en direct pour assurer la bonne commande du 

courant
rd

i . La fonction de transfert de la boucle de régulation donnés par : 

)(
, rrrd
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1

1

              (III.92) 

Pour simplifier, nous écrivons l'équation (III.92) comme suit : 
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Et :  

r

r
r

R

L
T                                                                                                                                           (III.95) 

La Figure suivante représente la boucle de régulation du courant
rd

i  

 

Figure III.27 : Schéma bloc de régulation du courant
rd

i . 

Par substitution de l‘équation (III.94) dans (III.84), avec 100
0
  et 720. .Par l‘identification 

l‘équation de la fonction de boucle fermée la Figure III.27 avec l‘équation (III.83), nous obtenons les 

paramètres suivants du correcteur PI : 

 0
    

rdipK ,  
rdiiK ,  

Correcteur PI 100 0.72 0.0331 3.7576 

Tableau III-3 : Paramètres du correcteur PIdu courant d‘axe direct rdi . 
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 Correcteur du courant 
rd

i   

Le correcteur du courant en quadrature fournit une tension 1,rqv  pour garantir un contrôle adéquat 

du courant rqi  . La fonction de transfert pour la boucle de contrôle est donnée par : 

)(
, rrrq

rq

RsLv

i






1

1

(III.96) 

Pour simplifier, nous écrivons l'équation (III.96) comme suit : 
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Et : 

r

r
r

R

L
T                                                                                                                                   (III.99) 

La Figure suivante représente la boucle de régulation du courant rqi . 

 

Figure III.28 : Schéma bloc de régulation du courant rqi . 

Les mêmes calculs effectués pour le correcteur du courant 
rd

i sont appliqués à ce correcteur. 

Les paramètres du correcteur sont donc les mêmes. Ils sont donnés par : 

 0
    iqp

K
,

 
iqi

K
,

 

Correcteur PI 100 0.72 0.0331 3.7576 

Tableau III-4 : Paramètres du correcteur PI du courant d‘axe quadrature rqi . 

 

III.10.4. Schéma bloc du contrôle indirect de la GADA sans boucle  de puissance  

La Figure III.25 présenté le schéma bloc du contrôle indirect de la GADA sans boucle de 

puissance. Cela implique de réguler ces puissances de façon indirecte en ajustant les deux 

composantes directes et quadratiques du courant rotorique ),( rqrd ii  à l'aide de régulateurs PI. 
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Figure III.29 : S Schéma bloc de la commande vectorielle indirecte de la GADA sans boucle de régulation.  

III.10.5. Réglage indirect avec boucle de régulation 

Afin d‘améliorer la méthode indirecte précédemment utilisée, une boucle de régulation est ajoutée. 

Cette boucle permet d‘ajuster les puissances active et réactive à l‘aide de correcteurs de type PI. Ce 

type de régulateur garantit une erreur statique nulle grâce à l‘action intégrale, tandis que la réponse 

rapide du système est assurée par l‘action proportionnelle [Chik-13][Bel-14] 
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III.10.6. Schéma bloc de la régulation 

 

Figure III.30 : Schéma bloc de réglage indirect avec boucle de régulation. 

III.10.7. Synthèse des correcteurs 

 Correcteurs des courants 

 Les mêmes calculs que la section précédente sont valables avec 1000   et 72.0 . 

 Correcteur de courant 
rd

i  

 0
    

rdipK ,  
rdiiK ,  

Correcteur PI 100 0.72 0.0331 3.7576 

Tableau III-5 : Paramètres du correcteur PIdu courant d‘axe direct
rd

i . 

 Correcteur de courant rqi  

 0
    iqpK ,  iqiK ,  

Correcteur PI 100 0.72 0.0331     3.7576 

Tableau III-6 : Paramètres du correcteur PIdu courant d‘axe quadrature rqi . 

III.10.8. Synthèse du correcteur PI pour le contrôle des puissances 

Nous aboutissons alors aux schémas blocs simples et identiques pour les deux puissances : 

 

Figure III.31: Boucle de régulation de la puissance sP  après découplage. 
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Figure III.32 : Boucle de régulation de la puissance sQ  après découplage. 

Les fonctions de transfert de figures précédentes donne par : 

sT

A

i

Q

i

P
sH

rd

s

rq

s




1
)(                                                                                                           (III.100) 

Avec : 













0T

L

M
VA

s

s
                                                                                                                                (III.101) 

D'après les calculs nous obtenons la fonction de transfert en boucle fermée comme suite : 
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Pour avoir une fonction de transfert du premier ordre, nous pouvons choisir : 0pK  

Donc, on remplace la valeur de pK  dans l‘équation (III.102). Nous obtenons : 
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Comme le polynôme du premier ordre, nous imposons une constante du temps  tel que : 
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Avec :   
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Ainsi, nous obtenons les paramètres du correcteur : 
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Par substitution des coefficients de l‘équation (III.101) dans (III.83), avec 100
0
 et

72.0 , nous obtenons les paramètres suivants du correcteur PI : 

 Correcteur de la puissance sP  

   
sPp

K
,  

sPi
K

,  

Correcteur PI 0.0001 0 8.4937 

Tableau III.7 : Paramètres du correcteur PI de la puissance statorique active sP . 

 

 Correcteur de la puissance sQ  

   
sQpK ,  

sQiK ,  

Correcteur PI 0.0001 0 8.4937 

Tableau III.8 : Paramètres du correcteur PIde la puissance statorique réactive sQ . 
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Figure III.33 : Schéma bloc de la commande vectorielle indirecte de la GADA avec boucle de régulation.  

III.10.9. Simulation de la méthode indirecte  

III.10.9.1. Résultats de simulation 

Dans cette seconde partie du chapitre, nous mettons en œuvre la régulation des puissances active et 

réactive statoriques de la GADA en appliquant la commande vectorielle indirecte, à l‘aide de 

régulateurs classiques de type PI.Une étude par simulation est faite à l‘aide du logiciel  

MATLAB/Simulink. Les paramètres utilisés de la GADA pour la simulation sont donnés par à 

l‘annexe. Les gains des régulateurs PI sont déterminés par la méthode d‘imposition des pôles. Nous 

utilisons, toujours, les puissances de référence présentées sur les Figures (III.18, III.19). 
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a).Résultats de simulation de la commande vectorielle indirecte sans boucle de régulation.  
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Figure III. 34 : Résultats de simulation de commande vectorielle indirecte de la GADA sans boucle 

de régulation en utilisant le contrôleur PI, avec onduleur. 
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b) Résultats de simulation de la commande vectorielle indirecte avec boucle de régulation.  
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Figure III. 35: Résultats de simulation de commande vectorielle indirecte de la GADA avec boucle 

de régulation en utilisant le contrôleur PI, avec onduleur. 

III.11.9.2. Interprétation  

À partir des résultats de simulation présentés à la Figure III.34, il est possible d‘observer le 

comportement des puissances statoriques active et réactive ( ss QP , ) générées au niveau du stator de la 

GADA suivent leurs références (
**, ss QP ) et La méthode précédente présente une erreur très faible .J‘ai 

également constaté une amélioration de la puissance active pendant la période de variation de vitesse 

de vent  pour la commande avec boucle de régulation, comparativement à la commande sans boucle de 

régulation dans le cadre de la méthode indirecte. 
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De plus, on peut remarquer que les consignes de puissance sont bien suivies par la MADA aussi 

bien pour la puissance active que pour la puissance réactive avec un bon rejet de perturbation.     

Cependant, un couplage significatif entre les deux axes de commande ( qd , ) est observé, car une 

variation en échelon appliquée à l‘une des puissances (active ou réactive) provoque de faibles 

oscillations sur l‘autre. 

III.12.Conclusion 

 Dans ce chapitre, nous avons étudié la modélisation mathématique d‘un système éolien basé sur 

une machine asynchrone à rotor bobiné GADA dans le repère triphasé ainsi que dans le repère de 

Park. Ensuite, nous avons modélisé les convertisseurs d‘électronique de puissance de type dos-à-dos. 

Nous avons également présenté la stratégie de commande vectorielle avec orientation du flux 

statorique. Après l‘analyse des résultats, nous pouvons conclure que la commande indirecte, bien 

qu‘elle présente un temps de réponse relativement long, assure une bonne régulation en boucle fermée, 

et reste plus performante comparée à d‘autres méthodes. Enfin, le chapitre suivant sera consacré à 

l‘étude de la commande directe de puissance DPC appliquée à une GADA. 
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IV.1.Introduction 

Pour le contrôle des puissances instantanées actives et réactives, nous avons élaboré précédemment 

une commande dite commande vectorielle (commande à flux orienté), elle consiste à commander les 

puissances actives et réactives indirectement à travers des boucles de régulations de courants 

rotoriques via des régulateurs classiques (PI). Cette technique avait un inconvénient qui est la 

dépendance des variations des paramètres de la machine, donc, afin d‘éviter le problème, une nouvelle 

technique de commande est née, connue sous le nom de Commande Directe de Puissance ou DPC 

(direct power control), ainsi on aura une réponse des puissances rapides et robustes [Jer-15], [Mou-

10].  

La commande directe des puissances a été proposée par Noguchi en 1998 ainsi que plusieurs autres 

configurations ont étés développées par Malinowski. La commande DPC est une technique qui permet 

de remplacer les blocs de modulation et les boucles de régulation par une table de commutation, dont 

les entrées sont les erreurs obtenues entre la valeur mesurée et celle de référence et sa sortie représente 

des séquences d‘ordres de commutation convertisseurs à MLI, le but du contrôle est d‘assurer le 

prélèvement des courants sinusoïdaux tout en maintenant le facteur de puissance unitaire [Mou-14], 

[Bou-10], [Mou-10].  

Pour la suite de notre sujet, nous nous concentrons sur la commande DPC classique basée sur une 

nouvelle table de commutation établie. Dans un premier lieu, la commande va être appliquée au 

convertisseur côté réseau (CCR),  

Les différentes stratégies évoquées précédemment pour la commande DPC sont : 

 Une stratégie utilisant le vecteur de tension : cette stratégie est basée sur le positionnement 

du vecteur de tension du référentiel (α,β). Dans notre sujet cette dernière est appliquée au 

convertisseur côté réseau « CCR »  

IV.2 Principe général de la commande DPC : 

Le principe global de la commande DPC, basé sur une table de commutation est appliqué au 

convertisseur à MLI triphasé afin de contrôler indépendamment les puissances estimée actives et 

réactives. 

IV.3 DPC appliquée au convertisseur côté réseau  

IV.3.1.Principe 

Avec la position angulaire du vecteur de tension du réseau eαβ, et en utilisant des régulateurs à 

hystérésis à deux niveaux pour chacune des puissances instantanées qui fournissent les erreurs 

numériques Sp , Sqentre les valeurs réelles et les valeurs de références des puissances actives et 

réactives, on aura à la sortie de la table de commutation, une séquence des ordres de commutation   

(Sa, Sb, Sc.) des semi-conducteurs constituant le convertisseur à MLI (CCR). L‘intérêt de la 

commande, est d‘assurer un transfert d‘énergie constant entre le réseau et la machine dans les deux 

sens avec un contrôle découplé des puissances actives et réactives, par la suite, la valeur de référence 

de la puissance active est délivrée à partir de la régulation de la tension du bus continu via un 
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régulateur IP antiwindup, et la référence de la puissance réactive est supposée de l‘extérieur et nulle 

pour avoir un facteur de puissance unitaire [Chik1-18][Jer-15][Ber10] [Mou10]. 

 

Figure IV.1: Schéma de la Commande DPC côté réseau [Mah-22]. 

 

Figure IV.2:  Représentation des secteurs. 

IV.3.2.Estimation de la tension du réseau 

     Le secteur de la tension est nécessaire pour utiliser la table de commutation, donc la connaissance 

de la tension de ligne est essentielle. L‘expression suivante donne les courants de ligne 𝑖𝑎 , 𝑖𝑏 , 𝑖𝑐dans 

les coordonnées stationnaires 𝛼𝛽[Ted-11] : 

 
𝑖𝛼
𝑖𝛽
 =  

1 −
1

2
−

1

2

0 −
 3

2
−

 3

2

  

𝑖𝑎
𝑖𝑏
𝑖𝑐

    (IV.1) 
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À partir de l‘équation (IV.1)la tension peut être estimée par l‘équation suivante : 

 
𝑣𝛼
𝑣𝛽
 =

1

 𝑖𝛼
2 +𝑖𝛽

2  
.  
𝑖𝛼 −𝑖𝛽
𝑖𝛽 𝑖𝛼

 .  
𝑝
𝑞  (IV.2) 

La transformée inverse de Concordia de la tension de ligne s‘écrit : 

 

𝑣𝑠𝑎
𝑣𝑠𝑏
𝑣𝑠𝑐

 =

 
 
 
 
   1     0

−
1

2

 3

2

−
1

2
−

 3

2  
 
 
 

 
𝑣𝛼
𝑣𝛽
     (IV.4) 

IV.3.3. Expressions des puissances instantanées  

     Pour un système triphasé, la puissance active instantanée est définie par le produit scalaire des 

courants et des tensions de ligne. La puissance réactive est définie par le module de leur produit 

vectoriel [Mal-03] [Gho-19]. Ces puissances sont exprimées respectivement par les relations: 

 
𝑝 = 𝑣𝛼 . 𝑖𝛼 + 𝑣𝛽 . 𝑖𝛽
𝑞 = 𝑣𝛼 . 𝑖𝛽 − 𝑣𝛽 . 𝑖𝛼

     (IV.5) 

L‘erreur de la puissance active∆𝑝 est la déférence entre la valeur de la puissance active est 𝑝∗a 

valeur réelle de la puissance active 𝑝 est donnée par : 

∆𝑝 = 𝑝∗ − 𝑝(IV.6) 

L‘erreur de la puissance réactive∆𝑞 est la déférence entre la valeur de la puissance réactive  𝑞∗est la 

valeur réelle de la puissance réactive 𝑞 :  

∆𝑞 = 𝑞∗ − 𝑞      (IV.7) 

IV.3.4.  Position angulaire du vecteur de tension 

La phase du vecteur tension du réseau est transformé en signale numérisé 𝜃𝑛  (position angulaire). 

Le calcul de cette position nécessite la connaissance des composants 𝑣𝛼  et 𝑣𝛽  ,qui peuvent être 

calculées à partir des transformations des tensions de réseau du plan  𝑎, 𝑏, 𝑐  au plan stationnaire (α, 

β): 

𝜃𝑛 = 𝑎𝑟𝑐𝑡𝑔
𝑣𝛽

𝑣𝛼
(IV.8) 

De ce fait, les coordonnées stationnaires sont divisées en douze secteurs pour optimiser les 

performances du contrôleur, comme il est montré dans la figure IV.2 Les secteurs peuvent être 

exprimés  comme suit : 

 𝑛 − 2 
𝜋

6
≤ 𝜃𝑛 ≤  𝑛 − 1 

𝜋

6
           Avec :  𝑛 = 1,2,3…… . ,12   (IV.9) 

La détermination de cet angle par le calcul de l‘arctangente comme le montre l‘équation (IV.9)est 

erronée dans quelques cas. La valeur exacte de l‘angle dans l‘intervalle [0, 2π], peut être obtenu  à 

partir de l‘analyse présentée dans le tableau IV-1 [Say-21] [Gho-19][Aim-23]. 
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Vecteur de tension Position de 𝛉𝐧 

 

𝑣𝛼 > 0 

𝑣𝛽 > 0 𝑎𝑟𝑐𝑡𝑔  
𝑣𝛽

𝑣𝛼   

𝑣𝛽 < 0 𝑎𝑟𝑐𝑡𝑔  
𝑣𝛽

𝑣𝛼  + 2𝜋 

 

𝑣𝛼 < 0   

𝑎𝑟𝑐𝑡𝑔  
𝑣𝛽

𝑣𝛼  + 𝜋 

 

𝑣𝛼 = 0 

𝑣𝛽 > 0 𝜋/2 

𝑣𝛽 < 0 3𝜋/2 

Tableau IV-1: Position du vecteur tension dans l‘intervalle [0,2π)]. 

IV.3.5. Régulateurs à hystérésis  

 

  

Figure III- 4: Comparateurs à hystérésis. 

Pour la régulation des puissances instantanées actives et réactives, on propose des régulateurs à 

hystérésis à deux niveaux, L'un est influencé par l'erreur PPSP  *
 pour la puissance active. L'autre 

est influencé par l'erreur QQSq  *
 pour la puissance réactive. Les erreurs numériques peuvent 

prendre une valeur, soit ‗1‘ pour l‘augmentation de la grandeur contrôlée, soit ‗0‘ pour une diminution 

de la grandeur contrôlée [Bou-10], [Bou-08].  

Si P*-P ≥ HP   Sp=1, Si P*-p ≤ -HP  SP=0                                                                             (IV.10) 

Si Q*-Q ≥ Hq   Sq=1, Si Q*-Q ≤ -Hq Sq=0 

IV.3.6.  Table de commutation 

Les signaux numériques d‘erreurs 𝑠
𝑃

et 𝑠𝑞et le secteur de travail sont les entres de la table de 

commutation (Tableau IV-2), où les états de commutations 𝑠𝑎 , 𝑠𝑏 , 𝑠𝑐  du redresseur à MLI sont 

mémorisés.En employant la table, l'état optimum de commutation du convertisseur peut être choisie à 

chaque état de commutation selon la combinaison des signaux numériques𝑠𝑝 , 𝑠𝑞et le numéro du 

secteur, c‘est-à-dire, que le choix de l'état est effectué de sorte que l‘erreur de la puissance active 
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puisse être restreinte dans une bande à hystérésis de largeur 2𝐻𝑝  et de même pour l‘erreur de la 

puissance réactive, avec une bande de largeur 2𝐻𝑞  [Res-10]. 

Sp  Sq  
1S  2S  3S  4S  5S  6S  7S  8S  9S  10S  11S  12S  

1 0 
6V  7V  1V  0V  2V  7V  3V  0V  4V  7V  4V  0V  

1 
0V  0V  7V  7V  0V  0V  7V  7V  0V  0V  7V  7V  

0 0 
6V  1V  1V  2V  2V  3V  3V  4V  4V  5V  5V  6V  

1 
1V  2V  2V  3V  3V  4V  4V  5V  5V  6V  6V  1V  

Tableau IV-2 : Table de commutation classique. 

IV.3.7.  Régulation de la tension du bus continu 

Un régulateur intégral proportionnel (IP), avec une compensation anti-windup et proposé pour la 

régulation de la tension du bus continu comme il est montré sur la figure IV-4. Il permet de réduire la 

variation et l‘instabilité de la tension du bus continu[Say-21]. Ce régulateur possède aussi l‘avantage 

de ne pas introduire de zéro dans la fonction de transfert en boucle fermé tout en garantissant une 

erreur statique nulle.L‘objectif de la boucle de régulation est de maintenir la tension du bus continue à 

une valeur de référence constante en présence de variation du courant de charge. En effet, elle est 

destinée à compenser toute perturbation, provoquant une variation de l‘énergie stockée dans le 

condensateur. La régulation de𝑣𝑑𝑐  est obtenue en ajustant l‘amplitude des références des courants 

prélevés pour contrôler le transit de puissance active entre le réseau et le bus continu. 

 

Figure IV.3: Schéma de la régulation de la tension du bus continu. 

En appliquant la méthode de placement des pôles, en obtient les paramètres du correcteur IP, en 

fonction de l‘amortissement 𝜀 est la fréquence 𝜔𝑛  : 

 
𝑘𝑝 = 2𝜀𝜔𝑛𝐶𝑠

𝑘𝑖 =
𝜔𝑛

2𝜀

   (IV.11) 

La quantité de la puissance de référence est déduire comme suit : 

𝑝∗ = 𝑣𝑑𝑐 . 𝑖𝑠𝑚 (IV.12) 
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IV.3.8.  Résultats de simulation 

La commande directe de puissance du redresseur à MLI triphasé, a été simulée à l‘aide du logiciel 

Matlab/Simulink, avec une table de commutation classique. Les principaux paramètres du circuit de 

simulation sont donnés en Annexe. 

La figure IV.4 (a) représente l‘allure de la tension de sortie avec l‘application d‘un échelon de  

tension à 𝑡 = 3.5𝑠. L‘influence de la variation de charge sur le réglage de la tension du bus continu. La 

tension de sortie suit sa référence correctement. Avec notre choix de régulateur de tension de type IP 

anti-windup, on constate qu‘il n‘y a pas dépassement 

. La figure IV.4 (h), montre que le courant du réseau 𝑖𝑎   et en phase avec la tension du réseau, ce qui 

donne un facteur de puissance unitaire. 

Les figures IV.4 (c),(d) représentent la puissance active et son zoom, lors la variation  de la charge à 

𝑡 = 5𝑠 et 𝑡 = 6𝑠 , la puissance fait apparaitre une diminution  de  300𝑊puis elle ascend presque 

instantanément vers sa valeur limite. La  puissance réactive est caractérisée par  une diminution à 

𝑡 = 5 et à 𝑡 = 6 après une courte période elle se stabilise à sa valeur de référence 0 𝑉𝐴𝑅 , comme le 

montre dans les figures IV.4 (e),(f). 

La figure IV.4 (i) représente l'allure de courant de ligne𝑖  , 𝑖𝑎 ,i il a une forme sinusoïdale mais un peu 

dégradée qui dû à la présence des harmoniques. Nous pouvant conclure que le système se comporte 

bien vis-à-vis de la variation de la charge en assurant un facteur de puissance unitaire et des courants 

de ligne sinusoïdaux circulant dans les phases alimentant le redresseur à MLI  . 
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Figure IV.4 : Résultats de simulation. 
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IV.4. Contrôle direct de puissance du redresseur triphasé à MLI en utilisant une nouvelle Table 

de commutation 

IV.4.1. Principe de la commande directe de puissance  

Afin d‘améliorer les performances du contrôle DPC surtout en régime transitoire, une nouvelle 

méthode a été proposée dans [Chi 2-18] [Chi 3 -18] pour sélectionner le vecteur tension optimale du 

redresseur tout en assurant un contrôle simultané et précis des puissances,  une réduction de la  

distorsion harmonique du courant de ligne et une amélioration du facteur de puissance. 

La structure globale de la DPC, utilisant une nouvelle table de commutation, appliqué au pont 

redresseur à MLI triphasé est illustrée sur la figure IV-6.Le principe du DPC consiste à sélectionner 

une séquence des ordres de commutation (𝑠𝑎 , 𝑠𝑏 , 𝑠𝑐) des semi-conducteurs constituant le redresseur à 

MLI, à partir d‘une table de commutation. La sélection s‘effectue sur la base des erreurs numérisées, 

𝑠𝑝et𝑠𝑞  entre les références des puissances active et réactive (p
*
et q*) et les valeurs réelles (pet q), 

fournies par deux comparateurs à hystérésis à deux niveaux, ainsi que sur la position angulaire du 

vecteur des tensions du réseau 𝑣𝛼 , 𝑣𝛽 .Pour ce dernier, le plan α-β est divisé en douze secteurs égaux de 

30°, comme l‘illustre le graphique de la figure IV-3. Chacune des séquences de commande (𝑠𝑎 , 𝑠𝑏 , 𝑠𝑐) 

correspond à un vecteur de tension à l‘entrée du redresseur 𝑣𝑖dont l‘ensemble est représenté dont 

l‘ensemble est représenté dans le tableau IV-1[Chi 3-18] [Nas-20]. 

.Pour toute structure du DPC, le contrôle de la tension du bus continu𝑣𝑑𝑐 , s‘effectue par ajustement de 

la puissance active instantanée. L‘objectif du DPC est de permettre au redresseur à MLI d‘échanger 

avec le réseau des puissances instantanées actives et réactive constantes, tout en garantissant un 

contrôle découplé de ces dernières. Ainsi, la référence de la puissance active, p*, est fournie par le 

régulateur IP de la tension du bus continu. Tandis que celle de la puissance réactive, q*, provient de 

l‘extérieur. Elle est imposée égale à zéro pour l‘absorption de courants sinusoïdaux sous une tension 

de source de forme supposée sinusoïdale, afin d‘assurer un fonctionnement du redresseur avec un 

facteur de puissance unitaire[Nas-20]. 
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Figure IV.5: Structure proposée pour le contrôle DPC du redresseur à MLI[Mah-22]. 

IV.4.2 Sélection de vecteur dans la nouvelle table de commutation 

Dans le repère stationnaire (a,b,c)et avec un système triphasé équilibré, la dynamique des courants 

absorbés par un redresseur à MLI est régie par les système matricielles suivants[Chi 3-18][Nas-20]: 

 
 
 
 
 
 
 𝐿

𝑑𝑖𝑎

𝑑𝑡

𝐿
𝑑𝑖𝑏

𝑑𝑡

𝐿
𝑑𝑖𝑐

𝑑𝑡

𝐶
𝑑𝑣𝑑𝑐

𝑑𝑡  
 
 
 
 
 
 

=  

−𝑅 0 0 0
0 −𝑅 0 0
0 0 −𝑅 0
𝑆𝑎 𝑆𝑏 𝑆𝑐 −1

  

𝑖𝑎
𝑖𝑏
𝑖𝑐
𝑖𝐿

 +  

𝑣𝑎 − 𝑣𝑟𝑎
𝑣𝑏 − 𝑣𝑟𝑏
𝑣𝑐 − 𝑣𝑟𝑐

0

                                                                    (IV.13) 

 

𝑣𝑟𝑎
𝑣𝑟𝑏
𝑣𝑟𝑐

 =  

2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3

  

𝑆𝑎
𝑆𝑏
𝑆𝑐

 𝑣𝑑𝑐 (IV.14) 

avec 𝑆𝑎 , 𝑆𝑏  et 𝑆𝑐sont les états des interrupteurs du redresseur dans le repère (a,b,c). 

La transformé dans le repère fixe 𝛼, 𝛽  est donnée par : 

𝑇 =  
2

3
 
1 −

1

2
−

1

2

0
 3

2

− 3

2

 (IV.15) 

La transformation de l‘équation (IV.13)sera exprimée par  [Gho-19]:  

 
𝐿
𝑑𝑖𝛼

𝑑𝑡

𝐿
𝑑𝑖𝛽

𝑑𝑡

 =  
−𝑅 0
0 −𝑅

  
𝑖𝛼
𝑖𝛽
 +  

𝑣𝛼 − 𝑣𝑟𝛼
𝑣𝛽 − 𝑣𝑟𝛽

 (IV.16) 
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La transformation de Park de l‘équation (IV.13)dans le repère (d-q) est donnée par : 

 
𝐿
𝑑𝑖𝑑

𝑑𝑡

𝐿
𝑑𝑖𝑞

𝑑𝑡

 =  
−𝑅 𝜔𝐿
−𝜔𝐿 −𝑅

  
𝑖𝑑
𝑖𝑞
 +  

𝑣𝑑 − 𝑣𝑟𝑑
𝑣𝑞 − 𝑣𝑟𝑞

 (IV.17) 

Où𝜔est la vitesse de rotation, les tensions𝑣𝑟𝑑  et  
𝐿
𝑑𝑖𝑑

𝑑𝑡

𝐿
𝑑𝑖𝑞

𝑑𝑡

 =  
−𝑅 𝜔𝐿
−𝜔𝐿 −𝑅

  
𝑖𝑑
𝑖𝑞
 +  

𝑣𝑑 − 𝑣𝑟𝑑
𝑣𝑞 − 𝑣𝑟𝑞

  𝑖 ,sont les 

composantes du repéré d-qà l'entrée du redresseur et sont exprimées comme suit[Gon-14]:   

 
 

 𝑣𝑟𝑑 =  
2

3
cos[𝜔𝑡 −

𝜋

3
(𝑘 − 1)]

𝑣𝑟𝑞 =  
2

3
sin[𝜔𝑡 −

𝜋

3
(𝑘 − 1)]

 (IV.18) 

Où 𝑘 = 1,2,3,4,5,6, est le numéro de vecteur de tension approprié. 

En supposant que la source d'alimentation est idéale et que le vecteur de tension alternative𝑣 = 𝑉𝑀𝑒
𝑗𝜃 , 

alors il en résulte que𝑣𝑑 =  3/2𝑉𝑀et𝑣𝑞 = 0. Les puissances instantanées active et réactive dans le 

repère stationnaire (d-q)  sont alors données par l‘expression ci-dessous : 

 
𝑝
𝑞 =  

𝑣𝑑 𝑣𝑞
𝑣𝑞 −𝑣𝑑

  
𝑖𝑑
𝑖𝑞
 =  

3

2
 
𝑉𝑀 0
0 −𝑉𝑀

  
𝑖𝑑
𝑖𝑞
 (IV.19) 

Sur la base de (2.25) et (2.26), la variation de p et q peut être calculée comme : 

 
 

 
𝑑𝑝

𝑑𝑡
=

3

2𝐿
𝑉𝑀

2 − 
3

2

1

𝐿
𝑉𝑀𝑣𝑟𝑑 −

𝑅

𝐿
𝑝 − 𝜔𝑞

𝑑𝑞

𝑑𝑡
=  

3

2

1

𝐿
𝑉𝑀𝑣𝑟𝑞 −

1

𝐿
𝑞 + 𝜔                 

 (IV.20) 

En considérant que la valeur de 𝑅 est suffisamment petite pour être négligée et la puissance réactive 

est toujours contrôlé pour être égale zéro. La variation de la puissance active et réactive instantanée 

peut être réécrite comme: 

 

𝑑𝑝

𝑑𝑡
=

3

2

𝑉𝑀
2

𝐿
−

𝑉𝑀𝑣𝑑𝑐

𝐿
. cos  𝜔𝑡 −

𝜋

3
 𝑘 − 1  

𝑑𝑞

𝑑𝑡
= −

𝑉𝑀𝑣𝑑𝑐

𝐿
. sin  𝜔𝑡 −

𝜋

3
 𝑘 − 1   + 𝜔𝑝                  

 (IV.21) 

La variation de la puissance active et réactive, est représentée sur la figure IV.6, en fonction de la 

tension du réseau pour divers vecteurs de tension de redresseur[Chi 1-18]  [Chi 2-18]  [Chi 3-18] : 
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Figure IV.6 : Variation de la puissance active et réactive pour divers vecteurs de tension du redresseur 

Sur la base des courbes de variations présentées précédemment, les vecteurs sélectionnés pour le les 

secteurs 1,2 et 3 sont représentés dans le tableau IV-3 : 

Pour le Premier secteur on a obtient : 

𝐝𝐩 𝐝𝐭  𝐝𝐪 𝐝𝐭  

> 0 ↔ sp = 1 < 0 ↔ sp = 0 > 0 ↔ sq = 1 < 0 ↔ sq = 0 

V2 , V3 , V4, V5 V1 , V6 V1, V2 , V3 V4 , V5, V6 

                                                      𝐝𝐪 

𝐝𝐩                                                       
sq = 1 sq = 0 

sp = 1 v3 v5 

sp = 0 v1 v6 

Pour le deuxième secteur on a obtient : 

𝐝𝐩 𝐝𝐭  𝐝𝐪 𝐝𝐭  

> 0 ↔ sp = 1 < 0 ↔ sp = 0 > 0 ↔ sq = 1 < 0 ↔ sq = 0 

V3 , V4, V5 , V6 V1 , V2 V2, V3, V4 V1 , V3, V6 

                                                     𝐝𝐪 

𝐝𝐩                                                       
sq = 1 sq = 0 

sp = 1 v4 v6 

sp = 0 v2 v1 
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Pour le troisième secteur on a obtient : 

Tableau IV-3:Vecteurs des tensions à l‘entrée du redresseur 

Afin d'obtenir de meilleures performances du système, la table de commutation est synthétisée en 

fonction de la variation de la puissance active et réactive pour différents vecteurs tension dans chaque 

secteur, comme le montre la Figure IV.2. Les signes de variation des puissances active et réactive sont 

illustrés dans le tableau IV-4. 

𝐝𝐩 𝐝𝐭  𝐝𝐪 𝐝𝐭  

Secteur > 0 ↔ 𝐬𝐩 = 1 < 0 ↔ 𝐬𝐩 = 0 > 0 ↔ 𝐬𝐪 = 1 < 0 ↔ 𝐬𝐪 = 0 

𝛉𝟏 V2 , V3 , V4, V5 V1, V6 V1 , V2, V3 V4 , V5, V6 

𝛉𝟐 V3 , V4 , V5, V6 V1, V2 V2 , V3, V4 V1 , V3, V6 

𝛉𝟑 V3 , V4 , V5, V6 V1,V2 V2, V3, V4 V1, V5, V
6
 

𝛉𝟒 V1, V4, V5, V6 V2, V
3
 V3, V4, V5 V1, V2, V

6
 

𝛉𝟓 V1, V4, V5, V6 V2, V
3
 V3, V4, V5 V1, V2, V

6
 

𝛉𝟔 V1, V2, V5, V6 V3, V4 V4, V5, V6 V1, V
2
, V

3
 

𝛉𝟕 V1, V2, V5, V6 V3, V4 V4, V5, V6 V1, V
2
, V

3
 

𝛉𝟖 V1, V2, V3, V6 V4, V5 V1, V5, V6 V2, V3, V4 

𝛉𝟗 V1, V2, V3, V6 V4, V5 V1, V5, V6 V2, V3, V4 

𝛉𝟏𝟎 V1, V2, V3, V4 V5, V6 V1, V2, V6 V3, V4, V5 

𝛉𝟏𝟏 V1, V2, V3, V4 V5, V6 V1, V2, V6 V3, V4, V5 

𝛉𝟏𝟐 V2, V3, V4, V5 V1, V6 V1, V2, V
3
 V4, V5, V6 

Tableau IV-4: Signes de variation des puissances active et réactive pour les 12 secteurs. 

 

𝐝𝐩 𝐝𝐭  𝐝𝐪 𝐝𝐭  

> 0 ↔ sp = 1 < 0 ↔ sp = 0 > 0 ↔ sq = 1 < 0 ↔ sq = 0 

V3 , V4 , V5, V6 V1, V2 V2 , V3 , V4 V1 , V5, V6 

                                                     𝐝𝐪 

𝐝𝐩                                                       

 
sq = 1 sq = 0 

sp = 1 v4 v6 

sp = 0 v2 v1 
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La nouvelle table de commutation pour le contrôle direct de puissance DPC du redresseur MLI peut 

être résumée dans le tableau IV-5. 

Sp  Sq  
1S  2S  3S  4S  5S  6S  7S  8S  9S  10S  11S  12S  

1 0 
5V  6V  6V  1V  1V  2V  2V  3V  3V  4V  4V  5V  

1 
3V  4V  4V  5V  5V  6V  6V  1V  1V  2V  2V  3V  

0 0 
6V  1V  1V  2V  2V  3V  3V  4V  4V  5V  5V  6V  

1 
1V  2V  2V  3V  3V  4V  4V  5V  5V  6V  6V  1V  

Tableau IV-5 : Nouvelle table de commutation pour le contrôle DPC du redresseur MLI. 

IV.4.3.Résultats de simulation  

Pour confirmer l‘efficacité du contrôle DPC avec la nouvelle table de commutation appliquée au 

redresseur MLI triphasé à deux niveaux, une simulation numérique est effectuée avec le logiciel 

Matlab/Simulink. Les paramètres électriques ainsi que les données de la commande sont identiques à 

celles indiquées dans la DPC conventionnelle. 

La figure IV.7 (a) représente l‘allure de la tension de sortie avec l‘application d‘un échelon de  

tension à 𝑡 = 3.5𝑠. L‘influence de la variation de charge sur le réglage de la tension du bus continu. La 

tension de sortie suit sa référence correctement. Avec notre choix de régulateur de tension de type IP 

anti-windup, on constate qu‘il n‘y a pas dépassement 

. La figure IV.7 (h), montre que le courant du réseau 𝑖𝑎   et en phase avec la tension du réseau, ce qui 

donne un facteur de puissance unitaire. 

Les figures IV.7 (c),(d) représentent la puissance active et son zoom, lors la variation  de la charge à 

𝑡 = 5𝑠 et 𝑡 = 6𝑠 , la puissance fait apparaitre une diminution  de  280𝑊puis elle ascend presque 

instantanément vers sa valeur limite. La  puissance réactive elle  garder lastabilité à sa valeur de 

référence presque 0 𝑉𝐴𝑅 ,Elle  améliorer par rapport la DPC-C  comme le montre dans les figures 

IV.7 (e),(f).La figure IV.7 (i) représente l'allure de courant de ligne𝑖  , 𝑖𝑎 ,i il a une forme sinusoïdale. 

Ces résultats de simulation montrent les hautes performances de New DPC . Les objectifs, à savoir la 

minimisation des pulsations des puissances et les harmoniques des courants présentés par la 

commande DPC-C 
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Figure IV. 7 : Résultats de simulation New DPC. 

IV.5.Commande New DPC de la GADA 

Après avoir étudié précédemment le système éolien en utilisant deux techniques différentes de manière 

indépendante, à savoir l‘orientation vectorielle du côté machine et la commande directe de la 

puissance (DPC-C et New DPC) du côté réseau, et obtenu de bons résultats selon les critères de 

performance, en particulier pour la New DPC qui a démontré son efficacité, il est devenu nécessaire de 

tester la robustesse du système éolien complet par la commande New DPC , tout en conservant la 

même technique d‘orientation vectorielle du côté machine. À cet effet, nous avons fusionné les deux 

schémas blocs, comme illustré dans la figure IV.8. 
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Figure IV.8: Schéma global du système éolien avec commande DPC. 
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IV.5.1.Test robustesse de la commande New DPC de la GADA 

Dans le but de tester la robustesse de la commande New DPC, nous allons étudier l‘effet des 

variations paramétriques (résistance de charge). La robustesse de cette technique est évaluée à travers 

une variation simultanée de la charge (500, +250, -250). Les figures (9.c) et (9.e) illustrent le 

comportement dynamique du système lors de ce test. Les grandeurs les plus importantes à observer 

sont la puissance active et la puissance réactive. 

IV.5.2.a. Résultats de simulation 
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Figure IV- 9 : Résultats de simulation de test robustesse de la GADA 

IV.5.Interprétation le résultat 

D‘après le résultat de Lacommande  direct de puissance dela GADA a été simulé à l'aide du logiciel 

Matlab/Simulink, en utilisant une commande New DPC côté réseau, tout en conservant la commande  

vectoriel VOC côté machine.On observe, lors de l'application d'un échelon detension à t = 3,5 s, 

l'influence de la variation de charge sur le réglage de la tension du bus continu. La tension de sortie 

suit fidèlement sa valeur de référence. Grâce au choix d‘un régulateur de tension de type IP avec 

fonction anti-windup, aucun dépassement de la tension n‘est observé.La figure IV.4 (h) montre que le 

courant du réseauia est en phase avec la tension du réseau, ce qui permet d‘obtenir un facteur de 

puissance unitaire.Les figures IV.4 (c) et (d) présentent la puissance active et son agrandissement au 

moment des variations de charge à t = 5 s et t = 6 s. On remarque une chute de puissance d‘environ 

280 W, suivie d'une remontée quasi instantanée à sa valeur maximale.On note également une 

amélioration significative de l‘épaisseur de la bande, ainsi qu'une meilleure réponse de la puissance 

réactive, caractérisée par une zéro VARaugmentation au moment du changement de la tension Vdc, 

puis une stabilisation à lors du changement de charge, comme illustré dans les figures IV.4 (e) et 

(f).Par ailleurs, une bonne réponse des puissances active et réactive statorique de la machine est 

observée au moment de la variation de Vdc. 

IV.6.Conclusion 

Dans ce chapitre, la technique de contrôle direct de la puissance (DPC) utilisant une table de 

commutation prédéfinie pour le redresseur triphasé à modulation de largeur d'impulsion (MLI) a été 

abordée. Dans un premier temps, l‘architecture et le principe de fonctionnement du DPC basé sur la 

table de commutation classique ont été détaillés. Les résultats obtenus à partir des simulations ont été 

analysés, et la performance de cette méthode de contrôle a été évaluée. Compte tenu des inconvénients 

présentés par la table de commutation classique, mis en évidence par l‘analyse des résultats simulés , 

une nouvelle table a été développée dans le but d‘assurer un contrôle précis et simultané des 

puissances instantanées active et réactive. Cette table proposée a été élaborée sur la base d‘une étude 

des variations des puissances active et réactive engendrées par l‘application de chacun des vecteurs de 

commande, au cours d‘un cycle complet de rotation du vecteur de tension du réseau dans le plan α-
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β.Les résultats issus de l‘implémentation en simulation ont révélé des performances nettement 

supérieures à celles offertes par la table classique. Comme nous avons déjà testé la commande New 

DPC  dans le système, elle a donné des résultats globalement satisfaisants.  
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Conclusion générale 

L‘objectif principal de ce travail est d‘étudier, par simulation numérique, la commande directe de 

puissance de génératrices asynchrones à double alimentation (GADA), utilisées dans la production 

d‘énergie éolienne. Nous avons choisi d‘analyser deux stratégies de commande : la commande 

vectorielle (côté machine) et la commande directe de puissance, DPC-C et NewDPC (côté réseau), 

ainsi que d‘appliquée  la stratégie NewDPC dans un système éolien. 

Dans le premier chapitre, nous avons présenté un panorama des solutions électrotechniques 

possibles pour la production d‘énergie électrique à partir de turbines éoliennes. Après un rappel des 

notions fondamentales nécessaires à la compréhension du système de conversion de l‘énergie éolienne, 

différents types d‘éoliennes ainsi que leurs modes de fonctionnement ont été décrits. 

Dans le deuxième chapitre, nous avons modélisé le système turbine éolienne associé à la GADA. 

La partie mécanique a été détaillée, et les résultats de simulation nous ont permis de vérifier 

l‘efficacité et la fiabilité de la stratégie de contrôle MPPT. 

Dans le troisième chapitre, nous avons poursuivi la modélisation du système turbine éolienne 

couplée à une GADA. L‘intérêt de la transformée de Park y a été mis en évidence, car elle permet 

d‘obtenir un système d‘équations plus simple à exploiter. Nous avons également effectué une 

simulation d‘une éolienne basée sur une GADA avec une commande vectorielle, couramment utilisée 

pour produire de l‘énergie électrique à partir de turbines éoliennes. 

Enfin, dans le dernier chapitre, nous avons abordé la modélisation d‘un système de conversion 

d‘énergie éolienne basé sur une machine asynchrone à double alimentation utilisant des stratégies de 

commande directe de la puissance. Ces stratégies reposent sur des régulateurs à hystérésis et des tables 

de commutation prédéfinies, ainsi qu‘une nouvelle table de commutation proposée. Les résultats de 

simulation obtenus témoignent de la qualité du contrôle DPC, qui permet d‘atteindre des performances 

dynamiques très satisfaisantes. 

Comme mentionné précédemment, la commande NewDPC a été testée dans le système, et les résultats 

obtenus ont été globalement satisfaisants. Le système a montré une bonne réactivité face aux 

variations de la charge, ce qui témoigne de l‘efficacité de la stratégie en conditions nominales. 

Cependant, certaines limitations ont été observées, notamment au niveau de la forme des courants, qui 

présentent des déformations dans certaines conditions de fonctionnement. Ces anomalies peuvent être 

attribuées à plusieurs facteurs : 

 L‘utilisation simultanée de deux stratégies de commande différentes (par exemple, une du côté 

réseau et une autre du côté machine), ce qui peut entraîner un manque de coordination et 

provoquer des transitoires non souhaités dans le système. 

 La valeur élevée de la puissance injectée, qui peut engendrer des contraintes supplémentaires 

sur le système et amplifier les effets dynamiques. 
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 Les comparateurs à hystérésis génèrent des ondulations harmoniques dans les puissances 

active et réactive. 

Face à ces constats, une solution envisageable serait l‘unification de la stratégie de commande, en 

utilisant  la (DPC- SVM), cette stratégiesera adapter à l‘ensemble du système éoliencôte machine et 

côteréseau en éliminant les comparateurs hystérésis et  la table de commutation. Cela permettrait 

d'assurer une meilleure coordination entre les différentes composantes du système, de réduire les 

perturbations transitoires, et d‘améliorer la qualité d‘énergiesen diminuant la pollution harmonique des  

courants injectés dans le réseau. 
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Annexe 
Paramètres du système éolienétudié 

A.1. Paramètres de la turbine éolienne [Ben-23] : 

Les paramètres la turbine à deux masses éolienne étudiée dans le chapitresontdonnés par le tableau A. 1 : 

Table A.1:Paramètres de la turbine éolienne à deux masses. 

ParamètresSymbole Valeurs 

La turbine éolienne à deux masses 

Puissance nominale  
nP  1.5 MW 

Densité de l'air   1.12 Kg.m
3
 

Rayon du rotor R  21.65 m 

Inertie de la masse du côtérotor de la turbine 
t

J  3.25.10
5
Kg. 

M2
 

Coefficient de frottements visqueux externes du 

rotor de la turbine  
t

f  27.36 N.m/rad/s 

Coefficient de torsion de l‘arbre lent  
ls

B  2.691.10
5
N.m rad 

Coefficient de frottements visqueux internes de 

l‘arbre lent 

ls
K  9500N.m/rad/s 

Rapport du multiplicateur  gn  43.165 

 

A.2.Paramètres de la génératrice asynchrone à double alimentation [Gar-15, Ata-19]: 
 

Les paramètres de la GADA et CCR sont répertoriés dans le tableauA.2, respectivement. 

Tableau A. 2 :Paramètres du système éolien étudié. 

GADA   

Paramètres Symbole Valeurs  

Puissance nominale 
nP  1.5 MW 

Vitesse nominale  
nN  1420 tr/min 

Tension nominale 
nV  690 V 

Nombre de pair de pole p  2 

Fréquence  f  Hz50  

Résistance statorique   
sR  012.0  

Résistance rotorique   
rR  016.0  

Inductance de magnétisation M  9.2  H 

Inductance de fuite statorique     
sol  18.0  H 
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Inductance fuite rotorique   
rol  16.0  H 

Inductance statorique   MlL sos   3.08 H 

Inductance rotorique   MlL ror   3.06 H 

Inertie de la masse du côté rotor de la génératrice 
gJ  34.4 Kg.m

2
 

Coefficient de frottements visqueux externes du 

rotor de la génératrice  

gf  0.2 N.m/rad/s 

CCR   

Résistance de la ligne  
fR  3.0  

Inductance de la ligne 
fL

 
0370.0  H 

Tension nominal de la ligne  
dcV

 
125  V 

Capacité de filtre  C
 

0011.0  F 

Tension de bus continu  

 

dcV  500  V 

Paramètres de la technique MLI    

Tension de modulante  
refv  9.0  V 

Tension de porteuse   
pV

 
1  V 

Indice de modulation 
mI

 
21 

Fréquence de la porteuse   f
 

50  Hz 
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