

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

وزارة التعليم العالي و البحث العلمي

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

جامعة الدكتور الطاهر مولاي سعيدة-

Université Saida Dr Tahar Moulay – Faculté de TECHNOLOGIE

MEMOIRE

Mémoire de fin d'études présenté pour l'obtention du Diplôme de MASTER

En: AUTOMATIQUE

Spécialité : AUTOMATIQUE & SYSTEMES

Par: BRAHIMI Mustapha Nour El Dinne et ALLOUCHE Omar El Farouk

Sujet

Etude de l'Automatisation d'une Unité de Traitement des Eaux Usées Industrielles

Soutenue publiquement en devant le jury composé de :

Mr. MOSTFAI Lotfi Univ. Saida Président

Mr. SEKOUR M'hamed Univ. Saida Rapporteur

Mr. LABANE Chrif Univ. Saida Examinateur

Année universitaire 2023/2024

Remerciements

Mes remerciements vont en premier lieu à créateur de l'univers **Dieu** qui nos a doté la patience, la volonté et la puissance qu'il m'a donné durant toutes ces années d'études et pour réaliser ce travail.

Nous tenons particulièrement en premier lieu à remercier profondément nos encadrant **Pr : M .SEKOUR** pour sa patience et surtout ses judicieux conseils. Pour leur aide permanent, leur précieuse, leur disponibilité et leur compréhension tout le long du projet en nous fournissant toutes les conditions favorables afin d'aboutir à bien réaliser notre travail.

Je remercie mes très chers parents, qui ont toujours été là pour moi, pour leur soutien constant et leurs encouragements. J'adresse mes sincères remerciements à toutes mes enseignants qui ont contribué au succès et participé de près ou de loin à ma formation et l'exécution de ce projet de fin d'étude.

A toute la promotion d'automatique

A toutes ces formidables personnes j'ai un mot à dire : Merci.

Dédicace

Je dédie ce travail à mes parents qui m'a soutenu et encouragé durant ces années d'études.

Qu'ils trouvent ici le témoignage de ma profonde reconnaissance.

A mes frères et mes sœurs et ceux qui ont partagé avec moi tous les moments d'émotion lors de la réalisation de ce travail.

Ils m'ont chaleureusement supporté et encouragé tout au long de mon parcours.

A ma famille, mes proches et à ceux qui me donnent de l'amour.

A tous ceux que j'aime.

Liste des Tableaux

Tableau I.1: Débit des eaux usées	4
Tableau II.1: Équations des étapes pour le langage booléen	35
Tableau III.1: Listes des Entrées/Sorties 1	42
Tableau III.2: Listes des Entrées/Sorties 2	44
Tableau III.3: Listes des Entrées/Sorties 3	48
Tableau III.4: Listes des Entrées/Sorties 4	52
Tableau III.5 : Listes des Entrées/Sorties 5	57
Tableau III.6: Listes des Entrées/Sorties 6	62
Tableau III.7: Listes des Entrées/Sorties 7	67
Tableau IV.1: Choix technologiques des actionneurs (1ère Etape)	99
Tableau IV.2: Choix technologiques des capteurs (1ère Etape)	100
Tableau IV.3: Choix technologiques des actionneurs (2ème Etape)	106
Tableau IV 4: Choix technologiques des canteurs (2ème Etane)	106

Liste des Figures

Chapitre I Station de relevage

Figure I.1. Situation géographique de la station par rapport à la ville de Saida	
Figure I.2. Débit moy/J/h-débit de pointe-Coeff de pointe (année 2022)	
Figure I.3. Dégrilleurs	
Figure I.4. Courbe caractéristique de point de fonctionnement	-
Figure I.5. Déversoir d'orage	=
Figure I.6. Le prétraitement de procédés	-
Figure I.7. Le dégrilleur	
Figure I.8. L'opération Dessablage –Déshuilage	-
Figure I.9. Bassin d'aération	-
Figure I.10. Ouvrages de clarification	-
Figure I.11. L'opération de désinfection	
Figure I.12. Epaississement des boues	
Figure I.13. Séchage des boues	
Figure I.14. Panneau de contrôle	-
Figure I.15: capture d'écran sur le prétraitement – SCADA	
Figure I.16: capture d'écran sur graphe de débit d'eau – SCADA	
Chapitre II description sur l'automatisation et présentation des Instruments et dispositifs d'installat	<u>tion</u>
Fig II.1 Vérin pneumatique à double effet	
Fig II.2 Moteur asynchrone	
Fig II.3 Distributeur 5/3	
Fig II.4 Type de variantes des distributeurs 5/3	
Fig II.5 Commandes	
Fig II.6 Schéma d'une électrovanne	
Fig II.7 Pompe centrifuge	
Fig II.8 Capteur de présence photoélectrique	

Fig II.9 Capteur de proximité	22
Fig II.10 Capteur de pH.	2
Fig II.11 Débitmètre à ultrason.	
Fig II.12 Capteur de température.	
Fig II.13 Composition d'automatisme	2
Fig II.14 fonctionnements d'un système automatisé	
Fig II.15 Automate Programmable Industriel	3
Fig II.16 Automate modulaire (SIEMENS)	3
Fig II.17 Automate compact (Allen-Bradley)	3
Fig II.18 Automate modulaire (Modicon).	
Fig II.19 Programmation en langage booléen.	
Fig II.20 Notations et langage de programmation.	
Fig II.21 Programme des étapes.	
Fig II.22 Principe de programmation d'une étape en ladder	
Fig II.23 Programmation d'un GRAFCET en ladder	3
Fig II.24 Api Siemens	
Fig II.25 Vue de portail	
Fig II.26. Vue de projet	
Chapitre III mode des démarrages d'un moteur asynchrone triphasé	
Fig III.1Schéma de commande 1	4
Fig III.2 Schéma à Grafcet 1	
Fig III.3 Grafcet Tia portal 1	
Fig III.4 Fermeture manuelle de Q1	
Fig III.5 Impulsion sur le bouton de start S2.	4
Fig III.6 l'arrêt par impulsion sur le bouton stop S1.	'
Fig III.7 Schéma de commande 2	
Fig III.8 Schéma à Grafcet 2	
Fig III.9 Grafcet Tia portal 2	

Fig III.11 Impulsion sur le bouton de start S2 (sens 1).	45
Fig III.10 Fermeture manuelle de Q1.	46
Fig III.12 l'arrêt par impulsion sur le bouton stop S1.	46
Fig III.13 Impulsion sur le bouton de start S3 (sens 2).	47
Fig III.14 l'arrêt par impulsion sur le bouton stop S1.	47
Fig III.15 Schéma de commande 3	48
Fig III.16 Schéma à Grafcet 3	48
Fig III.17 Grafcet Tia portal3	49
Fig III.18 Fermeture manuelle de Q1.	49
Fig III.19 Impulsion sur le bouton de start S2.	50
Fig III.20 Fermeture de KA1 après 10s	50
Fig III.21 l'arrêt par impulsion sur le bouton stop S1.	51
Fig III.22 Schéma de commande 4	51
Fig III.23 Schéma à Grafcet 4	52
Fig III.24 Grafcet Tia portal4	52
Fig III.25 Fermeture manuelle de Q1.	53
Fig III.26 Impulsion sur le bouton de start S2.	53
Fig III.27 Fermeture de KM4 (couplage Triangle)	54
Fig III.28 Impulsion sur le bouton de stop S1	54
Fig III.29 Impulsion sur le bouton de start S3	55
Fig III.30 Fermeture de KM4 (couplage Triangle)	55
Fig III.31 Impulsion sur le bouton stop S1.	56
Fig III.32 Schéma de commande 5	56
Fig III.33 Schéma à Grafcet 5	57
Fig III.34 Grafcet Tia portal5	57
Fig III.35 Impulsion sur le bouton de start S2.	58
Fig III.36 Fermeture de KM4	58

Fig III.37 Impulsion sur le bouton de stop S1
Fig III.38 Impulsion sur le bouton de start S3.
Fig III.39 Fermeture de KM46
Fig III.40 Impulsion sur le bouton stop S1
Fig III.41 Schéma de commande 6
Fig III.42 Schéma à Grafcet 6
Fig III.43 Grafcet Tia portal6
Fig III.44 Fermeture manuelle de Q1
Fig III.45 Impulsion sur le bouton de start S2 (1er temps).
Fig III.46 Fermeture de KA1 après (2éme temps).
Fig III.47 Fermeture de KA2 après (3éme temps).
Fig III.48 Fermeture de KM12 après (4éme temps)
Fig III.49 l'arrêt par impulsion sur le bouton stop S1.
Fig III.50 Schéma électrique avec d'application de l'API
Fig III.51 Branchements sur le panneau.
Fig III.52 listes des Entrées/Sorties
Fig III.53 Commande marche-arrêt d'un moteur
Fig III.54 Commande marche-arrêt d'un moteur
Fig III.55 Commande marche-arrêt d'un moteur
Fig III.56 Commande marche-arrêt d'un moteur (ladder) 7
Fig III.57 Démarrage inverseur de marche pour moteur asynchrone triphasé7
Fig III.58 Démarrage inverseur de marche pour moteur asynchrone triphasé
Fig III.59 Démarrage inverseur de marche pour moteur asynchrone triphasé7
Fig III.60 Démarrage inverseur de marche pour moteur asynchrone triphasé7
Fig III.61 Démarrage inverseur de marche pour moteur asynchrone triphasé (ladder) 7
Fig III.62 Démarrage étoile-triangle
Fig III.63 Démarrage étoile-triangle

Liste des Figures

Fig III.64 Démarrage étoile-triangle	80
Fig III.65 Démarrage étoile-triangle	81
Fig III.66 Démarrage étoile-triangle (ladder)	82
Fig III.67 Démarrage par résistance statoriques	84
Fig III.68 Démarrage par résistance statoriques	85
Fig III.69 Démarrage par résistance statoriques	86
Fig III.70 Démarrage par résistance statoriques	87
Fig II.71 Démarrage par résistance statoriques (ladder)	89
Fig III.72 Démarrage par résistances rotoriques	91
Fig III.73 Démarrage par résistances rotoriques	92
Fig III.74 Démarrage par résistances rotoriques	93
Fig III.75 Démarrage par résistances rotoriques	94
Fig III.76 Démarrage par résistances rotoriques (ladder)	96
Chapitre IV Automatisation des phases de traitement des eaux usées	
Fig IV.1 Grafcet Niveau 1	98
Fig IV.2 Schéma à Grafcet	100
Fig IV.3 Circuit de puissance de la 1ère étape	101
Fig IV.4 Circuit de Commande de la 1ère étape	102
Fig IV.5 Langage programmé de la 1ère étape	103
Fig IV.6 Grafcet Niveau 1	105
Fig IV.7 Schéma à Grafcet	107
Fig IV.8 Circuit de puissance de la 2ème étape	108
Fig IV.9 Circuit de Commande de la 2ème étape	109
Fig IV.10 Langage programmé de la 2ème étape	110

Liste des symboles

Pn: Population à calculer sur l'horizonP0: Population de l'année de référence

T: Le Taux d'accroissement de la population

n: L'écart d'années entre les deux horizons d'étude

Ns: Nombre de pôles du moteurPa: Puissance électrique absorbéePu: Puissance mécanique utile

Tu: Couple utile

Abréviations			
HMT:	Hauteur manométrique totale		
API: Automate programmable industriel			

Résumé Abstract

Résumé

Dans ce travail, nous avons mis en œuvre un système automatique à l'aide de l'automate programmable, son intégration dans la station de pompage qui achemine les eaux usées vers la station d'épuration, améliore le degré de fiabilité, les conditions de fonctionnement et sécurise les équipements et les rendre plus efficaces. Ce système automatisé conçu permet le contrôle des deux pompes immergées là où elles fonctionnent et s'arrêtent en prévu d'une permutation pour éviter le non fonctionnement prolongé de l'une ou de l'autre en fonction du niveau d'eau dans la bâche.

Mots-clés: Station de relevage, L'automate programmable industriel, Les pompes.

Abstract

In this work, we have implemented an automatic system using the programmable logic controller, its integration into the pumping station that conveys wastewater to the treatment plant improves the degree of reliability, the operating conditions, secure equipment, and make it more efficient. This designed automated system allows the control of the two submersible pumps where they are operating and stop in a changeover to avoid prolonged non-operation of one or the other depending on the water level in the tank.

<u>Keywords:</u> Lift station, Industrial programmable automation, Pumps.

ملخص

في هذا العمل قمنا بتصميم نظام آلي باستخدام وحدة التحكم المنطقية القابلة للبرمجة، و دمجها في محطة الضخ التي تنقل مياه الصرف الصحي إلى محطة المعالجة، بحيث يحسن درجة الموثوقية و ظروف التشغيل و وتأمين المعدات وجعلها أكثر كفاءة يسمح هذا النظام الآلي المصمم بالتحكم في المضختين المغمورتين حيث تعملان بالتناوب لتجنب عدم تشغيلها المطول، حيث تشتغل وتتوقف حس ب منسوب المياه في الخزان.

الكلمات المفتاحية: محطة رفع، أتمتة قابلة للبرمجة الصناعية، مضخات.

TABLE DES MATIERES

	DEDIC	'ACES	i
	REME	RCIEMENT	ii
	LISTE	DES TABLEAUX	iii
	LISTE	DES FIGURES	iv
	LISTE	DES ANNEXES	vi
	LISTE	DES SYMBOLES ET ABREVIATIONS	vii
	INTRO	DUCTION GENERALE	1
	СНАР	TRE I : Station de relevage.	
I.1	Int	roduction:	2
I.2	Pré	sentation de la commune de Saida :	2
	I.2.1	Caractéristique général de la commune :	2
	I.2.2	Station de relevage de Saida :	
	I.2.3	Réseau d'assainis sement actuel de la commune de Saida :	4
	I.2.4	Débit évacué par le réseau d'assainissement de la commune :	4
	I.2.5	Dimensionnement de la station de relevage et conduit de refoulement :	5
	I.2.6	Composition de la station de relevage de la ville de Saida :	5
	I.2.7	Procédés d'épuration de la step Saida (méthodologie) :	8
	I.2.8	Traitement biologique:	10
	I.2.9	Traitement Tertiaries:	12
	I.2.10	Traitement des boues :	12
I.3		scription de procédé de la station de pompage :	
I.4	Dé	finition du système SCADA :	14
	I.4.1	Le prétraitement SCADA:	
	I.4.2	Débit des eaux usées :	
I.5		nclusion:	
		ITRE II : Description sur l'automatisation et Présentation des Instrumen ifs d'installation.	ts et
IJ	I.1	Présentation des Instruments et dispositifs d'installation :	17
	II.1.1	Actionneurs:	17
	II.1.2	Vérin:	17
	II.1.3	Moteur électrique :	18
	II.1.4	Préactionneur :	18

III.2.3.2 Listes des Entrées/Sorties	48
III.2.3.3 Simulation	49
III.2.4 Démarrage « étoile –triangle » deux sens de marche :	51
III.2.4.1 Circuit de commande	51
III.2.4.2 Listes des Entrées/Sorties	52
III.2.4.3 Simulation	52
III.2.5 Démarreur inverseur statorique :	56
III.2.5.1 Circuit de commande	56
III.2.5.2 Listes des Entrées/Sorties	57
III.2.5.3 Simulation	57
III.2.6 Démarrage par élimination des résistances rotoriques :	61
III.2.6.1 Circuit de commande	61
III.2.6.2 Listes des Entrées/Sorties	62
III.2.6.3 Simulation	62
III.3 Préparation du panneau et application sur TIA PORTAL v.16 :	66
III.3.1 Préparation du panneau :	66
III.3.2 Application :	68
III.3.2.1 Commande marche - arrêt d'un moteur par API et interface IHM :	68
III.3.2.2 Démarrage inverseur de marche pour moteur asynchrone triphasé contrôlé par interface IHM	
III.3.2.3 Démarrage étoile-triangle par API et interface IHM :	77
III.3.2.4 Démarrage par résistance statoriques contrôlé par API et par interface IHM :	83
III.3.2.5 Démarrage par résistances rotoriques contrôlée par API et par interface IHM	:90
III.4 Conclusion:	96
CHAPITRE IV : Automatisation des phases de traitement des eaux usées.	
IV.1 Introduction:	97
IV.2 Le principe de fonctionnement de l'étape :	97
IV.2.1 Grafcet niveau 1 et 2:	98
IV.2.2 Circuit de puissance de la 1ère étape :	101
IV.2.3 Circuit de commande de la 1ère étape :	102
IV.2.4 Langage programmé : LADDER :	103
IV.3 Le principe de fonctionnement de l'étape 2 :	104
IV.3.1 Grafcet niveau 1 et 2	105
IV.3.2 Circuit de puissance de la 2ème étape	
IV.3.3 Circuit de commande de la 2ème étape	

IV.3.4 Langage programmé : LADDER	110
Conclusion génerale	111
Bibliographie	112
Annexes	113

Introduction générale

L'automatisation d'une station de relevage des eaux usées est un sujet important dans le domaine de l'ingénierie environnementale. Les stations de relevage sont des installations qui permettent de collecter les eaux usées provenant des habitations et des industries pour les transporter vers une station d'épuration, l'automatisation de ces stations permet d'améliorer leur efficacité et leur fiabilité tout en réduisant les couts d'exploitation.

Dans ce travail, nous allons créer un système automatique programmé qui permet le contrôle d'une partie de la station de relevage, où le commencement provenait d'une étude menée pour la station de Saida, qui comprend le redimensionnement de cette station de relevage et la conduite de refoulement vers la STEP.

Le mémoire est structuré de la manière suivante :

Dans Le premier chapitre sera consacrée à la présentation des principaux points de l'étude dont nous sommes partis, représentés dans une présentation de la commune de Saida et redimensionnement de la station de relevage et conduite de refoulement.

Le deuxième chapitre comprendra la Présentation des instruments et dispositifs d'installation, une description sur l'automatisme et notions sur le GRAFCET

Pour le Troisième chapitre nous allons exposer des généralités sur les moteurs asynchrones et les différents modes de démarrage des moteurs asynchrones triphasés à cage et à rotor bobiné.

Le quatrième chapitre de ce mémoire présente le système conçu, il comprend aussi un aperçu des étapes de rédaction du programme et la simulation du fonctionnement du système créé à l'aide du logiciel d'exploitation TIA PORTAL v16.

Le travail sera terminé par une conclusion générale effectué suivie de perspectives pour les travaux futurs.

Chapitre I

Station de relevage

I.1 Introduction:

Une station de relevage est un équipement hydraulique qui permet de transférer des eaux usées ou des eaux pluviales d'un point bas vers un point haut, généralement utilisée dans les zones où le terrain est en pente ou lorsque la gravité ne suffit pas pour acheminer les eaux vers leur destination finale. Elle est composée d'un réservoir, d'une pompe, d'un système de contrôle et de divers accessoires tels que des vannes et des tuyaux. Le réservoir sert à collecter les eaux avant qu'elles ne soient pompées vers leur destination finale. La pompe aspire l'eau du réservoir et la propulse vers le point haut. Le système de contrôle permet de surveiller et réguler le fonctionnement de la station. Elle peut être alimentée par une source d'énergie électrique ou solaire, selon les besoins et les contraintes du site, et équipée d'un système de secours pour assurer son fonctionnement en cas de panne de courant.

I.2 Présentation de la commune de Saida :

I.2.1 Caractéristique général de la commune :

La commune de Saida été sous l'autorité du Bey de Mascara en 1844, l'armée coloniale implanté une redoute administration sous l'autorité arabe. En 1864, Saida l'agglomération de la ville passa sous une administration civile avec la création des communes mixtes. En 1880, Saida entre en commune de plein exercice, et voit les implantations des populations européennes à partir de 1850, durant cette période Saida était sous l'arrondissement de Mascara. En moi 1956, Saida fut rongé entant que chef-lieu de sous-préfecture. En janvier 1960, Saida est passée au rongé de chef-lieu de préfecture, jusqu'en 1984, la commune de Saida englobé l'actuelle commune de doui-thabet. Le dernier découpage administratif qui sépare de la commune de doui-thabetà réduit sa superficie à 75.84 KM2. Occupant une position géographique centrale dans la wilaya, la commune de Saida est limitée : Voir figure I.1

- Au nord par la commune de Ouled Khaled
- A l'est par la commune d'el Hassasna
- A 'ouest par la commune de doui-thabet
- Au sud par la commune d'Ain El Hadjar

Figure I.1: Situation géographique de la station par rapport à la ville de Saida

I.2.2 Station de relevage de Saida:

La station de relevage de la ville de Saida est implantée au niveau de la commune de Saida sur une superficie de 11.47 Hec est d'une capacité de 150 000 Eq/Hab, elle est conçue pour traiter chaque jour 30 000 m³ d'eaux usées par voie biologique.

La ville de Saida a une superficie de 78 km², elle est occupée par plus de 155000 habitants, soit une densité supérieure à 13972 habitants en Km². La ville s'organise autour d'Oued Saida qui traverse l'agglomération sur une longueur de plus de 25 Km.

Pour l'estimation de la population de la wilaya de Saida, le taux d'accroissement de la population est de **2,6** (DRE Saida). La formule (**I.1**) de la croissance géométrique est utilisée.

 $Pn=P0(1+T)^{n}$

Avec:

Pn: Population à calculer sur l'horizon.

P0 : Population de l'année de référence.

T: Le Taux d'accroissement de la population.

n : L'écart d'années entre les deux horizons d'étude.

I.2.3 Réseau d'assainissement actuel de la commune de Saida:

I.2.3.1 Nature du réseau de Saida :

Le réseau est de type unitaire, il est destiné à l'évacuation des eaux usées domestiques et les eaux pluviales de la ville de Saida, lorsque la capacité du réseau ne supporte pas la charge des eaux pluviales, le système devient mixte (unitaire et séparatif). Il est composé de collecteur circulaire de diamètres qui varie entre250 mm et 2000 mm en PVC, avec un linéaire d'environ 203 km, et 4308 regards visitables et 2561 non visitable.

I.2.3.2 Rejets de la commune :

On calcul la consommation en eaux par la relation suivante :

- Coefficient de restitution=80%
- Le rejet = Besoin (m³/an)*coefficient de restitution
- Le rejet $(m^3/an) = 12368368, 180\%$
- Le rejet $(2022) = 11542193,52 \text{ (m}^3/\text{an)}$

I.2.4 Débit évacué par le réseau d'assainissement de la commune :

Les débits des eaux usées devant transiter par le réseau et qui devront être traité sont résumés dans le (Tableau I.1) qui suit et évalués sur un taux de 90 % des eaux de consommation.

147000 Eq /hab Année 2022	Débit moyen m3∕j	Débit moyen m3∕h	Débit des eaux usées de pointe l⁄s	Coefficient de pointe %
janvier	24500	1021	6,8	6,12
fevrier	25756	1073	7,15	6,435
mars	22771	949	6,33	5,69
avril	23150	965	6,4	5,76
mai	21256	886	5,9	5,31
juin	24680	1028	6,86	6,17
juillet	23568	982	6,55	5,89
aout	22850	952	6,35	5,71
septembre	24438	1018	6,79	6,11
octobre	23040	960	6,4	5,76
novembre	23527	980	6,54	5,88
decembre	22125	922	6,14	5,52

Tableau I.1: Débit des eaux usées

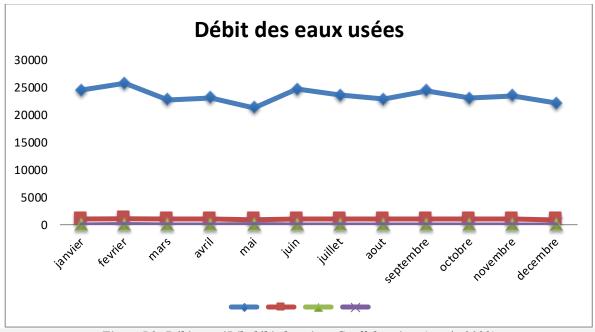


Figure I.2: Débit moy/J /h-débit de pointe-Coeff de pointe (année 2022)

I.2.5 Dimensionnement de la station de relevage et conduit de refoulement :

I.2.5.1. Choix du site de la station de relevage :

Les paramètres prépondérants pour le choix de site de relevage sont:

- Le type du système déjà existant et auquel un branchement est possible
- L'aspect économique, une étude comparative de plusieurs variantes est nécessaire
- Il faut tenir compte les conditions de rejet
- S'il s'agit d'une extension du réseau, il faut tenir compte du système existant
- La topographie du terrain naturel
- Le procédé de traitement des eaux résiduaires.

I.2.6 Composition de la station de relevage de la ville de Saida:

I.2.6.1 Relevage :

- 4 pompes –immergées
- Marque: **ABS**
- Poids: 42Kg

I.2.6.2 Dérailleur mécanique :

Il consiste à faire passer les eaux usées au travers d'une grille dont les barreaux plus ou moins espacés, retiennent les éléments les plus grossiers, après nettoyage des grilles par les moyens mécaniques, manuels ou automatiques, les déchets sont évacués avec les ordures ménagères ; le tamisage qui utilise des grilles de plus faible espacement peut parfois compléter cette phase, le cas de notre STEP.

Figure I.3: dégrilleurs

I.2.6.3 Dimensionnement du dégrilleur :

• Dégrilleur grossier manuel : 01

• Largeur : 1 .500mm

• Longueur : 6 .000m

• Dégrilleurs fin automatique :

• Nombre de canaux de dégrillage fin : 0 2

• Largeur de la grille : 1.000mm.

• Largeur nette de passage : 660mm

• Séparation entre barreaux : 10mm

• Nombre de barreaux : 33

• Séparation entre barreaux : 20mm

I.2.6.4 Pompes pour eaux usées :

Le relevage des eaux usées est assuré par des pompes submersibles pour eaux usées d'un : Débit de 231.66 l/s

HMT= 9.35 m

Chaque pompe refoule le débit d'eau usée dans un collecteur de refoulement général **DN** 300 mm.

Le raccordement de chaque pompe au collecteur de refoulement général est assuré par des conduites **DN 150mm** en acier galvanisé. Chaque collecteur de refoulement individuel est équipé par des organes hydrauliques qui permettent d'assurer la protection des pompes et de suivre leur rendement (vanne d'arrêt et clapet anti- retour **DN 150mm**).

I.2.6.5 Point de fonctionnement d'une pompe :

Il sera l'intersection entre la courbe de la pompe à la vitesse donnée et la courbe de réseau. En réduisant ou augmentant la vitesse du moteur, on modifie directement la vitesse de rotation de la roue.

On peut également représenter la hauteur géométrique d'élévation en fonction du débit, ce qui permet de déterminer d'une façon simple, pour chaque débit, la somme de Hgm et J. En fonction des caractéristiques hydrauliques (débit, hauteur manométrique d'élévation.

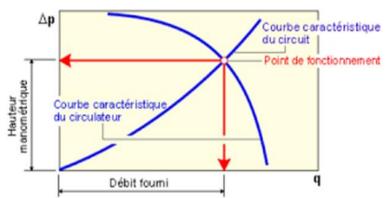


Figure I.4 : Courbe caractéristique de point de fonctionnement

I.2.6.6 Choix d'un type de pompe :

Le choix du site de la station à plusieurs avantages :

- Il permet l'arrivée gravitairement de tous les rejets du centre de Saida vers un seul point.
- Emplacement près du canal d'oued pour permettre le by-pass des eaux en cas d'arrêt de la station ainsi que le trop plein.
- Accès direct à la station par une voie accessible.
- Amenée de la ligne électrique facile à partir d'un poste transformateur à proximité environ 100m de la station.
- Espace suffisant pour la construction loin des habitations.

I.2.7 Procédés d'épuration de la step Saida (méthodologie) :

La station d'épuration de la ville de Saida est implantée au niveau de la commune de Saida sur une superficie de 11.47 Hec est d'une capacité de 150 000 Eq/Hab, elle est conçue pour traiter chaque jour 30 000 m3 d'eaux usées par voie biologique.

Le procédé d'épuration de la STEP est un procédé biologique basé sur le principe de boues activées, ou les matières organiques contenues dans les eaux usées sont dégradées par des bactéries mises dans des conditions favorables, qui les transforment en sels minéraux.

Le traitement se fait selon le procédé suivant :

I.2.7.1 Traitement physique :

Entrée des eaux usées au déversoir d'orage : voir (figure I.5)

Figure I.5: Déversoir d'orage

I.2.7.2 Le prétraitement :

Les dispositifs de prétraitement sont présents dans toutes les stations d'épuration quels que soit les procédés de mises en œuvre à l'aval. Ils ont pour but d'éliminés les éléments solides ou particulaires les plus grossiers, susceptible de gêner les traitements ultérieurs ou d'endommager les équipements ; déchets volumineux (dégrillage) sable (dessablage), et corps gras (dégraissage, déshuilage).

Figure I.6: le prétraitement de procédés

I.2.7.3 Le dégrillage :

Il consiste à faire passer les eaux usées au travers d'une grille dont les barreaux plus ou moins espacés, retiennent les éléments les plus grossiers, après nettoyage des grilles par les moyens mécaniques, manuels ou automatiques, les déchets sont évacués avec les ordures ménagères ; le tamisage qui utilise des grilles de plus faible espacement peut parfois compléter cette phase, le cas de notre STEP.

Figure I.7: Le dégrilleur

I.2.7.4 Le Dessablage :

Dessablage

Réalisé par décantation, le dessablage vise à éliminer les sables et les graviers ; l'écoulement de l'eau à une vitesse réduite dans un bassin appelé dessaleur entraine le dépôt au fond de l'ouvrage. Ces particules sont ensuite aspirées par une pompe, les sables récupérés sont essorés, puis lavés avant être envoyés en décharge.

• Déshuilage:

Les opérations dessablage déshuilage consiste à séparer de l'effluent brute, les huiles et les graisses par flottation. Ces derniers étant des produits de densité inférieure à l'eau ; l'injection des microbulles d'air permet d'accélérer la flottation des graisses souvent ces opérations sont combinées dans le même ouvrage.

Figure I.8: L'opération Dessablage –Déshuilage

I.2.8 Traitement biologique:

Le brassage de l'oxygénation est assuré par 12 aérateurs de surface à axe vertical les aérateurs installés ont les caractéristiques

• Bassin d'aération (02 unités)

• Forme : rectangulaire

• Longueur : 66,0 m.

• Largeur: 44,0 m.

• Hauteur d 'Eau : 4,5 m.

• Profondeur totale: 5m.

• Hauteur Béton: 5,60 m.

• Volume utile total: 26.136 m³.

Figure I.9: Bassin d'aération

I.2.8.1 Equipment des bassins :

• Nombre de turbine : 12.

• Puissance des turbines installées : 75/55 KW.

• 0xymètres de mesure d'oxygène dissous : 02.

I.2.8.2 Clarification ou décantation secondaire :

La séparation boues- liquide s'effectue dans deux ouvrages de clarification les caractéristiques de chaque ouvrage sont les suivantes :

Nombre: 02.Diamètre: 43 m.

Surface unitaire: 1.452 m³.
Hauteur d'eau: 3,50 m.

• Volume cylindrique : 5.0827 m³.

Figure I.10: ouvrages de clarification

I.2.9 Traitement Tertiaries:

C'est le traitement complémentaire des eaux usées avant rejet, particulièrement dans le cas où l'on veut réaliser l'eau à traiter pour l'irrigation (pour des conditions déterminées), La désinfection est prévue pour le chlore gazeux, le volume du bassin est calculé pour un temps de séjour suffisant au débit afin d'obtenir une bonne efficacité de l'action du chlore.

Figure I.11: L'opération de désinfection

I.2.10 Traitement des boues :

I.2.10.1 Epaississement des boues :

Les boues en excès sont refoulées vers l'épaississeur, il s'agit d'un ouvrage de forme circulaire du type raclé qui est caractérisé par :

• Volume de l'épaississeur : 804,25 m³.

• Production des boues en excès : 6800KG/L

Figure I.12: Epaississement des boues

I.2.10.2 Séchage des boues :

Les boues épaissies sont ensuite extraites de l'épaississeur et acheminées vers le lit de séchage, le dimensionnement des lits se fait sur la base d'une durée de séchage de trois semaines, et une hauteur de remplissage de 0,4m.

• Nombre total des lits: 20

• Surface totale à mettre en œuvre : 9000 m²

• Production annuelle des boues : 83.865 m³/an

• Equivalent- habitant par unité d'aire : 16,7 eq / hab / m²

Figure I.13: séchage des boues

I.3 Description de procédé de la station de pompage :

La station de refoulement d'assainissement est équipée de quatre pompes, à savoir P1, P2, P3 et P4. Ces pompes sont installées à l'intérieur d'une bâche qui est directement alimentée par le réseau d'eaux usées. La fonction de cette station est de refouler les eaux usées vers la STEP de Saida. Lorsque les eaux usées atteignent la bâche, elles heurtent un mur de séparation qui forme une chambre d'admission. Les eaux s'écoulent ensuite le long de ce mur pour réduire le débit primaire et maintenir la bâche partiellement remplie en permanence. Lorsque le niveau atteint une mesure préprogrammée, la première pompe se met en marche. Si le niveau continue à augmenter jusqu'à une certaine mesure, la deuxième pompe sera activée simultanément avec la première pompe. Ce processus se répète avec la troisième pompe. Trois pompes constituent le nombre maximal de pompes actionnées en parallèle, tandis que la quatrième pompe est considérée comme une pompe de secours. Le capteur de niveau à ultrasons joue un rôle crucial dans ce processus car il détecte le niveau du liquide et transmet l'information à l'automate programmable pour donner l'ordre à la pompe concernée.

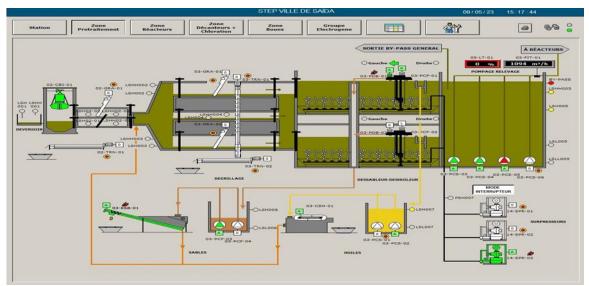


Figure I.14: panneau de contrôle

I.4 Définition du système SCADA:

Le système SCADA (Supervisory Control and Data Acquisition) est un système de contrôle et d'acquisition de données qui permet de surveiller et de contrôler des processus industriels à distance. Il est utilisé dans les industries telles que l'énergie, l'eau, le pétrole et le gaz, etc. Le système SCADA collecte des données en temps réel à partir de capteurs et d'autres dispositifs connectés à des équipements industriels tels que des pompes, des vannes, des moteurs, etc. Ces données sont ensuite analysées pour aider les opérateurs à prendre des décisions éclairées sur la gestion du processus industriel. Le système SCADA peut également être utilisé pour automatiser certaines tâches industrielles afin d'améliorer l'efficacité et la productivité.

I.4.1 Le prétraitement SCADA:

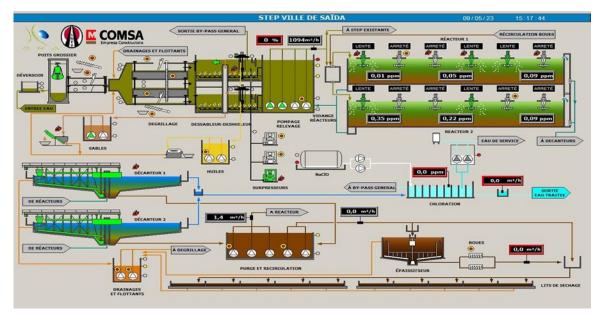


Figure I.15: capture d'écran sur le prétraitement – SCADA

I.4.2 Débit des eaux usées :

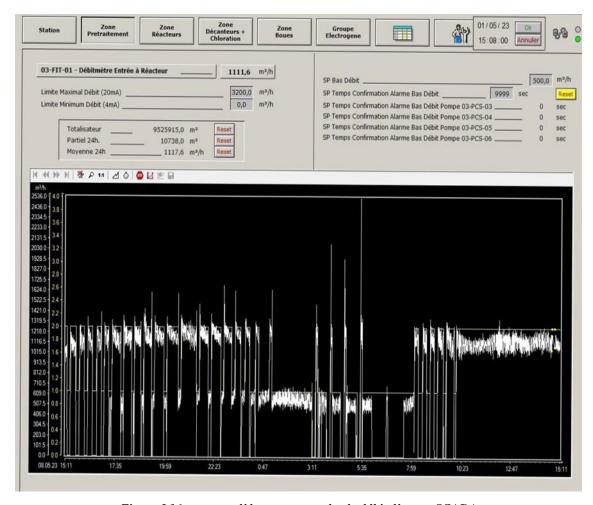


Figure I.16: capture d'écran sur graphe de débit d'eau – SCADA

I.5 Conclusion:

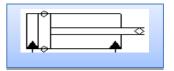
Dans ce chapitre nous avons présenté la société ONA, sa mission principale, et la composition de station puis on fait la description de procédé général de la station de pompage de la ville de Saida qui nous intéressent dans notre projet, On peut dire qu'partir d'une eau usée et grâce aux procédés de traitements, il est possible d'obtenir toute une gamme d'eau de qualités différentes et à chacune de ces qualités peut correspondre à un usage particulier. Il est clair que les traitements qui existent peuvent réduire les concentrations des polluants.

Chapitre II

Description sur l'automatisation et Présentation des Instruments et dispositifs d'installation

II.1 Présentation des instruments et dispositifs d'installation :

II.1.1 Actionneurs:


Les actionneurs sont les organes de la partie opérative qui, recevant un ordre de la partie commande via un éventuel pré actionneur, convertit l'énergie qui lui est fournie en un travail utile à l'exécution de tâches programmées dans un système automatisé.

II.1.2 Vérin:

Dans notre étude, nous allons équiper le système d'un vérin pneumatique, c'est un actionneur qui permet de transformer l'énergie de l'air comprimé en un travail mécanique. Un vérin pneumatique est soumis à des pressions d'air comprimé qui permettent d'obtenir des mouvements dans un sens puis dans l'autre. Les mouvements obtenus peuvent être linéaires ou rotatifs.

> Caractéristiques :

• Symbole:

• Vérin pneumatique simple tige à double effet

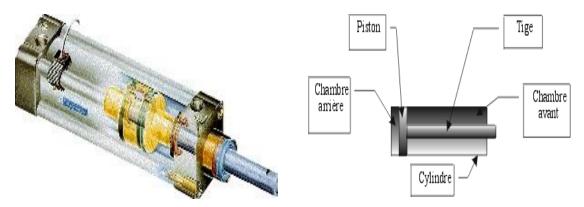


Figure II.1 Vérin pneumatique à double effet

II.1.3 Moteur électrique

> Caractéristique :

Symbole :

- Tension d'alimentation : 380-420 / 440-480 V en Y et 220-240 / 250-280 V en Δ AC
- Fréquence 50 Hz
- Ampérage et puissance en fonction de l'usage

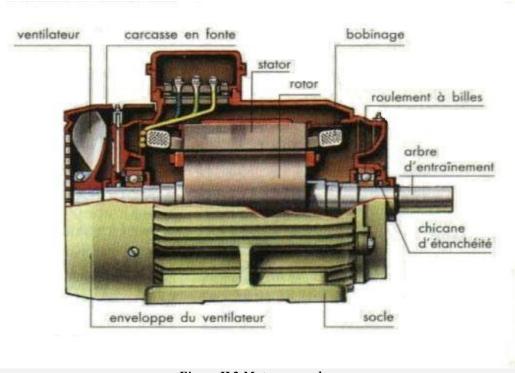


Figure II.2 Moteur asynchrone

II.1.4 Préactionneur

Le préactionneur distribue l'énergie aux actionneurs à partir des ordres émis par la partie commande.

II.1.5 Distributeur

Les distributeurs à voies multiples :

Ils déterminent le chemin et le sens de passage que l'air comprimé peut emprunter et peuvent, si nécessaire, obturer complètement le passage. Un distributeur à voies multiples peut avoir deux à cinq orifices de raccordement pour l'air comprimé.

Comme toujours nous utilisons des symboles pour représenter ces distributeurs sur des schémas. Ces symboles nous renseignent sur la fonction et le raccordement du distributeur, mais pas sur sa construction.

Dans notre cas, on utilisera des distributeurs 5/3, ils sont d'habitude des distributeurs à tiroir qui ont une commande électrique ou pneumatique (comme le montre la figure 34 ci- dessous).

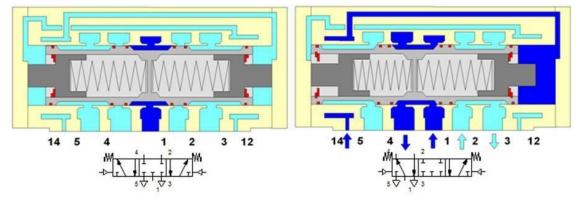


Figure II.3 Distributeur 5/3

Ils sont monostables et retournent à leur position médiane par force de ressort si la commande est interrompue.

Ces types de distributeurs sont disponibles en 3 variantes, le distributeur 5/3 à centre fermé (Fig. 35 gauche), le distributeur 5/3 centre à l'échappement (Fig. 35 milieu) et le distributeur 5/3 à centre ouvert (Fig. 35 droite).

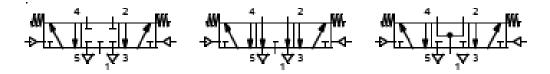
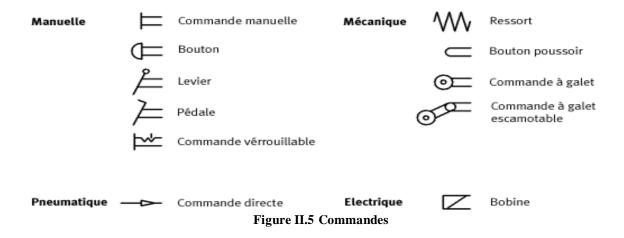
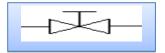



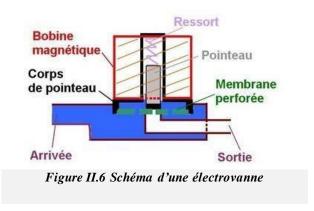
Figure II.4 Type de variantes des distributeurs 5/3



II.1.6 Electrovanne

Une électrovanne est un dispositif commandé électriquement permettant d'admettre ou d'interrompre par une action mécanique la circulation d'un fluide (eau, vapeur, gaz) de toutes natures dans un circuit. Les électrovannes proportionnelles sont celles qui peuvent être ouvertes avec plus ou moins d'amplitude en fonction du besoin, généralement utilisées grâce à une commande. Elle est surtout utilisée pour les contrôles et régulation des systèmes industriels.

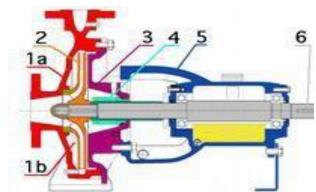
> Caractéristiques :


Symbolisé par :

• Nombre de voies : 1, 2, 3

• Tenson d'alimentation : 24 V – 230 V CA

• Signal de commande tout ou rien 0...10V / 0...20mA



II.1.7 Effecteur

Les effecteurs sont multiples et variés conçus spécialement pour s'adapter qu'ils ont à réaliser sur une matière d'œuvre ou un système préétabli, ils reçoivent leur énergie des actionneurs.

On a ici une pompe centrifuge:

Une pompe centrifuge est une machine rotative qui pompe un liquide en le forçant au travers d'une roue à aube ou d'une hélice appelée impulseur. C'est le type de pompe industrielle le plus commun. Par l'effet de la rotation de l'impulseur, le fluide pompé est aspiré axialement dans la pompe, puis accéléré radialement, et enfin refoulé tangentiellement. La pompe est généralement entrainée par un moteur électrique.

1a, 3, 5: corps de pompe

1b: diffuseur

2: impulseur

4: garniture mécanique

6: arbre

Figure II.7 Pompe centrifuge

II.1.8 Capteurs

Les capteurs convertissent les informations ou grandeurs physiques de la partie opérative en grandeurs électriques exploitables par la partie commande. Nous allons discerner les différents capteurs utilisés dans nos systèmes automatisés de traitement.

II.1.8.1 Capteur de présence ou passage

Le détecteur photoélectrique se compose essentiellement d'un émetteur de lumière associé à un récepteur photosensible.

Il n'y a donc pas de contact physique avec l'objet détecté. Ces capteurs sont réputés pour leur détection à grande distance, très robuste avec une très bonne tenue à l'environnement industriel même dans une atmosphère polluante car les détecteurs infrarouges sont indépendants des conditions d'entourage.

> Caractéristiques :

Tension d'alimentation : 230 V CA

• Température ambiante : - 25°C à 45 °C

• Distance de portée : 1 à 30 m

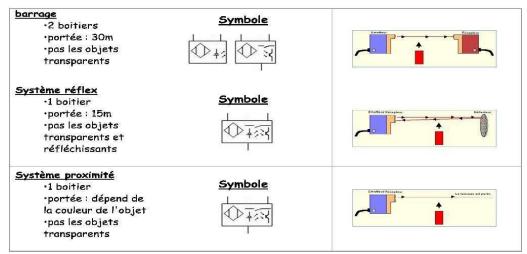


Figure II.8 Capteur de présence photoélectrique

II.1.8.2 Capteur de proximité

Il est basé sur la variation d'un champ magnétique à l'approche d'un objet conducteur de courant électrique (inductif), ou d'un objet quelconque (capacitif). On l'utilise particulièrement pour capter la présence ou la fin de course d'une tige de vérin, contrôle de niveau sans contact de liquide ou de poudre dans les trémies.

> Caractéristiques :

- Symbole (inductif) (capacitif)
- Tension d'alimentation 20V à 230V AC / 10V à 30V DC
- Consommation : 4 20 mA
- Portée : 2mm à 20mm et plus selon la grandeur

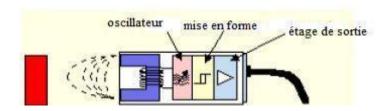


Figure II.9 Capteur de proximité

II.1.8.3 Capteur de pH:

Il permet de mesurer le ph d'une solution. Son fonctionnement est basé sur le rapport qui existe entre la concentration en ions H3O+ (définition du pH) et la différence de potentiel électrochimique qui s'établit dans le pH-mètre une fois plongé dans la solution étudiée.

> Caractéristiques :

• Tension d'alimentation : 5 V DC

• Mesure pH : 0 à 14

• Température de fonctionnement : 0 à 60°C

Figure II.10 Capteur de pH

II.1.8.4 Capteur de débit

Les capteurs de débit mesurent par déduction de la vitesse moyenne à travers une section continue connue. Le débit mesuré par cette méthode indirecte est le débit volumique qui est le volume du fluide écoulé pendant l'unité de temps.

Dans notre étude, on a utilisé un débitmètre à ultrason, ce capteur a pour principe d'émettre des ultrasons afin de déterminer la quantité ou le volume d'un liquide qui s'écoule en un point en un temps donner.

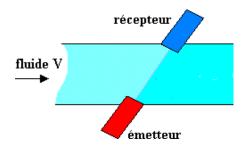


Figure II.11 Débitmètre à ultrason

> Caractéristiques :

- Domaine d'utilisation : fréquemment utilisé pour les fluides non conducteur (hydrocarbure),
- Diamètre de canalisation jusqu'à 6000mm,
- Précision : 0,5% avec un temps de réponse de 1 ms.

II.1.8.5 Capteur de température :

Ces capteurs déterminent la perception de chaud ou de froid d'un milieu ou d'un objet. Il mesure une variable intensive, une mesure de l'énergie cinétique moyenne des particules d'un échantillon de matière à l'échelle moléculaire dans des échanges par conduction ou par convection. Cette mesure sera ensuite transmise et traduit à des échelles standard (Kelvin, Celsius, Fahrenheit). Classé selon différents modèles : Thermocouples, thermistance, sondes platine. Dans notre cas, c'est le thermocouple qui nous intéresse avec sa large plage de mesure.

Caractéristiques :

Tension d'alimentation : 12V à 35V DC

• Plage de température : -50°C à 500°C

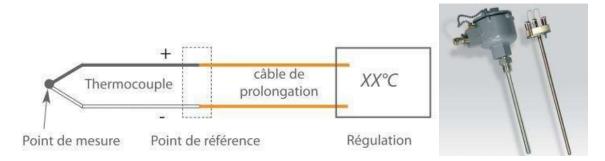


Figure II.12 Capteur de température

II.2 Description sur l'automatisation

L'automatisme est une discipline importante et nécessaire dans tous les secteurs industriels. Il facilite la tâche des opérateurs intervenants dans toute installation industrielle. Il permet de développer des systèmes automatisés qui assurent des tâches dangereuses, répétitives et dans des milieux hostiles pour l'homme.

L'automatisation de toute unité de production augmente aussi la productivité et améliore la qualité du produit. Les automates programmables industriels représentent l'élément important de la chaîne automatisée, car il assure de bonnes performances, meilleure flexibilité et facilite la maintenance. Une automatisation performante assure en plus d'un fonctionnement fiable de l'installation industrielle, la détection de toute anomalie éventuelle. La diversité des processus industriels nécessite des connaissances sur l'aspect processus et les différentes technologies du domaine de l'automatisme.

II.2.1 Informations générales

> Historique :

- Blaise PASCAL (1623-1662) invente la première calculette « La Pascaline », origine de l'invention de l'ordinateur.
- Principe de la carte perforée, utilisé jusqu'à la fin des années 1970.
- Bardeen, Brattain & Shockley inventent le Transistor en 1949.
- Moore invente le microprocesseur et crée Intel en 1966.
- Grenelle invente le 1^{er} micro-ordinateur en 1972 et les Premiers Automates Programmables Industriels en 1974

II.2.2 Définitions de l'automatisme

L'automatisation consiste à « rendre automatique » les opérations qui exigeaient auparavant l'intervention humaine.

Une autre définition:

L'automatisation est considérée comme l'étape d'un progrès technique où apparaissent des dispositifs techniques susceptibles de seconder l'homme, non seulement dans ses efforts musculaires, mais également dans son travail intellectuel de surveillance et de contrôle.

C'est aussi un sous-ensemble d'une machine, destinée à remplacer l'action de l'être humain dans des tâches en générales simples et répétitives, réclamant précision et rigueur. On est passé d'un système dit manuel, à un système mécanisé, puis au système automatisé.

Dans l'industrie, les automatismes sont devenus indispensables : ils permettent d'effectuer quotidiennement les tâches les plus ingrates, répétitives et dangereuses. Parfois, ces automatismes sont d'une telle rapidité et d'une telle précision, qu'ils réalisent des actions impossibles pour un être humain. L'automatisme est donc synonyme de productivité et de sécurité.

Il existe deux concepts technologiques:

- Les automatismes séquentiels,
- Les asservissements, la régulation ou « feedback control ».

Cependant, dans la plupart des systèmes complexes modernes, ces deux types d'automatismes se trouvent imbriqués.

II.2.3 Les buts (ou objectifs) de l'automatisation :

Objectifs: La compétitivité de l'entreprise et des produits.

cette compétitivité passe par la qualité, la maitrise des couts et l'innovation, cela induit une disponibilité à tous les niveaux.

On cherche donc à améliorer la productivité, l'amélioration des conditions de travail et surtout la sécurité fait partie des objectifs de l'automatisation

- Les buts (ou objectifs) de l'automatisation sont donc :
- Éliminer les tâches répétitives,
- > Simplifier le travail de l'humain,
- > Augmenter la sécurité (responsabilité),
- Accroître la productivité.
- ➤ Économiser les matières premières et l'énergie,
- > S'adapter à des contextes particuliers : flexibilité,
- > Améliorer la qualité.

Le système automatisé permet d'obtenir de façon reproductible la valeur ajoutée. Moyens : Les moyens permettant d'atteindre ces objectifs sont d'ordres financiers, matériels, organisationnels, et humains. On distingue notamment : informatiser, automatiser, robotiser, rationaliser, organiser, etc...

On admet généralement qu'un automatisme est composé de deux sous-ensembles :

- ➤ Un organe de décision, nommé « partie commande »,
- Un organe effectuant les actions ordonnées par l'organe de commande, nommé « Partie opérative » ou organe de puissance qui peut être mécanique, électrique, Pneumatique, ou hydraulique, et bien souvent un assemblage de ces technologies.

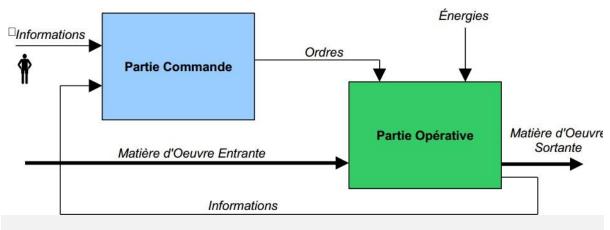


Figure II.13 Composition d'automatisme

Distingue deux types d'interactions au sein des systèmes automatisés :

- \triangleright Les ordres (PC \rightarrow PO),
- ➤ Et les informations (PO -> PC, ou opérateur -> PC). Ces interactions peuvent être :
 Des interactions prévues et retenues (matérialisées)
- Des interactions prévisibles,
- > Des interactions imprévisibles (incertitude).

La valeur ajoutée (VA) est une notion d'économie qui permet de mesurer la valeur créée par un agent économique. Elle mesure l'écart entre la somme des valeurs des entrants D'un processus de production et la somme des valeurs des produits ou des services qu'il vend.

V.A. = Matière d'Œuvre Sortante – Matière d'Œuvre Entrante

• Les fonctions

Les fonctions d'un système automatisé :

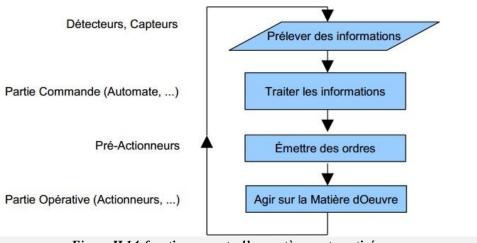


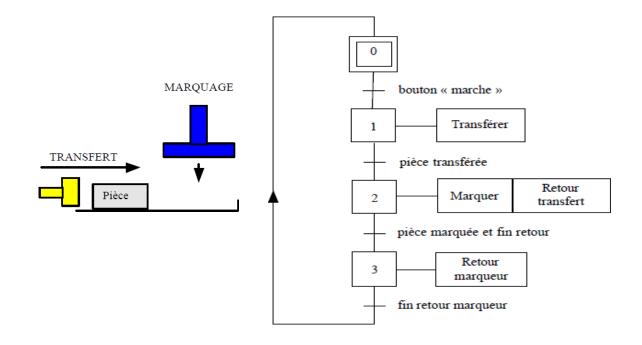
Figure II.14 fonctionnements d'un système automatisé

Les autres fonctions d'un système automatisé : gérer, coordonner, dialoguer, communiquer, surveiller.

II.3 Notions sur le GRAFCET

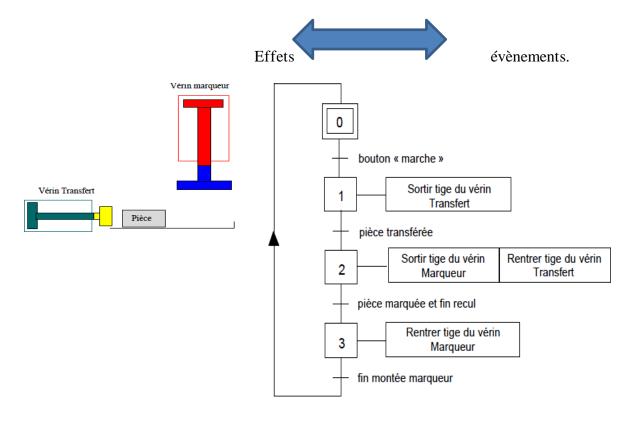
II.3.1 Définition:

GRAFCET: Graphe Fonctionnel de Commande Étapes-Transitions.


Le grafcet est un diagramme fonctionnel; il représente par un graphe le fonctionnement de la partie opérative, donc les actions effectuées par le système. Il nous servira ensuite à décrire le fonctionnement de la partie commande, c'est-à-dire la technologie employée pour commander les actionneurs.

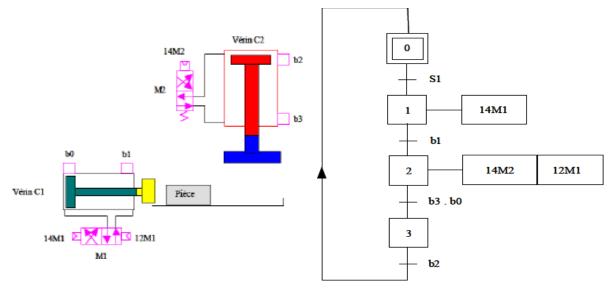
II.3.2 Différents niveaux de GRAFCET

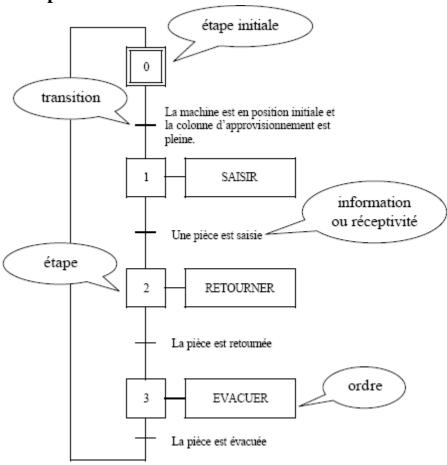
• Grafcet de niveau 1 ou grafcet de point de vue partie système


Ce diagramme ne tient compte que du fonctionnement de la machine, sans prendre en compte la technologie qui sera utilisée lors de la réalisation. Il décrit dans un langage commun l'évolution du système mouvement par mouvement.

C'est un grafcet de coordination des actions. Au moment de sa rédaction, le système peut ne pas exister.

• Grafcet de niveau 2 ou grafcet de point de vue partie opérative


Ce diagramme prend en compte la technologie des capteurs et actionneurs dont on se servira lors de la réalisation. Il décrit de manière séquentielle le comportement attendu de la partie commande (transitions), pour obtenir les effets souhaités de la partie opérative (étapes) :


> Grafcet de niveau 3 ou grafcet de point de vue partie commande

Il tient compte du matériel utilisé pour la réalisation de la partie commande (automate, boutons poussoirs, ...). C'est le début de la réalisation.

Pour la rédaction de ce grafcet, le concepteur doit avoir terminé l'étude du système. Celui-ci servira donc plus à la programmation (si automate) et au dépannage. On utilisera un langage propre aux récepteurs et actionneurs (ex: %Q0.0 pour la mise en route d'un moteur).

II.3.3 Représentation:

II.4 Automates Programmables Industriels (API):

II.4.1 Généralités:

L'automate programmable est un système de traitement logique d'informations dont le programme de fonctionnement est effectué à partir d'instructions établies en fonction du processus à réaliser. C'est un système informatique dédié aux applications d'automatisme.

La figure ci-dessous montrera la structure et le principe de fonctionnement d'un API

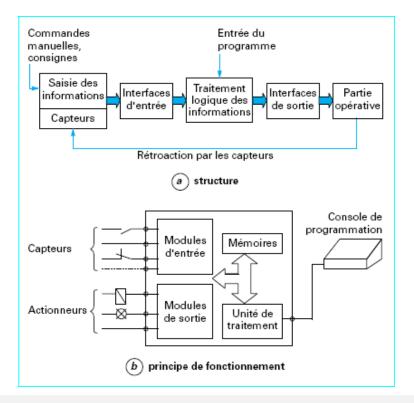


Figure II.15 Automate Programmable Industriel

- La structure des systèmes automatiques comprend les éléments suivants :
- Saisie des informations : consignes, capteurs mécaniques (contacts), pression, température, déplacement, etc. ;
- Interfaces d'entrée : isoler électriquement avec une isolation galvanique (découplage) le circuit puissance et le traitement, mise en forme du signal, système antiparasite, etc.;
- Traitement logique : effectuer des opérations ET, OU, lire l'état d'une variable, ranger le résultat dans une variable, mémoire, etc. ;
- Interfaces de sortie : elles permettent de commander des actions (relais, électrovannes, contacteurs, moteurs, etc.) avec une isolation galvanique.

Le principe général de fonctionnement d'un API est généralement construit autour d'un microprocesseur.

Les entrées sont nombreuses et acceptent des signaux venant des capteurs industriels et les sorties sont traitées pour actionner des contacteurs, des relais, etc. Les langages de programmation sont simples et accessibles rapidement par les automaticiens.

La mémoire est en partie prise par le système d'exploitation (contrôle du

fonctionnement de l'API, gestion interne des traitements, gestion des ressources, etc.).

Le programme de traitement des informations est stocké en mémoire, l'unité de traitement pilote le fonctionnement de l'automate, et la console de programmation assure le dialogue entre l'opérateur et l'automate pendant la phase d'écriture et de mise au point du programme.

- 1- Module d'alimentation
- **2-** Pile de sauvegarde
- **3-** Connexion au 24V cc
- **4-** Commutateur de mode (à clé)
- **5-** LED de Signalisation d'état et de défauts
- 6- Carte mémoire
- 7- Interface multipoint (MPI)
- **8-** Connecteur frontal
- **9-** Volet en face avant

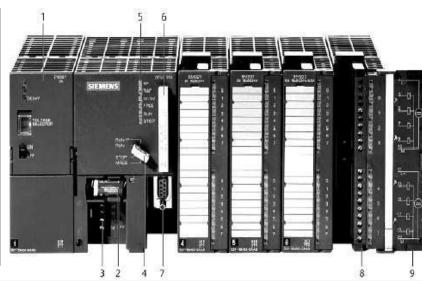


Figure II.16 Automate modulaire (SIEMENS)

Figure II.17 Automate compact (Allen-Bradley)

Figure II.18 Automate modulaire (Modicon)

Un automate traite des variables booléennes et numériques. En général, on distingue les

entrées (en lecture seule), les sorties (en écriture) et les variables internes (mémorisation des calculs intermédiaires).

II.4.2 Programmation en langage booléen :

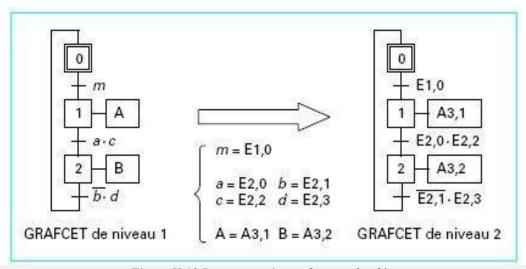


Figure II.19 Programmation en langage booléen

Le langage booléen de l'automate programmable dispose généralement de cinq fonctions combinatoires élémentaires :

- ET logique entre une variable indiquée et le résultat précédent ;
- OU logique entre une variable indiquée et le résultat précédent ;
- LIRE l'état de la variable indiquée ;
- RANGER le résultat dans la variable indiquée ;
- NON qui s'utilise en combinaison des quatre opérations précédentes (inverser l'état de la variable sélectionnée).

L'exemple de la figure ci-dessus montre comment programmer un GRAFCET à séquence unique. La programmation est faite en langage STEP 5 sur une console PG605 pour Les automates de type SIMATIC S5 de Siemens. Pour chaque étape Xi du GRAFCET, il faut écrire sa condition d'activation, sa condition de désactivation et l'action associée (tableau 04). Pour la programmation, on utilise des variables internes de l'automate notées Mij (i = 0 à 255 et j = 0 à 7).

Tableau II.1: Équations des étapes pour le langage booléen

Étape	CA	CD	Remarques
0	M0,2 · /E2,1 · E2,3 + E1,1	M0,0 . /E1,1	E1,1: initialisation
1	M0,0 · E1,0 · /E1,1	8400 544	du GRAFCET
2	M0,1 · E2,0 · E2,2 · /E1,1	M0,0 + E1,1	/E1,1: complément de E1,1

Notations

CAXi: condition d'activation de l'étape i CDXi: condition de désactivation de l'étape i M0,i: variable interne associée à l'étape i

Langage de programmation

U : fonction ET UN : fonction NON O. : fonction OU S : SET (mise à 1) R : RESET (mise à 0)

Programmation d'une étape

```
U « CAX i »
S M0, i (mise à 1 : SET)
U « CDX i »
R M0, i (mise à 0 : RESET)
```

Figure II.20 Notations et langage de programmation

```
Programme
Étape 0
      U M0.2
      UN E2, 1
                   Condition d'activation de l'étape 0
      U E2,3
      O. E1, 1
      S M0.0
                          Mise à 1 (SET) de l'étape 0
      U M0,1)
                  Condition de désactivation de l'étape 0
      UN E1, 1
      R M0.0
                   → Mise à 0 (RESET) de l'étape 0
Étape 1
      U M0,0
                   Condition d'activation de l'étape 1
      U E1.0
      UN E1, 1
                   → Mise à 1 (SET) de l'étape 1
      S M0,1
      U M0,2)
                  Condition de désactivation de l'étape 1
      O. E1,1 ∫
      R M0, 1 → Mise à 0 (RESET) de l'étape 1
Étape 2
      U M0, 1
         E2.0
                   Condition d'activation de l'étape 2
      U E2.2
      UN E1,1
      S M0, 2
                   → Mise à 1 (SET) de l'étape 2
      U M0,0 )
                  Condition de désactivation de l'étape 2
      O. E1.1
      R M0, 2 → Mise à 0 (RESET) de l'étape 2
Actions
          M0, 1
                   Activation de l'action A3,1
          A3, 1
          M0, 2
                   Activation de l'action A3,2
          A3, 2
```

Figure II.21 Programme des étapes

II.4.3 Programmation en diagramme en échelle (ladder) :

Comme pour la programmation en langage booléen, il faut établir pour chaque étape du GRAFCET les équations des conditions d'activation et de désactivation. La condition d'activation d'une étape est câblée à une bobine SET (S) et la condition de désactivation est câblée sur une bobine RESET (R). La figure 27 montre le principe de programmation d'une étape en ladder.

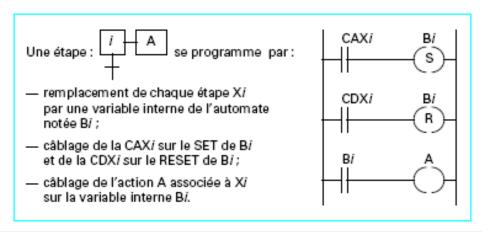


Figure II.22 Principe de programmation d'une étape en ladder

Exemple: GRAFCET à séquence unique

Ce genre de programmation peut se faire en langage PL7-2 sur un terminal TSX-T407 pour les automates Télémécanique TSX 17-20/27/ 47-J/47-10/20.

Les entrées de l'automate sont notées de I0, 0 à I0, 21 et les sorties de O0, 0 à O0, 10. Les conditions d'activation et de désactivation des étapes sont définies dans le tableau

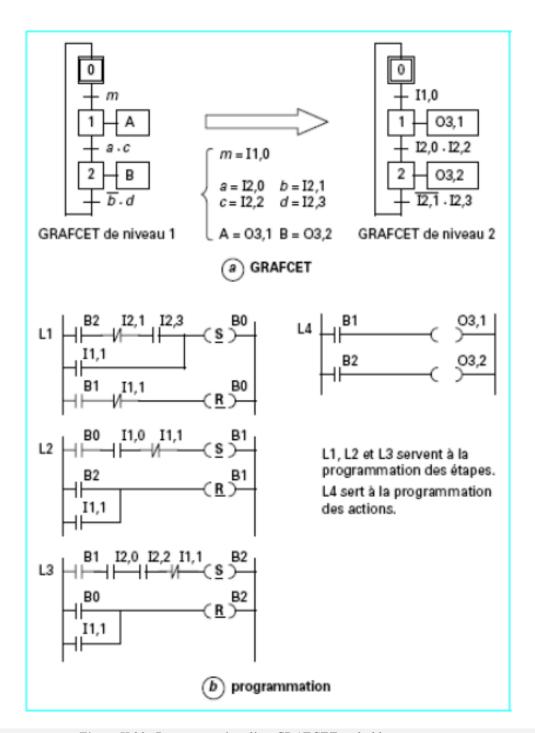


Figure II.23: Programmation d'un GRAFCET en ladder

SIEMENS D10.0 DI 0.1 DI 0.2 DI 0.3 Al... DI 0.4 DI 0.5 Al... DI 0.6 DI 0.7 l L Al... 0.0 Q D LR... DQ 0.1 DQ 0.2 Al... DQ 0.3 DQ 0.4 DQ 0.5 DQ 0.6 DQ 0.7

II.5 Introduction au logiciel TIA Portal:

Figure II.24 Api Siemens

II.5.1 Introduction

La plateforme Totally Integrated Automation Portal est le nouvel environnement de travail Siemens qui permet de mettre en œuvre des solutions d'automatisation avec un système d'ingénierie intégré comprenant les logiciels SIMATIC STEP 7 V11 et SIMATIC WinCC V11 (dans la version du programme disponible au CTA de Virton).

II.5.2 Vue du portail et vue du projet

Lorsque l'on lance TIA Portal, l'environnement de travail se décompose en deux types de vue :

La vue du portail : elle est axée sur les tâches à exécuter et sa prise en main est très rapide.

Chaque portail permet de traiter une catégorie de tâche (actions). La fenêtre affiche la liste des actions pouvant être réalisées pour la tâche sélectionnée.

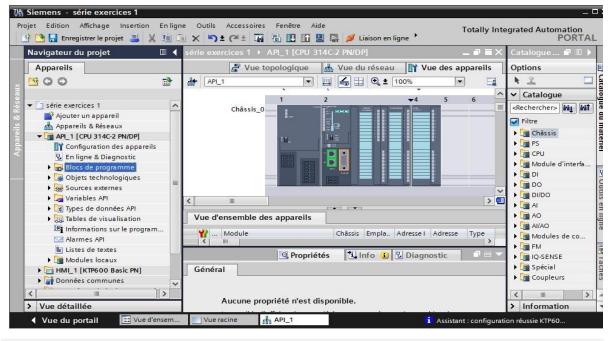


Figure II.25 Vue de portail

La vue du projet : elle comporte une arborescence avec les différents éléments du projet. Les éditeurs requis s'ouvrent en fonction des tâches à réaliser. Données, paramètres et éditeurs peuvent être visualisés dans une seule et même vue.

L'élément « Projet » contient l'ensemble des éléments et des données nécessaires pour mettre en œuvre la solution d'automatisation souhaitée.

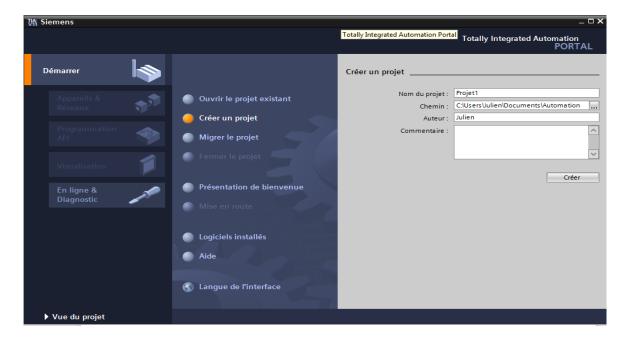


Figure II.26 Vue de projet

Chapitre III

Mode des démarrages d'un moteur asynchrone triphasé

III.1 Introduction:

Dans ce chapitre, notre objectif est de créer un programme d'une simulation à l'aide du logiciel TIA Portal V16, dans lesquels les effets de courant et de couple de démarrage sont inexistants. On cherche à étudier et comparer les résultats de simulation par la logique programmée à ceux exposés dans le chapitre précédent par la logique câblée, on choisit de s'intéresser au schéma à Grafcet de chaque mode de démarrage.

III.2 Partie TIA Portal:

III.2.1 Démarrage direct :

III.2.1.1 Circuit de commande

Principe de fonctionnement

Fermeture manuelle de Q1.

Impulsion sur S2.

Fermeture de KM1.

Auto maintien de KM1 (13-14).

Arrêt:

Par impulsion sur S1.

Par déclenchement du relais thermique F2.

Par fusion des fusibles.

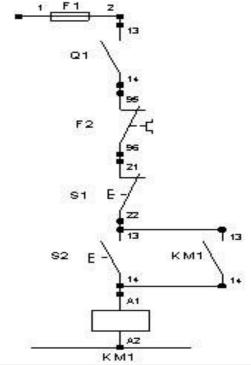


Fig III.1Schéma de commande 1

Tab III.1 listes des Entrées/Sorties

Name	Tag table	Data type	Address
Q1	Default tag table	Bool	%10.0
Button stop	Default tag table	Bool	%10.1
button start	Default tag table	Bool	%10.2
KM1	Default tag table	Bool	%Q0.0

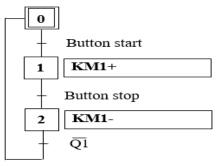


Fig III.2 Schéma à Grafcet 1

III.2.1.2 Simulation

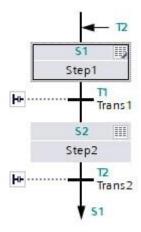


Fig III.3 Grafcet Tia portal 1

> Fermeture manuelle de Q1.

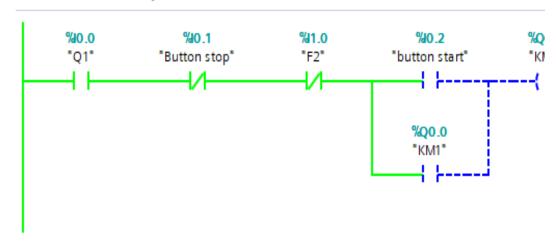


Fig III.4 Fermeture manuelle de Q1

> Impulsion sur le bouton de start S2.

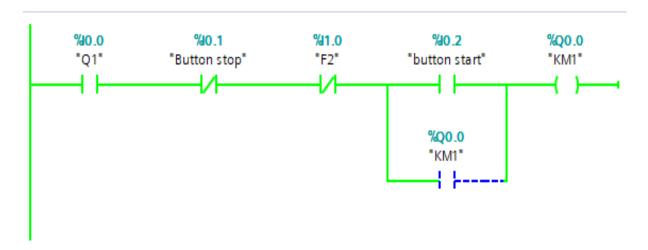


Fig III.5 Impulsion sur le bouton de start S2.

> l'arrêt par impulsion sur le bouton stop S1.

Fig III.6 l'arrêt par impulsion sur le bouton stop S1.

III.2.2 Démarrage inverseur direct :

III.2.2.1 Circuit de commande:

Principe de fonctionnement

Fermeture manuelle de Q1.

Impulsion sur S2 (sens 1).

Fermeture de KM1.

Auto maintien par KM1 (13-14).

Arrêt par impulsion sur S1ou par déclenchement de relais thermique F2.

Impulsion sur S3 (marche arrière).

Fermeture de KM2.

Auto maintien par KM2 (13-14).

Verrouillage mécanique entre KM1et KM2 matérialisé par ▼.

- Verrouillage électrique par KM1 (61-62) et KM2 (61-62).

Arrêt:

Par impulsion sur S1.

Par déclenchement du relais thermique F2. Par fusion des fusibles.

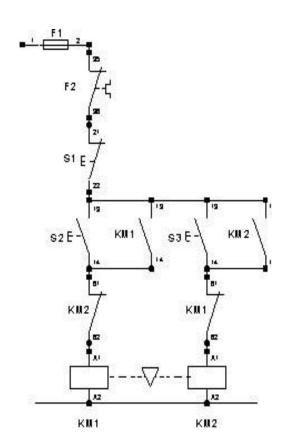


Fig III.7 Schéma de commande 2

III.2.2.2 Listes des Entrées/Sorties

	Name	Data ty	Address
1	Q1	Bool	%10.0
1	Button stop	Bool	%10.1
1	KM1	Bool	%Q0.0
1	Sense 1	Bool	%10.3
1	F2	Bool	%11.0
1	Sense 2	Bool	%10.4
1	KM2	Bool	%Q0.1

Tab III.2 listes des Entrées/Sorties 2

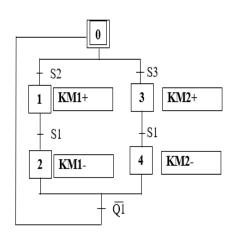


Fig III.8 Schéma à Grafcet 2

III.2.2.3 Simulation

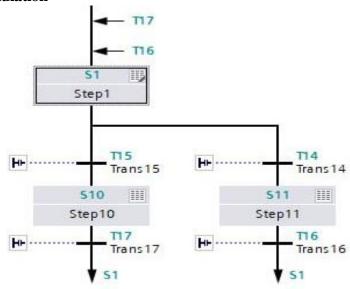


Fig III.9 Grafcet Tia portal 2

> Fermeture manuelle de Q1.

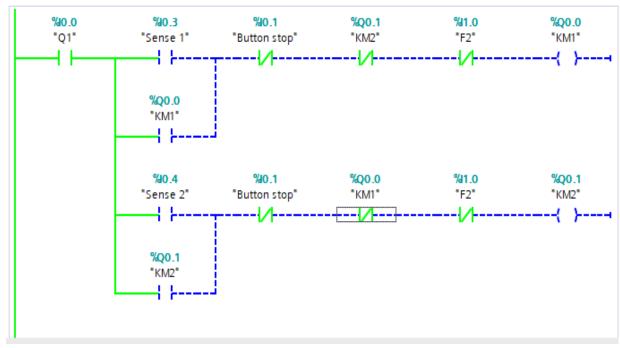


Fig III.10 Fermeture manuelle de Q1.

➤ Impulsion sur le bouton de start S2 (sens 1).

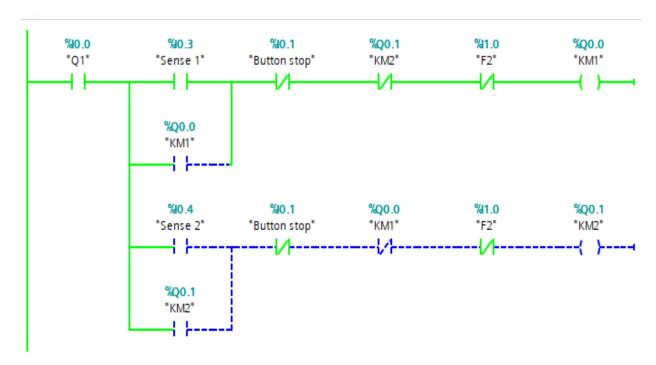


Fig III.11 Impulsion sur le bouton de start S2 (sens 1).

L'arrêt par impulsion sur le bouton stop S1.

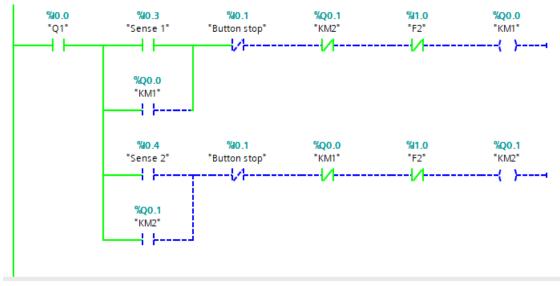


Fig III.12 l'arrêt par impulsion sur le bouton stop S1.

> Impulsion sur le bouton de start S3 (sens 2).

```
%0.0
                   %10.3
                                      %10.1
                                                         %Q0.1
                                                                             %11.0
                                                                                               %Q0.0
"Q1"
                                                         "KM2"
                                                                             "F2"
                                                                                               "KM1"
                 "Sense 1"
                                  "Button stop"
                                                                                                -{ }----
                  %Q0.0
                  "KM1"
                   %10.4
                                      %0.1
                                                         %Q0.0
                                                                             %11.0
                                                                                               %Q0.1
                 "Sense 2"
                                  "Button stop"
                                                         "KM1"
                                                                             "F2"
                                                                                               "KM2"
                  %Q0.1
                  "KM2"
                   4 1
```

Fig III.13 Impulsion sur le bouton de start S3 (sens 2).

L'arrêt par impulsion sur le bouton stop S1.

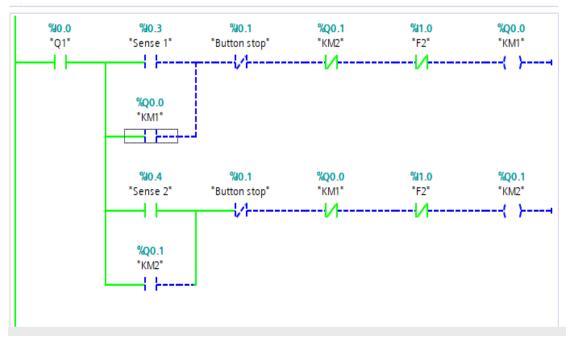


Fig III.14 l'arrêt par impulsion sur le bouton stop S1.

III.2.3 Démarrage part-Winding

III.2.3.1 Circuit de commande

Principe de fonctionnement

Fermeture manuelle de Q1.

Impulsion sur S2.

Excitation de KM1 et KA1.

Fermeture du contact KM1 (13-14) auto alimentation.

Fermeture du contact temporisé KA1 (13-14). Excitation de KM2.

Arrêt:

Par impulsion sur S1.

Par déclenchement du relais thermique F2 ou F3

Par fusion des fusibles.

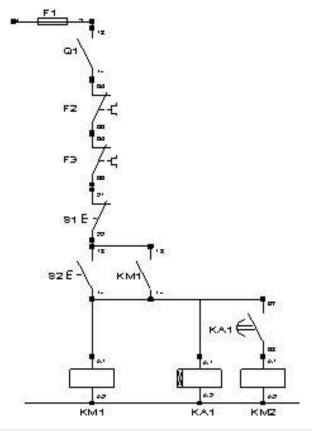


Fig III.15 Schéma de commande 3

III.2.3.2 Listes des Entrées/Sorties

Tab III.3 listes des Entrées/Sorties 3

	Name	Data ty	Address
1	Q1	Bool	%10.0
	Button stop	Bool	%10.1
1	KM1	Bool	%Q0.0
1	Button start	Bool	%10.2
1	KM2	Bool	%Q0.1
1	KA1	Bool	%Q0.3

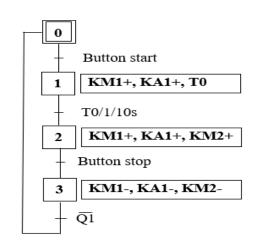


Fig III.16 Schéma à Grafcet 3

III.2.3.3 Simulation

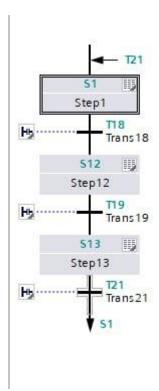


Fig III.17 Grafcet Tia portal 3

> Fermeture manuelle de Q1.

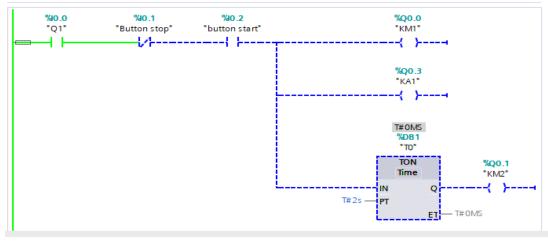


Fig III.18 Fermeture manuelle de Q1.

> Impulsion sur le bouton de start S2.

```
%0.0
                   %10.1
                                       %10.2
                                                                              %Q0.0
"Q1"
               "Button stop"
                                   "button start"
                                                                              *KM1*
                                                                              %Q0.3
                                                                              "KA1"
                                                                          T#2S_718MS
%DB1
"T0"
                                                                              TON
                                                                                                  %Q0.1
                                                                              Time
                                                                                                  "KM2"
                                                                                                  -{ }----
                                                                          IN
                                                                 T#10s -
                                                                          РΤ
                                                                                           T#OMS
```

Fig III.19 Impulsion sur le bouton de start S2.

Fermeture de KM2 après 10s.

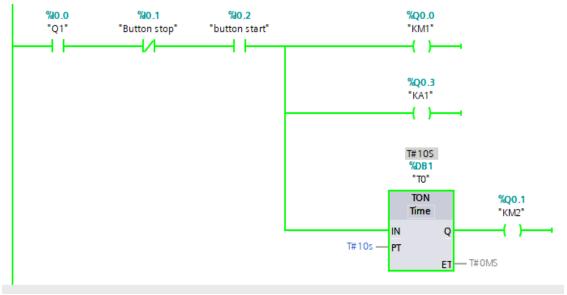


Fig III.20 Fermeture de KA1 après 10s.

L'arrêt par impulsion sur le bouton stop S1.

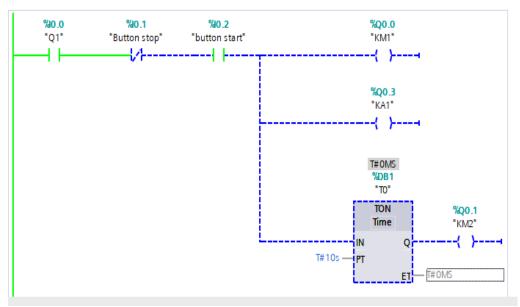


Fig III.21 l'arrêt par impulsion sur le bouton stop S1.

III.2.4 Démarrage « étoile –triangle » deux sens de marche

III.2.4.1 Circuit de commande

Principe de fonctionnement

Fermeture manuelle de Q1.

Impulsion sur S2 ou S3.

Fermeture de KM1 ou KM2 dans le circuit de puissance.

Auto-alimentation de KM1 ou KM2 (13-14).

Excitation de KM3 par KM1 ou KM2 (53-54).

Excitation de KA1 par KM3 (13-14). Auto-alimentation de KA1.

Ouverture de KA1 (55-56).

Verrouillage électrique de KM3 (61-62).

Excitation de KM4 par KM3 (61-62). Arrêt :

Par impulsion sur S1.

Par déclenchement du relais thermique F2.

Par fusion des fusibles.

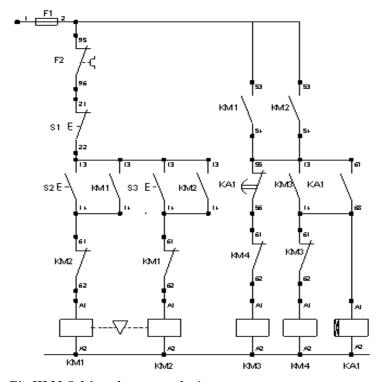


Fig III.22 Schéma de commande 4

III.2.4.2 Listes des Entrées/Sorties

Tab III.4 listes des Entrées/Sorties 4

	Name	Data ty	Address
1	Q1	Bool	%10.0
•	Button stop	Bool	%10.1
1	KM1	Bool	%Q0.0
1	KM2	Bool	%Q0.1
1	KA1	Bool	%Q0.3
1	S2	Bool	%10.5
1	KM3	Bool	%Q0.4
1	KM4	Bool	%Q0.5
1	\$3	Bool	%10.6

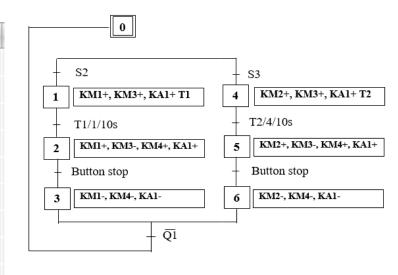


Fig III.23 Schéma à Grafcet 4

III.2.4.3 Simulation

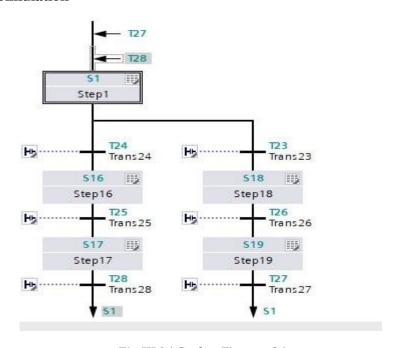


Fig III.24 Grafcet Tia portal 4

Fermeture manuelle de Q1.

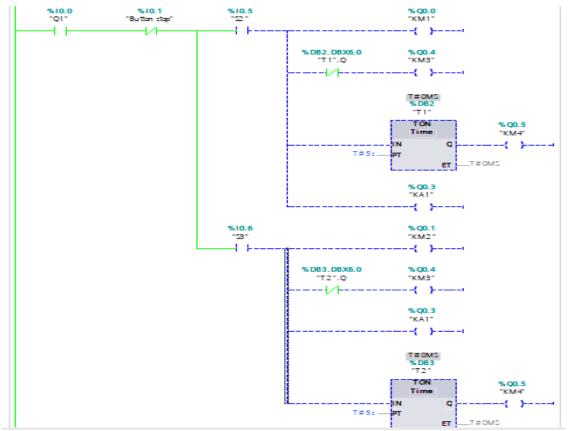


Fig III.25 Fermeture manuelle de Q1.

> Impulsion sur le bouton de start S2 (sens 1).

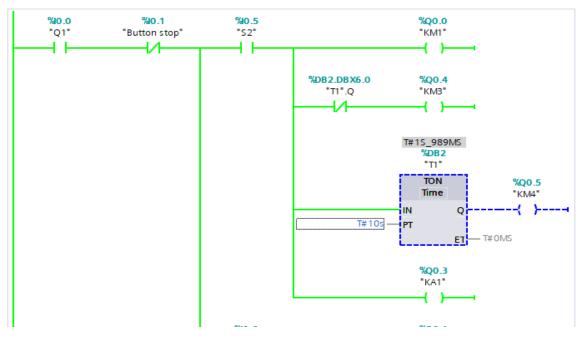


Fig III.26 Impulsion sur le bouton de start S2.

Fermeture de KM4 après 10s (couplage Triangle).

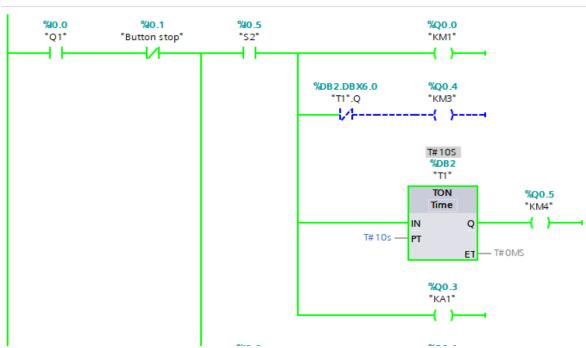


Fig III.27Fermeture de KM4 (couplage Triangle)

> Impulsion sur le bouton de stop S1.

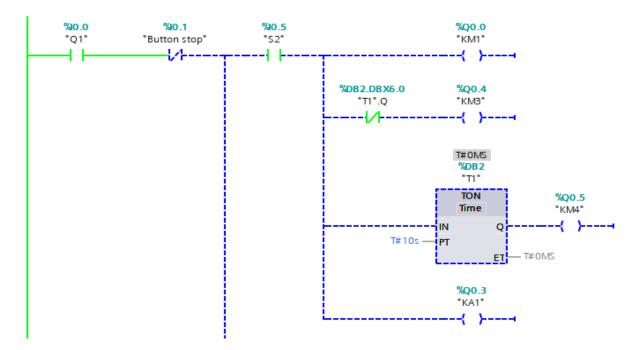


Fig III.28Impulsion sur le bouton de stop S1

> Impulsion sur le bouton de start S3 (sens 2).

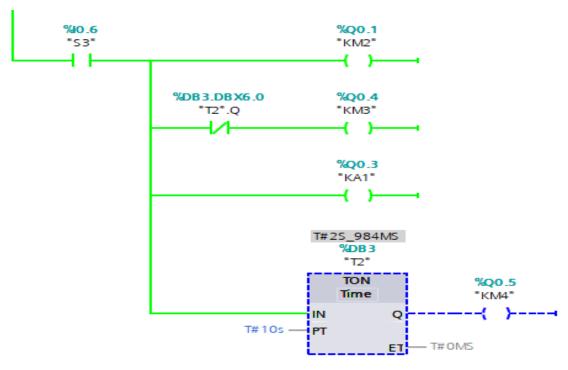


Fig III.29 Impulsion sur le bouton de start S3.

Fermeture de KM4 après 10s (couplage Triangle).

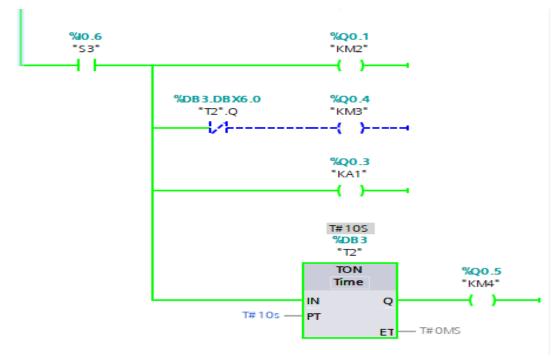


Fig III.30 Fermeture de KM4 (couplage Triangle)

> Impulsion sur le bouton stop S1.

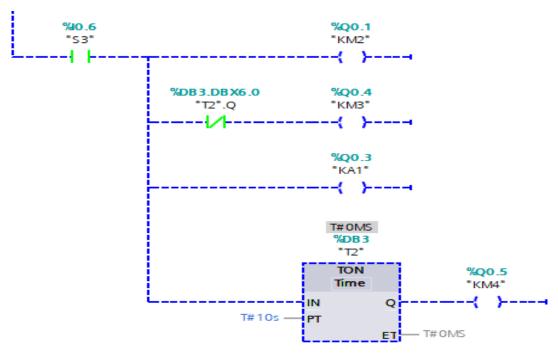


Fig III.31 Impulsion sur le bouton stop S1.

III.2.5 Démarreur inverseur statorique

III.2.5.1 Circuit de commande

Principe de fonctionnement

Fermeture manuelle de Q1.

Impulsion sur S2 ou S3.

Excitation de KM1 ou de KM2.

Verrouillage de KM2 ou KM1 (61-62).

Auto-alimentation de KM1 ou KM2(1314).

Excitation de KA1 par KM1 ou KM2 (53-54).

Excitation de KM11 par KA1 (67-68).

Arrêt:

Impulsion sur S1.

Par fusion fusible F1.

Par déclenchement de relais F2.

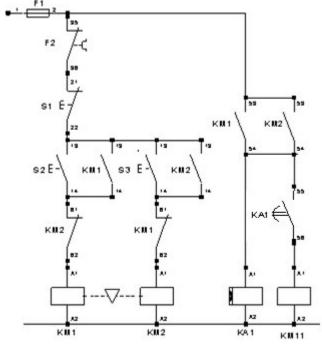


Fig III.32Schéma de commande 5

III.2.5.2 Listes des Entrées/Sorties

Tab III.5 listes des Entrées/Sorties 5

N	ame	Data ty	Address
40	Q1	Bool	%10.0
40	Button stop	Bool	%10.1
1	KM1	Bool	%Q0.0
1	KM2	Bool	%Q0.1
1	KA1	Bool	%Q0.3
1	Sence 1	Bool	%10.3
1	KM4	Bool	%Q0.5
40	Sence 2	Bool	%10.4

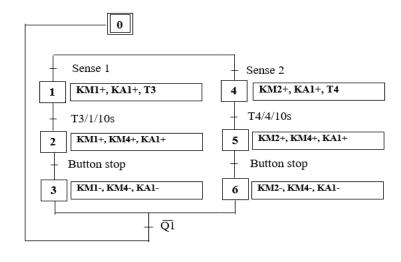


Fig III.33 Schéma à Grafcet 5

III.2.5.3 Simulation

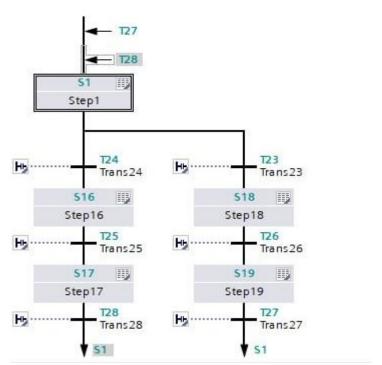


Fig III.34 Grafcet Tia portal 5

Fermeture manuelle de Q1.

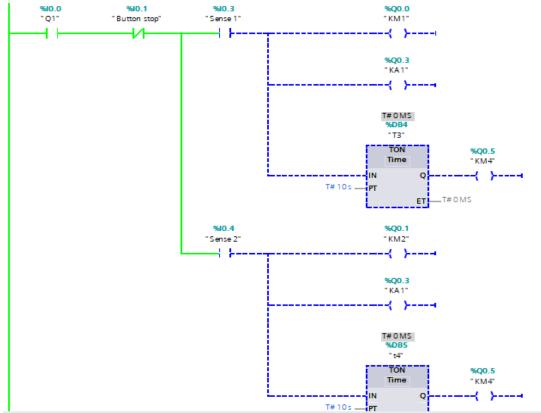


Fig III.34 Fermeture manuelle de Q1.

➤ Impulsion sur le bouton de start S2 (sens 1).

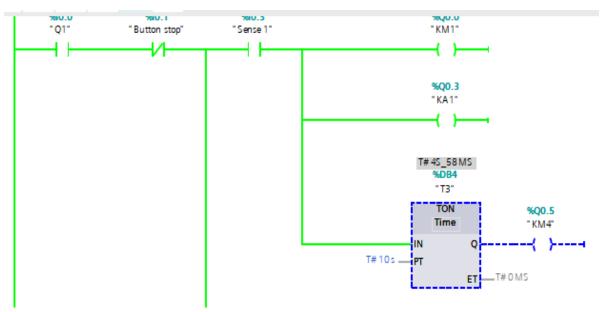


Fig III.35 Impulsion sur le bouton de start S2.

Fermeture de KM4 après 10s.

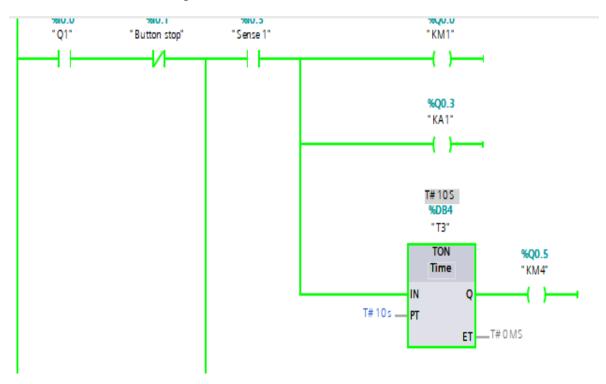


Fig III.36 Fermeture de KM4

> Impulsion sur le bouton de stop S1.

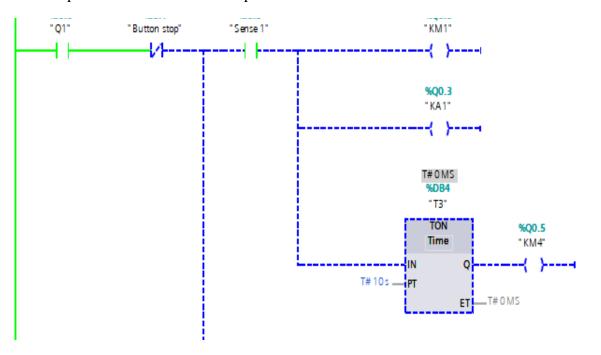


Fig III.37 Impulsion sur le bouton de stop S1

Impulsion sur le bouton de start S3 (sens 2).

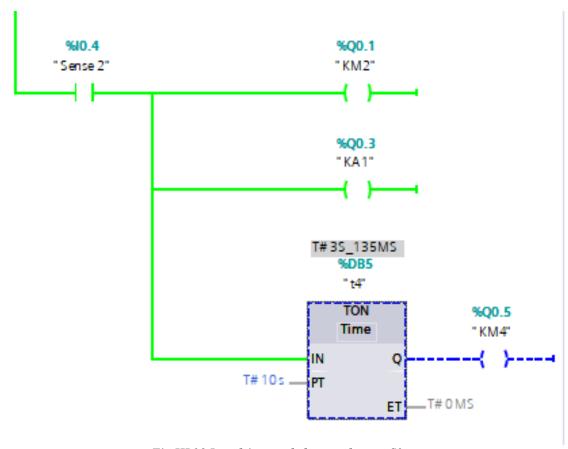


Fig III.38 Impulsion sur le bouton de start S3.

Fermeture de KM4 après 10s.

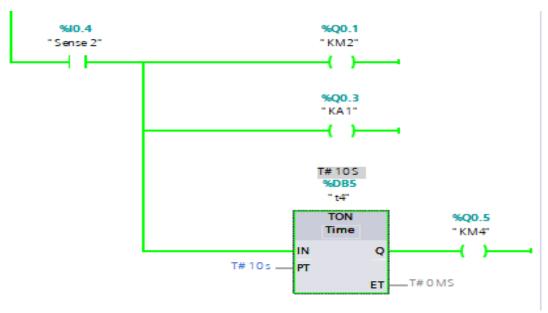


Fig III.39 Fermeture de KM4

> Impulsion sur le bouton stop S1.

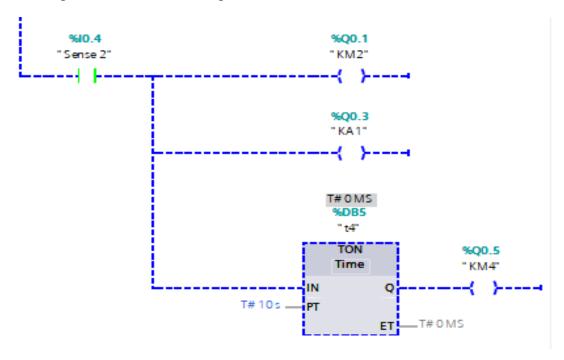


Fig III.40 Impulsion sur le bouton stop S1.

III.2.6 Démarrage par élimination des résistances rotoriques

III.2.6.1 Circuit de commande

Principe de fonctionnement

Fermeture manuelle de Q1.

Impulsion sur S2.

Excitation de KM1.

Auto alimentation de KM1 (13-14).

Excitation de KA1 par KM1 (53-54).

Excitation de KM11 et KA2 par KA1 (67-68).

Excitation de KM12 par KA2 (67-68).

Arrêt:

Impulsion sur S1.

Déclenchement de F2.

Fusion fusible.

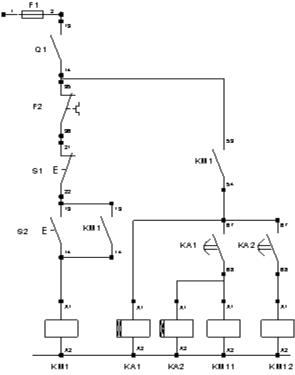


Fig III.41 Schéma de commande 6

III.2.6.2 Listes des Entrées/Sorties

Tab III.6 listes des Entrées/Sorties 6

Name	Data type	Addres
Q1	Bool	%10.0
Button stop	Bool	%10.1
52	Bool	%10.5
KM1	Bool	%Q0.0
KA1	Bool	%Q0.3
KM11	Bool	%Q0.7
KA2	Bool	%Q1.0
KM12	Bool	%Q1.1



Fig III.42 Schéma à Grafcet 6

III.2.6.3 Simulation



Fig III.43 Grafcet Tia portal 6

Fermeture manuelle de Q1.

Fig III.44 Fermeture manuelle de Q1.

➤ Impulsion sur le bouton de start S2(1er temps).

```
%10.0
                        %10.1
                                           %10.5
                                                                               %Q0.0
     "Q1"
                    "Button stop"
                                           "S2"
                                                                               "KM1"
Network 2:
Comment
                    T#2S_883MS
                        %DB5
                        "t4"
                        TON
    %Q0.0
                                                                                %Q0.3
                        Time
    *KM1*
                                                                                "KA1"
                   ΙN
                               Q
           T#10s -
                   РΤ
                                    T#OMS
```

Fig III.45 Impulsion sur le bouton de start S2 (1er temps).

Fermeture de KA1 après (2éme temps).

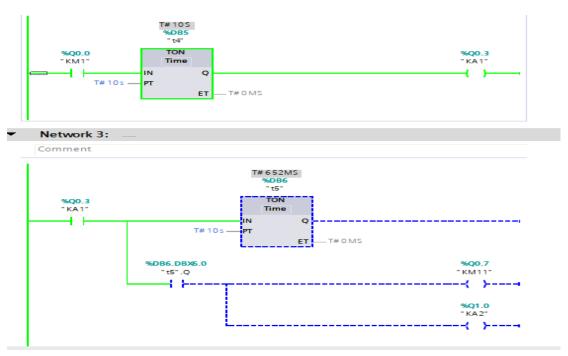


Fig III.46 Fermeture de KA1 après (2éme temps).

Fermeture de KA2 (3éme temps).

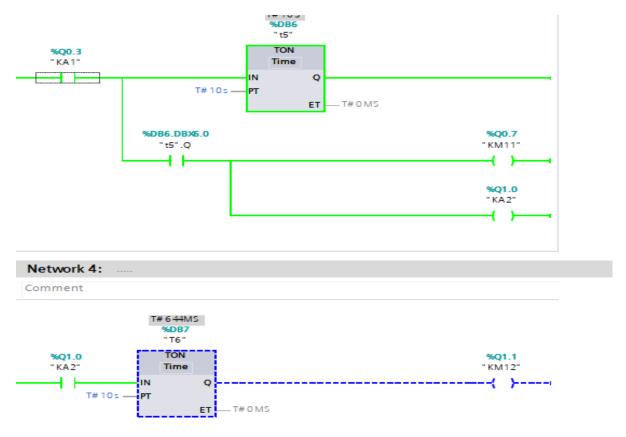


Fig III.47 Fermeture de KA2 après (3éme temps).

Fermeture de KM12 (4éme temps).

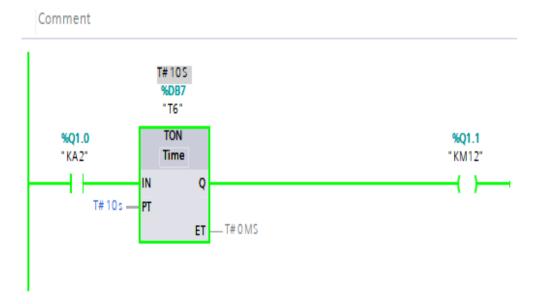


Fig III.48 Fermeture de KM12 après (4éme temps).

L'arrêt par impulsion sur le bouton stop S1.

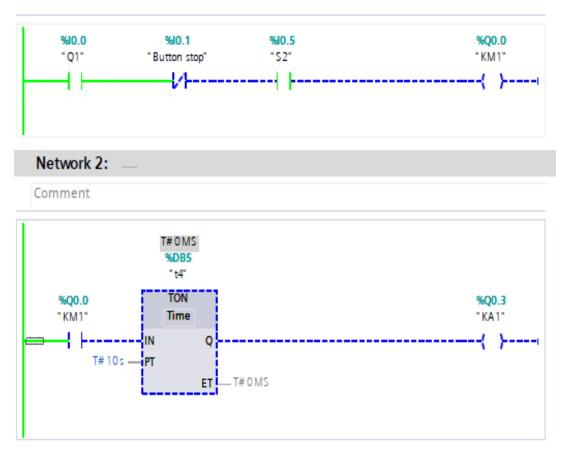


Fig III.49 l'arrêt par impulsion sur le bouton stop S1.

III.3 Préparation du panneau et application sur TIA PORTAL v.16

III.3.1 Préparation du panneau

Installer le panneau sur la table de travail afin qu'il soit parfaitement stable.

Brancher les différents composants électriques selon le schéma électrique de la Fig.III.58 ou bien réaliser les branchements comme indiqué dans le schéma d'installation de la Fig.III.63.

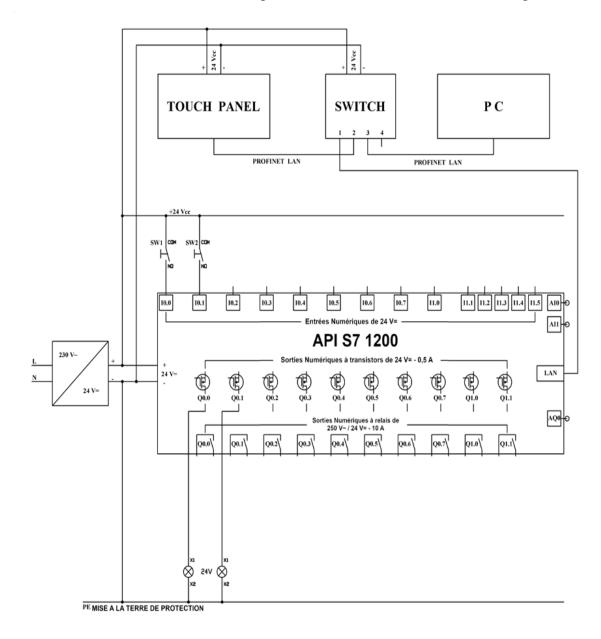


Fig III.50 Schéma électrique avec d'application de l'API.

Déclaration des variables de l'API					
	Nom	Type de données	Adresse	Commentaire	
1	Entrée 1	Bool	%10.0	Etat logique n°1.	
2	Entrée 2	Bool	%I0.1	Etat logique n°2.	
3	Sortie 1	Bool	%Q0.0	Signalisation d'état logique opération ET.	
4	Sortie 2	Bool	%Q0.1	Signalisation d'état logique opération OÙ.	
Tab III.7 listes des Entrées/Sorties 7					

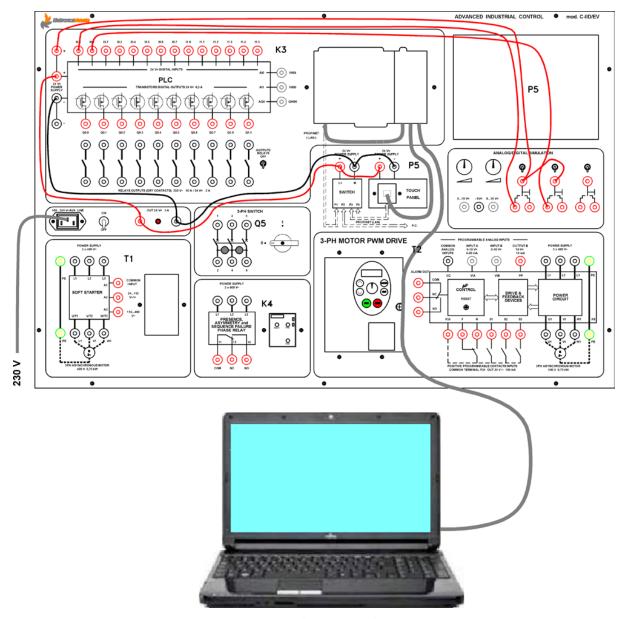


Fig III.51 Branchements sur le panneau.

Pour afficher l'état des sorties de l'API, se référer aux DEL se trouvant sur son panneau frontal.

Une solution alternative consiste à brancher deux lampes témoins du panneau C-IIC/EV, référées à la borne – de l'alimentation de 24 Vcc de l'API (comme indiqué dans le schéma électrique), aux sorties à transistor Q0.0 et Q0.1. [?]

Selon la tâche assignée, le tableau des Variables de l'API se transforme de la façon suivante :

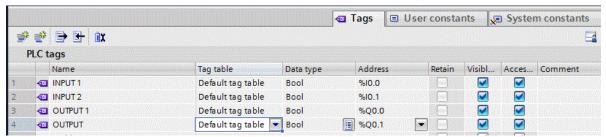


Fig III.52 listes des Entrées/Sorties.

III.3.2 Application

III.3.2.1 Commande marche - arrêt d'un moteur par API et interface IHM

≻ Objectif

En utilisant l'API assembler une installation pour la commande marche-arrêt d'un moteur asynchrone triphasé avec discontacteur, tandis qu'on utilise l'IHM pour écrire une page indiquant l'état de fonctionnement du même moteur. Opérations à faire :

Câbler l'installation électrique du circuit de puissance.

Câbler le circuit de commande et les lampes témoins de signalisation contrôlée par l'API (entrées et sortie de l'API).

Écrire le programme et le transférer dans l'API et dans l'IHM.

Composants nécessaires

- 1 Panneau mod. C-IID/EV.
- 1 Panneau mod. C-IIC/EV pour les dispositifs de commande et de protection.
- 1 Bloc d'alimentation monophasé fixe de 220-230 Vca pour le circuit de commande.
- 1 Bloc d'alimentation triphasé fixe de 380-400 Vca pour le circuit de puissance.
- 1 Jeu de câbles pourvus de fiches de sécurité avec diamètre de 4 mm.
- 1 Moteur asynchrone triphasé à cage mod. M-4/EV ou P-4/EV, si disponible.

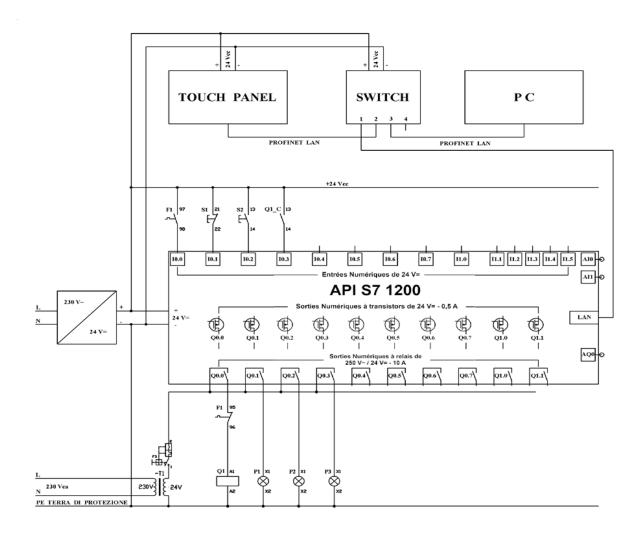


Fig III.53 Commande marche-arrêt d'un moteur

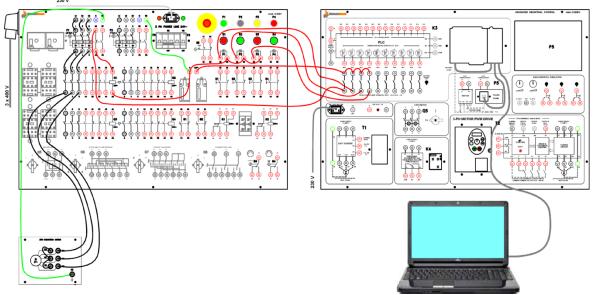


Fig III.54 Commande marche-arrêt d'un moteur

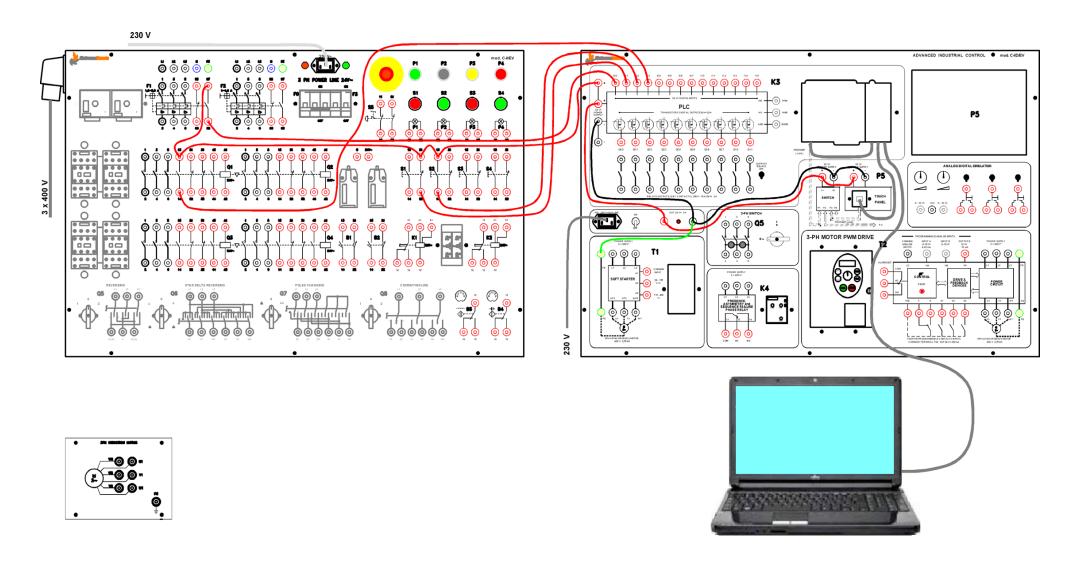


Fig III.55 Commande marche-arrêt d'un moteur

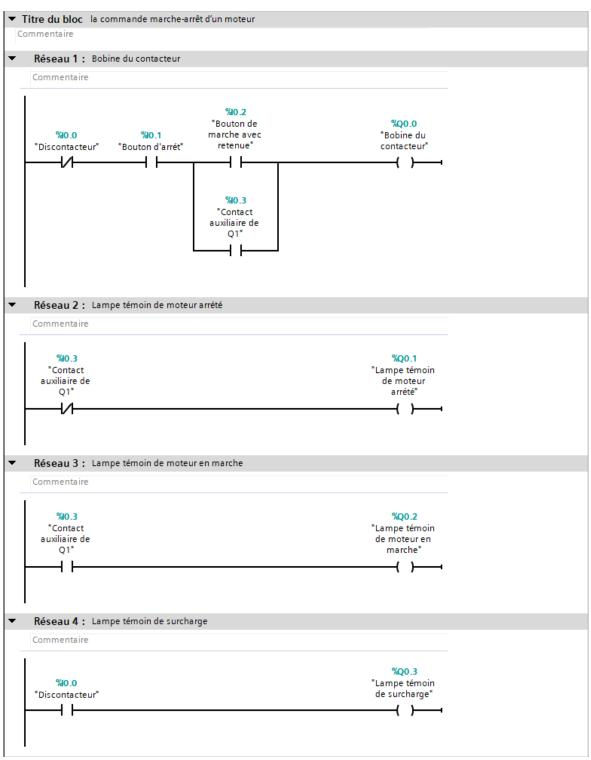


Fig III.56 Commande marche-arrêt d'un moteur (ladder)

III.3.2.2 Démarrage inverseur de marche pour moteur asynchrone triphasé contrôlé par API et par interface IHM

Objectif

En utilisant l'API assembler une installation pour obtenir l'inversion de marche d'un moteur asynchrone triphasé par des télérupteurs, avec commande de marche avant - marche arrière discontacteur et avec les lampes témoins correspondantes. Par contre utiliser l'IHM pour dresser une page indiquant l'état de fonctionnement. Opérations à faire :

Câbler l'installation électrique du circuit de puissance,

Câbler le circuit de commande et les lampes témoins de signalisation contrôlées par l'API (entrées et sorties de l'API),

Écrire le programme et le transférer dans l'API et dans l'IHM.

> Composants nécessaires

- 1 Panneau mod. C-IID/EV.
- 1 Panneau mod. C-IIC/EV pour les dispositifs de commande et de protection
- 1 Bloc d'alimentation monophasé fixe de 220-230 Vca pour le circuit de commande
- 1 Bloc d'alimentation triphasé fixe de 380-400 Vca pour le circuit de puissance
- 1 Jeu de câbles pourvus de fiches de sécurité avec diamètre de 4 mm
- 1 Moteur asynchrone triphasé à cage de 0,3-1 kW mod. M-4/EV ou P-4/EV, si disponible.

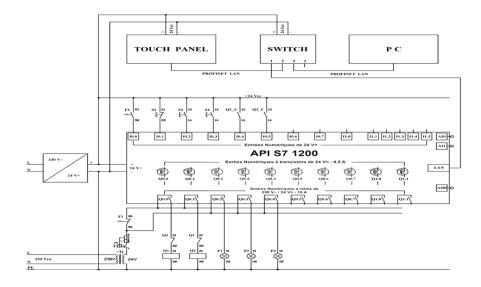


Fig III.57 Démarrage inverseur de marche pour moteur asynchrone triphasé

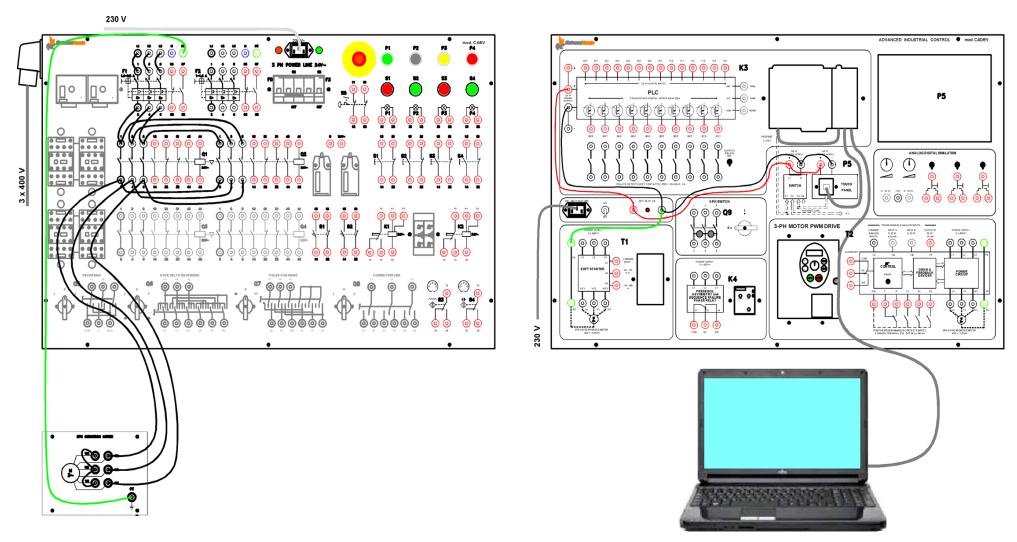


Fig III.58 Démarrage inverseur de marche pour moteur asynchrone triphasé

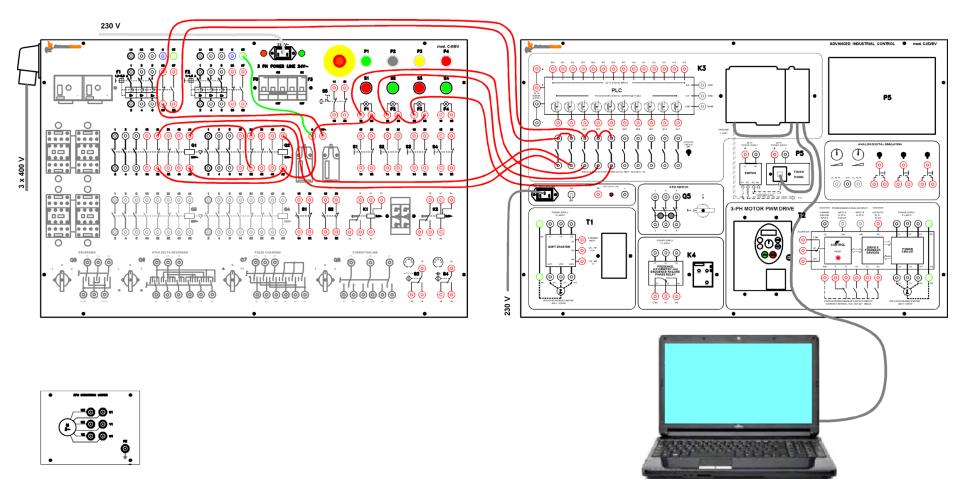


Fig III.59 Démarrage inverseur de marche pour moteur asynchrone triphasé

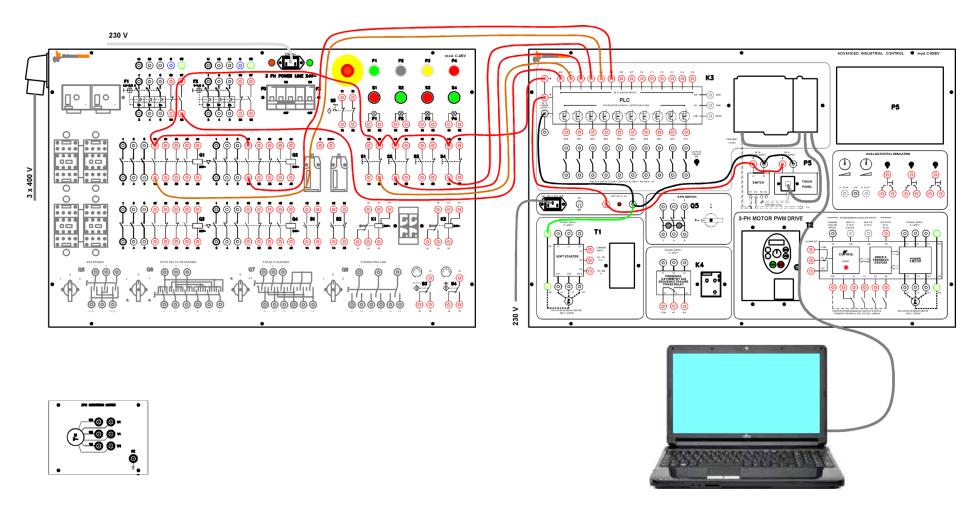


Fig III.60 Démarrage inverseur de marche pour moteur asynchrone triphasé

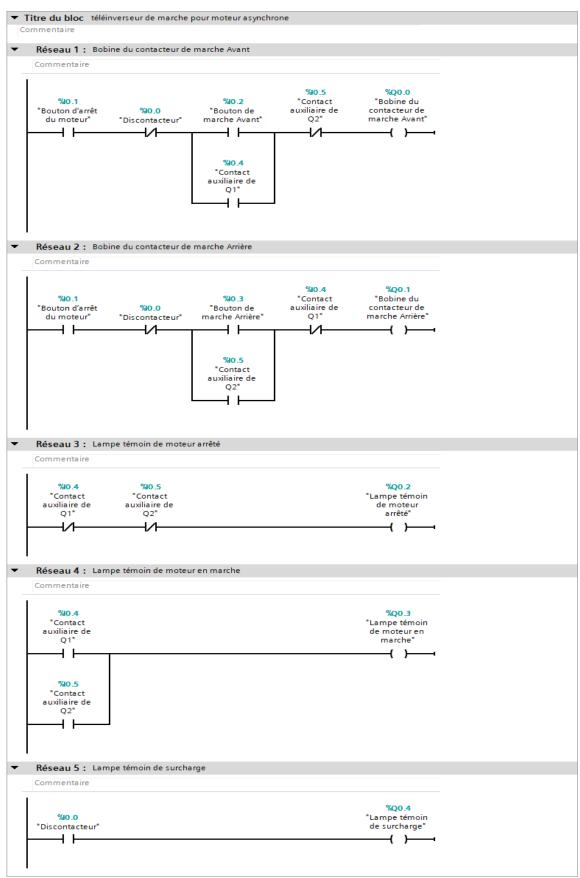


Fig III.61 Démarrage inverseur de marche pour moteur asynchrone triphasé (ladder)

III.3.2.3 Démarrage étoile-triangle par API et interface IHM

≻ Objectif

Assembler une installation électrique pourvue des circuits de puissance, de commande et de signalisation se référant au démarrage Etoile-Triangle d'un Moteur Asynchrone Triphasé à cage contrôlé par API et par IHM. L'installation doit être munie de lampes de signalisation indiquant :

Moteur à l'arrêt.

Moteur en marche et moteur en phase de démarrage.

Déclenchement de la protection contre les surcharges.

Opérations à faire :

Câbler l'installation électrique du circuit de puissance,

Câbler le circuit de commande et les lampes témoins de signalisation contrôlée par l'API (entrées et sorties de l'API).

Écrire le programme et le transférer dans l'API et dans l'IHM.

> Composants nécessaires

- 1 Panneau mod. C-IID/EV.
- 1 Panneau mod. C-IIC/EV pour les dispositifs de commande et de protection
- 1 Bloc d'alimentation monophasé fixe de 220-230 Vca pour le circuit de commande
- 1 Bloc d'alimentation triphasé fixe de 380-400 Vca pour le circuit de puissance
- 1 Jeu de câbles pourvus de fiches de sécurité avec diamètre de 4 mm
- 1 Moteur asynchrone triphasé à cage de 0,3-1 kW mod. M-4/EV ou P-4/EV, si disponible.

Note : la tension d'alimentation de 380-400 V est appliquée à un moteur Y/Δ avec tension de 660-690 V / 380-400 V.

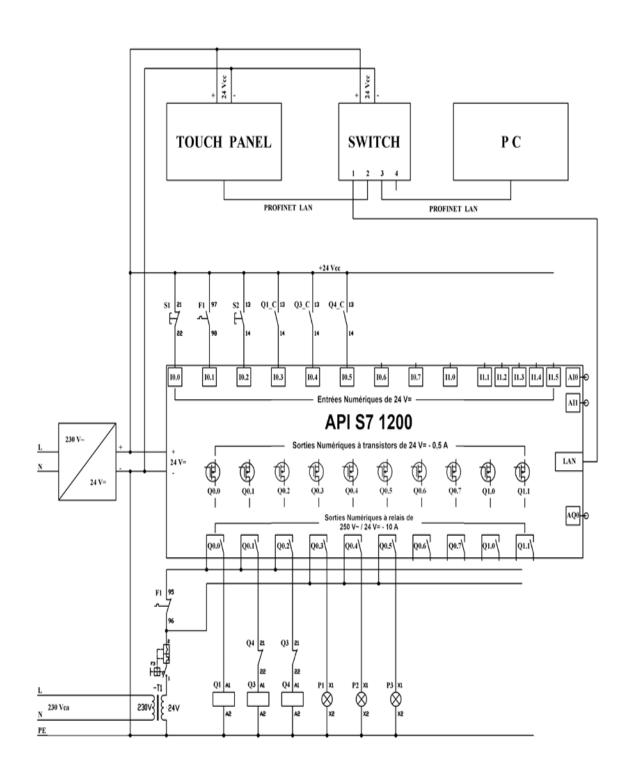


Fig III.62 Démarrage étoile-triangle

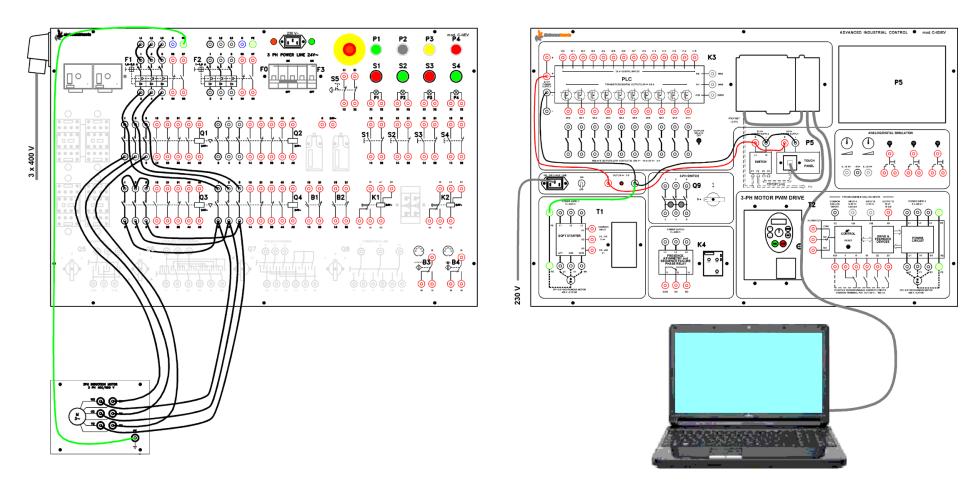


Fig III.63 Démarrage étoile-triangle

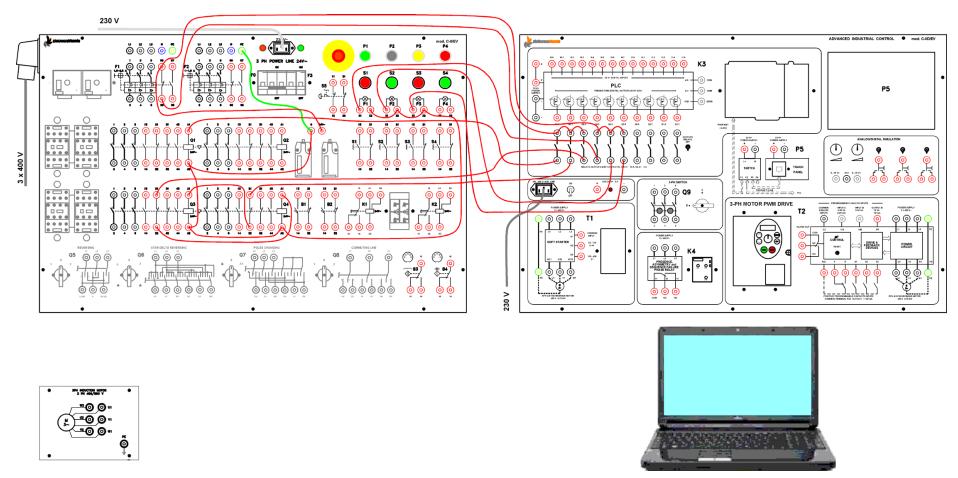


Fig III.64 Démarrage étoile-triangle

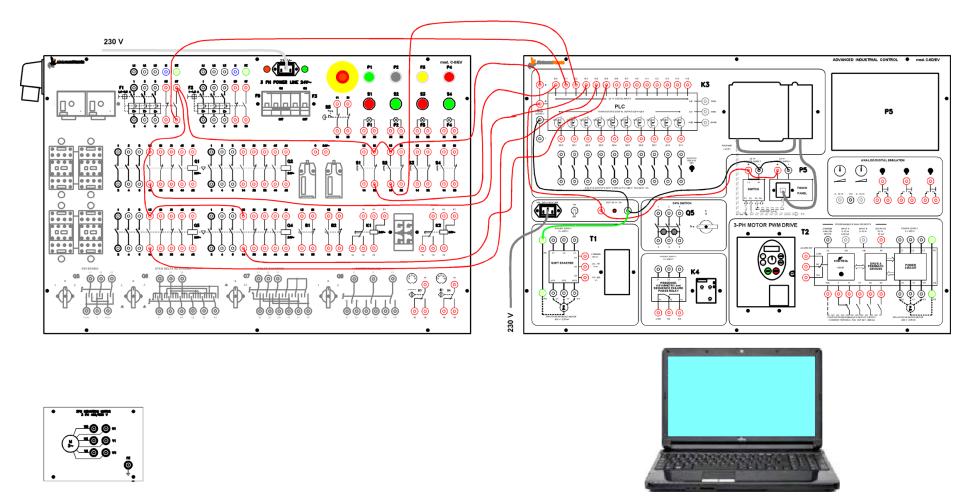


Fig III.65 Démarrage étoile-triangle

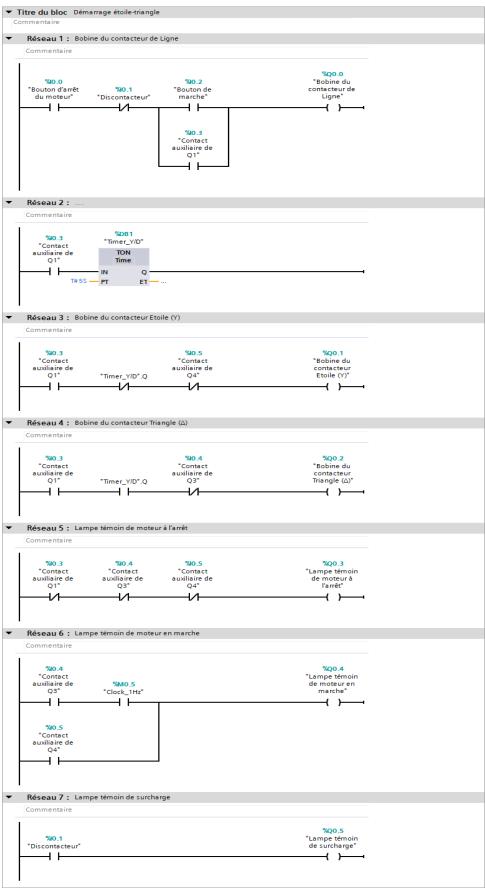


Fig III.66 Démarrage étoile-triangle (ladder)

III.3.2.4 Démarrage par résistance statoriques contrôlé par API et par interface IHM

Objectif

Assembler une installation électrique pourvue des circuits de puissance, de commande et de signalisation, avec API et IHM se référant au démarrage d'un Moteur Asynchrone Triphasé (MAT), par des résistances branchées en série au stator. Opérations à faire :

Câbler l'installation électrique du circuit de puissance,

Câbler le circuit de commande et les lampes témoins de signalisation contrôlées par l'API (entrées et sorties de l'API),

Écrire le programme et le transférer dans l'API et dans l'IHM.

> Composants nécessaires

- 1 Panneau mod. C-IID/EV.
- 1 Panneau mod. C-IIC/EV pour les dispositifs de commande et de protection
- 1 Bloc d'alimentation monophasé fixe de 220-230 Vca pour le circuit de commande
- 1 Bloc d'alimentation triphasé fixe de 380-400 Vca pour le circuit de puissance
- 1 Jeu de câbles pourvus de fiches de sécurité avec diamètre de 4 mm
- 1 Moteur asynchrone triphasé à cage de 0,3-1 kW mod. M-4/EV ou P-4/EV, si disponible
- 1 Rhéostat triphasé 3 x 50 Ω 3 x 500 W (déplacer le curseur au centre pour obtenir des secteurs ohmiques triphasés presqu'égaux), si disponible.

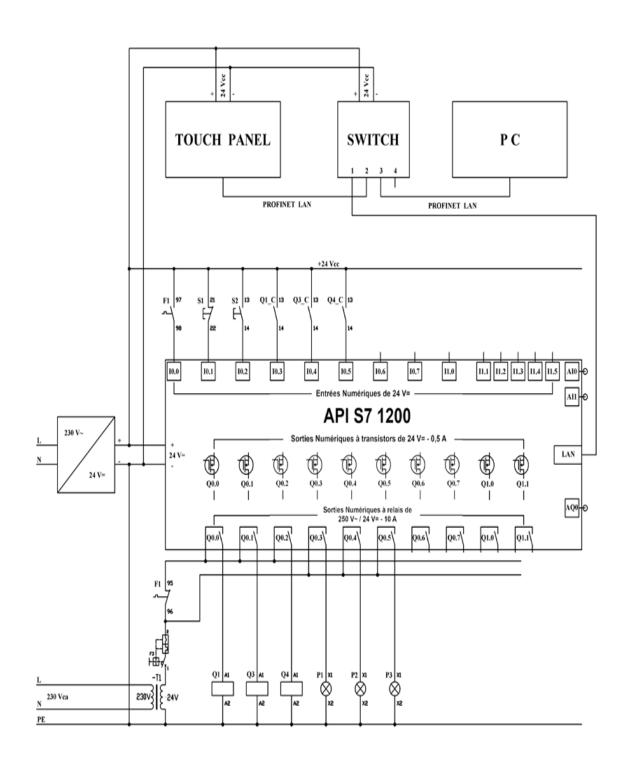


Fig III.67 Démarrage par résistance statoriques

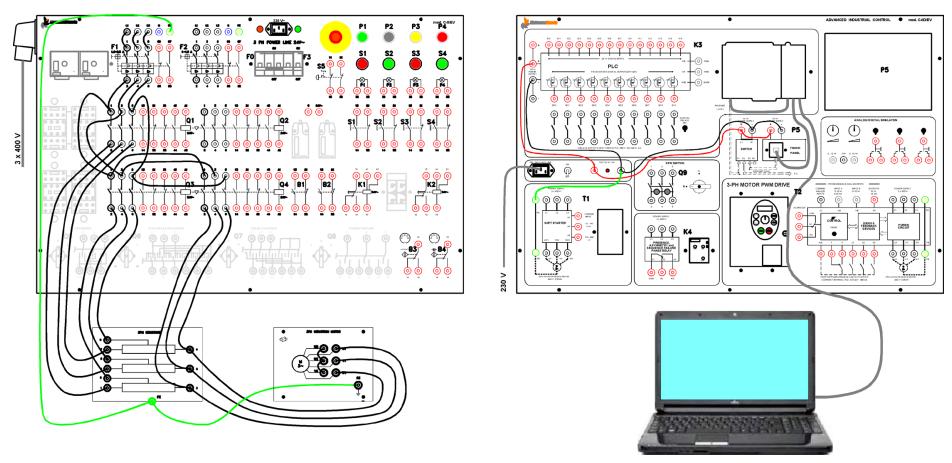


Fig III.68 Démarrage par résistance statoriques

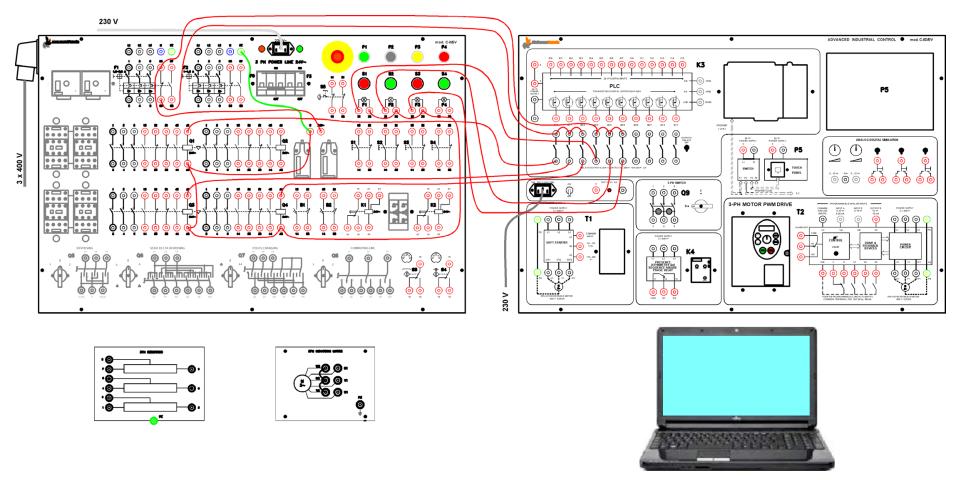


Fig III.69 Démarrage par résistance statoriques

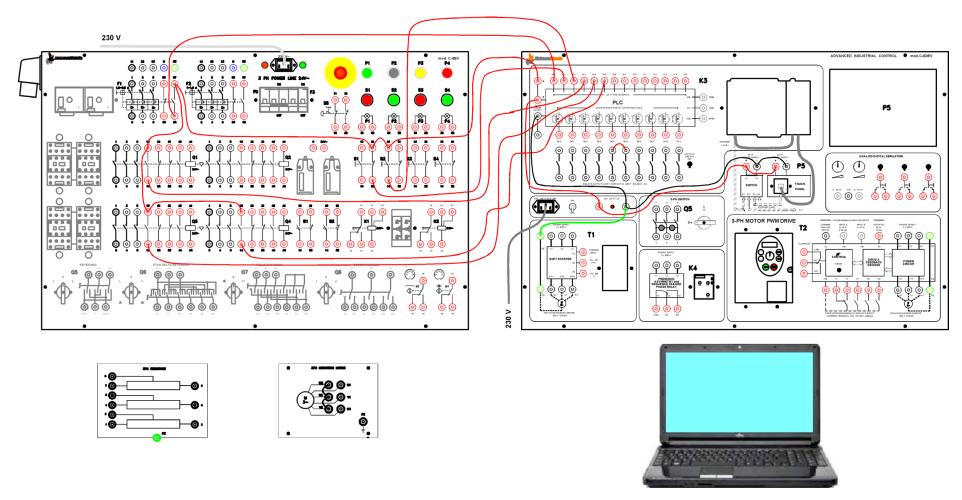
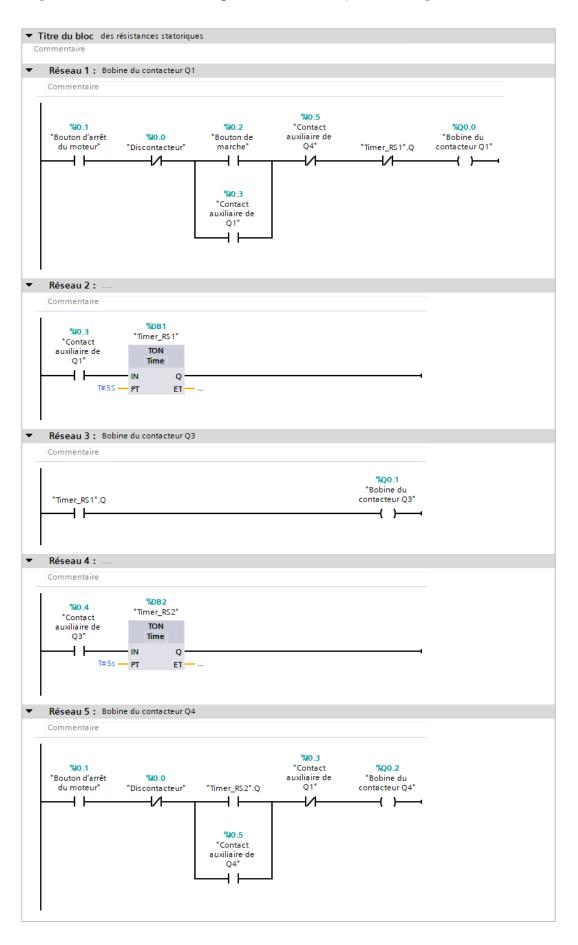



Fig III.70 Démarrage par résistance statoriques

Chapitre III Mode des démarrages d'un moteur asynchrone triphasé

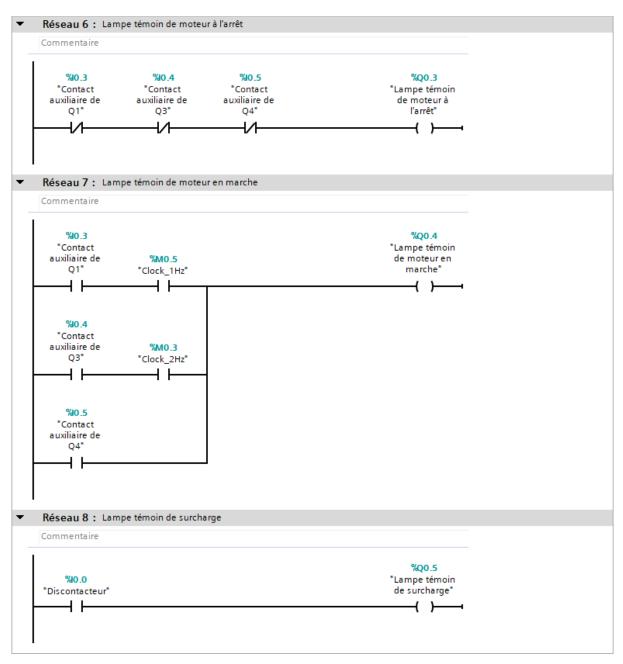


Fig III.71 Démarrage par résistance statoriques (ladder)

III.3.2.5 Démarrage par résistances rotoriques contrôlée par API et par interface IHM

➢ Objectif

Assembler une installation électrique pourvue des circuits de puissance, de commande et de signalisation se référant au démarrage d'un moteur asynchrone triphasé à rotor bobiné. L'automation est réalisée par un API et par l'IHM qui contrôle l'exclusion de deux groupes de résistances.

Opérations à faire :

Câbler l'installation électrique du circuit de puissance,

Câbler le circuit de commande et les lampes témoins de signalisation contrôlées par l'API (entrées et sorties de l'API),

Écrire le programme et le transférer dans l'API et dans l'IHM.

> Composants nécessaires

- 1 Panneau mod. C-IID/EV.
- 1 Panneau mod. C-IIC/EV pour les dispositifs de commande et de protection
- 1 Bloc d'alimentation monophasé fixe de 220-230 Vca pour le circuit de commande
- 1 Bloc d'alimentation triphasé fixe de 380-400 Vca pour le circuit de puissance
- 1 Jeu de câbles pourvus de fiches de sécurité avec diamètre de 4 mm
- 1 Moteur asynchrone triphasé à cage mod. M-5/EV ou P-5/EV, si disponible
- 1 Rhéostat triphasé 3 x 50 Ω 3 x 500 W (déplacer le curseur au centre pour obtenir des secteurs ohmiques triphasés presqu'égaux), si disponible.

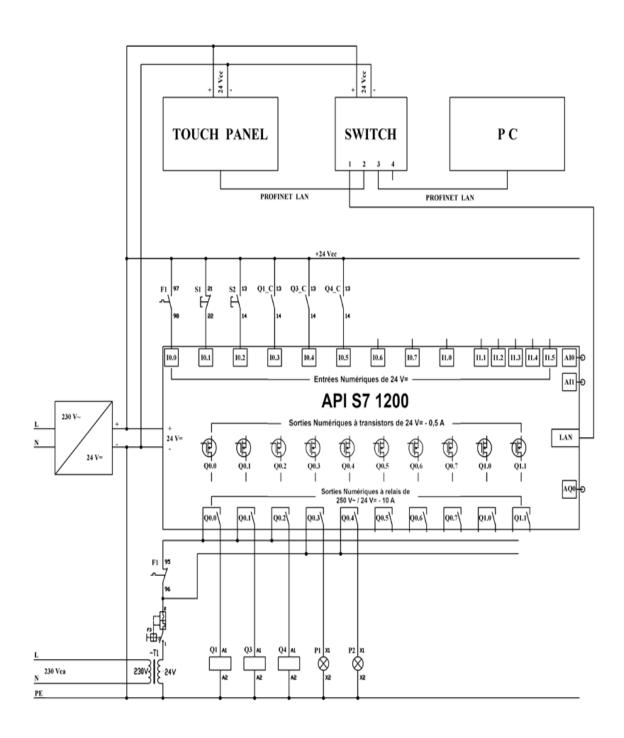


Fig III.72 Démarrage par résistances rotoriques

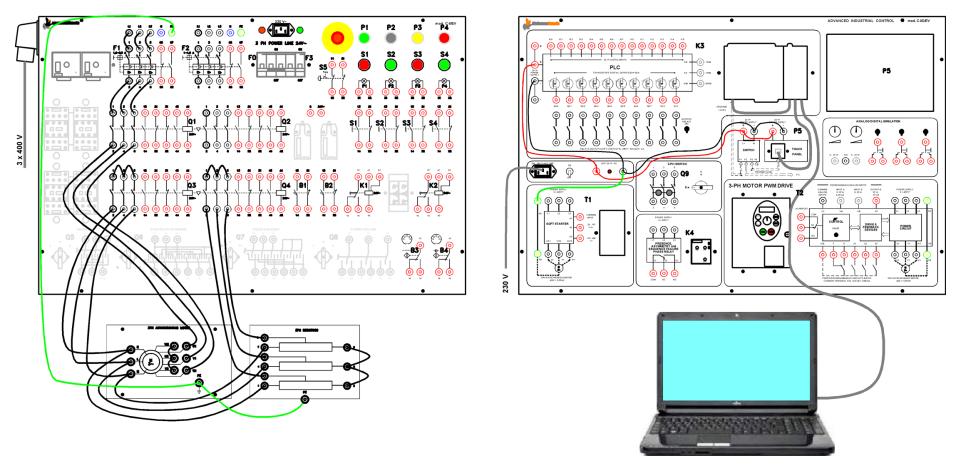


Fig III.73 Démarrage par résistances rotoriques

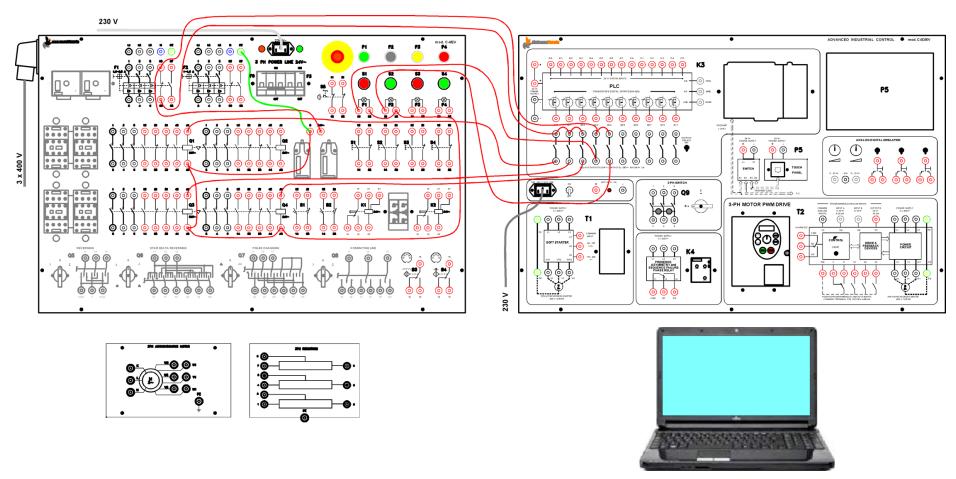


Fig III.74 Démarrage par résistances rotoriques

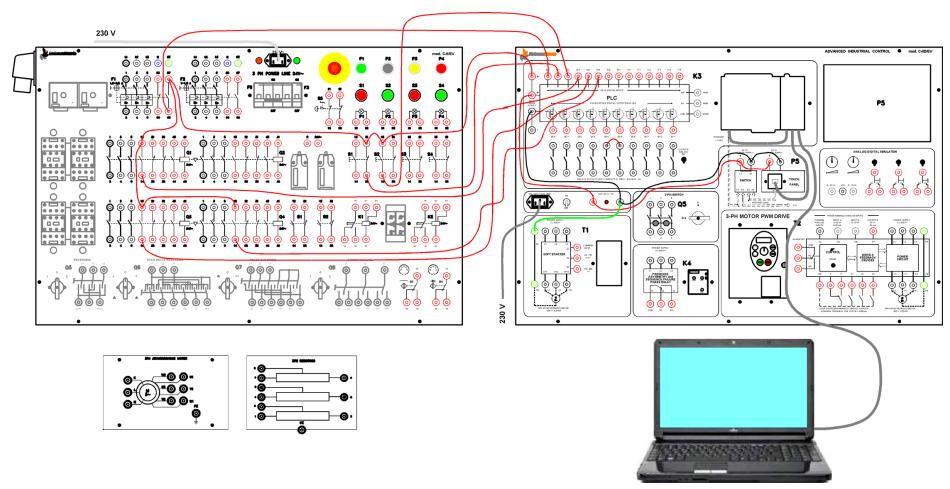
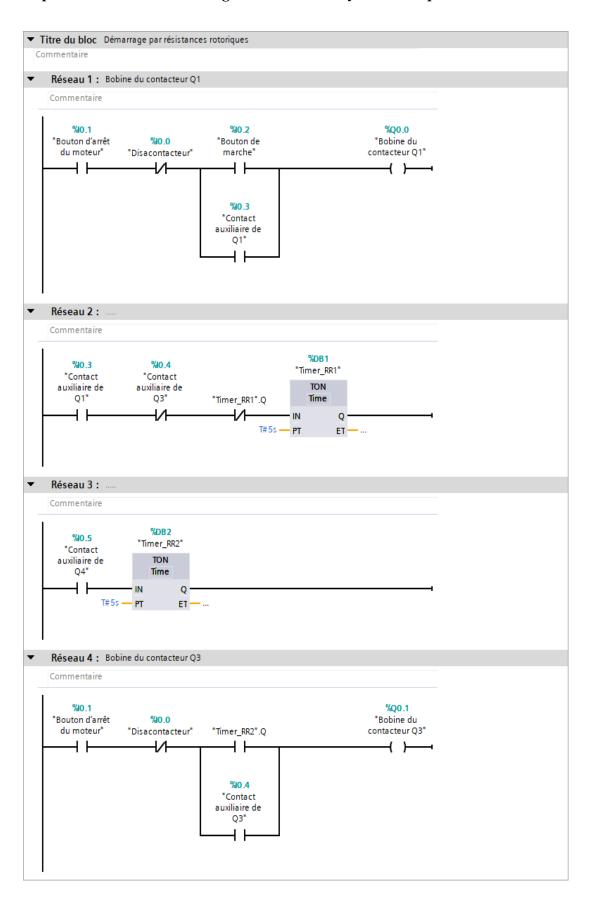



Fig III.75 Démarrage par résistances rotoriques

Chapitre III Mode des démarrages d'un moteur asynchrone triphasé

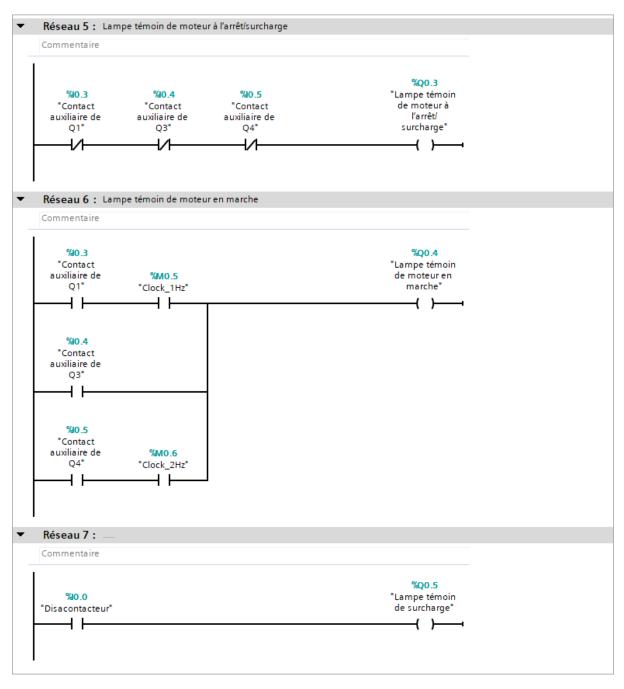


Fig III.76 Démarrage par résistances rotoriques (ladder)

III.5 Conclusion

Dans ce chapitre nous avons élaboré une étude de simulation à l'aide du logiciel TIA Portal V16 et nous sommes arrivés à mettre en évidence l'intérêt de l'utilisation des automates programmables industriels (API) pour expliquer le phénomène de démarrage des moteurs asynchrones triphasés.

Chapitre IV

Automatisation des phases de traitement des eaux usées

IV.1 Introduction

Afin d'automatiser le système de traitement des rejets industriels, il est primordial de connaître le détail du cycle de fonctionnement de chaque phase qui compose notre système. Il décrit en plusieurs étapes le fonctionnement de la phase pour pouvoir en découler le Grafcet. C'est ce Grafcet qui nous permettra de programmer le système dans le langage de programmation voulu et le commander, pour notre cas, c'est le langage Ladder.

IV.2 Le principe de fonctionnement de l'étape 1

- Cette 1ère étape de traitement consiste à débarrasser les eaux usées des polluants solides les plus grossiers dont on voit le dégrillage et tamisage, le dessablage et le dégraissage.
- Une fois que les eaux brutes venant des industries sont arrivées dans le tuyau de station ; elles seront stockées dans un réservoir, et à un niveau précis, il y a un capteur « CDB » qui détectera leurs présences, c'est à partir de cela que le voyant vert est allumé « VVA » qui impliquera la marche de la pompe à vis d'Archimède « CA » et l'indication du débit d'eaux arrivées par le capteur « C1 ».
- Pendant le dégrillage, il y a le stockage des gros déchets à un instant donné grâce au temporisateur « t1 », c'est après que l'électrovanne 1 est fermée « V1- » et le 1er clapet est ouvert à l'aide d'un vérin VA vérin pneumatique simple tige à double effet afin de remplir la cuve1 « VA+ » de ces éléments.
- La détection par le capteur « C2 » conduira à la fermeture du 1er clapet « VA- », et l'ouverture de l'électrovanne 1 « V1+ » est déclenchée grâce au capteur « C3 ».
- Dans le dessablage, on utilise un temporisateur « t2 » et une fois par heure le 2e clapet va s'ouvrir à l'aide d'un vérin VB pour remplir la cuve2 « VB+ » des sables et des graviers, l'électrovanne2 est fermée « V2- ».
- La détection par le capteur « c4 » conduira à la fermeture du 2e clapet « VB- », l'ouverture de l'électrovanne 2 « V2+ » et la marche du système de pompage afin de remonter les huiles, graisses dans la surface, à l'aide d'un insufflateur d'air. Arrêt de la pompe à vis « CD » et le voyant lumineux vert sera éteint « VVE » si le capteur ne détecte plus la présence des eaux brutes « CDB ».

IV.2.1 Grafcet niveau 1 et 2

Niveau 1 : Phase d'automatisation du manipulateur

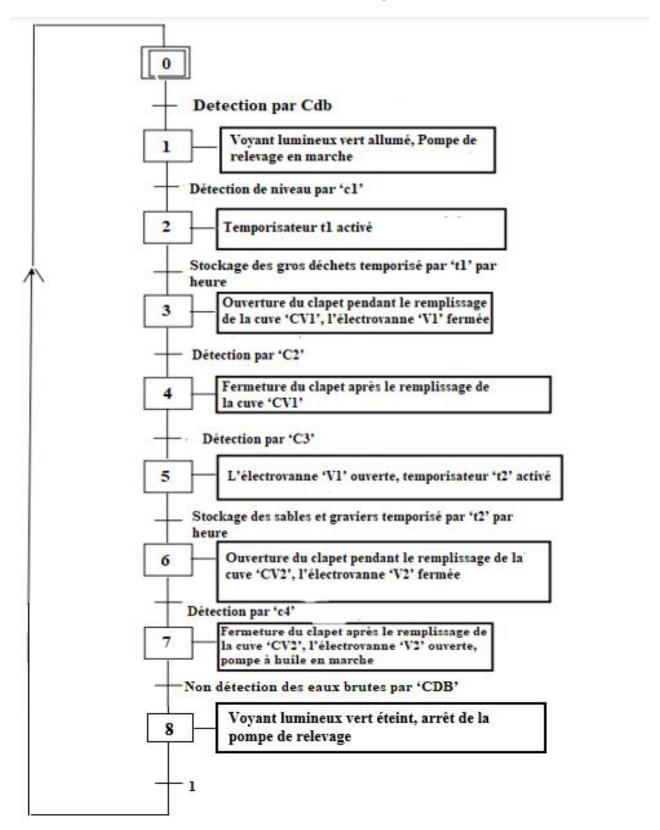


Fig IV.1 Grafcet Niveau 1

Niveau 2: Phase d'automatisation de la commande

Les choix technologiques:

Tableau IV.1: Choix technologiques des actionneurs (1ère Etape)

ACTIONS	REPERES	ACTIONNEURS
Arrivée des eaux brutes, allumage du	• VVA	Voyant lumineux vert
voyant vert		
 Pompe à vis d'Archimède en état de 	• CA	Pompe à vis d'Archimède
marche		
Ouverture du 1 ^{er} clapet à l'aide d'un	• VA+	Vérin simple tige à double effet
vérin		
Fermeture de l'électrovanne 1 durant le	• V1-	Electrovanne
remplissage de la cuve CV1	. 374	
Fermeture du 1 ^{er} clapet à l'aide d'un vérin	• VA-	 Vérin simple tige à double effet
Ouverture de l'électrovanne 1 après le	• V1+	Electrovanne
remplissage de la cuve CV1	V1.	Licetovanie
Ouverture du 2 ^e clapet à l'aide d'un vérin	 VB+ 	Vérin simple tige à double effet
,		
Fermeture de l'électrovanne 2 durant le	• V2-	Electrovanne
remplissage de la cuve CV2		
 Fermeture du 2^e clapet à l'aide d'un 	 VB- 	Vérin simple tige à double effet
vérin		
 Ouverture de l'électrovanne 2 après le 	• V2+	Electrovanne
remplissage de la cuve CV2		
 Huile pompée dans la cuve CV3 	• PO1	Pompe à huile
Absence des eaux brutes, voyant vert	 VVE 	Voyant lumineux vert
éteint		
Arrêt de la pompe de relevage	• CD	Pompe à vis d'Archimède

Tableau IV.2: Choix technologiques des capteurs (1ère Etape

INFORMATIONS	REPERES	CAPTEURS
 Détection des eaux brutes arrivées 	• c1	Capteur de niveau
 Indication de débit 	• Cdb	Débitmètre
 Gros déchets stockés à un instant précis, sortie de la tige du vérin poussoir 1^{er} clapet 	• t1	Temporisateur
 Rentrée de la tige du vérin poussoir 1^{er} clapet 	• c2	Capteur de proximité
 Ouverture de l'électrovanne V2 	• c3	Capteur de proximité
 Sable stocké par heure, sortie de la tige du vérin poussoir 2^e clapet 	• t2	Temporisateur
 Rentrée de la tige du vérin poussoir 2^e clapet 	• c4	Capteur de proximité



Fig IV.2 Schéma à Grafcet

IV.2.2 Circuit de puissance de la 1ère étape

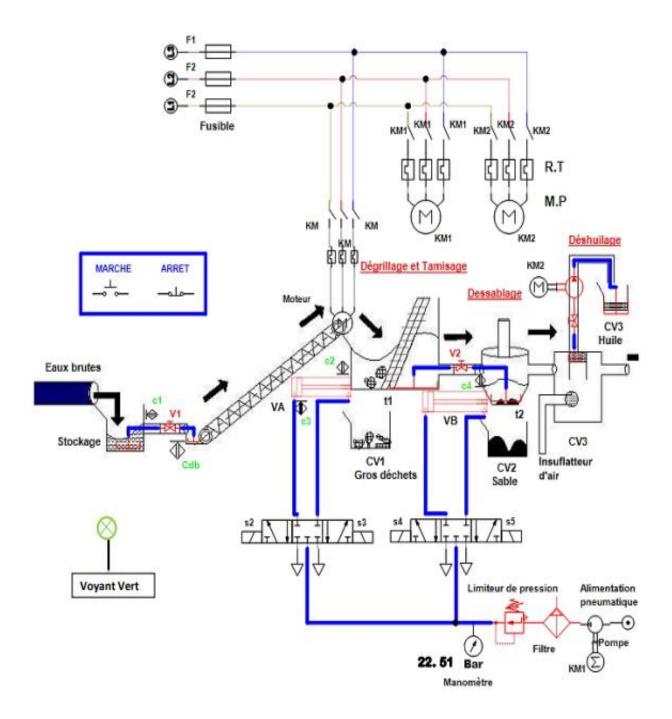


Figure IV.3 : Circuit de puissance de la 1ère étape

IV.2.3 Circuit de commande de la 1ère étape

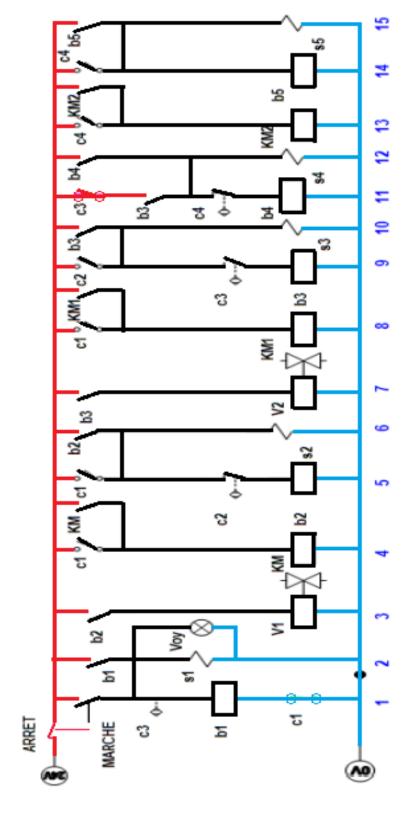


Figure IV.4 : Circuit de Commande de la 1ère étape

March 1-1101 1-1001 ,036, INIT INC OUTO Arret IN1 OUT1 Cl 107 ING. OUTS 1 } CDB IN3 OUT3 IN4 100.1 "CI" \$28100X6.0 1003 OUT4 TITQ IN5 QUTS: 12 INS OUTS 12 INT OUTT 100.2 54 INE OUTS (1) 16 IN9 OUTS **IN10** 1003 903 1003 OUT10 'n. "(3" 'VI" IN11 OUT11 (5) IN12 OUT12 IN13 OUT13 IN14 OUT14 V IN15 OUT15 TON 103 1N16 OUT16 "(3" **0**117 OUT17 EI-100 OUT18 IN18 OUT19 **WEILDENS D** 5004 IN19 100 77'0 18" (N20 OUT20 OUT21 IN21 OUT 22 IN22 304 100.5 100 W OUT23 IN23 OUT24 **INC4** OUT25 IN25 \$30.5 OUT26 IN26 'WE' ,08, OUT27 IN27 **OUTS** INCO 1007 QUT29 IN29 C) **OUT30** IN30 **OUT31** IN31 COM CON END

IV.2.4 Langage programmé: LADDER

Figure IV.5 : Langage programmé de la 1ère étape

IV.3 Le principe de fonctionnement de l'étape 2

- Cette 2è étape est la combinaison du traitement physico-chimique, biologique et de la décantation secondaire ou clarificateur avant le déversement vers le milieu naturel, elle va se dérouler comme suit :
- Apres ces différentes phases de prétraitement, les eaux usées vont subir en premier lieu une décantation primaire, une fois qu'elles atteignent le niveau nécessaire sur le capteur « Cn1 », ça va déclencher la marche des systèmes de pompage « M1 » et « M2 » afin d'enlever les matières légères qui flottent et les matières solides qui décantent vers la cuve « CVb » (extraction des boues).
- Un capteur « CpH » mesure si la solution a un pH compris entre 6,5 et 8,5 pour avoir un développement normal des organismes aquatiques, dans le cas contraire, injection d'un autre élément additif ; un autre capteur « Ctp » mesure la température des eaux parce qu'elle doit être comprise entre 20°C et 35°C pour éviter l'appauvrissement de la diversité des espèces. Dans l'inverse des cas, on utilisera un refroidisseur ou un chauffage, ces deux conditions vont conduire ensuite à l'ouverture de l'électrovanne 1 « V1o » quand elles sont franchises, des voyants lumineux jaune et rouge seront allumés, « VJA » et « VRA ».
- En second lieu, une fois que les eaux arrivent dans le niveau précis détecté par« Cn2 », durant le traitement biologique, le moteur « Mbio » du biodisque va être en marche, l'électrovanne 2 va s'ouvrir « V2o » tandis que l'électrovanne 1 se fermera « V1f ».
- Pendant la décantation secondaire, dès que le capteur de niveau « Cn3 » détecte la présence des eaux usées dans le réservoir, le moteur du racloir « Mracl » marchera pour enlever les dernières matières flottantes restantes, l'électrovanne 2 se fermera « V2f » et les particules solides (les flocs) après le traitement biologique vont être enlevé « M3 » et rediriger vers la cuve « CVb ».
- Finalement, quand les boues attigeront le niveau maximal dans la cuve « CVb » à l'aide d'un capteur « Cn4 », elles vont être déplacées par un vérin poussoir « Vpous » (Vérin pneumatique simple tige à double effet) sur un convoyeur à bande « Mconv » avant d'être transportées sur un camion transporteur.

IV.3.1 Grafcet niveau 1 et 2

Niveau 1 : Phase d'automatisation du manipulateur

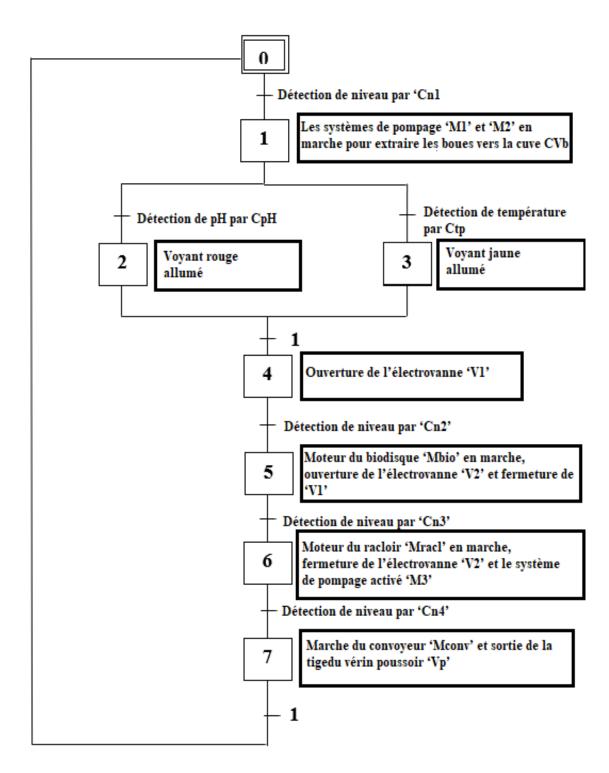


Fig IV.6 Grafcet Niveau 1

Niveau 2: Phase d'automatisation de la commande

Les choix technologiques :

ACTIONS	REPERES	ACTIONNEURS
Les 2 systèmes de pompage en marche	• M1 et M2	 Motopompe
 Allumage des 2 voyants rouge et jaune 	 VRA et VJA 	 Voyants lumineux
		rouge et jaune
 Ouverture de l'électrovanne 1 	• V1+	 Electrovanne
Moteur du biodisque en marche	• Mbio	• Moteur
Ouverture de l'électrovanne 2	• V2+	Electrovanne
Fermeture de l'électrovanne 1	• V1-	Electrovanne
Moteur du racloir en marche	• Mracl	• Moteur
Fermeture de l'électrovanne 2	• V2-	Electrovanne
Système de pompage activé	• M3	 Motopompe
Convoyeur en état de marche	• Mconv	Convoyeur à bande
Déplacement de la cuve CVb vers le	• Vp1	Vérin pneumatique
convoyeur	_	simple tige à double effet

Tableau IV.3: Choix technologiques des actionneurs (2ème Etape)

INFORMATIONS	REPERES	CAPTEURS
 Détection de niveau des eaux usées 	• Cn1	Capteur de niveau
Indication de pH	• CpH	Capteur de pH
 Indication de température 	• Ctp	 Capteur de T°
 Détection de niveau 	• Cn2	Capteur de niveau
 Détection de niveau 	• Cn3	Capteur de niveau
Sortie et rentrée de la tige du vérin	• Cn4	Capteur de proximité
poussoir 'Vp'		

Tableau IV.4: Choix technologiques des capteurs (2ème Etape)

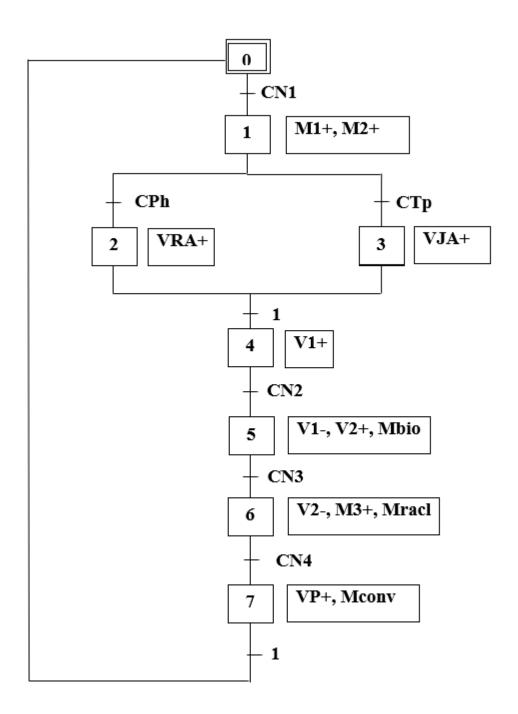


Fig IV.7 Schéma à Grafcet

IV.3.2 Circuit de puissance de la 2ème étape

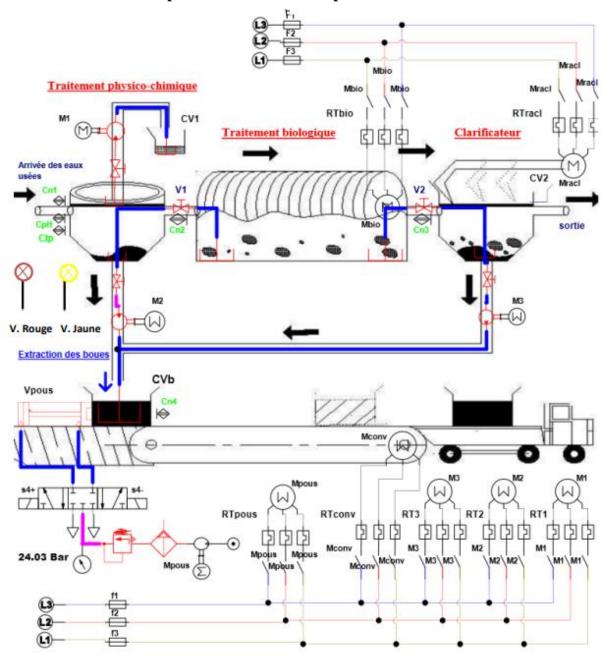


Figure IV.8 : Circuit de puissance de la 2ème étape

IV.3.3 Circuit de commande de la 2ème étape

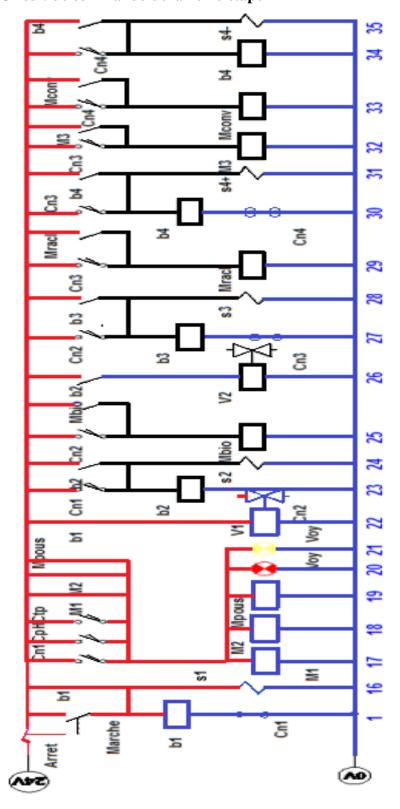


Figure IV.9 : Circuit de Commande de la 2ème étape

IV.3.4 Langage programmé: LADDER

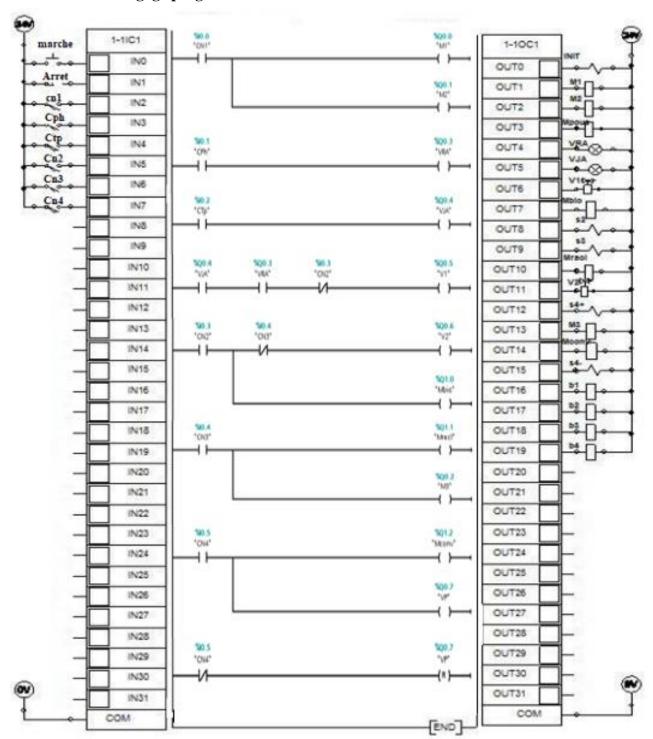


Figure IV.10 : Langage programmé de la 2ème étape

Conclusion générale

L'automatisation d'une station de relevage présente de nombreux avantages, elle permet une gestion plus efficace et économique des eaux usées, en réduisant les conditions de fonctionnement, améliore le degré de fiabilité. De plus, elle offre une meilleure sécurité pour les opérateurs et réduit les risques d'erreurs humaines. Cependant, il est important de prendre en compte les couts initiaux élevés liés à l'installation d'un système automatisé.

Le travail mené dans ce mémoire a été porté sur l'objectif de mettre en place un système qui permettrait de contrôler et de gérer automatiquement les opérations de la station de pompage, sans intervention humaine.

Dans ce premier chapitre nous avons commencé par présenter la station de relevage et ça principes de fonctionnement des pompes. Les paramètres prépondérants pour le choix de site de relevage et les différents procédés d'épuration.

Tout au long de deuxième Chapitre, après avoir présenté les différents appareils et organes d'installation du système, on a pu dimensionner les différentes modes de démarrage permettent de réduire les courants d'appel élevés qui peuvent endommager le moteur et les équipements électriques associés. Les différents modes de démarrage incluent le démarrage direct, le démarrage étoile-triangle...etc., qui sont utilisés en fonction des exigences de la charge et des caractéristiques du moteur.

Le quatrième chapitre est consacré au travail d'automatisme et à la réalisation virtuel sur une plateforme du logicielle TIA PORTAL pour mieux tester le programme et connaître tous les problèmes attachés à la réalisation.

L'objectif de ce travail est de voir l'intérêt de passage de la logique câblé à la logique programmé. Nous nous sommes préoccupés plus particulièrement du cas de démarrage des moteurs asynchrones.

Notre travail peut être étendu à l'étude de plusieurs applications.

Comme perspectives à notre travail, on peut envisager l'emploi d'autre langage de programmation des API

Bibliographie et Webographie

- [1]. Dimensionnement d'une station de relevage et conduite de refoulement vers la station de Saida. Thèse master. Centre Universitaire Moulay Taher -Saida, (www.pmb-int.cuniv-saida.dz) consulter Mai 2016.
- [2]. Alain GONZAGA., LES AUTOMATES PROGRAMMABLES INDUSTRIELS (7/11/2004)
- [3]. Ir. H. LECOCQ., 2005. LES AUTOMATES PROGRAMMABLES Caractéristiques et méthodologie de programmation- Tome 1.
- [4]. Etude de l'automatisation et de la supervision d'un procédé de lavage de filtres Niagra à CEVITAL TIA PORTAL V12- Thèse master. Université Abderrahmane MIRA de Bejaia (www.univ-bejaia.dz) consulter 2017.
- [5]. Dr. Mahdi, D. Cours: Télégestion du système d'AEP (Hydrauliques Urbaine).
- [6]. Automatisation d'une station de lavage : étude, programmation et simulation par Step 7. Thèse master. Université Dr. Tahar Moulay de Saida, (www.univ-saida.dz) consulter 2016.
- [7]. AUTOMGEN8 Technical Characteristics, (www.irai.com).
- [8]. Hu Jean-Louis., Les Automates Programmables (18/12/2002).
- [9]. Les machines élévatoires : « Pompes à Vis d'Archimède ». Archives de documents de la FAO produit par le Département du développement durable.
- [10]. Guide technique : « Installations de pompage d'eau ». SNECOREP : Syndicat National des Entrepreneurs, Concepteurs et Réalisateurs de stations de Pompage, les professionnels du pompage
- [11]. « Programmation des Automates Siemens S7 300 S7 400 ». Alain MALVOISIN
- [12]. « Etude de l'automatisation du processus de production d'éthanol à une échelle industrielle ». Type de mémoire de fin d'études en vue de l'obtention du diplôme d'Ingénieur à l'ESPA. Dans la mention Génie Mécanique et Industriel.
- [13]. « Conception d'un Convoyeur à Bande ». Ministère de l'enseignement Supérieur et de la Recherche Scientifique. Conception et Fabrication Assistée par Ordinateur.
- [14]. « Dossier Distributeurs à voies multiples ». FESTO Festo Belgium SA
- [15]. « Boues de station d'épuration » : Techniques de traitement, valorisation et élimination. AMORCE
- [16]. « Schématisation des Distributeurs Pneumatiques ». Le guide des Automatismes.
- [17]. «Stations d'épuration: dispositions constructives pour améliorer leur fonctionnement et faciliter leur exploitation», Document technique fndae n°22; Ministère de l'agriculture, de l'alimentation, de la pêche et des affaires rurales, CEMAGREF Editions, 2002. J.Pronost, R.Pronost, L. Delpat, J.Malrieu, JM Berland,
- [18]. http://www.eau.public.lu/
- [19]. http://www.saskatoon.ca/org/water_treatment/wastewater_treatment/w_process.asp
- [20]. http://www.cbc.ca/manitoba/features/lakewinnipeg/wastewater.html
- [21]. Mémoire du licence (PFC) « Commande d'un moteur asynchrone triphasé par API et par HMI pour des séquences avant arrière et des vitesse différentes »

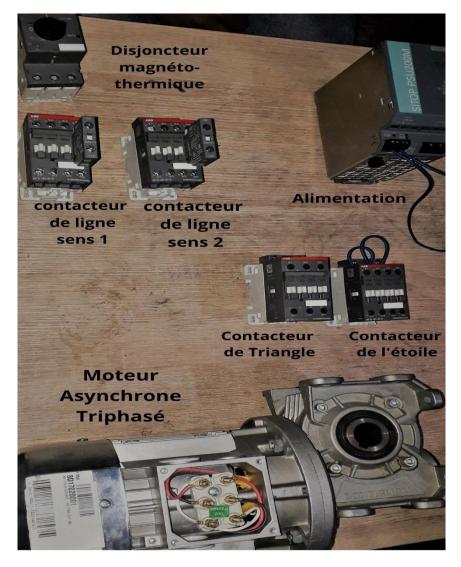
Annexe:01

Interrupteur différentiel 5SM3645-0	
Nombre de pôles	4
Tension d'alimentation	400V/50HZ
Courant de défaut	300 mA
Fonction de commutation	Non
Tenue au courant court-circuit	10 kA
Type de courant	AC

Contacteur LC1D4011		
Nombre de pôles 3		
Voltage	600v	
Courant	110/120V AC	
Phase	3	
Ampérage	60	
Туре	LCID	

Détecteur de niveau	
Puissance maximale	50W
Tension maximale supportée	250v DC
Courant MAX (commutation)	0.5A
Courant maximale supportée	1.0A
Tension de coupure max	100V
Température	-20 à +80°c

Pompes		
Туре	ABS	
Débit maximale	8640 m3/h	
Hauteur maximale	110m	
Plage moteur	50HZ, 1.3 - 350kw 60HZ, 2 - 400kw	


Disjoncteur magnétothermique	
Туре	MS116-16
Démarreur de moteur manuel	1016A
Courant d'emploie	16A
Coupure en court-circuit	16KA à 400vac

Disjoncteur magnétothermique		
Nombre de pôles	3	
Voltage	690v	
Courant	110/120V AC	
Phase	3	
Moteur power	25 kW à 400/415 V AC 50/60 Hz AC-3	
Туре	HDP17Z	

Relais temporisé TELEMECANIQUE		
Domaine temps	0,1s-100h	
Voltage	24-240V AC/DC	
Puissance de coupure	8 A	
Dimensions de montage	18x90 mm	
Fonction	1CO	
Raccord	à vis	

