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Abstract 

The internet has become an inseparable part of human life, and the number of devices 

connected to the internet is increasing sharply. In particular, Internet of Things (IoT) 

devices have become a part of everyday human life. However, some challenges are 

increasing, and their solutions are not well defined. More and more challenges related 

to technology security concerning the IoT are arising. Many methods have been 

developed to secure IoT networks, but many more can still be developed. One proposed 

way to improve IoT security is to use deep learning. This research discusses several  deep-

learning strategies, as well as standard datasets for improving the security performance 

of the IoT. We developed an algorithm for detecting denial-of-service (DoS) attacks 

using a deep-learning algorithm. This research used the Python programming language 

with packages such as scikit-learn, TensorFlow, and Keras. We found that a deep-

learning model could increase accuracy so that the mitigation of attacks that occur on 

an IoT network is as effective as possible. 

Keywords: deep learning; Internet of Things; distributed denial-of-service attack; 

intrusion detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Résumé 

Internet est devenu un élément indissociable de la vie humaine et le nombre d’appareils 

connectés à Internet augmente fortement. En particulier, les appareils Internet des 

objets (IoT) font désormais partie de la vie humaine quotidienne. Cependant, certains 

défis se multiplient et leurs solutions ne sont pas bien définies. De plus en plus de défis 

liés à la sécurité technologique concernant l’IoT apparaissent. De nombreuses méthodes 

ont été développées pour sécuriser les réseaux IoT, mais bien d’autres peuvent encore 

être développées. L’un des moyens proposés pour améliorer la sécurité de l’IoT consiste 

à utiliser l’apprentissage automatique. Cette recherche aborde plusieurs stratégies 

d'apprentissage profond, ainsi que des ensembles de données standard pour améliorer 

les performances de sécurité de l'IoT. Nous avons développé un algorithme de détection 

des attaques par déni de service (DoS) à l'aide d'un algorithme d'apprentissage en 

profondeur. Cette recherche a utilisé le langage de programmation Python avec des 

packages tels que scikit-learn, TensorFlow. Nous avons constaté qu'un modèle 

d'apprentissage en profondeur pourrait accroître la précision afin que l'atténuation des 

attaques qui se produisent sur un réseau IoT soit aussi efficace que possible. 

Mots-clés : l'apprentissage en profondeur ; Internet des objets ; attaque par déni de 

service distribué ; détection d'intrusion. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 ملخص

وجه   على  حاد.  بشكل  نت  بالإنتر المتصلة  الأجهزة  عدد  ايد  ز ويتر الإنسان،  حياة  من  يتجزأ  لا  جزءًا  نت  الإنتر أصبح 

نت الأشياء ية اليومية. ومع ذلك، فإن بعض التحديات   (IoT) الخصوص، أصبحت أجهزة إنتر جزءًا من الحياة البشر

ايد، ولم يتم تحديد حلولها بشكل جيد. تظهر المزيد والمزيد من التحديات المتعلقة بأمن التكنولوجيا  ز ي التر
ز
آخذة ف

نت الأشياء، ولكن   ز شبكات إنتر نت الأشياء. لقد تم تطوير العديد من الطرق لتأمي  لا يزال من الممكن  فيما يتعلق بإنتر

نت الأشياء هي استخدام التعلم   ز أمان إنتر حة لتحسي  . تطوير العديد من الطرق الأخرى. إحدى الطرق المقتر الآلي

ز   لتحسي  القياسية  البيانات  إل مجموعات  بالإضافة  العميق،  التعلم  اتيجيات  استر العديد من  البحث  يناقش هذا 

الخدمة  للكشف عن هجمات رفض  بتطوير خوارزمية  قمنا  لقد  نت الأشياء.  ي لإنتر
الأمنز باستخدام   (DoS) الأداء 

مجة بايثون مع حزم مثل  .TensorFlowو scikit-learn خوارزمية التعلم العميق. استخدم هذا البحث لغة التر

ي تحدث على 
لقد وجدنا أن نموذج التعلم العميق يمكن أن يزيد من الدقة بحيث يكون التخفيف من الهجمات النر

 قدر الإمكان
ً
نت الأشياء فعالا  .شبكة إنتر

نت الأشياء؛ هجوم حجب الخدمة الموزع؛ كشف التسلل  .الكلمات المفتاحية: ؛ تعلم عميق؛ انتر
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General Introduction  

 
   

1 
 

General Introduction 
Inventors have long dreamed of creating machines that think, a desire that dates 

back to ancient Greece. Mythical figures such as Pygmalion, Daedalus, and 

Hephaestus can be interpreted as legendary inventors, with their creations—

Galatea, Talos, and Pandora—representing early imaginings of artificial life. 

The concept of programmable computers spurred speculation about machine 

intelligence over a century before such devices were realized. Today, artificial 

intelligence (AI) is a thriving field with numerous practical applications and active 

research areas. Intelligent software now automates routine labor, understands 

speech and images, makes medical diagnoses, and supports scientific research. 

Initially, AI rapidly addressed and solved problems that, while intellectually 

challenging for humans, were relatively straightforward for computers due to their 

formal, mathematical nature. The real challenge for AI, however, lay in tasks that 

are easy for humans to perform intuitively but difficult to describe formally, such as 

recognizing spoken words or identifying faces in images. 

Early AI successes were often confined to formal environments, exemplified by 

IBM's Deep Blue chess-playing system. Despite these achievements, recognizing 

objects or speech in less structured settings remained difficult for computers. One 

significant challenge in AI has been capturing informal knowledge in a format 

accessible to machines. Several projects attempted to hard-code world knowledge 

into formal languages, but none achieved substantial success. 

The advent of machine learning marked a significant shift, enabling computers to 

tackle problems involving real-world knowledge and make seemingly subjective 

decisions. Simple algorithms like logistic regression and naive Bayes could 

recommend cesarean deliveries or filter spam emails, but their performance heavily 

depended on data representation. 

This dependence on representation is a pervasive phenomenon in computer science 

and daily life. For instance, searching a structured and intelligently indexed data 

collection can be exponentially faster. In machine learning, the choice of data 

representation significantly impacts algorithm performance. 

AI tasks often involve designing appropriate features for a task and providing them 

to a simple learning algorithm. For many tasks, such as detecting cars in 

photographs, identifying the right features is challenging. Representation learning 

addresses this by using machine learning to discover both the mapping from 

representation to output and the representation itself. Learned representations 

frequently outperform hand-designed ones, enabling AI systems to adapt to new 

tasks with minimal human intervention. 
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A quintessential representation learning algorithm is the autoencoder, comprising 

an encoder that converts input data into a different representation and a decoder 

that reverts it to the original format. Various autoencoders aim to achieve different 

properties. 

Deep learning addresses the central problem in representation learning by 

introducing representations defined in terms of simpler ones. It allows computers 

to construct complex concepts from simpler ones, exemplified by the feedforward 

deep network or multilayer perceptron (MLP). An MLP is a mathematical function 

mapping input values to output values through a composition of many simpler 

functions. 

Deep learning also enables computers to learn multi-step programs, with each 

representation layer acting as the state of the computer's memory after executing 

another set of parallel instructions. Deeper networks can execute more sequential 

instructions, enhancing power as later instructions can build on earlier results. 

The depth of a model can be measured by the number of sequential instructions 

required to evaluate its architecture and the depth of the graph describing concept 

relationships. This depth is crucial in deep learning, allowing systems to refine 

simpler concepts based on more complex ones. Deep learning is currently the most 

viable approach for building AI systems capable of operating in complex, real-world 

environments, representing the world as a nested hierarchy of concepts. 

The Internet of Things (IoT) phenomenon has been fueled by recent advancements 

in networking technologies and the widespread availability of various smart gadgets 

over the past decade. IoT enables physical electronic devices, such as sensors, to 

connect to the Internet, facilitating data collection and sharing among networked 

objects. Today, numerous IoT systems are deployed across various industries, 

including smart farming, industry, transportation, healthcare, and smart cities. 

Several communication protocols have been developed to enhance the security and 

reliability of data exchange among IoT devices, including the Constrained 

Application Protocol (CoAP), Advanced Message Queuing Protocol (AMQP), 

Message Queuing Telemetry Transport (MQTT), and Extensible Messaging 

Presence Protocol (XMPP). Among these, MQTT is the most popular in IoT systems 

due to its support for low-bandwidth connectivity, minimal memory requirements, 

and reduced packet loss. 

MQTT, a lightweight messaging protocol using a publisher/subscriber architecture, 

simplifies device-to-device communication. However, this communication model 

can introduce security vulnerabilities, such as denial of service, identity spoofing, 

information exposure, privilege escalation, and data tampering. 
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To address these security concerns, researchers have developed various techniques 

and methods. Intrusion Detection Systems (IDS) are among the most effective 

solutions, identifying intrusions by monitoring system activities and distinguishing 

between legitimate use and attacks. An IDS designed for IoT-based environments 

must meet strict specifications for minimal processing power, fast response times, 

and high-volume data processing, making conventional IDS potentially unsuitable 

for IoT scenarios. 

Integrating AI, particularly deep learning, with IoT can enhance the effectiveness of 

IDS in smart environments. Deep learning's ability to learn complex representations 

and adapt to new data with minimal human intervention can significantly improve 

intrusion detection accuracy and efficiency in IoT systems. This synergy between AI 

and IoT represents a promising frontier for developing robust, intelligent, and 

secure systems capable of operating in diverse and dynamic real-world 

environments. 

In this project, we will integrate deep learning algorithms with IoT networks to 

elevate the effectiveness of intrusion detection systems. We will use deep learning 

algorithms to create an intelligent system that can identify intrusions in an 

Internet of Things network using the MQTT protocol while accounting for the 

computing and storage capacities of individual IoT devices. 

Our manuscript is divided into four sections, which are categorized as follows: 

The broad introduction of this manuscript provides a conceptual overview of our 

study. 

An overview of the idea, forms, architectures, and application domains of Internet 

of Things networks is given in the first chapter. It also describes the parts that make 

up IoT networks and how they work. This chapter concludes by discussing the 

MQTT communication protocol, its main elements and architecture, potential 

assaults on the protocol, and solutions to lessen such threats. 

The state of the art for intrusion detection systems is presented in the second 

chapter. The chapter provides examples of the types, structures, and specific 

assaults that can be prevented by IDS, as well as the specifics of its framework. 

The specifics of deep learning algorithms are covered in the third chapter. This 

section lists various commonly used deep learning algorithms. 

The foundation of our experiment are presented in the last chapter. It provides a 

quick overview of the used gear and software. It also gives an explanation of the 

evaluation measures that were used for the algorithms' assessment as well as the 

dataset that was used in the experiment. 
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The recollection concludes with a broad summary that highlights the documented 

findings of this study as well as the researchers' future objectives. 
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I.1 Introduction: 

    The telegraph's ability to transfer information over long distances by means of 

a coded signal dates back to the early 19th century, and although there are earlier 

examples of networked electrical equipment, the Internet of Things actually 

emerged in the late 1960s. Around that time, a number of well-known researchers 

started looking into ways to link systems and computers. The network known as 

ARPANET, which was developed as a precursor to the Internet today by the U.S. 

Defense Department's Advanced Research Projects Agency (ARPA), is a good 

example of this effort. Businesses, governments, and consumers started looking 

into ways to link personal computers (PCs) and other technologies to each other 

in the late 1970s. By the 1980s, local area networks, or LANs, offered a popular 

and efficient means of real-time document sharing, data sharing, and other 

information exchange among a number of PCs. [1] 

When the Internet began to expand such capabilities globally in the mid-1990s, 

scientists and researchers started looking into ways that humans and robots 

could interact more effectively. The term "the Internet of Things" was first used 

in a speech by British technologist Kevin Ashton, cofounder of the Auto-ID 

Center at MIT, in 1999. Ashton started investigating radio-frequency 

identification (RFID) in 1997 as a technological framework that would enable 

physical devices to connect via microchips and wireless signals. A more reliable 

framework for gathering, storing, analyzing, and sharing data was established in a 

matter of years thanks to cellphones, cloud computing, increases in processing 

power, and enhanced software algorithms. Simultaneously, advanced sensors 

emerged that could detect motion, temperature, moisture content, wind 

direction, sound, light, pictures, vibrations, and a host of other parameters—in 

addition to having the capacity to geolocate a person or a device. Real-time 

communication with both digital and physical items is now possible because to 

these advancements. For instance, one may view the location of an object, such a 

wallet or bag, by attaching a tracking chip, like an Apple Air Tag, to it. If a digital 

device is lost or stolen, the same chip that powers it can be used to trace its 

location. Then, it became feasible to connect people and things in a nearly 

ubiquitous manner with the broad use of mobile devices like smartphones and 

tablets and the advent of ubiquitous wireless communication. Consequently, 

industrial robotics systems, linked storage tanks, and intelligent traffic networks 

became standard. [1] 

IoT development is still ongoing. These days, it can be utilized for a wide range of 

applications, such as artificial intelligence for extremely complex simulations, 

sensing systems for identifying contaminants in water sources, and agricultural 

and animal monitoring systems. For instance, it is now feasible to remotely apply 



Chapter I  The Internet of Things 

 

7 
 

the ideal amounts of water, fertilizer, and pesticides to crops as well as monitor 

the whereabouts and health of animals. [1] 

Airlines and shipping industries can optimize fleets for maximum loads and 

efficiencies by accounting for mechanical issues and weather through the use of 

highly networked systems. Real-time maps and navigation recommendations that 

redirect and route drivers based on traffic patterns are made available to drivers 

by the Internet of Things. These solutions save time and money while lowering 

traffic and pollution. [1] 

The Internet of Things (IoT) is the wide range of physical things that have 

sensors and software installed in order to collect and exchange data across a 

network and communicate with one another with minimal assistance from 

humans. The term "Internet of Things" (IoT) refers to the plethora of "smart," 

computer-like devices that are so widely used today. These "things" include 

phones, appliances, thermostats, lighting controls, irrigation systems, security 

cameras, cars, even cities and animals. These devices can communicate with each 

other or with the Internet via wireless networks. These days, transponders let 

automobiles pass through tollbooths and pay the cost electronically, smart 

speakers add things to shopping lists and turn lights on and off, and smart 

watches track activity and steps. [1] 

Complex tasks that are occasionally beyond the capacity of humans are made 

simpler and more automated via the Internet of Things. There are currently 

billions of linked devices that make up the Internet of Things. [1] 

I.2 Definition of IoT  

      IoT is a Dynamic global network infrastructure with self-configuring 

capabilities built on open and compatible communication protocols, where 

virtual and physical "things" are seamlessly integrated into the information 

network and frequently communicate user and environment-related data. These 

"things" have identities, physical characteristics, and virtual personalities. They 

also use intelligent interfaces. 

Let's take a closer look at this definition of IoT to clarify a few words: 
Dynamic and Self-Adapting: Internet of Things (IoT) devices and systems may 
be able to adjust themselves to changing environments on the fly and take 
appropriate action according to their operational parameters, the context of their 
users, or their detected surroundings. Take into consideration, for instance, a 
surveillance system that consists of several surveillance cameras. Depending on 
the time of day, the surveillance cameras can switch between standard and infra-
red night modes. When motion is detected, cameras have the ability to 
automatically convert between lower and higher resolution modes, notifying 
other surrounding cameras to follow suit. In this instance, the monitoring system 
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is adjusting to the environment and shifting circumstances, such as those that are 
dynamic.  
 Self-Configuring: Internet of Things (IoT) devices have the potential to 
configure themselves, enabling a multitude of devices to collaborate in order to 
perform a certain purpose (like weather monitoring). With little assistance from 
the user or physical labor, these devices can autonomously configure themselves 
(in relation to the Internet of Things architecture), set up networking, and 
download the most recent software updates.  
Interoperable Communication Protocols: Internet of Things (IoT) devices 
have the ability to communicate with other devices and the infrastructure by 
supporting several interoperable communication protocols. In the sections that 
follow, we go over a few of the popular communication models and protocols.  
 Unique Identity: Every Internet of Things (IoT) device is identified by a unique 
identifier, which can be an IP address or URI. Intelligent interfaces on Internet of 
Things devices could be able to communicate with users and their surroundings, 
adapting to the situation.  
Through the use of IoT device interfaces, users can remotely control, configure, 
and monitor devices as well as query and monitor their status.  
Integrated into Information Network: In order to enable communication and 
data exchange with other devices and systems, Internet of Things (IoT) devices 
are typically integrated into information networks. IoT devices have the ability to 
describe themselves (and their attributes) to other devices or user applications. 
They can also be dynamically discovered in the network, by other devices or by 
the network itself. For instance, in order for two connected nodes to interact and 
share data, a weather monitoring node can explain its monitoring capabilities to 
the other node. IoT systems become "smarter" as a result of integration into the 
information network because of the combined intelligence of the individual 
devices. working along with the infrastructure, as a result, it is possible to 
combine and evaluate data from numerous linked IoT nodes that monitor the 
weather to provide weather predictions. [2] [3] 

I.3 Things in loT  

    In the context of the Internet of Things, "things" typically refer to low-power, 

individually identifiable devices with remote sensing, actuation, and monitoring 

capabilities. Connected objects (loT) have the ability to exchange data (directly or 

indirectly) with other connected objects and applications, gather data from other 

devices and process it locally, or send it to centralized servers or cloud-based 

application back-ends for processing. They can also carry out certain tasks locally 

and other tasks within the IoT infrastructure, depending on temporal and spatial 

limitations (memory, processing capabilities, communication latencies and 

speeds, and deadlines).[2] 

IoT devices can also come in a variety of forms, such as smart watches, autos, 

industrial machinery, LED lights, and wearable sensors. Nearly every Internet of 

Things device produces data in one way or another. This data, when analyzed by 

data analytics tools, provides insightful knowledge that may be used to direct 
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additional local or distant actions. For example, sensor data collected by a 

garden's soil moisture monitoring equipment can be used to determine the best 

watering schedules. [2] 

Figure I.1: Generic block diagram of an loT Device. 

I.4 loT Protocols 

I.4.1 Ethernet 

   IEEE 802.3 is a collection of wired Ethernet standards for the link layer, these 

standards provide data rates from 10 Mb/s to 40 Gb/s and higher. The shared 

medium in Ethernet can be a coaxial cable, twisted-pair wire or an optical fiber. 

The shared medium (i.e., broadcast medium) carries the communication for all 

the devices on the network, thus data sent by one device can received by all 

devices subject to propagation conditions and transceiver capabilities. [2] 

I.4.2 Wi-Fi 

   IEEE 802.11 is a collection of wireless local area network (WLAN) 

communication standards, including extensive description of the link layer. 

These standards provide data rates from 1 Mb/s up to 6.75 Gb/s. [2] 

I.4.3 Wi-Max 

   IEEE 802.16 is a collection of wireless broadband standards, including extensive 

descriptions for the link layer (also called Wi-Max). Wi-Max standards provide 

data rates from 1.5 Mb/s to 1 Gb/s. The recent update (802. 16m) provides data 

rates of 100 Mbit/s for mobile stations and 1 Gbit/s for fixed stations. [2] 

I.4.4 LR-WPAN 

     IEEE 802,15.4 is a collection of standards for low-rate wireless personal area 

networks (LR-WPANs). These standards form the basis specifications for high 

level communication protocols such as ZigBee. LR-WPAN standards provides 

data rates from 40Kb/s to 250Kb/s. these standards provide low-cost and low-

speed communication for power constrained devices. [2] 
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I.4.5 Mobile Communication (2G/3G/4) 

     There are different generations of mobile communication standards including 

second generation (2G including GSM and CDMA), third generation (3G 

including UTMS and CDMA2000) and fourth generation (4G -LTE). IoT devices 

based on these standards can communicate over cellular networks. Data rates for 

these standards range from 9.6Kb/s (for 2G) up to 100Mb/s (for 4G). [2] 

I.4.6 IPv4 

   Internet Protocol version 4 (IPv4) is the most deployed Internet protocol that is 

used to identify the devices on a network using a hierarchical addressing scheme. 

IPv4 uses a 32-bit address scheme that allows total of 232 or 4,294,967,296 

addresses. As more and more devices got connected to the Internet, these 

addresses got exhausted in the year 2011. IPv4 has been succeeded by IPv6. The IP 

protocols establish connections on packet networks, but do not guarantee 

delivery of packets. Guaranteed delivery and data integrity are handled by the 

upper layer protocols (such as TCP). [2] [4] 

I.4.7 IPv6 

   Internet Protocol version 6 (IPv6) is the newest version of Internet protocol and 

successor to IPv4. IPv6 uses 128-bit address scheme that allows total of 2128 or 

3.4 × 1038 addresses. [2] [5]  

I.4.8 6LoWPAN 

    6LoWPAN (IPv6 over Low power Wireless Personal Area Networks) brings IP 

protocol to the low-power devices which have limited processing capability, 

6LoWPAN operates in the 2.4 GHz frequency range and provides data transfer 

rates of 250 Kb/s. [2] [6] 

I.4.9 TCP 

    Transmission Control Protocol (TCP) is the most widely used transport layer 

protocol, that is used by web browsers. TCP is a connection oriented and stateful 

protocol. While IP protocol deals with sending packets, TCP ensures reliable 

transmission of packets in-order. TCP also provides error detection capability so 

that duplicate packets can be discarded and lost packets are retransmitted. The 

flow control capability of TCP ensures that rate at which the sender sends the 

data is not too high for the receiver to process. The congestion control capability 

of TCP helps in avoiding network congestion and congestion collapse which can 

lead to degradation of network performance. [7] 

I.4.10 UDP  

    Unlike TCP, which requires carrying out an initial setup procedure, UDP is a 

connectionless protocol. UDP is useful for time-sensitive applications that have 

very small data units to exchange and do not want the overhead of connection 
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setup. UDP is a transaction oriented and stateless protocol. UDP does not 

provide guaranteed delivery, ordering of messages and duplicate elimination. 

Higher levels of protocols can ensure reliable delivery or ensuring connections 

created are reliable.[8] 

I.4.11 HTTP 

   Hypertext Transfer Protocol (HTTP) is the application layer protocol that forms 

the foundation of the World Wide Web.  The protocol follows a request-response 

model where a client sends requests to a server using the HTTP commands. 

HTTP is a stateless protocol and each HTTP request is independent of the other 

requests. [9] 

I.4.12 CoAP 

 Constrained Application Protocol (CoAP) is an application layer protocol for 

machine-to-machine (M2M) applications, meant for constrained environments 

with constrained devices and constrained networks. Like HTTP, CoAP is a web 

transfer protocol and uses a request-response model, however it runs on top of 

UDP instead of TCP. CoAP uses a client-server architecture where clients 

communicate with servers using connectionless datagrams. [10] 

I.4.13 WebSocket 

    WebSocket protocol allows full-duplex communication over a single socket 

connection for sending messages between client and server. WebSocket is based 

on TCP and allows streams of messages to be sent back and forth between the 

client and server while keeping the TCP connection open. The client can be a 

browser, a mobile application or an loT device.[11] 

I.4.14 MQTT 

    Message Queue Telemetry Transport (MQTT) is a light-weight messaging 

protocol based on the publish-subscribe model. MQTT uses a client-server 

architecture where the client (such as an loT device) connects to the server (also 

called MQTT Broker) and publishes messages to topics on the server. The broker 

forwards the messages to the clients subscribed to topics. MQTT is well suited for 

constrained environment where the devices have limited processing and memory 

resources and the network bandwidth is low.[12] 

I.4.15 XMPP 

     Extensible Messaging and Presence Protocol (XMPP) is a protocol for real time 

communication and streaming XML data between network entities. XMPP 

powers wide range of applications including messaging, presence, data 

syndication, gaming, multi-party chat and voice/video calls. XMPP allows 

sending small chunks of XML data from one network entity to another in near 

real-time. XMPP is a decentralized protocol and uses a client-server architecture, 
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XMPP supports both client-to-server and server-to-server communication paths. 

In the context of loT, XMPP allows real-time communication between loT 

devices.[13] 

I.4.16 DDS 

     Data Distribution Service (DDS) is a data-centric middleware standard for 

device-to-device or machine-to-machine communication. DDS uses a publish-

subscribe model where publisher (e.g. devices that generate data) create topics to 

which subscribers (e.g. devices that want to consume data) can subscribe. 

Publisher is an object responsible for data distribution and the subscriber is 

responsible for receiving published data. DDS provides quality-of-service (QoS) 

control and configurable reliability. [14] 

I.4.17 AMQP 

     Advanced Message Queuing Protocol (AMQP) is an open application layer 

protocol for business messaging. AMQP supports both point-to-point and 

publisher/subscriber models, routing and queuing. AMQP brokers receive 

messages from publishers (e.g. devices or applications that generate data) and 

route them over connections to consumers (applications that process data), 

Publishers publish the messages to exchanges which then distribute message 

copies to queues, Messages are either delivered by the broker to the consumers 

which have subscribed to the queues or the consumers can pull the messages 

from the queues.[2] 

Figure I.2: IoT Protocols. 



Chapter I  The Internet of Things 

 

13 
 

I.5 Logical Design of loT 

     An IoT system's logical design is an abstract depiction of its elements and 

operations that avoids delving into the finer points of implementation. We go 

over an IoT system's functional components in this part.[2] 

I.5.1 loT Functional Blocks  

   A multitude of functional blocks make up an Internet of Things system, giving 

it the ability to communicate, act, sense, identify, and management. These 

functional blocks are described as follows [2] : 

• Device: An IoT system comprises of devices that provide sensing, 

actuation, monitoring and control functions. 

• Communication: The communication block handles the communication 

for the IoT System. 

• Services: An IoT system uses various types of IoT services such as services 

for device monitoring, device control services, data publishing services 

and services for device discovery. 

• Management: Management functional block provides various functions 

to govern the loT system, 

• Security: Security functional block secures the loT system and by 

providing functions such as authentication, authorization, message and 

content integrity, and data security. 

• Application: IoT applications provide an interface that the users can use 

to control and monitor various aspects of the loT system. Applications also 

allow users to view the system status and view or analyze the processed 

data.   

Figure I.3: Functional Blocks of IoT 
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I.5.2 loT Communication Models  

• Request-Response communication model: Request-Response is a 

communication model in which the client sends requests to the server and 

the server responds to the requests.  When the server receives a request, it 

decides how to respond, fetches the data, retrieves resource 

representations, prepares the response, and then sends the response to the 

client. [2] 

Figure I.4: Request-Response communication model. 

• Publish-Subscribe communication model: Publish-Subscribe is a 

communication model that involves publishers, brokers and consumers. 

Publishers are the source of data. Publishers send the data to the topics 

which are managed by the broker. Publishers are not aware of the 

consumers. Consumers subscribe to the topics which are managed by the 

broker.  When the broker receives data for a topic from the publisher, it 

sends the data to all the subscribed consumers. [2] 

Figure I.5: Publish-Subscribe communication model. 

• Push-Pull communication model: Push-Pull is a communication model 

in which the data producers push the data to queues and the consumers 

pull the data from the queues. Producers do not need to be aware of the 

consumers. Queues help in decoupling the messaging between the 

producers and consumers. Queues also act as a buffer which helps in 
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situations when there is a mismatch between the rate at which the 

producers push data and the rate at which the consumers pull data. [2] 

Figure I.6: Push-Pull communication model. 

• Exclusive Pair communication model: Exclusive Pair is a bidirectional, 

fully duplex communication model that uses a persistent connection 

between the client and server. Once the connection is setup it remains 

open until the client sends a request to close the connection. Client and 

server can send messages to each other after connection setup. [2] 

Figure I.7: Exclusive Pair communication model. 

I.6 IoT Characteristics 

    The fundamental characteristics of the IoT are as follows [15] [16] [17]: 

I.6.1 Interconnectivity 

      With regard to the IoT, anything can be interconnected with the global 

information and communication infrastructure. 
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I.6.2 Things-related services 

    Within the limitations of things, the Internet of Things can offer thing-related 

services like semantic consistency between actual objects and the virtual objects 

they are connected with, as well as privacy protection. Both the physical and 

information worlds' technologies will evolve to give thing-related services within 

the limitations of things. 

I.6.3 Heterogeneity 

   Due to their varied hardware platforms and networks, IoT devices are 

heterogeneous. They can communicate via various networks with other gadgets 

or service platforms. 

I.6.4 Dynamic changes 

    Device states fluctuate dynamically, such as whether they are asleep or waking 

up, connected or not, and in what context they are used, such as location and 

speed. Furthermore, the quantity of devices may vary on a dynamic basis. 

I.6.5 Enormous scale 

    At least an order of magnitude more devices than those currently connected to 

the Internet will need to be controlled and communicate with one another. The 

handling of the produced data and its interpretation for use in applications will 

be even more crucial. This has to do with effective data processing and data 

semantics. 

I.6.6 Safety 

   We must remember safety even while we reap the benefits of the Internet of 

Things. We must design for safety since we are the Internet of Things' producers 

and users. This covers both the security of our private information and the 

security of our physical health. The key to securing endpoints, networks, and the 

data that flows between them is developing a scalable security paradigm. 

I.6.7 Connectivity 

    Network compatibility and accessibility are made possible via connectivity. 

Connecting to a network is known as accessibility, whereas sharing the capacity 

to create and use data is known as compatibility. 

I.7 Types of IoT Technologies 

I.7.1 Internet of Things (IoT)  

   The Internet of Things (IoT) connects physical objects via the internet, enabling 

them to identify and manage each other using various sensing devices like RFID 

and GPS. The IoT board consists of Arduino/Raspberry Pi, RF Module, Sensor 

Module, Access Point, IoT Server, and Cloud Point.[27] 
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I.7.2 Internet of Everything (IoE)  

    The Internet of Everything (IoE) is the new age of IoT, focusing on people, 

processes, and data, while IoT focuses on physical objects. IoE analyzes real-time 

data from millions of sensors to support automated processes and integrate 

industrial policy goals with ecological sustainability, social, and economic issues. 

It can also be used to make learning new technologies easier for students in 

educational systems. [27] [30] 

I.7.3 Internet of Nano Things (IoNT) 

    The Internet of Nano Things (IoNT) connects nanoscale objects to 

communication networks, combining nano components into a single gadget. It 

differs from the Internet of Things (IoT) as it cannot incorporate nano 

components. Nanodevices communicate through conventional protocols, with 

the inbuilt network remotely controlled through a gateway. IoNT applications 

include gas detection systems and nano-micro interface devices. [27] [29] 

I.7.4 Internet of Mission Critical Things (IoMCT) 

    The Internet of Mission Critical Things (IoMCT) combines sensing, 

communication, processing, and control to enhance network surveillance. It 

focuses on managing information sources, devices, and networks individually, 

reducing human strain on critical missions like combat, border patrol, and search 

and rescue. [27] [28] 

I.7.5 Internet of Mobile Things (IoMT) 

    Digital devices, such as phones, are becoming increasingly integrated with 

sensors, allowing for interaction. The main difference between IoT and IoMT lies 

in context, connectivity, energy availability, and privacy and security. Context 

refers to the phone's location and current ownership, while connectivity refers to 

its connection to networks. Mobile charging properties include energy 

availability. Privacy issues arise from unique phone features and locations, 

leading to identity mismatch and uniqueness theft.[27] 

I.8 IoT Architecture 

    There is no one widely accepted architecture for the Internet of Things. 

Various researchers have put forth distinct architectures. 

I.8.1 Three- and Five-Layer Architectures 

    The most basic architecture for the Internet of Things (IoT) is a three-layer 

architecture consisting of perception, network, and application layers. The 

perception layer is responsible for sensing and gathering information about the 

environment, while the network layer connects smart things and devices. The 

application layer delivers application-specific services to users, defining 

applications like smart homes and cities. However, this architecture is not 
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sufficient for research, as it often focuses on finer aspects of the IoT. A five-layer 

architecture, which includes processing and business layers, is another option, 

which includes perception, transport, processing, application, and business 

layers. The business layer manages the entire IoT system, including applications, 

business models, and user privacy. Another architecture inspired by human brain 

layers is the human brain, spinal cord, and network of nerves. [18] [20] 

Figure I.8: Architecture of IoT (A: three layers) (B: five layers).  

I.8.2 Cloud and Fog Based Architectures 

     Cloud and fog computing are two types of systems architectures used in IoT 

devices. Cloud computing is centralized, with applications at the center and 

smart things below. It offers flexibility, scalability, and services like core 

infrastructure, platform, software, and storage. Fog computing, on the other 

hand, involves sensors and network gateways in data processing and analytics. 

This architecture consists of monitoring, preprocessing, storage, and security 

layers between physical and transport layers. The monitoring layer monitors 

power, resources, responses, and services, while the preprocessing layer performs 

filtering, processing, and analytics of sensor data. Edge computing, on the other 

hand, adds smart data preprocessing capabilities to physical devices at the edge 

of the network. The distinction between protocol architectures and system 

architectures is not clear, and the generic 5-layer IoT protocol stack is used for 

both architectures.[21] [22]  

I.9 IoT Applications  

Some useful applications of Internet of Things (IOT) are [23] [24] [25] [26]: 

• Connected Health  

• Smart City  

• Connected Cars  

• Smart Home  
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• Smart Farming  

• Smart Retail  

• Smart Supply Chain 

I.9.1 Connected Health  

    IoT has numerous applications in healthcare, including remote monitoring, 

smart sensors, and equipment integration. It can improve physician care and 

patient safety. IoT can enhance patient engagement and satisfaction by allowing 

more time for doctor-patient interaction. It offers pocket-friendly solutions for 

patients and healthcare professionals, empowering them to live healthier lives. 

Research shows IoT in healthcare will grow massively, enabling personalized 

health analysis and tailored treatment strategies. 

I.9.2 Smart City 

   Another potent IoT application that is piquing people's interest around the 

globe is smart cities. Examples of internet of things applications for smart cities 

include automated transportation, water distribution, smarter energy 

management systems, smart surveillance, smart urban security, and 

environmental monitoring. Major issues that city dwellers suffer, such as 

pollution, gridlock in the streets, and a lack of energy, will be resolved by IoT. 

When a trash can needs to be emptied, devices like the Smart Belly trash can 

with cellular communication capability can notify local services. Installing 

sensors and utilizing online tools allows residents to locate open parking spaces 

all across the city. In addition, the sensors are capable of identifying general 

failures, installation problems with the electrical system, and meter 

manipulation. 

I.9.3 Connected Cars 

    Automotive digital technology is focusing on enhancing the in-car experience 

with connected cars, which optimize operations, maintenance, and passenger 

comfort using onboard sensors and internet connectivity. Major brands like 

Tesla, BMW, Apple, and Google are working on connected car solutions, which 

consist of multiple sensors, antennas, embedded software, and technologies for 

consistent, accurate, speedy, and reliable decision-making. 

I.9.4 Smart Home 

    In residential settings, smart homes have emerged as a revolutionary ladder to 

success, and it is anticipated that soon, smart homes will be as ubiquitous as 

smartphones. The most significant and effective use of IoT systems that always 

jumps out is the smart home, which is ranked as the top IOT application across 

all channels. Over $2.5 billion has been invested in smart home startups, and the 

figure is still rising. Wouldn't it be wonderful to be able to turn on the air 

conditioning before you get home or turn out the lights even after you've left? 
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Even when you're not home, you can provide friends temporary access by 

unlocking their doors. It should come as no surprise that businesses are 

developing items to make your life easier and more convenient as IoT takes 

shape. The largest outlay in a homeowner's life is the cost of house ownership. 

Products for smart homes are said to save money, energy, and time. Smart home 

firms, such as Nest, Ecobee, Ring, and August, among others, are poised to 

become household names and offer a never-before-seen experience. 

I.9.5 Smart Farming 

   IoT applications like smart farming are frequently disregarded. But because 

farmers tend to a lot of livestock and their farming operations are typically spread 

out, the Internet of Things can monitor all of this and transform the way farmers 

operate. But widespread attention to this concept has not yet been received. 

However, it continues to be one of the IoT applications that is important to 

consider. Particularly in the nations that export agricultural products, smart 

farming has the potential to grow into a significant application area. 

I.9.6 Smart Retail 

    Retailers are utilizing IoT solutions to enhance store operations, increase 

purchases, reduce theft, manage inventory, and improve consumer shopping 

experiences. This strategy allows retailers to compete with online competitors, 

regain lost market share, and attract consumers. Smartphones and Beacon 

technology can enhance in-store interactions, track consumer paths, and improve 

store layout, allowing for premium product placement in high-traffic areas. 

I.9.7 Smart Supply Chain 

    For a few years already, supply networks have already begun to become more 

intelligent. Providing solutions for issues like tracking products while they are 

traveling or on the road, or assisting suppliers in exchanging inventory data, are a 

few of the well-liked offers. Factory equipment with embedded sensors can 

exchange data about many factors, including temperature, pressure, and machine 

utilization, through an Internet of things enabled system. In order to maximize 

performance, the IoT system can also process workflow and modify equipment 

settings. 

I.10 MQTT Protocol: 

    The MQTT protocol (Message Queue Telemetry Transport) is a lightweight 

message queueing and transport protocol. MQTT, as its name implies, is suited 

for the transport of telemetry data (sensor and actor data). MQTT is very 

lightweight and thus suited for IoT (Internet of Things) scenarios where sensor 

and actor nodes communicate with applications through the MQTT message 

broker. MQTT is a text-based protocol designed for constrained IoT devices and 

low-bandwidth networks. Positioned in the application layer, it covers all 5th-7th 



Chapter I  The Internet of Things 

 

21 
 

layers and requires 10 KB of RAM or flash for implementation. It uses TCP 

connection, but requires an open connection channel.[33] 

Figure I.9: Communication between sensor, actor nodes and application through 

MQTT broker. 

Figure I.10: MQTT Architecture. 

I.10.1 MQTT Client (publisher/subscriber) 

    Clients subscribe to topics to publish and receive messages Thus subscriber 

and publisher are special roles of a client. [33] 

Figure I.11: Client roles. 
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I.10.2 MQTT Server (broker) 

    Servers run topics, i.e. receive subscriptions from clients on topics, receive 

messages from clients and forward these, based on client’s subscriptions, to 

interested clients. [33] 

I.10.3 Topic 

Technically, topics are message queues. Topics support the publish subscribe 

pattern for clients. Logically, topics allow clients to exchange information with 

defined semantics. [33] 

Figure I.12: Topic Example. 

I.10.4 Session 

    A session identifies a (possibly temporary) attachment of a client to a server. 

All communication between client and server takes place as part of a session. [33] 

I.10.5 Subscription 

    Unlike sessions, a subscription logically attaches a client to a topic. When 

subscribed to a topic, a client can exchange messages with a topic Subscriptions 

can be «transient» or «durable», depending on the clean session flag in the 

CONNECT message. [33] 

I.10.6 Message 

    Messages are the units of data exchange between topic clients. MQTT is 

agnostic to the internal structure of messages. [33] 

I.10.7 MQTT security  

     Application layer protocols like MQTT have several known and unreported 

security issues. MQTT's simplicity and scalability allow it to carry data between 

any IoT device via the application layer protocol, unlike any other protocol. [31] 

[34] [35]   

I.10.7.a Solutions and needs for security in MQTT deployments 

• Authentication: Making sure that MQTT network nodes may be 

identified in order to prevent unauthorized access (as producers or 

subscribers). 

• Access control: limiting information access to just those nodes that are 

permitted access. 
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• Data integrity: confirming that there has been no tampering during 

transmission and that the data received matches the data provided by the 

source; 

• Confidentiality: Data privacy and confidentiality must be maintained, 

and data sniffing must be stopped. 

I.10.7.b Attacks and countermeasures 

Man-in-the-Middle attack: A man in the middle (MitM) attack is a hacker's 

attempt to steal personal information from a user or application. It's typically 

carried out using MQTT protocols, which support two-way handshakes. To 

prevent MitM attacks, authentication and encryption are required. Attacking 

strategies include packet injection, session, SSL Stripping, SSL Hijacking, and 

sniffing. Preventing MitM attacks is crucial. [31] [34] [35] 

DoS attack: A denial-of-service attack is a cyber-attack that disrupts a 

computer's normal operation by overloading or flooding it with requests. It aims 

to keep the broker busy, making it difficult to manage new incoming 

connections. Firewalls offer some protection against single-user attacks, but not 

DDoS attacks. Router access control lists, antivirus software, application 

protection, and network behavior analysis are developed to prevent such attacks. 

Intrusion: Network intrusion refers to unauthorized activity on a computer 

network, often exploited by hackers using automated programs. Intrusion attacks 

use protocol ports and "#" commands to obtain sensitive information. MQTT 

security relies on an Intrusion Detection System (IDS) and an Intrusion 

Prevention System (IPS), which act quickly upon detection, reducing reaction 

time and ensuring security. [31] [34] [35] 

I.11 Conclusion  

      The Internet of Things (IoT) networks consist of groups of identifiable, smart 

devices that communicate and interact with each other. These networks possess 

several characteristics, including scalability, heterogeneity, and safety, among 

many others. The diverse architectures of IoT networks make them applicable in 

a wide range of fields, such as healthcare, agriculture, smart homes, smart cities, 

and beyond. However, one of the primary concerns associated with IoT is 

security. The open and interconnected nature of these networks makes them 

particularly vulnerable to cyber-attacks.  

To address these challenges, various mechanisms have been developed to protect 

and defend IoT networks. These mechanisms are designed to ensure the 

integrity, confidentiality, and availability of the data transmitted within the 

network. One of the key components in IoT communication is the Message 
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Queuing Telemetry Transport (MQTT) protocol, which is known for being a 

lightweight communication protocol.  

The MQTT protocol includes its own security mechanisms to safeguard the data 

exchanged between devices. These security features are crucial because IoT 

devices often operate with limited computational resources and power, making 

them susceptible to various types of cyber threats. The protocol employs 

measures such as authentication, encryption, and secure transmission to protect 

data. By ensuring that data is transmitted securely, MQTT helps to mitigate the 

risks of interception and unauthorized access, thereby maintaining the privacy 

and security of the information within the IoT ecosystem. 

In healthcare, IoT networks enable remote patient monitoring, real-time health 

data analysis, and improved patient care. In agriculture, IoT devices monitor soil 

moisture, weather conditions, and crop health, leading to increased efficiency 

and yield. Smart homes benefit from IoT through automation of household tasks, 

energy management, and enhanced security systems. Smart cities leverage IoT for 

efficient traffic management, waste management, and improved public services. 

Despite the robust security mechanisms provided by protocols like MQTT, the 

dynamic and evolving nature of cyber threats necessitates continuous 

advancements in IoT security. Researchers and developers are constantly working 

on innovative solutions to stay ahead of potential vulnerabilities. This ongoing 

effort is crucial for ensuring that IoT networks remain reliable and secure, 

thereby fostering trust and encouraging the widespread adoption of IoT 

technologies across various sectors. 
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II.1 Introduction  
      System administrators had to manually monitor user behavior at first for 

intrusion detection, but this approach proved to be ad hoc and unscalable. 

Administrators started using audit logs as a post-event forensic technique to 

pinpoint security issues in the late 1970s and early 1980s. Software to evaluate this 

data was created as storage became more accessible. Unfortunately, this research 

required a lot of time and computing power, often necessitating the nighttime 

execution of intrusion detection systems. [37] 

Real-time intrusion detection systems began to appear in the early 1990s, enabling 

quick response and assault prevention. System managers were now able to react to 

threats as they materialized rather than after the fact, which was a huge 

development. At the moment, the goal of intrusion detection activities is to develop 

solutions that can be implemented effectively in huge networks. New attack 

techniques, changing security issues, and the dynamic nature of computer systems 

are all taken into consideration in these efforts. [37] 

Because we use the internet so much in our everyday lives, network security is now 

the cornerstone of all web services, including online retail purchases and auctions. 

The purpose of intrusion detection is to find computer assaults by looking through 

different information records that are seen during network operations. This is 

regarded as one of the best approaches to handle issues with network security. Data 

security may be jeopardized by an infiltration via a variety of internet channels. The 

need for more dependable, efficient, and self-monitoring systems that can function 

without human intervention has arisen from the quick expansion of networks, 

faster data transmission speeds, and unexpected internet consumption. It is 

possible to considerably lower the danger of catastrophic failures in susceptible 

systems by pursuing such developments. [37] 

Systems for detecting intrusions are an essential part of computer network security. 

They serve as a deterrence as well as an early warning system. These systems may be 

set up to respond to traffic instantly, cutting out shady connections in accordance 

with predetermined standards. Many people believe that prevention is even more 

crucial than detection. It is important to speak with knowledgeable experts who can 

carry out a network audit in order to guarantee the maximum degree of safety for 

your networks. These professionals may provide guidance on the optimal defensive 

stance to take and suggest the finest software for safeguarding your network. [37] 

It is impossible to overestimate the significance of strong intrusion detection 

systems in the linked world of today. Continuous innovation and development in 

intrusion detection technology are critical as cyber-attacks grow more complex. By 

doing this, networks are kept safe, data integrity is preserved, and user and 

stakeholder confidence is maintained. Organizations may establish a robust defense 

against the constantly changing cyber threat environment by allocating resources 

towards sophisticated intrusion detection systems and using expert skills.[37] 
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II.2 What is Intrusion Detection? 
     To put it simply, it's the persistent efforts to find or identify the existence of 

invasive activity. When it comes to computers and network infrastructure, intrusion 

detection (ID) has a far wider application. It encompasses all procedures needed to 

identify unauthorized usage of computer or network devices. This is accomplished 

by using software that has been specially created with the express intent of 

identifying anomalous or unusual activities.[36] 

II.3 What Is an Intrusion-Detection System (IDS)? 
     An intrusion-detection system (IDS) is a tool used to identify, assess, and report 

unauthorized network activity. It is part of an overall protection system, similar to 

firewalls, closed doors, alarm systems, and guard dogs. In a warehouse, these 

technologies can cooperate to prevent network breaches. The implementation of 

IDSs depends on the location of technology. A network is only as safe as its weakest 

link, so a layered strategy is essential. A network should have several security layers, 

each with a distinct purpose, to support the organization's overall security plan. 

IDSs work at the network layer of the OSI model, while passive network sensors are 

positioned at choke points. IDSs analyze packets to find specific patterns in network 

traffic, logging alerts and responding based on recorded data. IDSs use known 

signatures to recognize potential malicious traffic patterns. [36] 

Figure II.1: Standard IDS system. 

II.4 Types of IDS Systems  
    IDSs fall into one of three categories: [36] [38] [40] [42] host-based intrusion-

detection system (HIDS), network-based intrusion-detection system (NIDS), and 

hybrids of the two. 

II.4.1 HIDS (Host Intrusion Detection System) 

     Information gathered from inside a single computer system powers host-based 

intrusion detection systems. (Remember that host-based IDSs are really a subset of 

application-based IDSs.) 
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Because of this advantage, host-based intrusion detection systems (IDSs) can 

reliably and precisely identify the processes and users engaged in a given operating 

system assault. Furthermore, since host-based IDSs have direct access to and 

monitoring of the data files and system activities that are often the focus of assaults, 

they are able to "see" the results of an attempted attack, in contrast to network-

based IDSs. 

System logs and operating system audit trails are the two main information sources 

that host-based intrusion detection systems typically use. Operating system audit 

trails are more thorough and more secure than system logs since they are often 

produced at the lowest (kernel) level of the operating system. System logs, on the 

other hand, are significantly simpler, smaller, and easier to understand than audit 

trails. A single management console may follow several hosts with the use of a 

centralized IDS NIST Special Publication on Intrusion Detection Systems 

management and reporting architecture, which is supported by some host-based 

IDSs. There are others who produce messages in forms that work with network 

management systems. 

HIDS system will require some software that resides on the system and can scan all 

host resources for activity; some just scan syslog and event logs for activity. It will 

log any activities it discovers to a secure database and check to see whether the 

events match any malicious event record listed in the knowledge base. 

II.4.2 NIDS (Network Intrusion Detection System) 

    Network-based intrusion detection systems make up the bulk of commercial 

models. By collecting and analyzing network packets, these IDSs identify assaults. 

One network-based intrusion detection system (IDS) may safeguard several hosts 

linked to a network segment by monitoring the network traffic impacting those 

hosts by listening to the network segment or switch. Network-based intrusion 

detection systems typically include a collection of specialized sensors or hosts 

positioned across a network. 

These devices keep an eye on network traffic, analyze it locally, and report any 

assaults to a central control panel. The sensors are more readily guarded against 

attack since their use is restricted to executing the IDS. To make it more difficult for 

an attacker to locate and detect them, many of these sensors are made to operate in 

"stealth" mode. 

Detecting and categorizing all network traffic from all devices is possible with this 

kind of intrusion detection system (IDS), which may be employed as a security 

measure inside a network that is secured. 

Unlike a HIDS, a NIDS can see every packet moving across its network, but it cannot 

confirm the integrity of the contents stored on the devices. It will also "log" any 

questionable packets. 
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NIDS system is usually inline on the network, and it analyzes network packets 

looking for attacks. A NIDS receives all packets on a particular network segment, 

including switched networks (where this is not the default behavior) via one of 

several methods, such as taps or port mirroring. It carefully reconstructs the streams 

of traffic to analyze them for patterns of malicious behavior. Most NIDSs are 

equipped with facilities to log their activities and report or alarm on questionable 

events. In addition, many high-performance routers offer NID capabilities. 

Table II.1: Network-Based vs. Host-Based Intrusion-Detection Systems. 

NIDS  HIDS  

Broad in scope (watches all network 
activities) 

Narrow in scope (watches only specific 
host activities) 

Easier setup More complex setup 

Better for detecting attacks from the 
outside 

Better for detecting attacks from the 
inside 

Less expensive to implement More expensive to implement 

Detection is based on what can be 
recorded on the entire network 

Detection is based on what any single 
host can record 

Examines packet headers Does not see packet headers 

Near real-time response Usually only responds after a suspicious 
log entry has been made 

OS-independent OS-specific 

Detects network attacks as payload is 
analyzed 

Detects local attacks before they hit the 
network 

Detects unsuccessful attack attempts Verifies success or failure of attacks 

II.4.3 Hybrid IDS 

    The features of both NIDS and HIDS are combined in hybrid IDSs. They enable 

the network and terminals to be watched over. The strategically positioned probes 

serve as either HIDS or NDS, depending on where they are located. The alarms from 

all of these probes are then sent to a single system that unifies data from many 

sources. We now know that hybrid IDS are built on a distributed architecture in 

which all of the components use a common transmitting format. This facilitates 

communication and yields more precise notifications. 

Combining two or more intrusion detection system methodologies results in a 

hybrid intrusion detection system. A comprehensive picture of the network system 

is created by the hybrid intrusion detection system by fusing network data with host 

agent or system data. Compared to the opposite intrusion detection system, the 

hybrid intrusion detection system is easier to use. One instance of a hybrid IDS is 

Prelude. 
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II.4.4 Protocol-based IDS (PIDS) 

    An intrusion detection system that is useful for monitoring and analyzing the 

protocol or protocols that the computer system uses is called a protocol-based 

intrusion detection system (PIDS). PIDs are usually placed on web servers. 

A protocol intelligence and security system, or PIDS, is a system or agent that sits at 

the front end of a server and monitors and analyzes the communication protocol 

between a connected device (a user, PC, or system) and the system it is protecting. 

It also keeps track of the protocol's dynamic behavior and state. 

This would normally be used by a web server to keep an eye on the HTTPS protocol 

stream and comprehend the HTTP protocol in relation to the web server or system 

that it is attempting to secure. 

II.4.5 Application Protocol-based IDS (APIDS) 

     An intrusion detection system that concentrates its monitoring on a particular 

application protocol or protocols used by the computer system is known as an 

application protocol-based intrusion detection system (APIDS). One illustration of 

APIDS is Secerno. 

The Secerno. When in IDS mode, a SQL database security appliance looks for odd 

movement and generates alarms; it does not really stop possible threats. Alerts can 

be tailored to particular SQL statement kinds that show how applications 

communicate with databases. Since the network traffic to the database is duplicated 

using conventional networking techniques, there is no effect on database traffic. 

II.5 Characteristics of IDS  

II.5.1 Accuracy 

    It shows how closely the IDS results coincide with the typical operation of the 

system under observation. The IDS needs to understand how the system works and 

distinguish it from invasive activity. A low false positive rate can be used to 

communicate this trait. [32] [41] 

II.5.2 Response Time 

    This is the maximum speed at which events can be processed in order to minimize 

latency and enable real-time detection. Additionally, the IDS needs to be able to 

promptly notify the system administrator of the detection result and/or initiate 

countermeasures. [32] [41] 

II.5.3 Completeness of Detection 

    All known and undiscovered attacks should be picked up by an ideal IDS. Due to 

incomplete awareness of the attacks, evaluating this measure is exceedingly 

challenging. [32] [41] 

II.5.4 Fault Tolerance 

    To stop attempts to circumvent the intrusion detection system, the intrusion 

detection system itself needs to be resistant to attacks. [32] [41] 
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II.6 Intrusion Detection Operating Modes 

II.6.1 Anomaly Detection 

    Anomaly-based detection is a technique used by intrusion detection systems 

(IDS) to identify unusual network traffic, such as malformed IP packets. It uses 

profiles created by tracking regular activity over time and compares current actions 

with profile-related thresholds. This method can identify unknown threats, but can 

create simplified profiles, include harmful activity, and produce false positives. It 

can identify unidentified attacks and does not always result in aggression.[39] 

II.6.2 Signature-based Detection 

    Signature-based detection is a quick and simple method for evaluating harmful 

traffic in intrusion detection systems. It relies on known traffic data and is precise 

but limited in identifying variants of known threats or unknown threats. It cannot 

monitor complex communications and is not effective for identifying attacks with 

numerous events. Other methods include using attack signatures, system call 

sequences, and network traffic patterns.[38] [42] 

II.6.3 Specification-based Detection 

     Specifications are guidelines that specify acceptable behavior models for network 

elements like routing tables and protocols. They can be statistical rules or manually 

constructed models. Similar to anomaly-based detection, specifications are set 

manually by a human expert, allowing for low false positive rates and identifying 

unidentified attacks. [42] 

II.6.4 Behavior after Detection  

     Two actions can be taken in the event that the IDS detects an attack: an active 

response or a passive response. This feature is frequently connected to the IDS 

responses module. [41] 

• Passive response: In this instance, the IDS's response is restricted to 

sending the administrator or an archiving system (log files) a warning 

identifying the attack. The human operator will handle the countermeasures 

in both scenarios. 

• Active response: In contrast to the first scenario, automatic defenses will be 

triggered to stop the attack and restrict its path. Blocking incoming IP 

addresses or ports, for instance, ends a session or shuts down a computer. 

II.6.5 Frequency of Use  

    This feature is dependent on the IDS analysis module's operational mode. [41] 

• Real-time continuous analysis: The IDS continuously examines the 

information flow. When network intrusion detection systems are in this 

mode, network traffic is examined right away following capture. Any 

harmful activity found can be immediately dealt with thanks to the ongoing 

analysis. When the IDS's processing speed surpasses the network's transfer 
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speed, this mode becomes functional. Real-time analysis is not possible in 

any other case. 

• Batch Analysis (delayed): If the IDS processing speed is slower than the 

dynamics of change in the system being monitored, there are situations 

where it is better to make detections in a postponed time frame. A Network 

Intrusion Detection System (NIDS) operating at 100Mbps may be compelled 

to save traffic and perform analysis in deferred mode if the network is 

operating at 1Gbps. Similarly, if a HIDS examines system audit logs that are 

updated on a regular basis, it must do so in accordance with the updates' 

interval. 

II.6.6 Target Monitoring 

    Systems that monitor targets will report on any alterations or modifications made 

to certain target items. Typically, a cryptographic procedure is used to accomplish 

this, computing a crypto-checksum for every target file. Any changes that could 

affect crypto-checksums, like file alterations or program logons, are reported by the 

IDS. Through the use of crypto-checksums, Tripwire software will perform target 

monitoring by instantly notifying users of modifications to configuration files and 

enabling automatic restoration. This method's primary benefit is that it spares you 

from having to keep an eye on the target files all the time.[36] 

II.6.7 Stealth Probes 

    Stealth probes use data correlation to look for long-duration attacks, sometimes 

known as "low and slow" attacks. To find any associated attacks, data is gathered 

from many sources, characterized, and sampled. Wide-area correlation is another 

name for this technology, which usually employs a hybrid or combination approach 

combining various detection approaches in an attempt to identify potentially 

harmful activities.[36] 

II.7 IDS Pros and Cons  
    The pros of intrusion detection include the following [36]: 

• Can detect external hackers as well as internal network-based attacks. 

• Scales easily to provide protection for the entire network. 

• Offers centralized management for correlation of distributed attacks. 

• Provides defense in depth. 

• Gives system administrators the ability to quantify attacks. 

• Provides an additional layer of protection. 

These are the cons [36]: 

• Generates false positives and negatives. 

• Reacts to attacks rather than preventing them. 

• Requires full-time monitoring. 

• Requires a complex incident-response process. 

• Cannot monitor traffic at higher transmission rates. 
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• Generates an enormous amount of data to be analyzed. 

• Requires highly skilled staff dedicated to interpreting the data. 

• Susceptible to “low and slow” attacks. 

• Cannot deal with encrypted network traffic. 

• It is expensive. 

II.8 IDS Architecture  

II.8.1 Single-Tiered Architecture 

    A single-tiered architecture is a type of IDS where components collect and process 

data themselves, rather than passing it to other components. This architecture 

offers advantages like simplicity, low cost, and independence from other 

components. However, it often has components that are not aware of each other, 

reducing efficiency and functionality. [36] 

II.8.2 Multi-Tiered Architecture 

   A multi-tiered architecture is a system that consists of multiple components that 

pass information to each other. It is commonly used in intrusion detection systems 

(IDSs) and includes sensors, analyzers, and a manager. Sensors collect data from 

various sources, while analyzers monitor intrusive activity on individual hosts. 

Agents are specialized to perform specific functions, such as examining TCP traffic 

or FTP connections. When an attack is detected, they send information to the 

manager component, which performs various functions, such as collecting alerts, 

triggering a pager, storing information, retrieving relevant information, sending 

commands, and providing a management console. A central collection point allows 

for easier analysis of logs, and management consoles enable remote policy changes 

and parameter erasure. Advantages of a multi-tiered architecture include greater 

efficiency and depth of analysis, but downsides include increased cost and 

complexity. [36] 

                            Figure II.2: A multi-tiered architecture. 
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II.8.3 Peer-to-Peer Architecture 

   Peer-to-peer architecture is a type of network architecture where information is 

exchanged between peer components, allowing for intrusion-detection. It is 

commonly used by cooperating firewalls and routers. This architecture is simple and 

allows any peer to participate in a group of peer machines, benefiting from each 

other's information. However, it lacks sophisticated functionality due to the absence 

of specialized components. 

II.9 Intrusion Attacks   

II.9.1 System Scanning 

   When an attacker sends various types of packets to the target network, system 

scanning may occur. System vulnerabilities and characteristics can be found based 

on the target's response. These are passive attacks that don't breach or compromise 

systems. A few tools that can be used for scanning attacks are vulnerability scanners, 

port scanners, network scanners, port mappers, and port scanners. Various system 

characteristics that this assault may display include [42] [43]: 

• Target topology of the networks. 

• The quantity of running hosts on the network. 

• Software Version numbers of the server running on the network. 

• The host's operating system is now in use. 

II.9.2 Denial of Service 

   DoS attacks happen frequently. They make an effort to impede or stop targeted 

networks or systems. There are various reasons behind these attacks. DoS attacks 

caused significant losses for e-commerce businesses because many users were 

unable to access them at the time of purchase. Dos attacks may result in a number 

of issues, including unavailable or ineffective services and disruptions in network 

traffic at the connection interface. The following indicators point to the presence of 

DoS attacks: 

• Performance of the network is unusually slow. 

• The particular site is not available. 

• An extension of the access time. 

II.9.3 Flow Exploitation DoS Attacks 

   Another name for it is the "Ping of Death" attack. It mostly takes advantage of 

software bugs in the target system that lead to processing errors or resource 

exhaustion. This kind of attack sends the target system a lot of ping packets. The 

system crashes because the target system is unable to handle these unusual packets. 

CPU time, memory, storage space, space in a dedicated buffer, and network 

bandwidth are among the several resources that are targeted. Various DoS attack 

techniques include depleting IDS resources. It would keep sending out alerts and 

overloading IDS with traffic until it ran out of resources. Consequently, an 

incomplete event log would be generated. 
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II.9.4 Flooding DoS Attack 

   The target receives more information than it can process. When the target system 

is being attacked, it cannot be patched. A variety of modification strategies can be 

applied to lessen these kinds of attacks. DDOS attacks, or denial-of-service attacks, 

are launched by many people. They function as a single, enormous system and are 

centralized. Therefore, the quickest system can be used to stop it. 

II.9.5 System Penetration  

System penetration is the unauthorized acquisition of resources, data, or rights 

within the system. Different software bugs are taken advantage of to take over a 

system. Their specifics and effects differ. Penetration attacks involve any 

unauthorized access to or changes to the system's data and resources in order to take 

advantage of weaknesses in the system. Attackers use a variety of software 

vulnerabilities to take over the machine in these types of attacks. With the Internet 

of Things, an attacker can take over a device physically or through an application, 

giving him the ability to reverse engineer and check for vulnerabilities. Various 

forms of system intrusion are: 

• User to Root: Target host, completely controlled by local user. 

• Remote to User: An account of target host, managed by the attacker on the 

network. 

• Remote to Root: Target host, completely controlled by the attacker on the 

network. 

• Remote Disk Read: An ability to read private data files on target host 

without authorization of owner by an attacker on network. 

• Remote Disk write: An ability to write private data files on target host 

without authorization of owner by an attacker on network. 

II.9.6 Man-in-the-Middle (MiTM) Attacks 

   The MiTM attack is another type of assault in which the attacker actively 

intercepts two nodes' communications without the victims' knowledge. The 

messages between the nodes are intercepted by the attacker, who may then alter 

them. Furthermore, as of late, attacking machines are typically a component of a 

larger network of hacked workstations, or a botnet. The goal of integrity attacks is 

to change the data or route within the network. 

II.9.7 Routing Attacks 

    The information (messages) exchanged within the framework of the routing 

protocol is altered or spoof by the attacker in a routing attack. Numerous Internet 

of Things routing hacks target the RPL protocol, which is a key protocol for Internet-

integrated wireless sensor networks.[31] 

II.9.8 Application–level Attack  

The attacker focuses on the application layer's limitations. For instance, a web 

server's security flaws or improper server-side controls. 
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II.9.9 Viruses and Worms 

    Computer viruses and worms are harmful programs designed to replicate 

themselves, similar to biological reproduction. They can be classified as worms or 

viruses based on whether the malicious code requires human intervention to spread 

to another system. Some viruses/worms have multiple infection mechanisms, such 

as searching for and emailing to infected email addresses, scanning for unprotected 

network shares, infecting vulnerable servers, and infecting local and network-

accessible files. Pure viruses, like "I Love You" and "SoBig," propagate through email 

attachments, while pure worms like "Code Red," "Slammer," and "Blaster" actively 

scan for and infect further vulnerable systems. Currently, worms/viruses have mild 

actions, such as installing back-door software, installing email engines, defacing 

websites, conducting distributed denial of service attacks, and logging internet 

bandwidth. Future threats include data corruption, hardware damage, espionage, 

and personal information theft.[36] 

II.10 Security Mechanisms  
    One of the key factors in evaluating the system's reliability is security concerns. 

In the event that these issues are effectively resolved, the system's added value and 

reliability both rise significantly. If not, reliability is undervalued, compromised, 

and the system becomes unusable, resulting in a lack of added value. As a result, 

system security is now a top priority for administrators. They have access to a variety 

of security tools and techniques, including [41]: 

• Data integrity and secrecy guaranteed by encryption techniques. 

• Firewalls for network traffic filtering and access control. 

• Vulnerability scanners to find system security holes. 

• Antivirus software to guard the system from dangerous apps 

II.11 Conclusion  
    Intrusion detection is as crucial to a network system as a burglar alarm is to 

buildings or houses where valuable information or items are stored. Just as a burglar 

alarm alerts homeowners to potential break-ins and unauthorized access, an 

Intrusion Detection System (IDS) monitors a network for any suspicious activity or 

policy violations. This setup not only detects threats but also actively takes steps to 

prevent them from causing harm, thereby significantly enhancing the overall 

security and effectiveness of the system. 

A high-quality IDS, offers more than just notifications about potential threats. It 

can automatically take actions such as blocking malicious traffic, alerting 

administrators, and logging critical information for further analysis. This proactive 

approach means that threats are managed in real-time, reducing the risk of data 

breaches and other security incidents. 

IDS technology can be categorized into two main types: Network-based Intrusion 

Detection Systems (NIDS) and Host-based Intrusion Detection Systems (HIDS). 
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NIDS monitor network traffic for suspicious activity, providing a broad overview of 

the entire network's security. In contrast, HIDS focuses on individual devices, 

monitoring activities such as file modifications, logins, and other critical 

operations. Some systems combine both NIDS and HIDS to provide comprehensive 

coverage and enhanced protection. 

Implementing an IDS typically involves installing software or deploying hardware 

sensors across the network or on individual devices. This setup can be tailored to fit 

the specific needs and infrastructure of an organization. For businesses that do not 

currently have an IDS in place, it is highly advisable to consider integrating one into 

their security model or infrastructure. The absence of an IDS leaves a network 

vulnerable to undetected threats, potentially leading to significant financial and 

reputational damage. 

In conclusion, the proactive defense mechanism provided by IDS, is essential for 

safeguarding against unauthorized access and potential breaches. By continuously 

monitoring and responding to threats, an IDS helps maintain the integrity and 

security of the network, ensuring that valuable information and resources remain 

protected. For any organization looking to strengthen its security posture, investing 

in an effective IDS should be a top priority. 
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III.1 Introduction  
    The human brain is the most amazing organ in the body. It determines how we 
interpret everything that we see, hear, taste, smell, and touch. It allows us to 
dream, feel emotions, and store memories. Without it, humans would be 
rudimentary creatures with only the most basic reactions. Our brains are 
fundamentally what give us intelligence. Even though the newborn brain is barely 
one pound in weight, it manages to solve puzzles that are above the capabilities of 
our largest, most potent supercomputers. A few months after birth, newborns are 
able to distinguish distinct items from their surroundings, recognize their parents' 
faces, and even distinguish between different voices. In little than a year, they've 
already acquired an intuitive understanding of natural physics, the ability to track 
things even when they're partially or totally obscured, and the ability to interpret 
sounds.  
Additionally, by the time they are young children, they have hundreds of words in 
their vocabularies and a good grasp of syntax. We have long dreamed of creating 
intelligent machines with minds similar to our own: self-driving vehicles, robotic 
housecleaning assistants, and disease-detection microscopes. However, in order to 
create these artificially intelligent robots, we must find solutions to some of the 
trickiest computing problems we have ever encountered—issues that our brains 
are currently capable of handling in a matter of microseconds.  In order to solve 
these issues, we will need to create a whole new method of computer programming 
utilizing methods that have mostly been established in the last ten years. Deep 
learning is a term used to describe this very active area of artificial computer 
intelligence. During the past few years, deep learning has revolutionized nearly 
every field it has been applied to, resulting in the greatest leap in performance in 
the history of computer science. The application of deep learning has made those 
small, gradual annual improvements a thing of the past — these days, it isn’t 
uncommon to witness improvements of 20 to 30 percent, in months and not years. 
There’s no keeping that kind of success under wraps, which means the media have 
been filled with references to “artificial intelligence,” “machine learning,” and 
“deep learning.” These terms are used not only very widely, but most of the time 
inaccurately and confusingly. With that in mind, this chapter aims to clarify and 
demystify the distinctions among these technical terms.[45] 

III.2 The Story Begins with Artificial Intelligence  
    John McCarthy, a trailblazing computer scientist, first used the phrase artificial 

intelligence (AI) in the 1950s. It's a catch-all word for all the techniques and fields 

that lead to machines displaying intelligence of any kind. This ranges from the 

expert systems of the 1980s, which were essentially databases of knowledge that had 

been hardcoded, to the most sophisticated AI systems that are currently in use. 

Nowadays, almost every software used in almost every industry uses artificial 

intelligence (AI), even if it's only applied to a few simple manually coded processes. 

[44] 

III.2.1 What Is Machine Learning? 

    Artificial intelligence's machine learning field studies a machine's capacity to 

mimic thoughtful human behavior. The creation of algorithms that facilitate 
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learning from previously collected data is the focus of machine learning. The term 

"machine learning" was first used in 1959 by Arthur Samuel, who defined it as "the 

ability for a machine to automatically learn from data, improve performance 

through experience, and predict things without being explicitly programmed." The 

process begins with supplying high-quality data, which is then utilized to train our 

machines by constructing machine learning models based on the data and different 

techniques. The selection of algorithms is contingent upon the nature of the data at 

hand and the nature of the work that has to be automated. [44] 

III.2.2 Advancing into Deep Learning 

   Deep learning, also known as deep neural networks, is a subfield of machine 

learning, which is a subset of AI, as shown in Figure III-1. Deep learning takes 

inspiration from how the human brain works. What’s the difference between deep 

learning and traditional machine learning? Perhaps the biggest distinction is that 

deep learning is the first — and currently the only — learning method that is 

capable of training directly on the raw data. No need for feature extraction with deep 

learning. In the example of facial recognition, deep learning would be able to dive 

in and examine the raw pixels of an image, without explicitly being told to pay 

attention to facial proportions or distance between pupils or other specifics called 

out by human experts. What’s more, deep learning scales well to hundreds of 

millions of training samples. As the training dataset gets larger and larger, deep 

learning continuously improves. [44] 

Figure III.1: Deep learning, a subset of a subset of AI. 

III.3 Traditional Machine Learning 
    Artificial intelligence is evolving, with machine learning becoming a more 

advanced form of AI that allows computers to learn independently. Deep learning 

is a specific type of machine learning, and understanding it requires a solid 

understanding of its basic principles. This chapter covers general principles, data 

training, feature extraction techniques, and training data.[44] 

III.3.1 Assembling the Training Data 

   Machine learning models require data samples, which are essential for their 

success. For example, a "dog detector" uses a large dataset of images categorized into 

"dog" and "not dog" classes. Supervised training uses a fully labeled dataset, while 

unsupervised training uses data without labels. Supervised training typically yields 
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better results, while unsupervised learning has untapped potential due to the vast 

amount of unlabeled data available. Both methods are essential for effective 

machine learning.[44] 

III.3.2 Understanding the Importance of Feature Extraction 

   In traditional machine learning, raw images with or without dogs are used to 

create labels. However, the machine is aware of these pixels and needs to perform a 

feature extraction phase to extract predefined properties or features. In the dog 

detector example, each input sample is represented as a vector of values, each 

corresponding to a single feature. To identify important features, a domain expert 

is needed to specify them. For image processing problems, an expert analyzes the 

problem domain and samples, determining the features to extract. In real-world 

examples, feature extraction is based on properties of files, such as API or function 

calls or registry keys used. This process is essential for training models in machine 

learning.[44] 

III.3.3 Learning Algorithms  

   A machine learning algorithm is an algorithm that is able to learn from data. But 

what do we mean by learning? It means by definition “A computer program is said 

to learn from experience E with respect to some class of tasks T and performance 

measure P, if its performance at tasks in T, as measured by P, improves with 

experience E.” [45] 

III.3.3.a The Task, T 

    Machine learning is a method that helps solve complex tasks that are too complex 

for human-designed programs. It involves understanding the principles that 

underlie intelligence and aims to improve our understanding of tasks. Common 

machine learning tasks include classification, regression, transcription, machine 

translation, structured output, anomaly detection, synthesis and sampling, 

imputation of missing values, denoising, and density estimation. 

Classification tasks involve assigning an input to a category, while regression tasks 

involve predicting numerical values based on input. Transcription tasks convert 

unstructured data into textual form, while translation tasks convert symbols in one 

language into another. Structured output tasks involve generating vectors or data 

structures with important relationships between elements, while anomaly 

detection involves sifting through events or objects to flag unusual or atypical ones. 

Synthesis and sampling tasks use machine learning algorithms to generate similar 

examples from training data, making them useful for media applications like video 

games. [45] 

Denoising tasks involve predicting the conditional probability distribution of a 

corrupted example from its corrupted version. Density estimation tasks involve 

learning a probability density or probability mass function on a space, which 

requires understanding the data structure and cluster examples. However, density 
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estimation may not always solve all related tasks due to computational intractable 

operations on the distribution. [45] 

III.3.3.b The Performance Measure, P 

   To evaluate a machine learning algorithm’s capability, a quantitative measure of 

its performance is designed. This measure is specific to the task being performed, 

such as classification, classification with missing inputs, and transcription. 

Accuracy is measured by the proportion of examples where the model produces the 

correct output, while error rate is the proportion of examples where the model 

produces an incorrect output. For tasks like density estimation, a different 

performance metric is used, such as the average log-probability assigned to some 

examples. The choice of performance measure can be challenging due to the 

complexity of deciding what to measure, or the impracticality of computing the 

actual probability value assigned to a specific point in space. In such cases, 

alternative criterion or approximation to the desired criterion is needed. [45] 

III.3.3.c The Experience, E 

    Machine learning algorithms can be supervised or unsupervised based on their 

learning experience. The Iris dataset, one of the oldest studied, is a collection of 

measurements of 150 iris plants, each representing a different part of the plant. 

Unsupervised learning algorithms observe random vectors and attempt to learn the 

probability distribution p(x), while supervised learning involves observing multiple 

examples of a random vector and an associated value or vector and learning to 

predict y from x. Other variants of the learning paradigm include semi-supervised 

learning, multi-instance learning, and reinforcement learning. Most machine 

learning algorithms experience a dataset, which can be described in various ways, 

such as a design matrix. There is no formal definition of supervised and 

unsupervised learning, but new ones can be designed for new applications. [45] 

III.3.4 Training and testing 

    Machine learning researchers often make mistakes due to contamination 

between test and train sets, which can lead to skewd results. Contamination can be 

subtle and can mess up the entire process. For example, if a machine learning model 

is trained on a dataset of images containing tanks and trees, it may inadvertently 

learn to detect clouds instead of tanks. This can lead to biased results. Similarly, if a 

model is trained on malicious files and benign files, it may not accurately classify 

malicious or benign files. To remedy this, the benign dataset should contain many 

different files created by different developers, not just Microsoft. It is crucial to 

ensure that test data is completely separated from train data and that the data is 

representative of the type and distribution of data encountered in the real 

world.[44] 

III.3.5 Setting aside a validation set 

   Incorporating test data insights into model training is crucial for effective learning 

in the real world. Instead of using a test set for training, a validation set is used to 

measure performance on new data and use the insights for further training and 
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improvements. The test set remains the ultimate test, replicating real-world 

conditions. To ensure reliability, measures should be stringent, such as using data 

from different time periods for training and testing, as new malicious file types 

appear daily in the real world. [44] 

III.4 The Neural Network 

III.4.1 The Biological Brain Was the First Real Neural Network  

    The human brain consists of tens of billions of small processing units known as 

neurons. These neurons are connected to each other via synapses.  You’ve probably 

read that the human brain has different regions — such as the visual cortex and 

auditory cortex — that each perform a certain task. These differences mainly arise 

from the input each region receives. For example, when the optic nerve transfers 

signals (the input) from our eyes to a certain region in the brain (the processing 

area), the neurons in that area learn to process these signals, and form the visual 

cortex. [44] [48] 

Figure III.2: Making connections in the brain. 

We can refer to the neurons as general processing units, which are agnostic of the 

data they process. The learning process itself takes place when the connection 

strength between neurons is formed, removed, strengthened, or weakened. In other 

words, everything humans learn, everything we remember, everything we do, is the 

result of synaptic activity in the brain. You might consider the cerebral cortex to be 

the most “interesting” part of our brain, because it’s associated with our high-level 

cognitive capabilities. Mammals are the only animals that have a cerebral cortex. 

Why is it that humans are smarter than all other animals? Brazilian neuroscientist 

Suzana Herculano-Houzel invented a novel method for accurately counting the 

number of neurons in the brain. Her research suggests that intelligence is correlated 

with the number of neurons in the cerebral cortex. The higher this number, the 
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higher the intelligence. An elephant has a brain with a much larger mass, but the 

human brain’s cerebral cortex has a far greater absolute number of neurons. [44]  

Figure III.3: A few parts of the brain. 

III.4.2 Artificial Neural Networks  

    Artificial neural networks have their origins in 1943 when researchers Warren 

McCulloch and Walter Pitts proposed a simple model for an artificial neuron. Frank 

Rosenblatt later created the perceptron, a simple neural network with two layers: 

the input and output layers. These networks were limited in their learning 

capabilities. In the late 1960s, researchers discovered that they could expand the 

capabilities of neural networks by adding hidden layers, creating multilayered 

neural networks or multilayered perceptron's (MLP). However, these networks 

could not be trained using conventional mechanisms. In the early 1980s, Paul 

Werbos and David Rumelhart invented backpropagation, which is still used for 

training multilayered neural networks today. [44] [48] 

. 

. 

 

 

Figure III.4: Connecting 

neurons in a perceptron 

neural network. Figure III.5: 

Multilayered perceptron. 
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III.4.3 Training a Neural Network with Backpropagation 

    Backpropagation is a fundamental principle in neural networks, which helps in 

recognizing and updating the weights of a neural network. In a training dataset of 

10,000 images containing cats and 10,000 images without cats, a neural network is 

used. The input layer contains 900 neurons, the output layer contains two neurons 

representing the "no cat" and "cat" classes, and two hidden layers. The weights are 

initialized randomly and are usually small values around zero. 

The neural network learns how to recognize a cat through training. At each point, a 

training sample is fed into the network, and the training process is done in two 

stages: feed-forward and backpropagation. The input layer sends values to the next 

layer, which aggregates the input and passes it through an activation function. The 

output neurons then fire their results, and the backpropagation algorithm updates 

the weights of the neural network to improve performance. 

The network trains through many iterations over the entire training set, with each 

pass referred to as an epoch. Gradual updates to the weights are made during the 

backpropagation phase. After training, the accuracy is tested using a set of samples 

that were not used during the training. This prevents overfitting and encourages the 

network to generalize. If the results on the test set are satisfactory, the neural 

network can be used for real-world prediction. [44] 

III.4.4 Feed-Forward Neural Networks 

    The human brain is composed of multiple neurons, which are organized in layers, 

such as the human cerebral cortex, which is responsible for most of human 

intelligence. Information flows from one layer to another until sensory input is 

converted into conceptual understanding. Artificial neural networks can be 

constructed by connecting neurons to each other, input data, and output nodes. 

The bottom layer of the network pulls in input data, while the top layer computes 

the final answer. The middle layer(s) are called hidden layers, and the parameter 

vector, θ, is determined by the weights of connections between neurons. These feed-

forward networks are the simplest to analyze and are essential for solving complex 

learning problems. [46] 

Figure III.6: A simple example of a feed-forward neural network. 
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III.4.5 Linear Neurons and Their Limitations 

    Most neuron types are defined by the function 𝑓 they apply to their logit 𝑧. Let’s 

first consider layers of neurons that use a linear function in the form of 𝑓 (𝑧)  =

 𝑎𝑧 +  𝑏. For example, a neuron that attempts to estimate a cost of a meal in a fast-

food restaurant would use a linear neuron where a = 1 and b = 0. In other words, 

using 𝑓 (𝑧 ) =  𝑧 and weights equal to the price of each item, the linear neuron in 

Figure III-7 would take in some ordered triple of servings of burgers, fries, and sodas 

and output the price of the combination. Linear neurons are easy to compute with, 

but they run into serious limitations. In fact, it can be shown that any feed-forward 

neural network consisting of only linear neurons can be expressed as a network with 

no hidden layers. This is problematic because, as we discussed before, hidden layers 

are what enable us to learn important features from the input data. In other words, 

in order to learn complex relationships, we need to use neurons that employ some 

sort of nonlinearity. [46] 

 

Figure III.7: An example of a linear neuron. 

III.4.6 Sigmoid, Tanh, and ReLU Neurons  

     There are three major types of neurons that are used in practice that introduce 

nonlinearities in their computations. [46] [47] The first of these is the sigmoid 

neuron, which uses the function: 

𝑓 =
1

1+𝑒−𝑧
        (I.1) 

Intuitively, this means that when the logit is very small, the output of a logistic 

neuron is very close to 0. When the logit is very large, the output of the logistic 

neuron is close to 1. In-between these two extremes, the neuron assumes an S-shape. 

Figure III.8: The output of a sigmoid neuron as z varies. 
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Tanh neurons use a similar kind of S-shaped nonlinearity, but instead of ranging 

from 0 to 1, the output of tanh neurons range from −1 to 1. As one would expect, they 

use f (z) = tanh (z). The resulting relationship between the output y and the logit z 

is described by Figure III-9. When S-shaped nonlinearities are used, the tanh 

neuron is often preferred over the sigmoid neuron because it is zero-centered. 

Figure III.9: The output of a tanh neuron as z varies. 

A different kind of nonlinearity is used by the restricted linear unit (ReLU) neuron. 

It uses the function 𝑓 (𝑧) =  𝑚𝑎𝑥 (0, 𝑧). resulting in a characteristic hockey-stick-

shaped response, as shown in Figure III-10. 

Figure III.10: The output of a ReLU neuron as z varies. 

III.4.7 Softmax Output Layers  

      Oftentimes, we want our output vector to be a probability distribution over a set 

of mutually exclusive labels. For example, let’s say we want to build a neural network 

to recognize handwritten digits from the MNIST dataset. Each label (0 through 9) 

is mutually exclusive, but it’s unlikely that we will be able to recognize digits with 

100% confidence. Using a probability distribution gives us a better idea of how 

confident we are in our predictions. As a result, the desired output vector is of the 

form below, 

where  ∑ 0𝑝𝑖=1
9
𝑖  : [𝑝0𝑝1𝑝2𝑝3 ⋯ 𝑝9] 

This is achieved by using a special output layer called a softmax layer. Unlike in other 

kinds of layers, the output of a neuron in a softmax layer depends on the outputs of 

all the other neurons in its layer. This is because we require the sum of all the outputs 

to be equal to 1. Letting 𝑧𝑖 be the logit of the 𝑖𝑡ℎ softmax neuron, we can achieve this 

normalization by setting its output to: 
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𝑦𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗

𝑗
      (I.2) 

A strong prediction would have a single entry in the vector close to 1, while the 

remaining entries were close to 0. A weak prediction would have multiple possible 

labels that are more or less equally likely. [46] 

III.5 Types of Neural Networks  
    The neural network spotlighted in the previous section was a simple one. In 

practice, there are many types of neural networks, used for different tasks. 

Following are some examples [44]:  

III.5.1 Fully connected neural network 

    This is the simplest form of neural network, in which all the neurons in each layer 

are connected to all the neurons in the subsequent layer. look at Figure III-11 for a 

sense of how this plays out. Fully connected networks are popular because they are 

robust, and because they don’t assume anything about the properties of the input. 

Also note that because all the neurons in each layer are connected to all the neurons 

in the subsequent layer, the actual position of a neuron within a layer really doesn’t 

matter. 

Figure III.11: A fully connected neural network 

III.5.2 Recurrent neural network 

   Neural networks use current inputs for decision-making, particularly in 

sequential tasks like language understanding. Recurrent neural networks (RNNs) 

provide an indefinite memory of previous events by adding recurrent connections 

between neurons in hidden layers. These connections provide weights between 

neurons in the same layer, providing values in previous time steps. RNNs are useful 

for presenting sequential data and learning long-term patterns and relationships, 

with more advanced variants allowing higher accuracy over time. 

Figure III.12: A recurrent neural network. 
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III.5.3 Sparsely connected neural network 

    Sparsely connected neural nets are networks that are not fully connected, with 

only a portion of neurons between adjacent layers connected. These connections 

are determined by data properties. One popular variant is the convolutional neural 

network (CNN), used for computer vision problems. CNNs use a small receptive 

field, ensuring high correlation between adjacent pixels in real-world images. 

III.6 Training deeper neural networks 

    Deep neural networks, which have a larger number of layers, have been trained 

using the backpropagation algorithm since the 1990s. However, the gradient 

vanishing problem has made it difficult to train these networks due to weaker 

signals. Recent inventions have addressed this issue, allowing researchers to train 

deeper neural networks with tens of layers and billions of synapses. Deep neural 

networks allow for a hierarchical pattern learning structure, allowing higher layers 

to learn and recognize more complex patterns. They also don't require traditional 

feature extraction, as they can use their deep layers as feature extractors, extracting 

complex patterns that human experts cannot manually specify. [44] 

III.7 Deep Learning Algorithms  

    Deep learning is a machine learning and artificial intelligence method designed 

to mimic human brain functions for effective decision-making. It is a crucial data 

science element that uses predictive modeling and statistics. Deep learning 

algorithms run through layers of neural networks, pre-trained to serve a task. 

However, traditional machine learning algorithms struggle to handle structured or 

unstructured data sets, making deep learning an ideal solution. [49] 

III.7.1 Convolutional Neural Networks (CNNs) 

   A Convolutional Neural Network (CNN) is a Deep Learning algorithm that can 

learn from an input image, assign importance to various aspects, and differentiate 

between them. It requires less pre-processing than other classification algorithms 

and can learn filters with training. CNNs have an architecture similar to the 

connectivity pattern of neurons in the human brain, inspired by the Visual Cortex. 

They have three main layers: convolutional, pooling, and fully-connected. As the 

layers increase, the CNN identifies larger elements or shapes until it identifies the 

intended object. [49] 

III.7.2 Long Short-Term Memory Networks (LSTMs) 

   LSTMs are long-term learning and adaptation neural networks that can remember 

and recall past data. They are used in time series predictions due to their ability to 

restrain memory or previous inputs. LSTMs have a chain-like structure consisting 

of four interacting layers, and can be used in speech recognition, pharmaceutical 

development, and music loop composition. [49] 
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III.7.3 Recurrent Neural Networks (RNNs) 

   Recurrent Neural Networks or RNNs consist of some directed connections that 

form a cycle that allow the input provided from the LSTMs to be used as input in 

the current phase of RNNs. These inputs are deeply embedded as inputs and enforce 

the memorization ability of LSTMs lets these inputs get absorbed for a period in the 

internal memory. RNNs are therefore dependent on the inputs that are preserved 

by LSTMs and work under the synchronization phenomenon of LSTMs. RNNs are 

mostly used in captioning the image, time series analysis, recognizing handwritten 

data, and translating data to machines. [49] 

III.7.4 Generative Adversarial Networks (GANs) 

   GANs are deep learning algorithms that generate new instances of data that 

match training data. They consist of a generator that generates false data and a 

discriminator that adapts. GANs are used in astronomy, video games, cartoons, 

human faces, and 3D object rendering. They generate fake data and respond to it 

as false data, updating the results. [49] 

III.7.5 Radial Basis Function Networks (RBFNs) 

   RBFNs are neural networks used for time-series prediction, regression testing, and 

classification. They consist of three layers: input, hidden, and output. The input 

layer uses neurons sensitive to training data, while the hidden layer integrates with 

the input layer. The output layer uses linear combinations of radial-based data, 

passing Gaussian functions as parameters. These networks are used for 

classification, regression testing, and time-series prediction. [49] 

III.7.6 Multilayer Perceptron’s (MLPs) 

   MLPs are the base of deep learning technology. It belongs to a class of feed-

forward neural networks having various layers of perceptron’s. These perceptron’s 

have various activation functions in them. MLPs also have connected input and 

output layers and their number is the same. Also, there's a layer that remains hidden 

amidst these two layers. MLPs are mostly used to build image and speech 

recognition systems or some other types of the translation software. 

The working of MLPs starts by feeding the data in the input layer. The neurons 

present in the layer form a graph to establish a connection that passes in one 

direction. The weight of this input data is found to exist between the hidden layer 

and the input layer. MLPs use activation functions to determine which nodes are 

ready to fire. These activation functions include tanh function, sigmoid and ReLUs. 

MLPs are mainly used to train the models to understand what kind of co-relation 

the layers are serving to achieve the desired output from the given data set. See the 

below image to understand better. [49] 

III.7.7 Self Organizing Maps (SOMs) 

Teuvo Kohenen invented Self-Organizing Machines (SOMs) to visualize data 

through artificial neural networks. These machines initialize weights of nodes and 
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choose random vectors from training data. They examine each node to find relative 

weights, deciding the Best Matching Unit (BMU). SOMs discover winning nodes 

over time, reducing them from the sample vector. Multiple iterations are used to 

ensure no node is missed. Examples include RGB color combinations. [49] 

III.7.8 Deep Belief Networks (DBNs) 

   DBNs, also known as generative models, are used in video and image recognition 

and motion capture. They are powered by Greedy algorithms and use a layer-to-

layer approach, generating weights through a top-down approach. They learn from 

latent values from every layer using a bottom-up pass approach, drawing samples 

from visible units and learning from the hidden two-layer. [49] 

III.7.9 Restricted Boltzmann Machines (RBMs) 

   RBMs, developed by Geoffrey Hinton, are stochastic neural networks used in 

dimension reduction, regression, classification, and topic modeling. They consist of 

two layers: visible and hidden, connected through hidden units and bias units. 

RBMs have two phases: forward pass and backward pass. Inputs are encoded, 

weighted, and combined in the backward pass, then pushed to the visible layer for 

activation and reconstructed output. [49] 

III.7.10 Autoencoders 

   Autoencoders are highly trained neural networks that replicate data, ensuring 

input and output are identical. They are used in tasks like pharma discovery, image 

processing, and population prediction. They consist of an encoder, code, and 

decoder, and can transform inputs into representations. Autoencoders reconstruct 

original inputs, reducing size and clarifying images for accuracy. 

III.8 Applications of Deep Learning   

III.8.1 Computer Vision 

   Deep learning has revolutionized computer vision by eliminating traditional 

image processing methods, resulting in significant improvements in tasks like 

object recognition, face recognition, artist classification, medical image analysis, 

and autonomous driving modules. The ImageNet dataset has seen a 20% reduction 

in error rate since 2010, surpassing human accuracy. Deep learning has also been 

used in medical image analysis and autonomous driving modules, tackling issues 

like "artistic style transfer" and transforming existing pictures into paintings based 

on specific styles. [44] 

III.8.2 Text Analysis and Understanding  

  Deep learning has been successfully applied to text analysis and understanding 

problems, including document classification, sentiment analysis, and automatic 

translation. Recurrent neural networks are particularly useful in this area due to the 

sequential nature of textual data. Deep learning has the ability to train language 
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models from raw text data, learning vocabulary, grammar, context, and other 

important traits. It can even be trained together with deep learning models for 

computer vision, providing results that were previously considered impossible. For 

example, deep learning can generate image captions without manual image 

processing or natural language processing, demonstrating a close understanding of 

the language used in images. Additionally, deep learning can generate new images 

based on text descriptions, pixel by pixel. [44] 

III.8.3 Speech Recognition 

    Speech recognition is a complex area in signal processing, with voice to text being 

the most widely researched problem. The auditory cortex in the brain is trained to 

recognize voice and convert it to language, making humans adept at this task. Deep 

learning has revolutionized speech recognition by allowing it to operate directly on 

raw data and large audio datasets, improving accuracy by 20-30%. Today, most smart 

assistants rely on deep learning, with Google Assistant having the highest accuracy 

in recent benchmarks. Deep learning has also been applied to speech generation, 

such as text to voice, with Google DeepMind presenting a novel method called 

WaveNet. Speaker recognition has also seen significant improvements, particularly 

in national security, with Fifth Dimension employing speech recognition to identify 

terrorists by matching their voice samples against a large dataset of known voices. 

III.8.4 Cybersecurity 

    One of the most crucial real-world problems today, one that concerns every large 

and small company, is cybersecurity. More than a million new malware threats 

(malicious software) are created every single day, and sophisticated attacks are 

continuously crippling entire companies — or even nations — by targeting critical 

national infrastructures, as would happen in the case of nation-state cyberattacks. 

There are many, many cybersecurity solutions out there, but all are struggling to 

detect new malware. It’s easy to mutate a malware and evade detection by even the 

most sophisticated cybersecurity solutions, which perform dynamic analysis on files 

and use traditional machine learning. 

Deep learning, a method that processes raw data without feature extraction, has 

been successfully applied to cybersecurity. However, it faces challenges due to the 

size and structure of computer files, which cannot be easily adjusted. Deep Instinct 

has demonstrated how a dedicated deep learning framework can overcome these 

challenges and train a deep learning model on raw files. The training phase uses 

hundreds of millions of malicious and legitimate files, taking only a day using GPUs. 

The resulting deep learning model is small, tens of megabytes, and can provide a 

prediction within milliseconds. This model has a higher detection rate and lower 

false positive rate compared to traditional machine learning solutions. Deep 

learning can also identify the type of malware, such as ransomware or Trojans, and 

even detect the nation-state behind an attack. [44] 
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III.9 Conclusion  
    In this chapter, we delved into the fascinating world of deep learning, focusing on 

neural networks, their various types, and the algorithms that power them. We began 

by exploring the fundamental architecture of neural networks, emphasizing the 

pivotal roles of neurons, layers, and activation functions. This foundational 

knowledge is crucial for understanding how neural networks emulate the human 

brain's learning processes. 

We then examined the different types of neural networks, each designed to tackle 

specific challenges and applications. From the traditional feedforward neural 

networks (FNN) to the more sophisticated convolutional neural networks (CNN) 

tailored for image processing, and recurrent neural networks (RNN) adept at 

handling sequential data, we saw how each type offers unique advantages. We also 

discussed advanced variations like Long Short-Term Memory (LSTM) networks and 

Generative Adversarial Networks (GANs), which push the boundaries of what 

neural networks can achieve. 

Through this exploration, it is evident that deep learning, with its diverse array of 

neural network architectures and sophisticated algorithms, is revolutionizing 

numerous fields. From image and speech recognition to natural language 

processing and autonomous systems, the applications of deep learning are vast and 

ever-expanding. 

As we conclude this chapter, it is clear that the potential of deep learning is 

immense. However, with great power comes great responsibility. As practitioners, it 

is imperative to stay mindful of ethical considerations and the societal impacts of 

deploying these technologies. Moving forward, the continued evolution of deep 

learning promises to unlock even more groundbreaking innovations, making it an 

exciting area of study and application for years to come. 
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IV.1 Introduction  
   We go over the specifics of our experiment in this chapter. We will outline the 

software and hardware tools we utilized to carry out our experiment in this chapter. 

We will also provide a thorough explanation of the dataset that was used to train 

and evaluate the models that were recommended. in addition to the assessment 

metrics used to analyze the models. Next, we will go into great depth on the 

exploratory data analysis we did on the outcomes of our experiment. 

IV.2 Working Environment and Tools Used 

IV.2.1 Hardware Environment 

   We used a HP brand ProBook with an Intel Core i5-6300U CPU @ 2.40GHz 2.50 

GHz and 8 GB of RAM for our project. 

IV.2.2 Software environment 

    We chose version 3.12 of the Python programming language because this project 

involves deep learning. We employed Jupyter Notebook as an environment manager 

and package supplier. In addition to Pandas, NumPy, TensorFlow, Keras and Scikit-

learn libraries. 

IV.2.2.1 Python  

    Python is a high-level, interpreted, interactive, and object-oriented scripting 

language developed by Guido van Rossum in the late eighties and early nineties at 

the National Research Institute for Mathematics and Computer Science in the 

Netherlands. It is derived from various scripting languages and is designed for high 

readable use. Python is a beginner's language, supporting a wide range of 

applications from text processing to web browsers and games.[50] 

Figure IV. 1: Python Logo 

IV.2.2.2 Jupyter Notebook  

    Jupyter Notebook is an interactive web application for creating and sharing 

computational documents. The project was first named IPython and later renamed 

Jupyter in 2014. It is a fully open-source product, and users can use every 

functionality available for free. It supports more than 40 languages including 

Python, R, and Scala. 

A notebook is a mutable file saved in ipynb format. Jupyter Notebook has a 

notebook dashboard to help users manage different notebooks. Kernels are also part 

of Jupyter notebooks. Kernels are processes that run interactive code in a particular 

programming language and return output to the user. Kernels also respond to tab 
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completion and introspection requests. Jupyter notebooks are used for a variety of 

purposes. A notebook is an interactive computational environment in which users 

can execute a particular piece of code and observe the output and make changes to 

the code to drive it to the desired output or explore more. Jupyter notebooks are 

heavily used for data exploration purposes as it involves a lot of reiterations. It is also 

used in other data science workflows such as machine learning experimentations 

and modeling. It can also be used for documenting code samples. A Jupyter 

notebook has independent executable code cells that users can run in any order.[51] 

Figure IV.2: Jupyter Logo 

IV.2.2.3 Pandas  

    Pandas is a Python-based open-source data analysis and manipulation tool used 

for data wrangling, analysis, cleaning, and transformation. It offers features such as 

speedy data exploration, file format reading, data cleaning, and manipulation. 

Pandas works with Data Frame objects, storing data in tabular rows and columns. 

Companies like Netflix, Amazon, and YouTube use Pandas for recommendation 

systems, healthcare, energy sector, ecommerce, personalized advertising, airline 

analysis, and stock market understanding.[52] 

IV.2.2.4 NumPy 

   An open-source library called NumPy has multidimensional arrays in it. Data can 

be stored in a homogenous "n" dimensional array object using the NumPy ndarray. 

In the business world, NumPy is used to compute arrays. For instance, a colorful 

image's data is kept in a 3D matrix with 1000 pixels. We must work on those pixels 

in order to alter those photos. NumPy comes in quite handy in this situation. 

Advanced Python packages like SciPy and Pandas also use NumPy. It outperforms 

Python's List in the following areas: Speed & Memory. Numerous built-in functions, 

such as random sampling, linear algebra, and mathematical functions, are available. 

Slicing and indexing are methods for gaining access to a portion of the data.[52] 

IV.2.2.5 TensorFlow  

    TensorFlow is a Python machine learning package that is free and open source. 

Although it may be applied to many different tasks, its primary focus is on deep 

neural network training and inference. By using multidimensional arrays, 

commonly referred to as tensors, it is able to execute several operations on a single 

input. TensorBoard is an additional component that comes with TensorFlow that 

facilitates graph visualization and model education. This debugs the model to 

improve its performance and aids in comprehending its nodes. 
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The Graph Dashboard is an effective tool for analyzing the TensorFlow model and 

provides a brief overview of its architecture. 

TensorFlow APIs are organized hierarchically, with low-level APIs serving as the 

foundation for high-level APIs. Low-level APIs are used by machine learning 

researchers to develop and find new machine learning algorithms. tf.Keras is an 

open-source API version that works with TensorFlow.[52][54] 

IV.2.2.6 Keras  

    Keras is a deep learning API written in Python and runs on top of the TensorFlow 

machine learning platform. It was developed with a focus on the possibility of rapid 

experiments. Keras are mainly used to create deep learning models, especially 

neural networks. Keras can be used to ship reliable and performant applied machine 

learning solutions, as well as in Natural Language Processing (NLP) and Computer 

Vision (CV).[52] 

IV.2.2.7 Scikit-learn 

   A machine learning library for the Python programming language is called Scikit-

learn. After cleaning and manipulating your data with Panda or NumPy, Scikit-learn 

is used to develop machine learning models, as it contains dozens of tools needed 

for modelling and predictive analysis. Scikit-learn may be used to create a variety of 

machine learning models, including supervised and unsupervised learning, feature 

importance analysis, and cross-validation of model correctness. Support vector 

machines, random forests, gradient boosting, 3 k-means, DBSCAN, and other 

classification, regression, and clustering algorithms are among them. It is made to 

work with NumPy and SciPy Python numerical and scientific libraries. [52] [53] 

IV.3 Evaluation Metrics  
   This section discusses the evaluation of information retrieval evaluation concepts 

like confusion matrix, precision, recall, F-score, cross validation. [55] [56] 

IV.3.1 Confusion matrix 

   The predictive analysis technique is the confusion matrix. In machine learning, to 

evaluate a model based on classification in terms of performance. It is a N x N 

matrix, where N is the number of target classes, that is used to assess how well a 

classification model performs. It is comprised of four fundamental properties 

(numbers) that determine the classifier's measuring metrics. 

• TP: True Positive: The actual value was positive and the model predicted a 

positive value. 

• FP: False Positive: Your prediction is positive, and it is false. (Also known as 

the Type 1 error). 

• FN: False Negative: Your prediction is negative, and result it is also false. 

(Also known as the Type 2 error). 
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• TN: True Negative: The actual value was negative and the model predicted a 

negative value. 

 

Table IV.1: Confusion Matrix 

 

 

 

IV.3.2 Accuracy 

   Another name for accuracy is positive predicted value, which expresses how 

accurate the model is. Fewer FP is indicated by higher accuracy. Its mathematical 

definition is: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (I.3) 

IV.3.3 Recall 

   Recall, sometimes referred to as sensitivity, is a metric used to assess how well a 

model classifies positive cases. A high recall value indicates that few positive cases 

are incorrectly classified as negative. The following formula can be used to calculate 

the Recall: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (I.4) 

IV.3.4 Overall Accuracy 

   The categorization techniques are measured by the overall accuracy. The following 

is a representation of this technique: 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
     (I.5) 

IV.3.5 F1 Score 

   The F1 score or F1 measure is the harmonic mean of precision and recall. The F 

score can be calculated as follows: 

𝐹1 =  
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦×𝑅𝑒𝑐𝑎𝑙𝑙

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦+𝑅𝑒𝑐𝑎𝑙𝑙
=  

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁 
     (I.6) 

IV.3.6 Cross Validation  

   Cross-validation is a statistical method for evaluating and comparing learning 

algorithms by dividing data into two segments for training and validation. K-fold 

cross-validation is the most basic, involving k rounds of training and validation. 

Actual value Predicted value 

Positive Negative 

Positive TP FP 

Negative FN TN 
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IV.4 Dataset Presentation  
    MQTTset, an IoT dataset focusing on MQTT communications, using IoT-Flock, 

a network traffic generator tool. The dataset is created by deploying 8 different IoT 

sensors connected to an MQTT broker. The scenario is a smart home environment, 

where sensors retrieve information like temperature, light intensity, humidity, CO-

Gas, motion, smoke, door opening/closure, and fan status at different intervals. [57] 

Figure IV.3: The scenario considered in MQTTset. 

The sensors network is designed to communicate with a broker in a limited access 

area, without additional components like firewalls. During attack phases, malicious 

nodes are directly connected to the broker to execute cyber-attacks. Each sensor is 

configured to trigger communication at a specific time, with periodic messages sent 

every n seconds and random messages sent at random periods. The dataset 

simulates real-life home automation behavior by analyzing communication aspects. 

Sensors are set up with a data profile and topic used by the MQTT broker, with the 

MQTT broker identified by the IP address 10.16.100.73 is listening on plain text port 

1883. Some sensors also have subscriber functions for data retrieval. [57] 

Sensor IP Address Room Type Messages 
Frequency 
(s) 

Topic Data Profile 

Temperatur
e 

192.168.0.151 1 Periodic 60 Temperature Temperature 

Light 
intensity 

192.168.0.150 1 Periodic 1800 Light intensity Light intensity 

Humidity 192.168.0.152 1 Periodic 60 Humidity Humidity 

Motion 
sensor 

192.168.0.154 1 Random 3600 Movement Movement 

CO-Gas 192.168.0.155 1 Random 3600 CO-Gas CO-Gas 

Smoke 192.168.0.180 2 Random 3600 Smoke Smoke 

Fan speed 
controller 

192.168.0.173 2 Periodic 120 Fan speed Fan speed 

Door lock 192.168.0.176 2 Random 3600 Door lock Door lock 

Fan sensor 192.168.0.178 2 Periodic 60 Fan Fan 

Motion 
sensor 

192.168.0.174 2 Random 3600 Movement Movement 

Table IV.2: IoT sensors adopted in the MQTTset scenario. 
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The MQTTset dataset is a publicly available dataset that includes network traffic 

related to MQTT version 3.1.1, excluding authentication and plain text 

communications. It provides packet inspection capabilities and allows for 

consideration of a wider set of parameters in network packets. The dataset includes 

11,915,716 network packets and has a capture time of one week. It can be used for 

intrusion detection and traffic characterization applications related to MQTT 

protocol, including both legitimate and malicious cyber-attacks. Researchers can 

integrate their attacks with the dataset for analysis, detection, and mitigation 

purposes. [57] 

IV.4.1 Considered Cyber-Attacks 

    As previously anticipated, MQTTset includes real attacks implemented to target 

the considered MQTT network, in order to include in the dataset additional files 

which could be adopted, for instance, to validate detection algorithms. Particularly, 

the following attacks are part of MQTTset [57]: 

IV.4.1.1 Flooding Denial of Service 

   Denial of service attacks target MQTT protocol to saturate brokers by establishing 

multiple connections and sending more messages. The MQTT-malaria tool is used 

to implement this attack. 

IV.4.1.2 MQTT Publish Flood 

   In this case, a malicious IoT device periodically sends a huge amount of malicious 

MQTT data, in order to seize all resources of the server, in terms of connection slots, 

networks or other resources that are allocated in limited amount. Differently on the 

previous attack, this attack tries to saturate the resources by using a single 

connection instead of instantiate multiple connections. 

IV.4.1.3 SlowITe 

   The Slow DoS against Internet of Things Environments (SlowITe) attack is a novel 

denial of service threat targeting the MQTT application protocol. Particularly, 

unlike previous threats, being a Slow DoS Attack, SlowITe requires minimum 

bandwidth and resources to attack an MQTT service. Particularly, SlowITe initiates 

a large number of connections with the MQTT broker, in order to seize all available 

connections simultaneously. Under these circumstances the denial-of-service 

status would be reached. 

IV.4.1.4 Malformed Data 

   A malformed data attack aims to generate and send to the broker several 

malformed packets, trying to raise exceptions on the targeted service. Considering 

MQTTset, in order to perpetrate a malformed data attack, MQTTSA tool was 

employed, sending a sequence of malformed CONNECT or PUBLISH packets to the 

victim in order to raise exceptions on the MQTT broker. 

IV.4.1.5 Brute Force Authentication 

  A brute force attack consists in running possible attempts to retrieve users’ 

credentials used by MQTT. Regarding MQTTset, the attacker’s aim is to crack users’ 
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credentials (username and password) adopted during the authentication phase. 

Also in this case, the MQTTSA tool was used. Particularly, in order to recall to a real 

scenario, the rockyou.txt word list was employed, that is considered a popular list, 

widely adopted for brute force and cracking attacks. For our tests, the credentials 

are stored on the word list used by the attacker. 

IV.4.2 MQTTset Validation 

   The dataset is used to design an intrusion detection system, combining legitimate 

MQTT traffic with various cyber-attacks targeting the MQTT broker of the network. 

The datasets are mixed together to train and predict algorithms, validating the 

possibility of using MQTTset for testing and implementing a novel intrusion 

detection algorithm. we considered various algorithms for validation, including 

neural networks, convolutional neural networks, long-term short memory, 

recurrent neural networks and multilayer perceptron. The features extracted were 

filtered to focus on the most relevant ones for identifying potential attacks and 

legitimate traffic. The workflow involves extracting features from raw network 

traffics, combining legitimate and malicious traffics, and applying different 

detection algorithms to identify anomalies on the generated traffic data. [57] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No Name Description Protocol Layer 

1 tcp.flags TCP flags TCP 

2 tcp.time_delta Time TCP stream TCP 

3 tcp.len TCP Segment Len TCP 

4 mqtt.conack.flags Acknowledge Flags MQTT 

5 mqtt.conack.flags.reserved Reserved MQTT 

6 mqtt.conack.flags.sp Session Present MQTT 

7 mqtt.conack.val Return Code MQTT 

8 mqtt.conflag.cleansess Clean Session Flag MQTT 

9 mqtt.conflag.passwd Password Flag MQTT 

10 mqtt.conflag.qos QoS Level MQTT 

11 mqtt.conflag.reserved (Reserved) MQTT 

12 mqtt.conflag.retain Will Retain MQTT 

13 mqtt.conflag.uname User Name Flag MQTT 

14 mqtt.conflag.willflag Will Flag MQTT 

15 mqtt.conflags Connect Flags MQTT 

16 mqtt.dupflag DUP Flag MQTT 

17 mqtt.hdrflags Header Flags MQTT 

18 mqtt.kalive Keep Alive MQTT 

19 mqtt.len Msg Len MQTT 

20 mqtt.msg Message MQTT 

21 mqtt.msgid Message Identifier MQTT 

22 mqtt.msgtype Message Type MQTT 

23 mqtt.proto_len Protocol Name Length MQTT 

24 mqtt.protoname Protocol Name MQTT 

25 mqtt.qos QoS Level MQTT 

26 mqtt.retain Retain MQTT 

27 mqtt.sub.qos Requested QoS MQTT 

28 mqtt.suback.qos Granted QoS MQTT 

29 mqtt.ver Version MQTT 

30 mqtt.willmsg Will Message MQTT 

31 mqtt.willmsg_len Will Message Length MQTT 

32 mqtt.willtopic Will Topic MQTT 

33 mqtt.willtopic_len Will Topic Length MQTT 

Table IV.3: The list of 

extrapolated features. 
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IV.5 Implementation 
The proliferation of Internet-of-Things (IoT) devices necessitates robust security 

measures to safeguard against cyberattacks. This project explores the efficacy of 

deep learning algorithms for intrusion detection within an IoT network. We 

implemented a system employing Python, TensorFlow, Keras, Pandas, and scikit-

learn to analyze network traffic data. We evaluated the performance of various deep 

learning architectures, including Convolutional Neural Networks (CNNs), 

Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM) networks, 

and Multi-Layer Perceptrons (MLPs), in identifying both legitimate and malicious 

traffic. 

IV.5.1 Dataset Preparation 

 We employed the MQTTset dataset, a collection of labeled IoT network traffic data. 

Two datasets were created: 

• Binary classification: Legitimate vs. Malicious (Attack) traffic. 

• Multi-class classification: Legitimate vs. Five different attack types (dos, 

flood, slowite, malformed, brute-force). 

Data pre-processing techniques were applied to ensure consistency and suitability 

for deep learning models. 

IV.5.2 Dataset Cleansing  

     To ensure optimal model performance, the project incorporated a meticulous 

data pre-processing stage. The MQTTset dataset was carefully examined, and 

features deemed irrelevant or redundant for intrusion detection were meticulously 

removed. This data cleaning process streamlined the training process and 

potentially improved model generalizability by focusing on the most informative 

features for attack classification. Here the is resulted features after the cleaning: 

 

 

 

 

 

 

 

No Name Description Protocol Layer 

1 tcp.flags TCP flags TCP 

2 tcp.time_delta Time TCP stream TCP 

3 tcp.len TCP Segment Len TCP 

4 mqtt.conack.val Return Code MQTT 

5 mqtt.conflag.cleansess Clean Session Flag MQTT 

6 mqtt.conflag.passwd Password Flag MQTT 

7 mqtt.conflag.uname User Name Flag MQTT 

8 mqtt.conflags Connect Flags MQTT 

9 mqtt.dupflag DUP Flag MQTT 

10 mqtt.hdrflags Header Flags MQTT 

11 mqtt.kalive Keep Alive MQTT 

12 mqtt.len Msg Len MQTT 

13 mqtt.msgid Message Identifier MQTT 

14 mqtt.msgtype Message Type MQTT 

15 mqtt.proto_len Protocol Name Length MQTT 

16 mqtt.qos QoS Level MQTT 

17 mqtt.retain Retain MQTT 

18 mqtt.ver Version MQTT 

Table IV.4: The 

list of extrapolated 

features after the 

cleansing. 
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IV.5.3 Implementing Deep Learning Models 

     We implemented the following deep learning architectures: 

• Convolutional Neural Networks (CNNs): Efficient in extracting spatial 

features from network traffic data. 

• Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) 

networks: Well-suited for capturing sequential dependencies within 

network flows. 

• Multi-Layer Perceptrons (MLPs): Offer a versatile architecture for general 

classification tasks. 

Each model was trained and optimized using appropriate hyperparameter tuning 

strategies. 

IV.5.4 Brief Explanation of the Coding Experiment in This Project 

      Leveraging Python as the primary programming language and Jupyter Notebook 

as the development environment, this project employed a series of experiments to 

evaluate the effectiveness of deep learning algorithms for intrusion detection in IoT 

networks. The following section details the specific steps undertaken for each 

experiment, encompassing both binary and multi-class classification scenarios: 

Step 1: Load and Inspect the Data 

• The first line import pandas as pd imports the pandas library and assigns it 

the alias pd. This allows you to use pd instead of typing the full library name 

throughout your code, making it more concise. 

• The next line defines a variable named file_path and assigns a string value 

to it. This string represents the path (location) on your computer's file system 

where your data is stored. In this case, the filename is 
mqttdataset_reduced_clean_binary.csv. 

• The following line data = pd.read_csv(file_path) uses the pd.read_csv 

function from the pandas library. This function reads the data from the 

specified CSV file (file_path) and stores it in a pandas data structure called a 

DataFrame. The variable data now holds this DataFrame, which essentially 

acts as a tabular structure containing your data. 

• The final line print(data.head()) utilizes the head method of the 

DataFrame (data). The head method displays the first few rows (usually by 

default, the first 5 rows) of the DataFrame. This allows you to take a quick 
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peek at the contents of your data and get a sense of its structure (column 

names, data types). 

Step 2: Preprocess the Data 

 

• from sklearn.model_selection import train_test_split: This line 

imports the train_test_split function from the sklearn.model_selection 

library. This function is used to split your data into training and testing sets, 

which are essential for model training and evaluation. 

• from sklearn.preprocessing import StandardScaler, LabelEncoder: 

This line imports two functions from the sklearn.preprocessing library: 

StandardScaler: This function is used to standardize features (numerical 

columns) by removing the mean and scaling to unit variance. This helps 

improve the performance of some machine learning algorithms, especially 

those sensitive to feature scales.  

LabelEncoder: This function is used to encode categorical variables (text 

labels) into numerical representations suitable for deep learning algorithms. 

• X = data.drop(columns=['target']): This line assumes you have a 

DataFrame named data containing your features (columns) and a target 

variable (the class labels we want to predict). It creates a new DataFrame X 

that excludes the target column named 'target'. This separates the features 

you want the model to learn from (predictors) from the labels you want it to 

predict (target). 

• y = data['target']: This line extracts the target column named 'target' 

from the DataFrame data and stores it in a separate variable y. This isolates 

the target variable for further processing. 

• label_encoder = LabelEncoder(): Creates a LabelEncoder object. 
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• y = label_encoder.fit_transform(y): This line uses the fit_transform 

method of the LabelEncoder to encode the target variable (y). It first "fits" 

the encoder to the unique categories in y, assigning each category a 

numerical label. Then, it "transforms" y by replacing each category with its 

corresponding numerical label. 

• scaler = StandardScaler(): Creates a StandardScaler object. 

• X = scaler.fit_transform(X): This line uses the fit_transform method of 

the StandardScaler to standardize the features in X. It first "fits" the scaler to 

the distribution of features in X (calculating the mean and standard 

deviation). Then, it "transforms" X by subtracting the mean from each 

feature and scaling it to unit variance.  

• X = X.reshape(X.shape[0], X.shape[1], 1): This line reshapes the 

data specifically for Convolutional Neural Networks (CNNs). CNNs typically 

expect input data in a 3D format: (number of samples, number of features, 

number of channels). This line reshapes X to meet this requirement, 

assuming the features are in separate columns and there's only one channel 

(e.g., grayscale image data).  

• X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.2, random_state=42): This line splits the pre-processed data 

(X and y) into training and testing sets using the train_test_split function. 

• test_size=0.2: This parameter specifies that 20% (0.2) of the data will be 

used for the testing set, and the remaining 80% will be used for the training 

set. 

• random_state=42: This parameter sets the random seed for splitting the 

data. This ensures reproducibility. 

Step 3: Build the CNN Model 

 

• from keras.models import Sequential: This line imports the Sequential 

model class from the keras.models library. This class allows you to build 

neural networks layer by layer in a sequential fashion. 
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• from keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, 

Dropout: This line imports various layer types from the keras.layers library: 

Conv1D: One-dimensional convolutional layer for extracting features from time 

series data like network traffic. 

MaxPooling1D: Downsamples the output of the convolutional layer to reduce 

complexity and potentially improve model generalizability. 

Flatten: Flattens the multi-dimensional output of the convolutional layers into a 

single dimension suitable for dense layers. 

Dense: Fully-connected layer for learning more complex relationships between 

features. 

Dropout: Randomly drops a certain percentage of activations during training to 

prevent overfitting. 

• model = Sequential(): Creates a new sequential model instance. 

• model.add(Conv1D(filters=64, kernel_size=3, activation='relu', 

input_shape=(X_train.shape[1], 1))): This line adds the first 

convolutional layer to the model. 

filters=64: This specifies the number of filters (feature maps) the layer will learn. 

kernel_size=3: This defines the size of the filter window that will slide across the 

input data to extract features.  

activation='relu': This defines the activation function for the layer. ReLU 

(Rectified Linear Unit) is a popular choice for its efficiency and ability to learn non-

linear relationships. 

input_shape=(X_train.shape[1], 1): This specifies the expected input shape for 

the first layer. 

X_train.shape[1]: This retrieves the number of features (columns) in the training 

data X_train. 1  indicates that the data has one channel (assuming grayscale image 

data or single-channel time series). Adjust this value if your data has multiple 

channels. 

The following lines (model.add(...)) add subsequent layers to the model, creating 

a stack of convolutional, pooling, flattening, and dense layers: Two more 

convolutional layers with different filter numbers and ReLU activation. Two max-

pooling layers to downsample the data and reduce computational complexity. A 

Flatten layer to convert the multi-dimensional output from the convolutional layers 

into a one-dimensional vector suitable for dense layers. Two dense layers with ReLU 

activation to learn complex relationships between features. A Dropout layer with a 

50% dropout rate to prevent overfitting. Another dense layer with the number of 

units equal to the number of classes in your dataset (obtained from 

len(label_encoder.classes_)).The final layer uses a softmax activation function, 
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typically used for multi-class classification. Softmax normalizes the output of the 

last layer into probabilities, allowing the model to predict the probability of each 

class for a given input. 

• model.compile(optimizer=Adam(),loss='sparse_categorical_crossent

ropy', metrics=['accuracy']): This line configures the training process 

for the model. 

optimizer=Adam(): This specifies the Adam optimization algorithm to update the 

model's weights during training.  

loss='sparse_categorical_crossentropy': This defines the loss function used to 

measure the error between the model's predictions and the true labels. Sparse 

categorical crossentropy is suitable for multi-class classification.we used the 

binary_crossentropy for the binary classification. 

metrics=['accuracy']: This specifies that the model will track the accuracy metric 

during training and evaluation.  

• model.summary(): This line displays a summary of the model's architecture, 

including the layers, their configurations, and the total number of 

parameters. This helps you understand the complexity of the model and 

identify potential bottlenecks or overfitting issues. 

Step 4: Train the Model 

 

• from keras.callbacks import EarlyStopping: This line imports the 

EarlyStopping callback class from the keras.callbacks library. This callback 

allows you to monitor the training process and stop training early if the 

model's performance on a validation set plateaus or degrades. 

• early_stopping = EarlyStopping(monitor='val_loss', patience=3): 

This line creates an instance of the EarlyStopping callback. 

monitor='val_loss': This parameter specifies that the callback will monitor the 

validation loss (val_loss) during training. Validation loss is the loss calculated on a 

separate validation set. 

patience=3: This parameter defines the patience level of the callback. If the 

validation loss does not improve for patience consecutive epochs, the callback will 

trigger early stopping.  

• history = model.fit(X_train, y_train, epochs=20, batch_size=32, 

validation_split=0.2, callbacks=[early_stopping]): This line trains 

the model using the fit method. 

X_train: The training data features. 
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y_train: The training data labels. 

epochs=20: The maximum number of training epochs (iterations). 

batch_size=32: The number of data samples processed in each training step 

(batch). 

validation_split=0.2: This parameter specifies that 20% (0.2) of the training data 

will be used as the validation set for early stopping. 

callbacks=[early_stopping]: This list includes the early_stopping callback, 

instructing the model to use it during training. 

Step 5: Evaluate the Model 

 

• import numpy as np: This line imports the `numpy` library and assigns it 

the alias `np`. `numpy` is a fundamental library for scientific computing in 

Python and is commonly used for working with arrays. 

• from sklearn.metrics import recall_score, precision_score, 

f1_score: This line imports three specific functions from the 

`sklearn.metrics` module of the scikit-learn library. These functions are 

used to calculate performance metrics for machine & deep learning models. 

• recall_score: This function calculates the recall, which is the proportion 

of true positives that were correctly identified. 

• precision_score: This function calculates the precision, which is the 

proportion of predicted positives that were actually true positives. 

• f1_score: This function calculates the F1 score, which is a harmonic mean 

of precision and recall. 

• test_loss, test_accuracy = model.evaluate(X_test, y_test): This 

line assumes you have a trained model (`model`) and two datasets, `X_test` 

(containing the test features) and `y_test` (containing the test labels). 

• y_pred = model.predict(X_test): This line uses the `predict` method of 

the model to make predictions on the unseen test data (`X_test`). The 

predicted labels are stored in the variable `y_pred`. 
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• y_pred_rounded = np.round(y_pred):This line uses the `np.round` 

function from the imported `numpy` library to round the values in 

`y_pred`.  This is necessary because some models might output continuous 

values for classification tasks, while the actual labels are likely discrete (e.g., 

0 or 1). Rounding helps convert the predicted values to match the format of 

the true labels. 

• recall = recall_score(y_test, y_pred_rounded), precision = 

precision_score(y_test, y_pred_rounded), f1 = f1_score(y_test, 

y_pred_rounded): These lines calculate the performance metrics using the 

imported functions from scikit-learn. 

 IV.5.5 Evaluation 

     The performance of each model was assessed using standard accuracy metric. 

We compared the effectiveness of the models in both binary and multi-class 

classification scenarios. 

IV.5.6 Results and Discussion 

     The project investigated the suitability of different deep learning algorithms for 

intrusion detection in IoT networks. 

We analyzed the trade-offs between model complexity, accuracy, and 

computational efficiency. 

The results provided insights into the most effective deep learning architectures for 

this specific application domain. 

IV.6 Interpretation of Results 
      The project achieved promising results in leveraging deep learning for intrusion 

detection in IoT networks. All four deep learning architectures (CNNs, RNNs, 

LSTMs, MLPs) exhibited a high level of accuracy in the binary classification task, 

consistently reaching around 84%. This demonstrates their effectiveness in 

distinguishing between legitimate and malicious traffic. 

When considering multi-class classification, the accuracy dropped slightly to 

around 83%. While this remains a good performance level, the decrease suggests 

that differentiating between various attack types might pose a greater challenge for 

the models. Here are some possible explanations: 

• Increased complexity: Multi-class classification inherently involves more 

categories to distinguish between, requiring the models to learn more 

intricate relationships within the data. 

• Dataset limitations: The multi-class dataset might have inherent limitations, 

such as imbalanced class distributions (some attack types being less frequent 

than others). This can make it harder for models to learn accurate 

representations for all classes. 
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• Architectural suitability: Certain architectures, like CNNs, might be better 

suited for binary classification tasks involving spatial features, while RNNs 

or LSTMs might excel at handling sequential data patterns in multi-class 

scenarios with diverse attack types. 

 Deep Learning Algorithm Accuracy 

Binary Classification CNN 84% 

RNN 84% 

LSTM 84% 

MLP 84% 

Multi-Class 
Classification 

CNN 83% 

RNN 82% 

LSTM 83% 

MLP 83% 

Table IV.5: Test Accuracy. 

 The consistent performance across all architectures in binary classification 

highlights the overall effectiveness of deep learning for this task. It suggests that the 

core network traffic features might be well-suited for detection regardless of the 

specific learning approach. 

 

Figure IV.4: Test Accuracy Chart. 

 Deep Learning Algorithm Loss 

Binary Classification CNN 24% 

RNN 24% 

LTSM 23% 

MLP 24% 

Multi-Class 
Classification 

CNN 41% 

RNN 44% 

LSTM 41% 

MLP 43% 

Table IV.6: Test Loss. 
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The project's findings regarding test loss reveal interesting insights into the 

performance of these deep learning architectures for intrusion detection. While all 

architectures achieved high accuracy (around 84%) in binary classification, the test 

loss of 23% suggests they learned the distinction between legitimate and malicious 

traffic effectively. This indicates the models can generalize well to unseen data in 

this binary scenario. 

However, the test loss for multi-class classification, which reached 42%, paints a 

different picture.  This significantly higher loss compared to binary classification 

suggests the models encountered greater difficulty learning the nuances between 

various attack types within the multi-class dataset. 

Figure IV.5: Test Loss Chart. 

 Deep Learning Algorithm Recall 

Binary Classification MLP 99% 

CNN 99% 

RNN 99% 

LSTM 99% 

Multi-Class Classification MLP 56% 

CNN 56% 

RNN 53% 

LSTM 56% 

Table IV.7: Recall Metric. 

The project's findings regarding the recall metric offer valuable insights into the 

effectiveness of deep learning architectures for intrusion detection. All four 

architectures (CNNs, RNNs, LSTMs, MLPs) achieved an exceptional recall of 99% 

in binary classification. This indicates a remarkable ability to identify nearly all 

instances of malicious traffic within the dataset. 

However, the recall dropped significantly to around 55% in multi-class 

classification. While this result suggests the models are still capable of detecting 
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some attack types, it highlights a potential challenge in accurately identifying all 

malicious traffic across various attack categories. 

 

Figure IV.6: Recall Metric Chart. 

 Deep Learning Algorithm  Precision  

Binary Classification  MLP 76% 

CNN 76% 

RNN 76% 

LSTM 76% 

Multi-Class 
Classification  

MLP 86% 

CNN 86% 

RNN 84% 

LSTM 86% 

Table IV.8: Precision Metric. 

The project's findings regarding the precision metric offer interesting insights into 

the model's ability to identify true positives in intrusion detection. While all four 

architectures (CNNs, RNNs, LSTMs, MLPs) achieved good precision in binary 

classification (around 76%), the results for multi-class classification were even 

higher (around 85%). This is a significant result, indicating that for every 100 

instances classified by the models as a specific attack type, around 85 were true 

positives. This highlights the models' effectiveness in accurately classifying specific 

attacks within the multi-class dataset. While both results are positive, the higher 

precision in multi-class classification might seem counterintuitive compared to the 

lower recall observed previously (around 55%). Due to potential class imbalance in 

the dataset, the models might have prioritized learning the characteristics of more 

frequent attack types during training. This focus could lead to higher precision for 

these types, as the models are more confident in their classifications. However, the 

lower recall suggests they might miss some instances of less frequent attack types, 

hence the overall lower recall in multi-class classification. 
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Figure IV.7: Precision Metric Chart. 

 Deep Learning Algorithm F1 Score 

Binary Classification MLP 86% 

CNN 86% 

RNN 86% 

LSTM 86% 

Multi-Class 
Classification 

MLP 64% 

CNN 64% 

RNN 59% 

LSTM 63% 

Table IV.9: F1 Score. 

The project's findings on the F1 score metric provide valuable insights into the 

overall balance between precision and recall achieved by the deep learning 

architectures for intrusion detection. All four architectures (CNNs, RNNs, LSTMs, 

MLPs) achieved a high F1 score of 86% in binary classification. However, the F1 score 

dropped to around 62% in multi-class classification. This score indicates a strong 

balance between identifying true positives and detecting all malicious traffic. A 

score this high  86% suggests the models are very effective at accurately classifying 

both legitimate and malicious traffic, minimizing false positives while still catching 

most malicious instances. This score 62%  represents a trade-off between 

identifying true positives and detecting all malicious traffic. While it suggests the 

models still achieve a decent balance, the decrease compared to binary classification 

highlights the challenge of handling diverse attack types. The multi-class dataset 

might be imbalanced, with some attack types being less frequent. This can lead to 

models prioritizing learning the more frequent classes, potentially impacting 

performance for less frequent ones.  
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Figure IV.8: F1 Score Metric Chart. 

IV.6.1 Comparison of Deep Learning vs. Classical Machine Learning for 

Intrusion Detection 

   This analysis compares the performance of deep learning architectures (previously 

discussed) with classical machine learning methods (decision trees, naive Bayes, 

random forest, gradient boosting) for intrusion detection in our project. 

 Machine Learning Methods Accuracy F1 score 

Binary 
Classification 

Decision Tree 92% 92% 

Naïve Bayes 79% 78% 

Random Forest 75% 11% 

Gradient Boost 71% 11% 

Multi-Class 
Classification 

Decision Tree 90% 90% 

Naïve Bayes 67% 75% 

Random Forest 90% 90% 

Gradient Boost 79% 82% 

Table IV.10: Accuracy, F1 score of Machine Learning Methods. 

Binary Classification 

Deep Learning 

      All architectures achieved high accuracy (around 84%) and F1 score (around 

86%). This indicates excellent performance in identifying malicious traffic with 

minimal false alarms. 

Classical Machine Learning 

Decision Tree: Achieved the highest accuracy (92%) and F1 score (92%) among all 

methods. This suggests excellent performance in accurately classifying traffic. 

Naive Bayes: Lower accuracy (79%) and F1 score (78%) compared to deep learning, 

potentially indicating challenges in handling complex network traffic patterns. 
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Random Forest: Lower accuracy (75%) and a concerningly low F1 score (11%). This 

suggests the model might be overfitting the training data and performing poorly on 

unseen examples. 

Gradient Boost: Similar performance to Random Forest with low accuracy (71%) and 

F1 score (11%). 

Multi-Class Classification 

Deep Learning 

    Achieved good accuracy (around 83%) but a lower F1 score (around 62%). This 

suggests some challenges in differentiating diverse attack types while still 

maintaining good overall accuracy. 

Classical Machine Learning 

Decision Tree: Maintained high accuracy (90%) and F1 score (90%) similar to binary 

classification. This method seems robust in handling multi-class scenarios as well. 

Naive Bayes: Lower accuracy (67%) and a higher F1 score (75%) compared to deep 

learning. This might indicate a bias towards the majority class, potentially missing 

some attack types. 

Random Forest: Recovered well from binary classification with high accuracy (90%) 

and F1 score (90%). This suggests the ensemble approach helps handle the 

complexity of multi-class data. 

Gradient Boost: Improved performance compared to binary classification with 

accuracy (79%) and F1 score (82%). This method seems to benefit from the 

ensemble approach for multi-class problems. 

General Observations 

    Deep learning excels at achieving high accuracy in both binary and multi-class 

classification. However, in multi-class scenarios, it might struggle with achieving a 

good balance between diverse attack types. Decision Trees emerged as a strong 

contender, achieving excellent performance in both binary and multi-class 

scenarios with high accuracy and F1 score. Naive Bayes performed poorly in binary 

classification but showed some improvement in multi-class F1 score, suggesting a 

potential bias towards the majority class. Random Forest and Gradient Boosting 

improved their performance in multi-class classification compared to binary, 

suggesting the ensemble approach benefits from handling complex data structures. 
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IV.7 Conclusion  
     In conclusion, this project investigated the efficacy of deep learning algorithms 

for intrusion detection within an IoT network environment. We implemented a 

system utilizing Python, TensorFlow, Keras, and scikit-learn to analyze network 

traffic data. The project explored the performance of various deep learning 

architectures, including Convolutional Neural Networks (CNNs), Recurrent Neural 

Networks (RNNs), Long Short-Term Memory (LSTM) networks, and Multi-Layer 

Perceptrons (MLPs), in identifying both legitimate and malicious traffic. The 

experiments encompassed both binary and multi-class classification scenarios, 

utilizing datasets specifically tailored for this purpose. The results provided valuable 

insights into the effectiveness of different deep learning architectures for intrusion 

detection in IoT networks. This project demonstrates the potential of deep learning 

as a robust and adaptable approach to safeguarding IoT environments from 

cyberattacks. Future research can explore methods for enhancing model 

interpretability, real-time threat detection capabilities, and incorporating 

additional network traffic features for improved classification accuracy. 
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General Conclusion  
In conclusion, this thesis delved into the exciting potential of deep learning 

algorithms for fortifying intrusion detection systems within the burgeoning 

landscape of Internet of Things (IoT) networks. The research convincingly 

demonstrated that deep learning offers a robust and adaptable approach to 

identifying and mitigating an ever-evolving arsenal of security threats that plague 

these interconnected environments. By harnessing the unique ability of deep 

learning models to discern complex patterns from massive datasets. This innovation 

effectively distinguished between legitimate network activity and malicious 

attempts to infiltrate the system. This finding sheds light on the transformative role 

deep learning can play in safeguarding the security of IoT networks, ensuring the 

smooth operation of critical infrastructure and protecting sensitive data. 

However, the thesis also acknowledged the ongoing challenges that need to be 

addressed. The limited availability of high-quality, comprehensive data for training 

deep learning models remains an obstacle. Additionally, the computational 

demands of these algorithms can pose challenges for resource-constrained IoT 

devices. Furthermore, the ever-shifting landscape of cyber threats necessitates 

continuous adaptation and improvement of intrusion detection systems. 

Looking forward, this thesis identified promising avenues for future research. 

Exploring techniques for data augmentation to address limitations in data 

availability is crucial. Optimizing deep learning models for efficient operation on 

resource-constrained devices will be essential for wider deployment in IoT 

networks. Additionally, investigating methods for continual learning and 

adaptation will be paramount to ensure that intrusion detection systems remain 

effective against evolving cyber threats. By tackling these challenges, future research 

can pave the way for the seamless integration of deep learning-based intrusion 

detection systems into real-world IoT applications. Overall, this thesis contributes 

significantly to the ongoing effort to secure the future of interconnected devices and 

foster a robust foundation for the safe and reliable operation of the ever-expanding 

world of IoT networks. 
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