
 الـجـــــــــمــــهـــــوريــــــــــــة الـجـــزائـــريـــــة الديـمــــــقـــراطــيـــــة الـــشــــــعـــبـــيـــــة
PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA

العــــــــــــــــــــــالي والبــــــــــــــــحث العــــــــــــــــــــلــــــمــــــــــــي وزارة التــــــــــعــــــليـــــــــم
MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC

RESEARCH

–د. الطاهر مولاي –جـــامعة سعيدة
University of Saida - Dr. MOULAY TAHAR

Faculty of Technology

A Dissertation Submitted to the Department of Telecommunications in Partial

Fulfilment of the Requirements for Degree of Master of

Networks & Telecommunications

Presented by: Mr. MOHAMMEDI Houari

 Mr. MAHSER Kheireddine

Intrusion Detection in IoT Networks using Deep

Learning Algorithms

Defended on June, 22 2024 in front of the jury composed of:

Dr. BOUYEDDOU Benamar MCA President

Dr. GUENDOUZ Mohamed MCA Supervisor

Dr. OUIS. Esma MAB Examiner

2023 / 2024

Acknowledgment

We would like to thank first and foremost

ALLAH the Almighty, who gave us the strength

and patience to accomplish our work in the best

conditions.

We thank our family for the sacrifices they have

made so that we can complete our studies.

To our supervisor Dr. GUENDOUZ

Mohamed; for having agreed to take charge

and for his precious advice and his help

throughout the work period.

We would also like to thank the members of the

jury for their interest in our work by agreeing

to examine our work and enrich it with their

proposals.

Finally, our thanks go to all the professors and

teaching staff at the University of Saida Dr

Moulay Tahar, especially the

telecommunications department. who have

accompanied us throughout these years of

study, to all the students in our class and to

anyone who has contributed directly or

indirectly to the development of this graduation

project.

Dedication
I dedicate this modest work as a sign of expression of all my

affection and my great gratitude to:

My dear parents, BOUHAFS & ARBIA who gave Me

existence, love, support, I’m forever in your debt.

My brothers AHMED, MAAZOUZ and ALI your support

has no limit so thank you for always having my back.

My sisters AICHA and KHEIRA for always believing in

me, you are my treasures.

My brother-in-law KARIM your support in one of a kind.

My sister-in-law SOUAD thank you for always caring.

My adorable nieces SHAHID & LOJAIN you bring joy to

my life.

My dear friends MUSTAPHA, BRAHIM, WISSAM I’m

lucky having you as my friends.

My colleague and Brother MAHSER KHEIREDDINE

this wouldn’t be possible without you; you’ve always been a

kind brother to me so thank you.

To Mr. GUENDOUZ Mohamed, I thank you for your

teachings, patience, advice, and for always bearing with

me.

Houari

Dedication

I am profoundly grateful to those who have made this thesis

possible through their unwavering support and

encouragement.

Firstly, I would like to express my deepest gratitude to my

family. Your constant love, understanding, and sacrifices

have been my greatest source of strength. You have

supported me in every way possible, and for that, I am

forever indebted.

I am also sincerely thankful to our administration: your

guidance, resources, and encouragement have been

instrumental in the completion of this research. Special

thanks to my advisor for his invaluable advice, patience, and

constructive feedback throughout this journey.

Lastly, I extend my heartfelt thanks to my friends: your

moral support, and belief in my abilities have been crucial.

Thank you for standing by me through the challenges and

celebrating the achievements with me.

Thanks to my partner in this unforgettable journey for his

kindness and seriousness.

This accomplishment would not have been possible without

each of you. Thank you.

Kheireddine

Abstract

The internet has become an inseparable part of human life, and the number of devices

connected to the internet is increasing sharply. In particular, Internet of Things (IoT)

devices have become a part of everyday human life. However, some challenges are

increasing, and their solutions are not well defined. More and more challenges related

to technology security concerning the IoT are arising. Many methods have been

developed to secure IoT networks, but many more can still be developed. One proposed

way to improve IoT security is to use deep learning. This research discusses several deep-

learning strategies, as well as standard datasets for improving the security performance

of the IoT. We developed an algorithm for detecting denial-of-service (DoS) attacks

using a deep-learning algorithm. This research used the Python programming language

with packages such as scikit-learn, TensorFlow, and Keras. We found that a deep-

learning model could increase accuracy so that the mitigation of attacks that occur on

an IoT network is as effective as possible.

Keywords: deep learning; Internet of Things; distributed denial-of-service attack;

intrusion detection.

Résumé

Internet est devenu un élément indissociable de la vie humaine et le nombre d’appareils

connectés à Internet augmente fortement. En particulier, les appareils Internet des

objets (IoT) font désormais partie de la vie humaine quotidienne. Cependant, certains

défis se multiplient et leurs solutions ne sont pas bien définies. De plus en plus de défis

liés à la sécurité technologique concernant l’IoT apparaissent. De nombreuses méthodes

ont été développées pour sécuriser les réseaux IoT, mais bien d’autres peuvent encore

être développées. L’un des moyens proposés pour améliorer la sécurité de l’IoT consiste

à utiliser l’apprentissage automatique. Cette recherche aborde plusieurs stratégies

d'apprentissage profond, ainsi que des ensembles de données standard pour améliorer

les performances de sécurité de l'IoT. Nous avons développé un algorithme de détection

des attaques par déni de service (DoS) à l'aide d'un algorithme d'apprentissage en

profondeur. Cette recherche a utilisé le langage de programmation Python avec des

packages tels que scikit-learn, TensorFlow. Nous avons constaté qu'un modèle

d'apprentissage en profondeur pourrait accroître la précision afin que l'atténuation des

attaques qui se produisent sur un réseau IoT soit aussi efficace que possible.

Mots-clés : l'apprentissage en profondeur ; Internet des objets ; attaque par déni de

service distribué ; détection d'intrusion.

 ملخص

وجه على حاد. بشكل نت بالإنتر المتصلة الأجهزة عدد ايد ز ويتر الإنسان، حياة من يتجزأ لا جزءًا نت الإنتر أصبح

نت الأشياء ية اليومية. ومع ذلك، فإن بعض التحديات (IoT) الخصوص، أصبحت أجهزة إنتر جزءًا من الحياة البشر

ايد، ولم يتم تحديد حلولها بشكل جيد. تظهر المزيد والمزيد من التحديات المتعلقة بأمن التكنولوجيا ز ي التر
ز
آخذة ف

نت الأشياء، ولكن ز شبكات إنتر نت الأشياء. لقد تم تطوير العديد من الطرق لتأمي لا يزال من الممكن فيما يتعلق بإنتر

نت الأشياء هي استخدام التعلم ز أمان إنتر حة لتحسي . تطوير العديد من الطرق الأخرى. إحدى الطرق المقتر الآلي

ز لتحسي القياسية البيانات إل مجموعات بالإضافة العميق، التعلم اتيجيات استر العديد من البحث يناقش هذا

الخدمة للكشف عن هجمات رفض بتطوير خوارزمية قمنا لقد نت الأشياء. ي لإنتر
الأمنز باستخدام (DoS) الأداء

مجة بايثون مع حزم مثل .TensorFlowو scikit-learn خوارزمية التعلم العميق. استخدم هذا البحث لغة التر

ي تحدث على
لقد وجدنا أن نموذج التعلم العميق يمكن أن يزيد من الدقة بحيث يكون التخفيف من الهجمات النر

 قدر الإمكان
ً
نت الأشياء فعالا .شبكة إنتر

نت الأشياء؛ هجوم حجب الخدمة الموزع؛ كشف التسلل .الكلمات المفتاحية: ؛ تعلم عميق؛ انتر

Table of Contents

Table of Contents
General Introduction ... 1

Chapter I: Internet of Things .. 5

I.1 Introduction ... 6

I.2 Definition of IoT ... 7

I.3 Things in loT ... 8

I.4 loT Protocols .. 9

I.4.1 Ethernet ... 9

I.4.2 Wi-Fi ... 9

I.4.3 Wi-Max ... 9

I.4.4 LR-WPAN ... 9

I.4.5 Mobile Communication (2G/3G/4) .. 10

I.4.6 IPv4 .. 10

I.4.7 IPv6 .. 10

I.4.8 6LoWPAN .. 10

I.4.9 TCP... 10

I.4.10 UDP .. 10

I.4.11 HTTP .. 11

I.4.12 CoAP .. 11

I.4.13 WebSocket ... 11

I.4.14 MQTT .. 11

I.4.15 XMPP ... 11

I.4.16 DDS ... 12

I.4.17 AMQP ... 12

I.5 Logical Design of loT ...13

I.5.1 loT Functional Blocks ...13

I.5.2 loT Communication Models .. 14

I.6 IoT Characteristics .. 15

I.6.1 Interconnectivity .. 15

I.6.2 Things-related services ... 16

I.6.3 Heterogeneity .. 16

I.6.4 Dynamic changes .. 16

Table of Contents

I.6.5 Enormous scale .. 16

I.6.6 Safety ... 16

I.6.7 Connectivity .. 16

I.7 Types of IoT Technologies .. 16

I.7.1 Internet of Things (IoT) ... 16

I.7.2 Internet of Everything (IoE) .. 17

I.7.3 Internet of Nano Things (IoNT) .. 17

I.7.4 Internet of Mission Critical Things (IoMCT) ... 17

I.7.5 Internet of Mobile Things (IoMT) .. 17

I.8 IoT Architecture .. 17

I.8.1 Three- and Five-Layer Architectures ... 17

I.8.2 Cloud and Fog Based Architectures .. 18

I.9 IoT Applications .. 18

I.9.1 Connected Health .. 19

I.9.2 Smart City .. 19

I.9.3 Connected Cars ... 19

I.9.4 Smart Home .. 19

I.9.5 Smart Farming ...20

I.9.6 Smart Retail ...20

I.9.7 Smart Supply Chain ...20

I.10 MQTT Protocol ...20

I.10.1 MQTT Client (publisher/subscriber) ... 21

I.10.2 MQTT Server (broker) ... 22

I.10.3 Topic .. 22

I.10.4 Session .. 22

I.10.5 Subscription ... 22

I.10.6 Message .. 22

I.10.7 MQTT security ... 22

I.10.7.a Solutions and needs for security in MQTT deployments 22

I.10.7.b Attacks and countermeasures ... 23

I.11 Conclusion…………………………………………………………………………………………………..23

Chapter II: Intrusion Detection ... 25

II.1 Introduction ... 26

Table of Contents

II.2 What is Intrusion Detection? ... 27

II.3 What Is an Intrusion-Detection System (IDS)? 27

II.4 Types of IDS Systems .. 27

II.4.1 HIDS (Host Intrusion Detection System) .. 27

II.4.2 NIDS (Network Intrusion Detection System) ...28

II.4.3 Hybrid IDS ..29

II.4.4 Protocol-based IDS (PIDS) .. 30

II.4.5 Application Protocol-based IDS (APIDS) ... 30

II.5 Characteristics of IDS ... 30

II.5.1 Accuracy .. 30

II.5.2 Response Time .. 30

II.5.3 Completeness of Detection .. 30

II.5.4 Fault Tolerance ... 30

II.6 Intrusion Detection Operating Modes .. 31

II.6.1 Anomaly Detection ... 31

II.6.2 Signature-based Detection .. 31

II.6.3 Specification-based Detection ... 31

II.6.4 Behavior after Detection ... 31

II.6.5 Frequency of Use ... 31

II.6.6 Target Monitoring .. 32

II.6.7 Stealth Probes ... 32

II.7 IDS Pros and Cons ... 32

II.8 IDS Architecture ... 33

II.8.1 Single-Tiered Architecture ... 33

II.8.2 Multi-Tiered Architecture .. 33

II.8.3 Peer-to-Peer Architecture .. 34

II.9 Intrusion Attacks .. 34

II.9.1 System Scanning ... 34

II.9.2 Denial of Service .. 34

II.9.3 Flow Exploitation DoS Attacks .. 34

II.9.4 Flooding DoS Attack .. 35

II.9.5 System Penetration .. 35

II.9.6 Man-in-the-Middle (MiTM) Attacks .. 35

Table of Contents

II.9.7 Routing Attacks .. 35

II.9.8 Application–level Attack ... 35

II.9.9 Viruses and Worms .. 36

II.10 Security Mechanisms ... 36

II.11 Conclusion………………..………………………………………………………………………………..36

Chapter III : Deep Learning .. 38

III.1 Introduction .. 39

III.2 The Story Begins with Artificial Intelligence 39

III.2.1 What Is Machine Learning? .. 39

III.2.2 Advancing into Deep Learning .. 40

III.3 Traditional Machine Learning .. 40

III.3.1 Assembling the Training Data .. 40

III.3.2 Understanding the Importance of Feature Extraction 41

III.3.3 Learning Algorithms .. 41

III.3.3.a The Task, T .. 41

III.3.3.b The Performance Measure, P ...42

III.3.3.c The Experience, E ...42

III.3.4 Training and testing ..42

III.3.5 Setting aside a validation set ...42

III.4 The Neural Network ... 43

III.4.1 The Biological Brain Was the First Real Neural Network 43

III.4.2 Artificial Neural Networks ... 44

III.4.3 Training a Neural Network with Backpropagation 45

III.4.4 Feed-Forward Neural Networks ... 45

III.4.5 Linear Neurons and Their Limitations .. 46

III.4.6 Sigmoid, Tanh, and ReLU Neurons .. 46

III.4.7 Softmax Output Layers .. 47

III.5 Types of Neural Networks ... 48

III.5.1 Fully connected neural network... 48

III.5.2 Recurrent neural network .. 48

III.5.3 Sparsely connected neural network .. 49

III.6 Training deeper neural networks ... 49

III.7 Deep Learning Algorithms ... 49

Table of Contents

III.7.1 Convolutional Neural Networks (CNNs) ... 49

III.7.2 Long Short-Term Memory Networks (LSTMs) ... 49

III.7.3 Recurrent Neural Networks (RNNs)... 50

III.7.4 Generative Adversarial Networks (GANs) ... 50

III.7.5 Radial Basis Function Networks (RBFNs) .. 50

III.7.6 Multilayer Perceptron’s (MLPs) .. 50

III.7.7 Self Organizing Maps (SOMs) .. 50

III.7.8 Deep Belief Networks (DBNs) .. 51

III.7.9 Restricted Boltzmann Machines (RBMs) ... 51

III.7.10 Autoencoders ... 51

III.8 Applications of Deep Learning ... 51

III.8.1 Computer Vision.. 51

III.8.2 Text Analysis and Understanding .. 51

III.8.3 Speech Recognition .. 52

III.8.4 Cybersecurity .. 52

III.9 Conclusion…………………………………………………………………………………………………53

Chapter IV: Experimentation and Results Interpretation 54

IV.1 Introduction ... 55

IV.2 Working Environment and Tools Used .. 55

IV.2.1 Hardware Environment ... 55

IV.2.2 Software environment... 55

IV.2.2.1 Python ... 55

IV.2.2.2 Jupyter Notebook ... 55

IV.2.2.3 Pandas ...56

IV.2.2.4 NumPy ..56

IV.2.2.5 TensorFlow ...56

IV.2.2.6 Keras ... 57

IV.2.2.7 Scikit-learn .. 57

IV.3 Evaluation Metrics .. 57

IV.3.1 Confusion matrix ... 57

IV.3.2 Accuracy .. 58

IV.3.3 Recall .. 58

IV.3.4 Overall Accuracy ... 58

Table of Contents

IV.3.5 F1 Score .. 58

IV.3.6 Cross Validation .. 58

IV.4 Dataset Presentation ...59

IV.4.1 Considered Cyber-Attacks ... 60

IV.4.1.1 Flooding Denial of Service ... 60

IV.4.1.2 MQTT Publish Flood ... 60

IV.4.1.3 SlowITe ... 60

IV.4.1.4 Malformed Data ... 60

IV.4.1.5 Brute Force Authentication ... 60

 IV.4.2 MQTTset Validation ... 61

IV.5 Implementation ... 62

IV.5.1 Dataset Preparation .. 62

IV.5.2 Dataset Cleansing ... 62

IV.5.3 Implementing Deep Learning Models ... 63

IV.5.4 Brief Explanation of the Coding Experiment in This Project 63

IV.5.5 Evaluation ... 69

IV.5.6 Results and Discussion .. 69

IV.6 Interpretation of Results ... 69

IV.6.1 Comparison of Deep Learning vs. Classical Machine Learning for

Intrusion Detection ... 74

IV.7 Conclusion………………………………………………………………………………………………….76

General Conclusion .. 77

Bibliography .. 78

List Of Figures
Figure I.1: Generic block diagram of an loT Device. ... 9

Figure I.2: IoT Protocols. ..12

Figure I.3: Functional Blocks of IoT ... 13

Figure I.4: Request-Response communication model ... 14

Figure I.5: Publish-Subscribe communication model .. 14

Figure I.6: Push-Pull communication model. ... 15

Figure I.7: Exclusive Pair communication model. ... 15

Figure I.8: Architecture of IoT (A: three layers) (B: five layers). 18

Figure I.9: Communication between sensor, actor nodes and application through

MQTT broker. ..21

Figure I.10: MQTT Architecture ...21

Figure I.11: Client roles..21

Figure I.12: Topic Example ... 22

Figure II.1: Standard IDS system. .. 27

Figure II.2: A multi-tiered architecture .. 33

Figure III.1: Deep learning, a subset of a subset of AI. ... 40

Figure III.2: Making connections in the brain ... 43

Figure III.3: A few parts of the brain. ..44

Figure III.4: Connecting neurons in a perceptron neural network.44

Figure III.5: Multilayered perceptron. ..44

Figure III.6: A simple example of a feed-forward neural network. 45

Figure III.7: An example of a linear neuron. ... 46

Figure III.8: The output of a sigmoid neuron as z varies...................................... 46

Figure III.9: The output of a tanh neuron as z varies. ... 47

Figure III.10: The output of a ReLU neuron as z varies. .. 47

Figure III.11: A fully connected neural network. ... 48

Figure III.12: A recurrent neural network. .. 48

Figure IV. 1: Python Logo .. 55

Figure IV.2: Jupyter Logo ... 56

Figure IV.3: The scenario considered in MQTTset .. 59

Figure IV. 4: Test Accuracy Chart ... 70

Figure IV.5: Test Loss Chart ..71

Figure IV.6: Recall Metric Chart ... 72

Figure IV.7: Precision Metric Chart .. 73

Figure IV.8: F1 Score Metric Chart .. 74

List Of Tables
Table II.1: Network-Based vs. Host-Based Intrusion-Detection Systems. 29

Table IV.1: Confusion Matrix ... 58

Table IV.2: IoT sensors adopted in the MQTTset scenario 59

Table IV.3: The list of extrapolated features ... 61

Table IV.4: The list of extrapolated features after the cleansing. 62

Table IV.5: Test Accuracy .. 70

Table IV.6: Test Loss .. 70

Table IV.7: Recall Metric. ..71

Table IV.8: Precision Metric .. 72

Table IV.9: F1 Score .. 73

Table IV.10: Accuracy, F1 score of Machine Learning Methods 74

List Of Equations
Equation I.1 ...46

Equation I.2 .. 48

Equation I.3 .. 58

Equation I.4 .. 58

Equation I.5 .. 58

Equation I.6 .. 58

List Of Abbreviations

ARPA: Advanced Research Projects Agency.

ARPANET: Advanced Research Projects Agency Network.

AMQP: Advanced Message Queuing Protocol.

APIDS: Application Protocol-based IDS.

API: Application Programming Interface.

AI: Artificial Intelligence.

BMU: Best Matching Unit.

CDMA: Code-division Multiple Access.

COAP: Constrained Application Protocol.

CNN: Convolutional Neural Networks.

DDS: Data Distribution Service.

DOS: Denial of Service.

DBN: Deep Belief Networks.

FTP: File Transfer Protocol.

FNN: Feed-Forward Neural Networks.

GSM: Global System for Mobile Communications.

GPS: Global Positioning System.

GAN: Generative Adversarial Networks.

HTTP: Hypertext Transfer Protocol.

HIDS: Host Intrusion Detection System.

IEEE: Institute of Electrical and Electronics Engineers.

IoT: Internet of Things.

IoE: Internet of Everything.

IoNT: Internet of Nano Things.

IoMCT: Internet of Mission Critical Things.

IoMT: Internet of Mobile Things.

IP: Internet Protocol.

IPv4: Internet Protocol version 4.

IPv6: Internet Protocol version 6.

ID: Intrusion Detection.

IDS: Intrusion Detection System.

LAN: Local Area Network.

LED: Light-emitting diode.

LR-WPAN: Low-Rate Wireless Personal Area Networks.

LO-WPAN: IPv6 over Low-Power Wireless Personal Area Networks.

LSTM: Long Short-Term Memory Networks.

MQTT: Message Queue Telemetry Transport.

MQTTSA: MQTT Security Assistant.

MitM: Man-in-the-Middle Attacks.

MLP: Multilayer Perceptron.

NIDS: Network Intrusion Detection System.

NLP: Natural language processing.

OSI: Open Systems Interconnection.

PIDS: Protocol-based IDS.

RF: Radio frequency.

RFID: Radio Frequency Identification.

ReLu: Restricted Linear Unit.

RNN: Recurrent Neural Network.

RBFN: Radial Basis Function Network.

RBM: Restricted Boltzmann Machines.

SOM: Self Organizing Maps.

SlowITe: Slow DoS against Internet of Things Environments Attack.

TCP: Transmission Control Protocol.

Tanh: Hyperbolic Tangent.

UDP: User Datagram Protocol.

UTMS: Universal Mobile Telecommunications System.

Wi-Fi: Wireless Fidelity.

Wi-Max: Worldwide Interoperability for Microwave Access.

WLAN: Wireless Local-Area Network.

XMPP: Extensible Messaging and Presence Protocol.

XML: Extensible Markup Language.

General Introduction

1

General Introduction
Inventors have long dreamed of creating machines that think, a desire that dates

back to ancient Greece. Mythical figures such as Pygmalion, Daedalus, and

Hephaestus can be interpreted as legendary inventors, with their creations—

Galatea, Talos, and Pandora—representing early imaginings of artificial life.

The concept of programmable computers spurred speculation about machine

intelligence over a century before such devices were realized. Today, artificial

intelligence (AI) is a thriving field with numerous practical applications and active

research areas. Intelligent software now automates routine labor, understands

speech and images, makes medical diagnoses, and supports scientific research.

Initially, AI rapidly addressed and solved problems that, while intellectually

challenging for humans, were relatively straightforward for computers due to their

formal, mathematical nature. The real challenge for AI, however, lay in tasks that

are easy for humans to perform intuitively but difficult to describe formally, such as

recognizing spoken words or identifying faces in images.

Early AI successes were often confined to formal environments, exemplified by

IBM's Deep Blue chess-playing system. Despite these achievements, recognizing

objects or speech in less structured settings remained difficult for computers. One

significant challenge in AI has been capturing informal knowledge in a format

accessible to machines. Several projects attempted to hard-code world knowledge

into formal languages, but none achieved substantial success.

The advent of machine learning marked a significant shift, enabling computers to

tackle problems involving real-world knowledge and make seemingly subjective

decisions. Simple algorithms like logistic regression and naive Bayes could

recommend cesarean deliveries or filter spam emails, but their performance heavily

depended on data representation.

This dependence on representation is a pervasive phenomenon in computer science

and daily life. For instance, searching a structured and intelligently indexed data

collection can be exponentially faster. In machine learning, the choice of data

representation significantly impacts algorithm performance.

AI tasks often involve designing appropriate features for a task and providing them

to a simple learning algorithm. For many tasks, such as detecting cars in

photographs, identifying the right features is challenging. Representation learning

addresses this by using machine learning to discover both the mapping from

representation to output and the representation itself. Learned representations

frequently outperform hand-designed ones, enabling AI systems to adapt to new

tasks with minimal human intervention.

General Introduction

2

A quintessential representation learning algorithm is the autoencoder, comprising

an encoder that converts input data into a different representation and a decoder

that reverts it to the original format. Various autoencoders aim to achieve different

properties.

Deep learning addresses the central problem in representation learning by

introducing representations defined in terms of simpler ones. It allows computers

to construct complex concepts from simpler ones, exemplified by the feedforward

deep network or multilayer perceptron (MLP). An MLP is a mathematical function

mapping input values to output values through a composition of many simpler

functions.

Deep learning also enables computers to learn multi-step programs, with each

representation layer acting as the state of the computer's memory after executing

another set of parallel instructions. Deeper networks can execute more sequential

instructions, enhancing power as later instructions can build on earlier results.

The depth of a model can be measured by the number of sequential instructions

required to evaluate its architecture and the depth of the graph describing concept

relationships. This depth is crucial in deep learning, allowing systems to refine

simpler concepts based on more complex ones. Deep learning is currently the most

viable approach for building AI systems capable of operating in complex, real-world

environments, representing the world as a nested hierarchy of concepts.

The Internet of Things (IoT) phenomenon has been fueled by recent advancements

in networking technologies and the widespread availability of various smart gadgets

over the past decade. IoT enables physical electronic devices, such as sensors, to

connect to the Internet, facilitating data collection and sharing among networked

objects. Today, numerous IoT systems are deployed across various industries,

including smart farming, industry, transportation, healthcare, and smart cities.

Several communication protocols have been developed to enhance the security and

reliability of data exchange among IoT devices, including the Constrained

Application Protocol (CoAP), Advanced Message Queuing Protocol (AMQP),

Message Queuing Telemetry Transport (MQTT), and Extensible Messaging

Presence Protocol (XMPP). Among these, MQTT is the most popular in IoT systems

due to its support for low-bandwidth connectivity, minimal memory requirements,

and reduced packet loss.

MQTT, a lightweight messaging protocol using a publisher/subscriber architecture,

simplifies device-to-device communication. However, this communication model

can introduce security vulnerabilities, such as denial of service, identity spoofing,

information exposure, privilege escalation, and data tampering.

General Introduction

3

To address these security concerns, researchers have developed various techniques

and methods. Intrusion Detection Systems (IDS) are among the most effective

solutions, identifying intrusions by monitoring system activities and distinguishing

between legitimate use and attacks. An IDS designed for IoT-based environments

must meet strict specifications for minimal processing power, fast response times,

and high-volume data processing, making conventional IDS potentially unsuitable

for IoT scenarios.

Integrating AI, particularly deep learning, with IoT can enhance the effectiveness of

IDS in smart environments. Deep learning's ability to learn complex representations

and adapt to new data with minimal human intervention can significantly improve

intrusion detection accuracy and efficiency in IoT systems. This synergy between AI

and IoT represents a promising frontier for developing robust, intelligent, and

secure systems capable of operating in diverse and dynamic real-world

environments.

In this project, we will integrate deep learning algorithms with IoT networks to

elevate the effectiveness of intrusion detection systems. We will use deep learning

algorithms to create an intelligent system that can identify intrusions in an

Internet of Things network using the MQTT protocol while accounting for the

computing and storage capacities of individual IoT devices.

Our manuscript is divided into four sections, which are categorized as follows:

The broad introduction of this manuscript provides a conceptual overview of our

study.

An overview of the idea, forms, architectures, and application domains of Internet

of Things networks is given in the first chapter. It also describes the parts that make

up IoT networks and how they work. This chapter concludes by discussing the

MQTT communication protocol, its main elements and architecture, potential

assaults on the protocol, and solutions to lessen such threats.

The state of the art for intrusion detection systems is presented in the second

chapter. The chapter provides examples of the types, structures, and specific

assaults that can be prevented by IDS, as well as the specifics of its framework.

The specifics of deep learning algorithms are covered in the third chapter. This

section lists various commonly used deep learning algorithms.

The foundation of our experiment are presented in the last chapter. It provides a

quick overview of the used gear and software. It also gives an explanation of the

evaluation measures that were used for the algorithms' assessment as well as the

dataset that was used in the experiment.

General Introduction

4

The recollection concludes with a broad summary that highlights the documented

findings of this study as well as the researchers' future objectives.

Chapter I: Internet of Things

Chapter I The Internet of Things

6

I.1 Introduction:

 The telegraph's ability to transfer information over long distances by means of

a coded signal dates back to the early 19th century, and although there are earlier

examples of networked electrical equipment, the Internet of Things actually

emerged in the late 1960s. Around that time, a number of well-known researchers

started looking into ways to link systems and computers. The network known as

ARPANET, which was developed as a precursor to the Internet today by the U.S.

Defense Department's Advanced Research Projects Agency (ARPA), is a good

example of this effort. Businesses, governments, and consumers started looking

into ways to link personal computers (PCs) and other technologies to each other

in the late 1970s. By the 1980s, local area networks, or LANs, offered a popular

and efficient means of real-time document sharing, data sharing, and other

information exchange among a number of PCs. [1]

When the Internet began to expand such capabilities globally in the mid-1990s,

scientists and researchers started looking into ways that humans and robots

could interact more effectively. The term "the Internet of Things" was first used

in a speech by British technologist Kevin Ashton, cofounder of the Auto-ID

Center at MIT, in 1999. Ashton started investigating radio-frequency

identification (RFID) in 1997 as a technological framework that would enable

physical devices to connect via microchips and wireless signals. A more reliable

framework for gathering, storing, analyzing, and sharing data was established in a

matter of years thanks to cellphones, cloud computing, increases in processing

power, and enhanced software algorithms. Simultaneously, advanced sensors

emerged that could detect motion, temperature, moisture content, wind

direction, sound, light, pictures, vibrations, and a host of other parameters—in

addition to having the capacity to geolocate a person or a device. Real-time

communication with both digital and physical items is now possible because to

these advancements. For instance, one may view the location of an object, such a

wallet or bag, by attaching a tracking chip, like an Apple Air Tag, to it. If a digital

device is lost or stolen, the same chip that powers it can be used to trace its

location. Then, it became feasible to connect people and things in a nearly

ubiquitous manner with the broad use of mobile devices like smartphones and

tablets and the advent of ubiquitous wireless communication. Consequently,

industrial robotics systems, linked storage tanks, and intelligent traffic networks

became standard. [1]

IoT development is still ongoing. These days, it can be utilized for a wide range of

applications, such as artificial intelligence for extremely complex simulations,

sensing systems for identifying contaminants in water sources, and agricultural

and animal monitoring systems. For instance, it is now feasible to remotely apply

Chapter I The Internet of Things

7

the ideal amounts of water, fertilizer, and pesticides to crops as well as monitor

the whereabouts and health of animals. [1]

Airlines and shipping industries can optimize fleets for maximum loads and

efficiencies by accounting for mechanical issues and weather through the use of

highly networked systems. Real-time maps and navigation recommendations that

redirect and route drivers based on traffic patterns are made available to drivers

by the Internet of Things. These solutions save time and money while lowering

traffic and pollution. [1]

The Internet of Things (IoT) is the wide range of physical things that have

sensors and software installed in order to collect and exchange data across a

network and communicate with one another with minimal assistance from

humans. The term "Internet of Things" (IoT) refers to the plethora of "smart,"

computer-like devices that are so widely used today. These "things" include

phones, appliances, thermostats, lighting controls, irrigation systems, security

cameras, cars, even cities and animals. These devices can communicate with each

other or with the Internet via wireless networks. These days, transponders let

automobiles pass through tollbooths and pay the cost electronically, smart

speakers add things to shopping lists and turn lights on and off, and smart

watches track activity and steps. [1]

Complex tasks that are occasionally beyond the capacity of humans are made

simpler and more automated via the Internet of Things. There are currently

billions of linked devices that make up the Internet of Things. [1]

I.2 Definition of IoT

 IoT is a Dynamic global network infrastructure with self-configuring

capabilities built on open and compatible communication protocols, where

virtual and physical "things" are seamlessly integrated into the information

network and frequently communicate user and environment-related data. These

"things" have identities, physical characteristics, and virtual personalities. They

also use intelligent interfaces.

Let's take a closer look at this definition of IoT to clarify a few words:
Dynamic and Self-Adapting: Internet of Things (IoT) devices and systems may
be able to adjust themselves to changing environments on the fly and take
appropriate action according to their operational parameters, the context of their
users, or their detected surroundings. Take into consideration, for instance, a
surveillance system that consists of several surveillance cameras. Depending on
the time of day, the surveillance cameras can switch between standard and infra-
red night modes. When motion is detected, cameras have the ability to
automatically convert between lower and higher resolution modes, notifying
other surrounding cameras to follow suit. In this instance, the monitoring system

Chapter I The Internet of Things

8

is adjusting to the environment and shifting circumstances, such as those that are
dynamic.
 Self-Configuring: Internet of Things (IoT) devices have the potential to
configure themselves, enabling a multitude of devices to collaborate in order to
perform a certain purpose (like weather monitoring). With little assistance from
the user or physical labor, these devices can autonomously configure themselves
(in relation to the Internet of Things architecture), set up networking, and
download the most recent software updates.
Interoperable Communication Protocols: Internet of Things (IoT) devices
have the ability to communicate with other devices and the infrastructure by
supporting several interoperable communication protocols. In the sections that
follow, we go over a few of the popular communication models and protocols.
 Unique Identity: Every Internet of Things (IoT) device is identified by a unique
identifier, which can be an IP address or URI. Intelligent interfaces on Internet of
Things devices could be able to communicate with users and their surroundings,
adapting to the situation.
Through the use of IoT device interfaces, users can remotely control, configure,
and monitor devices as well as query and monitor their status.
Integrated into Information Network: In order to enable communication and
data exchange with other devices and systems, Internet of Things (IoT) devices
are typically integrated into information networks. IoT devices have the ability to
describe themselves (and their attributes) to other devices or user applications.
They can also be dynamically discovered in the network, by other devices or by
the network itself. For instance, in order for two connected nodes to interact and
share data, a weather monitoring node can explain its monitoring capabilities to
the other node. IoT systems become "smarter" as a result of integration into the
information network because of the combined intelligence of the individual
devices. working along with the infrastructure, as a result, it is possible to
combine and evaluate data from numerous linked IoT nodes that monitor the
weather to provide weather predictions. [2] [3]

I.3 Things in loT

 In the context of the Internet of Things, "things" typically refer to low-power,

individually identifiable devices with remote sensing, actuation, and monitoring

capabilities. Connected objects (loT) have the ability to exchange data (directly or

indirectly) with other connected objects and applications, gather data from other

devices and process it locally, or send it to centralized servers or cloud-based

application back-ends for processing. They can also carry out certain tasks locally

and other tasks within the IoT infrastructure, depending on temporal and spatial

limitations (memory, processing capabilities, communication latencies and

speeds, and deadlines).[2]

IoT devices can also come in a variety of forms, such as smart watches, autos,

industrial machinery, LED lights, and wearable sensors. Nearly every Internet of

Things device produces data in one way or another. This data, when analyzed by

data analytics tools, provides insightful knowledge that may be used to direct

Chapter I The Internet of Things

9

additional local or distant actions. For example, sensor data collected by a

garden's soil moisture monitoring equipment can be used to determine the best

watering schedules. [2]

Figure I.1: Generic block diagram of an loT Device.

I.4 loT Protocols

I.4.1 Ethernet

 IEEE 802.3 is a collection of wired Ethernet standards for the link layer, these

standards provide data rates from 10 Mb/s to 40 Gb/s and higher. The shared

medium in Ethernet can be a coaxial cable, twisted-pair wire or an optical fiber.

The shared medium (i.e., broadcast medium) carries the communication for all

the devices on the network, thus data sent by one device can received by all

devices subject to propagation conditions and transceiver capabilities. [2]

I.4.2 Wi-Fi

 IEEE 802.11 is a collection of wireless local area network (WLAN)

communication standards, including extensive description of the link layer.

These standards provide data rates from 1 Mb/s up to 6.75 Gb/s. [2]

I.4.3 Wi-Max

 IEEE 802.16 is a collection of wireless broadband standards, including extensive

descriptions for the link layer (also called Wi-Max). Wi-Max standards provide

data rates from 1.5 Mb/s to 1 Gb/s. The recent update (802. 16m) provides data

rates of 100 Mbit/s for mobile stations and 1 Gbit/s for fixed stations. [2]

I.4.4 LR-WPAN

 IEEE 802,15.4 is a collection of standards for low-rate wireless personal area

networks (LR-WPANs). These standards form the basis specifications for high

level communication protocols such as ZigBee. LR-WPAN standards provides

data rates from 40Kb/s to 250Kb/s. these standards provide low-cost and low-

speed communication for power constrained devices. [2]

Chapter I The Internet of Things

10

I.4.5 Mobile Communication (2G/3G/4)

 There are different generations of mobile communication standards including

second generation (2G including GSM and CDMA), third generation (3G

including UTMS and CDMA2000) and fourth generation (4G -LTE). IoT devices

based on these standards can communicate over cellular networks. Data rates for

these standards range from 9.6Kb/s (for 2G) up to 100Mb/s (for 4G). [2]

I.4.6 IPv4

 Internet Protocol version 4 (IPv4) is the most deployed Internet protocol that is

used to identify the devices on a network using a hierarchical addressing scheme.

IPv4 uses a 32-bit address scheme that allows total of 232 or 4,294,967,296

addresses. As more and more devices got connected to the Internet, these

addresses got exhausted in the year 2011. IPv4 has been succeeded by IPv6. The IP

protocols establish connections on packet networks, but do not guarantee

delivery of packets. Guaranteed delivery and data integrity are handled by the

upper layer protocols (such as TCP). [2] [4]

I.4.7 IPv6

 Internet Protocol version 6 (IPv6) is the newest version of Internet protocol and

successor to IPv4. IPv6 uses 128-bit address scheme that allows total of 2128 or

3.4 × 1038 addresses. [2] [5]

I.4.8 6LoWPAN

 6LoWPAN (IPv6 over Low power Wireless Personal Area Networks) brings IP

protocol to the low-power devices which have limited processing capability,

6LoWPAN operates in the 2.4 GHz frequency range and provides data transfer

rates of 250 Kb/s. [2] [6]

I.4.9 TCP

 Transmission Control Protocol (TCP) is the most widely used transport layer

protocol, that is used by web browsers. TCP is a connection oriented and stateful

protocol. While IP protocol deals with sending packets, TCP ensures reliable

transmission of packets in-order. TCP also provides error detection capability so

that duplicate packets can be discarded and lost packets are retransmitted. The

flow control capability of TCP ensures that rate at which the sender sends the

data is not too high for the receiver to process. The congestion control capability

of TCP helps in avoiding network congestion and congestion collapse which can

lead to degradation of network performance. [7]

I.4.10 UDP

 Unlike TCP, which requires carrying out an initial setup procedure, UDP is a

connectionless protocol. UDP is useful for time-sensitive applications that have

very small data units to exchange and do not want the overhead of connection

Chapter I The Internet of Things

11

setup. UDP is a transaction oriented and stateless protocol. UDP does not

provide guaranteed delivery, ordering of messages and duplicate elimination.

Higher levels of protocols can ensure reliable delivery or ensuring connections

created are reliable.[8]

I.4.11 HTTP

 Hypertext Transfer Protocol (HTTP) is the application layer protocol that forms

the foundation of the World Wide Web. The protocol follows a request-response

model where a client sends requests to a server using the HTTP commands.

HTTP is a stateless protocol and each HTTP request is independent of the other

requests. [9]

I.4.12 CoAP

 Constrained Application Protocol (CoAP) is an application layer protocol for

machine-to-machine (M2M) applications, meant for constrained environments

with constrained devices and constrained networks. Like HTTP, CoAP is a web

transfer protocol and uses a request-response model, however it runs on top of

UDP instead of TCP. CoAP uses a client-server architecture where clients

communicate with servers using connectionless datagrams. [10]

I.4.13 WebSocket

 WebSocket protocol allows full-duplex communication over a single socket

connection for sending messages between client and server. WebSocket is based

on TCP and allows streams of messages to be sent back and forth between the

client and server while keeping the TCP connection open. The client can be a

browser, a mobile application or an loT device.[11]

I.4.14 MQTT

 Message Queue Telemetry Transport (MQTT) is a light-weight messaging

protocol based on the publish-subscribe model. MQTT uses a client-server

architecture where the client (such as an loT device) connects to the server (also

called MQTT Broker) and publishes messages to topics on the server. The broker

forwards the messages to the clients subscribed to topics. MQTT is well suited for

constrained environment where the devices have limited processing and memory

resources and the network bandwidth is low.[12]

I.4.15 XMPP

 Extensible Messaging and Presence Protocol (XMPP) is a protocol for real time

communication and streaming XML data between network entities. XMPP

powers wide range of applications including messaging, presence, data

syndication, gaming, multi-party chat and voice/video calls. XMPP allows

sending small chunks of XML data from one network entity to another in near

real-time. XMPP is a decentralized protocol and uses a client-server architecture,

Chapter I The Internet of Things

12

XMPP supports both client-to-server and server-to-server communication paths.

In the context of loT, XMPP allows real-time communication between loT

devices.[13]

I.4.16 DDS

 Data Distribution Service (DDS) is a data-centric middleware standard for

device-to-device or machine-to-machine communication. DDS uses a publish-

subscribe model where publisher (e.g. devices that generate data) create topics to

which subscribers (e.g. devices that want to consume data) can subscribe.

Publisher is an object responsible for data distribution and the subscriber is

responsible for receiving published data. DDS provides quality-of-service (QoS)

control and configurable reliability. [14]

I.4.17 AMQP

 Advanced Message Queuing Protocol (AMQP) is an open application layer

protocol for business messaging. AMQP supports both point-to-point and

publisher/subscriber models, routing and queuing. AMQP brokers receive

messages from publishers (e.g. devices or applications that generate data) and

route them over connections to consumers (applications that process data),

Publishers publish the messages to exchanges which then distribute message

copies to queues, Messages are either delivered by the broker to the consumers

which have subscribed to the queues or the consumers can pull the messages

from the queues.[2]

Figure I.2: IoT Protocols.

Chapter I The Internet of Things

13

I.5 Logical Design of loT

 An IoT system's logical design is an abstract depiction of its elements and

operations that avoids delving into the finer points of implementation. We go

over an IoT system's functional components in this part.[2]

I.5.1 loT Functional Blocks

 A multitude of functional blocks make up an Internet of Things system, giving

it the ability to communicate, act, sense, identify, and management. These

functional blocks are described as follows [2] :

• Device: An IoT system comprises of devices that provide sensing,

actuation, monitoring and control functions.

• Communication: The communication block handles the communication

for the IoT System.

• Services: An IoT system uses various types of IoT services such as services

for device monitoring, device control services, data publishing services

and services for device discovery.

• Management: Management functional block provides various functions

to govern the loT system,

• Security: Security functional block secures the loT system and by

providing functions such as authentication, authorization, message and

content integrity, and data security.

• Application: IoT applications provide an interface that the users can use

to control and monitor various aspects of the loT system. Applications also

allow users to view the system status and view or analyze the processed

data.

Figure I.3: Functional Blocks of IoT

Chapter I The Internet of Things

14

I.5.2 loT Communication Models

• Request-Response communication model: Request-Response is a

communication model in which the client sends requests to the server and

the server responds to the requests. When the server receives a request, it

decides how to respond, fetches the data, retrieves resource

representations, prepares the response, and then sends the response to the

client. [2]

Figure I.4: Request-Response communication model.

• Publish-Subscribe communication model: Publish-Subscribe is a

communication model that involves publishers, brokers and consumers.

Publishers are the source of data. Publishers send the data to the topics

which are managed by the broker. Publishers are not aware of the

consumers. Consumers subscribe to the topics which are managed by the

broker. When the broker receives data for a topic from the publisher, it

sends the data to all the subscribed consumers. [2]

Figure I.5: Publish-Subscribe communication model.

• Push-Pull communication model: Push-Pull is a communication model

in which the data producers push the data to queues and the consumers

pull the data from the queues. Producers do not need to be aware of the

consumers. Queues help in decoupling the messaging between the

producers and consumers. Queues also act as a buffer which helps in

Chapter I The Internet of Things

15

situations when there is a mismatch between the rate at which the

producers push data and the rate at which the consumers pull data. [2]

Figure I.6: Push-Pull communication model.

• Exclusive Pair communication model: Exclusive Pair is a bidirectional,

fully duplex communication model that uses a persistent connection

between the client and server. Once the connection is setup it remains

open until the client sends a request to close the connection. Client and

server can send messages to each other after connection setup. [2]

Figure I.7: Exclusive Pair communication model.

I.6 IoT Characteristics

 The fundamental characteristics of the IoT are as follows [15] [16] [17]:

I.6.1 Interconnectivity

 With regard to the IoT, anything can be interconnected with the global

information and communication infrastructure.

Chapter I The Internet of Things

16

I.6.2 Things-related services

 Within the limitations of things, the Internet of Things can offer thing-related

services like semantic consistency between actual objects and the virtual objects

they are connected with, as well as privacy protection. Both the physical and

information worlds' technologies will evolve to give thing-related services within

the limitations of things.

I.6.3 Heterogeneity

 Due to their varied hardware platforms and networks, IoT devices are

heterogeneous. They can communicate via various networks with other gadgets

or service platforms.

I.6.4 Dynamic changes

 Device states fluctuate dynamically, such as whether they are asleep or waking

up, connected or not, and in what context they are used, such as location and

speed. Furthermore, the quantity of devices may vary on a dynamic basis.

I.6.5 Enormous scale

 At least an order of magnitude more devices than those currently connected to

the Internet will need to be controlled and communicate with one another. The

handling of the produced data and its interpretation for use in applications will

be even more crucial. This has to do with effective data processing and data

semantics.

I.6.6 Safety

 We must remember safety even while we reap the benefits of the Internet of

Things. We must design for safety since we are the Internet of Things' producers

and users. This covers both the security of our private information and the

security of our physical health. The key to securing endpoints, networks, and the

data that flows between them is developing a scalable security paradigm.

I.6.7 Connectivity

 Network compatibility and accessibility are made possible via connectivity.

Connecting to a network is known as accessibility, whereas sharing the capacity

to create and use data is known as compatibility.

I.7 Types of IoT Technologies

I.7.1 Internet of Things (IoT)

 The Internet of Things (IoT) connects physical objects via the internet, enabling

them to identify and manage each other using various sensing devices like RFID

and GPS. The IoT board consists of Arduino/Raspberry Pi, RF Module, Sensor

Module, Access Point, IoT Server, and Cloud Point.[27]

Chapter I The Internet of Things

17

I.7.2 Internet of Everything (IoE)

 The Internet of Everything (IoE) is the new age of IoT, focusing on people,

processes, and data, while IoT focuses on physical objects. IoE analyzes real-time

data from millions of sensors to support automated processes and integrate

industrial policy goals with ecological sustainability, social, and economic issues.

It can also be used to make learning new technologies easier for students in

educational systems. [27] [30]

I.7.3 Internet of Nano Things (IoNT)

 The Internet of Nano Things (IoNT) connects nanoscale objects to

communication networks, combining nano components into a single gadget. It

differs from the Internet of Things (IoT) as it cannot incorporate nano

components. Nanodevices communicate through conventional protocols, with

the inbuilt network remotely controlled through a gateway. IoNT applications

include gas detection systems and nano-micro interface devices. [27] [29]

I.7.4 Internet of Mission Critical Things (IoMCT)

 The Internet of Mission Critical Things (IoMCT) combines sensing,

communication, processing, and control to enhance network surveillance. It

focuses on managing information sources, devices, and networks individually,

reducing human strain on critical missions like combat, border patrol, and search

and rescue. [27] [28]

I.7.5 Internet of Mobile Things (IoMT)

 Digital devices, such as phones, are becoming increasingly integrated with

sensors, allowing for interaction. The main difference between IoT and IoMT lies

in context, connectivity, energy availability, and privacy and security. Context

refers to the phone's location and current ownership, while connectivity refers to

its connection to networks. Mobile charging properties include energy

availability. Privacy issues arise from unique phone features and locations,

leading to identity mismatch and uniqueness theft.[27]

I.8 IoT Architecture

 There is no one widely accepted architecture for the Internet of Things.

Various researchers have put forth distinct architectures.

I.8.1 Three- and Five-Layer Architectures

 The most basic architecture for the Internet of Things (IoT) is a three-layer

architecture consisting of perception, network, and application layers. The

perception layer is responsible for sensing and gathering information about the

environment, while the network layer connects smart things and devices. The

application layer delivers application-specific services to users, defining

applications like smart homes and cities. However, this architecture is not

Chapter I The Internet of Things

18

sufficient for research, as it often focuses on finer aspects of the IoT. A five-layer

architecture, which includes processing and business layers, is another option,

which includes perception, transport, processing, application, and business

layers. The business layer manages the entire IoT system, including applications,

business models, and user privacy. Another architecture inspired by human brain

layers is the human brain, spinal cord, and network of nerves. [18] [20]

Figure I.8: Architecture of IoT (A: three layers) (B: five layers).

I.8.2 Cloud and Fog Based Architectures

 Cloud and fog computing are two types of systems architectures used in IoT

devices. Cloud computing is centralized, with applications at the center and

smart things below. It offers flexibility, scalability, and services like core

infrastructure, platform, software, and storage. Fog computing, on the other

hand, involves sensors and network gateways in data processing and analytics.

This architecture consists of monitoring, preprocessing, storage, and security

layers between physical and transport layers. The monitoring layer monitors

power, resources, responses, and services, while the preprocessing layer performs

filtering, processing, and analytics of sensor data. Edge computing, on the other

hand, adds smart data preprocessing capabilities to physical devices at the edge

of the network. The distinction between protocol architectures and system

architectures is not clear, and the generic 5-layer IoT protocol stack is used for

both architectures.[21] [22]

I.9 IoT Applications

Some useful applications of Internet of Things (IOT) are [23] [24] [25] [26]:

• Connected Health

• Smart City

• Connected Cars

• Smart Home

Chapter I The Internet of Things

19

• Smart Farming

• Smart Retail

• Smart Supply Chain

I.9.1 Connected Health

 IoT has numerous applications in healthcare, including remote monitoring,

smart sensors, and equipment integration. It can improve physician care and

patient safety. IoT can enhance patient engagement and satisfaction by allowing

more time for doctor-patient interaction. It offers pocket-friendly solutions for

patients and healthcare professionals, empowering them to live healthier lives.

Research shows IoT in healthcare will grow massively, enabling personalized

health analysis and tailored treatment strategies.

I.9.2 Smart City

 Another potent IoT application that is piquing people's interest around the

globe is smart cities. Examples of internet of things applications for smart cities

include automated transportation, water distribution, smarter energy

management systems, smart surveillance, smart urban security, and

environmental monitoring. Major issues that city dwellers suffer, such as

pollution, gridlock in the streets, and a lack of energy, will be resolved by IoT.

When a trash can needs to be emptied, devices like the Smart Belly trash can

with cellular communication capability can notify local services. Installing

sensors and utilizing online tools allows residents to locate open parking spaces

all across the city. In addition, the sensors are capable of identifying general

failures, installation problems with the electrical system, and meter

manipulation.

I.9.3 Connected Cars

 Automotive digital technology is focusing on enhancing the in-car experience

with connected cars, which optimize operations, maintenance, and passenger

comfort using onboard sensors and internet connectivity. Major brands like

Tesla, BMW, Apple, and Google are working on connected car solutions, which

consist of multiple sensors, antennas, embedded software, and technologies for

consistent, accurate, speedy, and reliable decision-making.

I.9.4 Smart Home

 In residential settings, smart homes have emerged as a revolutionary ladder to

success, and it is anticipated that soon, smart homes will be as ubiquitous as

smartphones. The most significant and effective use of IoT systems that always

jumps out is the smart home, which is ranked as the top IOT application across

all channels. Over $2.5 billion has been invested in smart home startups, and the

figure is still rising. Wouldn't it be wonderful to be able to turn on the air

conditioning before you get home or turn out the lights even after you've left?

Chapter I The Internet of Things

20

Even when you're not home, you can provide friends temporary access by

unlocking their doors. It should come as no surprise that businesses are

developing items to make your life easier and more convenient as IoT takes

shape. The largest outlay in a homeowner's life is the cost of house ownership.

Products for smart homes are said to save money, energy, and time. Smart home

firms, such as Nest, Ecobee, Ring, and August, among others, are poised to

become household names and offer a never-before-seen experience.

I.9.5 Smart Farming

 IoT applications like smart farming are frequently disregarded. But because

farmers tend to a lot of livestock and their farming operations are typically spread

out, the Internet of Things can monitor all of this and transform the way farmers

operate. But widespread attention to this concept has not yet been received.

However, it continues to be one of the IoT applications that is important to

consider. Particularly in the nations that export agricultural products, smart

farming has the potential to grow into a significant application area.

I.9.6 Smart Retail

 Retailers are utilizing IoT solutions to enhance store operations, increase

purchases, reduce theft, manage inventory, and improve consumer shopping

experiences. This strategy allows retailers to compete with online competitors,

regain lost market share, and attract consumers. Smartphones and Beacon

technology can enhance in-store interactions, track consumer paths, and improve

store layout, allowing for premium product placement in high-traffic areas.

I.9.7 Smart Supply Chain

 For a few years already, supply networks have already begun to become more

intelligent. Providing solutions for issues like tracking products while they are

traveling or on the road, or assisting suppliers in exchanging inventory data, are a

few of the well-liked offers. Factory equipment with embedded sensors can

exchange data about many factors, including temperature, pressure, and machine

utilization, through an Internet of things enabled system. In order to maximize

performance, the IoT system can also process workflow and modify equipment

settings.

I.10 MQTT Protocol:

 The MQTT protocol (Message Queue Telemetry Transport) is a lightweight

message queueing and transport protocol. MQTT, as its name implies, is suited

for the transport of telemetry data (sensor and actor data). MQTT is very

lightweight and thus suited for IoT (Internet of Things) scenarios where sensor

and actor nodes communicate with applications through the MQTT message

broker. MQTT is a text-based protocol designed for constrained IoT devices and

low-bandwidth networks. Positioned in the application layer, it covers all 5th-7th

Chapter I The Internet of Things

21

layers and requires 10 KB of RAM or flash for implementation. It uses TCP

connection, but requires an open connection channel.[33]

Figure I.9: Communication between sensor, actor nodes and application through

MQTT broker.

Figure I.10: MQTT Architecture.

I.10.1 MQTT Client (publisher/subscriber)

 Clients subscribe to topics to publish and receive messages Thus subscriber

and publisher are special roles of a client. [33]

Figure I.11: Client roles.

Chapter I The Internet of Things

22

I.10.2 MQTT Server (broker)

 Servers run topics, i.e. receive subscriptions from clients on topics, receive

messages from clients and forward these, based on client’s subscriptions, to

interested clients. [33]

I.10.3 Topic

Technically, topics are message queues. Topics support the publish subscribe

pattern for clients. Logically, topics allow clients to exchange information with

defined semantics. [33]

Figure I.12: Topic Example.

I.10.4 Session

 A session identifies a (possibly temporary) attachment of a client to a server.

All communication between client and server takes place as part of a session. [33]

I.10.5 Subscription

 Unlike sessions, a subscription logically attaches a client to a topic. When

subscribed to a topic, a client can exchange messages with a topic Subscriptions

can be «transient» or «durable», depending on the clean session flag in the

CONNECT message. [33]

I.10.6 Message

 Messages are the units of data exchange between topic clients. MQTT is

agnostic to the internal structure of messages. [33]

I.10.7 MQTT security

 Application layer protocols like MQTT have several known and unreported

security issues. MQTT's simplicity and scalability allow it to carry data between

any IoT device via the application layer protocol, unlike any other protocol. [31]

[34] [35]

I.10.7.a Solutions and needs for security in MQTT deployments

• Authentication: Making sure that MQTT network nodes may be

identified in order to prevent unauthorized access (as producers or

subscribers).

• Access control: limiting information access to just those nodes that are

permitted access.

Chapter I The Internet of Things

23

• Data integrity: confirming that there has been no tampering during

transmission and that the data received matches the data provided by the

source;

• Confidentiality: Data privacy and confidentiality must be maintained,

and data sniffing must be stopped.

I.10.7.b Attacks and countermeasures

Man-in-the-Middle attack: A man in the middle (MitM) attack is a hacker's

attempt to steal personal information from a user or application. It's typically

carried out using MQTT protocols, which support two-way handshakes. To

prevent MitM attacks, authentication and encryption are required. Attacking

strategies include packet injection, session, SSL Stripping, SSL Hijacking, and

sniffing. Preventing MitM attacks is crucial. [31] [34] [35]

DoS attack: A denial-of-service attack is a cyber-attack that disrupts a

computer's normal operation by overloading or flooding it with requests. It aims

to keep the broker busy, making it difficult to manage new incoming

connections. Firewalls offer some protection against single-user attacks, but not

DDoS attacks. Router access control lists, antivirus software, application

protection, and network behavior analysis are developed to prevent such attacks.

Intrusion: Network intrusion refers to unauthorized activity on a computer

network, often exploited by hackers using automated programs. Intrusion attacks

use protocol ports and "#" commands to obtain sensitive information. MQTT

security relies on an Intrusion Detection System (IDS) and an Intrusion

Prevention System (IPS), which act quickly upon detection, reducing reaction

time and ensuring security. [31] [34] [35]

I.11 Conclusion

 The Internet of Things (IoT) networks consist of groups of identifiable, smart

devices that communicate and interact with each other. These networks possess

several characteristics, including scalability, heterogeneity, and safety, among

many others. The diverse architectures of IoT networks make them applicable in

a wide range of fields, such as healthcare, agriculture, smart homes, smart cities,

and beyond. However, one of the primary concerns associated with IoT is

security. The open and interconnected nature of these networks makes them

particularly vulnerable to cyber-attacks.

To address these challenges, various mechanisms have been developed to protect

and defend IoT networks. These mechanisms are designed to ensure the

integrity, confidentiality, and availability of the data transmitted within the

network. One of the key components in IoT communication is the Message

Chapter I The Internet of Things

24

Queuing Telemetry Transport (MQTT) protocol, which is known for being a

lightweight communication protocol.

The MQTT protocol includes its own security mechanisms to safeguard the data

exchanged between devices. These security features are crucial because IoT

devices often operate with limited computational resources and power, making

them susceptible to various types of cyber threats. The protocol employs

measures such as authentication, encryption, and secure transmission to protect

data. By ensuring that data is transmitted securely, MQTT helps to mitigate the

risks of interception and unauthorized access, thereby maintaining the privacy

and security of the information within the IoT ecosystem.

In healthcare, IoT networks enable remote patient monitoring, real-time health

data analysis, and improved patient care. In agriculture, IoT devices monitor soil

moisture, weather conditions, and crop health, leading to increased efficiency

and yield. Smart homes benefit from IoT through automation of household tasks,

energy management, and enhanced security systems. Smart cities leverage IoT for

efficient traffic management, waste management, and improved public services.

Despite the robust security mechanisms provided by protocols like MQTT, the

dynamic and evolving nature of cyber threats necessitates continuous

advancements in IoT security. Researchers and developers are constantly working

on innovative solutions to stay ahead of potential vulnerabilities. This ongoing

effort is crucial for ensuring that IoT networks remain reliable and secure,

thereby fostering trust and encouraging the widespread adoption of IoT

technologies across various sectors.

Chapter II: Intrusion Detection

Chapter II Intrusion Detection

26

II.1 Introduction
 System administrators had to manually monitor user behavior at first for

intrusion detection, but this approach proved to be ad hoc and unscalable.

Administrators started using audit logs as a post-event forensic technique to

pinpoint security issues in the late 1970s and early 1980s. Software to evaluate this

data was created as storage became more accessible. Unfortunately, this research

required a lot of time and computing power, often necessitating the nighttime

execution of intrusion detection systems. [37]

Real-time intrusion detection systems began to appear in the early 1990s, enabling

quick response and assault prevention. System managers were now able to react to

threats as they materialized rather than after the fact, which was a huge

development. At the moment, the goal of intrusion detection activities is to develop

solutions that can be implemented effectively in huge networks. New attack

techniques, changing security issues, and the dynamic nature of computer systems

are all taken into consideration in these efforts. [37]

Because we use the internet so much in our everyday lives, network security is now

the cornerstone of all web services, including online retail purchases and auctions.

The purpose of intrusion detection is to find computer assaults by looking through

different information records that are seen during network operations. This is

regarded as one of the best approaches to handle issues with network security. Data

security may be jeopardized by an infiltration via a variety of internet channels. The

need for more dependable, efficient, and self-monitoring systems that can function

without human intervention has arisen from the quick expansion of networks,

faster data transmission speeds, and unexpected internet consumption. It is

possible to considerably lower the danger of catastrophic failures in susceptible

systems by pursuing such developments. [37]

Systems for detecting intrusions are an essential part of computer network security.

They serve as a deterrence as well as an early warning system. These systems may be

set up to respond to traffic instantly, cutting out shady connections in accordance

with predetermined standards. Many people believe that prevention is even more

crucial than detection. It is important to speak with knowledgeable experts who can

carry out a network audit in order to guarantee the maximum degree of safety for

your networks. These professionals may provide guidance on the optimal defensive

stance to take and suggest the finest software for safeguarding your network. [37]

It is impossible to overestimate the significance of strong intrusion detection

systems in the linked world of today. Continuous innovation and development in

intrusion detection technology are critical as cyber-attacks grow more complex. By

doing this, networks are kept safe, data integrity is preserved, and user and

stakeholder confidence is maintained. Organizations may establish a robust defense

against the constantly changing cyber threat environment by allocating resources

towards sophisticated intrusion detection systems and using expert skills.[37]

Chapter II Intrusion Detection

27

II.2 What is Intrusion Detection?
 To put it simply, it's the persistent efforts to find or identify the existence of

invasive activity. When it comes to computers and network infrastructure, intrusion

detection (ID) has a far wider application. It encompasses all procedures needed to

identify unauthorized usage of computer or network devices. This is accomplished

by using software that has been specially created with the express intent of

identifying anomalous or unusual activities.[36]

II.3 What Is an Intrusion-Detection System (IDS)?
 An intrusion-detection system (IDS) is a tool used to identify, assess, and report

unauthorized network activity. It is part of an overall protection system, similar to

firewalls, closed doors, alarm systems, and guard dogs. In a warehouse, these

technologies can cooperate to prevent network breaches. The implementation of

IDSs depends on the location of technology. A network is only as safe as its weakest

link, so a layered strategy is essential. A network should have several security layers,

each with a distinct purpose, to support the organization's overall security plan.

IDSs work at the network layer of the OSI model, while passive network sensors are

positioned at choke points. IDSs analyze packets to find specific patterns in network

traffic, logging alerts and responding based on recorded data. IDSs use known

signatures to recognize potential malicious traffic patterns. [36]

Figure II.1: Standard IDS system.

II.4 Types of IDS Systems
 IDSs fall into one of three categories: [36] [38] [40] [42] host-based intrusion-

detection system (HIDS), network-based intrusion-detection system (NIDS), and

hybrids of the two.

II.4.1 HIDS (Host Intrusion Detection System)

 Information gathered from inside a single computer system powers host-based

intrusion detection systems. (Remember that host-based IDSs are really a subset of

application-based IDSs.)

Chapter II Intrusion Detection

28

Because of this advantage, host-based intrusion detection systems (IDSs) can

reliably and precisely identify the processes and users engaged in a given operating

system assault. Furthermore, since host-based IDSs have direct access to and

monitoring of the data files and system activities that are often the focus of assaults,

they are able to "see" the results of an attempted attack, in contrast to network-

based IDSs.

System logs and operating system audit trails are the two main information sources

that host-based intrusion detection systems typically use. Operating system audit

trails are more thorough and more secure than system logs since they are often

produced at the lowest (kernel) level of the operating system. System logs, on the

other hand, are significantly simpler, smaller, and easier to understand than audit

trails. A single management console may follow several hosts with the use of a

centralized IDS NIST Special Publication on Intrusion Detection Systems

management and reporting architecture, which is supported by some host-based

IDSs. There are others who produce messages in forms that work with network

management systems.

HIDS system will require some software that resides on the system and can scan all

host resources for activity; some just scan syslog and event logs for activity. It will

log any activities it discovers to a secure database and check to see whether the

events match any malicious event record listed in the knowledge base.

II.4.2 NIDS (Network Intrusion Detection System)

 Network-based intrusion detection systems make up the bulk of commercial

models. By collecting and analyzing network packets, these IDSs identify assaults.

One network-based intrusion detection system (IDS) may safeguard several hosts

linked to a network segment by monitoring the network traffic impacting those

hosts by listening to the network segment or switch. Network-based intrusion

detection systems typically include a collection of specialized sensors or hosts

positioned across a network.

These devices keep an eye on network traffic, analyze it locally, and report any

assaults to a central control panel. The sensors are more readily guarded against

attack since their use is restricted to executing the IDS. To make it more difficult for

an attacker to locate and detect them, many of these sensors are made to operate in

"stealth" mode.

Detecting and categorizing all network traffic from all devices is possible with this

kind of intrusion detection system (IDS), which may be employed as a security

measure inside a network that is secured.

Unlike a HIDS, a NIDS can see every packet moving across its network, but it cannot

confirm the integrity of the contents stored on the devices. It will also "log" any

questionable packets.

Chapter II Intrusion Detection

29

NIDS system is usually inline on the network, and it analyzes network packets

looking for attacks. A NIDS receives all packets on a particular network segment,

including switched networks (where this is not the default behavior) via one of

several methods, such as taps or port mirroring. It carefully reconstructs the streams

of traffic to analyze them for patterns of malicious behavior. Most NIDSs are

equipped with facilities to log their activities and report or alarm on questionable

events. In addition, many high-performance routers offer NID capabilities.

Table II.1: Network-Based vs. Host-Based Intrusion-Detection Systems.

NIDS HIDS

Broad in scope (watches all network
activities)

Narrow in scope (watches only specific
host activities)

Easier setup More complex setup

Better for detecting attacks from the
outside

Better for detecting attacks from the
inside

Less expensive to implement More expensive to implement

Detection is based on what can be
recorded on the entire network

Detection is based on what any single
host can record

Examines packet headers Does not see packet headers

Near real-time response Usually only responds after a suspicious
log entry has been made

OS-independent OS-specific

Detects network attacks as payload is
analyzed

Detects local attacks before they hit the
network

Detects unsuccessful attack attempts Verifies success or failure of attacks

II.4.3 Hybrid IDS

 The features of both NIDS and HIDS are combined in hybrid IDSs. They enable

the network and terminals to be watched over. The strategically positioned probes

serve as either HIDS or NDS, depending on where they are located. The alarms from

all of these probes are then sent to a single system that unifies data from many

sources. We now know that hybrid IDS are built on a distributed architecture in

which all of the components use a common transmitting format. This facilitates

communication and yields more precise notifications.

Combining two or more intrusion detection system methodologies results in a

hybrid intrusion detection system. A comprehensive picture of the network system

is created by the hybrid intrusion detection system by fusing network data with host

agent or system data. Compared to the opposite intrusion detection system, the

hybrid intrusion detection system is easier to use. One instance of a hybrid IDS is

Prelude.

Chapter II Intrusion Detection

30

II.4.4 Protocol-based IDS (PIDS)

 An intrusion detection system that is useful for monitoring and analyzing the

protocol or protocols that the computer system uses is called a protocol-based

intrusion detection system (PIDS). PIDs are usually placed on web servers.

A protocol intelligence and security system, or PIDS, is a system or agent that sits at

the front end of a server and monitors and analyzes the communication protocol

between a connected device (a user, PC, or system) and the system it is protecting.

It also keeps track of the protocol's dynamic behavior and state.

This would normally be used by a web server to keep an eye on the HTTPS protocol

stream and comprehend the HTTP protocol in relation to the web server or system

that it is attempting to secure.

II.4.5 Application Protocol-based IDS (APIDS)

 An intrusion detection system that concentrates its monitoring on a particular

application protocol or protocols used by the computer system is known as an

application protocol-based intrusion detection system (APIDS). One illustration of

APIDS is Secerno.

The Secerno. When in IDS mode, a SQL database security appliance looks for odd

movement and generates alarms; it does not really stop possible threats. Alerts can

be tailored to particular SQL statement kinds that show how applications

communicate with databases. Since the network traffic to the database is duplicated

using conventional networking techniques, there is no effect on database traffic.

II.5 Characteristics of IDS

II.5.1 Accuracy

 It shows how closely the IDS results coincide with the typical operation of the

system under observation. The IDS needs to understand how the system works and

distinguish it from invasive activity. A low false positive rate can be used to

communicate this trait. [32] [41]

II.5.2 Response Time

 This is the maximum speed at which events can be processed in order to minimize

latency and enable real-time detection. Additionally, the IDS needs to be able to

promptly notify the system administrator of the detection result and/or initiate

countermeasures. [32] [41]

II.5.3 Completeness of Detection

 All known and undiscovered attacks should be picked up by an ideal IDS. Due to

incomplete awareness of the attacks, evaluating this measure is exceedingly

challenging. [32] [41]

II.5.4 Fault Tolerance

 To stop attempts to circumvent the intrusion detection system, the intrusion

detection system itself needs to be resistant to attacks. [32] [41]

Chapter II Intrusion Detection

31

II.6 Intrusion Detection Operating Modes

II.6.1 Anomaly Detection

 Anomaly-based detection is a technique used by intrusion detection systems

(IDS) to identify unusual network traffic, such as malformed IP packets. It uses

profiles created by tracking regular activity over time and compares current actions

with profile-related thresholds. This method can identify unknown threats, but can

create simplified profiles, include harmful activity, and produce false positives. It

can identify unidentified attacks and does not always result in aggression.[39]

II.6.2 Signature-based Detection

 Signature-based detection is a quick and simple method for evaluating harmful

traffic in intrusion detection systems. It relies on known traffic data and is precise

but limited in identifying variants of known threats or unknown threats. It cannot

monitor complex communications and is not effective for identifying attacks with

numerous events. Other methods include using attack signatures, system call

sequences, and network traffic patterns.[38] [42]

II.6.3 Specification-based Detection

 Specifications are guidelines that specify acceptable behavior models for network

elements like routing tables and protocols. They can be statistical rules or manually

constructed models. Similar to anomaly-based detection, specifications are set

manually by a human expert, allowing for low false positive rates and identifying

unidentified attacks. [42]

II.6.4 Behavior after Detection

 Two actions can be taken in the event that the IDS detects an attack: an active

response or a passive response. This feature is frequently connected to the IDS

responses module. [41]

• Passive response: In this instance, the IDS's response is restricted to

sending the administrator or an archiving system (log files) a warning

identifying the attack. The human operator will handle the countermeasures

in both scenarios.

• Active response: In contrast to the first scenario, automatic defenses will be

triggered to stop the attack and restrict its path. Blocking incoming IP

addresses or ports, for instance, ends a session or shuts down a computer.

II.6.5 Frequency of Use

 This feature is dependent on the IDS analysis module's operational mode. [41]

• Real-time continuous analysis: The IDS continuously examines the

information flow. When network intrusion detection systems are in this

mode, network traffic is examined right away following capture. Any

harmful activity found can be immediately dealt with thanks to the ongoing

analysis. When the IDS's processing speed surpasses the network's transfer

Chapter II Intrusion Detection

32

speed, this mode becomes functional. Real-time analysis is not possible in

any other case.

• Batch Analysis (delayed): If the IDS processing speed is slower than the

dynamics of change in the system being monitored, there are situations

where it is better to make detections in a postponed time frame. A Network

Intrusion Detection System (NIDS) operating at 100Mbps may be compelled

to save traffic and perform analysis in deferred mode if the network is

operating at 1Gbps. Similarly, if a HIDS examines system audit logs that are

updated on a regular basis, it must do so in accordance with the updates'

interval.

II.6.6 Target Monitoring

 Systems that monitor targets will report on any alterations or modifications made

to certain target items. Typically, a cryptographic procedure is used to accomplish

this, computing a crypto-checksum for every target file. Any changes that could

affect crypto-checksums, like file alterations or program logons, are reported by the

IDS. Through the use of crypto-checksums, Tripwire software will perform target

monitoring by instantly notifying users of modifications to configuration files and

enabling automatic restoration. This method's primary benefit is that it spares you

from having to keep an eye on the target files all the time.[36]

II.6.7 Stealth Probes

 Stealth probes use data correlation to look for long-duration attacks, sometimes

known as "low and slow" attacks. To find any associated attacks, data is gathered

from many sources, characterized, and sampled. Wide-area correlation is another

name for this technology, which usually employs a hybrid or combination approach

combining various detection approaches in an attempt to identify potentially

harmful activities.[36]

II.7 IDS Pros and Cons
 The pros of intrusion detection include the following [36]:

• Can detect external hackers as well as internal network-based attacks.

• Scales easily to provide protection for the entire network.

• Offers centralized management for correlation of distributed attacks.

• Provides defense in depth.

• Gives system administrators the ability to quantify attacks.

• Provides an additional layer of protection.

These are the cons [36]:

• Generates false positives and negatives.

• Reacts to attacks rather than preventing them.

• Requires full-time monitoring.

• Requires a complex incident-response process.

• Cannot monitor traffic at higher transmission rates.

Chapter II Intrusion Detection

33

• Generates an enormous amount of data to be analyzed.

• Requires highly skilled staff dedicated to interpreting the data.

• Susceptible to “low and slow” attacks.

• Cannot deal with encrypted network traffic.

• It is expensive.

II.8 IDS Architecture

II.8.1 Single-Tiered Architecture

 A single-tiered architecture is a type of IDS where components collect and process

data themselves, rather than passing it to other components. This architecture

offers advantages like simplicity, low cost, and independence from other

components. However, it often has components that are not aware of each other,

reducing efficiency and functionality. [36]

II.8.2 Multi-Tiered Architecture

 A multi-tiered architecture is a system that consists of multiple components that

pass information to each other. It is commonly used in intrusion detection systems

(IDSs) and includes sensors, analyzers, and a manager. Sensors collect data from

various sources, while analyzers monitor intrusive activity on individual hosts.

Agents are specialized to perform specific functions, such as examining TCP traffic

or FTP connections. When an attack is detected, they send information to the

manager component, which performs various functions, such as collecting alerts,

triggering a pager, storing information, retrieving relevant information, sending

commands, and providing a management console. A central collection point allows

for easier analysis of logs, and management consoles enable remote policy changes

and parameter erasure. Advantages of a multi-tiered architecture include greater

efficiency and depth of analysis, but downsides include increased cost and

complexity. [36]

 Figure II.2: A multi-tiered architecture.

Chapter II Intrusion Detection

34

II.8.3 Peer-to-Peer Architecture

 Peer-to-peer architecture is a type of network architecture where information is

exchanged between peer components, allowing for intrusion-detection. It is

commonly used by cooperating firewalls and routers. This architecture is simple and

allows any peer to participate in a group of peer machines, benefiting from each

other's information. However, it lacks sophisticated functionality due to the absence

of specialized components.

II.9 Intrusion Attacks

II.9.1 System Scanning

 When an attacker sends various types of packets to the target network, system

scanning may occur. System vulnerabilities and characteristics can be found based

on the target's response. These are passive attacks that don't breach or compromise

systems. A few tools that can be used for scanning attacks are vulnerability scanners,

port scanners, network scanners, port mappers, and port scanners. Various system

characteristics that this assault may display include [42] [43]:

• Target topology of the networks.

• The quantity of running hosts on the network.

• Software Version numbers of the server running on the network.

• The host's operating system is now in use.

II.9.2 Denial of Service

 DoS attacks happen frequently. They make an effort to impede or stop targeted

networks or systems. There are various reasons behind these attacks. DoS attacks

caused significant losses for e-commerce businesses because many users were

unable to access them at the time of purchase. Dos attacks may result in a number

of issues, including unavailable or ineffective services and disruptions in network

traffic at the connection interface. The following indicators point to the presence of

DoS attacks:

• Performance of the network is unusually slow.

• The particular site is not available.

• An extension of the access time.

II.9.3 Flow Exploitation DoS Attacks

 Another name for it is the "Ping of Death" attack. It mostly takes advantage of

software bugs in the target system that lead to processing errors or resource

exhaustion. This kind of attack sends the target system a lot of ping packets. The

system crashes because the target system is unable to handle these unusual packets.

CPU time, memory, storage space, space in a dedicated buffer, and network

bandwidth are among the several resources that are targeted. Various DoS attack

techniques include depleting IDS resources. It would keep sending out alerts and

overloading IDS with traffic until it ran out of resources. Consequently, an

incomplete event log would be generated.

Chapter II Intrusion Detection

35

II.9.4 Flooding DoS Attack

 The target receives more information than it can process. When the target system

is being attacked, it cannot be patched. A variety of modification strategies can be

applied to lessen these kinds of attacks. DDOS attacks, or denial-of-service attacks,

are launched by many people. They function as a single, enormous system and are

centralized. Therefore, the quickest system can be used to stop it.

II.9.5 System Penetration

System penetration is the unauthorized acquisition of resources, data, or rights

within the system. Different software bugs are taken advantage of to take over a

system. Their specifics and effects differ. Penetration attacks involve any

unauthorized access to or changes to the system's data and resources in order to take

advantage of weaknesses in the system. Attackers use a variety of software

vulnerabilities to take over the machine in these types of attacks. With the Internet

of Things, an attacker can take over a device physically or through an application,

giving him the ability to reverse engineer and check for vulnerabilities. Various

forms of system intrusion are:

• User to Root: Target host, completely controlled by local user.

• Remote to User: An account of target host, managed by the attacker on the

network.

• Remote to Root: Target host, completely controlled by the attacker on the

network.

• Remote Disk Read: An ability to read private data files on target host

without authorization of owner by an attacker on network.

• Remote Disk write: An ability to write private data files on target host

without authorization of owner by an attacker on network.

II.9.6 Man-in-the-Middle (MiTM) Attacks

 The MiTM attack is another type of assault in which the attacker actively

intercepts two nodes' communications without the victims' knowledge. The

messages between the nodes are intercepted by the attacker, who may then alter

them. Furthermore, as of late, attacking machines are typically a component of a

larger network of hacked workstations, or a botnet. The goal of integrity attacks is

to change the data or route within the network.

II.9.7 Routing Attacks

 The information (messages) exchanged within the framework of the routing

protocol is altered or spoof by the attacker in a routing attack. Numerous Internet

of Things routing hacks target the RPL protocol, which is a key protocol for Internet-

integrated wireless sensor networks.[31]

II.9.8 Application–level Attack

The attacker focuses on the application layer's limitations. For instance, a web

server's security flaws or improper server-side controls.

Chapter II Intrusion Detection

36

II.9.9 Viruses and Worms

 Computer viruses and worms are harmful programs designed to replicate

themselves, similar to biological reproduction. They can be classified as worms or

viruses based on whether the malicious code requires human intervention to spread

to another system. Some viruses/worms have multiple infection mechanisms, such

as searching for and emailing to infected email addresses, scanning for unprotected

network shares, infecting vulnerable servers, and infecting local and network-

accessible files. Pure viruses, like "I Love You" and "SoBig," propagate through email

attachments, while pure worms like "Code Red," "Slammer," and "Blaster" actively

scan for and infect further vulnerable systems. Currently, worms/viruses have mild

actions, such as installing back-door software, installing email engines, defacing

websites, conducting distributed denial of service attacks, and logging internet

bandwidth. Future threats include data corruption, hardware damage, espionage,

and personal information theft.[36]

II.10 Security Mechanisms
 One of the key factors in evaluating the system's reliability is security concerns.

In the event that these issues are effectively resolved, the system's added value and

reliability both rise significantly. If not, reliability is undervalued, compromised,

and the system becomes unusable, resulting in a lack of added value. As a result,

system security is now a top priority for administrators. They have access to a variety

of security tools and techniques, including [41]:

• Data integrity and secrecy guaranteed by encryption techniques.

• Firewalls for network traffic filtering and access control.

• Vulnerability scanners to find system security holes.

• Antivirus software to guard the system from dangerous apps

II.11 Conclusion
 Intrusion detection is as crucial to a network system as a burglar alarm is to

buildings or houses where valuable information or items are stored. Just as a burglar

alarm alerts homeowners to potential break-ins and unauthorized access, an

Intrusion Detection System (IDS) monitors a network for any suspicious activity or

policy violations. This setup not only detects threats but also actively takes steps to

prevent them from causing harm, thereby significantly enhancing the overall

security and effectiveness of the system.

A high-quality IDS, offers more than just notifications about potential threats. It

can automatically take actions such as blocking malicious traffic, alerting

administrators, and logging critical information for further analysis. This proactive

approach means that threats are managed in real-time, reducing the risk of data

breaches and other security incidents.

IDS technology can be categorized into two main types: Network-based Intrusion

Detection Systems (NIDS) and Host-based Intrusion Detection Systems (HIDS).

Chapter II Intrusion Detection

37

NIDS monitor network traffic for suspicious activity, providing a broad overview of

the entire network's security. In contrast, HIDS focuses on individual devices,

monitoring activities such as file modifications, logins, and other critical

operations. Some systems combine both NIDS and HIDS to provide comprehensive

coverage and enhanced protection.

Implementing an IDS typically involves installing software or deploying hardware

sensors across the network or on individual devices. This setup can be tailored to fit

the specific needs and infrastructure of an organization. For businesses that do not

currently have an IDS in place, it is highly advisable to consider integrating one into

their security model or infrastructure. The absence of an IDS leaves a network

vulnerable to undetected threats, potentially leading to significant financial and

reputational damage.

In conclusion, the proactive defense mechanism provided by IDS, is essential for

safeguarding against unauthorized access and potential breaches. By continuously

monitoring and responding to threats, an IDS helps maintain the integrity and

security of the network, ensuring that valuable information and resources remain

protected. For any organization looking to strengthen its security posture, investing

in an effective IDS should be a top priority.

Chapter III : Deep Learning

Chapter III Deep Learning

39

III.1 Introduction
 The human brain is the most amazing organ in the body. It determines how we
interpret everything that we see, hear, taste, smell, and touch. It allows us to
dream, feel emotions, and store memories. Without it, humans would be
rudimentary creatures with only the most basic reactions. Our brains are
fundamentally what give us intelligence. Even though the newborn brain is barely
one pound in weight, it manages to solve puzzles that are above the capabilities of
our largest, most potent supercomputers. A few months after birth, newborns are
able to distinguish distinct items from their surroundings, recognize their parents'
faces, and even distinguish between different voices. In little than a year, they've
already acquired an intuitive understanding of natural physics, the ability to track
things even when they're partially or totally obscured, and the ability to interpret
sounds.
Additionally, by the time they are young children, they have hundreds of words in
their vocabularies and a good grasp of syntax. We have long dreamed of creating
intelligent machines with minds similar to our own: self-driving vehicles, robotic
housecleaning assistants, and disease-detection microscopes. However, in order to
create these artificially intelligent robots, we must find solutions to some of the
trickiest computing problems we have ever encountered—issues that our brains
are currently capable of handling in a matter of microseconds. In order to solve
these issues, we will need to create a whole new method of computer programming
utilizing methods that have mostly been established in the last ten years. Deep
learning is a term used to describe this very active area of artificial computer
intelligence. During the past few years, deep learning has revolutionized nearly
every field it has been applied to, resulting in the greatest leap in performance in
the history of computer science. The application of deep learning has made those
small, gradual annual improvements a thing of the past — these days, it isn’t
uncommon to witness improvements of 20 to 30 percent, in months and not years.
There’s no keeping that kind of success under wraps, which means the media have
been filled with references to “artificial intelligence,” “machine learning,” and
“deep learning.” These terms are used not only very widely, but most of the time
inaccurately and confusingly. With that in mind, this chapter aims to clarify and
demystify the distinctions among these technical terms.[45]

III.2 The Story Begins with Artificial Intelligence
 John McCarthy, a trailblazing computer scientist, first used the phrase artificial

intelligence (AI) in the 1950s. It's a catch-all word for all the techniques and fields

that lead to machines displaying intelligence of any kind. This ranges from the

expert systems of the 1980s, which were essentially databases of knowledge that had

been hardcoded, to the most sophisticated AI systems that are currently in use.

Nowadays, almost every software used in almost every industry uses artificial

intelligence (AI), even if it's only applied to a few simple manually coded processes.

[44]

III.2.1 What Is Machine Learning?

 Artificial intelligence's machine learning field studies a machine's capacity to

mimic thoughtful human behavior. The creation of algorithms that facilitate

Chapter III Deep Learning

40

learning from previously collected data is the focus of machine learning. The term

"machine learning" was first used in 1959 by Arthur Samuel, who defined it as "the

ability for a machine to automatically learn from data, improve performance

through experience, and predict things without being explicitly programmed." The

process begins with supplying high-quality data, which is then utilized to train our

machines by constructing machine learning models based on the data and different

techniques. The selection of algorithms is contingent upon the nature of the data at

hand and the nature of the work that has to be automated. [44]

III.2.2 Advancing into Deep Learning

 Deep learning, also known as deep neural networks, is a subfield of machine

learning, which is a subset of AI, as shown in Figure III-1. Deep learning takes

inspiration from how the human brain works. What’s the difference between deep

learning and traditional machine learning? Perhaps the biggest distinction is that

deep learning is the first — and currently the only — learning method that is

capable of training directly on the raw data. No need for feature extraction with deep

learning. In the example of facial recognition, deep learning would be able to dive

in and examine the raw pixels of an image, without explicitly being told to pay

attention to facial proportions or distance between pupils or other specifics called

out by human experts. What’s more, deep learning scales well to hundreds of

millions of training samples. As the training dataset gets larger and larger, deep

learning continuously improves. [44]

Figure III.1: Deep learning, a subset of a subset of AI.

III.3 Traditional Machine Learning
 Artificial intelligence is evolving, with machine learning becoming a more

advanced form of AI that allows computers to learn independently. Deep learning

is a specific type of machine learning, and understanding it requires a solid

understanding of its basic principles. This chapter covers general principles, data

training, feature extraction techniques, and training data.[44]

III.3.1 Assembling the Training Data

 Machine learning models require data samples, which are essential for their

success. For example, a "dog detector" uses a large dataset of images categorized into

"dog" and "not dog" classes. Supervised training uses a fully labeled dataset, while

unsupervised training uses data without labels. Supervised training typically yields

Chapter III Deep Learning

41

better results, while unsupervised learning has untapped potential due to the vast

amount of unlabeled data available. Both methods are essential for effective

machine learning.[44]

III.3.2 Understanding the Importance of Feature Extraction

 In traditional machine learning, raw images with or without dogs are used to

create labels. However, the machine is aware of these pixels and needs to perform a

feature extraction phase to extract predefined properties or features. In the dog

detector example, each input sample is represented as a vector of values, each

corresponding to a single feature. To identify important features, a domain expert

is needed to specify them. For image processing problems, an expert analyzes the

problem domain and samples, determining the features to extract. In real-world

examples, feature extraction is based on properties of files, such as API or function

calls or registry keys used. This process is essential for training models in machine

learning.[44]

III.3.3 Learning Algorithms

 A machine learning algorithm is an algorithm that is able to learn from data. But

what do we mean by learning? It means by definition “A computer program is said

to learn from experience E with respect to some class of tasks T and performance

measure P, if its performance at tasks in T, as measured by P, improves with

experience E.” [45]

III.3.3.a The Task, T

 Machine learning is a method that helps solve complex tasks that are too complex

for human-designed programs. It involves understanding the principles that

underlie intelligence and aims to improve our understanding of tasks. Common

machine learning tasks include classification, regression, transcription, machine

translation, structured output, anomaly detection, synthesis and sampling,

imputation of missing values, denoising, and density estimation.

Classification tasks involve assigning an input to a category, while regression tasks

involve predicting numerical values based on input. Transcription tasks convert

unstructured data into textual form, while translation tasks convert symbols in one

language into another. Structured output tasks involve generating vectors or data

structures with important relationships between elements, while anomaly

detection involves sifting through events or objects to flag unusual or atypical ones.

Synthesis and sampling tasks use machine learning algorithms to generate similar

examples from training data, making them useful for media applications like video

games. [45]

Denoising tasks involve predicting the conditional probability distribution of a

corrupted example from its corrupted version. Density estimation tasks involve

learning a probability density or probability mass function on a space, which

requires understanding the data structure and cluster examples. However, density

Chapter III Deep Learning

42

estimation may not always solve all related tasks due to computational intractable

operations on the distribution. [45]

III.3.3.b The Performance Measure, P

 To evaluate a machine learning algorithm’s capability, a quantitative measure of

its performance is designed. This measure is specific to the task being performed,

such as classification, classification with missing inputs, and transcription.

Accuracy is measured by the proportion of examples where the model produces the

correct output, while error rate is the proportion of examples where the model

produces an incorrect output. For tasks like density estimation, a different

performance metric is used, such as the average log-probability assigned to some

examples. The choice of performance measure can be challenging due to the

complexity of deciding what to measure, or the impracticality of computing the

actual probability value assigned to a specific point in space. In such cases,

alternative criterion or approximation to the desired criterion is needed. [45]

III.3.3.c The Experience, E

 Machine learning algorithms can be supervised or unsupervised based on their

learning experience. The Iris dataset, one of the oldest studied, is a collection of

measurements of 150 iris plants, each representing a different part of the plant.

Unsupervised learning algorithms observe random vectors and attempt to learn the

probability distribution p(x), while supervised learning involves observing multiple

examples of a random vector and an associated value or vector and learning to

predict y from x. Other variants of the learning paradigm include semi-supervised

learning, multi-instance learning, and reinforcement learning. Most machine

learning algorithms experience a dataset, which can be described in various ways,

such as a design matrix. There is no formal definition of supervised and

unsupervised learning, but new ones can be designed for new applications. [45]

III.3.4 Training and testing

 Machine learning researchers often make mistakes due to contamination

between test and train sets, which can lead to skewd results. Contamination can be

subtle and can mess up the entire process. For example, if a machine learning model

is trained on a dataset of images containing tanks and trees, it may inadvertently

learn to detect clouds instead of tanks. This can lead to biased results. Similarly, if a

model is trained on malicious files and benign files, it may not accurately classify

malicious or benign files. To remedy this, the benign dataset should contain many

different files created by different developers, not just Microsoft. It is crucial to

ensure that test data is completely separated from train data and that the data is

representative of the type and distribution of data encountered in the real

world.[44]

III.3.5 Setting aside a validation set

 Incorporating test data insights into model training is crucial for effective learning

in the real world. Instead of using a test set for training, a validation set is used to

measure performance on new data and use the insights for further training and

Chapter III Deep Learning

43

improvements. The test set remains the ultimate test, replicating real-world

conditions. To ensure reliability, measures should be stringent, such as using data

from different time periods for training and testing, as new malicious file types

appear daily in the real world. [44]

III.4 The Neural Network

III.4.1 The Biological Brain Was the First Real Neural Network

 The human brain consists of tens of billions of small processing units known as

neurons. These neurons are connected to each other via synapses. You’ve probably

read that the human brain has different regions — such as the visual cortex and

auditory cortex — that each perform a certain task. These differences mainly arise

from the input each region receives. For example, when the optic nerve transfers

signals (the input) from our eyes to a certain region in the brain (the processing

area), the neurons in that area learn to process these signals, and form the visual

cortex. [44] [48]

Figure III.2: Making connections in the brain.

We can refer to the neurons as general processing units, which are agnostic of the

data they process. The learning process itself takes place when the connection

strength between neurons is formed, removed, strengthened, or weakened. In other

words, everything humans learn, everything we remember, everything we do, is the

result of synaptic activity in the brain. You might consider the cerebral cortex to be

the most “interesting” part of our brain, because it’s associated with our high-level

cognitive capabilities. Mammals are the only animals that have a cerebral cortex.

Why is it that humans are smarter than all other animals? Brazilian neuroscientist

Suzana Herculano-Houzel invented a novel method for accurately counting the

number of neurons in the brain. Her research suggests that intelligence is correlated

with the number of neurons in the cerebral cortex. The higher this number, the

Chapter III Deep Learning

44

higher the intelligence. An elephant has a brain with a much larger mass, but the

human brain’s cerebral cortex has a far greater absolute number of neurons. [44]

Figure III.3: A few parts of the brain.

III.4.2 Artificial Neural Networks

 Artificial neural networks have their origins in 1943 when researchers Warren

McCulloch and Walter Pitts proposed a simple model for an artificial neuron. Frank

Rosenblatt later created the perceptron, a simple neural network with two layers:

the input and output layers. These networks were limited in their learning

capabilities. In the late 1960s, researchers discovered that they could expand the

capabilities of neural networks by adding hidden layers, creating multilayered

neural networks or multilayered perceptron's (MLP). However, these networks

could not be trained using conventional mechanisms. In the early 1980s, Paul

Werbos and David Rumelhart invented backpropagation, which is still used for

training multilayered neural networks today. [44] [48]

.

.

Figure III.4: Connecting

neurons in a perceptron

neural network. Figure III.5:

Multilayered perceptron.

Chapter III Deep Learning

45

III.4.3 Training a Neural Network with Backpropagation

 Backpropagation is a fundamental principle in neural networks, which helps in

recognizing and updating the weights of a neural network. In a training dataset of

10,000 images containing cats and 10,000 images without cats, a neural network is

used. The input layer contains 900 neurons, the output layer contains two neurons

representing the "no cat" and "cat" classes, and two hidden layers. The weights are

initialized randomly and are usually small values around zero.

The neural network learns how to recognize a cat through training. At each point, a

training sample is fed into the network, and the training process is done in two

stages: feed-forward and backpropagation. The input layer sends values to the next

layer, which aggregates the input and passes it through an activation function. The

output neurons then fire their results, and the backpropagation algorithm updates

the weights of the neural network to improve performance.

The network trains through many iterations over the entire training set, with each

pass referred to as an epoch. Gradual updates to the weights are made during the

backpropagation phase. After training, the accuracy is tested using a set of samples

that were not used during the training. This prevents overfitting and encourages the

network to generalize. If the results on the test set are satisfactory, the neural

network can be used for real-world prediction. [44]

III.4.4 Feed-Forward Neural Networks

 The human brain is composed of multiple neurons, which are organized in layers,

such as the human cerebral cortex, which is responsible for most of human

intelligence. Information flows from one layer to another until sensory input is

converted into conceptual understanding. Artificial neural networks can be

constructed by connecting neurons to each other, input data, and output nodes.

The bottom layer of the network pulls in input data, while the top layer computes

the final answer. The middle layer(s) are called hidden layers, and the parameter

vector, θ, is determined by the weights of connections between neurons. These feed-

forward networks are the simplest to analyze and are essential for solving complex

learning problems. [46]

Figure III.6: A simple example of a feed-forward neural network.

Chapter III Deep Learning

46

III.4.5 Linear Neurons and Their Limitations

 Most neuron types are defined by the function 𝑓 they apply to their logit 𝑧. Let’s

first consider layers of neurons that use a linear function in the form of 𝑓 (𝑧) =

 𝑎𝑧 + 𝑏. For example, a neuron that attempts to estimate a cost of a meal in a fast-

food restaurant would use a linear neuron where a = 1 and b = 0. In other words,

using 𝑓 (𝑧) = 𝑧 and weights equal to the price of each item, the linear neuron in

Figure III-7 would take in some ordered triple of servings of burgers, fries, and sodas

and output the price of the combination. Linear neurons are easy to compute with,

but they run into serious limitations. In fact, it can be shown that any feed-forward

neural network consisting of only linear neurons can be expressed as a network with

no hidden layers. This is problematic because, as we discussed before, hidden layers

are what enable us to learn important features from the input data. In other words,

in order to learn complex relationships, we need to use neurons that employ some

sort of nonlinearity. [46]

Figure III.7: An example of a linear neuron.

III.4.6 Sigmoid, Tanh, and ReLU Neurons

 There are three major types of neurons that are used in practice that introduce

nonlinearities in their computations. [46] [47] The first of these is the sigmoid

neuron, which uses the function:

𝑓 =
1

1+𝑒−𝑧
 (I.1)

Intuitively, this means that when the logit is very small, the output of a logistic

neuron is very close to 0. When the logit is very large, the output of the logistic

neuron is close to 1. In-between these two extremes, the neuron assumes an S-shape.

Figure III.8: The output of a sigmoid neuron as z varies.

Chapter III Deep Learning

47

Tanh neurons use a similar kind of S-shaped nonlinearity, but instead of ranging

from 0 to 1, the output of tanh neurons range from −1 to 1. As one would expect, they

use f (z) = tanh (z). The resulting relationship between the output y and the logit z

is described by Figure III-9. When S-shaped nonlinearities are used, the tanh

neuron is often preferred over the sigmoid neuron because it is zero-centered.

Figure III.9: The output of a tanh neuron as z varies.

A different kind of nonlinearity is used by the restricted linear unit (ReLU) neuron.

It uses the function 𝑓 (𝑧) = 𝑚𝑎𝑥 (0, 𝑧). resulting in a characteristic hockey-stick-

shaped response, as shown in Figure III-10.

Figure III.10: The output of a ReLU neuron as z varies.

III.4.7 Softmax Output Layers

 Oftentimes, we want our output vector to be a probability distribution over a set

of mutually exclusive labels. For example, let’s say we want to build a neural network

to recognize handwritten digits from the MNIST dataset. Each label (0 through 9)

is mutually exclusive, but it’s unlikely that we will be able to recognize digits with

100% confidence. Using a probability distribution gives us a better idea of how

confident we are in our predictions. As a result, the desired output vector is of the

form below,

where ∑ 0𝑝𝑖=1
9
𝑖 : [𝑝0𝑝1𝑝2𝑝3 ⋯ 𝑝9]

This is achieved by using a special output layer called a softmax layer. Unlike in other

kinds of layers, the output of a neuron in a softmax layer depends on the outputs of

all the other neurons in its layer. This is because we require the sum of all the outputs

to be equal to 1. Letting 𝑧𝑖 be the logit of the 𝑖𝑡ℎ softmax neuron, we can achieve this

normalization by setting its output to:

Chapter III Deep Learning

48

𝑦𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗

𝑗
 (I.2)

A strong prediction would have a single entry in the vector close to 1, while the

remaining entries were close to 0. A weak prediction would have multiple possible

labels that are more or less equally likely. [46]

III.5 Types of Neural Networks
 The neural network spotlighted in the previous section was a simple one. In

practice, there are many types of neural networks, used for different tasks.

Following are some examples [44]:

III.5.1 Fully connected neural network

 This is the simplest form of neural network, in which all the neurons in each layer

are connected to all the neurons in the subsequent layer. look at Figure III-11 for a

sense of how this plays out. Fully connected networks are popular because they are

robust, and because they don’t assume anything about the properties of the input.

Also note that because all the neurons in each layer are connected to all the neurons

in the subsequent layer, the actual position of a neuron within a layer really doesn’t

matter.

Figure III.11: A fully connected neural network

III.5.2 Recurrent neural network

 Neural networks use current inputs for decision-making, particularly in

sequential tasks like language understanding. Recurrent neural networks (RNNs)

provide an indefinite memory of previous events by adding recurrent connections

between neurons in hidden layers. These connections provide weights between

neurons in the same layer, providing values in previous time steps. RNNs are useful

for presenting sequential data and learning long-term patterns and relationships,

with more advanced variants allowing higher accuracy over time.

Figure III.12: A recurrent neural network.

Chapter III Deep Learning

49

III.5.3 Sparsely connected neural network

 Sparsely connected neural nets are networks that are not fully connected, with

only a portion of neurons between adjacent layers connected. These connections

are determined by data properties. One popular variant is the convolutional neural

network (CNN), used for computer vision problems. CNNs use a small receptive

field, ensuring high correlation between adjacent pixels in real-world images.

III.6 Training deeper neural networks

 Deep neural networks, which have a larger number of layers, have been trained

using the backpropagation algorithm since the 1990s. However, the gradient

vanishing problem has made it difficult to train these networks due to weaker

signals. Recent inventions have addressed this issue, allowing researchers to train

deeper neural networks with tens of layers and billions of synapses. Deep neural

networks allow for a hierarchical pattern learning structure, allowing higher layers

to learn and recognize more complex patterns. They also don't require traditional

feature extraction, as they can use their deep layers as feature extractors, extracting

complex patterns that human experts cannot manually specify. [44]

III.7 Deep Learning Algorithms

 Deep learning is a machine learning and artificial intelligence method designed

to mimic human brain functions for effective decision-making. It is a crucial data

science element that uses predictive modeling and statistics. Deep learning

algorithms run through layers of neural networks, pre-trained to serve a task.

However, traditional machine learning algorithms struggle to handle structured or

unstructured data sets, making deep learning an ideal solution. [49]

III.7.1 Convolutional Neural Networks (CNNs)

 A Convolutional Neural Network (CNN) is a Deep Learning algorithm that can

learn from an input image, assign importance to various aspects, and differentiate

between them. It requires less pre-processing than other classification algorithms

and can learn filters with training. CNNs have an architecture similar to the

connectivity pattern of neurons in the human brain, inspired by the Visual Cortex.

They have three main layers: convolutional, pooling, and fully-connected. As the

layers increase, the CNN identifies larger elements or shapes until it identifies the

intended object. [49]

III.7.2 Long Short-Term Memory Networks (LSTMs)

 LSTMs are long-term learning and adaptation neural networks that can remember

and recall past data. They are used in time series predictions due to their ability to

restrain memory or previous inputs. LSTMs have a chain-like structure consisting

of four interacting layers, and can be used in speech recognition, pharmaceutical

development, and music loop composition. [49]

Chapter III Deep Learning

50

III.7.3 Recurrent Neural Networks (RNNs)

 Recurrent Neural Networks or RNNs consist of some directed connections that

form a cycle that allow the input provided from the LSTMs to be used as input in

the current phase of RNNs. These inputs are deeply embedded as inputs and enforce

the memorization ability of LSTMs lets these inputs get absorbed for a period in the

internal memory. RNNs are therefore dependent on the inputs that are preserved

by LSTMs and work under the synchronization phenomenon of LSTMs. RNNs are

mostly used in captioning the image, time series analysis, recognizing handwritten

data, and translating data to machines. [49]

III.7.4 Generative Adversarial Networks (GANs)

 GANs are deep learning algorithms that generate new instances of data that

match training data. They consist of a generator that generates false data and a

discriminator that adapts. GANs are used in astronomy, video games, cartoons,

human faces, and 3D object rendering. They generate fake data and respond to it

as false data, updating the results. [49]

III.7.5 Radial Basis Function Networks (RBFNs)

 RBFNs are neural networks used for time-series prediction, regression testing, and

classification. They consist of three layers: input, hidden, and output. The input

layer uses neurons sensitive to training data, while the hidden layer integrates with

the input layer. The output layer uses linear combinations of radial-based data,

passing Gaussian functions as parameters. These networks are used for

classification, regression testing, and time-series prediction. [49]

III.7.6 Multilayer Perceptron’s (MLPs)

 MLPs are the base of deep learning technology. It belongs to a class of feed-

forward neural networks having various layers of perceptron’s. These perceptron’s

have various activation functions in them. MLPs also have connected input and

output layers and their number is the same. Also, there's a layer that remains hidden

amidst these two layers. MLPs are mostly used to build image and speech

recognition systems or some other types of the translation software.

The working of MLPs starts by feeding the data in the input layer. The neurons

present in the layer form a graph to establish a connection that passes in one

direction. The weight of this input data is found to exist between the hidden layer

and the input layer. MLPs use activation functions to determine which nodes are

ready to fire. These activation functions include tanh function, sigmoid and ReLUs.

MLPs are mainly used to train the models to understand what kind of co-relation

the layers are serving to achieve the desired output from the given data set. See the

below image to understand better. [49]

III.7.7 Self Organizing Maps (SOMs)

Teuvo Kohenen invented Self-Organizing Machines (SOMs) to visualize data

through artificial neural networks. These machines initialize weights of nodes and

Chapter III Deep Learning

51

choose random vectors from training data. They examine each node to find relative

weights, deciding the Best Matching Unit (BMU). SOMs discover winning nodes

over time, reducing them from the sample vector. Multiple iterations are used to

ensure no node is missed. Examples include RGB color combinations. [49]

III.7.8 Deep Belief Networks (DBNs)

 DBNs, also known as generative models, are used in video and image recognition

and motion capture. They are powered by Greedy algorithms and use a layer-to-

layer approach, generating weights through a top-down approach. They learn from

latent values from every layer using a bottom-up pass approach, drawing samples

from visible units and learning from the hidden two-layer. [49]

III.7.9 Restricted Boltzmann Machines (RBMs)

 RBMs, developed by Geoffrey Hinton, are stochastic neural networks used in

dimension reduction, regression, classification, and topic modeling. They consist of

two layers: visible and hidden, connected through hidden units and bias units.

RBMs have two phases: forward pass and backward pass. Inputs are encoded,

weighted, and combined in the backward pass, then pushed to the visible layer for

activation and reconstructed output. [49]

III.7.10 Autoencoders

 Autoencoders are highly trained neural networks that replicate data, ensuring

input and output are identical. They are used in tasks like pharma discovery, image

processing, and population prediction. They consist of an encoder, code, and

decoder, and can transform inputs into representations. Autoencoders reconstruct

original inputs, reducing size and clarifying images for accuracy.

III.8 Applications of Deep Learning

III.8.1 Computer Vision

 Deep learning has revolutionized computer vision by eliminating traditional

image processing methods, resulting in significant improvements in tasks like

object recognition, face recognition, artist classification, medical image analysis,

and autonomous driving modules. The ImageNet dataset has seen a 20% reduction

in error rate since 2010, surpassing human accuracy. Deep learning has also been

used in medical image analysis and autonomous driving modules, tackling issues

like "artistic style transfer" and transforming existing pictures into paintings based

on specific styles. [44]

III.8.2 Text Analysis and Understanding

 Deep learning has been successfully applied to text analysis and understanding

problems, including document classification, sentiment analysis, and automatic

translation. Recurrent neural networks are particularly useful in this area due to the

sequential nature of textual data. Deep learning has the ability to train language

Chapter III Deep Learning

52

models from raw text data, learning vocabulary, grammar, context, and other

important traits. It can even be trained together with deep learning models for

computer vision, providing results that were previously considered impossible. For

example, deep learning can generate image captions without manual image

processing or natural language processing, demonstrating a close understanding of

the language used in images. Additionally, deep learning can generate new images

based on text descriptions, pixel by pixel. [44]

III.8.3 Speech Recognition

 Speech recognition is a complex area in signal processing, with voice to text being

the most widely researched problem. The auditory cortex in the brain is trained to

recognize voice and convert it to language, making humans adept at this task. Deep

learning has revolutionized speech recognition by allowing it to operate directly on

raw data and large audio datasets, improving accuracy by 20-30%. Today, most smart

assistants rely on deep learning, with Google Assistant having the highest accuracy

in recent benchmarks. Deep learning has also been applied to speech generation,

such as text to voice, with Google DeepMind presenting a novel method called

WaveNet. Speaker recognition has also seen significant improvements, particularly

in national security, with Fifth Dimension employing speech recognition to identify

terrorists by matching their voice samples against a large dataset of known voices.

III.8.4 Cybersecurity

 One of the most crucial real-world problems today, one that concerns every large

and small company, is cybersecurity. More than a million new malware threats

(malicious software) are created every single day, and sophisticated attacks are

continuously crippling entire companies — or even nations — by targeting critical

national infrastructures, as would happen in the case of nation-state cyberattacks.

There are many, many cybersecurity solutions out there, but all are struggling to

detect new malware. It’s easy to mutate a malware and evade detection by even the

most sophisticated cybersecurity solutions, which perform dynamic analysis on files

and use traditional machine learning.

Deep learning, a method that processes raw data without feature extraction, has

been successfully applied to cybersecurity. However, it faces challenges due to the

size and structure of computer files, which cannot be easily adjusted. Deep Instinct

has demonstrated how a dedicated deep learning framework can overcome these

challenges and train a deep learning model on raw files. The training phase uses

hundreds of millions of malicious and legitimate files, taking only a day using GPUs.

The resulting deep learning model is small, tens of megabytes, and can provide a

prediction within milliseconds. This model has a higher detection rate and lower

false positive rate compared to traditional machine learning solutions. Deep

learning can also identify the type of malware, such as ransomware or Trojans, and

even detect the nation-state behind an attack. [44]

Chapter III Deep Learning

53

III.9 Conclusion
 In this chapter, we delved into the fascinating world of deep learning, focusing on

neural networks, their various types, and the algorithms that power them. We began

by exploring the fundamental architecture of neural networks, emphasizing the

pivotal roles of neurons, layers, and activation functions. This foundational

knowledge is crucial for understanding how neural networks emulate the human

brain's learning processes.

We then examined the different types of neural networks, each designed to tackle

specific challenges and applications. From the traditional feedforward neural

networks (FNN) to the more sophisticated convolutional neural networks (CNN)

tailored for image processing, and recurrent neural networks (RNN) adept at

handling sequential data, we saw how each type offers unique advantages. We also

discussed advanced variations like Long Short-Term Memory (LSTM) networks and

Generative Adversarial Networks (GANs), which push the boundaries of what

neural networks can achieve.

Through this exploration, it is evident that deep learning, with its diverse array of

neural network architectures and sophisticated algorithms, is revolutionizing

numerous fields. From image and speech recognition to natural language

processing and autonomous systems, the applications of deep learning are vast and

ever-expanding.

As we conclude this chapter, it is clear that the potential of deep learning is

immense. However, with great power comes great responsibility. As practitioners, it

is imperative to stay mindful of ethical considerations and the societal impacts of

deploying these technologies. Moving forward, the continued evolution of deep

learning promises to unlock even more groundbreaking innovations, making it an

exciting area of study and application for years to come.

Chapter IV: Experimentation

and Results Interpretation

Chapter IV Experimentation and Results Interpretation

55

IV.1 Introduction
 We go over the specifics of our experiment in this chapter. We will outline the

software and hardware tools we utilized to carry out our experiment in this chapter.

We will also provide a thorough explanation of the dataset that was used to train

and evaluate the models that were recommended. in addition to the assessment

metrics used to analyze the models. Next, we will go into great depth on the

exploratory data analysis we did on the outcomes of our experiment.

IV.2 Working Environment and Tools Used

IV.2.1 Hardware Environment

 We used a HP brand ProBook with an Intel Core i5-6300U CPU @ 2.40GHz 2.50

GHz and 8 GB of RAM for our project.

IV.2.2 Software environment

 We chose version 3.12 of the Python programming language because this project

involves deep learning. We employed Jupyter Notebook as an environment manager

and package supplier. In addition to Pandas, NumPy, TensorFlow, Keras and Scikit-

learn libraries.

IV.2.2.1 Python

 Python is a high-level, interpreted, interactive, and object-oriented scripting

language developed by Guido van Rossum in the late eighties and early nineties at

the National Research Institute for Mathematics and Computer Science in the

Netherlands. It is derived from various scripting languages and is designed for high

readable use. Python is a beginner's language, supporting a wide range of

applications from text processing to web browsers and games.[50]

Figure IV. 1: Python Logo

IV.2.2.2 Jupyter Notebook

 Jupyter Notebook is an interactive web application for creating and sharing

computational documents. The project was first named IPython and later renamed

Jupyter in 2014. It is a fully open-source product, and users can use every

functionality available for free. It supports more than 40 languages including

Python, R, and Scala.

A notebook is a mutable file saved in ipynb format. Jupyter Notebook has a

notebook dashboard to help users manage different notebooks. Kernels are also part

of Jupyter notebooks. Kernels are processes that run interactive code in a particular

programming language and return output to the user. Kernels also respond to tab

Chapter IV Experimentation and Results Interpretation

56

completion and introspection requests. Jupyter notebooks are used for a variety of

purposes. A notebook is an interactive computational environment in which users

can execute a particular piece of code and observe the output and make changes to

the code to drive it to the desired output or explore more. Jupyter notebooks are

heavily used for data exploration purposes as it involves a lot of reiterations. It is also

used in other data science workflows such as machine learning experimentations

and modeling. It can also be used for documenting code samples. A Jupyter

notebook has independent executable code cells that users can run in any order.[51]

Figure IV.2: Jupyter Logo

IV.2.2.3 Pandas

 Pandas is a Python-based open-source data analysis and manipulation tool used

for data wrangling, analysis, cleaning, and transformation. It offers features such as

speedy data exploration, file format reading, data cleaning, and manipulation.

Pandas works with Data Frame objects, storing data in tabular rows and columns.

Companies like Netflix, Amazon, and YouTube use Pandas for recommendation

systems, healthcare, energy sector, ecommerce, personalized advertising, airline

analysis, and stock market understanding.[52]

IV.2.2.4 NumPy

 An open-source library called NumPy has multidimensional arrays in it. Data can

be stored in a homogenous "n" dimensional array object using the NumPy ndarray.

In the business world, NumPy is used to compute arrays. For instance, a colorful

image's data is kept in a 3D matrix with 1000 pixels. We must work on those pixels

in order to alter those photos. NumPy comes in quite handy in this situation.

Advanced Python packages like SciPy and Pandas also use NumPy. It outperforms

Python's List in the following areas: Speed & Memory. Numerous built-in functions,

such as random sampling, linear algebra, and mathematical functions, are available.

Slicing and indexing are methods for gaining access to a portion of the data.[52]

IV.2.2.5 TensorFlow

 TensorFlow is a Python machine learning package that is free and open source.

Although it may be applied to many different tasks, its primary focus is on deep

neural network training and inference. By using multidimensional arrays,

commonly referred to as tensors, it is able to execute several operations on a single

input. TensorBoard is an additional component that comes with TensorFlow that

facilitates graph visualization and model education. This debugs the model to

improve its performance and aids in comprehending its nodes.

Chapter IV Experimentation and Results Interpretation

57

The Graph Dashboard is an effective tool for analyzing the TensorFlow model and

provides a brief overview of its architecture.

TensorFlow APIs are organized hierarchically, with low-level APIs serving as the

foundation for high-level APIs. Low-level APIs are used by machine learning

researchers to develop and find new machine learning algorithms. tf.Keras is an

open-source API version that works with TensorFlow.[52][54]

IV.2.2.6 Keras

 Keras is a deep learning API written in Python and runs on top of the TensorFlow

machine learning platform. It was developed with a focus on the possibility of rapid

experiments. Keras are mainly used to create deep learning models, especially

neural networks. Keras can be used to ship reliable and performant applied machine

learning solutions, as well as in Natural Language Processing (NLP) and Computer

Vision (CV).[52]

IV.2.2.7 Scikit-learn

 A machine learning library for the Python programming language is called Scikit-

learn. After cleaning and manipulating your data with Panda or NumPy, Scikit-learn

is used to develop machine learning models, as it contains dozens of tools needed

for modelling and predictive analysis. Scikit-learn may be used to create a variety of

machine learning models, including supervised and unsupervised learning, feature

importance analysis, and cross-validation of model correctness. Support vector

machines, random forests, gradient boosting, 3 k-means, DBSCAN, and other

classification, regression, and clustering algorithms are among them. It is made to

work with NumPy and SciPy Python numerical and scientific libraries. [52] [53]

IV.3 Evaluation Metrics
 This section discusses the evaluation of information retrieval evaluation concepts

like confusion matrix, precision, recall, F-score, cross validation. [55] [56]

IV.3.1 Confusion matrix

 The predictive analysis technique is the confusion matrix. In machine learning, to

evaluate a model based on classification in terms of performance. It is a N x N

matrix, where N is the number of target classes, that is used to assess how well a

classification model performs. It is comprised of four fundamental properties

(numbers) that determine the classifier's measuring metrics.

• TP: True Positive: The actual value was positive and the model predicted a

positive value.

• FP: False Positive: Your prediction is positive, and it is false. (Also known as

the Type 1 error).

• FN: False Negative: Your prediction is negative, and result it is also false.

(Also known as the Type 2 error).

Chapter IV Experimentation and Results Interpretation

58

• TN: True Negative: The actual value was negative and the model predicted a

negative value.

Table IV.1: Confusion Matrix

IV.3.2 Accuracy

 Another name for accuracy is positive predicted value, which expresses how

accurate the model is. Fewer FP is indicated by higher accuracy. Its mathematical

definition is:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (I.3)

IV.3.3 Recall

 Recall, sometimes referred to as sensitivity, is a metric used to assess how well a

model classifies positive cases. A high recall value indicates that few positive cases

are incorrectly classified as negative. The following formula can be used to calculate

the Recall:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (I.4)

IV.3.4 Overall Accuracy

 The categorization techniques are measured by the overall accuracy. The following

is a representation of this technique:

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (I.5)

IV.3.5 F1 Score

 The F1 score or F1 measure is the harmonic mean of precision and recall. The F

score can be calculated as follows:

𝐹1 =
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦×𝑅𝑒𝑐𝑎𝑙𝑙

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦+𝑅𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 (I.6)

IV.3.6 Cross Validation

 Cross-validation is a statistical method for evaluating and comparing learning

algorithms by dividing data into two segments for training and validation. K-fold

cross-validation is the most basic, involving k rounds of training and validation.

Actual value Predicted value

Positive Negative

Positive TP FP

Negative FN TN

Chapter IV Experimentation and Results Interpretation

59

IV.4 Dataset Presentation
 MQTTset, an IoT dataset focusing on MQTT communications, using IoT-Flock,

a network traffic generator tool. The dataset is created by deploying 8 different IoT

sensors connected to an MQTT broker. The scenario is a smart home environment,

where sensors retrieve information like temperature, light intensity, humidity, CO-

Gas, motion, smoke, door opening/closure, and fan status at different intervals. [57]

Figure IV.3: The scenario considered in MQTTset.

The sensors network is designed to communicate with a broker in a limited access

area, without additional components like firewalls. During attack phases, malicious

nodes are directly connected to the broker to execute cyber-attacks. Each sensor is

configured to trigger communication at a specific time, with periodic messages sent

every n seconds and random messages sent at random periods. The dataset

simulates real-life home automation behavior by analyzing communication aspects.

Sensors are set up with a data profile and topic used by the MQTT broker, with the

MQTT broker identified by the IP address 10.16.100.73 is listening on plain text port

1883. Some sensors also have subscriber functions for data retrieval. [57]

Sensor IP Address Room Type Messages
Frequency
(s)

Topic Data Profile

Temperatur
e

192.168.0.151 1 Periodic 60 Temperature Temperature

Light
intensity

192.168.0.150 1 Periodic 1800 Light intensity Light intensity

Humidity 192.168.0.152 1 Periodic 60 Humidity Humidity

Motion
sensor

192.168.0.154 1 Random 3600 Movement Movement

CO-Gas 192.168.0.155 1 Random 3600 CO-Gas CO-Gas

Smoke 192.168.0.180 2 Random 3600 Smoke Smoke

Fan speed
controller

192.168.0.173 2 Periodic 120 Fan speed Fan speed

Door lock 192.168.0.176 2 Random 3600 Door lock Door lock

Fan sensor 192.168.0.178 2 Periodic 60 Fan Fan

Motion
sensor

192.168.0.174 2 Random 3600 Movement Movement

Table IV.2: IoT sensors adopted in the MQTTset scenario.

Chapter IV Experimentation and Results Interpretation

60

The MQTTset dataset is a publicly available dataset that includes network traffic

related to MQTT version 3.1.1, excluding authentication and plain text

communications. It provides packet inspection capabilities and allows for

consideration of a wider set of parameters in network packets. The dataset includes

11,915,716 network packets and has a capture time of one week. It can be used for

intrusion detection and traffic characterization applications related to MQTT

protocol, including both legitimate and malicious cyber-attacks. Researchers can

integrate their attacks with the dataset for analysis, detection, and mitigation

purposes. [57]

IV.4.1 Considered Cyber-Attacks

 As previously anticipated, MQTTset includes real attacks implemented to target

the considered MQTT network, in order to include in the dataset additional files

which could be adopted, for instance, to validate detection algorithms. Particularly,

the following attacks are part of MQTTset [57]:

IV.4.1.1 Flooding Denial of Service

 Denial of service attacks target MQTT protocol to saturate brokers by establishing

multiple connections and sending more messages. The MQTT-malaria tool is used

to implement this attack.

IV.4.1.2 MQTT Publish Flood

 In this case, a malicious IoT device periodically sends a huge amount of malicious

MQTT data, in order to seize all resources of the server, in terms of connection slots,

networks or other resources that are allocated in limited amount. Differently on the

previous attack, this attack tries to saturate the resources by using a single

connection instead of instantiate multiple connections.

IV.4.1.3 SlowITe

 The Slow DoS against Internet of Things Environments (SlowITe) attack is a novel

denial of service threat targeting the MQTT application protocol. Particularly,

unlike previous threats, being a Slow DoS Attack, SlowITe requires minimum

bandwidth and resources to attack an MQTT service. Particularly, SlowITe initiates

a large number of connections with the MQTT broker, in order to seize all available

connections simultaneously. Under these circumstances the denial-of-service

status would be reached.

IV.4.1.4 Malformed Data

 A malformed data attack aims to generate and send to the broker several

malformed packets, trying to raise exceptions on the targeted service. Considering

MQTTset, in order to perpetrate a malformed data attack, MQTTSA tool was

employed, sending a sequence of malformed CONNECT or PUBLISH packets to the

victim in order to raise exceptions on the MQTT broker.

IV.4.1.5 Brute Force Authentication

 A brute force attack consists in running possible attempts to retrieve users’

credentials used by MQTT. Regarding MQTTset, the attacker’s aim is to crack users’

Chapter IV Experimentation and Results Interpretation

61

credentials (username and password) adopted during the authentication phase.

Also in this case, the MQTTSA tool was used. Particularly, in order to recall to a real

scenario, the rockyou.txt word list was employed, that is considered a popular list,

widely adopted for brute force and cracking attacks. For our tests, the credentials

are stored on the word list used by the attacker.

IV.4.2 MQTTset Validation

 The dataset is used to design an intrusion detection system, combining legitimate

MQTT traffic with various cyber-attacks targeting the MQTT broker of the network.

The datasets are mixed together to train and predict algorithms, validating the

possibility of using MQTTset for testing and implementing a novel intrusion

detection algorithm. we considered various algorithms for validation, including

neural networks, convolutional neural networks, long-term short memory,

recurrent neural networks and multilayer perceptron. The features extracted were

filtered to focus on the most relevant ones for identifying potential attacks and

legitimate traffic. The workflow involves extracting features from raw network

traffics, combining legitimate and malicious traffics, and applying different

detection algorithms to identify anomalies on the generated traffic data. [57]

No Name Description Protocol Layer

1 tcp.flags TCP flags TCP

2 tcp.time_delta Time TCP stream TCP

3 tcp.len TCP Segment Len TCP

4 mqtt.conack.flags Acknowledge Flags MQTT

5 mqtt.conack.flags.reserved Reserved MQTT

6 mqtt.conack.flags.sp Session Present MQTT

7 mqtt.conack.val Return Code MQTT

8 mqtt.conflag.cleansess Clean Session Flag MQTT

9 mqtt.conflag.passwd Password Flag MQTT

10 mqtt.conflag.qos QoS Level MQTT

11 mqtt.conflag.reserved (Reserved) MQTT

12 mqtt.conflag.retain Will Retain MQTT

13 mqtt.conflag.uname User Name Flag MQTT

14 mqtt.conflag.willflag Will Flag MQTT

15 mqtt.conflags Connect Flags MQTT

16 mqtt.dupflag DUP Flag MQTT

17 mqtt.hdrflags Header Flags MQTT

18 mqtt.kalive Keep Alive MQTT

19 mqtt.len Msg Len MQTT

20 mqtt.msg Message MQTT

21 mqtt.msgid Message Identifier MQTT

22 mqtt.msgtype Message Type MQTT

23 mqtt.proto_len Protocol Name Length MQTT

24 mqtt.protoname Protocol Name MQTT

25 mqtt.qos QoS Level MQTT

26 mqtt.retain Retain MQTT

27 mqtt.sub.qos Requested QoS MQTT

28 mqtt.suback.qos Granted QoS MQTT

29 mqtt.ver Version MQTT

30 mqtt.willmsg Will Message MQTT

31 mqtt.willmsg_len Will Message Length MQTT

32 mqtt.willtopic Will Topic MQTT

33 mqtt.willtopic_len Will Topic Length MQTT

Table IV.3: The list of

extrapolated features.

Chapter IV Experimentation and Results Interpretation

62

IV.5 Implementation
The proliferation of Internet-of-Things (IoT) devices necessitates robust security

measures to safeguard against cyberattacks. This project explores the efficacy of

deep learning algorithms for intrusion detection within an IoT network. We

implemented a system employing Python, TensorFlow, Keras, Pandas, and scikit-

learn to analyze network traffic data. We evaluated the performance of various deep

learning architectures, including Convolutional Neural Networks (CNNs),

Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM) networks,

and Multi-Layer Perceptrons (MLPs), in identifying both legitimate and malicious

traffic.

IV.5.1 Dataset Preparation

 We employed the MQTTset dataset, a collection of labeled IoT network traffic data.

Two datasets were created:

• Binary classification: Legitimate vs. Malicious (Attack) traffic.

• Multi-class classification: Legitimate vs. Five different attack types (dos,

flood, slowite, malformed, brute-force).

Data pre-processing techniques were applied to ensure consistency and suitability

for deep learning models.

IV.5.2 Dataset Cleansing

 To ensure optimal model performance, the project incorporated a meticulous

data pre-processing stage. The MQTTset dataset was carefully examined, and

features deemed irrelevant or redundant for intrusion detection were meticulously

removed. This data cleaning process streamlined the training process and

potentially improved model generalizability by focusing on the most informative

features for attack classification. Here the is resulted features after the cleaning:

No Name Description Protocol Layer

1 tcp.flags TCP flags TCP

2 tcp.time_delta Time TCP stream TCP

3 tcp.len TCP Segment Len TCP

4 mqtt.conack.val Return Code MQTT

5 mqtt.conflag.cleansess Clean Session Flag MQTT

6 mqtt.conflag.passwd Password Flag MQTT

7 mqtt.conflag.uname User Name Flag MQTT

8 mqtt.conflags Connect Flags MQTT

9 mqtt.dupflag DUP Flag MQTT

10 mqtt.hdrflags Header Flags MQTT

11 mqtt.kalive Keep Alive MQTT

12 mqtt.len Msg Len MQTT

13 mqtt.msgid Message Identifier MQTT

14 mqtt.msgtype Message Type MQTT

15 mqtt.proto_len Protocol Name Length MQTT

16 mqtt.qos QoS Level MQTT

17 mqtt.retain Retain MQTT

18 mqtt.ver Version MQTT

Table IV.4: The

list of extrapolated

features after the

cleansing.

Chapter IV Experimentation and Results Interpretation

63

IV.5.3 Implementing Deep Learning Models

 We implemented the following deep learning architectures:

• Convolutional Neural Networks (CNNs): Efficient in extracting spatial

features from network traffic data.

• Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM)

networks: Well-suited for capturing sequential dependencies within

network flows.

• Multi-Layer Perceptrons (MLPs): Offer a versatile architecture for general

classification tasks.

Each model was trained and optimized using appropriate hyperparameter tuning

strategies.

IV.5.4 Brief Explanation of the Coding Experiment in This Project

 Leveraging Python as the primary programming language and Jupyter Notebook

as the development environment, this project employed a series of experiments to

evaluate the effectiveness of deep learning algorithms for intrusion detection in IoT

networks. The following section details the specific steps undertaken for each

experiment, encompassing both binary and multi-class classification scenarios:

Step 1: Load and Inspect the Data

• The first line import pandas as pd imports the pandas library and assigns it

the alias pd. This allows you to use pd instead of typing the full library name

throughout your code, making it more concise.

• The next line defines a variable named file_path and assigns a string value

to it. This string represents the path (location) on your computer's file system

where your data is stored. In this case, the filename is
mqttdataset_reduced_clean_binary.csv.

• The following line data = pd.read_csv(file_path) uses the pd.read_csv

function from the pandas library. This function reads the data from the

specified CSV file (file_path) and stores it in a pandas data structure called a

DataFrame. The variable data now holds this DataFrame, which essentially

acts as a tabular structure containing your data.

• The final line print(data.head()) utilizes the head method of the

DataFrame (data). The head method displays the first few rows (usually by

default, the first 5 rows) of the DataFrame. This allows you to take a quick

Chapter IV Experimentation and Results Interpretation

64

peek at the contents of your data and get a sense of its structure (column

names, data types).

Step 2: Preprocess the Data

• from sklearn.model_selection import train_test_split: This line

imports the train_test_split function from the sklearn.model_selection

library. This function is used to split your data into training and testing sets,

which are essential for model training and evaluation.

• from sklearn.preprocessing import StandardScaler, LabelEncoder:

This line imports two functions from the sklearn.preprocessing library:

StandardScaler: This function is used to standardize features (numerical

columns) by removing the mean and scaling to unit variance. This helps

improve the performance of some machine learning algorithms, especially

those sensitive to feature scales.

LabelEncoder: This function is used to encode categorical variables (text

labels) into numerical representations suitable for deep learning algorithms.

• X = data.drop(columns=['target']): This line assumes you have a

DataFrame named data containing your features (columns) and a target

variable (the class labels we want to predict). It creates a new DataFrame X

that excludes the target column named 'target'. This separates the features

you want the model to learn from (predictors) from the labels you want it to

predict (target).

• y = data['target']: This line extracts the target column named 'target'

from the DataFrame data and stores it in a separate variable y. This isolates

the target variable for further processing.

• label_encoder = LabelEncoder(): Creates a LabelEncoder object.

Chapter IV Experimentation and Results Interpretation

65

• y = label_encoder.fit_transform(y): This line uses the fit_transform

method of the LabelEncoder to encode the target variable (y). It first "fits"

the encoder to the unique categories in y, assigning each category a

numerical label. Then, it "transforms" y by replacing each category with its

corresponding numerical label.

• scaler = StandardScaler(): Creates a StandardScaler object.

• X = scaler.fit_transform(X): This line uses the fit_transform method of

the StandardScaler to standardize the features in X. It first "fits" the scaler to

the distribution of features in X (calculating the mean and standard

deviation). Then, it "transforms" X by subtracting the mean from each

feature and scaling it to unit variance.

• X = X.reshape(X.shape[0], X.shape[1], 1): This line reshapes the

data specifically for Convolutional Neural Networks (CNNs). CNNs typically

expect input data in a 3D format: (number of samples, number of features,

number of channels). This line reshapes X to meet this requirement,

assuming the features are in separate columns and there's only one channel

(e.g., grayscale image data).

• X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=42): This line splits the pre-processed data

(X and y) into training and testing sets using the train_test_split function.

• test_size=0.2: This parameter specifies that 20% (0.2) of the data will be

used for the testing set, and the remaining 80% will be used for the training

set.

• random_state=42: This parameter sets the random seed for splitting the

data. This ensures reproducibility.

Step 3: Build the CNN Model

• from keras.models import Sequential: This line imports the Sequential

model class from the keras.models library. This class allows you to build

neural networks layer by layer in a sequential fashion.

Chapter IV Experimentation and Results Interpretation

66

• from keras.layers import Conv1D, MaxPooling1D, Flatten, Dense,

Dropout: This line imports various layer types from the keras.layers library:

Conv1D: One-dimensional convolutional layer for extracting features from time

series data like network traffic.

MaxPooling1D: Downsamples the output of the convolutional layer to reduce

complexity and potentially improve model generalizability.

Flatten: Flattens the multi-dimensional output of the convolutional layers into a

single dimension suitable for dense layers.

Dense: Fully-connected layer for learning more complex relationships between

features.

Dropout: Randomly drops a certain percentage of activations during training to

prevent overfitting.

• model = Sequential(): Creates a new sequential model instance.

• model.add(Conv1D(filters=64, kernel_size=3, activation='relu',

input_shape=(X_train.shape[1], 1))): This line adds the first

convolutional layer to the model.

filters=64: This specifies the number of filters (feature maps) the layer will learn.

kernel_size=3: This defines the size of the filter window that will slide across the

input data to extract features.

activation='relu': This defines the activation function for the layer. ReLU

(Rectified Linear Unit) is a popular choice for its efficiency and ability to learn non-

linear relationships.

input_shape=(X_train.shape[1], 1): This specifies the expected input shape for

the first layer.

X_train.shape[1]: This retrieves the number of features (columns) in the training

data X_train. 1 indicates that the data has one channel (assuming grayscale image

data or single-channel time series). Adjust this value if your data has multiple

channels.

The following lines (model.add(...)) add subsequent layers to the model, creating

a stack of convolutional, pooling, flattening, and dense layers: Two more

convolutional layers with different filter numbers and ReLU activation. Two max-

pooling layers to downsample the data and reduce computational complexity. A

Flatten layer to convert the multi-dimensional output from the convolutional layers

into a one-dimensional vector suitable for dense layers. Two dense layers with ReLU

activation to learn complex relationships between features. A Dropout layer with a

50% dropout rate to prevent overfitting. Another dense layer with the number of

units equal to the number of classes in your dataset (obtained from

len(label_encoder.classes_)).The final layer uses a softmax activation function,

Chapter IV Experimentation and Results Interpretation

67

typically used for multi-class classification. Softmax normalizes the output of the

last layer into probabilities, allowing the model to predict the probability of each

class for a given input.

• model.compile(optimizer=Adam(),loss='sparse_categorical_crossent

ropy', metrics=['accuracy']): This line configures the training process

for the model.

optimizer=Adam(): This specifies the Adam optimization algorithm to update the

model's weights during training.

loss='sparse_categorical_crossentropy': This defines the loss function used to

measure the error between the model's predictions and the true labels. Sparse

categorical crossentropy is suitable for multi-class classification.we used the

binary_crossentropy for the binary classification.

metrics=['accuracy']: This specifies that the model will track the accuracy metric

during training and evaluation.

• model.summary(): This line displays a summary of the model's architecture,

including the layers, their configurations, and the total number of

parameters. This helps you understand the complexity of the model and

identify potential bottlenecks or overfitting issues.

Step 4: Train the Model

• from keras.callbacks import EarlyStopping: This line imports the

EarlyStopping callback class from the keras.callbacks library. This callback

allows you to monitor the training process and stop training early if the

model's performance on a validation set plateaus or degrades.

• early_stopping = EarlyStopping(monitor='val_loss', patience=3):

This line creates an instance of the EarlyStopping callback.

monitor='val_loss': This parameter specifies that the callback will monitor the

validation loss (val_loss) during training. Validation loss is the loss calculated on a

separate validation set.

patience=3: This parameter defines the patience level of the callback. If the

validation loss does not improve for patience consecutive epochs, the callback will

trigger early stopping.

• history = model.fit(X_train, y_train, epochs=20, batch_size=32,

validation_split=0.2, callbacks=[early_stopping]): This line trains

the model using the fit method.

X_train: The training data features.

Chapter IV Experimentation and Results Interpretation

68

y_train: The training data labels.

epochs=20: The maximum number of training epochs (iterations).

batch_size=32: The number of data samples processed in each training step

(batch).

validation_split=0.2: This parameter specifies that 20% (0.2) of the training data

will be used as the validation set for early stopping.

callbacks=[early_stopping]: This list includes the early_stopping callback,

instructing the model to use it during training.

Step 5: Evaluate the Model

• import numpy as np: This line imports the `numpy` library and assigns it

the alias `np`. `numpy` is a fundamental library for scientific computing in

Python and is commonly used for working with arrays.

• from sklearn.metrics import recall_score, precision_score,

f1_score: This line imports three specific functions from the

`sklearn.metrics` module of the scikit-learn library. These functions are

used to calculate performance metrics for machine & deep learning models.

• recall_score: This function calculates the recall, which is the proportion

of true positives that were correctly identified.

• precision_score: This function calculates the precision, which is the

proportion of predicted positives that were actually true positives.

• f1_score: This function calculates the F1 score, which is a harmonic mean

of precision and recall.

• test_loss, test_accuracy = model.evaluate(X_test, y_test): This

line assumes you have a trained model (`model`) and two datasets, `X_test`

(containing the test features) and `y_test` (containing the test labels).

• y_pred = model.predict(X_test): This line uses the `predict` method of

the model to make predictions on the unseen test data (`X_test`). The

predicted labels are stored in the variable `y_pred`.

Chapter IV Experimentation and Results Interpretation

69

• y_pred_rounded = np.round(y_pred):This line uses the `np.round`

function from the imported `numpy` library to round the values in

`y_pred`. This is necessary because some models might output continuous

values for classification tasks, while the actual labels are likely discrete (e.g.,

0 or 1). Rounding helps convert the predicted values to match the format of

the true labels.

• recall = recall_score(y_test, y_pred_rounded), precision =

precision_score(y_test, y_pred_rounded), f1 = f1_score(y_test,

y_pred_rounded): These lines calculate the performance metrics using the

imported functions from scikit-learn.

 IV.5.5 Evaluation

 The performance of each model was assessed using standard accuracy metric.

We compared the effectiveness of the models in both binary and multi-class

classification scenarios.

IV.5.6 Results and Discussion

 The project investigated the suitability of different deep learning algorithms for

intrusion detection in IoT networks.

We analyzed the trade-offs between model complexity, accuracy, and

computational efficiency.

The results provided insights into the most effective deep learning architectures for

this specific application domain.

IV.6 Interpretation of Results
 The project achieved promising results in leveraging deep learning for intrusion

detection in IoT networks. All four deep learning architectures (CNNs, RNNs,

LSTMs, MLPs) exhibited a high level of accuracy in the binary classification task,

consistently reaching around 84%. This demonstrates their effectiveness in

distinguishing between legitimate and malicious traffic.

When considering multi-class classification, the accuracy dropped slightly to

around 83%. While this remains a good performance level, the decrease suggests

that differentiating between various attack types might pose a greater challenge for

the models. Here are some possible explanations:

• Increased complexity: Multi-class classification inherently involves more

categories to distinguish between, requiring the models to learn more

intricate relationships within the data.

• Dataset limitations: The multi-class dataset might have inherent limitations,

such as imbalanced class distributions (some attack types being less frequent

than others). This can make it harder for models to learn accurate

representations for all classes.

Chapter IV Experimentation and Results Interpretation

70

• Architectural suitability: Certain architectures, like CNNs, might be better

suited for binary classification tasks involving spatial features, while RNNs

or LSTMs might excel at handling sequential data patterns in multi-class

scenarios with diverse attack types.

 Deep Learning Algorithm Accuracy

Binary Classification CNN 84%

RNN 84%

LSTM 84%

MLP 84%

Multi-Class
Classification

CNN 83%

RNN 82%

LSTM 83%

MLP 83%

Table IV.5: Test Accuracy.

 The consistent performance across all architectures in binary classification

highlights the overall effectiveness of deep learning for this task. It suggests that the

core network traffic features might be well-suited for detection regardless of the

specific learning approach.

Figure IV.4: Test Accuracy Chart.

 Deep Learning Algorithm Loss

Binary Classification CNN 24%

RNN 24%

LTSM 23%

MLP 24%

Multi-Class
Classification

CNN 41%

RNN 44%

LSTM 41%

MLP 43%

Table IV.6: Test Loss.

84%

83%

84%

83%

84%

82%

84%

83%

60% 65% 70% 75% 80% 85% 90% 95% 100%

Binary

Multi-Class

Test Accuracy

LSTM RNN CNN MLP

Chapter IV Experimentation and Results Interpretation

71

The project's findings regarding test loss reveal interesting insights into the

performance of these deep learning architectures for intrusion detection. While all

architectures achieved high accuracy (around 84%) in binary classification, the test

loss of 23% suggests they learned the distinction between legitimate and malicious

traffic effectively. This indicates the models can generalize well to unseen data in

this binary scenario.

However, the test loss for multi-class classification, which reached 42%, paints a

different picture. This significantly higher loss compared to binary classification

suggests the models encountered greater difficulty learning the nuances between

various attack types within the multi-class dataset.

Figure IV.5: Test Loss Chart.

 Deep Learning Algorithm Recall

Binary Classification MLP 99%

CNN 99%

RNN 99%

LSTM 99%

Multi-Class Classification MLP 56%

CNN 56%

RNN 53%

LSTM 56%

Table IV.7: Recall Metric.

The project's findings regarding the recall metric offer valuable insights into the

effectiveness of deep learning architectures for intrusion detection. All four

architectures (CNNs, RNNs, LSTMs, MLPs) achieved an exceptional recall of 99%

in binary classification. This indicates a remarkable ability to identify nearly all

instances of malicious traffic within the dataset.

However, the recall dropped significantly to around 55% in multi-class

classification. While this result suggests the models are still capable of detecting

24%

43%

24%

41%

24%

44%

23%

41%

10% 15% 20% 25% 30% 35% 40% 45% 50%

Binary

Multi-Class

Test Loss

LSTM RNN CNN MLP

Chapter IV Experimentation and Results Interpretation

72

some attack types, it highlights a potential challenge in accurately identifying all

malicious traffic across various attack categories.

Figure IV.6: Recall Metric Chart.

 Deep Learning Algorithm Precision

Binary Classification MLP 76%

CNN 76%

RNN 76%

LSTM 76%

Multi-Class
Classification

MLP 86%

CNN 86%

RNN 84%

LSTM 86%

Table IV.8: Precision Metric.

The project's findings regarding the precision metric offer interesting insights into

the model's ability to identify true positives in intrusion detection. While all four

architectures (CNNs, RNNs, LSTMs, MLPs) achieved good precision in binary

classification (around 76%), the results for multi-class classification were even

higher (around 85%). This is a significant result, indicating that for every 100

instances classified by the models as a specific attack type, around 85 were true

positives. This highlights the models' effectiveness in accurately classifying specific

attacks within the multi-class dataset. While both results are positive, the higher

precision in multi-class classification might seem counterintuitive compared to the

lower recall observed previously (around 55%). Due to potential class imbalance in

the dataset, the models might have prioritized learning the characteristics of more

frequent attack types during training. This focus could lead to higher precision for

these types, as the models are more confident in their classifications. However, the

lower recall suggests they might miss some instances of less frequent attack types,

hence the overall lower recall in multi-class classification.

99%

56%

99%

56%

99%

53%

99%

56%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Binary

Multi-Class

Recall Metric

LSTM RNN CNN MLP

Chapter IV Experimentation and Results Interpretation

73

Figure IV.7: Precision Metric Chart.

 Deep Learning Algorithm F1 Score

Binary Classification MLP 86%

CNN 86%

RNN 86%

LSTM 86%

Multi-Class
Classification

MLP 64%

CNN 64%

RNN 59%

LSTM 63%

Table IV.9: F1 Score.

The project's findings on the F1 score metric provide valuable insights into the

overall balance between precision and recall achieved by the deep learning

architectures for intrusion detection. All four architectures (CNNs, RNNs, LSTMs,

MLPs) achieved a high F1 score of 86% in binary classification. However, the F1 score

dropped to around 62% in multi-class classification. This score indicates a strong

balance between identifying true positives and detecting all malicious traffic. A

score this high 86% suggests the models are very effective at accurately classifying

both legitimate and malicious traffic, minimizing false positives while still catching

most malicious instances. This score 62% represents a trade-off between

identifying true positives and detecting all malicious traffic. While it suggests the

models still achieve a decent balance, the decrease compared to binary classification

highlights the challenge of handling diverse attack types. The multi-class dataset

might be imbalanced, with some attack types being less frequent. This can lead to

models prioritizing learning the more frequent classes, potentially impacting

performance for less frequent ones.

76%

86%

76%

86%

76%

84%

76%

86%

60% 65% 70% 75% 80% 85% 90% 95% 100%

BINARY

MULTI-CLASS

Precision Metric

LSTM RNN CNN MLP

Chapter IV Experimentation and Results Interpretation

74

Figure IV.8: F1 Score Metric Chart.

IV.6.1 Comparison of Deep Learning vs. Classical Machine Learning for

Intrusion Detection

 This analysis compares the performance of deep learning architectures (previously

discussed) with classical machine learning methods (decision trees, naive Bayes,

random forest, gradient boosting) for intrusion detection in our project.

 Machine Learning Methods Accuracy F1 score

Binary
Classification

Decision Tree 92% 92%

Naïve Bayes 79% 78%

Random Forest 75% 11%

Gradient Boost 71% 11%

Multi-Class
Classification

Decision Tree 90% 90%

Naïve Bayes 67% 75%

Random Forest 90% 90%

Gradient Boost 79% 82%

Table IV.10: Accuracy, F1 score of Machine Learning Methods.

Binary Classification

Deep Learning

 All architectures achieved high accuracy (around 84%) and F1 score (around

86%). This indicates excellent performance in identifying malicious traffic with

minimal false alarms.

Classical Machine Learning

Decision Tree: Achieved the highest accuracy (92%) and F1 score (92%) among all

methods. This suggests excellent performance in accurately classifying traffic.

Naive Bayes: Lower accuracy (79%) and F1 score (78%) compared to deep learning,

potentially indicating challenges in handling complex network traffic patterns.

86%

64%

86%

64%

86%

59%

86%

63%

40% 50% 60% 70% 80% 90% 100%

BINARY

MULTI-CLASS

F1 Score

LSTM RNN CNN MLP

Chapter IV Experimentation and Results Interpretation

75

Random Forest: Lower accuracy (75%) and a concerningly low F1 score (11%). This

suggests the model might be overfitting the training data and performing poorly on

unseen examples.

Gradient Boost: Similar performance to Random Forest with low accuracy (71%) and

F1 score (11%).

Multi-Class Classification

Deep Learning

 Achieved good accuracy (around 83%) but a lower F1 score (around 62%). This

suggests some challenges in differentiating diverse attack types while still

maintaining good overall accuracy.

Classical Machine Learning

Decision Tree: Maintained high accuracy (90%) and F1 score (90%) similar to binary

classification. This method seems robust in handling multi-class scenarios as well.

Naive Bayes: Lower accuracy (67%) and a higher F1 score (75%) compared to deep

learning. This might indicate a bias towards the majority class, potentially missing

some attack types.

Random Forest: Recovered well from binary classification with high accuracy (90%)

and F1 score (90%). This suggests the ensemble approach helps handle the

complexity of multi-class data.

Gradient Boost: Improved performance compared to binary classification with

accuracy (79%) and F1 score (82%). This method seems to benefit from the

ensemble approach for multi-class problems.

General Observations

 Deep learning excels at achieving high accuracy in both binary and multi-class

classification. However, in multi-class scenarios, it might struggle with achieving a

good balance between diverse attack types. Decision Trees emerged as a strong

contender, achieving excellent performance in both binary and multi-class

scenarios with high accuracy and F1 score. Naive Bayes performed poorly in binary

classification but showed some improvement in multi-class F1 score, suggesting a

potential bias towards the majority class. Random Forest and Gradient Boosting

improved their performance in multi-class classification compared to binary,

suggesting the ensemble approach benefits from handling complex data structures.

Chapter IV Experimentation and Results Interpretation

76

IV.7 Conclusion
 In conclusion, this project investigated the efficacy of deep learning algorithms

for intrusion detection within an IoT network environment. We implemented a

system utilizing Python, TensorFlow, Keras, and scikit-learn to analyze network

traffic data. The project explored the performance of various deep learning

architectures, including Convolutional Neural Networks (CNNs), Recurrent Neural

Networks (RNNs), Long Short-Term Memory (LSTM) networks, and Multi-Layer

Perceptrons (MLPs), in identifying both legitimate and malicious traffic. The

experiments encompassed both binary and multi-class classification scenarios,

utilizing datasets specifically tailored for this purpose. The results provided valuable

insights into the effectiveness of different deep learning architectures for intrusion

detection in IoT networks. This project demonstrates the potential of deep learning

as a robust and adaptable approach to safeguarding IoT environments from

cyberattacks. Future research can explore methods for enhancing model

interpretability, real-time threat detection capabilities, and incorporating

additional network traffic features for improved classification accuracy.

General Conclusion

77

General Conclusion
In conclusion, this thesis delved into the exciting potential of deep learning

algorithms for fortifying intrusion detection systems within the burgeoning

landscape of Internet of Things (IoT) networks. The research convincingly

demonstrated that deep learning offers a robust and adaptable approach to

identifying and mitigating an ever-evolving arsenal of security threats that plague

these interconnected environments. By harnessing the unique ability of deep

learning models to discern complex patterns from massive datasets. This innovation

effectively distinguished between legitimate network activity and malicious

attempts to infiltrate the system. This finding sheds light on the transformative role

deep learning can play in safeguarding the security of IoT networks, ensuring the

smooth operation of critical infrastructure and protecting sensitive data.

However, the thesis also acknowledged the ongoing challenges that need to be

addressed. The limited availability of high-quality, comprehensive data for training

deep learning models remains an obstacle. Additionally, the computational

demands of these algorithms can pose challenges for resource-constrained IoT

devices. Furthermore, the ever-shifting landscape of cyber threats necessitates

continuous adaptation and improvement of intrusion detection systems.

Looking forward, this thesis identified promising avenues for future research.

Exploring techniques for data augmentation to address limitations in data

availability is crucial. Optimizing deep learning models for efficient operation on

resource-constrained devices will be essential for wider deployment in IoT

networks. Additionally, investigating methods for continual learning and

adaptation will be paramount to ensure that intrusion detection systems remain

effective against evolving cyber threats. By tackling these challenges, future research

can pave the way for the seamless integration of deep learning-based intrusion

detection systems into real-world IoT applications. Overall, this thesis contributes

significantly to the ongoing effort to secure the future of interconnected devices and

foster a robust foundation for the safe and reliable operation of the ever-expanding

world of IoT networks.

Bibliography

78

Bibliography
[1]. Greengard, Samuel. "Internet of Things". Encyclopedia Britannica, 11 Feb. 2024,
https://www.britannica.com/science/Internet-of-Things. Accessed 5 March 2024.

[2]. Arshdeep Bahga & Vijay Madisetti. Internet of Things Hands on Approach,
Universities Press (India),2016.

[3]. Ian G Smith, The Internet of Things 2012 New Horizons, IERC - Internet of
Things European Research Cluster, 2012.

[4]. Internet Protocol Specification, http://www.ietf.org/rfc/rfc791.txt, Retrieved
2014.

[5]. Internet Protocol, Version 6 (IPv6) Specification,
https://www.ietf.org/rfc/rfc2460.txt, Retrieved 2014.

[6]. Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks,
http://datatracker.ietf.org/doc/rfc6282, Retrieved 2014.

[7]. Transmission Control Protocol, www.ietf.org/rfc/rfc793.txt, Retrieved 2014.

[8]. User Datagram Protocol, www.ietf.org/rfc/rfc768.txt, Retrieved 2014.

[9]. Hypertext Transfer Protocol - HTTP/1.1, http://tools.ietf.org/html/rfc2616,
Retrieved 2014.

[10]. Constrained Application Protocol (CoAP), http://tools.ietf.org/html/draft-
ietf-core-coap-18 Retrieved 2014.

[11]. The WebSocket Protocol, http://tools.ietf.org/html/rfc6455, Retrieved 2014.

[12]. MQ Telemetry Transport (MQTT) V3.1 Protocol Specification,
http://www.ibm.com/developerworks/webservices/library/ws-mqtt/index.html,
Retrieved 2014.

[13]. Extensible Messaging and Presence Protocol (XMPP): Core,
http://tools.ietf.org/html/rfc6120, Retrieved 2014.

[14]. Data Distribution Service for Real-time Systems, OMG Available Specification,
ttp://www.omg.org/spec/DDS/1.2/PDF/, Retrieved 2014.

[15]. Keyur K Patel & Sunil M Patel, Carlos Salazar. Internet of Things:
Definition, Characteristics, Architecture, Enabling Technologies, Application &
Future Challenges, May 2016, Volume 6 Issue No. 5, 10.4010/2016.1482, 2321-3361 ©
2016, IJESC.
https://www.researchgate.net/publication/330425585_Internet_of_Things
IOT_Definition_Characteristics_Architecture_Enabling_Technologies_Applicatio
n_Future_Challenges.

[16]. Dr. Ovidiu Vermesan SINTEF, Norway, Dr. Peter Friess EU, Belgium,
“Internet of Things–From Research and Innovation to Market Deployment”, river
publishers’ series in communications, 2014.

https://www.britannica.com/science/Internet-of-Things
http://www.ietf.org/rfc/rfc791.txt
https://www.ietf.org/rfc/rfc2460.txt,
http://datatracker.ietf.org/doc/rfc6282
www.ietf.org/rfc/rfc793.txt
www.ietf.org/rfc/rfc768.txt
http://tools.ietf.org/html/rfc2616,
http://tools.ietf.org/html/draft-ietf-core-coap-18
http://tools.ietf.org/html/draft-ietf-core-coap-18
http://tools.ietf.org/html/rfc6455
http://www.ibm.com/developerworks/webservices/library/ws-mqtt/index.html
http://tools.ietf.org/html/rfc6120
https://www.researchgate.net/publication/330425585_Internet_of_Things%20IOT_Definition_Characteristics_Architecture_Enabling_Technologies_Application_Future_Challenges
https://www.researchgate.net/publication/330425585_Internet_of_Things%20IOT_Definition_Characteristics_Architecture_Enabling_Technologies_Application_Future_Challenges
https://www.researchgate.net/publication/330425585_Internet_of_Things%20IOT_Definition_Characteristics_Architecture_Enabling_Technologies_Application_Future_Challenges

Bibliography

79

[17].[http://www.reloade.com/blog/2013/12/6characteristics-within-internet-
things-iot.php].

[18]. M. Wu, T.-J. Lu, F.-Y. Ling, J. Sun, and H.-Y. Du, “Research on the architecture
of internet of things,” in Proceedings of the 3rd International Conference on
Advanced Computer Theory and Engineering (ICACTE ’10), vol. 5, pp. V5-484–V5-
487, IEEE, Chengdu, China, August 2010.

[19]. R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future internet: the internet
of things architecture, possible applications and key challenges,” in Proceedings of
the 10th International Conference on Frontiers of Information Technology (FIT ’12),
pp. 257–260, December 2012.

[20] M. Weyrich and C. Ebert, “Reference architectures for the internet of things,”
IEEE Software, vol. 33,no. 1, pp. 112–116, 2016.

[21] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(IoT): a vision, architectural elements, and future directions,” Future Generation
Computer Systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[22] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: a platform
for internet of things and analytics,” in Big Data and Internet ofThings: A RoadMap
for Smart Environments, pp. 169– 186, Springer, Berlin, Germany, 2014.

[23]. Pallavi Sethi & Smruti R. Sarangi. Internet of Things: Architectures,
Protocols, and Applications, Journal of Electrical and Computer Engineering,
Published 26 January 2017, https://doi.org/10.1155/2017/9324035.

[24]. Sreeshma Mohan. Internet of Things Applications and Security Challenges,
Mount Zion College of Engineering, Pathanamthitta, India, 17 September 2023.

https://www.researchgate.net/publication/373980736_Internet_of_Things_IoT_App
lications_and_Security_Challenges_A_Review.

[25] L. M. R. Tarouco, L. M. Bertholdo, L. Z. Granville, L. M. R. Arbiza, F.
Carbone, M. Marotta, and J. J. C. de Santana, “Internet of things in healthcare:
Interoperatibility and security issues,” in Communications (ICC), IEEE International
Conference on. IEEE, 2012, pp. 6121–6125.

[26]. S. De, P. Barnaghi, M. Bauer, and S. Meissner, “Service modelling for the
internet of things,” in Computer Science and Information Systems (FedCSIS), 2011
Federated Conference on. IEEE, 2011, pp. 949–955.

[27]. C.R. Srinivasan, B. Rajesh, P. Saikalyan, K. Premsagar, Eadala Sarath
Yadav. A Review on the Different Types of Internets of Things, Journal of Advanced
Research in Dynamical and Control Systems · January 2019,
https://www.researchgate.net/publication/332153657_A_review_on_the_different_
types_of_internet_of_things_IoT.

[28]. Liang, Q. Durrani, T. Samn, S.W. Liang, J. Koh, J. and Wang, X. Guest
Editorial Special Issue on Internet of Mission-Critical Things (IoMCT). In IEEE
Internet of Things Journal 5 (5) (2018) 3258-3262.

http://www.reloade.com/blog/2013/12/6characteristics-within-internet-things-iot.php
http://www.reloade.com/blog/2013/12/6characteristics-within-internet-things-iot.php
https://doi.org/10.1155/2017/9324035
https://www.researchgate.net/publication/373980736_Internet_of_Things_IoT_Applications_and_Security_Challenges_A_Review
https://www.researchgate.net/publication/373980736_Internet_of_Things_IoT_Applications_and_Security_Challenges_A_Review
https://www.researchgate.net/publication/332153657_A_review_on_the_different_types_of_internet_of_things_IoT
https://www.researchgate.net/publication/332153657_A_review_on_the_different_types_of_internet_of_things_IoT

Bibliography

80

[29]. Nayyar, A., Puri, V. and Le, D. N. Internet of nano things (IoNT) Next
evolutionary step in nanotechnology. Nanosci. Nanotechnol 7 (1) (2017) 4-8.

[30]. Miraz, M.H., Ali, M., Excell, P.S. and Picking, R. A review on Internet of
Things (IoT), Internet of everything (IoE) and Internet of nano things (IoNT).
Internet Technologies and Applications (ITA) (2015) (219-224).

[31]. Khanam S, Ahmedy I. B., Idris M. Y. I., Jaward M. H., & Sabri, A. Q. B. M.
A survey of security challenges, attacks taxonomy and advanced countermeasures in
the internet of things. 11 November 2020, IEEE Access, Vol. 8, 219709-219743.

[32]. N.M. Masoodhu Banu, C. Sujatha. IoT architecture a comparative study. J

Pur Appl Math, 2017, 2017, Vol. 117.

[33]. Peter R. Egli. An Introduction to MQTT, a Protocol for M2M and IoT
Applications, 2016, indigo.com.

[34]. Pratap Singh, A. Kumar, & Kumar V. A Study on MQTT Protocol and its
Cyber Attacks., 2022, IARJSET, Vol. 9, 209-213. 10.17148/IARJSET.2022.9136.

[35]. Perrone G., Vecchio M., Pecori R., & Giaffreda R. A Survey on MQTT
Security Solutions After the Largest Cyberattack Carried Out through an Army of IoT
Devices. April 2017, In IoTBDS, 246-253.

[36]. Carl Endorf, Eugene Schultz, Jim Mellander. Intrusion Detection &
Prevention, McGraw-Hill © 2004.

[37]. Richard A, Giovanni Vigna. Intrusion Detection: A Brief History and
Overview, Reliable Software Group, Computer Science Department, University of
California Santa Barbara, 2002.

[38]. Lisong Pei, Jakob Schütte, Carlos Simon. Intrusion Detection Systems,
2007-10-07.

[39]. Jabez J, Muthukumar B. Intrusion Detection System (IDS) Anomaly
Detection using outlier detection approach. 2015, Procedia Computer Science.

[40]. Bace, R. G., & Mell, P. Intrusion detection systems. 2001.

[41]. Zaidi, A. Recherche et détection des patterns d'attaques dans les réseaux IP à
hauts débits (Doctoral dissertation, Université d'Evry-Val d'Essonne). 2011.

[42]. Kumar B, T. Raju, P. Ratnakar, M. Baba & Sudhakar N. Intrusion detection
system-types and prevention. 2013.

[43].Intrusion detection system for DoS attack in cloud. Samani, Mishti D., et al.
2016, International Journal of Applied Information Systems., Vol. 10.

[44]. Eli David. Deep Learning for Dummies, Deep Instinct Special Edition, 2018 by
John Wiley & Sons, Inc., Hoboken, New Jersey.

[45]. Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep Learning,
www.deeplearningbook.org.

indigoo.com
www.deeplearningbook.org

Bibliography

81

[46]. Nikhil Buduma, Nicholas Locascio. Fundamentals of Deep Learning
Designing Next-Generation Machine Intelligence Algorithms, 2017, O’Reilly Media,
Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

[47]. Nair, Vinod, and Geoffrey E. Hinton. “Rectified Linear Units Improve
Restricted Boltzmann Machines” Proceedings of the 27th International Conference
on Machine Learning (ICML-10), 2010. Journal of Neurophysiology 20.4 (1957): 408-
434.

[48]. Alexander I. Galushkin. Neural Networks Theory, Springer-Verlag Berlin
Heidelberg 2007.

[49]. https://www.javatpoint.com/deep-learning-algorithms

[50]. T. Mothilal. Python. Definition: History of Python. July 2019.

[51]. https://domino.ai/data-science-dictionary/jupyter-notebook

[52]. Samira Gholizadeh. Top Popular Python Libraries in Research. 2022,J Robot
Auto Res 3(2), 142-145.

[53]. Hao, J., & Ho, T. K. (2019). Machine learning made easy: a review of scikit-learn
package in python programming language. Journal of Educational and Behavioral
Statistics, 44(3), 348-361.

[54]. Google’s Intro to TensorFlow. Available from:
https://developers.google.com/machine-learning/crash-course/first-stepswith-
tensorflow/toolkit.

[55]. Karimi, Zohreh. Confusion Matrix. 2021.

[56]. Dalianis, Hercules. (2018). Evaluation Metrics and Evaluation. 10.1007/978-
3-319-78503-5_6.

[57]. Ivan Vaccari, Giovanni Chiola, Maurizio Aiello, Maurizio Mongelli &
Enrico Cambiaso. MQTTset, a New Dataset for Machine Learning Techniques on
MQTT. Intelligent and Adaptive Security in Internet of Things. 18 November 2020.

https://www.javatpoint.com/deep-learning-algorithms
https://domino.ai/data-science-dictionary/jupyter-notebook
https://developers.google.com/machine-learning/crash-course/first-stepswith-%20tensorflow/toolkit.
https://developers.google.com/machine-learning/crash-course/first-stepswith-%20tensorflow/toolkit.

