ENE S [S LU SN SO S PP P 1]
PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA
‘r.«-L_._-\J\ Cox .‘\j é\ [('.._,L'_.’:J\ 8139

MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC
RESEARCH

— Yy JALH\ B Rl K ST SWD 7'y E—

University of Saida - Dr. MOULAY TAHAR
Faculty of Technology

\UNP’JERSITY
/7'»%_. (Lof SAIDA

}r MOULAY TAHAR

A Dissertation Submitted to the Department of Telecommunications in Partial
Fulfilment of the Requirements for Degree of Master of
Networks & Telecommunications

Presented by: Mr. MOHAMMEDI Houari
Mr. MAHSER Kheireddine

Intrusion Detection in 1oT Networks using Deep
Learning Algorithms

Defended on June, 22 2024 in front of the jury composed of:

Dr. BOUYEDDOU Benamar MCA President
Dr. GUENDOUZ Mohamed MCA Supervisor
Dr. OUIS. Esma MAB Examiner

2023/ 2024

Acknowledgment

We would like to thank first and foremost
ALLAH the Almighty, who gave us the strength
and patience to accomplish our work in the best
conditions.

We thank our family for the sacrifices they have
made so that we can complete our studies.

To our supervisor Dr. GUENDOUZ
Mohamed; for having agreed to take charge
and for his precious advice and his help
throughout the work period.

We would also like to thank the members of the

jury for their interest in our work by agreeing
to examine our work and enrich it with their
proposals.

Finally, our thanks go to all the professors and
teaching staff at the University of Saida Dr
Moulay Tahar, especially the
telecommunications department. who have
accompanied us throughout these years of
study, to all the students in our class and to
anyone who has contributed directly or
indirectly to the development of this graduation
project.

Dedication

I dedicate this modest work as a sign of expression of all my
affection and my great gratitude to:

My dear parents, BOUHAFS & ARBIA who gave Me
existence, love, support, I'm forever in your debt.

My brothers AHMED, MAAZOUZ and ALI your support
has no limit so thank you for always having my back.

My sisters AICHA and KHEIRA for always believing in
me, you are my treasures.

My brother-in-law KARIM your support in one of a kind.
My sister-in-law SOUAD thank you for always caring.
My adorable nieces SHAHID & LOJAIN you bring joy to
my life.

My dear friends MUSTAPHA, BRAHIM, WISSAM I'm
lucky having you as my friends.

My colleague and Brother MAHSER KHEIREDDINE
this wouldn’t be possible without you; you’ve always been a
kind brother to me so thank you.

To Mr. GUENDOUZ Mohamed, I thank you for your
teachings, patience, advice, and for always bearing with
me.

Houari

Dedication

I am profoundly grateful to those who have made this thesis
possible through their unwavering support and
encouragement.

Firstly, I would like to express my deepest gratitude to my
family. Your constant love, understanding, and sacrifices
have been my greatest source of strength. You have
supported me in every way possible, and for that, I am
forever indebted.

I am also sincerely thankful to our administration: your
guidance, resources, and encouragement have been
instrumental in the completion of this research. Special
thanks to my advisor for his invaluable advice, patience, and
constructive feedback throughout this journey.

Lastly, I extend my heartfelt thanks to my friends: your
moral support, and belief in my abilities have been crucial.
Thank you for standing by me through the challenges and
celebrating the achievements with me.

Thanks to my partner in this unforgettable journey for his
kindness and seriousness.

This accomplishment would not have been possible without
each of you. Thank you.

Kheireddine

Abstract

The internet has become an inseparable part of human life, and the number of devices
connected to the internet is increasing sharply. In particular, Internet of Things (IoT)
devices have become a part of everyday human life. However, some challenges are
increasing, and their solutions are not well defined. More and more challenges related
to technology security concerning the IoT are arising. Many methods have been
developed to secure IoT networks, but many more can still be developed. One proposed
way to improve loT security is to use deep learning. This research discusses several deep-
learning strategies, as well as standard datasets for improving the security performance
of the IoT. We developed an algorithm for detecting denial-of-service (DoS) attacks
using a deep-learning algorithm. This research used the Python programming language
with packages such as scikit-learn, TensorFlow, and Keras. We found that a deep-
learning model could increase accuracy so that the mitigation of attacks that occur on
an [oT network is as effective as possible.

Keywords: deep learning; Internet of Things; distributed denial-of-service attack;
intrusion detection.

Résumeé

Internet est devenu un élément indissociable de la vie humaine et le nombre d’appareils
connectés a Internet augmente fortement. En particulier, les appareils Internet des
objets (IoT) font désormais partie de la vie humaine quotidienne. Cependant, certains
défis se multiplient et leurs solutions ne sont pas bien définies. De plus en plus de défis
liés a la sécurité technologique concernant I'loT apparaissent. De nombreuses méthodes
ont été développées pour sécuriser les réseaux 0T, mais bien d’autres peuvent encore
étre développées. L'un des moyens proposés pour améliorer la sécurité de I'loT consiste
a utiliser l'apprentissage automatique. Cette recherche aborde plusieurs stratégies
d'apprentissage profond, ainsi que des ensembles de données standard pour améliorer
les performances de sécurité de I'loT. Nous avons développé un algorithme de détection
des attaques par déni de service (DoS) a l'aide d'un algorithme d'apprentissage en
profondeur. Cette recherche a utilisé le langage de programmation Python avec des
packages tels que scikit-learn, TensorFlow. Nous avons constaté quun modéle
d'apprentissage en profondeur pourrait accroitre la précision afin que l'atténuation des
attaques qui se produisent sur un réseau loT soit aussi efficace que possible.

Mots-clés : 'apprentissage en profondeur ; Internet des objets ; attaque par déni de
service distribué ; détection d'intrusion.

pasl

dzg e Ol JKho CoAYL duarall BigaYl due Wiy Ol Bl o Tz Y iz COAY! zmel
Ol pans OB (3 ang .dmogall & Ludl Bl (e 1232 (10T) sl a0 B3¢l Camemol ¢ g0 guasel!
L) Sl (pas dikaiall obusidl ho daielly dasell yglaS .iuar JSiu @gho s o @dg I § BAST
OSaall oo Jli Y 89 sl 6 A) o polid @ylall (o daskall pglal o3 Ua) LtV CE AL Glais Logd
I laidl plaseil (B LI C] Ol ot dfdall Glall U] .§y3Y1 Gylall (yo dadall ygla
) dganlull ULl il gazes) ADLSYL (Gaead! edaidl Olbexdl il o dudall Eedl b (dLy
plistiwl (DOS) deusdl jady wlemd e Caisll &) lgs polaiy Ued i) .cld¥l COAY (aYI sloY)
TensorFlow. g scikit-learn Jio p3> o G5 doma ! dd) Caoed! 102 pusticl . Gaoad! eladl due))l g5
e Gl S Olazxgll (o Candseail] 9950 Euon BB ¢po Wi OF Sew Guaad) @daid] Z3g05 O Burg i)
OB A8 Ylad LWl i) Al

Sl A8 685 gall dodSel e pgaed (el CO A € Baas lad € 1dulidadl LS

Table of Contents

Table of Contents

General INtroduction..............ccooiiiiiiiiiiiieeeeee et 1
Chapter I: Internet of Things............ccccooiiiiiiiiiiiiieee e 5
| IS T 6V (o Xe L1 T 6 (o) o LN PPPP 6
L2 Definition Of IOTcccvuiiiiiiiiieiiiitieeeeneeteneeeeneeeenneeeenseeeenseessnnesesnnessennes 7
L3 Things in 10T ...ttt eeaaaes 8
L.4 10T ProOtOCOlScoiiiimeeiiiiiiiiiiiiieiiiieriteneceeeeeneeesseennsssssennsssssennnssssssnnsnns 9
[.4.0 EEREIMEL ..ciceiiieieeee ettt et e et e e b e e aneereeens 9
Lo4.2 WIL-F ettt e e e e e s s s saaae e e e e e e e eeas 9
[.4.3 WIMIAX ettt ettt ettt ettt e e et e e s e naeeeeas 9
[.4.4 LR-WPAN Lottt ettt e e e e s s s s aaaae e e e e e e e eas 9
I.4.5 Mobile Communication (2G/3G/4) .ccoveereveeeeeeeeeeeieeieeeeeeeee e 10
0 S Y0 1 2 U PUPP 10
07 Ry 2 (ST 10
[.4.8 BLOWPAN ..ottt e et e e e e e s s s abnaeaeeeeeseas 10
L4 TICP ettt et e 10
L4030 UDP ettt et e e e e e 10
00 & O PO RPPPPP 1
Li12 COAP et e e e s e et e e e e e s e st aaraaaeeeeenas 1
[.4.13 WEDSOCKELveeeiieiiecee ettt ettt ettt e e esaaeenaeens 11
75 VY () L PSRRI 1
L4305 XMPP Lottt e s e s 1
|0 (O3 B)) SRR 12
L4027 AMQP . e e e e e e aaeeeeeean 12
I.5 Logical Design of 10T ..ot 13
[.5.1 10T Functional BIOCKScccouieiiiiiiiiiicieceeeeee e 13
[.5.2 10T Communication Modelsccceceeeiiiiiiiiiecieecee e 14
1.6 TOT CharacteriStiCscccevviiiriiiiiieeiienieeite ettt ettt e 15
[.6.1 INtEICONMECEIVILYeeiiiiiiiieeieiiiee ettt ettt e st e st e e s e aeeeee e 15
[.6.2 Things-related SEIVICESccevierieriiriiiiiecieeeeee e 16
[.6.3 HEterOZeNeItY ..ccouuviiiiiiiiiiiiiiiictccete et 16

[.6.4 Dynamic Changescocceevueiiiiienieiieieecste et 16

Table of Contents

[.6.5 ENOTIMOUS SCAle......ccviiiiiiiiicieecie ettt eane e 16
L.6.6 SALOLY ..ottt ettt 16
[.6.7 CONNECHIVILYooiiiiiiiiiiiiiiiii i 16
I.7 Types of IoT Technologies.............ccccoceviriiiiiiinininieceeeeeeeeee e 16
7.1 Internet of Things (I0T)cceccveierienirieieieieeeee et 16
[.7.2 Internet of Everything (IOE)ccceivierieieininieieeeeeesesieeeee e 17
[.7.3 Internet of Nano Things (IONT)cccceciiiiiiiiniieeeee e 17
[.7.4 Internet of Mission Critical Things (IOMCT)cccccevuerveirceerienereeeereeeenns 17
[.7.5 Internet of Mobile Things (IOMT)cccceeieirirenieieieeeeneeeee e 17
L8 IOT ATCRhIte@CtUTEcoevviieieeceeee e e et e 17
[.8.1 Three- and Five-Layer Architectures..........cccceeveeriieinieniiienieeieeieeseeeeee 17
[.8.2 Cloud and Fog Based Architectures............ccccoeeevuirriinieneenieieeieeieseeeeene 18
L. IOT APPLICAtIONS ..ot 18
[.g9.1 Connected Healthccooiiiiiiiiiee e 19
[.9:2 SINATT CIEY weeiiiiiiiiiieeeeee ettt ettt e s e e e 19
[.9.3 CONNECLEA CATSeeviiiiiiieieeiieseet ettt sttt st sbe e 19
[.9.4 SMArt HOME ..ottt et 19
1.9.5 SMart Farmingc.ccceevieiiiiiiiiiieieeeeete et 20
[.9.6 SMaArt Retailcc.eevuieiiiieiiciecece et e 20
[.9.7 Smart Supply Chain......c..cocooiiiiiiiiii e 20
L1.10 MQTT Protocol.............ooooeiiiiieeeee et 20
[.10.1 MQTT Client (publisher/subscriber)...........ccccceeievienieneeieieieeceeeeeen 21
[.10.2 MQTT Server (DIOKET)ccveeuiieiieieeeie ettt et 22
[.10.3 TOPIC ..ttt ettt e e e s e e 22
5 Lo 0 R0 4 1o) o PSRRI 22
[.10.5 SUDSCIIPLION ...eiiiiiiiiieieeie ettt et 22
[.10.6 MESSQEEeveeeeiiiiieeeeee ettt 22
[.10.7 MQTT SECUTTLY «..veeeiiieiiieeeteeete ettt ettt s 22
[.10.7.a Solutions and needs for security in MQTT deployments 22
[.10.7.b Attacks and COUNtEIMEASUTES.........c.cecveerrieeireeeieereeecieeereeeeeereeseeeeeeens 23
L11 COMCIUSION.....c.cviiiiiee ettt ettt a e s sens 23
Chapter II: Intrusion Detectionccocceeveeiiirieniienieneeieee e 25

TLod IOETOAUCTION ... et e e e e e e e e e e e aaaaeeaeaanee 26

Table of Contents

I1.2 What is Intrusion Detection?.........ccceeeueeeieunieienneeienneeeenneeeenneeeesneesenneeees 27
I1.3 What Is an Intrusion-Detection System (IDS)?ccccceeeeeeeeeeeereeeeeeeeennens 27
I1.4 Types of IDS SYStemScceiiiiiiiimmmnniiiiiiiiiiiitiniseer e eceresaaeses e eeeeeenns 27
I1.4.1 HIDS (Host Intrusion Detection SYStem)...........cceceruereeeeceereeneseeeeseeneenns 27
I1.4.2 NIDS (Network Intrusion Detection SyStem)ccecveeecvereereresvereennenn. 28
[1.4.3 Hybrid IDS ...t s 29
I1.4.4 Protocol-based IDS (PIDS)ccoooiiiiiieeiieeeie ettt 30
I1.4.5 Application Protocol-based IDS (APIDS)ccccereriererirreieneeeeeeeeeeenne 30
IL.5 Characteristics Of IDScoociiiiiiiiiiiee e 30
151 ACCUTACY ..ttt ettt ettt e s e e s 30
[1.5.2 ReSPONSE TIME.coiiiiiiiiiiiiiiee et 30
I1.5.3 Completeness of DeteCtioncceevueevierierieniieniieie et 30
[1.5.4 FAult TOLEIANCEcueeveieiieeiieeie ettt ettt et eereesnaeenne e 30
I1.6 Intrusion Detection Operating Modes...........c..cccecenenininnienenencnieneens 31
[1.6.1 ANOmaly DeteCtioncccuivuieriiiiieniieeieeiie ettt 31
[1.6.2 Signature-based Detectionceceevierierienierieeieeieseeee e 31
11.6.3 Specification-based Detection...........c.ccoecueruieviriiiriienienieeeeee e 31
[1.6.4 Behavior after DeteCtionccccceevieiieeiierienieieee e 31
[1.6.5 Frequency Of USEccccoiriiiiiiiiiniinitiiccenieecese st 31
I1.6.6 Target MONItOTINGc.cceivuiiiiiiiiiiiiieeiiceee e 32
[1.6.7 Stealth Probes.......cocviiiiiiiiiciieeeecee et 32
IL7 IDS Pros and COMScoovieiiiiiiiiiiienieeite ettt ete ettt sse e 32
I1.8 IDS ArchiteCcturecccoooiiiiiiiiiiinieeieeee ettt 33
I1.8.1 Single-Tiered Architecturecocerviirieniiniiiinercee e 33
[1.8.2 Multi-Tiered Architecture...........ccceevuieriiiiiiiriieneeee e 33
[1.8.3 Peer-to-Peer ArChiteCturecccevueeiierienieiieeeeete e 34
I1.9 INtrusion AttackKsocoeeeiiiiiiiciiccecee e 34
I1.9.1 System SCANNINGcc.ceiviiiiiiiiiiiiiiiiicie e 34
[1.9.2 Denial Of SEIVICEoecviiiieeiieeie ettt ettt s e ees 34
I1.9.3 Flow Exploitation DoS Attacksc.cecerierieniieniiiiinieneeeeeeeeeeeee 34
I1.9.4 Flooding DoS Attack.......ccccevieiieiiiiiiniieienteeeeeeeeeee e 35
[1.9.5 System Penetrationcc.ccceueeiiiiiiieiiiiiiiee et e s 35

I1.9.6 Man-in-the-Middle (MiTM) Attacksccceeveevuievieeeeeieeieeieeie e 35

Table of Contents

[1.9.7 ROULING ALtACKS .. .ccuiieiieiieiieieeieteeie ettt s 35
11.9.8 Application-level Attackcccovieviiriiiriiinieieeeeeee e 35
[1.9.9 Viruses and WOTITMIScccuievueeeiienieeieeeieesiieereesieeseesteesaeesseessseesnseensneens 36
I1.10 Security MechaniSms...........ccccecuiriiirieniieniieieeieeeseeeee et 36
I1.11 CONCIUSION......c.cceiieie ettt 36
Chapter Il : Deep Learningcccceveririeiienienininieienene sttt 38
ITL1 INErOAUCHION ... ettt e e re e e e e 39
III.2 The Story Begins with Artificial Intelligencecccccuuureiiiinnnnnnnnn. 39
[1I.2.1 What Is Machine Learning?cccceeverierienienieeienieseeseeie e 39
[11.2.2 Advancing into Deep Learning...........ccccceevcveevieriieeniieenienieesieesie e 40
II1.3 Traditional Machine Learningccccooceeiiniiinienieneineeeeieeeeeeee 40
[1I.3.1 Assembling the Training Data..........ccocceriiriiinieniiiiieeeeeeeene 40
[1I.3.2 Understanding the Importance of Feature Extractionc.ccecceceeeeneee. 4
I11.3.3 Learning AlgOrithmscccoviiiiiiiiii e 4
[11.3.3.@ The Task, T....ccveeoieeiieieeiie ettt et saaeenee e 41
[11.3.3.b The Performance Measure, P............ccccoeoiieiieeiiecieeeeee e 42
[11.3.3.c The EXperience, Ecccooiiriiiiiiiiiiieeeeee et 42
I11.3.4 Training and teSting.........coceeveeviereririricceneecere e 42
I11.3.5 Setting aside a validation Set.........cccccevuerieriinirienierieeee e 42
II1.4 The Neural NetworkK...........ccccviiiiiiiiiieeeeeeeeeeee e e 43
I1I.4.1 The Biological Brain Was the First Real Neural Networkccc.c........ 43
I11.4.2 Artificial Neural NetWoOTKS.........ccccierieeiiieiiieriecieeeeee e 44
I1I.4.3 Training a Neural Network with Backpropagation...........cccccoceeienennnne 45
I11.4.4 Feed-Forward Neural NetWorkKscccceeviiiiiieniiieiieeie e 45
I11.4.5 Linear Neurons and Their Limitations.........ccccceeecveevvienieenieeseesieesee e 46
I1I.4.6 Sigmoid, Tanh, and ReLU Neuronsc.cccoceververiienienienenncnieneeneene 46
[11.4.7 Softmax OUtPUL LAYETSc.ceecuierieriiieniieiieeieeeieesee e ste e v e sve e ens 47
II1.5 Types of Neural Networksccccccooviiiiiiiiiiiiiieeeeeee e 48
[11.5.1 Fully connected neural network.............cccoevveeriiriieniiiinieeiecieeieeee e 48
[11.5.2 Recurrent neural NetWOrK..........coccueeviiiiiiiniiiiiicieeceeee e 48
I11.5.3 Sparsely connected neural Networkccccoveevieiiiniienieniniieeeeee 49
II1.6 Training deeper neural networks.............ccccocooiiiiiiinininiiicninnecee, 49

III.7 Deep Learning Algorithmsc.cocooiiiiiiiiiiiiieceeee 49

Table of Contents

I11.7.1 Convolutional Neural Networks (CNNS)ccccovevievieeieeienrieeieereeeeeeeens 49
I11.7.2 Long Short-Term Memory Networks (LSTMS)ccccceevevuerieneseerenienns 49
I11.7.3 Recurrent Neural Networks (RNNS)........ccccceeieievieriiniieieieieeeeee e 50
I11.7.4 Generative Adversarial Networks (GANS)ccccceeveeeeeveenieeieeeeeeeenenns 50
I11.7.5 Radial Basis Function Networks (RBFNS)c.cccceeviinienieciieiecieereenee, 50
[11.7.6 Multilayer Perceptron’s (MLPS)ccccecteirinienierieieeneneeeeeee e 50
[11.7.7 Self Organizing Maps (SOMS)......cccoceruririrenenieineneneneteeee e 50
I11.7.8 Deep Belief Networks (DBINS)cccccveeierieriirieieieiese e 51
I11.7.9 Restricted Boltzmann Machines (RBMS)..........ccccceeuieuierieierienreereeieeennenn, 51
[11.7.10 AULOENCOAETSccuveeeeiieiieeiieeie et ettt eete et e eae e eeeaeessbeeseeebeesnseeseeens 51
I11.8 Applications of Deep Learningcccccccoeeniriieiiinineninnienieneneneeeens 51
[I1.8.1 COMPULET VISIOM...cuuuiiiiiiiiiiiieiiieeeitee ettt ettt s e 51
I11.8.2 Text Analysis and Understandingc.ccoccevereeeenieneneneenicneneneeeceenne 51
[11.8.3 Speech ReCOGNILIONcc.eeviieriiiiiiciieieete e 52
[I1.8.4 CyDerseCUTItY .ccueiiiiiiiiiiieeiieeeee ettt st 52
II1.9 CONCIUSION........oii ettt 53
Chapter IV: Experimentation and Results Interpretation..............c...cc.c..... 54
| A8 T 6T o e Ui T (o) o USRS 55
IV.2 Working Environment and Tools Used..........c..cccccooerviniininiinnncnnennee. 55
IV.2.1 Hardware ENVIrONMeNtcccveviiieniiinieiiieeieeete et 55
[V.2.2 Software eNVIrONMENLc..cevuteriiriierieniienieeie et ete et e ettt sae e 55
IV.2.20 PYTRON oot 55
IV.2.2.2 Jupyter NOte€DOOKcccueiriiiiiiiiiiiiieeceeeee e 55
IV.2.2.3 PANdas ...cocoiiiiieiieeeee e e 56
IV.2.2.4 NUMPY oo 56
IV.2.2.5 TENSOTFIOW ...ttt 56
IV.2.2.6 KETAS ...ttt e st e s e e 57
IV.2.2.7 SCIKIt-1€AIM......oeiiiieieiiee ettt eeaae e e 57
IV.3 Evaluation MetriCs.........coooiiiiiiiiiiiiieieeiie ettt 57
IV.3.1 CONfUSION MALTIX tevviiiieiiieiieiiie ettt st e s aeesaeeeaee e 57
IV 3.2 ACCUTACY eeutiiiiiieeiiteeee ettt ettt st e s ate e s e s e s 58
IV.3.3 RECAIL....oioeiiceeeeeee et ettt eeaaaeas 58

IV.3.4 OVerall ACCUTACYeiveieiiieeiieiieciee ettt 58

Table of Contents

IV 3.5 FISCOTE ...ttt ettt e st e e e eaeeeees 58
IV.3.6 Cross Validationcccueeeieeiieiiiieeieeeee et ee e et eve e ee e e sveesaeeeaee e 58
IV.4 Dataset Presentationcccoiiiiiiiiiiiiiiiiiiiiee et 59
IV.4.1 Considered Cyber-Attackscccecieeierienienieiieie e seens 60
IV.4.1.1 Flooding Denial of Servicecccvviirienienieiieieeieseeeeeee e 60
IV.4.1.2 MQTT Publish FIoOdoooouiiiieeceeeeee e 60
IV.4.1.3 SIOWITE .ottt ettt et e s e e e sbeesaaeesaeens 60
IV.4.1.4 Malformed Data.........c..cooeiiieiiiiiiieeeeeee ettt e 60
IV.4.1.5 Brute Force Authentication............ccoecueeriieiieniieenie e 60
IV.4.2 MQTTset Validation..........cceeeeeiiieiiiieeiieeeciee et 61
IV.5 Implementation.........c.cccooiiiiiiiiiiiiiiiieeeete et 62
IV.5.1 Dataset Preparationc.ccc.eeeeiiieieeiiiiiieeieieee e 62
IV.5.2 Dataset Cleansing.........cccccoeririeiienieninieieeneneeeeeeste sttt 62
IV.5.3 Implementing Deep Learning Modelsc.cccoovveriiiniiiniiinieniienieeeee 63
IV.5.4 Brief Explanation of the Coding Experiment in This Project 63
IV.5.5 EVAlUQLION ..c..viiiiiciiecteee ettt ettt aae e e ens 69
IV.5.6 Results and DiSCUSSIONcccvieriieiiieniieiieeee et eeeeeee e seeeveesaeeseaeens 69
IV.6 Interpretation of Resultsccccoviinieiiiiiiiiceecce e 69
IV.6.1 Comparison of Deep Learning vs. Classical Machine Learning for
INtrusion DeteCHiONccoiiiiiiiiiiiiiieeetee ettt s e e 74
TV.7 CONCIUSION........oeoveec ettt et eae e b b nseneneneas 76
General ConCIUSION............cciiiiieiiieieceece et 77

Bibliographycoooiiiiii s 78

List Of Figures

Figure I.1: Generic block diagram of an 10T Device.cccccceirirciivicnininnienicnnnn 9
Figure [.2: [0T Protocols.cc.coiiiiiiiiiiiiiieeeeee et 12
Figure I.3: Functional Blocks of IOTcccccooiriiiiininincicinneeeceeeeeceee 13
Figure I.4: Request-Response communication modelc.cccoceveniininncnnenen. 14
Figure l.5: Publish-Subscribe communication model...........c..cc.ccooceniinnnnnnnee. 14
Figure 1.6: Push-Pull communication model.ccccocoeiiiinininiiiiccn 15
Figure 1.7: Exclusive Pair communication model.........c..cccccoevininiiininninninnicnnnn. 15
Figure I.8: Architecture of 0T (A: three layers) (B: five layers).cccoceveeenee 18
Figure I.9: Communication between sensor, actor nodes and application through
MQTT DIOKET. ..ttt ettt sbe et et nae 21
Figure [.10: MQTT Architecture...........cocccoeeviiiiiiriiinienicieeeieeeeeee e 21
Figure L.11: Clent 10les..........ooiiiiiiiiiiiieeee e 21
Figure 1.12: Topic EXamplecocioiiiiiiiiiiiiiieceeeeeeee e 22
Figure I1.1: Standard IDS SYSteM.ccecuiriiriiriiiiinieeeeeeee et 27
Figure I1.2: A multi-tiered architectureccccooeveririieicninneeeeeeeee 33
Figure IIL.1: Deep learning, a subset of a subset of Alcccceceeiiiininincnicnenne. 40
Figure I11.2: Making connections in the brainccccoeoeviiiiniiniiniinieeeee, 43
Figure I11.3: A few parts of the brain..........coccoceieiiiininiiiieeeeee 44
Figure III.4: Connecting neurons in a perceptron neural network........................ 44
Figure I11.5: Multilayered perceptron.cc.ceceevuerienieneenenienieneesieeseee e 44
Figure I11.6: A simple example of a feed-forward neural network........................ 45
Figure II1.7: An example of a linear neuron.ccccoccecveverininiciicncncneeecenne, 46
Figure I11.8: The output of a sigmoid neuron as z varies.......c..ceccecevevereeeeeenne. 46
Figure III.g: The output of a tanh neuron as z varies.ccccocceeevevercenencncnnencns 47
Figure I11.10: The output of a ReLU neuron as z varies.ccccoceeveevueneneneenncnnns 47
Figure IIL.11: A fully connected neural network.ccccoeveniniiicninennncnnenne. 48
Figure I11.12: A recurrent neural network.cocceriiniiniiniinniceeee 48
Figure IV. 1: Python LOZOcc.cooiiiiiiiiiiiiicceecceeeecee e 55
Figure IV.2: Jupyter LOZO........ccooiiiiiiiiiiiiiiicccceeececceee e 56
Figure IV.3: The scenario considered in MQTTSetcccceverveniieniienienenienenee. 59
Figure IV. 4: Test Accuracy Chartcoccooieiieiiiiiiiiiiceeeeeceeeeee e 70
Figure IV.5: Test Loss Chart ..o 71
Figure IV.6: Recall Metric Chartcocoeieiieiiiiiiicneeeeeeeeeeeee e 72
Figure IV.7: Precision Metric Chartcccooceiiiiininiinecceeeeeee 73

Figure IV.8: F1 Score Metric Chartc.ccoceviriiiiiieninieicceseseetcce e 74

List Of Tables

Table I1.1: Network-Based vs. Host-Based Intrusion-Detection Systems. 29
Table IV.1: Confusion MatTiX........ccccevieeiieeieeiieereeeeeeeee e e sre e ereesaeesaneeseeeneeas 58
Table IV.2: [oT sensors adopted in the MQTTset scenariocccceeeeveereeerneennen. 59
Table IV.3: The list of extrapolated features............ccceecveevieriiieniieeneeeieeree e 61
Table IV.4: The list of extrapolated features after the cleansing.ccc.c........ 62
Table IV.5: TeSt ACCUTACY ...eovvieiieieeiieciieieeie ettt 70
Table IV.60: TSt LOSSccccueieeiiieeeiie ettt tee e e e sree e e raeeenaeesnaeeenns 70
Table IV.7: RECAIl MELTIC.cccuviiiuieeeeieie ettt ettt ennes 71
Table IV.8: PreciSion IMeLTiCccviiiieiiiiiieeeeiieee ettt eeevee e eeeareeeeeeraeeeeeees 72
Table IV.9: F1 SCOTEiociieiieeiiee ettt st e e e s 73

Table IV.10: Accuracy, F1 score of Machine Learning Methodsccccceuenenne. 74

List Of Equations

| 0 LLE: U (0 1 N I N 46
| 0 LLE: U (o) 4 N 48
| T4 LU T o 3 N N 58
| T4 LU T o o N 58
| 0 L= U L) 4 N N 58

T4 LU T o o N 58

List Of Abbreviations

ARPA: Advanced Research Projects Agency.
ARPANET: Advanced Research Projects Agency Network.
AMQP: Advanced Message Queuing Protocol.
APIDS: Application Protocol-based IDS.

API: Application Programming Interface.

AlI: Artificial Intelligence.

BMU: Best Matching Unit.

CDMA: Code-division Multiple Access.

COAP: Constrained Application Protocol.

CNN: Convolutional Neural Networks.

DDS: Data Distribution Service.

DOS: Denial of Service.

DBN: Deep Belief Networks.

FTP: File Transfer Protocol.

FNN: Feed-Forward Neural Networks.

GSM: Global System for Mobile Communications.
GPS: Global Positioning System.

GAN: Generative Adversarial Networks.

HTTP: Hypertext Transfer Protocol.

HIDS: Host Intrusion Detection System.

IEEE: Institute of Electrical and Electronics Engineers.
IoT: Internet of Things.

IoE: Internet of Everything.

IoNT: Internet of Nano Things.

IoMCT: Internet of Mission Critical Things.
IoMT: Internet of Mobile Things.

IP: Internet Protocol.

IPv4: Internet Protocol version 4.

IPv6: Internet Protocol version 6.

ID: Intrusion Detection.

IDS: Intrusion Detection System.

LAN: Local Area Network.

LED: Light-emitting diode.

LR-WPAN: Low-Rate Wireless Personal Area Networks.
LO-WPAN: IPv6 over Low-Power Wireless Personal Area Networks.
LSTM: Long Short-Term Memory Networks.

MQTT: Message Queue Telemetry Transport.

MQTTSA: MQTT Security Assistant.

MitM: Man-in-the-Middle Attacks.

MLP: Multilayer Perceptron.

NIDS: Network Intrusion Detection System.

NLP: Natural language processing.

OSI: Open Systems Interconnection.

PIDS: Protocol-based IDS.

RF: Radio frequency.

RFID: Radio Frequency Identification.

ReLu: Restricted Linear Unit.

RNN: Recurrent Neural Network.

RBFN: Radial Basis Function Network.

RBM: Restricted Boltzmann Machines.

SOM: Self Organizing Maps.

SlowlITe: Slow DoS against Internet of Things Environments Attack.
TCP: Transmission Control Protocol.

Tanh: Hyperbolic Tangent.

UDP: User Datagram Protocol.

UTMS: Universal Mobile Telecommunications System.
Wi-Fi: Wireless Fidelity.

Wi-Max: Worldwide Interoperability for Microwave Access.
WLAN: Wireless Local-Area Network.

XMPP: Extensible Messaging and Presence Protocol.

XML: Extensible Markup Language.

General Introduction

General Introduction

Inventors have long dreamed of creating machines that think, a desire that dates
back to ancient Greece. Mythical figures such as Pygmalion, Daedalus, and
Hephaestus can be interpreted as legendary inventors, with their creations—
Galatea, Talos, and Pandora—representing early imaginings of artificial life.

The concept of programmable computers spurred speculation about machine
intelligence over a century before such devices were realized. Today, artificial
intelligence (Al) is a thriving field with numerous practical applications and active
research areas. Intelligent software now automates routine labor, understands
speech and images, makes medical diagnoses, and supports scientific research.

Initially, Al rapidly addressed and solved problems that, while intellectually
challenging for humans, were relatively straightforward for computers due to their
formal, mathematical nature. The real challenge for Al, however, lay in tasks that
are easy for humans to perform intuitively but difficult to describe formally, such as
recognizing spoken words or identifying faces in images.

Early Al successes were often confined to formal environments, exemplified by
IBM's Deep Blue chess-playing system. Despite these achievements, recognizing
objects or speech in less structured settings remained difficult for computers. One
significant challenge in Al has been capturing informal knowledge in a format
accessible to machines. Several projects attempted to hard-code world knowledge
into formal languages, but none achieved substantial success.

The advent of machine learning marked a significant shift, enabling computers to
tackle problems involving real-world knowledge and make seemingly subjective
decisions. Simple algorithms like logistic regression and naive Bayes could
recommend cesarean deliveries or filter spam emails, but their performance heavily
depended on data representation.

This dependence on representation is a pervasive phenomenon in computer science
and daily life. For instance, searching a structured and intelligently indexed data
collection can be exponentially faster. In machine learning, the choice of data
representation significantly impacts algorithm performance.

Al tasks often involve designing appropriate features for a task and providing them
to a simple learning algorithm. For many tasks, such as detecting cars in
photographs, identifying the right features is challenging. Representation learning
addresses this by using machine learning to discover both the mapping from
representation to output and the representation itself. Learned representations
frequently outperform hand-designed ones, enabling Al systems to adapt to new
tasks with minimal human intervention.

General Introduction

A quintessential representation learning algorithm is the autoencoder, comprising
an encoder that converts input data into a different representation and a decoder
that reverts it to the original format. Various autoencoders aim to achieve different
properties.

Deep learning addresses the central problem in representation learning by
introducing representations defined in terms of simpler ones. It allows computers
to construct complex concepts from simpler ones, exemplified by the feedforward
deep network or multilayer perceptron (MLP). An MLP is a mathematical function
mapping input values to output values through a composition of many simpler
functions.

Deep learning also enables computers to learn multi-step programs, with each
representation layer acting as the state of the computer's memory after executing
another set of parallel instructions. Deeper networks can execute more sequential
instructions, enhancing power as later instructions can build on earlier results.

The depth of a model can be measured by the number of sequential instructions
required to evaluate its architecture and the depth of the graph describing concept
relationships. This depth is crucial in deep learning, allowing systems to refine
simpler concepts based on more complex ones. Deep learning is currently the most
viable approach for building Al systems capable of operating in complex, real-world
environments, representing the world as a nested hierarchy of concepts.

The Internet of Things (IoT) phenomenon has been fueled by recent advancements
in networking technologies and the widespread availability of various smart gadgets
over the past decade. IoT enables physical electronic devices, such as sensors, to
connect to the Internet, facilitating data collection and sharing among networked
objects. Today, numerous IoT systems are deployed across various industries,
including smart farming, industry, transportation, healthcare, and smart cities.

Several communication protocols have been developed to enhance the security and
reliability of data exchange among IoT devices, including the Constrained
Application Protocol (CoAP), Advanced Message Queuing Protocol (AMQP),
Message Queuing Telemetry Transport (MQTT), and Extensible Messaging
Presence Protocol (XMPP). Among these, MQTT is the most popular in IoT systems
due to its support for low-bandwidth connectivity, minimal memory requirements,
and reduced packet loss.

MQTT, a lightweight messaging protocol using a publisher/subscriber architecture,
simplifies device-to-device communication. However, this communication model
can introduce security vulnerabilities, such as denial of service, identity spoofing,
information exposure, privilege escalation, and data tampering.

General Introduction

To address these security concerns, researchers have developed various techniques
and methods. Intrusion Detection Systems (IDS) are among the most effective
solutions, identifying intrusions by monitoring system activities and distinguishing
between legitimate use and attacks. An IDS designed for loT-based environments
must meet strict specifications for minimal processing power, fast response times,
and high-volume data processing, making conventional IDS potentially unsuitable
for loT scenarios.

Integrating Al, particularly deep learning, with [oT can enhance the effectiveness of
IDS in smart environments. Deep learning's ability to learn complex representations
and adapt to new data with minimal human intervention can significantly improve
intrusion detection accuracy and efficiency in [oT systems. This synergy between Al
and loT represents a promising frontier for developing robust, intelligent, and
secure systems capable of operating in diverse and dynamic real-world
environments.

In this project, we will integrate deep learning algorithms with IoT networks to
elevate the effectiveness of intrusion detection systems. We will use deep learning
algorithms to create an intelligent system that can identify intrusions in an
Internet of Things network using the MQTT protocol while accounting for the
computing and storage capacities of individual IoT devices.

Our manuscript is divided into four sections, which are categorized as follows:

The broad introduction of this manuscript provides a conceptual overview of our
study.

An overview of the idea, forms, architectures, and application domains of Internet
of Things networks is given in the first chapter. It also describes the parts that make
up IoT networks and how they work. This chapter concludes by discussing the
MQTT communication protocol, its main elements and architecture, potential
assaults on the protocol, and solutions to lessen such threats.

The state of the art for intrusion detection systems is presented in the second
chapter. The chapter provides examples of the types, structures, and specific
assaults that can be prevented by IDS, as well as the specifics of its framework.

The specifics of deep learning algorithms are covered in the third chapter. This
section lists various commonly used deep learning algorithms.

The foundation of our experiment are presented in the last chapter. It provides a
quick overview of the used gear and software. It also gives an explanation of the
evaluation measures that were used for the algorithms' assessment as well as the
dataset that was used in the experiment.

General Introduction

The recollection concludes with a broad summary that highlights the documented
findings of this study as well as the researchers' future objectives.

Chapter I: Internet of Things

Chapter | The Internet of Things

I.1 Introduction:

The telegraph's ability to transfer information over long distances by means of
a coded signal dates back to the early 19th century, and although there are earlier
examples of networked electrical equipment, the Internet of Things actually
emerged in the late 1960s. Around that time, a number of well-known researchers
started looking into ways to link systems and computers. The network known as
ARPANET, which was developed as a precursor to the Internet today by the U.S.
Defense Department's Advanced Research Projects Agency (ARPA), is a good
example of this effort. Businesses, governments, and consumers started looking
into ways to link personal computers (PCs) and other technologies to each other
in the late 1970s. By the 1980s, local area networks, or LANs, offered a popular
and efficient means of real-time document sharing, data sharing, and other
information exchange among a number of PCs. [1]

When the Internet began to expand such capabilities globally in the mid-1990s,
scientists and researchers started looking into ways that humans and robots
could interact more effectively. The term "the Internet of Things" was first used
in a speech by British technologist Kevin Ashton, cofounder of the Auto-ID
Center at MIT, in 1999. Ashton started investigating radio-frequency
identification (RFID) in 1997 as a technological framework that would enable
physical devices to connect via microchips and wireless signals. A more reliable
framework for gathering, storing, analyzing, and sharing data was established in a
matter of years thanks to cellphones, cloud computing, increases in processing
power, and enhanced software algorithms. Simultaneously, advanced sensors
emerged that could detect motion, temperature, moisture content, wind
direction, sound, light, pictures, vibrations, and a host of other parameters—in
addition to having the capacity to geolocate a person or a device. Real-time
communication with both digital and physical items is now possible because to
these advancements. For instance, one may view the location of an object, such a
wallet or bag, by attaching a tracking chip, like an Apple Air Tag, to it. If a digital
device is lost or stolen, the same chip that powers it can be used to trace its
location. Then, it became feasible to connect people and things in a nearly
ubiquitous manner with the broad use of mobile devices like smartphones and
tablets and the advent of ubiquitous wireless communication. Consequently,
industrial robotics systems, linked storage tanks, and intelligent traffic networks
became standard. [1]

[oT development is still ongoing. These days, it can be utilized for a wide range of
applications, such as artificial intelligence for extremely complex simulations,
sensing systems for identifying contaminants in water sources, and agricultural
and animal monitoring systems. For instance, it is now feasible to remotely apply

Chapter | The Internet of Things

the ideal amounts of water, fertilizer, and pesticides to crops as well as monitor
the whereabouts and health of animals. [1]

Airlines and shipping industries can optimize fleets for maximum loads and
efficiencies by accounting for mechanical issues and weather through the use of
highly networked systems. Real-time maps and navigation recommendations that
redirect and route drivers based on traffic patterns are made available to drivers
by the Internet of Things. These solutions save time and money while lowering
traffic and pollution. [1]

The Internet of Things (IoT) is the wide range of physical things that have
sensors and software installed in order to collect and exchange data across a
network and communicate with one another with minimal assistance from
humans. The term "Internet of Things" (IoT) refers to the plethora of "smart,"
computer-like devices that are so widely used today. These "things" include
phones, appliances, thermostats, lighting controls, irrigation systems, security
cameras, cars, even cities and animals. These devices can communicate with each
other or with the Internet via wireless networks. These days, transponders let
automobiles pass through tollbooths and pay the cost electronically, smart
speakers add things to shopping lists and turn lights on and off, and smart
watches track activity and steps. [1]

Complex tasks that are occasionally beyond the capacity of humans are made
simpler and more automated via the Internet of Things. There are currently
billions of linked devices that make up the Internet of Things. [1]

I.2 Definition of IoT

[oT is a Dynamic global network infrastructure with self-configuring
capabilities built on open and compatible communication protocols, where
virtual and physical "things" are seamlessly integrated into the information
network and frequently communicate user and environment-related data. These
"things" have identities, physical characteristics, and virtual personalities. They
also use intelligent interfaces.

Let's take a closer look at this definition of IoT to clarify a few words:
Dynamic and Self-Adapting: Internet of Things (IoT) devices and systems may
be able to adjust themselves to changing environments on the fly and take
appropriate action according to their operational parameters, the context of their
users, or their detected surroundings. Take into consideration, for instance, a
surveillance system that consists of several surveillance cameras. Depending on
the time of day, the surveillance cameras can switch between standard and infra-
red night modes. When motion is detected, cameras have the ability to
automatically convert between lower and higher resolution modes, notifying
other surrounding cameras to follow suit. In this instance, the monitoring system

Chapter | The Internet of Things

is adjusting to the environment and shifting circumstances, such as those that are
dynamic.

Self-Configuring: Internet of Things (IoT) devices have the potential to
configure themselves, enabling a multitude of devices to collaborate in order to
perform a certain purpose (like weather monitoring). With little assistance from
the user or physical labor, these devices can autonomously configure themselves
(in relation to the Internet of Things architecture), set up networking, and
download the most recent software updates.
Interoperable Communication Protocols: Internet of Things (IoT) devices
have the ability to communicate with other devices and the infrastructure by
supporting several interoperable communication protocols. In the sections that
follow, we go over a few of the popular communication models and protocols.
Unique Identity: Every Internet of Things (IoT) device is identified by a unique
identifier, which can be an IP address or URI. Intelligent interfaces on Internet of
Things devices could be able to communicate with users and their surroundings,
adapting to the situation.
Through the use of 10T device interfaces, users can remotely control, configure,
and monitor devices as well as query and monitor their status.
Integrated into Information Network: In order to enable communication and
data exchange with other devices and systems, Internet of Things (IoT) devices
are typically integrated into information networks. [oT devices have the ability to
describe themselves (and their attributes) to other devices or user applications.
They can also be dynamically discovered in the network, by other devices or by
the network itself. For instance, in order for two connected nodes to interact and
share data, a weather monitoring node can explain its monitoring capabilities to
the other node. IoT systems become "smarter" as a result of integration into the
information network because of the combined intelligence of the individual
devices. working along with the infrastructure, as a result, it is possible to
combine and evaluate data from numerous linked IoT nodes that monitor the
weather to provide weather predictions. [2] [3]

I.3 Things in loT

In the context of the Internet of Things, "things" typically refer to low-power,
individually identifiable devices with remote sensing, actuation, and monitoring
capabilities. Connected objects (1oT) have the ability to exchange data (directly or
indirectly) with other connected objects and applications, gather data from other
devices and process it locally, or send it to centralized servers or cloud-based
application back-ends for processing. They can also carry out certain tasks locally
and other tasks within the [oT infrastructure, depending on temporal and spatial
limitations (memory, processing capabilities, communication latencies and
speeds, and deadlines).[2]

[oT devices can also come in a variety of forms, such as smart watches, autos,
industrial machinery, LED lights, and wearable sensors. Nearly every Internet of
Things device produces data in one way or another. This data, when analyzed by
data analytics tools, provides insightful knowledge that may be used to direct

8

Chapter | The Internet of Things

additional local or distant actions. For example, sensor data collected by a
garden's soil moisture monitoring equipment can be used to determine the best
watering schedules. [2]

Connectivity Processor Audio/Video I/O Interfaces
Interfaces (for sensors,
USB Host cPU HDMI actuators, etc.)
RJ45/Ethernet 3.5mm audio UART
RCA video
SPI
Memory Interfaces Graphics Storage Interfaces
12C
NAND/NOR GPU SD
MMC CAN
DDR1/DDR2/DDR3
SDIO

Figure I.1: Generic block diagram of an loT Device.

I.4 10T Protocols

I.4.1 Ethernet

IEEE 802.3 is a collection of wired Ethernet standards for the link layer, these
standards provide data rates from 10 Mb/s to 40 Gb/s and higher. The shared
medium in Ethernet can be a coaxial cable, twisted-pair wire or an optical fiber.
The shared medium (i.e., broadcast medium) carries the communication for all
the devices on the network, thus data sent by one device can received by all
devices subject to propagation conditions and transceiver capabilities. [2]

I.4.2 Wi-Fi

IEEE 80211 is a collection of wireless local area network (WLAN)
communication standards, including extensive description of the link layer.
These standards provide data rates from 1 Mb/s up to 6.75 Gb/s. [2]

I.4.3 Wi-Max

IEEE 802.16 is a collection of wireless broadband standards, including extensive
descriptions for the link layer (also called Wi-Max). Wi-Max standards provide
data rates from 1.5 Mb/s to 1 Gb/s. The recent update (802. 16m) provides data
rates of 100 Mbit/s for mobile stations and 1 Gbit/s for fixed stations. [2]

I.4.4 LR-WPAN

IEEE 802,15.4 is a collection of standards for low-rate wireless personal area
networks (LR-WPANSs). These standards form the basis specifications for high
level communication protocols such as ZigBee. LR-WPAN standards provides
data rates from 40Kb/s to 250Kb/s. these standards provide low-cost and low-
speed communication for power constrained devices. [2]

Chapter | The Internet of Things

I.4.5 Mobile Communication (2G/3G/4)

There are different generations of mobile communication standards including
second generation (2G including GSM and CDMA), third generation (3G
including UTMS and CDMA2000) and fourth generation (4G -LTE). IoT devices
based on these standards can communicate over cellular networks. Data rates for
these standards range from 9.6Kb/s (for 2G) up to 100Mb/s (for 4G). 2]

[.4.6 IPv4

Internet Protocol version 4 (IPv4) is the most deployed Internet protocol that is
used to identify the devices on a network using a hierarchical addressing scheme.
232 or 4,294,967,296
addresses. As more and more devices got connected to the Internet, these

IPv4 uses a 32-bit address scheme that allows total of

addresses got exhausted in the year 2011. IPv4 has been succeeded by IPv6. The IP
protocols establish connections on packet networks, but do not guarantee
delivery of packets. Guaranteed delivery and data integrity are handled by the
upper layer protocols (such as TCP). [2] [4]

I.4.7 IPv6

Internet Protocol version 6 (IPv6) is the newest version of Internet protocol and
successor to IPv4. IPv6 uses 128-bit address scheme that allows total of 2128 or
3.4 x 1038 addresses. [2] [5]

1.4.8 6LOWPAN

6LoWPAN (IPv6 over Low power Wireless Personal Area Networks) brings IP
protocol to the low-power devices which have limited processing capability,
6LoWPAN operates in the 2.4 GHz frequency range and provides data transfer
rates of 250 Kb/s. [2] [6]

I.4.9 TCP

Transmission Control Protocol (TCP) is the most widely used transport layer
protocol, that is used by web browsers. TCP is a connection oriented and stateful
protocol. While IP protocol deals with sending packets, TCP ensures reliable
transmission of packets in-order. TCP also provides error detection capability so
that duplicate packets can be discarded and lost packets are retransmitted. The
flow control capability of TCP ensures that rate at which the sender sends the
data is not too high for the receiver to process. The congestion control capability
of TCP helps in avoiding network congestion and congestion collapse which can
lead to degradation of network performance. [7]

I.4.10 UDP

Unlike TCP, which requires carrying out an initial setup procedure, UDP is a
connectionless protocol. UDP is useful for time-sensitive applications that have
very small data units to exchange and do not want the overhead of connection

10

Chapter | The Internet of Things

setup. UDP is a transaction oriented and stateless protocol. UDP does not
provide guaranteed delivery, ordering of messages and duplicate elimination.
Higher levels of protocols can ensure reliable delivery or ensuring connections
created are reliable.[8]

I.4.11 HTTP

Hypertext Transfer Protocol (HTTP) is the application layer protocol that forms
the foundation of the World Wide Web. The protocol follows a request-response
model where a client sends requests to a server using the HTTP commands.
HTTP is a stateless protocol and each HTTP request is independent of the other
requests. [9]

I.4.12 CoAP

Constrained Application Protocol (CoAP) is an application layer protocol for
machine-to-machine (M2M) applications, meant for constrained environments
with constrained devices and constrained networks. Like HTTP, CoAP is a web
transfer protocol and uses a request-response model, however it runs on top of
UDP instead of TCP. CoAP uses a client-server architecture where clients
communicate with servers using connectionless datagrams. [10]

I.4.13 WebSocket

WebSocket protocol allows full-duplex communication over a single socket
connection for sending messages between client and server. WebSocket is based
on TCP and allows streams of messages to be sent back and forth between the
client and server while keeping the TCP connection open. The client can be a
browser, a mobile application or an loT device.[11]

I.414 MQTT

Message Queue Telemetry Transport (MQTT) is a light-weight messaging
protocol based on the publish-subscribe model. MQTT uses a client-server
architecture where the client (such as an loT device) connects to the server (also
called MQTT Broker) and publishes messages to topics on the server. The broker
forwards the messages to the clients subscribed to topics. MQTT is well suited for
constrained environment where the devices have limited processing and memory
resources and the network bandwidth is low.[12]

I.4.15 XMPP

Extensible Messaging and Presence Protocol (XMPP) is a protocol for real time
communication and streaming XML data between network entities. XMPP
powers wide range of applications including messaging, presence, data
syndication, gaming, multi-party chat and voice/video calls. XMPP allows
sending small chunks of XML data from one network entity to another in near
real-time. XMPP is a decentralized protocol and uses a client-server architecture,

11

Chapter | The Internet of Things

XMPP supports both client-to-server and server-to-server communication paths.
In the context of loT, XMPP allows real-time communication between loT
devices.[13]

I.4.16 DDS

Data Distribution Service (DDS) is a data-centric middleware standard for
device-to-device or machine-to-machine communication. DDS uses a publish-
subscribe model where publisher (e.g. devices that generate data) create topics to
which subscribers (e.g. devices that want to consume data) can subscribe.
Publisher is an object responsible for data distribution and the subscriber is
responsible for receiving published data. DDS provides quality-of-service (QoS)
control and configurable reliability. [14]

I.4.17 AMQP

Advanced Message Queuing Protocol (AMQP) is an open application layer
protocol for business messaging. AMQP supports both point-to-point and
publisher/subscriber models, routing and queuing. AMQP brokers receive
messages from publishers (e.g. devices or applications that generate data) and
route them over connections to consumers (applications that process data),
Publishers publish the messages to exchanges which then distribute message
copies to queues, Messages are either delivered by the broker to the consumers
which have subscribed to the queues or the consumers can pull the messages
from the queues.[2]

Application Layer

HTTP CoAP WebSockets
MQTT XMPP DDS AMQP
Transport Layer
TCP ubP

Network Layer

IPv4 IPv6 6LoWPAN

Link Layer

802.3 - Ethernet = 802.16 - WiMax 2G/3G/LTE -

Cellular
802.11 - WiFi 802.15.4 - LR-WPAN

Figure I.2: [oT Protocols.

12

Chapter | The Internet of Things

I.5 Logical Design of loT

An IoT system's logical design is an abstract depiction of its elements and
operations that avoids delving into the finer points of implementation. We go
over an IoT system's functional components in this part.[2]

I.5.1 loT Functional Blocks

A multitude of functional blocks make up an Internet of Things system, giving
it the ability to communicate, act, sense, identify, and management. These
functional blocks are described as follows [2] :

e Device: An [oT system comprises of devices that provide sensing,
actuation, monitoring and control functions.

e Communication: The communication block handles the communication
for the IoT System.

e Services: An [oT system uses various types of [oT services such as services
for device monitoring, device control services, data publishing services
and services for device discovery.

e Management: Management functional block provides various functions
to govern the loT system,

e Security: Security functional block secures the loT system and by
providing functions such as authentication, authorization, message and
content integrity, and data security.

e Application: IoT applications provide an interface that the users can use
to control and monitor various aspects of the loT system. Applications also
allow users to view the system status and view or analyze the processed
data.

Application

Services

Management Security

Communication

Device

Figure 1.3: Functional Blocks of IoT

13

Chapter | The Internet of Things

I.5.2 10T Communication Models
¢ Request-Response communication model: Request-Response is a
communication model in which the client sends requests to the server and
the server responds to the requests. When the server receives a request, it
decides how to respond, fetches the data, retrieves resource
representations, prepares the response, and then sends the response to the

client. [2]
Client Server
‘ Request Receivgs requests
Sends > from client,
requests to processes
server Response requests, looks 3 2 Resources
up/fetches

resources,
prepares
response and
sends response
to client

Figure I.4: Request-Response communication model.

e Publish-Subscribe communication model: Publish-Subscribe is a
communication model that involves publishers, brokers and consumers.
Publishers are the source of data. Publishers send the data to the topics
which are managed by the broker. Publishers are not aware of the
consumers. Consumers subscribe to the topics which are managed by the
broker. When the broker receives data for a topic from the publisher, it
sends the data to all the subscribed consumers. [2]

Publisher
Broler _~ Consumer-1
Message published Topic-1 ~ ~
Sends | toTopic-l L Subscribers: &)
messages to Consumer-1, s
topics Consumer-2 - T~ Consumer-2
Message published
to Topic-2 Topic-2
> Subscribers: .
Consumer-3 =

" Consumer-3

Figure I.5: Publish-Subscribe communication model.

¢ Push-Pull communication model: Push-Pull is a communication model
in which the data producers push the data to queues and the consumers
pull the data from the queues. Producers do not need to be aware of the
consumers. Queues help in decoupling the messaging between the
producers and consumers. Queues also act as a buffer which helps in

14

Chapter I The Internet of Things

situations when there is a mismatch between the rate at which the
producers push data and the rate at which the consumers pull data. [2]

Queues

Publisher

I Comsumers
Sends
messages to
queue Messages pushed Messages pulled

to queues from queues
P Consumer2

Figure 1.6: Push-Pull communication model.

e Exclusive Pair communication model: Exclusive Pair is a bidirectional,
fully duplex communication model that uses a persistent connection
between the client and server. Once the connection is setup it remains
open until the client sends a request to close the connection. Client and
server can send messages to each other after connection setup. [2]

Request to setup Connection

>
>

Response accepting the request

+

) Message from Client to Server
Client > server

Message from Server to Client

+*

Connection close request

Connection close response

Figure 1.7: Exclusive Pair communication model.

1.6 IoT Characteristics
The fundamental characteristics of the IoT are as follows [15] [16] [17]:

1.6.1 Interconnectivity
With regard to the IoT, anything can be interconnected with the global
information and communication infrastructure.

15

Chapter | The Internet of Things

I1.6.2 Things-related services

Within the limitations of things, the Internet of Things can offer thing-related
services like semantic consistency between actual objects and the virtual objects
they are connected with, as well as privacy protection. Both the physical and
information worlds' technologies will evolve to give thing-related services within
the limitations of things.

1.6.3 Heterogeneity

Due to their varied hardware platforms and networks, I[oT devices are
heterogeneous. They can communicate via various networks with other gadgets
or service platforms.

1.6.4 Dynamic changes

Device states fluctuate dynamically, such as whether they are asleep or waking
up, connected or not, and in what context they are used, such as location and
speed. Furthermore, the quantity of devices may vary on a dynamic basis.

1.6.5 Enormous scale

At least an order of magnitude more devices than those currently connected to
the Internet will need to be controlled and communicate with one another. The
handling of the produced data and its interpretation for use in applications will
be even more crucial. This has to do with effective data processing and data
semantics.

1.6.6 Safety

We must remember safety even while we reap the benefits of the Internet of
Things. We must design for safety since we are the Internet of Things' producers
and users. This covers both the security of our private information and the
security of our physical health. The key to securing endpoints, networks, and the
data that flows between them is developing a scalable security paradigm.

1.6.7 Connectivity

Network compatibility and accessibility are made possible via connectivity.
Connecting to a network is known as accessibility, whereas sharing the capacity
to create and use data is known as compatibility.

I.7 Types of IoT Technologies

I.7.1 Internet of Things (IoT)

The Internet of Things (IoT) connects physical objects via the internet, enabling
them to identify and manage each other using various sensing devices like RFID
and GPS. The IoT board consists of Arduino/Raspberry Pi, RF Module, Sensor
Module, Access Point, [oT Server, and Cloud Point.[27]

16

Chapter | The Internet of Things

I.7.2 Internet of Everything (IoE)

The Internet of Everything (IoE) is the new age of IoT, focusing on people,
processes, and data, while IoT focuses on physical objects. IoE analyzes real-time
data from millions of sensors to support automated processes and integrate
industrial policy goals with ecological sustainability, social, and economic issues.
It can also be used to make learning new technologies easier for students in
educational systems. [27] [30]

I.7.3 Internet of Nano Things (IoNT)

The Internet of Nano Things (IoNT) connects nanoscale objects to
communication networks, combining nano components into a single gadget. It
differs from the Internet of Things (IoT) as it cannot incorporate nano
components. Nanodevices communicate through conventional protocols, with
the inbuilt network remotely controlled through a gateway. IoNT applications
include gas detection systems and nano-micro interface devices. [27] [29]

I.7.4 Internet of Mission Critical Things (IoMCT)

The Internet of Mission Critical Things (IoMCT) combines sensing,
communication, processing, and control to enhance network surveillance. It
focuses on managing information sources, devices, and networks individually,
reducing human strain on critical missions like combat, border patrol, and search
and rescue. [27] [28]

I.7.5 Internet of Mobile Things (IoMT)

Digital devices, such as phones, are becoming increasingly integrated with
sensors, allowing for interaction. The main difference between loT and IoMT lies
in context, connectivity, energy availability, and privacy and security. Context
refers to the phone's location and current ownership, while connectivity refers to
its connection to networks. Mobile charging properties include energy
availability. Privacy issues arise from unique phone features and locations,
leading to identity mismatch and uniqueness theft.[27]

1.8 IoT Architecture
There is no one widely accepted architecture for the Internet of Things.
Various researchers have put forth distinct architectures.

1.8.1 Three- and Five-Layer Architectures

The most basic architecture for the Internet of Things (IoT) is a three-layer
architecture consisting of perception, network, and application layers. The
perception layer is responsible for sensing and gathering information about the
environment, while the network layer connects smart things and devices. The
application layer delivers application-specific services to users, defining
applications like smart homes and cities. However, this architecture is not

17

Chapter | The Internet of Things

sufficient for research, as it often focuses on finer aspects of the IoT. A five-layer
architecture, which includes processing and business layers, is another option,
which includes perception, transport, processing, application, and business
layers. The business layer manages the entire IoT system, including applications,
business models, and user privacy. Another architecture inspired by human brain
layers is the human brain, spinal cord, and network of nerves. [18] [20]

Application Business layer
layer

Application layer

Metwork Processing|
layer cessing layer
Transport layer
Perception
layer Perception layer

@

Figure 1.8: Architecture of IoT (A: three layers) (B: five layers).

1.8.2 Cloud and Fog Based Architectures

Cloud and fog computing are two types of systems architectures used in [oT
devices. Cloud computing is centralized, with applications at the center and
smart things below. It offers flexibility, scalability, and services like core
infrastructure, platform, software, and storage. Fog computing, on the other
hand, involves sensors and network gateways in data processing and analytics.
This architecture consists of monitoring, preprocessing, storage, and security
layers between physical and transport layers. The monitoring layer monitors
power, resources, responses, and services, while the preprocessing layer performs
filtering, processing, and analytics of sensor data. Edge computing, on the other
hand, adds smart data preprocessing capabilities to physical devices at the edge
of the network. The distinction between protocol architectures and system
architectures is not clear, and the generic 5-layer IoT protocol stack is used for
both architectures.[21] [22]

I.g IoT Applications
Some useful applications of Internet of Things (IOT) are [23] [24] [25] [26]:

e (Connected Health
e Smart City
e (Connected Cars

e Smart Home

18

Chapter | The Internet of Things

e Smart Farming
e Smart Retail
e Smart Supply Chain

I.9.1 Connected Health

[oT has numerous applications in healthcare, including remote monitoring,
smart sensors, and equipment integration. It can improve physician care and
patient safety. [oT can enhance patient engagement and satisfaction by allowing
more time for doctor-patient interaction. It offers pocket-friendly solutions for
patients and healthcare professionals, empowering them to live healthier lives.
Research shows IoT in healthcare will grow massively, enabling personalized
health analysis and tailored treatment strategies.

I.9.2 Smart City

Another potent [oT application that is piquing people's interest around the
globe is smart cities. Examples of internet of things applications for smart cities
include automated transportation, water distribution, smarter energy
management systems, smart surveillance, smart urban security, and
environmental monitoring. Major issues that city dwellers suffer, such as
pollution, gridlock in the streets, and a lack of energy, will be resolved by IoT.
When a trash can needs to be emptied, devices like the Smart Belly trash can
with cellular communication capability can notify local services. Installing
sensors and utilizing online tools allows residents to locate open parking spaces
all across the city. In addition, the sensors are capable of identifying general
failures, installation problems with the electrical system, and meter
manipulation.

I.9.3 Connected Cars

Automotive digital technology is focusing on enhancing the in-car experience
with connected cars, which optimize operations, maintenance, and passenger
comfort using onboard sensors and internet connectivity. Major brands like
Tesla, BMW, Apple, and Google are working on connected car solutions, which
consist of multiple sensors, antennas, embedded software, and technologies for
consistent, accurate, speedy, and reliable decision-making.

I.9.4 Smart Home

In residential settings, smart homes have emerged as a revolutionary ladder to
success, and it is anticipated that soon, smart homes will be as ubiquitous as
smartphones. The most significant and effective use of IoT systems that always
jumps out is the smart home, which is ranked as the top IOT application across
all channels. Over $2.5 billion has been invested in smart home startups, and the
figure is still rising. Wouldn't it be wonderful to be able to turn on the air
conditioning before you get home or turn out the lights even after you've left?

19

Chapter | The Internet of Things

Even when you're not home, you can provide friends temporary access by
unlocking their doors. It should come as no surprise that businesses are
developing items to make your life easier and more convenient as loT takes
shape. The largest outlay in a homeowner's life is the cost of house ownership.
Products for smart homes are said to save money, energy, and time. Smart home
firms, such as Nest, Ecobee, Ring, and August, among others, are poised to
become household names and offer a never-before-seen experience.

I.9.5 Smart Farming

IoT applications like smart farming are frequently disregarded. But because
farmers tend to a lot of livestock and their farming operations are typically spread
out, the Internet of Things can monitor all of this and transform the way farmers
operate. But widespread attention to this concept has not yet been received.
However, it continues to be one of the IoT applications that is important to
consider. Particularly in the nations that export agricultural products, smart
farming has the potential to grow into a significant application area.

I.9.6 Smart Retail

Retailers are utilizing IoT solutions to enhance store operations, increase
purchases, reduce theft, manage inventory, and improve consumer shopping
experiences. This strategy allows retailers to compete with online competitors,
regain lost market share, and attract consumers. Smartphones and Beacon
technology can enhance in-store interactions, track consumer paths, and improve
store layout, allowing for premium product placement in high-traffic areas.

I.9.7 Smart Supply Chain

For a few years already, supply networks have already begun to become more
intelligent. Providing solutions for issues like tracking products while they are
traveling or on the road, or assisting suppliers in exchanging inventory data, are a
few of the well-liked offers. Factory equipment with embedded sensors can
exchange data about many factors, including temperature, pressure, and machine
utilization, through an Internet of things enabled system. In order to maximize
performance, the IoT system can also process workflow and modify equipment
settings.

I.10 MQTT Protocol:

The MQTT protocol (Message Queue Telemetry Transport) is a lightweight
message queueing and transport protocol. MQTT, as its name implies, is suited
for the transport of telemetry data (sensor and actor data). MQTT is very
lightweight and thus suited for IoT (Internet of Things) scenarios where sensor
and actor nodes communicate with applications through the MQTT message
broker. MQTT is a text-based protocol designed for constrained IoT devices and
low-bandwidth networks. Positioned in the application layer, it covers all sth-7th

20

Chapter I The Internet of Things

layers and requires 10 KB of RAM or flash for implementation. It uses TCP
connection, but requires an open connection channel.[33]

Figure I.9: Communication between sensor, actor nodes and application through
MQTT broker.

Message Message

TCP/IP

Figure I.10: MQTT Architecture.

I.10.1 MQTT Client (publisher/subscriber)
Clients subscribe to topics to publish and receive messages Thus subscriber
and publisher are special roles of a client. [33]

Client

Publisher Subscriber

Figure I.11: Client roles.

21

Chapter I The Internet of Things

I.10.2 MQTT Server (broker)

Servers run topics, i.e. receive subscriptions from clients on topics, receive
messages from clients and forward these, based on client’s subscriptions, to
interested clients. [33]

I.10.3 Topic

Technically, topics are message queues. Topics support the publish subscribe
pattern for clients. Logically, topics allow clients to exchange information with
defined semantics. [33]

Figure I.12: Topic Example.

I.10.4 Session
A session identifies a (possibly temporary) attachment of a client to a server.
All communication between client and server takes place as part of a session. [33]

I.10.5 Subscription

Unlike sessions, a subscription logically attaches a client to a topic. When
subscribed to a topic, a client can exchange messages with a topic Subscriptions
can be «transient» or «durable», depending on the clean session flag in the
CONNECT message. [33]

I.10.6 Message
Messages are the units of data exchange between topic clients. MQTT is
agnostic to the internal structure of messages. [33]

I.10.7 MQTT security

Application layer protocols like MQTT have several known and unreported
security issues. MQTT's simplicity and scalability allow it to carry data between
any IoT device via the application layer protocol, unlike any other protocol. [31]

[34] [35]

I.10.7.a Solutions and needs for security in MQTT deployments
e Authentication: Making sure that MQTT network nodes may be
identified in order to prevent unauthorized access (as producers or
subscribers).
e Access control: limiting information access to just those nodes that are
permitted access.

22

Chapter | The Internet of Things

e Data integrity: confirming that there has been no tampering during
transmission and that the data received matches the data provided by the
source;

e Confidentiality: Data privacy and confidentiality must be maintained,
and data sniffing must be stopped.

I.10.7.b Attacks and countermeasures

Man-in-the-Middle attack: A man in the middle (MitM) attack is a hacker's
attempt to steal personal information from a user or application. It's typically
carried out using MQTT protocols, which support two-way handshakes. To
prevent MitM attacks, authentication and encryption are required. Attacking
strategies include packet injection, session, SSL Stripping, SSL Hijacking, and
sniffing. Preventing MitM attacks is crucial. [31] [34] [35]

DoS attack: A denial-of-service attack is a cyber-attack that disrupts a
computer's normal operation by overloading or flooding it with requests. It aims
to keep the broker busy, making it difficult to manage new incoming
connections. Firewalls offer some protection against single-user attacks, but not
DDoS attacks. Router access control lists, antivirus software, application
protection, and network behavior analysis are developed to prevent such attacks.

Intrusion: Network intrusion refers to unauthorized activity on a computer
network, often exploited by hackers using automated programs. Intrusion attacks
use protocol ports and "#" commands to obtain sensitive information. MQTT
security relies on an Intrusion Detection System (IDS) and an Intrusion
Prevention System (IPS), which act quickly upon detection, reducing reaction
time and ensuring security. [31] [34] [35]

I.11 Conclusion

The Internet of Things (IoT) networks consist of groups of identifiable, smart
devices that communicate and interact with each other. These networks possess
several characteristics, including scalability, heterogeneity, and safety, among
many others. The diverse architectures of [oT networks make them applicable in
a wide range of fields, such as healthcare, agriculture, smart homes, smart cities,
and beyond. However, one of the primary concerns associated with IoT is
security. The open and interconnected nature of these networks makes them
particularly vulnerable to cyber-attacks.

To address these challenges, various mechanisms have been developed to protect
and defend IoT networks. These mechanisms are designed to ensure the
integrity, confidentiality, and availability of the data transmitted within the
network. One of the key components in [oT communication is the Message

23

Chapter | The Internet of Things

Queuing Telemetry Transport (MQTT) protocol, which is known for being a
lightweight communication protocol.

The MQTT protocol includes its own security mechanisms to safeguard the data
exchanged between devices. These security features are crucial because [oT
devices often operate with limited computational resources and power, making
them susceptible to various types of cyber threats. The protocol employs
measures such as authentication, encryption, and secure transmission to protect
data. By ensuring that data is transmitted securely, MQTT helps to mitigate the
risks of interception and unauthorized access, thereby maintaining the privacy
and security of the information within the IoT ecosystem.

In healthcare, IoT networks enable remote patient monitoring, real-time health
data analysis, and improved patient care. In agriculture, [oT devices monitor soil
moisture, weather conditions, and crop health, leading to increased efficiency
and yield. Smart homes benefit from [oT through automation of household tasks,
energy management, and enhanced security systems. Smart cities leverage IoT for
efficient traffic management, waste management, and improved public services.

Despite the robust security mechanisms provided by protocols like MQTT, the
dynamic and evolving nature of cyber threats necessitates continuous
advancements in [oT security. Researchers and developers are constantly working
on innovative solutions to stay ahead of potential vulnerabilities. This ongoing
effort is crucial for ensuring that IoT networks remain reliable and secure,
thereby fostering trust and encouraging the widespread adoption of IoT
technologies across various sectors.

24

Chapter II: Intrusion Detection

Chapter I1 Intrusion Detection

IL.1 Introduction

System administrators had to manually monitor user behavior at first for
intrusion detection, but this approach proved to be ad hoc and unscalable.
Administrators started using audit logs as a post-event forensic technique to
pinpoint security issues in the late 1970s and early 1980s. Software to evaluate this
data was created as storage became more accessible. Unfortunately, this research
required a lot of time and computing power, often necessitating the nighttime
execution of intrusion detection systems. [37]

Real-time intrusion detection systems began to appear in the early 1990s, enabling
quick response and assault prevention. System managers were now able to react to
threats as they materialized rather than after the fact, which was a huge
development. At the moment, the goal of intrusion detection activities is to develop
solutions that can be implemented effectively in huge networks. New attack
techniques, changing security issues, and the dynamic nature of computer systems
are all taken into consideration in these efforts. [37]

Because we use the internet so much in our everyday lives, network security is now
the cornerstone of all web services, including online retail purchases and auctions.
The purpose of intrusion detection is to find computer assaults by looking through
different information records that are seen during network operations. This is
regarded as one of the best approaches to handle issues with network security. Data
security may be jeopardized by an infiltration via a variety of internet channels. The
need for more dependable, efficient, and self-monitoring systems that can function
without human intervention has arisen from the quick expansion of networks,
faster data transmission speeds, and unexpected internet consumption. It is
possible to considerably lower the danger of catastrophic failures in susceptible
systems by pursuing such developments. [37]

Systems for detecting intrusions are an essential part of computer network security.
They serve as a deterrence as well as an early warning system. These systems may be
set up to respond to traffic instantly, cutting out shady connections in accordance
with predetermined standards. Many people believe that prevention is even more
crucial than detection. It is important to speak with knowledgeable experts who can
carry out a network audit in order to guarantee the maximum degree of safety for
your networks. These professionals may provide guidance on the optimal defensive
stance to take and suggest the finest software for safeguarding your network. [37]

It is impossible to overestimate the significance of strong intrusion detection
systems in the linked world of today. Continuous innovation and development in
intrusion detection technology are critical as cyber-attacks grow more complex. By
doing this, networks are kept safe, data integrity is preserved, and user and
stakeholder confidence is maintained. Organizations may establish a robust defense
against the constantly changing cyber threat environment by allocating resources
towards sophisticated intrusion detection systems and using expert skills.[37]

26

Chapter I1 Intrusion Detection

II.2 What is Intrusion Detection?

To put it simply, it's the persistent efforts to find or identify the existence of
invasive activity. When it comes to computers and network infrastructure, intrusion
detection (ID) has a far wider application. It encompasses all procedures needed to
identify unauthorized usage of computer or network devices. This is accomplished
by using software that has been specially created with the express intent of
identifying anomalous or unusual activities.[36]

I1.3 What Is an Intrusion-Detection System (IDS)?

An intrusion-detection system (IDS) is a tool used to identify, assess, and report
unauthorized network activity. It is part of an overall protection system, similar to
firewalls, closed doors, alarm systems, and guard dogs. In a warehouse, these
technologies can cooperate to prevent network breaches. The implementation of
IDSs depends on the location of technology. A network is only as safe as its weakest
link, so a layered strategy is essential. A network should have several security layers,
each with a distinct purpose, to support the organization's overall security plan.
IDSs work at the network layer of the OSI model, while passive network sensors are
positioned at choke points. IDSs analyze packets to find specific patterns in network
traffic, logging alerts and responding based on recorded data. IDSs use known
signatures to recognize potential malicious traffic patterns. [36]

Host system or . ‘ Statistical
| . cve -9 Pre-processing >
network sniffer . R analysis
Signature
matching
7 g
/
/ v v
Response | =3 » » -
Alert manager Knowledge Long-term
manager :
: . base storage
N\ | P A
‘ -
TR o
GUI
|
\]
)

Figure II.1: Standard IDS system.

I1.4 Types of IDS Systems

IDSs fall into one of three categories: [36] [38] [40] [42] host-based intrusion-
detection system (HIDS), network-based intrusion-detection system (NIDS), and
hybrids of the two.

I1.4.1 HIDS (Host Intrusion Detection System)

Information gathered from inside a single computer system powers host-based
intrusion detection systems. (Remember that host-based IDSs are really a subset of
application-based IDSs.)

27

Chapter I1 Intrusion Detection

Because of this advantage, host-based intrusion detection systems (IDSs) can
reliably and precisely identify the processes and users engaged in a given operating
system assault. Furthermore, since host-based IDSs have direct access to and
monitoring of the data files and system activities that are often the focus of assaults,
they are able to "see" the results of an attempted attack, in contrast to network-
based IDSs.

System logs and operating system audit trails are the two main information sources
that host-based intrusion detection systems typically use. Operating system audit
trails are more thorough and more secure than system logs since they are often
produced at the lowest (kernel) level of the operating system. System logs, on the
other hand, are significantly simpler, smaller, and easier to understand than audit
trails. A single management console may follow several hosts with the use of a
centralized IDS NIST Special Publication on Intrusion Detection Systems
management and reporting architecture, which is supported by some host-based
IDSs. There are others who produce messages in forms that work with network
management systems.

HIDS system will require some software that resides on the system and can scan all
host resources for activity; some just scan syslog and event logs for activity. It will
log any activities it discovers to a secure database and check to see whether the
events match any malicious event record listed in the knowledge base.

I1.4.2 NIDS (Network Intrusion Detection System)

Network-based intrusion detection systems make up the bulk of commercial
models. By collecting and analyzing network packets, these IDSs identify assaults.
One network-based intrusion detection system (IDS) may safeguard several hosts
linked to a network segment by monitoring the network traffic impacting those
hosts by listening to the network segment or switch. Network-based intrusion
detection systems typically include a collection of specialized sensors or hosts
positioned across a network.

These devices keep an eye on network traffic, analyze it locally, and report any
assaults to a central control panel. The sensors are more readily guarded against
attack since their use is restricted to executing the IDS. To make it more difficult for
an attacker to locate and detect them, many of these sensors are made to operate in
"stealth” mode.

Detecting and categorizing all network traffic from all devices is possible with this
kind of intrusion detection system (IDS), which may be employed as a security
measure inside a network that is secured.

Unlike a HIDS, a NIDS can see every packet moving across its network, but it cannot
confirm the integrity of the contents stored on the devices. It will also "log" any
questionable packets.

28

Chapter I1 Intrusion Detection

NIDS system is usually inline on the network, and it analyzes network packets
looking for attacks. A NIDS receives all packets on a particular network segment,
including switched networks (where this is not the default behavior) via one of
several methods, such as taps or port mirroring. It carefully reconstructs the streams
of traffic to analyze them for patterns of malicious behavior. Most NIDSs are
equipped with facilities to log their activities and report or alarm on questionable

events. In addition, many high-performance routers offer NID capabilities.

Table I1.1: Network-Based vs. Host-Based Intrusion-Detection Systems.

NIDS

HIDS

Broad in scope (watches all network
activities)

Narrow in scope (watches only specific
host activities)

Easier setup

More complex setup

Better for detecting attacks from the
outside

Better for detecting attacks from the
inside

Less expensive to implement

More expensive to implement

Detection is based on what can be
recorded on the entire network

Detection is based on what any single
host can record

Examines packet headers

Does not see packet headers

Near real-time response

Usually only responds after a suspicious
log entry has been made

OS-independent

OS-specific

Detects network attacks as payload is

Detects local attacks before they hit the

analyzed network
Detects unsuccessful attack attempts | Verifies success or failure of attacks
I1.4.3 Hybrid IDS

The features of both NIDS and HIDS are combined in hybrid IDSs. They enable
the network and terminals to be watched over. The strategically positioned probes
serve as either HIDS or NDS, depending on where they are located. The alarms from
all of these probes are then sent to a single system that unifies data from many
sources. We now know that hybrid IDS are built on a distributed architecture in
which all of the components use a common transmitting format. This facilitates
communication and yields more precise notifications.

Combining two or more intrusion detection system methodologies results in a
hybrid intrusion detection system. A comprehensive picture of the network system
is created by the hybrid intrusion detection system by fusing network data with host
agent or system data. Compared to the opposite intrusion detection system, the
hybrid intrusion detection system is easier to use. One instance of a hybrid IDS is
Prelude.

29

Chapter I1 Intrusion Detection

I1.4.4 Protocol-based IDS (PIDS)

An intrusion detection system that is useful for monitoring and analyzing the
protocol or protocols that the computer system uses is called a protocol-based
intrusion detection system (PIDS). PIDs are usually placed on web servers.

A protocol intelligence and security system, or PIDS, is a system or agent that sits at
the front end of a server and monitors and analyzes the communication protocol
between a connected device (a user, PC, or system) and the system it is protecting.
It also keeps track of the protocol's dynamic behavior and state.

This would normally be used by a web server to keep an eye on the HTTPS protocol
stream and comprehend the HTTP protocol in relation to the web server or system
that it is attempting to secure.

I1.4.5 Application Protocol-based IDS (APIDS)
An intrusion detection system that concentrates its monitoring on a particular
application protocol or protocols used by the computer system is known as an

application protocol-based intrusion detection system (APIDS). One illustration of
APIDS is Secerno.

The Secerno. When in IDS mode, a SQL database security appliance looks for odd
movement and generates alarms; it does not really stop possible threats. Alerts can
be tailored to particular SQL statement kinds that show how applications
communicate with databases. Since the network traffic to the database is duplicated
using conventional networking techniques, there is no effect on database traffic.

II.5 Characteristics of IDS

II.5.1 Accuracy

It shows how closely the IDS results coincide with the typical operation of the
system under observation. The IDS needs to understand how the system works and
distinguish it from invasive activity. A low false positive rate can be used to
communicate this trait. [32] [41]

II.5.2 Response Time

This is the maximum speed at which events can be processed in order to minimize
latency and enable real-time detection. Additionally, the IDS needs to be able to
promptly notify the system administrator of the detection result and/or initiate
countermeasures. [32] [41]

II.5.3 Completeness of Detection

All known and undiscovered attacks should be picked up by an ideal IDS. Due to
incomplete awareness of the attacks, evaluating this measure is exceedingly
challenging. [32] [41]

II.5.4 Fault Tolerance
To stop attempts to circumvent the intrusion detection system, the intrusion
detection system itself needs to be resistant to attacks. [32] [41]

30

Chapter I1 Intrusion Detection

I1.6 Intrusion Detection Operating Modes

I1.6.1 Anomaly Detection

Anomaly-based detection is a technique used by intrusion detection systems
(IDS) to identify unusual network traffic, such as malformed IP packets. It uses
profiles created by tracking regular activity over time and compares current actions
with profile-related thresholds. This method can identify unknown threats, but can
create simplified profiles, include harmful activity, and produce false positives. It
can identify unidentified attacks and does not always result in aggression.[39]

I1.6.2 Signature-based Detection

Signature-based detection is a quick and simple method for evaluating harmful
traffic in intrusion detection systems. It relies on known traffic data and is precise
but limited in identifying variants of known threats or unknown threats. It cannot
monitor complex communications and is not effective for identifying attacks with
numerous events. Other methods include using attack signatures, system call
sequences, and network traffic patterns.[38] [42]

I1.6.3 Specification-based Detection

Specifications are guidelines that specify acceptable behavior models for network
elements like routing tables and protocols. They can be statistical rules or manually
constructed models. Similar to anomaly-based detection, specifications are set
manually by a human expert, allowing for low false positive rates and identifying
unidentified attacks. [42]

I1.6.4 Behavior after Detection

Two actions can be taken in the event that the IDS detects an attack: an active
response or a passive response. This feature is frequently connected to the IDS
responses module. [41]

e Passive response: In this instance, the IDS's response is restricted to
sending the administrator or an archiving system (log files) a warning
identifying the attack. The human operator will handle the countermeasures
in both scenarios.

e Active response: In contrast to the first scenario, automatic defenses will be
triggered to stop the attack and restrict its path. Blocking incoming IP
addresses or ports, for instance, ends a session or shuts down a computer.

I1.6.5 Frequency of Use
This feature is dependent on the IDS analysis module's operational mode. [41]

e Real-time continuous analysis: The IDS continuously examines the
information flow. When network intrusion detection systems are in this
mode, network traffic is examined right away following capture. Any
harmful activity found can be immediately dealt with thanks to the ongoing
analysis. When the IDS's processing speed surpasses the network's transfer

31

Chapter I1 Intrusion Detection

speed, this mode becomes functional. Real-time analysis is not possible in
any other case.

e Batch Analysis (delayed): If the IDS processing speed is slower than the
dynamics of change in the system being monitored, there are situations
where it is better to make detections in a postponed time frame. A Network
Intrusion Detection System (NIDS) operating at 10oMbps may be compelled
to save traffic and perform analysis in deferred mode if the network is
operating at 1Gbps. Similarly, if a HIDS examines system audit logs that are
updated on a regular basis, it must do so in accordance with the updates'
interval.

I1.6.6 Target Monitoring

Systems that monitor targets will report on any alterations or modifications made
to certain target items. Typically, a cryptographic procedure is used to accomplish
this, computing a crypto-checksum for every target file. Any changes that could
affect crypto-checksums, like file alterations or program logons, are reported by the
IDS. Through the use of crypto-checksums, Tripwire software will perform target
monitoring by instantly notifying users of modifications to configuration files and
enabling automatic restoration. This method's primary benefit is that it spares you
from having to keep an eye on the target files all the time.[36]

I1.6.7 Stealth Probes

Stealth probes use data correlation to look for long-duration attacks, sometimes
known as "low and slow" attacks. To find any associated attacks, data is gathered
from many sources, characterized, and sampled. Wide-area correlation is another
name for this technology, which usually employs a hybrid or combination approach
combining various detection approaches in an attempt to identify potentially
harmful activities.[36]

I1.7 IDS Pros and Cons

The pros of intrusion detection include the following [36]:

e (Can detect external hackers as well as internal network-based attacks.
e Scales easily to provide protection for the entire network.

e Offers centralized management for correlation of distributed attacks.
e Provides defense in depth.

e Gives system administrators the ability to quantify attacks.

e Provides an additional layer of protection.

These are the cons [36]:

e Generates false positives and negatives.

e Reacts to attacks rather than preventing them.

e Requires full-time monitoring.

e Requires a complex incident-response process.

¢ (Cannot monitor traffic at higher transmission rates.

32

Chapter I1 Intrusion Detection

e Generates an enormous amount of data to be analyzed.

e Requires highly skilled staff dedicated to interpreting the data.
e Susceptible to “low and slow” attacks.

e Cannot deal with encrypted network traffic.

e [tisexpensive.

I1.8 IDS Architecture

I1.8.1 Single-Tiered Architecture

A single-tiered architecture is a type of IDS where components collect and process
data themselves, rather than passing it to other components. This architecture
offers advantages like simplicity, low cost, and independence from other
components. However, it often has components that are not aware of each other,
reducing efficiency and functionality. [36]

I1.8.2 Multi-Tiered Architecture

A multi-tiered architecture is a system that consists of multiple components that
pass information to each other. It is commonly used in intrusion detection systems
(IDSs) and includes sensors, analyzers, and a manager. Sensors collect data from
various sources, while analyzers monitor intrusive activity on individual hosts.
Agents are specialized to perform specific functions, such as examining TCP traffic
or FTP connections. When an attack is detected, they send information to the
manager component, which performs various functions, such as collecting alerts,
triggering a pager, storing information, retrieving relevant information, sending
commands, and providing a management console. A central collection point allows
for easier analysis of logs, and management consoles enable remote policy changes
and parameter erasure. Advantages of a multi-tiered architecture include greater
efficiency and depth of analysis, but downsides include increased cost and
complexity. [36]

Sensor Sensor Sensor | | Sensor
v % %
Agent | | Agent | | Agent

.

Manager
component

Figure II.2: A multi-tiered architecture.

33

Chapter I1 Intrusion Detection

I1.8.3 Peer-to-Peer Architecture

Peer-to-peer architecture is a type of network architecture where information is
exchanged between peer components, allowing for intrusion-detection. It is
commonly used by cooperating firewalls and routers. This architecture is simple and
allows any peer to participate in a group of peer machines, benefiting from each
other's information. However, it lacks sophisticated functionality due to the absence
of specialized components.

II.g Intrusion Attacks

II.9.1 System Scanning

When an attacker sends various types of packets to the target network, system
scanning may occur. System vulnerabilities and characteristics can be found based
on the target's response. These are passive attacks that don't breach or compromise
systems. A few tools that can be used for scanning attacks are vulnerability scanners,
port scanners, network scanners, port mappers, and port scanners. Various system
characteristics that this assault may display include [42] [43]:

e Target topology of the networks.

e The quantity of running hosts on the network.

e Software Version numbers of the server running on the network.
e The host's operating system is now in use.

I1.9.2 Denial of Service

DoS attacks happen frequently. They make an effort to impede or stop targeted
networks or systems. There are various reasons behind these attacks. DoS attacks
caused significant losses for e-commerce businesses because many users were
unable to access them at the time of purchase. Dos attacks may result in a number
of issues, including unavailable or ineffective services and disruptions in network
traffic at the connection interface. The following indicators point to the presence of
DoS attacks:

e Performance of the network is unusually slow.
e The particular site is not available.
e An extension of the access time.

I1.9.3 Flow Exploitation DoS Attacks

Another name for it is the "Ping of Death" attack. It mostly takes advantage of
software bugs in the target system that lead to processing errors or resource
exhaustion. This kind of attack sends the target system a lot of ping packets. The
system crashes because the target system is unable to handle these unusual packets.
CPU time, memory, storage space, space in a dedicated buffer, and network
bandwidth are among the several resources that are targeted. Various DoS attack
techniques include depleting IDS resources. It would keep sending out alerts and
overloading IDS with traffic until it ran out of resources. Consequently, an
incomplete event log would be generated.

34

Chapter I1 Intrusion Detection

I1.9.4 Flooding DoS Attack

The target receives more information than it can process. When the target system
is being attacked, it cannot be patched. A variety of modification strategies can be
applied to lessen these kinds of attacks. DDOS attacks, or denial-of-service attacks,
are launched by many people. They function as a single, enormous system and are
centralized. Therefore, the quickest system can be used to stop it.

Il.9.5 System Penetration

System penetration is the unauthorized acquisition of resources, data, or rights
within the system. Different software bugs are taken advantage of to take over a
system. Their specifics and effects differ. Penetration attacks involve any
unauthorized access to or changes to the system's data and resources in order to take
advantage of weaknesses in the system. Attackers use a variety of software
vulnerabilities to take over the machine in these types of attacks. With the Internet
of Things, an attacker can take over a device physically or through an application,
giving him the ability to reverse engineer and check for vulnerabilities. Various
forms of system intrusion are:

e User to Root: Target host, completely controlled by local user.

e Remote to User: An account of target host, managed by the attacker on the
network.

e Remote to Root: Target host, completely controlled by the attacker on the
network.

e Remote Disk Read: An ability to read private data files on target host
without authorization of owner by an attacker on network.

e Remote Disk write: An ability to write private data files on target host
without authorization of owner by an attacker on network.

I1.9.6 Man-in-the-Middle (MiTM) Attacks

The MiTM attack is another type of assault in which the attacker actively
intercepts two nodes' communications without the victims' knowledge. The
messages between the nodes are intercepted by the attacker, who may then alter
them. Furthermore, as of late, attacking machines are typically a component of a
larger network of hacked workstations, or a botnet. The goal of integrity attacks is
to change the data or route within the network.

II.9.7 Routing Attacks

The information (messages) exchanged within the framework of the routing
protocol is altered or spoof by the attacker in a routing attack. Numerous Internet
of Things routing hacks target the RPL protocol, which is a key protocol for Internet-
integrated wireless sensor networks.[31]

I1.9.8 Application-level Attack
The attacker focuses on the application layer's limitations. For instance, a web
server's security flaws or improper server-side controls.

35

Chapter I1 Intrusion Detection

I.9.9 Viruses and Worms

Computer viruses and worms are harmful programs designed to replicate
themselves, similar to biological reproduction. They can be classified as worms or
viruses based on whether the malicious code requires human intervention to spread
to another system. Some viruses/worms have multiple infection mechanisms, such
as searching for and emailing to infected email addresses, scanning for unprotected
network shares, infecting vulnerable servers, and infecting local and network-
accessible files. Pure viruses, like "I Love You" and "SoBig," propagate through email
attachments, while pure worms like "Code Red," "Slammer," and "Blaster" actively
scan for and infect further vulnerable systems. Currently, worms/viruses have mild
actions, such as installing back-door software, installing email engines, defacing
websites, conducting distributed denial of service attacks, and logging internet
bandwidth. Future threats include data corruption, hardware damage, espionage,
and personal information theft.[36]

II.10 Security Mechanisms

One of the key factors in evaluating the system's reliability is security concerns.
In the event that these issues are effectively resolved, the system's added value and
reliability both rise significantly. If not, reliability is undervalued, compromised,
and the system becomes unusable, resulting in a lack of added value. As a result,
system security is now a top priority for administrators. They have access to a variety
of security tools and techniques, including [41]:

e Data integrity and secrecy guaranteed by encryption techniques.
e Firewalls for network traffic filtering and access control.

e Vulnerability scanners to find system security holes.

e Antivirus software to guard the system from dangerous apps

II.11 Conclusion

Intrusion detection is as crucial to a network system as a burglar alarm is to
buildings or houses where valuable information or items are stored. Just as a burglar
alarm alerts homeowners to potential break-ins and unauthorized access, an
Intrusion Detection System (IDS) monitors a network for any suspicious activity or
policy violations. This setup not only detects threats but also actively takes steps to
prevent them from causing harm, thereby significantly enhancing the overall
security and effectiveness of the system.

A high-quality IDS, offers more than just notifications about potential threats. It
can automatically take actions such as blocking malicious traffic, alerting
administrators, and logging critical information for further analysis. This proactive
approach means that threats are managed in real-time, reducing the risk of data
breaches and other security incidents.

IDS technology can be categorized into two main types: Network-based Intrusion
Detection Systems (NIDS) and Host-based Intrusion Detection Systems (HIDS).

36

Chapter I1 Intrusion Detection

NIDS monitor network traffic for suspicious activity, providing a broad overview of
the entire network's security. In contrast, HIDS focuses on individual devices,
monitoring activities such as file modifications, logins, and other critical
operations. Some systems combine both NIDS and HIDS to provide comprehensive
coverage and enhanced protection.

Implementing an IDS typically involves installing software or deploying hardware
sensors across the network or on individual devices. This setup can be tailored to fit
the specific needs and infrastructure of an organization. For businesses that do not
currently have an IDS in place, it is highly advisable to consider integrating one into
their security model or infrastructure. The absence of an IDS leaves a network
vulnerable to undetected threats, potentially leading to significant financial and
reputational damage.

In conclusion, the proactive defense mechanism provided by IDS, is essential for
safeguarding against unauthorized access and potential breaches. By continuously
monitoring and responding to threats, an IDS helps maintain the integrity and
security of the network, ensuring that valuable information and resources remain
protected. For any organization looking to strengthen its security posture, investing
in an effective IDS should be a top priority.

37

Chapter III : Deep Learning

Chapter I11 Deep Learning

I11.1 Introduction

The human brain is the most amazing organ in the body. It determines how we

interpret everything that we see, hear, taste, smell, and touch. It allows us to
dream, feel emotions, and store memories. Without it, humans would be
rudimentary creatures with only the most basic reactions. Our brains are
fundamentally what give us intelligence. Even though the newborn brain is barely
one pound in weight, it manages to solve puzzles that are above the capabilities of
our largest, most potent supercomputers. A few months after birth, newborns are
able to distinguish distinct items from their surroundings, recognize their parents'
faces, and even distinguish between different voices. In little than a year, they've
already acquired an intuitive understanding of natural physics, the ability to track
things even when they're partially or totally obscured, and the ability to interpret
sounds.
Additionally, by the time they are young children, they have hundreds of words in
their vocabularies and a good grasp of syntax. We have long dreamed of creating
intelligent machines with minds similar to our own: self-driving vehicles, robotic
housecleaning assistants, and disease-detection microscopes. However, in order to
create these artificially intelligent robots, we must find solutions to some of the
trickiest computing problems we have ever encountered—issues that our brains
are currently capable of handling in a matter of microseconds. In order to solve
these issues, we will need to create a whole new method of computer programming
utilizing methods that have mostly been established in the last ten years. Deep
learning is a term used to describe this very active area of artificial computer
intelligence. During the past few years, deep learning has revolutionized nearly
every field it has been applied to, resulting in the greatest leap in performance in
the history of computer science. The application of deep learning has made those
small, gradual annual improvements a thing of the past — these days, it isn’t
uncommon to witness improvements of 20 to 30 percent, in months and not years.
There’s no keeping that kind of success under wraps, which means the media have
been filled with references to “artificial intelligence,” “machine learning,” and
“deep learning.” These terms are used not only very widely, but most of the time
inaccurately and confusingly. With that in mind, this chapter aims to clarify and
demystify the distinctions among these technical terms.[45]

III.2 The Story Begins with Artificial Intelligence

John McCarthy, a trailblazing computer scientist, first used the phrase artificial
intelligence (Al) in the 1950s. It's a catch-all word for all the techniques and fields
that lead to machines displaying intelligence of any kind. This ranges from the
expert systems of the 1980s, which were essentially databases of knowledge that had
been hardcoded, to the most sophisticated Al systems that are currently in use.
Nowadays, almost every software used in almost every industry uses artificial
intelligence (AI), even if it's only applied to a few simple manually coded processes.

[44]

III.2.1 What Is Machine Learning?
Artificial intelligence's machine learning field studies a machine's capacity to
mimic thoughtful human behavior. The creation of algorithms that facilitate

39

Chapter I11 Deep Learning

learning from previously collected data is the focus of machine learning. The term
"machine learning" was first used in 1959 by Arthur Samuel, who defined it as "the
ability for a machine to automatically learn from data, improve performance
through experience, and predict things without being explicitly programmed."” The
process begins with supplying high-quality data, which is then utilized to train our
machines by constructing machine learning models based on the data and different
techniques. The selection of algorithms is contingent upon the nature of the data at
hand and the nature of the work that has to be automated. [44]

I11.2.2 Advancing into Deep Learning

Deep learning, also known as deep neural networks, is a subfield of machine
learning, which is a subset of Al, as shown in Figure IlII-1. Deep learning takes
inspiration from how the human brain works. What'’s the difference between deep
learning and traditional machine learning? Perhaps the biggest distinction is that
deep learning is the first — and currently the only — learning method that is
capable of training directly on the raw data. No need for feature extraction with deep
learning. In the example of facial recognition, deep learning would be able to dive
in and examine the raw pixels of an image, without explicitly being told to pay
attention to facial proportions or distance between pupils or other specifics called
out by human experts. What’s more, deep learning scales well to hundreds of
millions of training samples. As the training dataset gets larger and larger, deep
learning continuously improves. [44]

Machine Deep

|'r Artificial

intelligence

N \

learning

learning

e

Y

Figure III.1: Deep learmng, a subset of a subset of Al

II1.3 Traditional Machine Learning

Artificial intelligence is evolving, with machine learning becoming a more
advanced form of Al that allows computers to learn independently. Deep learning
is a specific type of machine learning, and understanding it requires a solid
understanding of its basic principles. This chapter covers general principles, data
training, feature extraction techniques, and training data.[44]

III.3.1 Assembling the Training Data

Machine learning models require data samples, which are essential for their
success. For example, a "dog detector” uses a large dataset of images categorized into
"dog" and "not dog" classes. Supervised training uses a fully labeled dataset, while
unsupervised training uses data without labels. Supervised training typically yields

40

Chapter I11 Deep Learning

better results, while unsupervised learning has untapped potential due to the vast
amount of unlabeled data available. Both methods are essential for effective
machine learning.[44]

II1.3.2 Understanding the Importance of Feature Extraction

In traditional machine learning, raw images with or without dogs are used to
create labels. However, the machine is aware of these pixels and needs to perform a
feature extraction phase to extract predefined properties or features. In the dog
detector example, each input sample is represented as a vector of values, each
corresponding to a single feature. To identify important features, a domain expert
is needed to specify them. For image processing problems, an expert analyzes the
problem domain and samples, determining the features to extract. In real-world
examples, feature extraction is based on properties of files, such as API or function
calls or registry keys used. This process is essential for training models in machine

learning.[44]

II1.3.3 Learning Algorithms

A machine learning algorithm is an algorithm that is able to learn from data. But
what do we mean by learning? It means by definition “A computer program is said
to learn from experience E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by P, improves with
experience E.” [45]

II1.3.3.a The Task, T

Machine learning is a method that helps solve complex tasks that are too complex
for human-designed programs. It involves understanding the principles that
underlie intelligence and aims to improve our understanding of tasks. Common
machine learning tasks include classification, regression, transcription, machine
translation, structured output, anomaly detection, synthesis and sampling,
imputation of missing values, denoising, and density estimation.

Classification tasks involve assigning an input to a category, while regression tasks
involve predicting numerical values based on input. Transcription tasks convert
unstructured data into textual form, while translation tasks convert symbols in one
language into another. Structured output tasks involve generating vectors or data
structures with important relationships between elements, while anomaly
detection involves sifting through events or objects to flag unusual or atypical ones.
Synthesis and sampling tasks use machine learning algorithms to generate similar
examples from training data, making them useful for media applications like video

games. [45]

Denoising tasks involve predicting the conditional probability distribution of a
corrupted example from its corrupted version. Density estimation tasks involve
learning a probability density or probability mass function on a space, which
requires understanding the data structure and cluster examples. However, density

41

Chapter I11 Deep Learning

estimation may not always solve all related tasks due to computational intractable
operations on the distribution. [45]

I11.3.3.b The Performance Measure, P

To evaluate a machine learning algorithm’s capability, a quantitative measure of
its performance is designed. This measure is specific to the task being performed,
such as classification, classification with missing inputs, and transcription.
Accuracy is measured by the proportion of examples where the model produces the
correct output, while error rate is the proportion of examples where the model
produces an incorrect output. For tasks like density estimation, a different
performance metric is used, such as the average log-probability assigned to some
examples. The choice of performance measure can be challenging due to the
complexity of deciding what to measure, or the impracticality of computing the
actual probability value assigned to a specific point in space. In such cases,
alternative criterion or approximation to the desired criterion is needed. [45]

II1.3.3.c The Experience, E

Machine learning algorithms can be supervised or unsupervised based on their
learning experience. The Iris dataset, one of the oldest studied, is a collection of
measurements of 150 iris plants, each representing a different part of the plant.
Unsupervised learning algorithms observe random vectors and attempt to learn the
probability distribution p(x), while supervised learning involves observing multiple
examples of a random vector and an associated value or vector and learning to
predict y from x. Other variants of the learning paradigm include semi-supervised
learning, multi-instance learning, and reinforcement learning. Most machine
learning algorithms experience a dataset, which can be described in various ways,
such as a design matrix. There is no formal definition of supervised and
unsupervised learning, but new ones can be designed for new applications. [45]

II1.3.4 Training and testing

Machine learning researchers often make mistakes due to contamination
between test and train sets, which can lead to skewd results. Contamination can be
subtle and can mess up the entire process. For example, if a machine learning model
is trained on a dataset of images containing tanks and trees, it may inadvertently
learn to detect clouds instead of tanks. This can lead to biased results. Similarly, if a
model is trained on malicious files and benign files, it may not accurately classify
malicious or benign files. To remedy this, the benign dataset should contain many
different files created by different developers, not just Microsoft. It is crucial to
ensure that test data is completely separated from train data and that the data is
representative of the type and distribution of data encountered in the real
world.[44]

III.3.5 Setting aside a validation set

Incorporating test data insights into model training is crucial for effective learning
in the real world. Instead of using a test set for training, a validation set is used to
measure performance on new data and use the insights for further training and

42

Chapter I11 Deep Learning

improvements. The test set remains the ultimate test, replicating real-world
conditions. To ensure reliability, measures should be stringent, such as using data
from different time periods for training and testing, as new malicious file types
appear daily in the real world. [44]

II1.4 The Neural Network
III.4.1 The Biological Brain Was the First Real Neural Network

The human brain consists of tens of billions of small processing units known as
neurons. These neurons are connected to each other via synapses. You've probably
read that the human brain has different regions — such as the visual cortex and
auditory cortex — that each perform a certain task. These differences mainly arise
from the input each region receives. For example, when the optic nerve transfers
signals (the input) from our eyes to a certain region in the brain (the processing
area), the neurons in that area learn to process these signals, and form the visual

cortex. [44] [48]

=y e e g @) =
AN L (.
% .4(: ﬁg 1)']./”' ‘L-\::"_"\ Dendrites

Synapse

Figure III.2: Making connections in the brain.

We can refer to the neurons as general processing units, which are agnostic of the
data they process. The learning process itself takes place when the connection
strength between neurons is formed, removed, strengthened, or weakened. In other
words, everything humans learn, everything we remember, everything we do, is the
result of synaptic activity in the brain. You might consider the cerebral cortex to be
the most “interesting” part of our brain, because it’s associated with our high-level
cognitive capabilities. Mammals are the only animals that have a cerebral cortex.

Why is it that humans are smarter than all other animals? Brazilian neuroscientist
Suzana Herculano-Houzel invented a novel method for accurately counting the
number of neurons in the brain. Her research suggests that intelligence is correlated
with the number of neurons in the cerebral cortex. The higher this number, the

143

Chapter III Deep Learning

higher the intelligence. An elephant has a brain with a much larger mass, but the
human brain’s cerebral cortex has a far greater absolute number of neurons. [44]

Cerebral cortex

Limbic system

Reptilian complex

Figure I11.3: A few parts of the brain.

III.4.2 Artificial Neural Networks

Artificial neural networks have their origins in 1943 when researchers Warren
McCulloch and Walter Pitts proposed a simple model for an artificial neuron. Frank
Rosenblatt later created the perceptron, a simple neural network with two layers:
the input and output layers. These networks were limited in their learning
capabilities. In the late 1960s, researchers discovered that they could expand the
capabilities of neural networks by adding hidden layers, creating multilayered
neural networks or multilayered perceptron's (MLP). However, these networks
could not be trained using conventional mechanisms. In the early 1980s, Paul
Werbos and David Rumelhart invented backpropagation, which is still used for
training multilayered neural networks today. [44] [48]

Hidden

() i
\Eutputs — -
()_.. e

/ / Figure III.4: Connecting

neurons in a perceptron
neural network.

Outputs

Figure I1I.5:
Multilayered perceptron.

Chapter I11 Deep Learning

II1.4.3 Training a Neural Network with Backpropagation

Backpropagation is a fundamental principle in neural networks, which helps in
recognizing and updating the weights of a neural network. In a training dataset of
10,000 images containing cats and 10,000 images without cats, a neural network is
used. The input layer contains goo neurons, the output layer contains two neurons
representing the "no cat" and "cat" classes, and two hidden layers. The weights are
initialized randomly and are usually small values around zero.

The neural network learns how to recognize a cat through training. At each point, a
training sample is fed into the network, and the training process is done in two
stages: feed-forward and backpropagation. The input layer sends values to the next
layer, which aggregates the input and passes it through an activation function. The
output neurons then fire their results, and the backpropagation algorithm updates
the weights of the neural network to improve performance.

The network trains through many iterations over the entire training set, with each
pass referred to as an epoch. Gradual updates to the weights are made during the
backpropagation phase. After training, the accuracy is tested using a set of samples
that were not used during the training. This prevents overfitting and encourages the
network to generalize. If the results on the test set are satisfactory, the neural
network can be used for real-world prediction. [44]

II1.4.4 Feed-Forward Neural Networks

The human brain is composed of multiple neurons, which are organized in layers,
such as the human cerebral cortex, which is responsible for most of human
intelligence. Information flows from one layer to another until sensory input is
converted into conceptual understanding. Artificial neural networks can be
constructed by connecting neurons to each other, input data, and output nodes.
The bottom layer of the network pulls in input data, while the top layer computes
the final answer. The middle layer(s) are called hidden layers, and the parameter
vector, 6, is determined by the weights of connections between neurons. These feed-
forward networks are the simplest to analyze and are essential for solving complex

learning problems. [46]

o
x
Q\‘ 2
N [
o wi
W H

X
SN .
/ AN, AN
S " y N
{ .
. \
®
i i i

Figure II1.6: A simple example of a feed-forward neural network.

15

Chapter I11 Deep Learning

III.4.5 Linear Neurons and Their Limitations

Most neuron types are defined by the function f they apply to their logit z. Let’s
first consider layers of neurons that use a linear function in the form of f (z) =
az + b. For example, a neuron that attempts to estimate a cost of a meal in a fast-
food restaurant would use a linear neuron where a = 1 and b = o. In other words,
using f (z) = z and weights equal to the price of each item, the linear neuron in
Figure I1I-7 would take in some ordered triple of servings of burgers, fries, and sodas
and output the price of the combination. Linear neurons are easy to compute with,
but they run into serious limitations. In fact, it can be shown that any feed-forward
neural network consisting of only linear neurons can be expressed as a network with
no hidden layers. This is problematic because, as we discussed before, hidden layers
are what enable us to learn important features from the input data. In other words,
in order to learn complex relationships, we need to use neurons that employ some
sort of nonlinearity. [46]

(i (i i (ir
yW=wax Fwx Fwexy
w
W

AN
x, X,

burgers fries soda

Figure II1.7: An example of a linear neuron.

III.4.6 Sigmoid, Tanh, and ReLU Neurons
There are three major types of neurons that are used in practice that introduce
nonlinearities in their computations. [46] [47] The first of these is the sigmoid
neuron, which uses the function:
1

f= 1+e~% (Ly)
Intuitively, this means that when the logit is very small, the output of a logistic
neuron is very close to o. When the logit is very large, the output of the logistic
neuron is close to 1. In-between these two extremes, the neuron assumes an S-shape.

o8k /
06H

(I."‘»

1 N 1 L 7
<

-10 - 5 10

Figure III.8: The output of a sigmoid neuron as z varies.

Chapter I11 Deep Learning

Tanh neurons use a similar kind of S-shaped nonlinearity, but instead of ranging
from o to 1, the output of tanh neurons range from -1 to 1. As one would expect, they
use f (z) = tanh (z). The resulting relationship between the output y and the logit z
is described by Figure III-9. When S-shaped nonlinearities are used, the tanh
neuron is often preferred over the sigmoid neuron because it is zero-centered.

v

10} =

~10 -5 5 10
/

<ol

210k

Figure IIl.g9: The output of a tanh neuron as z varies.

A different kind of nonlinearity is used by the restricted linear unit (ReLU) neuron.
It uses the function f (z) = max (0, z). resulting in a characteristic hockey-stick-
shaped response, as shown in Figure IlI-10.

4\ 4

10}
8k
6F

4t

L L
-10 -5 5 10

Figure II1.10: The output of a ReLU neuron as z varies.

III.4.7 Softmax Output Layers

Oftentimes, we want our output vector to be a probability distribution over a set
of mutually exclusive labels. For example, let’s say we want to build a neural network
to recognize handwritten digits from the MNIST dataset. Each label (o through 9)
is mutually exclusive, but it’s unlikely that we will be able to recognize digits with
100% confidence. Using a probability distribution gives us a better idea of how
confident we are in our predictions. As a result, the desired output vector is of the
form below,
where 37 0p;—; : [Pop1P2P3 -+ Do)
This is achieved by using a special output layer called a softmax layer. Unlike in other
kinds of layers, the output of a neuron in a softmax layer depends on the outputs of
all the other neurons in its layer. This is because we require the sum of all the outputs
to be equal to 1. Letting z; be the logit of the i*" softmax neuron, we can achieve this
normalization by setting its output to:

47

Chapter I11 Deep Learning

eZi

Yi=3 (1.2)

A strong prediction would have a single entry in the vector close to 1, while the
remaining entries were close to 0. A weak prediction would have multiple possible
labels that are more or less equally likely. [46]

IIl.5 Types of Neural Networks

The neural network spotlighted in the previous section was a simple one. In
practice, there are many types of neural networks, used for different tasks.
Following are some examples [44]:
III.5.1 Fully connected neural network

This is the simplest form of neural network, in which all the neurons in each layer
are connected to all the neurons in the subsequent layer. look at Figure I1I-u1 for a
sense of how this plays out. Fully connected networks are popular because they are
robust, and because they don’t assume anything about the properties of the input.
Also note that because all the neurons in each layer are connected to all the neurons
in the subsequent layer, the actual position of a neuron within a layer really doesn’t
matter.

Hidden layer1 Hidden layer2 Hidden layer3
Input layer

Figure IIL.11: A fully connected neural network

III.5.2 Recurrent neural network

Neural networks use current inputs for decision-making, particularly in
sequential tasks like language understanding. Recurrent neural networks (RNNs)
provide an indefinite memory of previous events by adding recurrent connections
between neurons in hidden layers. These connections provide weights between
neurons in the same layer, providing values in previous time steps. RNNs are useful
for presenting sequential data and learning long-term patterns and relationships,
with more advanced variants allowing higher accuracy over time.

Input Hidden Output
layer layer layer

_'_l/"“\ //"_.
s

A ™ Ty

Figure IIl.12: A recurrent neural network.

Chapter I11 Deep Learning

I11.5.3 Sparsely connected neural network

Sparsely connected neural nets are networks that are not fully connected, with
only a portion of neurons between adjacent layers connected. These connections
are determined by data properties. One popular variant is the convolutional neural
network (CNN), used for computer vision problems. CNNs use a small receptive
field, ensuring high correlation between adjacent pixels in real-world images.

II1.6 Training deeper neural networks

Deep neural networks, which have a larger number of layers, have been trained
using the backpropagation algorithm since the 1990s. However, the gradient
vanishing problem has made it difficult to train these networks due to weaker
signals. Recent inventions have addressed this issue, allowing researchers to train
deeper neural networks with tens of layers and billions of synapses. Deep neural
networks allow for a hierarchical pattern learning structure, allowing higher layers
to learn and recognize more complex patterns. They also don't require traditional
feature extraction, as they can use their deep layers as feature extractors, extracting
complex patterns that human experts cannot manually specify. [44]

II1.7 Deep Learning Algorithms

Deep learning is a machine learning and artificial intelligence method designed
to mimic human brain functions for effective decision-making. It is a crucial data
science element that uses predictive modeling and statistics. Deep learning
algorithms run through layers of neural networks, pre-trained to serve a task.
However, traditional machine learning algorithms struggle to handle structured or
unstructured data sets, making deep learning an ideal solution. [49]

II1.7.1 Convolutional Neural Networks (CNNs)

A Convolutional Neural Network (CNN) is a Deep Learning algorithm that can
learn from an input image, assign importance to various aspects, and differentiate
between them. It requires less pre-processing than other classification algorithms
and can learn filters with training. CNNs have an architecture similar to the
connectivity pattern of neurons in the human brain, inspired by the Visual Cortex.
They have three main layers: convolutional, pooling, and fully-connected. As the
layers increase, the CNN identifies larger elements or shapes until it identifies the
intended object. [49]

I11.7.2 Long Short-Term Memory Networks (LSTMs)

LSTMs are long-term learning and adaptation neural networks that can remember
and recall past data. They are used in time series predictions due to their ability to
restrain memory or previous inputs. LSTMs have a chain-like structure consisting
of four interacting layers, and can be used in speech recognition, pharmaceutical
development, and music loop composition. [49]

49

Chapter I11 Deep Learning

II1.7.3 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks or RNNs consist of some directed connections that
form a cycle that allow the input provided from the LSTMs to be used as input in
the current phase of RNNs. These inputs are deeply embedded as inputs and enforce
the memorization ability of LSTMs lets these inputs get absorbed for a period in the
internal memory. RNNs are therefore dependent on the inputs that are preserved
by LSTMs and work under the synchronization phenomenon of LSTMs. RNNs are
mostly used in captioning the image, time series analysis, recognizing handwritten
data, and translating data to machines. [49]

II1.7.4 Generative Adversarial Networks (GANSs)

GANs s are deep learning algorithms that generate new instances of data that
match training data. They consist of a generator that generates false data and a
discriminator that adapts. GANs are used in astronomy, video games, cartoons,
human faces, and 3D object rendering. They generate fake data and respond to it
as false data, updating the results. [49]

III.7.5 Radial Basis Function Networks (RBFNs)

RBFNs are neural networks used for time-series prediction, regression testing, and
classification. They consist of three layers: input, hidden, and output. The input
layer uses neurons sensitive to training data, while the hidden layer integrates with
the input layer. The output layer uses linear combinations of radial-based data,
passing Gaussian functions as parameters. These networks are used for
classification, regression testing, and time-series prediction. [49]

II1.7.6 Multilayer Perceptron’s (MLPs)

MLPs are the base of deep learning technology. It belongs to a class of feed-
forward neural networks having various layers of perceptron’s. These perceptron’s
have various activation functions in them. MLPs also have connected input and
output layers and their number is the same. Also, there's a layer that remains hidden
amidst these two layers. MLPs are mostly used to build image and speech
recognition systems or some other types of the translation software.

The working of MLPs starts by feeding the data in the input layer. The neurons
present in the layer form a graph to establish a connection that passes in one
direction. The weight of this input data is found to exist between the hidden layer
and the input layer. MLPs use activation functions to determine which nodes are
ready to fire. These activation functions include tanh function, sigmoid and ReLUs.
MLPs are mainly used to train the models to understand what kind of co-relation
the layers are serving to achieve the desired output from the given data set. See the
below image to understand better. [49]

I11.7.7 Self Organizing Maps (SOMs)

Teuvo Kohenen invented Self-Organizing Machines (SOMs) to visualize data
through artificial neural networks. These machines initialize weights of nodes and

50

Chapter I11 Deep Learning

choose random vectors from training data. They examine each node to find relative
weights, deciding the Best Matching Unit (BMU). SOMs discover winning nodes
over time, reducing them from the sample vector. Multiple iterations are used to
ensure no node is missed. Examples include RGB color combinations. [49]

I11.7.8 Deep Belief Networks (DBNs)

DBN:Ss, also known as generative models, are used in video and image recognition
and motion capture. They are powered by Greedy algorithms and use a layer-to-
layer approach, generating weights through a top-down approach. They learn from
latent values from every layer using a bottom-up pass approach, drawing samples
from visible units and learning from the hidden two-layer. [49]

III.7.9 Restricted Boltzmann Machines (RBMs)

RBMs, developed by Geoffrey Hinton, are stochastic neural networks used in
dimension reduction, regression, classification, and topic modeling. They consist of
two layers: visible and hidden, connected through hidden units and bias units.
RBMs have two phases: forward pass and backward pass. Inputs are encoded,
weighted, and combined in the backward pass, then pushed to the visible layer for
activation and reconstructed output. [49]

II1.7.10 Autoencoders

Autoencoders are highly trained neural networks that replicate data, ensuring
input and output are identical. They are used in tasks like pharma discovery, image
processing, and population prediction. They consist of an encoder, code, and
decoder, and can transform inputs into representations. Autoencoders reconstruct
original inputs, reducing size and clarifying images for accuracy.

II1.8 Applications of Deep Learning

I11.8.1 Computer Vision

Deep learning has revolutionized computer vision by eliminating traditional
image processing methods, resulting in significant improvements in tasks like
object recognition, face recognition, artist classification, medical image analysis,
and autonomous driving modules. The ImageNet dataset has seen a 20% reduction
in error rate since 2010, surpassing human accuracy. Deep learning has also been
used in medical image analysis and autonomous driving modules, tackling issues
like "artistic style transfer" and transforming existing pictures into paintings based
on specific styles. [44]

I11.8.2 Text Analysis and Understanding

Deep learning has been successfully applied to text analysis and understanding
problems, including document classification, sentiment analysis, and automatic
translation. Recurrent neural networks are particularly useful in this area due to the
sequential nature of textual data. Deep learning has the ability to train language

51

Chapter I11 Deep Learning

models from raw text data, learning vocabulary, grammar, context, and other
important traits. It can even be trained together with deep learning models for
computer vision, providing results that were previously considered impossible. For
example, deep learning can generate image captions without manual image
processing or natural language processing, demonstrating a close understanding of
the language used in images. Additionally, deep learning can generate new images
based on text descriptions, pixel by pixel. [44]

II1.8.3 Speech Recognition

Speech recognition is a complex area in signal processing, with voice to text being
the most widely researched problem. The auditory cortex in the brain is trained to
recognize voice and convert it to language, making humans adept at this task. Deep
learning has revolutionized speech recognition by allowing it to operate directly on
raw data and large audio datasets, improving accuracy by 20-30%. Today, most smart
assistants rely on deep learning, with Google Assistant having the highest accuracy
in recent benchmarks. Deep learning has also been applied to speech generation,
such as text to voice, with Google DeepMind presenting a novel method called
WaveNet. Speaker recognition has also seen significant improvements, particularly
in national security, with Fifth Dimension employing speech recognition to identify
terrorists by matching their voice samples against a large dataset of known voices.

II1.8.4 Cybersecurity

One of the most crucial real-world problems today, one that concerns every large
and small company, is cybersecurity. More than a million new malware threats
(malicious software) are created every single day, and sophisticated attacks are
continuously crippling entire companies — or even nations — by targeting critical
national infrastructures, as would happen in the case of nation-state cyberattacks.

There are many, many cybersecurity solutions out there, but all are struggling to
detect new malware. It’s easy to mutate a malware and evade detection by even the
most sophisticated cybersecurity solutions, which perform dynamic analysis on files
and use traditional machine learning.

Deep learning, a method that processes raw data without feature extraction, has
been successfully applied to cybersecurity. However, it faces challenges due to the
size and structure of computer files, which cannot be easily adjusted. Deep Instinct
has demonstrated how a dedicated deep learning framework can overcome these
challenges and train a deep learning model on raw files. The training phase uses
hundreds of millions of malicious and legitimate files, taking only a day using GPUs.
The resulting deep learning model is small, tens of megabytes, and can provide a
prediction within milliseconds. This model has a higher detection rate and lower
false positive rate compared to traditional machine learning solutions. Deep
learning can also identify the type of malware, such as ransomware or Trojans, and
even detect the nation-state behind an attack. [44]

52

Chapter I11 Deep Learning

II1.9 Conclusion

In this chapter, we delved into the fascinating world of deep learning, focusing on
neural networks, theirvarious types, and the algorithms that power them. We began
by exploring the fundamental architecture of neural networks, emphasizing the
pivotal roles of neurons, layers, and activation functions. This foundational
knowledge is crucial for understanding how neural networks emulate the human
brain's learning processes.

We then examined the different types of neural networks, each designed to tackle
specific challenges and applications. From the traditional feedforward neural
networks (FNN) to the more sophisticated convolutional neural networks (CNN)
tailored for image processing, and recurrent neural networks (RNN) adept at
handling sequential data, we saw how each type offers unique advantages. We also
discussed advanced variations like Long Short-Term Memory (LSTM) networks and
Generative Adversarial Networks (GANs), which push the boundaries of what
neural networks can achieve.

Through this exploration, it is evident that deep learning, with its diverse array of
neural network architectures and sophisticated algorithms, is revolutionizing
numerous fields. From image and speech recognition to natural language
processing and autonomous systems, the applications of deep learning are vast and
ever-expanding.

As we conclude this chapter, it is clear that the potential of deep learning is
immense. However, with great power comes great responsibility. As practitioners, it
is imperative to stay mindful of ethical considerations and the societal impacts of
deploying these technologies. Moving forward, the continued evolution of deep
learning promises to unlock even more groundbreaking innovations, making it an
exciting area of study and application for years to come.

53

Chapter IV: Experimentation
and Results Interpretation

Chapter IV Experimentation and Results Interpretation

IV.a Introduction

We go over the specifics of our experiment in this chapter. We will outline the
software and hardware tools we utilized to carry out our experiment in this chapter.
We will also provide a thorough explanation of the dataset that was used to train
and evaluate the models that were recommended. in addition to the assessment
metrics used to analyze the models. Next, we will go into great depth on the
exploratory data analysis we did on the outcomes of our experiment.

IV.2 Working Environment and Tools Used

IV.2.1 Hardware Environment
We used a HP brand ProBook with an Intel Core i5-6300U CPU @ 2.40GHz 2.50
GHz and 8 GB of RAM for our project.

IV.2.2 Software environment

We chose version 3.12 of the Python programming language because this project
involves deep learning. We employed Jupyter Notebook as an environment manager
and package supplier. In addition to Pandas, NumPy, TensorFlow, Keras and Scikit-
learn libraries.

IV.2.2.1 Python

Python is a high-level, interpreted, interactive, and object-oriented scripting
language developed by Guido van Rossum in the late eighties and early nineties at
the National Research Institute for Mathematics and Computer Science in the
Netherlands. It is derived from various scripting languages and is designed for high
readable use. Python is a beginner's language, supporting a wide range of
applications from text processing to web browsers and games.[50]

@ python’

Figure IV. 1: Python Logo

IV.2.2.2 Jupyter Notebook

Jupyter Notebook is an interactive web application for creating and sharing
computational documents. The project was first named [Python and later renamed
Jupyter in 2014. It is a fully open-source product, and users can use every
functionality available for free. It supports more than 40 languages including
Python, R, and Scala.

A notebook is a mutable file saved in ipynb format. Jupyter Notebook has a
notebook dashboard to help users manage different notebooks. Kernels are also part
of Jupyter notebooks. Kernels are processes that run interactive code in a particular
programming language and return output to the user. Kernels also respond to tab

55

Chapter IV Experimentation and Results Interpretation

completion and introspection requests. Jupyter notebooks are used for a variety of
purposes. A notebook is an interactive computational environment in which users
can execute a particular piece of code and observe the output and make changes to
the code to drive it to the desired output or explore more. Jupyter notebooks are
heavily used for data exploration purposes as it involves a lot of reiterations. It is also
used in other data science workflows such as machine learning experimentations
and modeling. It can also be used for documenting code samples. A Jupyter
notebook has independent executable code cells that users can run in any order.[51]

jupyter

Figure IV.2: Jupyter Logo

IV.2.2.3 Pandas

Pandas is a Python-based open-source data analysis and manipulation tool used
for data wrangling, analysis, cleaning, and transformation. It offers features such as
speedy data exploration, file format reading, data cleaning, and manipulation.
Pandas works with Data Frame objects, storing data in tabular rows and columns.
Companies like Netflix, Amazon, and YouTube use Pandas for recommendation
systems, healthcare, energy sector, ecommerce, personalized advertising, airline
analysis, and stock market understanding.[52]

IV.2.2.4 NumPy

An open-source library called NumPy has multidimensional arrays in it. Data can
be stored in a homogenous "n" dimensional array object using the NumPy ndarray.
In the business world, NumPy is used to compute arrays. For instance, a colorful
image's data is kept in a 3D matrix with 1000 pixels. We must work on those pixels
in order to alter those photos. NumPy comes in quite handy in this situation.
Advanced Python packages like SciPy and Pandas also use NumPy. It outperforms
Python's List in the following areas: Speed & Memory. Numerous built-in functions,
such as random sampling, linear algebra, and mathematical functions, are available.
Slicing and indexing are methods for gaining access to a portion of the data.[52]

IV.2.2.5 TensorFlow

TensorFlow is a Python machine learning package that is free and open source.
Although it may be applied to many different tasks, its primary focus is on deep
neural network training and inference. By using multidimensional arrays,
commonly referred to as tensors, it is able to execute several operations on a single
input. TensorBoard is an additional component that comes with TensorFlow that
facilitates graph visualization and model education. This debugs the model to
improve its performance and aids in comprehending its nodes.

56

Chapter IV Experimentation and Results Interpretation

The Graph Dashboard is an effective tool for analyzing the TensorFlow model and
provides a brief overview of its architecture.

TensorFlow APIs are organized hierarchically, with low-level APIs serving as the
foundation for high-level APIs. Low-level APIs are used by machine learning
researchers to develop and find new machine learning algorithms. tf.Keras is an
open-source API version that works with TensorFlow.[52][54]

IV.2.2.6 Keras

Keras is a deep learning API written in Python and runs on top of the TensorFlow
machine learning platform. It was developed with a focus on the possibility of rapid
experiments. Keras are mainly used to create deep learning models, especially
neural networks. Keras can be used to ship reliable and performant applied machine

learning solutions, as well as in Natural Language Processing (NLP) and Computer
Vision (CV).[52]

IV.2.2.7 Scikit-learn

A machine learning library for the Python programming language is called Scikit-
learn. After cleaning and manipulating your data with Panda or NumPy, Scikit-learn
is used to develop machine learning models, as it contains dozens of tools needed
for modelling and predictive analysis. Scikit-learn may be used to create a variety of
machine learning models, including supervised and unsupervised learning, feature
importance analysis, and cross-validation of model correctness. Support vector
machines, random forests, gradient boosting, 3 k-means, DBSCAN, and other
classification, regression, and clustering algorithms are among them. It is made to
work with NumPy and SciPy Python numerical and scientific libraries. [52] [53]

IV.3 Evaluation Metrics
This section discusses the evaluation of information retrieval evaluation concepts
like confusion matrix, precision, recall, F-score, cross validation. [55] [56]

IV.3.1 Confusion matrix

The predictive analysis technique is the confusion matrix. In machine learning, to
evaluate a model based on classification in terms of performance. It isa N x N
matrix, where N is the number of target classes, that is used to assess how well a
classification model performs. It is comprised of four fundamental properties
(numbers) that determine the classifier's measuring metrics.

e TP: True Positive: The actual value was positive and the model predicted a
positive value.

e FP: False Positive: Your prediction is positive, and it is false. (Also known as
the Type 1 error).

e FN: False Negative: Your prediction is negative, and result it is also false.
(Also known as the Type 2 error).

57

Chapter IV Experimentation and Results Interpretation

e TN: True Negative: The actual value was negative and the model predicted a

negative value.
Table IV.1: Confusion Matrix
Actual value Predicted value
Positive Negative
Positive TP FP
Negative FN TN
IV.3.2 Accuracy

Another name for accuracy is positive predicted value, which expresses how
accurate the model is. Fewer FP is indicated by higher accuracy. Its mathematical
definition is:

(I.3)

Accuracy = TPiFP

IV.3.3 Recall

Recall, sometimes referred to as sensitivity, is a metric used to assess how well a
model classifies positive cases. A high recall value indicates that few positive cases
are incorrectly classified as negative. The following formula can be used to calculate
the Recall:

TP
TP+FN

(L.4)

Recall =

IV.3.4 Overall Accuracy
The categorization techniques are measured by the overall accuracy. The following
is a representation of this technique:

TP+TN
z (I.5)

Overall Accuracy = —————
TP+TN+FP+FN

IV.3.5 F1 Score
The F1 score or F1 measure is the harmonic mean of precision and recall. The F
score can be calculated as follows:

AccuracyxRecall 2TP (6)

F1 = =
Accuracy+Recall 2TP+FP+FN

IV.3.6 Cross Validation

Cross-validation is a statistical method for evaluating and comparing learning
algorithms by dividing data into two segments for training and validation. K-fold
cross-validation is the most basic, involving k rounds of training and validation.

Chapter IV Experimentation and Results Interpretation

IV.4 Dataset Presentation

MQTTset, an IoT dataset focusing on MQTT communications, using loT-Flock,
a network traffic generator tool. The dataset is created by deploying 8 different IoT
sensors connected to an MQTT broker. The scenario is a smart home environment,
where sensors retrieve information like temperature, light intensity, humidity, CO-
Gas, motion, smoke, door opening/closure, and fan status at different intervals. [57]

Room 1 Room 2
MQTT broker | |
76: e @
g TARY
Temperature Light intensity Smake Ez:'tf_zﬁz?
0 % + (
CO/ ((GO)) 1
- 1
Humidity CO-Gas 1
1

Motion sensor Fan speed

2

Motion sensor

1

Malicious node Door lock

Figure IV.3: The scenario considered in MQTTset.

The sensors network is designed to communicate with a broker in a limited access
area, without additional components like firewalls. During attack phases, malicious
nodes are directly connected to the broker to execute cyber-attacks. Each sensor is
configured to trigger communication at a specific time, with periodic messages sent
every n seconds and random messages sent at random periods. The dataset
simulates real-life home automation behavior by analyzing communication aspects.
Sensors are set up with a data profile and topic used by the MQTT broker, with the
MQTT broker identified by the IP address 10.16.100.73 is listening on plain text port
1883. Some sensors also have subscriber functions for data retrieval. [57]

Sensor IP Address Room | Type Messages Topic Data Profile
Frequency
(s)
Temperatur 192.168.0.151 1 Periodic 60 Temperature Temperature
e
Light 192.168.0.150 1 Periodic 1800 Light intensity | Light intensity
intensity
Humidity 192.168.0.152 1 Periodic 60 Humidity Humidity
Motion 192.168.0.154 1 Random 3600 Movement Movement
sensor
CO-Gas 192.168.0.155 Random 3600 CO-Gas CO-Gas
Smoke 192.168.0.180 Random 3600 Smoke Smoke
Fan speed 192.168.0.173 Periodic 120 Fan speed Fan speed
controller
Door lock 192.168.0.176 2 Random 3600 Door lock Door lock
Fan sensor 192.168.0.178 2 Periodic 60 Fan Fan
Motion 192.168.0.174 Random 3600 Movement Movement
sensor

Table IV.2: [oT sensors adopted in the MQTTset scenario.

59

Chapter IV Experimentation and Results Interpretation

The MQTTset dataset is a publicly available dataset that includes network traffic
related to MQTT version 3.11, excluding authentication and plain text
communications. It provides packet inspection capabilities and allows for
consideration of a wider set of parameters in network packets. The dataset includes
11,915,716 network packets and has a capture time of one week. It can be used for
intrusion detection and traffic characterization applications related to MQTT
protocol, including both legitimate and malicious cyber-attacks. Researchers can
integrate their attacks with the dataset for analysis, detection, and mitigation

purposes. [57]

IV.4.1 Considered Cyber-Attacks

As previously anticipated, MQTTset includes real attacks implemented to target
the considered MQTT network, in order to include in the dataset additional files
which could be adopted, for instance, to validate detection algorithms. Particularly,
the following attacks are part of MQTTset [57]:

IV.4.1.1 Flooding Denial of Service

Denial of service attacks target MQTT protocol to saturate brokers by establishing
multiple connections and sending more messages. The MQTT-malaria tool is used
to implement this attack.

IV.4.1.2 MQTT Publish Flood

In this case, a malicious IoT device periodically sends a huge amount of malicious
MQTT data, in order to seize all resources of the server, in terms of connection slots,
networks or other resources that are allocated in limited amount. Differently on the
previous attack, this attack tries to saturate the resources by using a single
connection instead of instantiate multiple connections.

IV.4.1.3 SlowlTe

The Slow DoS against Internet of Things Environments (SlowITe) attack is a novel
denial of service threat targeting the MQTT application protocol. Particularly,
unlike previous threats, being a Slow DoS Attack, SlowlTe requires minimum
bandwidth and resources to attack an MQTT service. Particularly, SlowITe initiates
a large number of connections with the MQTT broker, in order to seize all available
connections simultaneously. Under these circumstances the denial-of-service
status would be reached.

IV.4.1.4 Malformed Data

A malformed data attack aims to generate and send to the broker several
malformed packets, trying to raise exceptions on the targeted service. Considering
MQTTset, in order to perpetrate a malformed data attack, MQTTSA tool was
employed, sending a sequence of malformed CONNECT or PUBLISH packets to the
victim in order to raise exceptions on the MQTT broker.

IV.4.1.5 Brute Force Authentication
A brute force attack consists in running possible attempts to retrieve users’
credentials used by MQTT. Regarding MQTTset, the attacker’s aim is to crack users’

60

Chapter IV Experimentation and Results Interpretation

credentials (username and password) adopted during the authentication phase.
Also in this case, the MQTTSA tool was used. Particularly, in order to recall to a real
scenario, the rockyou.txt word list was employed, that is considered a popular list,
widely adopted for brute force and cracking attacks. For our tests, the credentials
are stored on the word list used by the attacker.

IV.4.2 MQTTset Validation

The dataset is used to design an intrusion detection system, combining legitimate
MQTT traffic with various cyber-attacks targeting the MQTT broker of the network.
The datasets are mixed together to train and predict algorithms, validating the
possibility of using MQTTset for testing and implementing a novel intrusion
detection algorithm. we considered various algorithms for validation, including
neural networks, convolutional neural networks, long-term short memory,
recurrent neural networks and multilayer perceptron. The features extracted were
filtered to focus on the most relevant ones for identifying potential attacks and
legitimate traffic. The workflow involves extracting features from raw network
traffics, combining legitimate and malicious traffics, and applying different
detection algorithms to identify anomalies on the generated traffic data. [57]

No Name Description Protocol Layer
1 tep.flags TCP flags TCP
2 tep.time_delta Time TCP stream TCP
3 tep.len TCP Segment Len TCP
4 mqtt.conack.flags Acknowledge Flags MQTT
5 | mgqtt.conack.flags.reserved Reserved MQTT
6 mqtt.conack.flags.sp Session Present MQTT
7 mqtt.conack.val Return Code MQTT
8 mgqtt.conflag.cleansess Clean Session Flag MQTT
9 mgqtt.conflag.passwd Password Flag MQTT
10 mgqtt.conflag.qos QoS Level MQTT
1 mgqtt.conflag.reserved (Reserved) MQTT

Table IV.3: The list of 12 mqtt.conflag.retain Will Retain MQTT
13 mgqtt.conflag.uname User Name Flag MQTT
eXtraPOIated features. 14 mgqtt.conflag.willflag Will Flag MQTT
15 mgqtt.conflags Connect Flags MQTT

16 mgqtt.dupflag DUP Flag MQTT
17 mgqtt.hdrflags Header Flags MQTT
18 mqtt.kalive Keep Alive MQTT
19 mgqtt.len Msg Len MQTT

20 mqtt.msg Message MQTT
21 mqtt.msgid Message Identifier MQTT
22 mgqtt.msgtype Message Type MQTT
23 mgqtt.proto_len Protocol Name Length MQTT

24 mqtt.protoname Protocol Name MQTT
25 mqtt.qos QoS Level MQTT

26 mgqtt.retain Retain MQTT
27 mqtt.sub.qos Requested QoS MQTT

28 mqtt.suback.qos Granted QoS MQTT

29 mqtt.ver Version MQTT

30 mgqtt.willmsg Will Message MQTT
31 mgqtt.willmsg_len Will Message Length MQTT
32 mgqtt.willtopic Will Topic MQTT
33 mqtt.willtopic_len Will Topic Length MQTT

61

Chapter IV Experimentation and Results Interpretation

IV.5 Implementation

The proliferation of Internet-of-Things (IoT) devices necessitates robust security
measures to safeguard against cyberattacks. This project explores the efficacy of
deep learning algorithms for intrusion detection within an IoT network. We
implemented a system employing Python, TensorFlow, Keras, Pandas, and scikit-
learn to analyze network traffic data. We evaluated the performance of various deep
learning architectures, including Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM) networks,
and Multi-Layer Perceptrons (MLPs), in identifying both legitimate and malicious
traffic.

IV.5.1 Dataset Preparation
We employed the MQTTset dataset, a collection of labeled loT network traffic data.

Two datasets were created:

e Binary classification: Legitimate vs. Malicious (Attack) traffic.
e Multi-class classification: Legitimate vs. Five different attack types (dos,
flood, slowite, malformed, brute-force).

Data pre-processing techniques were applied to ensure consistency and suitability
for deep learning models.

IV.5.2 Dataset Cleansing

To ensure optimal model performance, the project incorporated a meticulous
data pre-processing stage. The MQTTset dataset was carefully examined, and
features deemed irrelevant or redundant for intrusion detection were meticulously
removed. This data cleaning process streamlined the training process and
potentially improved model generalizability by focusing on the most informative

features for attack classification. Here the is resulted features after the cleaning:

No Name Description Protocol Layer
1 tep.flags TCP flags TCP
2 tcp.time_delta Time TCP stream TCP
3 tcp.len TCP Segment Len TCP
4 mgqtt.conack.val Return Code MQTT
5 mgqtt.conflag.cleansess Clean Session Flag MQTT
6 mgqtt.conflag.passwd Password Flag MQTT
7 mgqtt.conflag.uname User Name Flag MQTT
Table IV.4: The 8 mqtt.conflags Connect Flags MQTT
list of extrapolated 9 mgqtt.dupflag DUP Flag MQTT
features after the 10 mgqtt.hdrflags Header Flags MQTT
cleansing 11 mgqtt.kalive Keep Alive MQTT
’ 12 mgqtt.len Msg Len MQTT
13 mqtt.msgid Message Identifier MQTT
14 mgqtt.msgtype Message Type MQTT
15 mqtt.proto_len Protocol Name Length MQTT
16 mqtt.qos QoS Level MQTT
17 mgtt.retain Retain MQTT
18 mgqtt.ver Version MQTT

62

Chapter IV Experimentation and Results Interpretation

IV.5.3 Implementing Deep Learning Models
We implemented the following deep learning architectures:

Convolutional Neural Networks (CNNs): Efficient in extracting spatial
features from network traffic data.

Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM)
networks: Well-suited for capturing sequential dependencies within
network flows.

Multi-Layer Perceptrons (MLPs): Offer a versatile architecture for general
classification tasks.

Each model was trained and optimized using appropriate hyperparameter tuning
strategies.

IV.5.4 Brief Explanation of the Coding Experiment in This Project

Leveraging Python as the primary programming language and Jupyter Notebook
as the development environment, this project employed a series of experiments to
evaluate the effectiveness of deep learning algorithms for intrusion detection in [oT
networks. The following section details the specific steps undertaken for each
experiment, encompassing both binary and multi-class classification scenarios:

Step 1: Load and Inspect the Data

import pandas as pd

lLoad the data

file path = '‘mgttdataset reduced clean_binary.csv'
data = pd.read_csv(file_path)

Display the firs
print(data.head{))
The first line import pandas as pd imports the pandas library and assigns it
the alias pd. This allows you to use pd instead of typing the full library name
throughout your code, making it more concise.

t few rows of the dotaset

The next line defines a variable named file_path and assigns a string value
to it. This string represents the path (location) on your computer's file system
where your data is stored. In this case, the filename is
mgttdataset_reduced clean_binary.csv.

The following 1ine data = pd.read_csv(file_path) uses the pd.read_csv
function from the pandas library. This function reads the data from the
specified CSV file (file_path) and stores it in a pandas data structure called a
DataFrame. The variable data now holds this DataFrame, which essentially
acts as a tabular structure containing your data.

The final line print(data.head()) utilizes the head method of the
DataFrame (data). The head method displays the first few rows (usually by
default, the first 5 rows) of the DataFrame. This allows you to take a quick

63

Chapter IV Experimentation and Results Interpretation

peek at the contents of your data and get a sense of its structure (column
names, data types).

Step 2: Preprocess the Data

from sklearn.model selection import train_test split

from sklearn.preprocessing import StandardScaler, LabelEncoder

oM
il

E

Separate features and target

data.drop(columns=[‘target’']) # Replace ‘target’ with the actual target column name

data["target’ # Replace ‘target® with the actual target column name

T _ Ol D B P e
ncode the target variagble if it is categorical

label encoder = LabelEncoder()

y = label_encoder.fit_transform(y)

) - s R
Normalize the features

scaler = StandardScaler()
X = scaler.fit_transform(X)

Reshape the data to fit the CNN input requirements

X =

X.reshape(X.shape[@], X.shape[1], 1)

Split the data into training and testing sets

X_train, X _test, y_train, y test = train_test split(X, y, test size=8.2, random_state=42)

Display the shapes of the dotasets

print(X_train.shape, X _test.shape, y_train.shape, y_test.shape)

from sklearn.model selection import train_test split: This line
imports the train_test_split function from the sklearn.model_selection
library. This function is used to split your data into training and testing sets,
which are essential for model training and evaluation.

from sklearn.preprocessing import StandardScaler, LabelEncoder:
This line imports two functions from the sklearn.preprocessing library:
StandardScaler: This function is used to standardize features (numerical
columns) by removing the mean and scaling to unit variance. This helps
improve the performance of some machine learning algorithms, especially
those sensitive to feature scales.

LabelEncoder: This function is used to encode categorical variables (text
labels) into numerical representations suitable for deep learning algorithms.
X = data.drop(columns=['target']): This line assumes you have a
DataFrame named data containing your features (columns) and a target
variable (the class labels we want to predict). It creates a new DataFrame X
that excludes the target column named 'target’. This separates the features
you want the model to learn from (predictors) from the labels you want it to
predict (target).

y = data['target']: This line extracts the target column named 'target'
from the DataFrame data and stores it in a separate variable y. This isolates
the target variable for further processing.

label encoder = LabelEncoder(): Createsa LabelEncoder object.

64

Chapter IV Experimentation and Results Interpretation

e y = label encoder.fit_transform(y): This line uses the fit_transform
method of the LabelEncoder to encode the target variable (y). It first "fits"
the encoder to the unique categories in y, assigning each category a
numerical label. Then, it "transforms" y by replacing each category with its
corresponding numerical label.

e 'scaler = StandardScaler(): Createsa StandardScaler object.

e X = scaler.fit_transform(X): This line uses the fit_transform method of
the StandardScaler to standardize the features in X. It first "fits" the scaler to
the distribution of features in X (calculating the mean and standard
deviation). Then, it "transforms" X by subtracting the mean from each
feature and scaling it to unit variance.

e X = X.reshape(X.shape[@], X.shape[1], 1): This line reshapes the
data specifically for Convolutional Neural Networks (CNNs). CNNs typically
expect input data in a 3D format: (number of samples, number of features,
number of channels). This line reshapes X to meet this requirement,
assuming the features are in separate columns and there's only one channel
(e.g., grayscale image data).

e X train, X test, y train, y test = train_test split(X, vy,
test_size=0.2, random_state=42): This line splits the pre-processed data
(Xandy) into training and testing sets using the train_test_split function.

e test_size=0.2: This parameter specifies that 20% (0.2) of the data will be
used for the testing set, and the remaining 80% will be used for the training
set.

e pandom_state=42: This parameter sets the random seed for splitting the
data. This ensures reproducibility.

Step 3: Build the CNN Model

from keras.models import Segquential
from keras.layers import ConvlD, MaxPoolinglD, Flatten, Dense, Dropout
from keras.optimizers import Adam

Build the model

model = Sequential()

model.add(ConvlD(filters=64, kernel_size=3, activation="relu', input_shape=(X_train.shape[1], 1)})
model . add(MaxPoolinglD{pool_size=2))

model.add(ConviD(filters=128, kernel_size=3, activation="relu'))
model.add(MaxPoolinglD{pool_size=2))

model . add(Flatten())

model.add(Dense(128, activation='relu'))

model.add(Dropout(@.5))

model.add(Dense(64, activation='relu’))

model . add(Dropout(@.5))

model.add(Dense(len(label_enceder.classes_), activation="softmax')) # Use 'softmax’ for multi-class classification

Compile the model

model.compile{optimizer=Adam(), loss='sparse_categorical_crossentropy’, metrics=['accuracy'])
Print the model summary

model. summary ()

e from keras.models import Sequential: This line imports the Sequential
model class from the keras.models library. This class allows you to build
neural networks layer by layer in a sequential fashion.

65

Chapter IV Experimentation and Results Interpretation

e from keras.layers import ConvlD, MaxPoolinglD, Flatten, Dense,
Dropout: This line imports various layer types from the keras.layers library:

ConvlD: One-dimensional convolutional layer for extracting features from time
series data like network traffic.

MaxPoolingiD: Downsamples the output of the convolutional layer to reduce
complexity and potentially improve model generalizability.

Flatten: Flattens the multi-dimensional output of the convolutional layers into a
single dimension suitable for dense layers.

Dense: Fully-connected layer for learning more complex relationships between
features.

Dropout: Randomly drops a certain percentage of activations during training to
prevent overfitting.

e model = Sequential(): Creates a new sequential model instance.

e model.add(ConvlD(filters=64, kernel size=3, activation="relu',
input_shape=(X_train.shape[1], 1))): This line adds the first
convolutional layer to the model.

filters=64: This specifies the number of filters (feature maps) the layer will learn.

kernel size=3: This defines the size of the filter window that will slide across the
input data to extract features.

activation='relu': This defines the activation function for the layer. ReLU
(Rectified Linear Unit) is a popular choice for its efficiency and ability to learn non-
linear relationships.

input_shape=(X_train.shape[1], 1): This specifies the expected input shape for
the first layer.

X_train.shape[1]: This retrieves the number of features (columns) in the training
data X_train. 1 indicates that the data has one channel (assuming grayscale image
data or single-channel time series). Adjust this value if your data has multiple
channels.

The following lines (model.add(. ..)) add subsequent layers to the model, creating
a stack of convolutional, pooling, flattening, and dense layers: Two more
convolutional layers with different filter numbers and ReLU activation. Two max-
pooling layers to downsample the data and reduce computational complexity. A
Flatten layer to convert the multi-dimensional output from the convolutional layers
into a one-dimensional vector suitable for dense layers. Two dense layers with ReLU
activation to learn complex relationships between features. A Dropout layer with a
50% dropout rate to prevent overfitting. Another dense layer with the number of
units equal to the number of classes in your dataset (obtained from
len(label_encoder.classes_)).The final layer uses a softmax activation function,

66

Chapter IV Experimentation and Results Interpretation

typically used for multi-class classification. Softmax normalizes the output of the
last layer into probabilities, allowing the model to predict the probability of each
class for a given input.

e model.compile(optimizer=Adam(),loss="sparse_categorical crossent
ropy', metrics=['accuracy']): This line configures the training process
for the model.

optimizer=Adam(): This specifies the Adam optimization algorithm to update the
model's weights during training.

loss="'sparse_categorical crossentropy': Thisdefinesthe loss function used to
measure the error between the model's predictions and the true labels. Sparse
categorical crossentropy is suitable for multi-class classification.we used the
binary_crossentropy for the binary classification.

metrics=['accuracy']: Thisspecifies that the model will track the accuracy metric
during training and evaluation.

e model.summary(): This line displays a summary of the model's architecture,
including the layers, their configurations, and the total number of
parameters. This helps you understand the complexity of the model and
identify potential bottlenecks or overfitting issues.

Step 4: Train the Model

from keras.callbacks import EarlyStopping

carly stopping - Earlystopping(nonitor-"val_loss, patience-3)
history = model.fit(X_train, y train, epochs=20, batch_size=32, validation split=8.2, callbacks=[early stopping])
e from keras.callbacks import EarlyStopping: This line imports the
EarlyStopping callback class from the keras.callbacks library. This callback
allows you to monitor the training process and stop training early if the
model's performance on a validation set plateaus or degrades.
e early stopping = EarlyStopping(monitor='val loss', patience=3):
This line creates an instance of the EarlyStopping callback.

monitor="'val_loss': This parameter specifies that the callback will monitor the
validation loss (val_loss) during training. Validation loss is the loss calculated on a
separate validation set.

patience=3: This parameter defines the patience level of the callback. If the
validation loss does not improve for patience consecutive epochs, the callback will
trigger early stopping.

e history = model.fit(X train, y train, epochs=20, batch_size=32,
validation_split=0.2, callbacks=[early stopping]): This line trains
the model using the fit method.

X_train: The training data features.

Chapter IV Experimentation and Results Interpretation

y_train: The training data labels.
epochs=20: The maximum number of training epochs (iterations).

batch_size=32: The number of data samples processed in each training step

(batch).

validation_split=0@.2: This parameter specifies that 20% (0.2) of the training data
will be used as the validation set for early stopping.

callbacks=[early_stopping]: This list includes the early_stopping callback,
instructing the model to use it during training.

Step 5: Evaluate the Model

import numpy as np

from sklearn.metrics import recall score, precision_score, f1_score
test_loss,test_accuracy= model.evaluate(X_test, y_test)
y_pred = model.predict{X _test)

y_pred_rounded = np.round(y_pred)

recall = recall_score(y_test, y_pred rounded)

precision = precision_score(y_test, y_pred rounded)

fl = f1_score(y_test, y_pred_rounded)

print(f'Test Loss: {test_loss}')

print(f'Test Accuracy: {test_accuracy]')

print(f' Recall: {recall}')

print(f' Precision: {precision}')

print(f" F1 Score: {f1}')

e import numpy as np: This line imports the ‘'numpy" library and assigns it
the alias 'np’. 'numpy’ is a fundamental library for scientific computing in
Python and is commonly used for working with arrays.

e from sklearn.metrics import recall_score, precision_score,
f1_score: This line imports three specific functions from the
‘sklearn.metrics’ module of the scikit-learn library. These functions are
used to calculate performance metrics for machine & deep learning models.

e precall_score: This function calculates the recall, which is the proportion
of true positives that were correctly identified.

e precision_score: This function calculates the precision, which is the
proportion of predicted positives that were actually true positives.

e f1 score: This function calculates the F1 score, which is a harmonic mean
of precision and recall.

e test loss, test_accuracy = model.evaluate(X_test, y test): This
line assumes you have a trained model (' model") and two datasets, ‘X_test'
(containing the test features) and 'y_test' (containing the test labels).

e y pred = model.predict(X_test): This line uses the 'predict’ method of
the model to make predictions on the unseen test data (‘X_test"). The
predicted labels are stored in the variable "y_pred".

68

Chapter IV Experimentation and Results Interpretation

e y pred_rounded = np.round(y_pred) :This line uses the 'np.round"
function from the imported 'numpy" library to round the values in
'y_pred’. This is necessary because some models might output continuous
values for classification tasks, while the actual labels are likely discrete (e.g.,
o or 1). Rounding helps convert the predicted values to match the format of
the true labels.

e recall = recall score(y_test, y pred_rounded), precision =
precision_score(y_test, y_pred_rounded), f1 = fl1_score(y_test,
y_pred_rounded) : These lines calculate the performance metrics using the
imported functions from scikit-learn.

IV.5.5 Evaluation
The performance of each model was assessed using standard accuracy metric.

We compared the effectiveness of the models in both binary and multi-class
classification scenarios.

IV.5.6 Results and Discussion
The project investigated the suitability of different deep learning algorithms for
intrusion detection in loT networks.

We analyzed the trade-offs between model complexity, accuracy, and
computational efficiency.

The results provided insights into the most effective deep learning architectures for
this specific application domain.

IV.6 Interpretation of Results

The project achieved promising results in leveraging deep learning for intrusion
detection in IoT networks. All four deep learning architectures (CNNs, RNNs,
LSTMs, MLPs) exhibited a high level of accuracy in the binary classification task,
consistently reaching around 84%. This demonstrates their effectiveness in
distinguishing between legitimate and malicious traffic.

When considering multi-class classification, the accuracy dropped slightly to
around 83%. While this remains a good performance level, the decrease suggests
that differentiating between various attack types might pose a greater challenge for
the models. Here are some possible explanations:

e Increased complexity: Multi-class classification inherently involves more
categories to distinguish between, requiring the models to learn more
intricate relationships within the data.

e Dataset limitations: The multi-class dataset might have inherent limitations,
such as imbalanced class distributions (some attack types being less frequent
than others). This can make it harder for models to learn accurate
representations for all classes.

69

Chapter IV

Experimentation and Results Interpretation

e Architectural suitability: Certain architectures, like CNNs, might be better
suited for binary classification tasks involving spatial features, while RNNs
or LSTMs might excel at handling sequential data patterns in multi-class
scenarios with diverse attack types.

Deep Learning Algorithm Accuracy
Binary Classification CNN 84%
RNN 84%
LSTM 84%
MLP 84%
Multi-Class CNN 83%
Classification RNN 82%
LSTM 83%
MLP 83%

Table IV.5: Test Accuracy.

The consistent performance across all architectures in binary classification
highlights the overall effectiveness of deep learning for this task. It suggests that the
core network traffic features might be well-suited for detection regardless of the

specific learning approach.

Test Accuracy

Multi-Class

65%

70% 75% 80% 85%

B LSTM ERNN ®CNN MLP

Figure IV.4: Test Accuracy Chart.

90%

Deep Learning Algorithm Loss

Binary Classification CNN 24%
RNN 24%

LTSM 23%

MLP 24%

Multi-Class CNN 21%
Classification RNN 44%
LSTM 4%

MLP 43%

Table IV.6: Test Loss.

70

Chapter IV Experimentation and Results Interpretation

The project's findings regarding test loss reveal interesting insights into the
performance of these deep learning architectures for intrusion detection. While all
architectures achieved high accuracy (around 84%) in binary classification, the test
loss of 23% suggests they learned the distinction between legitimate and malicious
traffic effectively. This indicates the models can generalize well to unseen data in
this binary scenario.

However, the test loss for multi-class classification, which reached 42%, paints a
different picture. This significantly higher loss compared to binary classification
suggests the models encountered greater difficulty learning the nuances between
various attack types within the multi-class dataset.

Test Loss

Multi-Class

15% 20% 25% 30% 35% 40% 45%

HLSTM ®mRNN mCNN MLP

Figure IV.5: Test Loss Chart.

Deep Learning Algorithm Recall

Binary Classification MLP 99%
CNN 99%

RNN 99%

LSTM 99%

Multi-Class Classification MLP 56%
CNN 56%

RNN 53%

LSTM 56%

Table IV.7: Recall Metric.

The project's findings regarding the recall metric offer valuable insights into the
effectiveness of deep learning architectures for intrusion detection. All four
architectures (CNNs, RNNs, LSTMs, MLPs) achieved an exceptional recall of 99%
in binary classification. This indicates a remarkable ability to identify nearly all
instances of malicious traffic within the dataset.

However, the recall dropped significantly to around 55% in multi-class
classification. While this result suggests the models are still capable of detecting

71

Chapter IV Experimentation and Results Interpretation

some attack types, it highlights a potential challenge in accurately identifying all
malicious traffic across various attack categories.

Recall Metric

Multi-Class

(]

99%

0% 10% PA 30% 40% 50% 60% 70% 80% 90% 100%

B LSTM ®mRNN mCNN MLP

Figure IV.6: Recall Metric Chart.

Deep Learning Algorithm Precision
Binary Classification MLP 76%
CNN =6%
RNN 76%
LSTM 76%
Multi-Class MLP 86%
Classification CNN 86%
RNN 84%
LSTM 86%

Table IV.8: Precision Metric.

The project's findings regarding the precision metric offer interesting insights into
the model's ability to identify true positives in intrusion detection. While all four
architectures (CNNs, RNNs, LSTMs, MLPs) achieved good precision in binary
classification (around 76%), the results for multi-class classification were even
higher (around 85%). This is a significant result, indicating that for every 100
instances classified by the models as a specific attack type, around 85 were true
positives. This highlights the models' effectiveness in accurately classifying specific
attacks within the multi-class dataset. While both results are positive, the higher
precision in multi-class classification might seem counterintuitive compared to the
lower recall observed previously (around 55%). Due to potential class imbalance in
the dataset, the models might have prioritized learning the characteristics of more
frequent attack types during training. This focus could lead to higher precision for
these types, as the models are more confident in their classifications. However, the
lower recall suggests they might miss some instances of less frequent attack types,
hence the overall lower recall in multi-class classification.

72

Chapter IV Experimentation and Results Interpretation

Precision Metric

MULTI-CLASS

BINARY
(]

76%

60% 65% 70% 75% 80% 85% 90% 95% 100%

HLSTM ERNN mCNN MLP

Figure IV.7: Precision Metric Chart.

Deep Learning Algorithm F1 Score
Binary Classification MLP 86%
CNN 86%
RNN 86%
LSTM 86%
Multi-Class MLP 64%
Classification CNN 64%
RNN 59%
LSTM 63%

Table IV.9: F1 Score.

The project's findings on the F1 score metric provide valuable insights into the
overall balance between precision and recall achieved by the deep learning
architectures for intrusion detection. All four architectures (CNNs, RNNs, LSTMs,
MLPs) achieved a high F1 score of 86% in binary classification. However, the F1score
dropped to around 62% in multi-class classification. This score indicates a strong
balance between identifying true positives and detecting all malicious traffic. A
score this high 86% suggests the models are very effective at accurately classifying
both legitimate and malicious traffic, minimizing false positives while still catching
most malicious instances. This score 62% represents a trade-off between
identifying true positives and detecting all malicious traffic. While it suggests the
models still achieve a decent balance, the decrease compared to binary classification
highlights the challenge of handling diverse attack types. The multi-class dataset
might be imbalanced, with some attack types being less frequent. This can lead to
models prioritizing learning the more frequent classes, potentially impacting
performance for less frequent ones.

Chapter IV Experimentation and Results Interpretation

F1 Score

MULTI-CLASS

BINARY

60% 70%

H[STM ®mRNN mCNN

Figure IV.8: F1 Score Metric Chart.

IV.6.1 Comparison of Deep Learning vs. Classical Machine Learning for
Intrusion Detection

This analysis compares the performance of deep learning architectures (previously
discussed) with classical machine learning methods (decision trees, naive Bayes,
random forest, gradient boosting) for intrusion detection in our project.

Machine Learning Methods | Accuracy | Fiscore
Binary Decision Tree 92% 92%
Classification Naive Bayes 79% =8%
Random Forest 75% 1%
Gradient Boost 71% 1%
Multi-Class Decision Tree 90% 90%
Classification Naive Bayes 67% 75%
Random Forest 90% 90%
Gradient Boost 79% 82%
Table IV.10: Accuracy, F1 score of Machine Learning Methods.
Binary Classification
Deep Learning

All architectures achieved high accuracy (around 84%) and F1 score (around
86%). This indicates excellent performance in identifying malicious traffic with
minimal false alarms.

Classical Machine Learning

Decision Tree: Achieved the highest accuracy (92%) and F1 score (92%) among all
methods. This suggests excellent performance in accurately classifying traffic.

Naive Bayes: Lower accuracy (79%) and F1 score (78%) compared to deep learning,
potentially indicating challenges in handling complex network traffic patterns.

74

Chapter IV Experimentation and Results Interpretation

Random Forest: Lower accuracy (75%) and a concerningly low F1 score (11%). This
suggests the model might be overfitting the training data and performing poorly on
unseen examples.

Gradient Boost: Similar performance to Random Forest with low accuracy (71%) and
F1 score (11%).

Multi-Class Classification
Deep Learning

Achieved good accuracy (around 83%) but a lower F1 score (around 62%). This
suggests some challenges in differentiating diverse attack types while still
maintaining good overall accuracy.

Classical Machine Learning

Decision Tree: Maintained high accuracy (90%) and F1 score (90%) similar to binary
classification. This method seems robust in handling multi-class scenarios as well.

Naive Bayes: Lower accuracy (67%) and a higher F1 score (75%) compared to deep
learning. This might indicate a bias towards the majority class, potentially missing
some attack types.

Random Forest: Recovered well from binary classification with high accuracy (90%)
and F1 score (90%). This suggests the ensemble approach helps handle the
complexity of multi-class data.

Gradient Boost: Improved performance compared to binary classification with
accuracy (79%) and F1 score (82%). This method seems to benefit from the
ensemble approach for multi-class problems.

General Observations

Deep learning excels at achieving high accuracy in both binary and multi-class
classification. However, in multi-class scenarios, it might struggle with achieving a
good balance between diverse attack types. Decision Trees emerged as a strong
contender, achieving excellent performance in both binary and multi-class
scenarios with high accuracy and F1 score. Naive Bayes performed poorly in binary
classification but showed some improvement in multi-class F1 score, suggesting a
potential bias towards the majority class. Random Forest and Gradient Boosting
improved their performance in multi-class classification compared to binary,
suggesting the ensemble approach benefits from handling complex data structures.

75

Chapter IV Experimentation and Results Interpretation

IV.7 Conclusion

In conclusion, this project investigated the efficacy of deep learning algorithms
for intrusion detection within an IoT network environment. We implemented a
system utilizing Python, TensorFlow, Keras, and scikit-learn to analyze network
traffic data. The project explored the performance of various deep learning
architectures, including Convolutional Neural Networks (CNNs), Recurrent Neural
Networks (RNNs), Long Short-Term Memory (LSTM) networks, and Multi-Layer
Perceptrons (MLPs), in identifying both legitimate and malicious traffic. The
experiments encompassed both binary and multi-class classification scenarios,
utilizing datasets specifically tailored for this purpose. The results provided valuable
insights into the effectiveness of different deep learning architectures for intrusion
detection in loT networks. This project demonstrates the potential of deep learning
as a robust and adaptable approach to safeguarding loT environments from
cyberattacks. Future research can explore methods for enhancing model
interpretability, real-time threat detection capabilities, and incorporating
additional network traffic features for improved classification accuracy.

=76

General Conclusion

General Conclusion

In conclusion, this thesis delved into the exciting potential of deep learning
algorithms for fortifying intrusion detection systems within the burgeoning
landscape of Internet of Things (IoT) networks. The research convincingly
demonstrated that deep learning offers a robust and adaptable approach to
identifying and mitigating an ever-evolving arsenal of security threats that plague
these interconnected environments. By harnessing the unique ability of deep
learning models to discern complex patterns from massive datasets. This innovation
effectively distinguished between legitimate network activity and malicious
attempts to infiltrate the system. This finding sheds light on the transformative role
deep learning can play in safeguarding the security of IoT networks, ensuring the
smooth operation of critical infrastructure and protecting sensitive data.

However, the thesis also acknowledged the ongoing challenges that need to be
addressed. The limited availability of high-quality, comprehensive data for training
deep learning models remains an obstacle. Additionally, the computational
demands of these algorithms can pose challenges for resource-constrained IoT
devices. Furthermore, the ever-shifting landscape of cyber threats necessitates
continuous adaptation and improvement of intrusion detection systems.

Looking forward, this thesis identified promising avenues for future research.
Exploring techniques for data augmentation to address limitations in data
availability is crucial. Optimizing deep learning models for efficient operation on
resource-constrained devices will be essential for wider deployment in IoT
networks. Additionally, investigating methods for continual learning and
adaptation will be paramount to ensure that intrusion detection systems remain
effective against evolving cyber threats. By tackling these challenges, future research
can pave the way for the seamless integration of deep learning-based intrusion
detection systems into real-world IoT applications. Overall, this thesis contributes
significantly to the ongoing effort to secure the future of interconnected devices and
foster a robust foundation for the safe and reliable operation of the ever-expanding
world of IoT networks.

77

Bibliography

Bibliography
[1]. Greengard, Samuel. "Internet of Things". Encyclopedia Britannica, 11 Feb. 2024,
https://www.britannica.com/science/Internet-of-Things. Accessed 5 March 2024.

[2]. Arshdeep Bahga & Vijay Madisetti. Internet of Things Hands on Approach,
Universities Press (India),2016.

[3]. Ian G Smith, The Internet of Things 2012 New Horizons, IERC - Internet of
Things European Research Cluster, 2012.

[4]. Internet Protocol Specification, http://www.ietf.org/rfc/rfc7o1.txt, Retrieved
2014.

[5]. Internet Protocol, Version 6 (IPv6) Specification,
https://www.ietf.org/rfc/rfca460.txt, Retrieved 2014.

[6]. Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks,
http://datatracker.ietf.org/doc/rfc6282, Retrieved 2014.

[7]. Transmission Control Protocol, www.ietf.org/rfc/rfc793.txt, Retrieved 2014.

[8]. User Datagram Protocol, www.ietf.org/rfc/rfc768.txt, Retrieved 2014.

[9]. Hypertext Transfer Protocol - HTTP/11, http://tools.ietf.org/html/rfc2616,
Retrieved 2014.

[10]. Constrained Application Protocol (CoAP), http://tools.ietf.org/html/draft-
ietf-core-coap-18 Retrieved 2014.

[11]. The WebSocket Protocol, http://tools.ietf.org/html/rfc6455, Retrieved 2014.

[12]. MQ Telemetry Transport (MQTT) V3.a Protocol Specification,
http://www.ibm.com/developerworks/webservices/library/ws-mgqtt/index.html,
Retrieved 2014.

[13]. Extensible Messaging and Presence Protocol (XMPP): Core,
http://tools.ietf.org/html/rfc6120, Retrieved 2014.

[14]. Data Distribution Service for Real-time Systems, OMG Available Specification,
ttp://www.omg.org/spec/DDS/1.2/PDF/, Retrieved 2014.

[15]. Keyur K Patel & Sunil M Patel, Carlos Salazar. Internet of Things:
Definition, Characteristics, Architecture, Enabling Technologies, Application &
Future Challenges, May 2016, Volume 6 Issue No. 5, 10.4010/2016.1482, 2321-3361 ©
2016, IJESC.
https://www.researchgate.net/publication/330425585 Internet of Things

IOT Definition Characteristics Architecture Enabling Technologies Applicatio
n Future Challenges.

[16]. Dr. Ovidiu Vermesan SINTEF, Norway, Dr. Peter Friess EU, Belgium,
“Internet of Things-From Research and Innovation to Market Deployment”, river
publishers’ series in communications, 2014.

=78

https://www.britannica.com/science/Internet-of-Things
http://www.ietf.org/rfc/rfc791.txt
https://www.ietf.org/rfc/rfc2460.txt,
http://datatracker.ietf.org/doc/rfc6282
www.ietf.org/rfc/rfc793.txt
www.ietf.org/rfc/rfc768.txt
http://tools.ietf.org/html/rfc2616,
http://tools.ietf.org/html/draft-ietf-core-coap-18
http://tools.ietf.org/html/draft-ietf-core-coap-18
http://tools.ietf.org/html/rfc6455
http://www.ibm.com/developerworks/webservices/library/ws-mqtt/index.html
http://tools.ietf.org/html/rfc6120
https://www.researchgate.net/publication/330425585_Internet_of_Things%20IOT_Definition_Characteristics_Architecture_Enabling_Technologies_Application_Future_Challenges
https://www.researchgate.net/publication/330425585_Internet_of_Things%20IOT_Definition_Characteristics_Architecture_Enabling_Technologies_Application_Future_Challenges
https://www.researchgate.net/publication/330425585_Internet_of_Things%20IOT_Definition_Characteristics_Architecture_Enabling_Technologies_Application_Future_Challenges

Bibliography

[17].[http://www.reloade.com/blog/2013/12/6characteristics-within-internet-
things-iot.php].

[18]. M. Wu, T.-]. Lu, F.-Y. Ling, J. Sun, and H.-Y. Du, “Research on the architecture
of internet of things,” in Proceedings of the 3rd International Conference on
Advanced Computer Theory and Engineering (ICACTE "10), vol. 5, pp. V5-484-V5-
487, IEEE, Chengdu, China, August 2010.

[19]. R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future internet: the internet
of things architecture, possible applications and key challenges,” in Proceedings of
the 10th International Conference on Frontiers of Information Technology (FIT '12),
pp. 257-260, December 2012.

[20] M. Weyrich and C. Ebert, “Reference architectures for the internet of things,”
IEEE Software, vol. 33,n0. 1, pp. 112-116, 2016.

[21] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(IoT): a vision, architectural elements, and future directions,” Future Generation
Computer Systems, vol. 29, no. 7, pp. 1645-1660, 2013.

[22] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: a platform
for internet of things and analytics,” in Big Data and Internet of Things: A RoadMap
for Smart Environments, pp. 169- 186, Springer, Berlin, Germany, 2014.

[23]. Pallavi Sethi & Smruti R. Sarangi. Internet of Things: Architectures,
Protocols, and Applications, Journal of Electrical and Computer Engineering,
Published 26 January 2017, https://doi.org/10.1155/2017/9324035.

[24]. Sreeshma Mohan. Internet of Things Applications and Security Challenges,
Mount Zion College of Engineering, Pathanamthitta, India, 17 September 2023.

https://www.researchgate.net/publication/373980736 Internet of Things IoT App
lications and Security Challenges A Review.

[25] L. M. R. Tarouco, L. M. Bertholdo, L. Z. Granville, L. M. R. Arbiza, F.
Carbone, M. Marotta, and J. J. C. de Santana, “Internet of things in healthcare:
Interoperatibility and security issues,” in Communications (ICC), IEEE International
Conference on. IEEE, 2012, pp. 6121-6125.

[26]. S. De, P. Barnaghi, M. Bauer, and S. Meissner, “Service modelling for the
internet of things,” in Computer Science and Information Systems (FedCSIS), 2011
Federated Conference on. IEEE, 2011, pp. 949-955.

[27]. C.R. Srinivasan, B. Rajesh, P. Saikalyan, K. Premsagar, Eadala Sarath
Yadav. A Review on the Different Types of Internets of Things, Journal of Advanced
Research in Dynamical and Control Systems - January 2019,
https://www.researchgate.net/publication/332153657 A review on the different

types of internet of things IoT.

[28]. Liang, Q. Durrani, T. Samn, S.W. Liang, J. Koh, J. and Wang, X. Guest
Editorial Special Issue on Internet of Mission-Critical Things (IoMCT). In IEEE
Internet of Things Journal 5 (5) (2018) 3258-3262.

79

http://www.reloade.com/blog/2013/12/6characteristics-within-internet-things-iot.php
http://www.reloade.com/blog/2013/12/6characteristics-within-internet-things-iot.php
https://doi.org/10.1155/2017/9324035
https://www.researchgate.net/publication/373980736_Internet_of_Things_IoT_Applications_and_Security_Challenges_A_Review
https://www.researchgate.net/publication/373980736_Internet_of_Things_IoT_Applications_and_Security_Challenges_A_Review
https://www.researchgate.net/publication/332153657_A_review_on_the_different_types_of_internet_of_things_IoT
https://www.researchgate.net/publication/332153657_A_review_on_the_different_types_of_internet_of_things_IoT

Bibliography

[29]. Nayyar, A., Puri, V. and Le, D. N. Internet of nano things (IoNT) Next
evolutionary step in nanotechnology. Nanosci. Nanotechnol 7 (1) (2017) 4-8.

[30]. Miraz, M.H., Ali, M., Excell, P.S. and Picking, R. A review on Internet of
Things (IoT), Internet of everything (IoE) and Internet of nano things (IoNT).
Internet Technologies and Applications (ITA) (2015) (219-224).

[31]. Khanam S, Ahmedy I. B., Idris M. Y. I., Jaward M. H., & Sabri, A. Q. B. M.
A survey of security challenges, attacks taxonomy and advanced countermeasures in
the internet of things. 1 November 2020, [EEE Access, Vol. 8, 219709-219743.

[32]. N.M. Masoodhu Banu, C. Sujatha. [oT architecture a comparative study. J
Pur Appl Math, 2017, 2017, Vol. 117.

[33]. Peter R. Egli. An Introduction to MQTT, a Protocol for M2M and IoT
Applications, 2016, indigo.com.

[34]. Pratap Singh, A. Kumar, & Kumar V. A Study on MQTT Protocol and its
Cyber Attacks., 2022, IARJSET, Vol. 9, 209-213. 10.17148/IARJSET.2022.9136.

[35]. Perrone G., Vecchio M., Pecori R., & Giaffreda R. A Survey on MQTT
Security Solutions After the Largest Cyberattack Carried Out through an Army of IoT
Devices. April 2017, In IoTBDS, 246-253.

[36]. Carl Endorf, Eugene Schultz, Jim Mellander. Intrusion Detection &
Prevention, McGraw-Hill © 2004.

[37]. Richard A, Giovanni Vigna. Intrusion Detection: A Brief History and
Overview, Reliable Software Group, Computer Science Department, University of
California Santa Barbara, 2002.

[38]. Lisong Pei, Jakob Schiitte, Carlos Simon. Intrusion Detection Systems,
2007-10-07.

[39]. Jabez J, Muthukumar B. Intrusion Detection System (IDS) Anomaly
Detection using outlier detection approach. 2015, Procedia Computer Science.

[40]. Bace, R. G., & Mell, P. Intrusion detection systems. 2001.

[41]. Zaidi, A. Recherche et détection des patterns d'attaques dans les réseaux IP a
hauts débits (Doctoral dissertation, Université d'Evry-Val d'Essonne). 2011.

[42]. Kumar B, T. Raju, P. Ratnakar, M. Baba & Sudhakar N. Intrusion detection
system-types and prevention. 2013.

[43].Intrusion detection system for DoS attack in cloud. Samani, Mishti D, et al.
2016, International Journal of Applied Information Systems., Vol. 10.

[44]. Eli David. Deep Learning for Dummies, Deep Instinct Special Edition, 2018 by
John Wiley & Sons, Inc., Hoboken, New Jersey.

[45]. Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep Learning,
www.deeplearningbook.org.

8o

indigoo.com
www.deeplearningbook.org

Bibliography

[46]. Nikhil Buduma, Nicholas Locascio. Fundamentals of Deep Learning
Designing Next-Generation Machine Intelligence Algorithms, 2017, O’Reilly Media,
Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

[47]. Nair, Vinod, and Geoffrey E. Hinton. “Rectified Linear Units Improve
Restricted Boltzmann Machines” Proceedings of the 27th International Conference
on Machine Learning (ICML-10), 2010. Journal of Neurophysiology 20.4 (1957): 408-

434

[48]. Alexander I. Galushkin. Neural Networks Theory, Springer-Verlag Berlin
Heidelberg 2007.

[49]. https://www.javatpoint.com/deep-learning-algorithms

[50]. T. Mothilal. Python. Definition: History of Python. July 2019.

[51]. https://domino.ai/data-science-dictionary/jupyter-notebook

[52]. Samira Gholizadeh. Top Popular Python Libraries in Research. 2022,] Robot
Auto Res 3(2), 142-145.

[53]. Hao, J., & Ho, T. K. (2019). Machine learning made easy: a review of scikit-learn
package in python programming language. Journal of Educational and Behavioral
Statistics, 44(3), 348-361.

(54]. Google’s Intro to TensorFlow. Available from:
https://developers.google.com/machine-learning/crash-course/first-stepswith-
tensorflow/toolkit.

[55]. Karimi, Zohreh. Confusion Matrix. 2021.

[56]. Dalianis, Hercules. (2018). Evaluation Metrics and Evaluation. 10.1007/978-
3-319-78503-5_6.

[57]. Ivan Vaccari, Giovanni Chiola, Maurizio Aiello, Maurizio Mongelli &
Enrico Cambiaso. MQTTset, a New Dataset for Machine Learning Techniques on
MQTT. Intelligent and Adaptive Security in Internet of Things. 18 November 2020.

81

https://www.javatpoint.com/deep-learning-algorithms
https://domino.ai/data-science-dictionary/jupyter-notebook
https://developers.google.com/machine-learning/crash-course/first-stepswith-%20tensorflow/toolkit.
https://developers.google.com/machine-learning/crash-course/first-stepswith-%20tensorflow/toolkit.

