

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L’ENSEIGNEMENT SUPERIEUR ET DE LA
RECHERCHE SCIENTIFIQUE

UNIVERSITE DE SAÏDA DR MOULAY TAHAR

Faculté de technologie

Département d’électronique

MEMOIRE DE FIN D’ETUDES EN VUE DE L’OBTENTION

DU DIPLOME DE MASTER EN ELECTRONIQUE

OPTION : INSTRUMENTATION

THEME :

SYSTÈME DE PRESENCE BASÉ SUR LA RECONNAISSANCE FACIALE
UTILISANT UNE CARTE ESP32-CAM

Présenté par :

ZEROUALI Belkacem El Mahdi Noureddine

CHABANE Chaouch Yahia Samir

Soutenu le 19 juin 2023

Devant le jury composé de :

Année Universitaire : 2022 - 2023

BOUKHALFA Malika Maître de conférences à l’Université de Saida Présidente

BERBER Redouane Maître de conférences à l’Université de Saida Examinateur

MAACHOU Fatima Maître de conférences à l’Université de Saida Encadrante

DEMOCRATIC AND POPULAR ALGERIAN REPUBLIC

MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

UNIVERSITY OF SAIDA DR MOULAY TAHAR

Faculty of Technology

Department of electronics

Final thesis for the attainment of a Master's degree in Electronics

OPTION : INSTRUMENTATION

THEME :

 ATTENDANCE SYSTEM BASED ON FACIAL RECOGNITION USING AN

ESP32-CAM CARD

Presented by :

ZEROUALI Belkacem El Mahdi Noureddine

CHABANE Chaouch Yahia Samir

Defended on june 28, 2023

Academic Year: 2022 - 2023

BOUKHALFA Malika Lecturer at the University of Saida President

BERBER Redouane Lecturer at the University of Saida Reviewer

MAACHOU Fatima Lecturer at the University of Saida Supervisor

Abstract

This work proposes a facial recognition-based attendance system using the ESP32-Camera

module to enhance attendance management in universities. By integrating facial recogni-

tion algorithms with the ESP32-Camera module, the system automates identification and

attendance tracking of students. It employs face detection, feature extraction, and face

recognition techniques to accurately recognize and record attendance. The system offers

advantages such as reduced administrative efforts, real-time monitoring, and data-driven

decision making. Evaluation of the system’s performance demonstrates its reliability and

scalability. The proposed system improves attendance management and streamlines ad-

ministrative processes in universities.

Keywords : facial recognition, ESP32-CAM, Python, OpenCv, Pie Charts, attendance

system.

Résumé

Ce travail propose un système de présence basé sur la reconnaissance faciale utilisant le

module ESP32-Camera pour améliorer la gestion des présences dans les universités. En

intégrant des algorithmes de reconnaissance faciale au module de caméra ESP32, le système

automatise l’identification et le suivi des présences des étudiants. Il utilise des techniques

de détection de visage, d’extraction de caractéristiques et de reconnaissance faciale pour

reconnâıtre et enregistrer avec précision les présences. Le système offre des avantages tels

que des efforts administratifs réduits, une surveillance en temps réel et une prise de décision

basée sur les données. L’évaluation des performances du système démontre sa fiabilité et

son évolutivité. Le système proposé améliore la gestion des présences et rationalise les

processus administratifs dans les universités.

Mots-clés : reconnaissance faciale, ESP32-CAM, Python, OpenCv, Pie Charts, Système

de présence.

Dedication

I dedicate this modest work:

To my dear parents

To my brothers and sisters

To my partner

To my friends

And to anyone who knows me...

- Zerouali Belkacem

Dedication

I dedicate this modest work:

To my mother and father

To my sisters

To my partner

To my friends

And to anyone who knows me or have helped me in anyway...

- CHABANE Chaouch Yahia Samir

Acknowledgements

We would like to express our deepest thanks to our supervisor Mrs. MAACHOU

Fatima for her support and her availability throughout this dissertation through the

work sessions organized.

We also extend our thanks to Mrs. Azizi Amina, Dr. in English Literature

and Linguistics researcher at University of Jordan for her guidance and mentoring

through this work.

We thank the members of the jury for their interest in our work. Our thanks also

go to all of our teachers who have contributed to our training.

We reserve a special place here to sincerely thank our parents for their affection

and their continuous support and to all those who, in one way or another, have

helped and encouraged us in the realization of this modest work.

Contents

Introduction 1

1 The ESP32-CAM 2

1.1 Introduction . 2

1.2 ESP32-Camera Module . 2

1.2.1 Purpose and Significance . 3

1.2.2 Collaboration with Ai-Thinker 3

1.2.3 Camera Sensor Capabilities 3

1.2.4 Flexible Camera Resolutions 4

1.2.5 Seamless Communication and Integration 4

1.2.6 Development Support and Libraries 4

1.3 The ESP32 Camera Hardware Overview 4

1.3.1 The ESP32’s Camera . 5

1.3.2 The ESP32 Camera Processor 5

1.3.3 The ESP32 Camera Memory 6

1.3.4 The Storage . 7

1.3.5 The Antenna . 8

1.3.6 LEDs . 8

1.4 Technical Specifications . 9

1.5 ESP32 Camera parts Schematics . 9

1.5.1 ESP-32S Module Schematic 9

1.5.2 PSRAM Schematic . 10

1.5.3 MicroSD Socket Schematic . 10

1.5.4 Camera module Schematic . 11

1.6 ESP32-CAM Power Consumption . 11

1.6.1 ESP32-CAM Pin-outs . 12

1.7 Programming the ESP32-CAM . 13

1.7.1 Using the FTDI Adapter . 14

1.7.2 Using the ESP32-CAM-MB Adapter 14

1.7.3 Setting Up the Arduino IDE 15

1.8 Considerations . 16

Contents

1.9 Ethical and Privacy Considerations 16

1.10 Conclusion . 16

2 Facial Recognition Technology 18

2.1 Introduction . 18

2.2 Facial recognition process . 18

2.2.1 The image capture process . 18

2.2.2 Face detection process . 19

2.2.3 Facial Alignment process . 20

2.2.4 Creation of face templates process 21

2.2.5 The enrollment process . 21

2.2.6 Decision and Authentication process 22

2.2.7 Ethical Considerations and Privacy 23

2.3 facial recognition implementation using the Python programming lan-

guage . 23

2.3.1 Install Python . 23

2.3.2 Python Libraries . 24

2.4 Microsoft Visual Studio . 32

2.5 CMake . 33

2.6 Visual Studio Code (VSCode) . 34

2.7 Conclusion . 36

3 A facial recognition based attendance system using the esp32 cam-

era module 37

3.1 Introduction . 37

3.2 Setting the ESP32-Camera Module 37

3.2.1 Arduino Code Breakdown . 37

3.3 Setting up the facial recognition function using Python programming 45

3.3.1 Python code breakdown for facial recognition 45

3.3.2 The attendance system Python programming and structure . . 47

3.3.3 Processing Frames and Face Recognition for Attendance pur-

poses . 49

3.4 The Complete Python code will look like this 54

3.5 Results . 62

3.5.1 Students recognition . 62

3.5.2 Students Attendance Report 63

3.5.3 Students statistics . 64

3.5.4 Students Pie charts . 64

3.6 Conclusion . 65

Contents

Conclusion 67

References 68

A Datasheet of Camera OV2640 71

List of Figures

1.1 The ESP32-CAM . 3

1.2 The ESP32-CAM Camera sensor . 5

1.3 The ESP32-CAM Processor . 6

1.4 The ESP32-CAM Memory . 7

1.5 The ESP32-CAM Storage . 7

1.6 The ESP32-CAM Antenna . 8

1.7 The ESP32-CAM LEDs . 8

1.8 The ESP32-S Schematic . 10

1.9 The ESP32-CAM PSRAM Schematic 10

1.10 The ESP32-CAM MicroSD Socket Schematic 11

1.11 The ESP32-CAM Camera sensor Schematic 11

1.12 The ESP32-CAM Pin-outs . 12

1.13 The ESP32-CAM FTDI Adapter . 14

1.14 The ESP32-CAM -MB . 14

1.15 Selecting the Board and Port . 15

1.16 Choosing the COM port . 16

2.1 The image capture process . 19

2.2 The face detection process . 20

2.3 The face alignment process . 21

2.4 Digital reference points creationStudents enrollment process 21

2.5 Students enrollment process . 22

2.6 Students identity authentication . 22

2.7 Python programming language logo 23

2.8 OpenCV library install Python command 24

2.9 Import libraries in Python script . 24

2.10 urllib library import in Python script 25

2.11 URL data retrieve using GET request in Python script 25

2.12 NumPy library install Python command 25

2.13 NumPy library import in Python script 26

2.14 OS library import in Python script 26

i

List of Figures

2.15 OS library working directory . 27

2.16 OS library directory change . 27

2.17 Import the datetime module in Python script 27

2.18 Get the current date and time Python function 27

2.19 individual components of a datetime object 28

2.20 installing the face-recognition library 28

2.21 import face-recognition modules in Python script 29

2.22 Install the pandas Library . 29

2.23 Import the pandas module . 29

2.24 Loading data from a file . 30

2.25 Importing the pathlib module in your Python script 30

2.26 Path components access Python script 31

2.27 installing the matplotlib library . 31

2.28 import the matplotlib module in Python script 31

2.29 Visual Studio Community required features installation 33

3.1 Arduino employed ESP32-Cam libraries 38

3.2 setting the wireless connection server for the ESP32-Cam 38

3.3 HTTP Web-Server communication creation 38

3.4 ESP32-Cam Resolution setting . 38

3.5 ESP32-Cam image capture process setting 39

3.6 HTTP requests handling for specific resolutions 40

3.7 ESP32-Cam initial setup . 41

3.8 The server.on() function Python code 42

3.9 face recognition library for face detection and recognition 46

3.10 face encoding and location . 46

3.11 Current Time function . 47

3.12 Reading the Attendance File function 48

3.13 Status and Attendance Update . 48

3.14 Saving Attendance Update . 49

3.15 Attendance File Read . 49

3.16 New Entry creation . 49

3.17 Attendance for ’Enter’ Status Python code 50

3.18 Attendance for ’Exit’ Status . 50

3.19 Students attendance statistics Python code 51

3.20 students absence calculations Python code 51

3.21 Attendance report generating Python code 51

3.22 attendance recognition process Python code 52

3.23 pie chart creation Python code . 53

ii

List of Figures

3.24 pie charts for attendance statistics Python code 54

3.25 Zerouali Belkacem student presence 62

3.26 Kourat Abdelkader student presence 63

3.27 Mekhalfi Oussama student presence 63

3.28 Students presence log information file 64

3.29 Students presence statistics information file 64

3.30 Students presence and absence statistics information file 64

3.31 Students Pie chart statistics . 65

3.32 Students Pie chart statistics with absence history 65

iii

List of Tables

1.1 Power consumption in different operation modes 12

iv

Abbreviations

IDE Integrated Development Environment

USB Universal Serial Bus

LSB Least Significant Bit

CPU Central Processing Unit

Wi-Fi Wireless Fidelity

IoT Internet of Things

AI-Thinker Manufacturer of ESP32 modules

VGA Video Graphics Array

SPI Serial Peripheral Interface

ESP-IDF Espressif IoT Development Framework

APIs Application Programming Interface

PlatformIO PlatformIO is an open-source ecosystem for IoT development that

provides a unified development platform for embedded systems

SoC System-on-Chip

PCB Printed Circuit Board

RAM Random Access Memory

SRAM Static Random Access Memory

PSRAM Pseudo-Static RAM

GitHub GitHub is a web-based platform for version control and collaboration

that allows developers to host, review, and manage code repositories

v

Abbreviations

microSD microSD is a type of removable flash memory card commonly used

for storage in portable devices such as smartphones, tablets, and

cameras

u.FL Ultra-Small Connectors, FL is a series name

ULP Ultra-Low Power

802.11 Wi-Fi: 802.11 b/g/n – 802.11 is a set of IEEE standards for wireless

local area networks (WLANs). The b/g/n standards specify the

communication protocols and data rates for Wi-Fi networks

BT Bluetooth: v4.2 BR/EDR and BLE

BR Bluetooth Basic Rate

EDR Enhanced Data Rate

BLE Bluetooth Low Energy

UXGA Ultra Extended Graphics Array

IEEE 802.11 IEEE 802.11 standard security features all supported

OTP One-Time Programmable

CHW Cryptographic Hardware Acceleration

ECC Elliptic Curve Cryptography

RNG Random Number Generator

RTC Real-Time Clock

GPIO General Purpose Input/Output

VCC VCC is a term commonly used in electronics to represent the

positive power supply voltage

UART Universal Asynchronous Receiver-Transmitter

ADC Analog-to-Digital Converter

PWM Pulse Width Modulation

LED Light-Emitting Diode

vi

Abbreviations

FTDI FTDI refers to the Family of USB-to-Serial Interface Integrated

Circuit chips manufactured by Future Technology Devices

International

AI Artificial Intelligence

ML Machine Learning

ANN Artificial Neural Network

OpenCV Open Source Computer Vision

URL Uniform Resource Locator

GET Hypertext Transfer Protocol GET method

HTTP Hypertext Transfer Protocol

PIL Python Imaging Library

NumPy Numerical Python

os Operating System

Python No acronym

getcwd() Get Current Working Directory

chdir() Change Directory

datetime No acronym

now() No acronym

CSV Comma-Separated Values

Excel No acronym

SQL Structured Query Language

pathlib No acronym

matplotlib No acronym

C++ C Plus Plus

OS Operating System

VSCode Visual Studio Code

vii

Abbreviations

Git Global Information Tracker

PyInstaller Python Installer

CMake Cross-platform Make

GUI Graphical User Interface

JPEG Joint Photographic Experts Group

SSD Solid State Drive

IP Internet Protocol

viii

Introduction

This thesis introduces a facial recognition-based attendance system for universities,

utilizing the ESP32-Camera module. Traditional attendance management methods

in universities often suffer from inefficiency and errors. To address these challenges,

the proposed system automates attendance tracking using facial recognition tech-

nology.

By integrating facial recognition algorithms with the ESP32-Camera module, the

system captures and processes images in real-time, enabling automated identification

and recording of student attendance. It follows a three-step process: face detection,

feature extraction, and face recognition.

The system offers several advantages, including reduced administrative efforts,

real-time monitoring, and data-driven decision making. It enhances attendance

management by providing accurate attendance records and generating comprehen-

sive reports for academic planning and resource allocation.

Evaluation of the system’s performance includes metrics such as recognition ac-

curacy, processing time, and scalability. User feedback and usability testing assess

the system’s practicality.

In summary, this thesis aims to develop and evaluate a facial recognition-based

attendance system using the ESP32-Camera module, providing an efficient solution

to improve attendance management in universities.

1

Chapter 1

The ESP32-CAM

1.1 Introduction

The history of the ESP32 can be traced back to Espressif Systems’ earlier micro-

controller, the ESP8266, which gained considerable popularity due to its affordable

price and built-in Wi-Fi capabilities. The ESP8266 opened up new possibilities for

IoT projects, enabling easy connectivity to the internet and remote control of de-

vices. However, as demands for more advanced features and increased processing

power grew, Espressif recognized the need to develop a successor that could ad-

dress these requirements. In 2016, Espressif Systems unveiled the ESP32, building

upon the success and lessons learned from the ESP8266. The ESP32 introduced

significant enhancements and expanded capabilities compared to its predecessor. It

featured a dual-core processor, higher clock speeds, more memory, and a richer set of

peripherals. These improvements aimed to provide developers with a more powerful

and versatile microcontroller for IoT applications. Since its release, the ESP32 has

gained traction in the IoT community and beyond. Its exceptional performance,

extensive wireless connectivity options, and comprehensive development ecosystem

have made it a favored choice for a wide range of projects. The ESP32 has found

applications in smart home automation, industrial monitoring systems, wearable

devices, robotics, and much more. Its popularity can be attributed to both its tech-

nical capabilities and the active community that has grown around it, continually

contributing to its development and expanding its potential applications.[1]

1.2 ESP32-Camera Module

The ESP32-Camera module serves as an indispensable extension board for the

ESP32 microcontroller, offering developers the ability to incorporate camera func-

tionality into their IoT projects Figure 1.1. With a rich history of collaboration

2

The ESP32-CAM

between Espressif Systems and Ai-Thinker, this module provides an integrated and

efficient solution for capturing images and videos. In this article, we will explore

the key facts and features of the ESP32-Camera module, highlighting its purpose,

camera sensor capabilities, communication and integration methods, development

support, and a range of practical applications.[1]

Figure 1.1: The ESP32-CAM

1.2.1 Purpose and Significance

The ESP32-Camera module emerged as a valuable addition to the ESP32 micro-

controller, addressing the growing demand for visual data acquisition in IoT ap-

plications. By seamlessly integrating a camera sensor into the ESP32 ecosystem,

this module enables developers to effortlessly incorporate image and video captur-

ing capabilities into their projects. This integration holds immense potential for

IoT projects, home automation systems, attendance systems, surveillance systems,

robotics, and various applications that require visual data analysis and interac-

tion.[2]

1.2.2 Collaboration with Ai-Thinker

The development of the ESP32-Camera module is the result of a fruitful collab-

oration between two industry-leading entities, Espressif Systems and Ai-Thinker.

Espressif Systems brings its expertise in microcontroller technology, while Ai-Thinker

contributes its extensive knowledge in wireless and camera technologies. This col-

laboration ensures a high-quality and seamlessly integrated camera module that

complements the ESP32 microcontroller’s capabilities.[2]

1.2.3 Camera Sensor Capabilities

The ESP32-Camera module leverages a camera sensor to capture high-quality im-

ages and videos. The specific camera sensor employed may vary based on the mod-

3

The ESP32-CAM

ule variant or version being used. Prominent sensors utilized in the ESP32-Camera

module include the OV2640 and OV7725, renowned for their affordability and re-

spectable image quality. These camera sensors provide a reliable foundation for

capturing visual data in a variety of applications.[2]

1.2.4 Flexible Camera Resolutions

The ESP32-Camera module offers a range of resolutions to suit diverse project

requirements. Developers can select resolutions that span from VGA (640x480)

for lower-quality images, to higher resolutions such as 2 megapixels (1600x1200) or

more, depending on the specific module variant. This flexibility allows developers to

strike a balance between image quality, resource utilization, and available processing

power within the ESP32 microcontroller.[2]

1.2.5 Seamless Communication and Integration

Designed to seamlessly integrate with the ESP32 microcontroller, the ESP32-Camera

module leverages various communication and integration methods. It establishes a

connection with the ESP32 via interfaces such as the serial peripheral interface (SPI)

or other suitable interfaces. Captured image or video data can then be transmitted

to a host device, such as a computer, server, or mobile device, over Wi-Fi or other

communication protocols supported by the ESP32.[2]

1.2.6 Development Support and Libraries

To streamline the development process, Espressif provides a dedicated camera li-

brary within the ESP-IDF (Espressif IoT Development Framework). This library

equips developers with functions and APIs for effortless camera initialization, config-

uration, and capturing processes. Additionally, it facilitates essential image process-

ing tasks like color correction, resizing, and encoding. The ESP32-Camera module is

compatible with popular development environments, including the Arduino IDE and

PlatformIO, which enables a vast community of developers to harness its features

and capabilities.[2]

1.3 The ESP32 Camera Hardware Overview

The heart of the ESP32-CAM is an ESP32-S System-on-Chip (SoC) from Ai-Thinker.

Being an SoC, the ESP32-S chip contains an entire computer—the microprocessor,

RAM, storage, and peripherals—on a single chip. While the chip’s capabilities are

4

The ESP32-CAM

quite impressive, the ESP32-CAM development board adds even more features to

the mix. Let’s take a look at each component one by one.[3]

1.3.1 The ESP32’s Camera

The OV2640 camera sensor on the ESP32-CAM(Figure 1.2) is what sets it apart

from other ESP32 development boards and makes it ideal for use in video projects.

Figure 1.2: The ESP32-CAM Camera sensor

The OV2640 camera has a resolution of 2 megapixels, which translates to a

maximum of 1600×1200 pixels, which is sufficient for many surveillance applications.

The ESP32-CAM is compatible with a wide variety of camera sensors, as listed on

its official libraries website.[2]

1.3.2 The ESP32 Camera Processor

The ESP32-CAM equips the ESP32-S surface-mount(Figure 1.3) printed circuit

board module from Ai-Thinker.

5

The ESP32-CAM

Figure 1.3: The ESP32-CAM Processor

The ESP32-S contains a Tensilica Xtensa® LX6 microprocessor with two 32-

bit cores operating at a staggering 240 MHz. This is what makes the ESP32-S

suitable for intensive tasks like video processing, facial recognition, and even artificial

intelligence.[2][3]

1.3.3 The ESP32 Camera Memory

Memory is paramount for complex tasks, so the ESP32-S has a full 520 kilobytes of

internal RAM(Figure 1.4), which resides on the same side as the rest of the chip’s

components.

6

The ESP32-CAM

Figure 1.4: The ESP32-CAM Memory

It may be inadequate for RAM-intensive tasks, so ESP32-CAM includes 4 MB of

external PSRAM to expand the memory capacity. This is plenty of RAM, especially

for intensive audio or graphics processing. All these features amount to nothing if

you don’t have enough storage for your programs and data. The ESP32-S chip

shines here as well, as it contains 4 MB of on-chip flash memory.[3][1]

1.3.4 The Storage

The addition of a microSD card slot(Figure 1.5) on the ESP32-CAM is a nice bonus.

This allows for limitless expansion, making it a great little board for data loggers or

image capture.[1]

Figure 1.5: The ESP32-CAM Storage

7

The ESP32-CAM

1.3.5 The Antenna

The ESP32-CAM comes with an on-board PCB trace antenna as well as a u.FL

connector(Figure 1.6) for connecting an external antenna. An Antenna Selection

jumper (zero-ohm resistor) allows you to choose between the two options.[1]

Figure 1.6: The ESP32-CAM Antenna

1.3.6 LEDs

The ESP32-CAM has a white square LED(Figure 1.7). It is intended to be used as

a camera flash, but it can also be used for general illumination.[1]

Figure 1.7: The ESP32-CAM LEDs

There is a small red LED on the back that can be used as a status indicator. It

is user-programmable and connected to GPIO33.

8

The ESP32-CAM

1.4 Technical Specifications

To summarize, the ESP32-CAM has the following specifications[1]:

Processors: o CPU: Xtensa dual-core 32-bit LX6 microprocessor, operating at 240

MHz and performing at up to 600 DMIPS o Ultra-low power (ULP) co-processor

Memory: o 520 KB SRAM o 4MB External PSRAM o 4MB internal flash memory

Wireless connectivity: o Wi-Fi: 802.11 b/g/n o Bluetooth: v4.2 BR/EDR and

BLE (shares the radio with Wi-Fi)

Camera: o 2 Megapixel OV2640 sensor o Array size UXGA 1622×1200 o Output

formats include YUV422, YUV420, RGB565, RGB555 and 8-bit compressed data

o Image transfer rate of 15 to 60 fps o Built-in flash LED o Support many camera

sensors

• Supports microSD card o Built-in microSD card slot • Security: o IEEE 802.11

standard security features all supported, including WFA, WPA/WPA2 and WAPI o

Secure boot o Flash encryption o 1024-bit OTP, up to 768-bit for customers o Cryp-

tographic hardware acceleration: AES, SHA-2, RSA, elliptic curve cryptography

(ECC), random number generator (RNG)

• Power management: o Internal low-dropout regulator o Individual power do-

main for RTC o 5uA deep sleep current o Wake up from GPIO interrupt, timer,

ADC measurements, capacitive touch sensor interrupt

1.5 ESP32 Camera parts Schematics

1.5.1 ESP-32S Module Schematic

ESP-32S Module Schematic(Figure 1.8).

9

The ESP32-CAM

Figure 1.8: The ESP32-S Schematic

1.5.2 PSRAM Schematic

PSRAM Schematic(Figure 1.9).

Figure 1.9: The ESP32-CAM PSRAM Schematic

1.5.3 MicroSD Socket Schematic

MicroSD Socket Schematic(Figure 1.10).

10

The ESP32-CAM

Figure 1.10: The ESP32-CAM MicroSD Socket Schematic

1.5.4 Camera module Schematic

Camera module Schematic(Figure 1.11).

Figure 1.11: The ESP32-CAM Camera sensor Schematic

1.6 ESP32-CAM Power Consumption

The power consumption of the ESP32-CAM varies depending on what you’re using

it for. It ranges from 80 mAh when not streaming video to around 100 160 mAh

when streaming video; with the flash on, it can reach 270 mAh.[1]

11

The ESP32-CAM

Operation mode Power Consumption (mAh)
Standby 80
In streaming 100–160
In streaming with flash 270

Table 1.1: Power consumption in different operation modes

1.6.1 ESP32-CAM Pin-outs

The ESP32-CAM has 16 pins in total. For convenience, pins with similar function-

ality are grouped together. The pinout is as follows(Figure 1.12).[2][1]

Figure 1.12: The ESP32-CAM Pin-outs

• Power Pins :

There are two power pins: 5V and 3V3. The ESP32-CAM can be powered via

the 3.3V or 5V pins. Since many users have reported problems when powering

the device with 3.3V, it is advised that the ESP32-CAM always be powered via

the 5V pin. The VCC pin normally outputs 3.3V from the on-board voltage

regulator. It can, however, be configured to output 5V by using the Zero-ohm

link near the VCC pin.

• GND is the ground pin.

• GPIO Pins:

The ESP32-S chip has 32 GPIO pins in total, but because many of them are

used internally for the camera and the PSRAM, the ESP32-CAM only has 10

GPIO pins available. These pins can be assigned a variety of peripheral duties,

such as UART, SPI, ADC, and Touch.

• UART Pins:

12

The ESP32-CAM

The ESP32-S chip actually has two UART interfaces, UART0 and UART2.

However, only the RX pin (GPIO 16) of UART2 is broken out, making UART0

the only usable UART on the ESP32-CAM (GPIO 1 and GPIO 3). Also, be-

cause the ESP32-CAM lacks a USB port, these pins must be used for flashing as

well as connecting to UART-devices such as GPS, fingerprint sensors, distance

sensors, and so on.

• MicroSD Card Pins:

They are used for interfacing the microSD card. If you aren’t using a microSD

card, you can use these pins as regular inputs and outputs.

• ADC Pins :

On the ESP32-CAM, only ADC2 pins are broken out. However, because ADC2

pins are used internally by the WiFi driver, they cannot be used when Wi-Fi

is enabled.

• Touch Pins :

Touch Pins The ESP32-CAM has 7 capacitive touch-sensing GPIOs. When a

capacitive load (such as a human finger) is in close proximity to the GPIO, the

ESP32 detects the change in capacitance.

• SPI Pins :

The ESP32-CAM features only one SPI (VSPI) in slave and master modes.

• PWM Pins :

The ESP32-CAM has 10 channels (all GPIO pins) of PWM pins controlled by

a PWM controller. The PWM output can be used for driving digital motors

and LEDs.

For more information, refer to our comprehensive ESP32-CAM pinout reference

guide. This guide also explains which ESP32-CAM GPIO pins are safe to use and

which pins should be used with caution.

1.7 Programming the ESP32-CAM

Programming the ESP32-CAM can be a bit of a pain as it lacks a built-in USB

port. Because of that design decision, users require additional hardware in order to

upload programs from the Arduino IDE. None of that is terribly complex, but it

is inconvenient. To program this device, you’ll need either a USB-to-serial adapter

(an FTDI adapter) or an ESP32-CAM-MB programmer adapter.

13

The ESP32-CAM

1.7.1 Using the FTDI Adapter

If you’ve decided to use the FTDI adapter, here’s how you connect it to the ESP32-

CAM module(Figure 1.13).

Figure 1.13: The ESP32-CAM FTDI Adapter

Many FTDI programmers have a jumper that lets you choose between 3.3V and

5V. As we are powering the ESP32-CAM with 5V, make sure the jumper is set to

5V.[2]

1.7.2 Using the ESP32-CAM-MB Adapter

Using the FTDI Adapter to program the ESP32-CAM is a bit of a hassle. This

is why many vendors now sell the ESP32-CAM board along with a small add-on

daughterboard called the ESP32-CAM-MB.

You stack the ESP32-CAM on the daughterboard, attach a micro USB cable, and

click the Upload button to program your board. It’s that simple.(Figure 1.14).[2]

Figure 1.14: The ESP32-CAM -MB

14

The ESP32-CAM

The highlight of this board is the CH340G USB-to-Serial converter. That’s what

translates data between our computer and the ESP32-CAM. There’s also a RESET

button, a BOOT button, a power indicator LED, and a voltage regulator to supply

the ESP32-CAM with plenty of power.

1.7.3 Setting Up the Arduino IDE

Installing the ESP32 Board

To use the ESP32-CAM, or any ESP32, with the Arduino IDE, you must first install

the ESP32 board (also known as the ESP32 Arduino Core) via the Arduino Board

Manager.

Selecting the Board and Port

After installing the ESP32 Arduino Core, restart your Arduino IDE and navigate to

Tools ¿ Board ¿ ESP32 Arduino and select AI-Thinker ESP32-CAM.(Figure 1.15).[2][3][1]

Figure 1.15: Selecting the Board and Port

Now connect the ESP32-CAM to your computer using a USB cable. Then,

navigate to Tools ¿ Port and choose the COM port to which the ESP32-CAM is

connected.(Figure 1.16).

15

The ESP32-CAM

Figure 1.16: Choosing the COM port

That’s it; the Arduino IDE is now set up for the ESP32-CAM!

1.8 Considerations

When deploying the ESP32-CAM for facial recognition, factors such as processing

power limitations and camera resolution should be carefully considered, particularly

in scenarios involving a significant number of students.

1.9 Ethical and Privacy Considerations

Ensuring adherence to ethical standards and privacy regulations is paramount. Ob-

taining informed consent from students and implementing robust data security mea-

sures are essential to protect individual privacy rights.

1.10 Conclusion

The ESP32-Camera module is one of the most powerful to date device in its field,

allowing the realisation of many creative ideas and projects that it has successfully

and without a doubt revolutionized the world of IoT. By following the steps in

this chapter, the user will be able to take advantage of this incredible device and

its features with ease, making sure to address the processing power constraints,

16

The ESP32-CAM

optimizing camera resolution, and upholding ethical practices, the full potential of

this technology can be realized, benefiting both administrators and students alike.

17

Chapter 2

Facial Recognition Technology

2.1 Introduction

Facial recognition is a category of bio-metric software that maps an individual’s facial

features mathematically and stores the data as a face-print. The software uses deep

learning algorithms to compare a live capture or digital image to the stored face-print

in order to verify an individual’s identity. The origins of facial recognition technology

can be traced back to the 1960s when researchers first ventured into automated face

recognition. However, the nascent attempts were limited by the computational

power and technology available at the time. In the 1990s, notable breakthroughs

in face detection and recognition algorithms laid the foundation for more robust

systems. The introduction of 3D facial recognition technology, capable of capturing

intricate facial depth information, further enhanced accuracy and resilience.[4]

2.2 Facial recognition process

In order to achieve such technology, there will be many steps the go through, those

are as follows :

2.2.1 The image capture process

The image capture process in facial recognition technology involves taking a pho-

tograph or video of a person’s face using a camera or other image capture device,

which in our case, we are going to be using the ESP32-Camera module for that. the

figure(Figure 2.1) bellow shows an example on how a face image should be taken for

the facial recognition process.[5]

18

Facial Recognition Technology

Figure 2.1: The image capture process

The ESP32 camera should be positioned at the appropriate distance and angle

to capture the person’s face, ideally with the face filling a large portion of the

frame. Depending on the setting and the application, the image may be captured

in a controlled environment, such as at a security checkpoint, or in an uncontrolled

environment, such as in a university.

2.2.2 Face detection process

Face detection, also called facial detection, is an artificial intelligence (AI)-based

computer technology used to find and identify human faces in digital images and

video. Face detection uses machine learning (ML) and artificial neural network

(ANN) technology, and plays an important role in face tracking, face analysis and

facial recognition. In face analysis, face detection uses facial expressions to identify

which parts of an image or video should be focused on. In a facial recognition

system, face detection data is required to generate a face-print and match it with

other stored face-prints. Face detection algorithms typically start by searching for

human eyes, one of the easiest features to detect. They then try to detect facial

landmarks, such as eyebrows, mouth, nOSe, nOStrils and irises. Once the algorithm

19

Facial Recognition Technology

concludes that it has found a facial region, it does additional tests to confirm that

it has detected a face. The next figure(Figure 2.2) show an example on how the

process is applied on the captured face image.[6] [5]

Figure 2.2: The face detection process

To ensure accuracy, the algorithms are trained on large data sets that incorporate

hundreds of thousands of positive and negative images. The training improves the

algorithms’ ability to determine whether there are faces in an image and where they

are.

2.2.3 Facial Alignment process

Once faces are detected, the process of facial alignment begins. This crucial step aims

to standardize the position and orientation of the detected faces. By normalizing

variations caused by different camera angles or facial poses, facial alignment ensures

consistency in subsequent analysis and comparisons. The figure(Figure 2.3) bellow

represent an example on how the alignment process of the face is done.

20

Facial Recognition Technology

Figure 2.3: The face alignment process

With faces aligned, the system proceeds to extract unique facial features. Com-

plex algorithms meticulously analyze and measure attributes like the size, shape,

and texture of various facial components.[5]

2.2.4 Creation of face templates process

Based on the extracted features, the system generates individual face templates.

These templates serve as digital reference points, encapsulating the numerical rep-

resentation of an individual’s facial attributes. The face templates are stored in

a database for future comparisons and identification purposes. The following fig-

ure(Figure 2.4) illustrates the process of the detail conversion.[5]

Figure 2.4: Digital reference points creationStudents enrollment process

2.2.5 The enrollment process

During the enrollment phase, individuals’ faces are captured, and their face tem-

plates are created and stored. This process establishes a database of known identi-

ties, allowing the system to recognize and verify students in subsequent encounters.

The next figure(Figure 2.5) shows students taking turns in-front of the camera to

establish their attendance for their class.[5]

21

Facial Recognition Technology

Figure 2.5: Students enrollment process

When facial recognition is performed, the system compares the facial features

of an input face with the stored face templates. Complex algorithms calculate the

similarity or dissimilarity between the features, determining potential matches or

discrepancies.

2.2.6 Decision and Authentication process

Based on the comparison results, a decision is made regarding the identity of the

input face. If a high-confidence match is found, the system can authenticate the

person’s identity. This authentication can be utilized for various purposes, such as

enrolling presence in an attendance system or even granting access to secure areas,

verifying identities, or enabling personalized experiences. The figure(Figure 2.6)

bellow show a face image of a freshly enrolled individual being compared to the ones

already in the database so that it will be listed as present in the attendance system

if a match is found, if not than the individual will not be listed.

Figure 2.6: Students identity authentication

22

Facial Recognition Technology

2.2.7 Ethical Considerations and Privacy

While facial recognition technology offers significant benefits, it also raises impor-

tant ethical considerations. Privacy concerns, potential biases, and misuse of the

technology need to be addressed through appropriate regulations and responsible

deployment.[6][5]

2.3 facial recognition implementation using the

Python programming language

Python is an interpreted, object-oriented, high-level programming language with

dynamic semantics. Its high-level built in data structures, combined with dynamic

typing and dynamic binding, make it very attractive for Rapid Application De-

velopment, as well as for use as a scripting or glue language to connect existing

components together. Python’s simple, easy to learn syntax emphasizes readability

and therefore reduces the cOSt of program maintenance. Python supports modules

and packages, which encourages program modularity and code reuse. The Python

interpreter and the extensive standard library are available in source or binary form

without charge for all major platforms, and can be freely distributed.[7] The fig-

ure(Figure 2.7) below is the official Python programming language logo.

Figure 2.7: Python programming language logo

2.3.1 Install Python

Visit the official Python website (https://www.python.org/) and download the Python

installation package for your operating system. Follow the installation instructions

to set up Python on your machine.[python-tutorials]

23

Facial Recognition Technology

2.3.2 Python Libraries

In order for python to perform the tasks in hand, it relies on different kind of

libraries, A library is a collection of code that makes everyday tasks more efficient.

Using OpenCV, for example, you can generate visualizations with just one line of

code. To create a chart from an object, you’d have to write a lot of code without a

library like this. Python is a popular choice for data analysis because of its extensive

library of tools for manipulating, visualizing, and training machine learning models.

The Open-CV Library

OpenCV (Open Source Computer Vision) is a popular open-source library for com-

puter vision and image processing tasks. It provides a wide range of functions and

algorithms for image and video analysis, including face recognition. In this walk-

through, I will provide you with an overview and a step-by-step guide on how to

perform face recognition using OpenCV in Python.[8]

Install OpenCV

To begin, you need to install the OpenCV library in your Python environment.

You can install it using pip by running the following command shown in the fig-

ure(Figure 2.8) bellow :

Figure 2.8: OpenCV library install Python command

Import the necessary libraries: After installing OpenCV, import the required

libraries in your Python script as it is demonstrated in the next figure(Figure 2.9) :

Figure 2.9: Import libraries in Python script

The urllib library

The urllib library in Python is a standard module that provides a set of functions

and classes for handling URLs (Uniform Resource Locators). It allows you to in-

teract with web resources by making HTTP requests, handling cookies, managing

authentication, and more. The urllib library is part of the Python standard library,

so there’s no need to install it separately.[9]

24

Facial Recognition Technology

Import the necessary modules

Begin by importing the required modules from the urllib library. the figure(Figure 2.10)

bellow shows how to Import the necessary modules :

Figure 2.10: urllib library import in Python script

Make a GET request To retrieve data from a URL using a GET request, use the

urllib.request.urlopen() function.

This function returns a file-like object that you can use to read the response data.

the figure(Figure 2.11) bellow gives a demonstration of this :

Figure 2.11: URL data retrieve using GET request in Python script

You can read the response data from the file-like object using methods such as

read() or readlines().

The NumPy library

The NumPy library in Python is a powerful numerical computing library that pro-

vides support for large, multi-dimensional arrays and matrices, along with a col-

lection of mathematical functions to operate on these arrays efficiently. It is a

fundamental library for data manipulation and is commonly used in scientific and

numerical computations.[10][11]

Install NumPy:

Begin by installing the NumPy library in your Python environment. The fig-

ure(Figure 2.12) below shows how to install it using the pip command:

Figure 2.12: NumPy library install Python command

25

Facial Recognition Technology

Import the necessary module

After installing NumPy, import the module in your Python script like shown in

the figure(Figure 2.13) below:

Figure 2.13: NumPy library import in Python script

Load and preprocess face images:

Start by loading the face images you want to perform face recognition on. These

images can be grayscale or color images. You can use any image loading library,

such as OpenCV or PIL, to load the images.

Preprocess the images, if needed, by resizing, normalizing, or converting them to

grayscale.

The OS library

The OS library in Python is a standard library module that provides a way to

interact with the operating system. It offers functions for working with files and

directories, executing system commands, accessing environment variables, and more.

The OS module is part of the Python standard library, so there’s no need to install

it separately.[12]

Import the necessary module

Start by importing the OS module in your Python script as shown in the fig-

ure(Figure 2.14) bellow :

Figure 2.14: OS library import in Python script

Working with files and directories:

• Get the current working directory:

Use the OS.getcwd() function to retrieve the current working directory like the

next figure(Figure 2.15) shows:

26

Facial Recognition Technology

Figure 2.15: OS library working directory

• Change the current working directory

You can change the current working directory using the OS.chdir() function, the

figure(Figure 2.16) bellow gives an example:

Figure 2.16: OS library directory change

The OS has many functions such as we have seen so we will suffice with these

few examples.

The datetime library

The datetime library in Python is a standard library module that provides classes

for manipulating dates and times. It allows you to create, manipulate, and format

date and time objects. The datetime module is part of the Python standard library,

so there’s no need to install it separately.[13]

1. Import the necessary module:

Start by importing the datetime module in your Python script. This can be done

like shown in the next figure(Figure 2.17)

Figure 2.17: Import the datetime module in Python script

Working with dates and times:

• Get the current date and time: Use the datetime.datetime.now() function to

retrieve the current date and time, here is an example in the next figure(Figure 2.18)

Figure 2.18: Get the current date and time Python function

27

Facial Recognition Technology

Access individual components of a datetime object:

You can access the year, month, day, hour, minute, and second components

of a datetime object using their respective attributes as shown in the next fig-

ure(Figure 2.19).

Figure 2.19: individual components of a datetime object

As it is showing, this library plays an instrumental part especially that we are

creating an attendance system which relies heavily on time tracking.

The face recognition library

The face-recognition library in Python is a powerful and easy-to-use library for face

recognition and facial feature detection. It is built on top of dlib, a C++ library

renowned for its state-of-the-art face recognition algorithms. The face-recognition

library provides a high-level API that simplifies the process of face detection, face

recognition, facial landmark detection, and face encoding.[6][5]

1. Install the library: Begin by installing the face-recognition library in your

Python environment. You can install it using pip by running the following command,

this is shown in the figure(Figure 2.20).

Figure 2.20: installing the face-recognition library

Import the necessary modules

After installing face-recognition, import the required modules in your Python

script. this is demonstrated in the next figure(Figure 2.21).

28

Facial Recognition Technology

Figure 2.21: import face-recognition modules in Python script

Load and preprocess face images: Start by loading the face images you want

to perform face recognition on. You can use any image loading library, such as

OpenCV or PIL, to load the images. Preprocess the images, if needed, by resizing,

normalizing, or converting them to grayscale.

The pandas Library

The pandas library in Python is a powerful and widely used open-source data ma-

nipulation and analysis tool. It provides data structures and functions for efficiently

handling structured data, such as tables or spreadsheets, and performing various

operations like filtering, sorting, grouping, and aggregating. Although pandas is not

directly related to facial recognition, it can be useful for organizing and manipulating

data related to facial recognition tasks.[14][14]

1. Install the library: Begin by installing the pandas library in your Python

environment. You can install it using pip by running the following command that

is shown in the figure(Figure 2.22).

Figure 2.22: Install the pandas Library

Import the necessary module: After installing pandas, import the module in your

Python script. the figure(Figure 2.23).

Figure 2.23: Import the pandas module

Loading and organizing data:

• Load data from a file:

29

Facial Recognition Technology

pandas provides functions like read-csv(), read-excel(), and read-sql() to load

data from different file formats or data sources. For facial recognition, you may

have data such as image paths, labels, or facial features stored in a CSV or Excel

file. Use the appropriate function to load the data into a DataFrame. this is shown

in the next figure(Figure 2.24).

Figure 2.24: Loading data from a file

And many other features such as :

• Create a DataFrame • Accessing and manipulating data • Saving data to a file

And so on.

The pathlib library

The pathlib library in Python provides an object-oriented approach to working with

file system paths. It offers a high-level, platform-independent API for manipulating

and accessing files and directories. While pathlib itself does not have specific func-

tionality for facial recognition, it can be useful for handling file paths and organizing

the data related to facial recognition tasks.[15]

1. Import the necessary module: Start by importing the pathlib module in your

Python script, the figure(Figure 2.25) bellow will show how to do this task.

Figure 2.25: Importing the pathlib module in your Python script

Working with file paths:

Create a Path object: Use the Path class to create a Path object representing a

file or directory path. You can initialize it with a string representing the path.

Access path components:

The Path object provides properties and methods to access different components

of the path, such as the file name, parent directory, file extension, etc. The next

figure(Figure 2.26) will help demonstrate this.

30

Facial Recognition Technology

Figure 2.26: Path components access Python script

And many other option that make this library of a great value.

The matplotlib library

The matplotlib library in Python is a powerful and widely used data visualization

tool. It provides a comprehensive set of functions for creating a wide range of

plots, including line plots, scatter plots, bar plots, histograms, pie charts, and more.

With matplotlib, you can create visually appealing and informative visualizations

to explore and communicate your data.[16][17]

Install the library: Begin by installing the matplotlib library in your Python

environment. You can install it using pip by running the following command show

in the figure(Figure 2.27).

Figure 2.27: installing the matplotlib library

Import the necessary module:

After installing matplotlib, import the module in your Python script just like in

the next figure(Figure 2.28) .

Figure 2.28: import the matplotlib module in Python script

And as it will be demonstrated later in our code, it gives as much more options

to enrich our code.

31

Facial Recognition Technology

2.4 Microsoft Visual Studio

Microsoft Visual Studio is an integrated development environment (IDE) developed

by Microsoft. It provides a comprehensive set of tools and features for software

development, including support for various programming languages such as Python.

Visual Studio offers a rich set of capabilities that can greatly enhance the develop-

ment process for your face recognition project.

In our project, we will be specificly using the Microsoft Visual Studio Commu-

nity because there are certain dependencies that we will be required, to install the

libraries.[18]

Microsoft Visual Studio Installation

Start by downloading and installing Microsoft Visual Studio Community from the

official website (https://visualstudio.microsoft.com/vs/community/). Make sure to

select the version that suits your operating system and requirements.

Project setup

• Create a new project: Launch Visual Studio Community and create a new project

by selecting the appropriate project template. For a Python face recognition project,

you can choose the Python Application template.

• Configure project settings: Set the project name, location, and choose the

desired Python interpreter. You can configure additional project settings based on

your specific requirements.

Coding and development

• Add Python files:

Within the project, you can add Python files to organize your code. Right-click

on the project in the Solution Explorer panel, select ”Add” and then choose ”New

Item” to create a new Python file.

• Write face recognition code:

Write your face recognition code using the libraries and algorithms of your choice.

This may include importing and utilizing libraries such as OpenCV, NumPy, and

the face-recognition library. Implement functions for tasks such as face detection,

feature extraction, and recognition.

• Utilize Visual Studio Community features:

Visual Studio Community offers several features that can improve your develop-

ment experience, such as code editing and debugging capabilities. Take advantage

of features like IntelliSense (code autocompletion and suggestions), code navigation,

32

Facial Recognition Technology

and the built-in Python debugger to simplify development and troubleshooting. Vi-

sual Studio Community provides a robust development environment with numerous

features to enhance productivity and streamline the development process. It is rec-

ommended to explore the official documentation and tutorials provided by Microsoft

for more detailed information on specific features and functionalities. In our project

specifically, we will be relying on it only for its desktop development with C++

building tools, as it is a Microsoft product and we are using a windows OS, it is the

absolute to go for choice in order to avoid encountering any troubles while working

on our program script.

The next figure(Figure 2.29) will show the process mentioned above.

Figure 2.29: Visual Studio Community required features installation

2.5 CMake

CMake is an open-source, cross-platform build system that allows you to control the

compilation process of your software project. It provides a platform-independent

way to specify the build configuration, dependencies, and compilation steps for your

project, making it easier to build and distribute your face recognition project across

different operating systems. Basically without this, our project would not be user

friendly and not compatible for the most part, hence non functional.[19] [20][21]

Installation

Start by downloading and installing CMake from the official website (https://cmake.org/download/).

Choose the version that corresponds to your operating system. In our case, we are

operating on the latest windows 10 version.

33

Facial Recognition Technology

Document dependencies

Document the dependencies and requirements of your face recognition project, in-

cluding the required version of Python, libraries, and any other prerequisites. CMake

provides a flexible and platform-independent build system that simplifies the build

process and enhances portability. It is recommended to refer to the official CMake

documentation and tutorials for more in-depth information on using CMake for your

specific project requirements.

2.6 Visual Studio Code (VSCode)

Visual Studio Code (VSCode) is a free and open-source code editor developed by

Microsoft. It is a lightweight and highly customizable IDE that provides a wide range

of features and extensions to support Python development for your face recognition

project. VSCode will be our main IDE in this project.[22][23] [24]

Installation

Start by downloading and installing VSCode from the official website (https://code.visualstudio.com/).

Choose the version that corresponds to your operating system.

Install Python extension

Launch VSCode and install the Python extension to enable Python development

within the editor. Open the Extensions view, search for ”Python”, and click the

Install button next to the Python extension.

Project setup

• Create a new project folder:

Create a new folder on your computer to hold your face recognition project files.

• Open the project folder in VSCode:

Open VSCode and select ”Open Folder” from the File menu. Navigate to the

project folder you created and select it to open it in VSCode.

• Create Python files:

Within the project folder, create Python files to write your face recognition code.

Right-click on the folder in the Explorer panel, select ”New File”, and give it a

Python file extension (e.g., .py).

Coding and development

• Write face recognition code:

34

Facial Recognition Technology

Open the Python file in VSCode and write your face recognition code using the

libraries and algorithms of your choice. Import necessary libraries like OpenCV,

NumPy, and the face-recognition library. Implement functions for tasks such as face

detection, feature extraction, and recognition.

• Utilize VSCode features:

VSCode provides a range of features to enhance your development experience.

Take advantage of features like IntelliSense (code autocompletion and suggestions),

code formatting, code navigation, and integrated terminal for running Python scripts.

Debugging

• Set breakpoints:

Use the built-in debugger in VSCode to set breakpoints in your code. Click in the

gutter area next to a line of code to set a breakpoint, which will pause the execution

of your program at that point.

• Debug configuration:

Create a debug configuration file (launch.json) in the .vscode folder of your

project. Configure the Python interpreter path and set the appropriate launch

options for debugging.

• Start debugging:

Press F5 or use the Debug menu to start debugging your code. The execution

will pause at breakpoints, allowing you to inspect variables, step through code, and

identify and fix issues.

Install extensions

• Install relevant extensions:

VSCode has a vast ecosystem of extensions that can enhance the functionality

for face recognition projects. Explore the extensions marketplace to find extensions

related to image processing, computer vision, and facial recognition. Some popular

extensions include OpenCV, Pillow, and NumPy extensions.

Collaboration and version control

• Git integration:

VSCode has built-in Git integration, enabling version control for your face recog-

nition project. Initialize a Git repository, commit changes, and collaborate with

team members using features like branch management and pull requests.

• Live Share:

VSCode’s Live Share extension allows real-time collaboration with other devel-

opers. You can share your workspace, collaborate on code, and debug together

35

Facial Recognition Technology

remotely.

Deployment and release

• Package and distribute:

Once your face recognition project is complete, you can package it for distribution.

Use tools like PyInstaller to create standalone executables or create a distribution

package using setup.py with setuptools. • Publish to cloud services:

If you plan to deploy your face recognition project to the cloud, follow the re-

spective platform’s guidelines for deployment. Popular cloud platforms like Azure

and AWS provide documentation on deploying Python applications.

VSCode offers a lightweight yet powerful development environment with extensive

customization options through extensions. It is recommended to explore the official

documentation and tutorials for VSCode, as well as the documentation for specific

extensions, to fully leverage its capabilities for your project.

2.7 Conclusion

In conclusion, implementing facial recognition technologies using the Python envi-

ronment correctly and achieving results is somewhat challenging as each and every

single component requires attention to detail and time, that being said, operating

this on a windows os add to that challenge when compared to other OS platform

such as Linux or Mac that are acclimated for such work environments. in overall,

when taking the necessary time and going through every single and each step of this

chapter you will be able to successfully implement the facial recognition technology

without much trouble. This now allows us to move to the next important part of

our project successfully.

36

Chapter 3

A facial recognition based

attendance system using the esp32

camera module

3.1 Introduction

In this chapter, both the previous chapter 1 and 2 contents will come to realization,

The Python code that will be used for programming will be working together ac-

cordingly with the programming of the ESP32-Cam module in purpose of achieving

functionality and performance all while maintaining reliability.[25]

3.2 Setting the ESP32-Camera Module

In order to go ahead and use the esp32-cam for facial recognition, first we need

to establish a real time live stream that will be feeding us with the data needed

to accomplish the facial recognition process. The ESP32-Cam will be programmed

with a certain code that will let us achieve live stream function, in most cases, esp32-

cam live stream process is not intended for direct incorporated technologies such as

facial recognition, so going ahead with the esp32-cam programming we need to keep

that in mind as if else, we will encounter many streaming issues and inconveniences

that will render out esp32-cam module not very reliable.

3.2.1 Arduino Code Breakdown

These lines include the necessary libraries for the program: Web-Server, WiFi, and

esp32cam (Figure 3.1).

37

A facial recognition based attendance system using the esp32 camera
module

Figure 3.1: Arduino employed ESP32-Cam libraries

These lines define the Wi-Fi network credentials (SSID and password) that the

ESP32-CAM module will connect to (Figure 3.2).

Figure 3.2: setting the wireless connection server for the ESP32-Cam

This line creates an instance of the Web-Server class and assigns it to the server

object. The 80 parameter indicates that the server will listen on port 80, which is

the default port for HTTP communication (Figure 3.3).

Figure 3.3: HTTP Web-Server communication creation

These lines define three different resolutions (loRes, midRes, and hiRes) using

the esp32cam::Resolution::find() function. Each resolution is represented by a pair

of width and height values.(Figure 3.4)

Figure 3.4: ESP32-Cam Resolution setting

This function, serveJpg(), is responsible for capturing an image using the ESP32-

CAM module and serving it as a JPEG image. It first captures a frame using

esp32cam::capture(). If the frame is null (indicating a capture failure), it prints

an error message, sends a 503 status code (Service Unavailable) to the client, and

returns.(Figure 3.5)

38

A facial recognition based attendance system using the esp32 camera
module

Figure 3.5: ESP32-Cam image capture process setting

If the capture is successful, it prints the capture details (width, height, and size)

to the serial monitor. Then, it sets the content length in the server’s response, sends

a 200 status code (OK) along with the content type as ”image/jpeg”, and obtains

the client connection. Finally, it writes the frame data to the client.

These three functions (handleJpgLo(), handleJpgHi(), and handleJpgMid()) han-

dle HTTP requests for specific JPEG image resolutions. They change the resolution

of the camera using esp32cam::Camera.changeResolution() and then call the serve-

Jpg() function to capture and serve the image.(Figure 3.6)

39

A facial recognition based attendance system using the esp32 camera
module

Figure 3.6: HTTP requests handling for specific resolutions

The setup() function is the initial setup routine that runs once when the board

is powered on or reset. It begins by starting the serial communication and printing

some initial messages. Inside the setup() function, the camera configuration is set

up using the esp32cam::Config class. It sets the camera pins to those of the Ai-

Thinker module, the resolution to hiRes defined earlier, the buffer count to 2, and

the JPEG quality to 80. The Camera.begin(cfg) function initializes the camera with

the specified configuration.(Figure 3.7)

40

A facial recognition based attendance system using the esp32 camera
module

Figure 3.7: ESP32-Cam initial setup

After that, Wi-Fi is configured to connect to the specified network using the

provided credentials. The code waits in a loop until the Wi-Fi connection is estab-

lished. Once connected, it prints the IP address of the ESP32-CAM module and the

available endpoints for accessing the different image resolutions.

The server.on() function sets up the HTTP request handlers for the /cam-lo.jpg,

/cam-hi.jpg, and /cam-mid.jpg endpoints, associating them with the corresponding

functions handleJpgLo(), handleJpgHi(), and handleJpgMid().(Figure 3.8)

41

A facial recognition based attendance system using the esp32 camera
module

Figure 3.8: The server.on() function Python code

Finally, the server.begin() function starts the HTTP server, and the loop() func-

tion is responsible for handling client requests by calling server.handleClient() re-

peatedly.

The complete final Arduino code used for the ESP32-Camera live stream capture

is at provided as follows :

1 // Include the necessary libraries

2 #include <Web -Server.h>

3 #include <WiFi.h>

4 #include <esp32cam.h>

5

6 const char* WIFI_SSID = "fh_1f4130";

7 const char* WIFI_PASS = "wlane0becf";

8

9 Web -Server server (80);

10

11

12 static auto loRes = esp32cam :: Resolution ::find (320, 240);

13 static auto midRes = esp32cam :: Resolution ::find (350, 530);

14 static auto hiRes = esp32cam :: Resolution ::find (800, 600);

15 void serveJpg ()

16 {

17 auto frame = esp32cam :: capture ();

18 if (frame == nullptr) {

19 Serial.println("CAPTURE FAIL");

20 server.send (503, "", "");

42

A facial recognition based attendance system using the esp32 camera
module

21 return;

22 }

23 Serial.printf("CAPTURE OK %dx%d %db\n", frame ->getWidth (), frame

->getHeight (),

24 static_cast <int >(frame ->size()));

25

26 server.setContentLength(frame ->size());

27 server.send (200, "image/jpeg");

28 WiFiClient client = server.client ();

29 frame ->writeTo(client);

30 }

31

32 void handleJpgLo ()

33 {

34 if (! esp32cam :: Camera.changeResolution(loRes)) {

35 Serial.println("SET -LO -RES FAIL");

36 }

37 serveJpg ();

38 }

39

40 void handleJpgHi ()

41 {

42 if (! esp32cam :: Camera.changeResolution(hiRes)) {

43 Serial.println("SET -HI -RES FAIL");

44 }

45 serveJpg ();

46 }

47

48 void handleJpgMid ()

49 {

50 if (! esp32cam :: Camera.changeResolution(midRes)) {

51 Serial.println("SET -MID -RES FAIL");

52 }

53 serveJpg ();

54 }

55

56

57 void setup(){

58 Serial.begin (115200);

59 Serial.println ();

60 {

61 using namespace esp32cam;

62 Config cfg;

63 cfg.setPins(pins:: AiThinker);

64 cfg.setResolution(hiRes);

65 cfg.setBufferCount (2);

66 cfg.setJpeg (80);

43

A facial recognition based attendance system using the esp32 camera
module

67

68 bool ok = Camera.begin(cfg);

69 Serial.println(ok ? "CAMERA OK" : "CAMERA FAIL");

70 }

71 WiFi.persistent(false);

72 WiFi.mode(WIFI_STA);

73 WiFi.begin(WIFI_SSID , WIFI_PASS);

74 while (WiFi.status () != WL_CONNECTED) {

75 delay (500);

76 }

77 Serial.print("http ://");

78 Serial.println(WiFi.localIP ());

79 Serial.println(" /cam -lo.jpg");

80 Serial.println(" /cam -hi.jpg");

81 Serial.println(" /cam -mid.jpg");

82

83 server.on("/cam -lo.jpg", handleJpgLo);

84 server.on("/cam -hi.jpg", handleJpgHi);

85 server.on("/cam -mid.jpg", handleJpgMid);

86

87 server.begin();

88 }

89

90 void loop()

91 {

92 server.handleClient ();

93 }

Listing 3.1: Arduino code

upon executing this code, the following process is set on the ESP32-Camera

module :

1. The code includes the necessary libraries for the web server, Wi-Fi connectivity,

and the camera module.

2. The Wi-Fi network name (SSID) and password are defined as constants.

3. An instance of the WebServer class is created, which will listen on port 80 for

incoming HTTP requests.

4. Three different resolutions for the camera module are defined: low resolution,

medium resolution, and high resolution.

5. The serveJpg() function is responsible for capturing an image using the camera

module and serving it as a response to an HTTP request. It checks if the capture

is successful and sends the appropriate response to the client.

6. Three handler functions (handleJpgLo(), handleJpgHi(), and handleJpgMid())

are defined to handle the HTTP requests for low-resolution, medium-resolution, and

high-resolution JPEG images. Each function tries to change the camera resolution

44

A facial recognition based attendance system using the esp32 camera
module

to the specified resolution and calls serveJpg() to capture and serve the image.

7. In the setup() function:

• Serial communication is initialized.

• The camera module is configured with the desired settings (pins, resolution,

buffer count, and JPEG quality).

• The camera module is initialized, and the success status is printed to the serial

monitor.

• Wi-Fi is configured to work in station mode, and the board attempts to connect

to the specified network using the provided SSID and password.

• The local IP address of the board and the available image paths are printed to

the serial monitor.

• The server registers the request handlers for the image paths with their corre-

sponding functions.

• The server starts listening for incoming requests. 8. In the loop() function,

the server.handleClient() function is called repeatedly to handle incoming client

requests.

Overall, this code sets up an ESP32-based Arduino board as a web server with

a camera module. It connects to a Wi-Fi network, initializes the camera module

with the desired settings, and allows clients to request JPEG images in different

resolutions. The server captures the images and sends the corresponding responses

to the clients.

3.3 Setting up the facial recognition function us-

ing Python programming

For the facial recognition process to be included in our ESP32-Cam provided live

stream, we are going to use the Python programming language. Our used Python

code achieves this process through successfully functioning many tools and libraries

that works simultaneously in accordance in order for it to make this possible, and not

only that, but many other functionalities that will allows us further customizations

and options.

3.3.1 Python code breakdown for facial recognition

In this part, the face recognition library is used for face detection and recogni-

tion.(Figure 3.9)

45

A facial recognition based attendance system using the esp32 camera
module

Figure 3.9: face recognition library for face detection and recognition

The face locations function is called with the frame small as input. It returns

a list of face locations (bounding box coordinates) in the current frame. Each face

location consists of four coordinates (top, right, bottom, left), specifying the top-left

and bottom-right corners of the bounding box around the face. These face locations

are stored in the faces cur frame list. Next, the face encodings function is called

with frame small and faces cur frame as inputs. This function calculates the face

encodings (a numerical representation of a face) for each face in the frame small.

The resulting face encodings are stored in the encodes cur frame list.

This section iterates over each face encoding (encode face) and face location (face

loc) in parallel using the zip function.(Figure 3.10)

Figure 3.10: face encoding and location

This section iterates over each face encoding (encode face) and face location

(face loc) in parallel using the zip function. For each face, the code compares the

face encoding with the list of known face encodings (encode list known) using face

recognition.compare faces. This function returns a list of boolean values indicating

whether each known face encoding matches the current face encoding. The matches

list stores the results. The code also calculates the face distance between the current

face encoding and each known face encoding using face recognition.face distance.

The face distance represents how similar or dissimilar the current face is to each

known face. The face dis list stores the results. The np.argmin function is used to

find the index of the smallest face distance in the face dis list. This index corresponds

to the best match for the current face among the known faces. The match index

variable stores this index. A default name of ”No Match” is assigned to the name

variable, indicating that the current face is unrecognized. If matches[match index]

46

A facial recognition based attendance system using the esp32 camera
module

is True, it means that the best match for the current face is considered a match.

In this case, the name variable is updated with the corresponding class name from

the class names list. The class names are assumed to be uppercase strings. The

detected face name (name) is added to the detected faces set, indicating that this

face has been recognized in the current frame.

The code then checks if the detected face name already exists in the face sta-

tus dictionary. If it does, it means the face has been registered before. In this

case, the code checks if the face is currently not marked as ”registered” (face sta-

tus[name][’registered’] is False). If it is not registered, it updates the registered

status to True and calls the mark attendance function with the face name, atten-

dance file path, ”Exit” parameter, and count dict as arguments. This function is

responsible for marking the attendance of the face. If the detected face name does

not exist in the face status dictionary, it means the face is detected for the first time.

In this case, a new entry is added to the face status dictionary with the detected

face name as the key and a dictionary with a single key-value pair ’registered’: True

as the value. This indicates that the face is now registered. Overall, this part of the

code performs face detection using face locations, face recognition by comparing face

encodings with known face encodings, and updates the status of recognized faces in

the face status dictionary.

This concludes the Python implementation part of our facial recognition chosen

method.

Now for the rest of the code, it doesn’t only include the facial recognition pro-

cess but it also provides multiple necessary functions, one of those functions is the

attendance system and it also completely relies on Python programming.

3.3.2 The attendance system Python programming and struc-

ture

Marking Attendance

which involves getting the current time, reading the attendance file, creating a new

entry DataFrame, checking the status, updating attendance accordingly, and saving

the updated attendance back to the file .

• Getting the Current Time.(Figure 3.11)

Figure 3.11: Current Time function

47

A facial recognition based attendance system using the esp32 camera
module

- The datetime.now() function retrieves the current date and time.

- The returned value is stored in the now variable, representing the current date

and time.

- The strftime(’H:M:S’) method is used to format the now datetime object into

a string with the format ”hour:minute:second”. - The formatted string is stored in

the dt string variable.

• Reading the Attendance File.(Figure 3.12)

Figure 3.12: Reading the Attendance File function

- This line reads the existing attendance file specified by attendance file path

using the pd.read excel function.

- It stores the contents of the file in a DataFrame named df. The DataFrame will

have columns ”Name”, ”Enter Time”, and ”Exit Time”.

• Creating a New Entry DataFrame

This line creates a new DataFrame new entry with a single row containing the

name and enter time of the person.

The values are specified as a list [[name, dt string]], and the column names are

provided as [”Name”, ”Enter Time”].

• Checking the Status and Updating Attendance.(Figure 3.13)

Figure 3.13: Status and Attendance Update

- If the status is ’Enter’, the code block under the if statement is executed.

- It concatenates the new entry DataFrame with the existing df DataFrame using

pd.concat.

- The ignore index=True parameter ensures that the index is reset after concate-

nation.

- If the person’s name already exists in the count dict, it increments the count

by 1.

48

A facial recognition based attendance system using the esp32 camera
module

- If the person’s name is not present in the count dict, it initializes the count to

1.

- If the status is ’Exit’, the code block under the elif statement is executed.

- It finds the index of the last occurrence of the person’s name in the DataFrame

using df.index[df[’Name’] == name].tolist()[-1].

- The -1 index is used to get the last occurrence of the name if there are multiple

entries for the same person.

- It updates the corresponding ’Exit Time’ column with the current time using

df.at[index, ’Exit Time’] = dt string.

• Saving Updated Attendance.(Figure 3.14)

Figure 3.14: Saving Attendance Update

- This line saves the updated DataFrame df to the attendance file specified by

attendance file path using df.to excel.

- The index=False parameter ensures that the index is not included in the saved

file.

3.3.3 Processing Frames and Face Recognition for Atten-

dance purposes

This step involves reading the attendance file, creating a new entry, updating atten-

dance for ’Enter’ and ’Exit’ statuses, and saving the updated attendance back to

the file.

• Reading the Attendance File.(Figure 3.15)

Figure 3.15: Attendance File Read

- This line reads the existing attendance file specified by attendance file path

using the pd.read-excel function. - It stores the contents of the file in a DataFrame

named df. The DataFrame will have columns ”Name”, ”Enter Time”, and ”Exit

Time”.

• Creating a New Entry.(Figure 3.16)

Figure 3.16: New Entry creation

49

A facial recognition based attendance system using the esp32 camera
module

- This line creates a new DataFrame new-entry with a single row containing the

name and enter time of the person. - The values are specified as a list [[name,

dt-string]], and the column names are provided as [”Name”, ”Enter Time”].

Updating Attendance for ’Enter’ Status

The Code section(Figure 3.17).

Figure 3.17: Attendance for ’Enter’ Status Python code

- This section is executed when the status is ’Enter’. - It concatenates the new

entry DataFrame with the existing df DataFrame using pd.concat. - The ignore

index=True parameter ensures that the index is reset after concatenation. - If the

person’s name already exists in the count dict, it increments the count by 1. - If the

person’s name is not present in the count dict, it initializes the count to 1.

Updating Attendance for ’Exit’ Status

The Code section(Figure 3.18).

Figure 3.18: Attendance for ’Exit’ Status

Calculating Students attendance statistics

The Code section(Figure 3.19).

50

A facial recognition based attendance system using the esp32 camera
module

Figure 3.19: Students attendance statistics Python code

The students absence calculation parameters

The Code section(Figure 3.20).

Figure 3.20: students absence calculations Python code

- The function takes the attendance-count DataFrame as input. - It filters the

attendance-count DataFrame to select rows where the ”Attendance Count” is zero

using attendance-count[attendance-count[’Attendance= 0]. Count’] = - The index

of the resulting DataFrame is reset using reset-index(drop=True, inplace=True)

to reassign consecutive indices starting from zero. - Finally, the function returns

the missing-attendance DataFrame containing the students with missing attendance

records.

Attendance report generating

The Code section(Figure 3.21).

Figure 3.21: Attendance report generating Python code

Explanation:

51

A facial recognition based attendance system using the esp32 camera
module

The generate-attendance-report function is responsible for generating an atten-

dance report containing the attendance count and the list of students with missing

attendance records.

- The function takes the attendance-count DataFrame, missing-attendance DataFrame,

and session-name as input.

- It defines the path for the attendance report file by concatenating the session

name with the file name using f”Attendance-Report-session-name.xlsx”.

- A context manager pd.ExcelWriter(report-path) is used to open an Excel writer

for writing the report.

- The attendance-count DataFrame is written to the Excel file with the sheet name

’Attendance Count’ and without including the index column, using attendance-

count.to-excel(writer, sheet-name=’Attendance Count’, index=False).

- The missing-attendance DataFrame is written to the Excel file with the sheet

name ’Missing Attendance’ and without including the index column, using missing-

attendance.to-excel(writer, sheet-name=’Missing Attendance’, index=False).

- The Excel writer is automatically closed when exiting the context manager.

- Finally, the function returns the path of the generated attendance report file.

attendance recognition process

The Code section(Figure 3.22).

Figure 3.22: attendance recognition process Python code

Explanation:

This section of code demonstrates the invocation of the defined functions to

perform the attendance recognition process.

- The image-folder-path and attendance-folder-path variables are set to the paths

of the image folder and attendance folder, respectively.

- The load-images-from-folder function is called with image-folder-path as an

argument to load the images from the specified folder. The returned images and

class-names lists are stored in the respective variables.

- The find-encodings function is called with images as an argument to obtain the

face encodings for the loaded images. The resulting encodings list is stored in the

encodings variable.

52

A facial recognition based attendance system using the esp32 camera
module

- The recognize-faces-in-images function is called with images and encodings as

arguments to perform face recognition on the images and retrieve the attendance

data. The attendance data is stored in the attendance-data variable.

- The save-attendance function is called with attendance-data, class-names, attendance-

folder-path, and session-name as arguments to save the attendance data to the spec-

ified attendance folder.

Pie charts function

an explanation of the idea behind creating the pie charts and how it works in the

code:

In the code, pie charts are created to represent the attendance statistics in a

visual format. Pie charts are useful for illustrating the distribution or composition

of a whole by dividing it into proportional segments.

Here’s an overview of the pie chart creation process in the code:

1. create-pie-chart function :

Section in the code(Figure 3.23).

Figure 3.23: pie chart creation Python code

Explanation:

The create-pie-chart function is responsible for creating a pie chart given the

data, labels, and title.

• The function takes data, labels, and title as input.

• It sets the figure size using plt.figure(figsize=(8, 6)) to define the dimensions of

the chart.

• plt.pie(data, labels=labels, autopct=’1.1f’, startangle=90) is used to create the

pie chart. Here’s what each parameter does:

data: The data to be plotted, represented as a list of values.

labels: The labels corresponding to each segment of the pie, represented as a list

of strings.

autopct=’1.1f’: Specifies the format of the percentage values displayed on each

pie slice. It formats the values with one decimal place followed by a percentage sign.

startangle=90: Sets the angle at which the first pie slice starts. In this case, it

starts from the 90-degree angle (the top).

53

A facial recognition based attendance system using the esp32 camera
module

plt.title(title) sets the title of the pie chart.

plt.axis(’equal’) ensures that the pie chart is displayed as a circle.

Finally, plt.show() is called to display the pie chart.

Creating pie charts for attendance statistics

Section in the code(Figure 3.24).

Figure 3.24: pie charts for attendance statistics Python code

Explanation: In this section of code, a pie chart is created to represent the

attendance statistics.

• attendance-percentage is calculated by dividing the ”Attendance Count” in the

attendance-count DataFrame by the total number of images and multiplying it by

100 to obtain the attendance percentage for each class.

• The create-pie-chart function is called with attendance-percentage, class-names,

and ”Attendance Statistics” as arguments. This generates the pie chart, with

attendance-percentage as the data, class-names as the labels, and ”Attendance

Statistics” as the title.

This process is repeated for each class to create separate pie charts for their

attendance statistics.

Overall, the creation of pie charts provides a visual representation of attendance

statistics, allowing for an easy understanding of the distribution of attendance across

different classes.

3.4 The Complete Python code will look like this

1 import cv2

2 import urllib.request

3 import numpy as np

4 import os

5 from datetime import datetime

6 import face_recognition

7 import pandas as pd

8 from pathlib import Path

9 import plotly.express as px

10 import plotly.graph_objects as go

11

12 def load_images_from_folder(folder_path):

54

A facial recognition based attendance system using the esp32 camera
module

13 images = []

14 class_names = []

15 for file_name in os.listdir(folder_path):

16 if file_name.endswith ((’.jpg’, ’.jpeg’, ’.png’)):

17 image_path = os.path.join(folder_path , file_name)

18 cur_img = cv2.imread(image_path)

19 images.append(cur_img)

20 class_names.append(os.path.splitext(file_name)[0])

21 return images , class_names

22

23 def find_encodings(images):

24 encode_list = []

25 for img in images:

26 img = cv2.cvtColor(img , cv2.COLOR_BGR2RGB)

27 encode = face_recognition.face_encodings(img)[0]

28 encode_list.append(encode)

29 return encode_list

30

31 def mark_attendance(name , attendance_file_path , status , count_dict)

:

32 now = datetime.now()

33 dt_string = now.strftime(’%H:%M:%S’)

34

35 df = pd.read_excel(attendance_file_path)

36 new_entry = pd.DataFrame ([[name , dt_string]], columns =["Name",

"Enter Time"])

37

38 if status == ’Enter’:

39 df = pd.concat ([df, new_entry], ignore_index=True)

40 if name in count_dict:

41 count_dict[name] += 1

42 else:

43 count_dict[name] = 1

44 elif status == ’Exit’:

45 index = df.index[df[’Name’] == name]. tolist ()[-1]

46 df.at[index , ’Exit Time’] = dt_string

47

48 df.to_excel(attendance_file_path , index=False)

49

50

51

52 def create_attendance_file(attendance_folder , session_name):

53 now = datetime.now()

54 date_string = now.strftime(’%Y-%m-%d’)

55 attendance_file_name = f"Attendance_{session_name}_{date_string

}.xlsx"

55

A facial recognition based attendance system using the esp32 camera
module

56 attendance_file_path = os.path.join(attendance_folder ,

attendance_file_name)

57

58 if os.path.isfile(attendance_file_path):

59 return attendance_file_path

60

61 df = pd.DataFrame(columns =["Name", "Enter Time", "Exit Time"])

62 df.to_excel(attendance_file_path , index=False)

63 return attendance_file_path

64

65 def process_frame(frame , encode_list_known , class_names ,

attendance_file_path , face_status , count_dict):

66 try:

67 frame_small = cv2.resize(frame , (0, 0), None , 0.25, 0.25)

68 frame_small = cv2.cvtColor(frame_small , cv2.COLOR_BGR2RGB)

69

70 faces_cur_frame = face_recognition.face_locations(

frame_small)

71 encodes_cur_frame = face_recognition.face_encodings(

frame_small , faces_cur_frame)

72

73 # Create a set to store the names of the detected faces in

the current frame

74 detected_faces = set()

75

76 for encode_face , face_loc in zip(encodes_cur_frame ,

faces_cur_frame):

77 matches = face_recognition.compare_faces(

encode_list_known , encode_face)

78 face_dis = face_recognition.face_distance(

encode_list_known , encode_face)

79 match_index = np.argmin(face_dis)

80

81 name = "No Match" # Default value for unrecognized

faces

82

83 if matches[match_index]:

84 name = class_names[match_index]. upper()

85 detected_faces.add(name) # Add the detected face

name to the set

86

87 if name in face_status:

88 if not face_status[name][’registered ’]:

89 face_status[name][’registered ’] = True

90 mark_attendance(name , attendance_file_path ,

’Exit’, count_dict)

91 else:

56

A facial recognition based attendance system using the esp32 camera
module

92 face_status[name] = {’registered ’: True}

93 mark_attendance(name , attendance_file_path , ’

Enter’, count_dict)

94

95 # Draw rectangle around the face

96 y1, x2, y2, x1 = face_loc

97 y1, x2, y2, x1 = y1 * 4, x2 * 4, y2 * 4, x1 * 4

98 cv2.rectangle(frame , (x1 , y1), (x2 , y2), (0, 255, 0),

2)

99

100 # Display the name centered below the rectangle

101 text_width , text_height = cv2.getTextSize(name , cv2.

FONT_HERSHEY_COMPLEX , 1, 2)[0]

102 text_x = x1 + (x2 - x1 - text_width) // 2

103 text_y = y2 + text_height + 6

104

105 color = (0, 255, 0) if name != ’No Match ’ else (0, 0,

255)

106 cv2.putText(frame , name , (text_x , text_y), cv2.

FONT_HERSHEY_COMPLEX , 1, color , 2)

107

108 # Update the registered flag for faces that are no longer

detected

109 for name , status in list(face_status.items()):

110 if status[’registered ’] and name not in detected_faces:

111 status[’registered ’] = False

112 mark_attendance(name , attendance_file_path , ’Exit’,

count_dict)

113

114 except UnicodeDecodeError:

115 pass

116

117

118 def calculate_attendance_statistics(attendance_folder , session_name

):

119 attendance_files = list(attendance_folder.glob(f"Attendance_{

session_name}_*.xlsx"))

120 student_attendance = pd.DataFrame(columns =["Name", "Enter Time"

, "Exit Time"])

121

122 for file_path in attendance_files:

123 df = pd.read_excel(file_path)

124 student_attendance = pd.concat ([student_attendance , df],

ignore_index=True)

125

126 student_attendance[’Enter Time’] = pd.to_datetime(

student_attendance[’Enter Time’])

57

A facial recognition based attendance system using the esp32 camera
module

127 student_attendance[’Exit Time’] = pd.to_datetime(

student_attendance[’Exit Time’])

128

129 student_attendance[’Name’] = student_attendance[’Name’].str.

lower () # Convert names to lowercase

130

131 attendance_count = student_attendance.groupby(’Name’)[’Enter

Time’].count ().reset_index ()

132 attendance_count.rename(columns ={’Enter Time’: ’Attendance

Count ’}, inplace=True)

133

134 total_classes = student_attendance[’Enter Time’]. nunique ()

135

136 all_students = load_images_from_folder(image_folder_path)[1]

137 all_students = [student.lower() for student in all_students] #

Convert all_students to lowercase

138 missing_students = list(set(all_students) - set(

attendance_count[’Name’]))

139

140 missing_attendance = [{’Name’: student , ’Attendance Count ’: 0}

for student in missing_students]

141 missing_attendance_df = pd.DataFrame(missing_attendance)

142

143 attendance_count = pd.concat ([attendance_count ,

missing_attendance_df], ignore_index=True)

144

145 attendance_count[’Total Classes ’] = total_classes

146 attendance_count[’Attendance Percentage ’] = (

147 (attendance_count[’Attendance Count ’] / total_classes) *

100

148).round (2)

149

150 return attendance_count

151

152

153

154

155 def save_attendance_statistics(statistics , file_path):

156 statistics.to_excel(file_path , index=False)

157

158 def display_attendance_statistics_pie_charts(statistics ,

save_folder):

159 for _, row in statistics.iterrows ():

160 student = row[’Name’]

161 attendance_count = row[’Attendance Count’]

162 absent_count = row[’Total Classes ’] - attendance_count

163

58

A facial recognition based attendance system using the esp32 camera
module

164 labels = [’Attendance ’, ’Absent ’]

165 sizes = [attendance_count , absent_count]

166 colors = [’#2 ecc71’, ’#e74c3c ’]

167

168 fig = px.pie(names=labels , values=sizes , title=f’{student}

Attendance ’)

169 fig.update_traces(marker=dict(colors=colors))

170

171 chart_save_path = os.path.join(save_folder , f’{student}

_Attendance_Chart.html’)

172 fig.write_html(chart_save_path)

173

174 def create_main_folder(session_name):

175 now = datetime.now()

176 folder_name = now.strftime(’%Y-%m-%d’)

177 main_folder = Path(os.getcwd ()) / f"{folder_name}_{session_name

}"

178

179 if main_folder.exists ():

180 return main_folder

181

182 main_folder.mkdir(parents=True , exist_ok=True)

183

184 return main_folder

185

186 def authenticate(username , password):

187 # Replace this with your own authentication logic

188 valid_username = "user"

189 valid_password = "1234"

190

191 return username == valid_username and password ==

valid_password

192

193 session_name = input("Enter the name of the session: ")

194 main_folder = create_main_folder(session_name)

195 attendance_folder = main_folder / ’Attendance ’

196 statistics_folder = main_folder / ’Statistics ’

197 pie_chart_save_folder = main_folder / ’PieCharts ’

198

199 attendance_folder.mkdir(parents=True , exist_ok=True)

200 statistics_folder.mkdir(parents=True , exist_ok=True)

201 pie_chart_save_folder.mkdir(parents=True , exist_ok=True)

202

203 image_folder_path = Path(r’C:\Users\Administrator\Desktop\TRYattF\

students faces ’)

204 url = ’http ://192.168.1.2/ cam -hi.jpg’

205

59

A facial recognition based attendance system using the esp32 camera
module

206 images , class_names = load_images_from_folder(image_folder_path)

207 encode_list_known = find_encodings(images)

208 print(’Encoding Complete ’)

209

210 attendance_file_path = create_attendance_file(attendance_folder ,

session_name)

211

212 face_status = {}

213

214 count_dict = {}

215

216 # Ask for username and password

217 username = input("Username: ")

218 password = input("Password: ")

219

220 # Authenticate the user

221 if authenticate(username , password):

222 while True:

223 img_arr = np.array(bytearray(urllib.request.urlopen(url).

read()), dtype=np.uint8)

224 frame = cv2.imdecode(img_arr , -1)

225

226 process_frame(frame , encode_list_known , class_names ,

attendance_file_path , face_status , count_dict)

227

228 cv2.imshow(’Webcam ’, frame)

229 if cv2.waitKey (1) == 13: # Press ’Enter’ key to exit

230 break

231 else:

232 print("Invalid username or password")

233

234 cv2.destroyAllWindows ()

235

236 statistics = calculate_attendance_statistics(attendance_folder ,

session_name)

237

238 statistics_file_path = statistics_folder / f’Attendance_Statistics_

{session_name }.xlsx’

239

240 save_attendance_statistics(statistics , statistics_file_path)

241

242 display_attendance_statistics_pie_charts(statistics ,

pie_chart_save_folder)

Listing 3.2: Python code

upon executing this code, the following functions and operations are set:

1. User Input and Folder Creation: • The user is prompted to enter the name of

60

A facial recognition based attendance system using the esp32 camera
module

the session, which could be a class, meeting, or any other event.

• A main folder is created to store attendance records, statistics, and pie charts

for the session. The folder name is based on the session name and the current date.

• Within the main folder, three subfolders are created: ”Attendance” to store

attendance records, ”Statistics” to store attendance statistics, and ”PieCharts” to

store visualizations.

2. Loading Known Images and Encodings:

• The code specifies the path to the folder containing known images of students

(or individuals).

• The images are loaded from the folder, and their face encodings are computed

using the face-recognition library.

• The resulting list of face encodings is stored for later use.

3. Creating Attendance File:

• An attendance file is created for the current session using the session name and

the current date.

• If an attendance file already exists for the given session, the existing file path

is returned; otherwise, a new file is created.

4. Face Recognition and Attendance Tracking:

• The code prompts the user to enter a username and password for authentication

purposes.

• If the authentication is successful, the code enters an infinite loop to continu-

ously fetch frames from the webcam stream (provided by the ESP32-CAM).

• Each frame is processed, which involves detecting faces, comparing them with

the known face encodings, updating the attendance file, and keeping track of the

face status (registered or not registered) and count.

• The processed frame, with face rectangles and names, is displayed in a window.

• The loop terminates when the Enter key is pressed.

5. Calculating and Saving Attendance Statistics:

• After the face recognition loop ends, the attendance statistics are calculated

based on the attendance records stored in the ”Attendance” folder.

• The statistics include the attendance count, total number of classes, and atten-

dance percentage for each student (or individual).

• The statistics are stored in a DataFrame.

6. Generating and Saving Pie Charts:

• Pie charts are generated to visualize the attendance of each student (or indi-

vidual) based on the attendance statistics.

• Each pie chart represents the attendance percentage of a student.

• The pie charts are saved as HTML files in the ”PieCharts” folder.

Overall, the code sets up a face recognition system using the ESP32-CAM for

61

A facial recognition based attendance system using the esp32 camera
module

streaming video, tracks attendance by comparing detected faces with known face

encodings, and generates attendance statistics and visualizations for the session.

3.5 Results

Upon successfully enrolling the students faces for this experiment, the desired results

are as follows

3.5.1 Students recognition

an example is show in the next figures(Figure 3.25)(Figure 3.26)(Figure 3.27).

Figure 3.25: Zerouali Belkacem student presence

62

A facial recognition based attendance system using the esp32 camera
module

Figure 3.26: Kourat Abdelkader student presence

Figure 3.27: Mekhalfi Oussama student presence

3.5.2 Students Attendance Report

This report will contain the time of the student appearance in front of the camera

and save these logs in a Excel file. The figures(Figure 3.28) bellows give an example

of these students :

63

A facial recognition based attendance system using the esp32 camera
module

Figure 3.28: Students presence log information file

3.5.3 Students statistics

In an Excel file format, students statistics will be calculated and saved. the fig-

ure(Figure 3.29) bellow give an example of this :

Figure 3.29: Students presence statistics information file

Absence is also taken in consideration as shown in the next figure(Figure 3.30):

Figure 3.30: Students presence and absence statistics information file

3.5.4 Students Pie charts

There will be a Pie chart for visual representation of each student statistics saved.

This figure(Figure 3.31) bellow show an example of a student that has not missed a

class in the semester period :

64

A facial recognition based attendance system using the esp32 camera
module

Figure 3.31: Students Pie chart statistics

This figure(Figure 3.32) show if the student has a history of absence in the class

:

Figure 3.32: Students Pie chart statistics with absence history

3.6 Conclusion

In conclusion, the project combines the capabilities of the Arduino IDE and the

Python programming language to create a system for face recognition-based atten-

dance using the ESP32-CAM module.

The Arduino IDE is used to program the ESP32-CAM module, configuring it to

capture video and stream it over a local network. The ESP32-CAM module acts

as a webcam, providing a continuous video stream that can be accessed by other

devices on the same network.

The Python program utilizes the OpenCV and face-recognition libraries to pro-

cess the video stream from the ESP32-CAM module. It performs face detection and

recognition on each frame of the video stream using known face encodings. When

a recognized face is detected, the program updates an attendance file, marking the

entry and exit times of the individual.

The system also calculates attendance statistics based on the collected data,

including the total number of classes conducted and the attendance count for each

65

A facial recognition based attendance system using the esp32 camera
module

student. Additionally, it generates pie charts to visualize the attendance percentages

of individual students.

By combining the ESP32-CAM’s video streaming capabilities with face recogni-

tion algorithms in Python, the project provides an automated and efficient solution

for tracking attendance. It eliminates the need for manual attendance marking

and provides accurate records. The system can be applied in various settings such

as classrooms, meetings, or any event where face recognition-based attendance is

required.

66

Conclusion

In conclusion, this thesis aims to develop and evaluate a facial recognition-based

attendance system utilizing the ESP32-Camera module for universities. By lever-

aging the advancements in facial recognition technology and the capabilities of the

ESP32-Camera module, the system seeks to automate attendance management, en-

hance administrative processes, and provide valuable insights for universities. The

subsequent chapters will delve into the system’s implementation, evaluation, and

findings, ultimately contributing to improved attendance tracking in higher educa-

tion institutions.

67

References

1. The Internet of Things with ESP32 http://esp32.net/.

2. Engineers, L. M. Getting Started With ESP32: A Beginner’s Guide https:

//lastminuteengineers.com/getting-started-with-esp32/.

3. Deng, J., Trigeorgis, G., Zhou, Y. & Zafeiriou, S. Joint Multi-View Face Align-

ment in the Wild http://arxiv.org/abs/1708.06023.

4. Facial Recognition History Thales Group. https://www.thalesgroup.com/

en/markets/digital- identity- and- security/government/inspired/

history-of-facial-recognition.

5. Facial Recognition Technology - Innovatrics - How It Works https://www.

innovatrics.com/facial-recognition-technology/.

6. Welcome to Face Recognition’s Documentation! – Face Recognition 1.4.0 Doc-

umentation https://face-recognition.readthedocs.io/en/latest/.

7. What Is Face Detection and How Does It Work? Enterprise AI. https://www.

techtarget.com/searchenterpriseai/definition/face-detection.

8. OpenCV: OpenCV-Python Tutorials https://docs.opencv.org/4.x/d6/

d00/tutorial_py_root.html.

9. Urllib – URL Handling Modules https://docs.python.org/3/library/

urllib.html.

10. NumPy Documentation https://numpy.org/doc/.

11. NumPy Quickstart – NumPy v1.24 Manual https://numpy.org/doc/stable/

user/quickstart.html.

12. Os – Miscellaneous Operating System Interfaces https://docs.python.org/

3/library/os.html.

13. Datetime – Basic Date and Time Types https://docs.python.org/3/

library/datetime.html.

14. Getting Started Tutorials – Pandas 2.0.2 Documentation https://pandas.

pydata.org/docs/getting_started/intro_tutorials/.

68

References

15. Pathlib – Object-Oriented Filesystem Paths https://docs.python.org/3/

library/pathlib.html.

16. Tutorials – Matplotlib 3.7.1 Documentation https://matplotlib.org/stable/

tutorials/index.html.

17. Users Guide – Matplotlib 3.7.1 Documentation https://matplotlib.org/

stable/users/index.html.

18. Visual Studio 2022 Community Edition – Download Latest Free Version https:

//visualstudio.microsoft.com/vs/community/.

19. Documentation — CMake https://cmake.org/documentation/.

20. CMake Reference Documentation – CMake 3.27.0-Rc1 Documentation https:

//cmake.org/cmake/help/latest/.

21. CMake Tutorial – CMake 3.27.0-Rc1 Documentation https://cmake.org/

cmake/help/latest/guide/tutorial/index.html.

22. Visual Studio Documentation https : / / learn . microsoft . com / en - us /

visualstudio/windows/.

23. Documentation for Visual Studio Code https://code.visualstudio.com/

docs.

24. Python in Visual Studio Code https://code.visualstudio.com/docs/

languages/python.

25. GitHub - Ageitgey/Face recognition: The World’s Simplest Facial Recognition

API for Python and the Command Line https://github.com/ageitgey/

face_recognition.

26. Legrand. Déclenchement caméra https : / / www . f - legrand . fr / scidoc /

docmml/sciphys/arduino/synchrobasler/synchrobasler.html (2023).

27. Biblatex citation styles https://fr.overleaf.com/learn/latex/Biblatex_

citation_styles (2023).

28. Zotero — Your personal research assistant https://www.zotero.org/start

(2023).

29. L298 Dual H-Bridge Motor Driver https://www.dzduino.com/l298-dual-

h-bridge-motor-driver-fr (2023).

30. CMake Tutorial — CMake https://cmake.org/cmake-tutorial/.

31. Visual Studio Product Family Documentation https://learn.microsoft.

com/en-us/visualstudio/.

32. Lin, S.-H. An Introduction to Face Recognition Technology

69

References

33. OpenCV Documentation Index https://docs.opencv.org/.

34. Pandas Documentation – Pandas 2.0.2 Documentation https : / / pandas .

pydata.org/docs/.

35. Son, N. T. et al. Implementing CCTV-Based Attendance Taking Support System

Using Deep Face Recognition: A Case Study at FPT Polytechnic College

70

Appendix A

Datasheet of Camera OV2640

71

Version 1.6, February 28, 2006 Proprietary to OmniVision Technologies 1

Advanced Information
Preliminary Datasheet

OV2640 Color CMOS UXGA (2.0 MegaPixel) CAMERACHIPTM

Omni ision®

with OmniPixel2TM Technology

General Description
The OV2640 CAMERACHIPTM is a low voltage CMOS image
sensor that provides the full functionality of a single-chip
UXGA (1632x1232) camera and image processor in a small
footprint package. The OV2640 provides full-frame,
sub-sampled, scaled or windowed 8-bit/10-bit images in a
wide range of formats, controlled through the Serial Camera
Control Bus (SCCB) interface.

This product has an image array capable of operating at up
to 15 frames per second (fps) in UXGA resolution with
complete user control over image quality, formatting and
output data transfer. All required image processing functions,
including exposure control, gamma, white balance, color
saturation, hue control, white pixel canceling, noise
canceling, and more, are also programmable through the
SCCB interface. The OV2640 also includes a compression
engine for increased processing power. In addition,
OmniVision CAMERACHIPS use proprietary sensor technology
to improve image quality by reducing or eliminating common
lighting/electrical sources of image contamination, such as
fixed pattern noise, smearing, etc., to produce a clean, fully
stable color image.

Features
• High sensitivity for low-light operation
• Low operating voltage for embedded portable apps
• Standard SCCB interface
• Output support for Raw RGB, RGB (RGB565/555),

GRB422, YUV (422/420) and YCbCr (4:2:2) formats
• Supports image sizes: UXGA, SXGA, SVGA, and any

size scaling down from SXGA to 40x30
• VarioPixel® method for sub-sampling
• Automatic image control functions including Automatic

Exposure Control (AEC), Automatic Gain Control
(AGC), Automatic White Balance (AWB), Automatic
Band Filter (ABF), and Automatic Black-Level
Calibration (ABLC)

• Image quality controls including color saturation,
gamma, sharpness (edge enhancement), lens
correction, white pixel canceling, noise canceling, and
50/60 Hz luminance detection

• Line optical black level output capability
• Video or snapshot operation
• Zooming, panning, and windowing functions
• Internal/external frame synchronization
• Variable frame rate control
• Supports LED and flash strobe mode
• Supports scaling
• Supports compression
• Embedded microcontroller

Ordering Information

Pb
Note: The OV2640 uses a lead-free
package.

Product Package

OV02640-VL9A (Color, lead-free) 38-pin CSP2

Applications
• Cellular and Camera Phones
• Toys
• PC Multimedia
• Digital Still Cameras

Key Specifications

Figure 1 OV2640 Pin Diagram (Top View)

Array Size UXGA 1600 x 1200

Power Supply
Core 1.2VDC + 5%

Analog 2.5 ~ 3.0VDC
I/O 1.7V to 3.3V

Power
Requirements

Active
125 mW (for 15 fps, UXGA
YUV mode)
140 mW (for 15 fps, UXGA
compressed mode)

Standby 600 µA
Temperature

Range
Operation -30°C to 70°C

Stable Image 0°C to 50°C

Output Formats (8-bit)
• YUV(422/420)/YCbCr422
• RGB565/555
• 8-bit compressed data
• 8-/10-bit Raw RGB data

Lens Size 1/4"
Chief Ray Angle 25° non-linear

Maximum
Image

Transfer Rate

UXGA/SXGA 15 fps
SVGA 30 fps

CIF 60 fps
Sensitivity 0.6 V/Lux-sec

S/N Ratio 40 dB
Dynamic Range 50 dB

Scan Mode Progressive
Maximum Exposure Interval 1247 x tROW

Gamma Correction Programmable
Pixel Size 2.2 µm x 2.2 µm

Dark Current 15 mV/s at 60°C
Well Capacity 12 Ke

Fixed Pattern Noise <1% of VPEAK-TO-PEAK
Image Area 3590 µm x 2684 µm

Package Dimensions 5725 µm x 6285 µm

OV2640

AGND SGND VREFN STROBE

A1 A2 A4A3 A5 A6

B1 B2 B4B3 B5 B6

C1 C2 C4C3 C5 C6

D2 D6

E1 E2 E4E3 E5 E6

F1 F2 F4F3 F5 F6

G1 G2 G4G3 G5 G6

DOGND EXPST_B

AVDD SVDD SVDD PWDNDOVDD FREX

HREF XVCLK VREFH RESETBSIO_D SIO_C

NCVSYNC

PCLK EGND Y6 DGNDY1 Y0

Y2 Y4 Y8 DVDDEVDD DVDD

Y3 Y5 Y7 Y9EVDD DGND

Datasheet of Camera OV2640

72

2 Proprietary to OmniVision Technologies Version 1.6, February 28, 2006

OV2640 Color CMOS UXGA (2.0 MegaPixel) OmniPixel2™ CAMERACHIP™ Omni ision

Functional Description

Figure 2 shows the functional block diagram of the OV2640 image sensor. The OV2640 includes:
• Image Sensor Array (1632 x 1232 total image array)
• Analog Signal Processor
• 10-Bit A/D Converters
• Digital Signal Processor (DSP)
• Output Formatter
• Compression Engine
• Microcontroller
• SCCB Interface
• Digital Video Port

Figure 2 Functional Block Diagram

Column Sample/Hold

R
o

w
 S

el
ec

t

Image Array
(1632 x 1232)

AMP

Gain
Control

Balance
Control

Channel
Balance

10-Bit
A/D

Timing Generator and Control LogicPLL

Black Level
Compensation

SCCB Slave
Interface

Microcontroller

Control
Register

Bank

SIO_C SIO_D

Y[9:0]DSP Formatter Video
Port

Compression
Engine

PWDNRESETBVSYNC STROBEPCLKHREFXVCLK

Datasheet of Camera OV2640

73

Functional Description

Version 1.6, February 28, 2006 Proprietary to OmniVision Technologies 3

Omni ision

Image Sensor Array

The OV2640 sensor has an image array of 1632 columns
by 1232 rows (2,010,624 pixels). Figure 3 shows a
cross-section of the image sensor array.

Figure 3 Sensor Array Region Color Filter Layout

The color filters are arranged in a Bayer pattern. The
primary color BG/GR array is arranged in line-alternating
fashion. Of the 2,010,624 pixels, 1,991,040 (1632x1220)
are active. The other pixels are used for black level
calibration and interpolation.

The sensor array design is based on a field integration
read-out system with line-by-line transfer and an
electronic shutter with a synchronous pixel read-out
scheme.

Analog Amplifier

When the column sample/hold circuit has sampled one
row of pixels, the pixel data will shift out one-by-one into
an analog amplifier.

Gain Control

The amplifier gain can either be programmed by the user
or controlled by the internal automatic gain control circuit
(AGC).

RG RG RG RG RG RG

GB GB GB GB GB GB

RG RG RG

GB GB GB

RG RG RG RG RG RG

GB GB GB GB GB GB

RG RG RG

GB GB GB

RG RG RG

GB GB GB

RG RG RG

GB GB GB

0 1 2 3 4 5 16
26

16
27

16
28

16
29

16
30

16
31Column

Dummy

Dummy

Dummy

Dummy

Dummy

Dummy

Optical
Black

Dummy

Dummy

RG RG RG

GB GB GB

 0

1

 2

3

10

11

4

 5

 8

9

6

 7

12

 13

1207

1206

1231

1208

RG RG RG

GB GB GB

RG RG RG RG RG RG

GB GB GB GB GB GB

RG RG RG RG RG RG

GB GB GB GB GB GB
1220

Active
Lines

R
o
w

10-Bit A/D Converters

After the analog amplifier, the bayer pattern Raw signal is
fed to two 10-bit analog-to-digital (A/D) converters, one for
G channel and one shared by the BR channels. These
A/D converters operate at speeds up to 20 MHz and are
fully synchronous to the pixel rate (actual conversion rate
is related to the frame rate).

Channel Balance

The amplified signals are then balanced with a channel
balance block. In this block, the Red/Blue channel gain is
increased or decreased to match Green channel
luminance level.

Balance Control

Channel Balance can be done manually by the user or by
the internal automatic white balance (AWB) controller.

Black Level Compensation

After the pixel data has been digitized, black level
calibration can be applied before the data is output. The
black level calibration block subtracts the average signal
level of optical black pixels to compensate for the dark
current in the pixel output. The user can disable black
level calibration.

Windowing

The OV2640 allows the user to define window size or
region of interest (ROI), as required by the application.
Window size setting (in pixels) ranges from 2 x 4 to
1632 x 1220 (UXGA) or 2 x 2 to 818 x 610 (SVGA), and
408 x 304 (CIF), and can be anywhere inside the
1632 x 1220 boundary. Note that modifying window size
or window position does not alter the frame or pixel rate.
The windowing control merely alters the assertion of the
HREF signal to be consistent with the programmed
horizontal and vertical ROI. The default window size is
1600 x 1200. Refer to Figure 4 and registers HREFST,
HREFEND, REG32, VSTRT, VEND, and COM1 for
details.

Datasheet of Camera OV2640

74

4 Proprietary to OmniVision Technologies Version 1.6, February 28, 2006

OV2640 Color CMOS UXGA (2.0 MegaPixel) OmniPixel2™ CAMERACHIP™ Omni ision

Figure 4 Windowing

Zooming and Panning Mode

The OV2640 provides zooming and panning modes. The
user can select this mode under SVGA/CIF mode timing.
The related zoom ratios will be 2:1 of UXGA for SVGA and
4:1 of UXGA for CIF. Registers ZOOMS[7:0] (0x49) and
COM19[1:0] (0x48) define the vertical line start point.
Register ARCOM2[2] (0x34) defines the horizontal start
point.

Sub-sampling Mode

The OV2640 supports two sub-sampling modes. Each
sub-sampling mode has different resolution and maximum
frame rate. These modes are described in the following
sections.

SVGA mode

The OV2640 can be programmed to output 800 x 600
(SVGA) sized images for applications where higher
resolution image capture is not required. In this mode,
both horizontal and vertical pixels will be sub-sampled
with an aspect ratio of 4:2 as shown in Figure 5.

Figure 5 SVGA Sub-Sampling Mode

Column
End

Sensor Array
Boundary

HREF

H
R

E
F

Column

Display
Window

Column
Start

Row Start

Row End

R
o
w

n

n+1

n+2

n+3

n+4

n+5

n+6

n+7

i i+
1

i+
2

i+
3

i+
4

i+
5

i+
6

i+
7

i+
8

i+
9

Column

Row

Skipped Pixels

B B B

B B B

G G G

G G GR R R

R R R

G G G

G G G

CIF Mode

The OV2640 can also operate at a higher frame rate to
output 400 x 296 sized images. Figure 6 shows the
sub-sampling diagram in both horizontal and vertical
directions for CIF mode.

Figure 6 CIF Sub-Sampling Mode

Timing Generator and Control Logic

In general, the timing generator controls the following:
• Frame Exposure Mode Timing
• Frame Rate Adjust
• Frame Rate Timing

Frame Exposure Mode Timing

The OV2640 supports frame exposure mode. Typically,
the frame exposure mode must work with the aid of an
external shutter.

The frame exposure pin, FREX (pin B2), is the frame
exposure mode enable pin and the EXPST_B pin (pin A2)
serves as the sensor's exposure start trigger. When the
external master device asserts the FREX pin high, the
sensor array is quickly pre-charged and stays in reset
mode until the EXPST_B pin goes low (sensor exposure
time can be defined as the period between EXPST_B low
and shutter close). After the FREX pin is pulled low, the
video data stream is then clocked to the output port in a
line-by-line manner. After completing one frame of data

n
n+1
n+2
n+3
n+4
n+5
n+6
n+7

n+8
n+9

n+10
n+11
n+12
n+13
n+14
n+15
n+16
n+17
n+18
n+19

n+20
n+21
n+22
n+23

i i+
10

i+
9

i+
1

i+
2

i+
3

i+
4

i+
5

i+
6

i+
7

i+
8

i+
11

i+
21

i+
20

i+
12

i+
13

i+
14

i+
15

i+
16

i+
17

i+
18

i+
19

i+
22

i+
23

Column

Row

Skipped Pixels

B B B

G G GR R R

R R R

R R R

B B B

B B B

G G G

G G G

G G G

G G G

G G G

Datasheet of Camera OV2640

75

Functional Description

Version 1.6, February 28, 2006 Proprietary to OmniVision Technologies 5

Omni ision

output, the OV2640 will output continuous live video data
unless in single frame transfer mode. Figure 18 and
Figure 19 show the detailed timing and Table 11 shows
the timing specifications for this mode.

Frame Rate Adjust

The OV2640 offers three methods for frame rate
adjustment:
• Clock prescaler: (see “CLKRC” on page 23)

By changing the system clock divide ratio and PLL,
the frame rate and pixel rate will change together.
This method can be used for dividing the frame/pixel
rate by: 1/2, 1/3, 1/4 … 1/64 of the input clock rate.

• Line adjustment: (see “REG2A” on page 26 and
“FRARL” on page 26)
By adding a dummy pixel timing in each line
(between HSYNC and pixel data out), the frame rate
can be changed while leaving the pixel rate as is.

• Vertical sync adjustment:
By adding dummy line periods to the vertical sync
period (see “ADDVSL” on page 26 and “ADDVSH”
on page 26 or see “FLL” on page 27 and “FLH” on
page 27), the frame rate can be altered while the
pixel rate remains the same.

Frame Rate Timing

Default frame timing is illustrated in Figure 15, Figure 16,
and Figure 17. Refer to Table 1 for the actual pixel rate at
different frame rates.

Digital Signal Processor (DSP)

This block controls the interpolation from Raw data to
RGB and some image quality control.
• Edge enhancement (a two-dimensional high pass

filter)
• Color space converter (can change Raw data to RGB

or YUV/YCbCr)
• RGB matrix to eliminate color cross talk
• Hue and saturation control
• Programmable gamma control
• Transfer 10-bit data to 8-bit
• White pixel canceling
• De-noise

Table 1 Frame/Pixel Rates in UXGA Mode

Frame Rate (fps) 15 7.5 2.5 1.25

PCLK (MHz) 36 18 6 3

Output Formatter

This block controls all output and data formatting required
prior to sending the image out.

Scaling Image Output

The OV2640 is capable of scaling down the image size
from CIF to 40x30. By using SCCB registers, the user can
output the desired image size. At certain image sizes,
HREF is not consistent in a frame.

Compression Engine

As shown in Figure 7, the Compression Engine consists
of three major blocks:
• DCT
• QZ
• Entropy Encoder

Figure 7 Compression Engine Block Diagram

Microcontroller

The OV2640 embeds an 8-bit microcontroller with
512-byte data memory and 4 KB program memory. It
provides the flexibility of decoding protocol commands
from the host for controlling the system, as well as the
ability to fine tune image quality.

SCCB Interface

The Serial Camera Control Bus (SCCB) interface controls
the CAMERACHIP operation. Refer to OmniVision
Technologies Serial Camera Control Bus (SCCB)
Specification for detailed usage of the serial control port.

Slave Operation Mode

The OV2640 can be programmed to operate in slave
mode (default is master mode).

When used as a slave device, COM7[3] (0x12), CLKRC[6]
(0x11), and COM2[2] (0x09) register bits should be set to

DCT QZ Entropy Encoder

Q-Table H-Table Marker

Video Data

Scale Factor

Compressed
Stream

Compression Engine

Datasheet of Camera OV2640

76

