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INTRODUCTION GENERALE

La physique statistique est née au milieu du 19¢me siécle de I’hypothése atomique et de la
volonté d’expliquer les mystérieuses lois de la thermodynamique dans ce cadre. Parmi les physiciens
du 19¢me siécle, trés peu d’entre eux croient en cette hypothese. En 1859, Maxwell découvre la loi de
distribution des vitesses d’un gaz. Et en 1872, Boltzmann propose une interprétation statistique de
I’irréversibilité et de I’atteinte de 1’équilibre qui lui vaut de nombreuses critiques et ultérieurement
Planck en 1900, utilise les travaux de Boltzmann pour résoudre le probléeme du corps noir. Aussi
Einstein travaille sur les fondements de la physique statistique appliquée & la mécanique quantique en
I’année 1925. Ensuite, la physique statistique devient un des piliers de la physique moderne avec la
mécanique quantique et la relativité, et on définie comme la théorie physique des propriétés
thermiques de systemes macroscopiques a partir d'une connaissance des forces microscopiques entre
les particules constitutives. [a]

L’éducation de cette branche de physique consiste a expliquer le comportement macroscopique
a partir des propriétés microscopiques, lesquelles sont régies par les lois de la mécanique quantique.
Les concepts d’irréversibilité, d’entropie, de température, de pression, de potentiel chimique etc. sont
en effet des propriétés émergentes de nature statistique. En plus, la physique statistique a un grand
pouvoir prédictif. Elle donne un sens physique aux propriétés des matériaux en utilisant des concepts
dont la portée dépasse le cadre de la physique : phénomeénes collectifs, brisure de symétrie, transition
de phase, marche aléatoire, simulation Monte Carlo, groupe de renormalisation ...etc. [b]

Une orientation tres importante et également trés riche de la physique statistique a apparu au
cour du siecle passé. C’est les modeles d’interaction spin-spin sur réseaux. C’est une approximation et
représentation d’une collection d’atomes dans un matériel en plagant les atomes sur les nceuds ou les
liens entres ces nceuds de tel réseau. Beaucoup de modeles sont introduit, et chaque model traite un
probléme physique qui lui associé. Dans ce contexte, on cite le model d’Ising introduit en 1920 ou on
traite les couplages des spins de deux projections (états) + %2 et — % sur un réseau. Ce model est bien
traité sur un réseau bidimensionnel ou les quantités thermodynamiques sont bien déterminées. [c]

La généralisation de ce model, est connu sous le nom : Le model de Heisenberg ot on n’a pas
seulement deux états, mais une infinité. La version classique associe a chaque spin un vecteur dans
I’espace. Dans ce mémoire, on consideére un vecteur de spin a deux composante ou ce qu’on appelle,
le model XY de Heisenberg.

Finalement, on doit signaler que dans ce travail, on appuis sur le calcul numérique et non pas
sur 1’étude analytique. Pour cela, on a introduit les méthodes de simulation Monte Carlo en basant sur
la génération des nombres aléatoires, et d’autre part, on a choisit un algorithme simple pour notre
calcul qui est I’algorithme de Metropolis expliqué dans ce que suit.

Notre mémoire est organisé comme suit : On va d’abord rappeler, au premier chapitre, les
differentes notions de base de la physique statistique. On introduit les concepts des ensembles
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statistiques et leurs types, et comment tirer les quantités thermodynamiques dans le cas de 1’ensemble
canonique, puis une bréve vue autour de quelques notions indispensables dans la simulation comme
chaine de Markov et ergodicité, et également des notions autour du comportement magnétique des
matériaux, et les transitions de phases associées. Dans le deuxiéme chapitre, nous allons exposer le
sujet des modeles de spins sur réseaux en particulier notre modéle sous considération : Le XY modele
de Heisenberg. On va aussi exposer briévement certains modéles comme par exemple le modele
d’Ising et de Potts. Au troisieme chapitre, on va présenter notre procédure de simulation Monte Carlo
par 1’algorithme de Metropolis. Aprés une description de I’algorithme, on va expliquer comment
extraire les quantités thermodynamiques en valeurs moyennes. Ensuite, on essaye de trouver des
interprétations des résultats obtenus. Finalement, on donne une conclusion. [d]

Les references bibliographiques:

[b] TEUNIS C DORLAS, STATISTICAL MECHANICS FUNDAMENTALS AND MODEL
SOLUTIONS, Department of Mathematics University of Wales Swansea, London, 1999

[c] C. Domb, M.S. Green, phase transition and critical phenomena, volume 6, New York,

1976

Référence web :

[a] http://[femt physique.fr/physique statistique/phystat_C1.php.

[d] cour sahbi toufik



Chapitre 1

RAPPEL SUR LES NOTIONS DE PHYSIQUE
STATISTIQUE



1.1 Introduction

La physique statistique est la branche de la physique qui traite le comportement d'une collection
ou ensemble de systémes de structure similaire au systeme d'intérét réel, répartis sur une gamme d'états
précis différents. Ces systemes présentent alors un trés grand nombre de degrés de liberté comme par
exemple les molécules dans un gaz. L’étude de ces états nous permet de faire des prédictions sur ce qui
peut étre en moyenne pour le comportement global de systeme qui nous intéresse. Dans ce chapitre, on
va tous d’abord, rappeler comment décrire un systéme statistique moyennant deux points de vue : La
description microscopique et la description macroscopique et I’influence de premiére sur la deuxiéme.
Ensuite, on parle des ensembles statistiques en basant sur I’ensemble canonique et comment tirer les
grandeurs macroscopiques. Puis, il est nécessaire d’introduire quelques notions comme chaine de
Markov, I’hypothése ergodique, qui vont nous aider a la simulation par suit. Le dernier paragraphe est
consacré a une bréeve présentation de types des matériaux de point de vue magnétique. En particulier,
la transition de phase ferromagnétique-paramagnétique sera expliquée.

1.2 Etat microscopique, état macroscopique

On distingue dans le domaine de physique statistique deux visions des systéemes. La premiére
vision tient compte de I’état de chaque constituant dans le systéme (que ce soit particule, atome,
molécule, ...etc.) et elle nous demande toute information intrins€que comme par exemple 1’énergie, la
vitesse, spin de ce constituant. On appelle cette information état microscopique et 1’étude description
microscopique. Par contre si on s’intéresse a la vision globale en ne cherchant que les informations sur
le groupe complet de ces constituants comme étant un seul objet, on dit qu’on a un €tat macroscopique
et I’étude associée une description macroscopique. [1]

La description macroscopique est 1’objectif de la thermodynamique. En fin de 1’étude, on peut
avoir certains quantités importantes comme 1’énergie, la pression, 1’entropie, ...etc. La physique
statistigue essaye de trouver un lien entre les deux descriptions en partant de la description
microscopique. On note que sous un état macroscopique, on trouve généralement plusieurs états
microscopiques. En effet I'état microscopique d'un systéme physique fluctue en général au cours du
temps, méme si celui-ci est a I'équilibre. Sauf pour des systémes trés simples il est impossible de
connaitre exactement a tout instant ces fluctuations, ne serait ce qu'en raison du trés grand nombre de
degrés de liberté microscopiques du systéme. [1]

1.3 Ensembles statistiques



L'outil théorique fondamental de la physique statistique est I'ensemble statistique. C’est une
abstraction qui consiste a considérer une collection de copies virtuelles (ou répliques) d'un systeme
physique dans I'ensemble des états accessibles ou il est susceptible de se trouver, compte tenu des
contraintes extérieures qui lui sont imposeées, telles le volume, le nombre de particules, I'énergie et la
température. Au sein de I’ensemble de ces répliques, le systéme ne se trouve pas nécessairement dans
des micro-états identiques, bien que ceux-ci doivent étre compatibles avec les contraintes extérieures
(états accessibles). Cette notion, introduite par le physicien américain Josiah Willard Gibbs en 1902,
est un concept central de la physique statistique. Trois situations particuliéres pour un systeme donné
sont généralement envisagées en physique statistique, et correspondent aux trois ensembles statistiques
suivants : [2]

1.3.1 Ensemble micro-canonique

Il est défini dans le cas d'un systéeme isolé thermodynamiquement, c'est-a-dire qui ne peut
échanger ni énergie, ni particules avec I’extérieur. Pour un tel systéme, le volume V, I'énergie totale E
et le nombre de particules N sont des parameétres extérieurs, de valeurs fixées aux incertitudes 6V, 6E
et SN prés. A I'équilibre, les états accessibles du systéme son équiprobables. Si Q représente le nombre
de ces états alors la probabilité p, de trouver le systéme a un état microscopique noté « | » suit une loi
uniforme discréte, et on a

P = % = cste (1.2)

Dans le cas général ou on a un systeme quelconque, on définit /’entropie comme une grandeur
statistique a été proposée par Gibbs

S = —Kg Y piInp; InQ (1.2)
et il devient dans notre cas
S = KplnQ (1.3)
Kz = 1.38.10723 S] étant la constante de Boltzmann.

L’entropie est une grandeur extensive, il mesure le manque d’information autour de notre
systéeme, alors il est nul quand 1’état microscopique du systéme est parfaitement connu. Pour deux
systemes de températures différentes, la partition la plus probable est celle qui rend les deux
températures égales et 1’entropie totale sera maximale. Si le systéme n’est pas a 1’équilibre, il va
évoluer de maniére a satisfaire au postulat d’équiprobabilité des états (1.1) [2]

1.3.2 L’ensemble canonique

Dans ce cas le systétme considéré est supposé en contact avec un systeme beaucoup plus
important, appelé réservoir avec qui il peut échanger librement de I'énergie mais pas de particules ni de
volume (contact purement thermique), ces échanges étant considérés comme ne modifiant pas de
facon appréciable I'état du réservoir. En pratique, le réservoir impose sa température T au systeme et
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devient une contrainte extérieure au méme titre que le volume V et le nombre de particules N, I'énergie
E pouvant librement fluctuer. La distribution de probabilité prend la forme :

BE]
pL=" (1.4)
E, Etant I'énergie du micro-état (I) et
Z=Y,e Pk (1.5)

Représente la fonction de partition du systéeme, avec: f =ﬁ. I n’est qu’une mesure de la
B

température du systéme, alors que les niveaux d'énergie sont les caractéristiques du systeme lui-méme.
Si le nombre de micro-états d’énergie E; estg;, on appelle ¢a une dégénérescence de niveau E; et on
peut écrire.

Z=7Y,g,e P (1.6)

La signification de la fonction de partition Z peut étre comprise comme suit : En utilisant la
définition (1.6) pour la fonction de partition, la loi de répartition nous donne la probabilité p, de
trouver le systéme a I’état d’énergie E,

e~ PE]

p=y== (1.7)

Si Eydesigne I'état d'énergie le plus bas, alors (1.7) devient :
2 (L.8)

Avec A = e PEo

On peut définir la fonction de partition comme un inverse de la fraction de particules occupant
I'état d'énergie la plus basse. En variante, il peut étre défini comme le rapport entre le nombre total de
particules dans un systeme et le nombre de particules dans I'état d'énergie la plus basse, a partir de ce
point suivant autour de Z émergent:

- Elle indique le mode de distribution des particules dans différents niveaux d'énergie.

- C'est un nombre pur, donc une quantité sans dimension.

- Elle ne peut jamais étre nulle, la valeur la plus basse serait 1, au zéro absolu (0 K) ou toutes
les particules occupent I'état d'énergie la plus basse a une température plus élevée, la valeur
de Z est beaucoup plus grande que 1.

1.3.3 L’ensemble grand-canonique

Dans cette situation, le systeme peut non seulement echanger de I'énergie mais également des
particules avec le réservoir, le volume V étant fixe. En pratique, non seulement le réservoir impose sa
température T, mais également son potentiel chimique u qui est 1’énergie nécessaire pour ajouter une
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particule au systéme, en maintenant le volume et 1’entropie constante. La distribution de probabilité
prend la forme :

e~ BE+UNY)

pL= (1.9)
N; étant le nombre de particule du systéme dans le micro-état | et
E=Xu e ~B(E1+uNy (1.10)

étant la grande fonction de partition du systéme. La répartition la plus probable de 1’énergie et du
nombre de particule entre deux sous systemes ouverts mis en contact est celle qui fait égaler a la foi les
deux températures et les potentiels chimiques, en gardent a 1’esprit la signification physique du
potentiel chimique, cette dernicre condition indique que les deux systémes n’ont aucun intérét
énergétique, a 1’équilibre pour déplacer une particule d’un systéme a ’autre. [2]

1.4 Les grandeurs thermodynamiques dans I’ensemble
canonique

Aux calculs d’une fonction physique, il faut reconnaitre que, tandis que la mécanique quantique
traite de l'arrangement détaillé et du mouvement des molécules, La thermodynamique traite de leur
comportement moyen. Par exemple, la pression exercée par le gaz est interprétée comme la force
moyenne par unité de surface exercée par la molécule et pour spécifier la pression il n'est pas
nécessaire de savoir laquelle des molécules sont en collision avec la paroi a un instant. La
Thermodynamiques statique est basée sur le principe que les variables thermodynamiques sont la
moyenne des propriétés moléculaires et il mit en place le schéma de calcul de ces moyennes. [3]

A un instant donné, il est possible de dénombrer N, les répliques qui au sein des N constituant
I'ensemble sont dans un micro-état donné, noté (I). A la limite ou N devient tres élevé, la fréquence FI

tend vers la probabilité p; de trouver le systéme dans ce micro-état au sein de I'ensemble. A I'équilibre,
cette probabilité sera indépendante du temps. La détermination de la distribution de probabilité p; des
micro-états du systéeme au sein de cet ensemble permet alors de calculer une grandeur physique donnée
Q comme une moyenne d'ensemble. Sous la version discréte cette moyenne s’écrit [3]

Q) =X0pp Q& (1.11)

ou la sommation portant sur tous les micro-états (I) accessibles du systeme, pour lesquels la grandeur
considérée prend la valeur Q,

1.4.1 Energie interne

L'énergie moyenne du systéme est déterminee a partir de
—BE
(E) = % (1.12)
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En différenciant Z, nous trouvons que :

dIlnz

(E) = KgT? ( pre

) (1.13)

1.4.2 Capacité calorifique
De la thermodynamique, la capacité calorifique est définie comme
0E
Co = Gy (1.14)

Donc en substituant E a partir de (1.13), et en simplifiant le différentiel, on obtient

C, == (KgT? 22, (1.15)
Finalement
¢, = 5("6(;)) (1.16)
et en fonction de 1’énergie, on peut avoir la relation
Cy = KgB?((E?) — (E)?) (1.17)

1.4.3 Entropie
De la thermodynamique, I'entropie est définie comme
TC

st —5So = TV dt (1.18)

En utilisant (1.15) pour Cv en (1.18) on obtient

T1 0 dinz
st~ S0 = J 737 (KT? a—nT)dt (1.19)
En le différenciant par parties, il devient
s—So=z+KInZ — [KInZ |7, (1.20)

Dans I'expression (1.20), comparer le terme indépendant de la température a la constante Sy qui
est I'entropieat=0

SO == |Kln Z |T=0 (121)

De (1.20), on obtient

sp=z+KInZ (1.22)
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ou

st = KT (Z2) + KInZ (1.23)

1.4.4 Energie libre

L’énergie libre, a est défini thermodynamiquement par

F=E-TS (1.24)
En remplagant S, il vient
F=E - (Z+KInZ) (1.25)
Nous observons que
F = —KTInZ (1.26)

1.4.5 La pression
En terme d'énergie libre F, la pression est définie par :
p=-(); (127)
En utilisant (1.25) pour F, on obtient :

p = —KT(

0 inZ
Tk (1.28)

1.4.6 L’aimantation

C’est une grandeur caractéristique d'un corps a l'origine d'un champ magnétique. Elle a pour
origine I'existence d'une densité de moments magnétiques microscopiques portés par les électrons au
sein de la matiere (courants ampériens imaginés par Ampeére). On distingue lI'aimantation permanente
(aimant) de l'aimantation induite, provogquée par un champ magnétique extérieur ou un courant
(induction, électroaimant). L'intensité d'aimantation est reliée au champ magnétiqgue B et a son
excitation H par la relation

B = po(H + M) (1.29)

ou u, est la perméabilité du vide, multipliée par une perméabilité relative dans un milieu (équations de
Maxwell-Ampere).

1.4.7 La susceptibilité

Le matériau interagit avec l'application du champ magnétique. Il est susceptible en champ
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dM = ydH (1.30)

M représente 1’aimantation, moments magnétiques par unité de volume, et x la susceptibilité
magnétique volumique (sans dimension).

1.5 L'hypothése ergodique

Comme on a vu dans la section précédente, le calcul d’une propriété moyenne (quantité
thermodynamique) d'un systéme se donne par ce qu’on appelle une moyenne d’ensemble qui n’est que
le moment d’ordre « 1 » ou bien espérance mathématique de cette propriété cf. (1.11). On assure la
correspondance entre ces valeurs moyennes d'ensemble et les moyennes temporelles envisagées dans le
cas d'un systeme unique. Ces moyennes prennent la forme

tmax p.
simar o,

tmax_teq

Q)= (1.31)

On fait la moyenne sous un intervalle t,,,, — teq suffisamment grand entre deux temps : t.,
qui est le temps ou 1’équilibre commence en observant des petites fluctuations microscopiques, et t,qx
un temps suffisamment large pour avoir des bons résultats. Cette substitution des moyennes
d'ensemble aux moyennes temporelles qu’on appelle I'nypothese ergodique est a la base de la physique
statistique, et elle est devient indispensable pour le calcul numérique par simulation puisque la
connaissance de la fonction de partition n’est toujours évident. [4]

1.6 Chaine de Markov

Une suite infinie ordonnée X;, X,, X3, ... de variables aléatoires est une chaine de Markov si la
loi de probabilité conditionnelle de X;,, lorsqu'on se donne les valeurs de X;,X,, ..., X; se réduit a la
loi de probabilité conditionnelle de X, lorsqu'on se donne seulement la valeur de X,. t désigne ici un
entier naturel, faisant référence a un temps discret. Si nous nous restreindrons aux cas ou la loi de
probabilité conditionnelle de X, lorsqu'on se donne la valeur de X; ne dépend pas de t, on dit que la
chaine de Markov est homogéne. Alors la chaine de Markov est entierement déterminée par cette loi
de probabilité conditionnelle appelée loi de transition et par la loi de probabilité initiale de la variable
aléatoire X,. Comme un cas particulier, on peut considérer une suite de configurations d’un systéme ot
on associe une suite des micro-états constituant notre chaine Markovien. [4]

1.7 Transition de phase et phenomeénes critiques

Ce domaine est trés important et également trés riche dans 1’étude des modeles statistiques.
Nous appellerons phase tous domaine de matiére homogéne limitée par une surface et présentant une
composition, une organisation atomique et des propriétés bien définie. Une transition de phases
correspond au passage d’un systéme initialement sous forme de phase A, vers une autre phase B.
L’exemple standard d’une transition de phase est le passage entre les trois états de la matiére : liquide,
gaz, solide (fig. (1.1))
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Figure (1.1) Transitions de phase du premier ordre en thermodynamique.

Ce qui caractérise ces transitions, c'est le changement qualitatif, la discontinuité des propriéteés.
Une petite variation d'un paramétre (température, pression ...) déclenche une modification qualitative
spectaculaire. Pour un systéme donné, on fait varier un certain nombre de parameétres (température,
pression, champs extérieurs, etc. ...) pour mettre en évidence les diverses phases du systeme et en
explorer les domaines d'existence, et on consigne les résultats sur une carte : un diagramme de phase

(fig. (1.2)) [8]

Courbe de
fusion
% Liguicle
HIE
E Couthe de
& waporisation
Couthe de
~ -7 ce
oz
Température

Figure (1.2) Diagramme (pression, température) montrant les domaines d'existence de trois phases
(solide, liquide, gaz).

Le point critique est le point d'arrét a la frontiére entre deux phases ou plus de la matiere. En
tournant autour lui, on peut passer continiment ou discrétement d’une phase a 1’autre. On appelle
I’étude des points critiques phénomene critique. On distingue deux types de transition de phase

1.7.1 Transitions du premier ordre

Les transitions du premier ordre sont celles pour lesquelles la dérivée premiére par rapport a
une des variables thermodynamiques de I'énergie libre est discontinue (présence d'un « saut » dans
cette dérivée). Par exemple, les transitions solide/liquide/gaz sont de premier ordre : la dérivée de
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I'énergie libre par rapport a la pression est le volume, qui change de maniére discontinue lors des
transitions.

1.7.2 Transitions du deuxiéme ordre

Les transitions du deuxieme ordre sont celles pour lesquelles la dérivée premiere par rapport a
une des variables thermodynamiques de I'énergie libre est continue, mais pas la dérivée seconde qui
présente une discontinuité. La transition paramagnétique/ferromagnétique du fer (en absence de champ
magnétique) en est un exemple type : la dérivée premiére de I'énergie libre par rapport au champ
magnétique appliqué est lI'aimantation, la derivée seconde est la susceptibilité magnétique et celle-ci
change de maniére discontinue a la température dite « de Curie » (ou point de Curie) [6].

1.8 Transition ferromagnétique paramagnétique

1.8.1 Moment magnétique atomique /moléculaire

En étudiant les expériences d’Oersted sur les champs magnétiques créés par les circuits
électriques, André Marie Ampere (1775-1836) introduisit 1’hypothése des " courants ampériens ",
c’est-a-dire ’existence de microcirculations d’électrons dans la matiére aimantée. Plus tard, on
modélisa ’atome comme ayant des électrons en rotation autour du noyau, équivalent alors a des spires
de courant créant un champ magnétique microscopique. On définit en électromagnétisme une grandeur
caractéristique de ce dispositif : le moment magnétique : est un vecteur a pour sens et direction ceux du
champ magnétique créé par | et pour norme [7].

M=1S (1.32)
S est la surface définie par la spire.

Cependant I’existence du moment magnétique dans certains atomes et molécules est avérée :
Chaque électron d’un atome posséde une propriété analogue a celle qui serait induite par sa rotation
autour du noyau (le moment angulaire orbital) ou a sa rotation sur lui-méme (le spin ou moment
angulaire intrinséque). A chague moment angulaire est associé un moment magnétique[7].

M =21 (1.33)
ou uB étant le magnéton de Bohr. Il est donné pour une particule de masse m, et de charge q par

uB = (1.34)

a-
2m

Dans un édifice poly-électronique, les interactions entre les électrons conduit a un moment
magnétique global. Le noyau présente également un moment magnétique si son spin nucléaire est non
nul mais qui est mille fois plus faible que les précédents. [7].

1.8.2 Magnétisme des matériaux
a) Le paramagnétisme
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Le magnétisme habituel, celui qui permet a un aimant de soulever des trombones, c’est le
paramagneétisme : c’est le magnétisme du fer et de ’acier, mais aussi du nickel ou du cobalt. Dans les
atomes comme ceux du fer, certains électrons, ceux situés en périphérie de 1’atome et qui ne
participent pas aux liaisons atomiques, sont comme « orientables » (on parle de moment magnétique
de 1’électron, qu’on pourrait décrire comme le sens de 1’aimant représenté par 1’électron). Quand on
soumet un échantillon de fer a un champ magnétique, ces électrons s’alignent tous dans le méme sens
que les lignes de champ du champ magnétique [7]. (figure 1.3) :

U
U
1 ¢ ¢ ¢
! ¢ ¢!
! ¢ ¢ ¢
! ¢ ¢ ¢

—

Figure 1.3 Alignement des électrons en présence d’'un champ magnétique dans le cas d’'un
matériau paramagnetique

En résultat, le champ magnétique du matériau et celui de 1’aimant s'ajoutent. Le matériau et
I’aimant sont alors attirés I’un vers 1’autre. C’est ce qui permet a un trombone de rester « collé » a un
aimant. De plus, si on utilise un aimant relativement puissant, on peut créer un sorte de « serpent »
avec les trombones : le premier trombone est collé a 1’aimant, mais les autres trombones peuvent se
coller au trombone précédent. On peut ainsi en faire coller deux ou trois a la suite, suivant la force de
I’aimant. Ceci est di au fait que chaque trombone, en présence de I’aimant, devient un aimant
¢galement (a cause des électrons, tous alignés). Quand on retire 1’aimant, les électrons reprennent une
orientation aléatoire et 1’aimantation disparait. Le paramagnétisme est caractérisé par une susceptibilité
relative positive, de faible amplitude, c'est & dire comprise entre 10 et 10°[7].

b) Le ferromagnétisme

Si on reprend le cas précédent, ou on colle des trombones a un aimant, mais que 1’on utilise un
aimant trés puissant (aimant au néodyme par exemple), alors les trombones conservent une petite
aimantation résiduelle méme quand I’aimant est retiré. Les électrons dans la matiére restent alors
orientés dans le méme sens que ’aimant les as mis, méme quand on retire I'aimant. On parle alors de
ferromagnétisme. Dans ce cas, le matériau est devenu un aimant permanent lui-méme, et il conservera
cette aimantation tant que 1’0n ne la supprime pas (en chauffant fortement le matériau, par exemple).

I1 faut noter que dans un matériau ferromagnétique, si les électrons s’orientent dans le méme
sens sous 1’effet d’un aimant, puis conservent une partie de cette orientation une fois 1’aimant retiré, le
caractére aimanté de I’échantillon n’existe pas « de base ». En fait, la matiére est subdivisée en petites
régions, appelées micro-domaines de Weiss. L’orientation des électrons de chacune de ces régions est
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identique, mais chaque domaine a une orientation aléatoire. Au total, 1’échantillon dans sa globalité
n’est pas aimanté tant que 1’on n’applique pas un champ magnétique extérieur [7].

c) L’antiferromagnétisme
Dans les matériaux ferromagnétiques, les électrons s’orientent tous dans le méme sens que le

champ magnétique extérieur. Dans 1’antiferromagnétisme, 1’orientation est inversée d’un atome sur
’autre, formant un moment magnétique global nul (figure 1.4):

— e e e

! T ¢
! T ¢
! T ¢
! T ¢
! T e 1
! T8 1

—

Figure (1.4) Orientation des électrons lors d 'une application d'un champ magnétique pour
un matériau antiferromagnétique.

Les moments magnétiques d’un atome s’inversent avec celui de [’atome voisin.
Macroscopiquement, ce matériau réagit comme un matériau non magnétique (il n’est ni attiré, ni
repoussé par un aimant), mais des phénoménes magnétiques interviennent tout de méme au niveau
microscopique. Les matériaux antiferromagnétiques le sont en dessous d’une certaine température (dite
de Neel) et sont généralement paramagnétique au dessus [7].

En plus des matériaux intrinséequement antiferromagnétiques, des assemblages de couches
ferromagnétiques séparées par un isolant ont parfois également un comportement antiferromagnétique.
Ces dispositifs la sont largement utilisés en électronique et en mécanique, a cause de comportement
électroniques particuliers. Ces constructions au comportement antiferromagnétique sont utilisés sur les
tétes de lecture des disques durs, dans la mémoire vive magnétique (la Magnetic Random Access
Memory, ou MRAM) et plus généralement dans d’autres formes de microsystéme électromecanique
(ou MEMS, de l'anglais) dont font partie les accélérometres et les capteurs a effet hall que I’on trouve
dans les smart-phones aujourd’hui [7].

d) Le ferrimagnétisme
Un peu situé a I’'intermédiaire entre le paramagnétisme (tous les électrons s’orientent dans le
méme sens) et ’antiferromagnétisme (les électrons s’orientent dans des sens deux a deux opposés), on

trouve le ferrimagnétisme : les moments magnétiques des électrons sont bien opposés deux a deux,
mais ceux étant dans le sens le champ magnétique extérieur sont plus forts que ceux dans le sens
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inverse. Le moment magnétique total dans un sens est donc supérieur a celui dans I’autre sens et le
moment magnétique total de I’échantillon n’est donc pas nul (figure 1.5) [7].

- & e e -

Figure (1.5) Le moment magnétique total de [’échantillon n’est pas nul dans le cas d’un
matériau ferrimagnétique

Les moments magnétiques dans un sens n’ont pas la méme intensité que ceux dans 1’autre sens.
Les matériaux ferrimagnétiques ont des propriétés anisotropiques, c’est a dire que 1’orientation des
cristaux utilisés a son importance. Ceci est utilisé dans le domaine du paléomagnétisme, ou les roches
ferrimagnétiques capturent le magnétisme terrestre de 1’époque de leur formation. L’étude de ces
roches permet de déduire que le champ magnétique terrestre s’inverse réguliérement au fil des éons.
Inversement, on peut aussi dater une roche en analysant le champ magnétique qu’il a capturé.

Ces mateériaux, ont aussi un intérét dans les nanotechnologies : leur moment magnétique global
étant « programmable » sous ’effet de la chaleur, certaines formes de mémoire vives et mortes
pourraient utiliser des ¢éléments ferrimagnétiques avec une téte de lecteur et d’écriture a base d’un
laser. Le but étant d’avoir des modules mémoires beaucoup plus rapides que la mémoire actuelle,
inscrite avec des tensions électriques seulement [7].

e) Le diamagnetisme

Quand, dans un matériau soumis a un champ magnétique, tous les ¢électrons s’orientent dans le
sens oppose au champ magnétique (donc l'inverse que dans un matériau paramagnétique), alors
I’aimant et le matériau se repoussent et on parle de diamagnétisme (figure 1.6). Cette répulsion
intervient a de degrés plus ou moins forts dans tous les matériaux, bien qu’elle soit généralement
écrasée par d’autres types de magnétisme. Aussi, la répulsion entre un matériau diamagnétique et un
aimant n’existe pas de facon intrinséque : elle nait de la présence de I’aimant, et elle disparait quand
I’aimant est retiré [7].
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Figure 1.6 Matériau diamagnétique

Ce type de magnétisme est caractérisé par une susceptibilité relative négative, de faible amplitude.

1.8.3 Influence de la température

Pour les matériaux ferromagnétiques, il existe une température caractéristique, dite température
de Curie Tc, au-dessus de laquelle ils perdent leur propriété ferromagnétique pour faire place au
paramagnétisme. Voir quelques exemples dans la table (1.1). Ceci provient de ce que I’interaction qui
tend a aligner les spins ne peut plus lutter contre I’agitation thermique qui tend au contraire a leur
donner une orientation aléatoire[7].

Matériau Tcen°C

Nickel 358
Fer 770
Cobalt 1115

Table 1.1 Température de Curie pour certains matériaux

Le diagramme (1.7) présente une frontiére sur I'axe H = 0 avec un point d'arrét, qu'on appelle
aussi point critique. On observe a haute température une phase désordonnée, dite paramagnétique sans
aimantation [11]. Lorsque T = Tc, au point critique, une transition se produit, et pour T < Tc, on
observe une phase ordonnée, dite ferromagnétique, présentant une aimantation spontanée. 1l y a une
analogie avec la transition liquide-gaz, H et p jouant des rdles similaires. Dans le 2eme diagramme
(1.8) si on traverse la frontiere (H = 0, 0 < T < Tc), on observe un saut de l'aimantation ; ce saut
diminue quand le point de franchissement de la frontiére se rapproche du point critique; au point
critique, il n'y a plus de saut de I'aimantation [8].

21



49V

©.Tg)

Figure (1.7) Diagramme (champ magnétique, température) pour un corps qui présente une transition
ferromagnétique.

//

Figure (1.8) Courbe d’aimantation M(H) pour un ferromagnétique a différentes températures.

Autre cas, on a une transition antiferromagnétique leur diagramme est un diagramme (champ
magnétique, température) mais pour un corps qui présente une transition antiferromagnétique (avec
une aimantation alternée dans la phase ordonnée).

H 4 1 ®lordre

\/
oM. )

/

2 ®M ordre

Figure (1.9) Diagramme de phase montre un point tri critique pour un matériau antiferromagnétique.

On observe sur ce diagramme deux domaines séparés par une ligne (une partie en trait gras,
l'autre en trait fin) : quand on franchit la partie grasse, on observe un saut de I'aimantation alternée ;
quand on franchit la ligne fine, il n'y a pas de saut. Cette derniere ligne est une ligne de points critiques
(puisqu'il n'y a pas de saut). La ligne de points critiques a un point d'arrét, sur la ligne de transition,
qu'on appelle un point tri critique [8].
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Chapitre 2

LE MODEL % XY DE HEISENBERG
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2.1 Introduction

La représentation des modeéles physique sur une géométrie dans un espace euclidien est tres
utile dans la physique statistique. En posant certains contraintes d’approximations, cela nous aidé a
construire une image concréte concernant notre probléme. Cette représentation se disperse au autres
dans hors de la physique comme les mathématiques, 1’économie, sociologie,...ctc. Pour simplification,
on fait souvent un choix des géométries ordonnées et symétriques qu’on appelle réseaux que ce soit a
deux ou trois dimension. En posant nos objets (atomes, molécules, composant ¢lectronique,...etc.) sur
les nceuds ou bien les liens, on obtient un systéme global qu’on peut étudier. C’est le cas des modeles
statistiques de spins ou on place un nombre d’atomes Sur notre réseau et concentrons sur les
interactions spin-spin entre ces atomes. Dans ce chapitre, on va expliquer cette approche pour ce qu’on
appelle le XY modéle de Heisenberg. Apres cette introduction, on va citer quelques modéles de spin
simples comme le modéle d’Ising et de Potts, puis on va passer a un peu de détail autour de notre
objectif qui est le XY modeéle de Heisenberg qui sera une introduction au chapitre suivant.

2.2 Quelques exemples des modeles de spins

2.2.1 Modéele d’Ising

Le modele d’Ising est I’'un des modéles les plus simples qui permet de modéliser des systémes
physiques trop complexes a analyser de fagon exacte. En raison de sa simplicité et de la richesse de
son comportement, le modéle d’Ising suscite depuis son introduction un grand intérét. Il est constitué
d’une distribution d’atomes dans 1’espace. Chacun de ces atomes porte un moment magnetique pB
(magnéton de Bohr pour 1’¢lectron) orienté aléatoirement en spin up (+uB) ou spin down (—uB). Ces
spins interagissent entre eux deux a deux, uniquement entre premiers voisins avec une énergie
d’interaction. La figure (2.1) présente un exemple & deux dimensions

o
{
A

Figure (2.1) Systeme d’Ising a deux dimensions ou le spin central Sc interagit uniquement avec les
spins indicés 1, 2, 3 et 4.

L’Hamiltonien du systéeme est donne par :
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Hising = =] X<ij>Si Sj — h X s (2.1)

ou,<i,j> désigne une somme sur les sites qui sont les plus proches voisins, h est le champ magnétique
extérieur. s; représente le spin au site i, et J est I’interaction d’échange. Les signes (-) dans 1’équation
(1.1) sont classiques. Ils dictent simplement le choix du signe pour le paramétre d’interaction J et le
champ externe h. La simulation d’un systeme d’Ising de taille finie par la méthode Monte Carlo
permet de calculer les valeurs des grandeurs physiques telles que I’aimantation, 1’énergie, la chaleur
spécifique et la susceptibilité a une température donnée.

Notons que si J > 0, I’interaction est dite ferromagnétique, et inversement, si J < 0,
I’interaction est dite antiferromagnétique. Deux spins premiers voisins subissent une interaction qui
tend a les aligner. A température nulle, les spins seront donc tous alignés pour minimiser I'énergie.
Ceci constitue le modele le plus simple pour un corps ferromagnétique. En l'absence de champ
magnétique, I'état fondamental du systeme est doublement dégénérée car les spins peuvent étre alignés
tous vers le haut ou tous vers le bas. Si on applique une induction magnétique h dirigée vers le haut,
par exemple, on leve la dégenérescence : tous les spins s'orientent vers le haut. Dans la version
classique, I’état fondamental en I’absence d’un champ extérieur est simplement

Ey = —2JN (2.2)

pour un réseau contenant N spins.

2.2.2 Modeéle de Potts

En physique statistique, le modele de Potts est une généralisation du modele d’Ising. C’est un
modele d’interaction de spins sur un réseau cristallin. Ce modele permet de comprendre le
comportement des matériaux ferromagnétiques. 1l est également utilisé pour expliquer certains
phénomeénes relatifs a la physique des solides tels que les transitions de phases et les propriétés
magnétiques des structures périodiques en couches.

Le modéle de Potts est similaire au mod¢le d’Ising, hormis le fait que le spin s; sur chaque site du
réseau peut prendre plus de deux valeurs discrétes différentes. Habituellement, ces valeurs sont
représentees par des nombres entiers positifs a partir de 1, et le modele de Potts a g états est celui dans
lequel chaque spin peut avoir des valeurs entieres. Si = 1. .. q. L’Hamiltonien Hpyys s’exprime comme
suit :

Hpotes = —J X<ij> 05 S (2.3)
ou i est le symbole de Kronecker.

Le modéle de Potts est équivalent au modele d’Ising pour q = 2. Il découle que 1’équation (1.2)
prend la forme suivante :

1 1 1.
Hising = =5 X<ij> 2(85i8) —2) = Xcijs5J (2.4)
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avec:

Si Si=Sj=>2(5SiSj—%)=1
. . (2.5)
St S; * Sj =2 (65i5j _E) -1

Ce Hamiltonien est équivalent a celui d’Ising plus une constante —Y.; ;> % j. Le modeéle de Potts avec q

> 2 transite de 1’état ferromagnétique a 1’état paramagnétique

2.2.3 Modele Blume-Emery-Griffiths

Le modele Blume-Emery-Griffiths (BEG) est un modele de spin qui présente une grande
variété de phénomenes critiques et multi-critiques. Ce modéle a été introduit au début pour décrire la
séparation de phase et la superfluidité dans les mélanges *He—*He. Par la suite, il a été utilisé pour
décrire les systémes caractérisé€s par trois états de spin. Il est I’un des rares modéles simples qui donne
a la fois la transition de phase du premier ordre et du second ordre. Le modéle Blume-Emery-Griffiths
est décrit par I’Hamiltonien Hggg :

Hppe = —j X<ij> iS5 — k Bcijs STsf + AYisf — U Xs; (2.6)

J et K sont respectivement, 1’interaction bilin€aire et 1’interaction biquadratique. A et h sont le champ
cristallin et le champ magnétique.

2.3 Modele de Heisenberg
2.3.1 Définition

Le modele de Heisenberg est 1’un des modeles de spin continu. Il permet de traiter directement
la dépendance en spin d’un systéme de plusieurs électrons. Il constitue une généralisation continue du
modele d’Ising. Dans ces modeles, les spins sur le réseau ont une gamme continue de valeurs, plutot
qu’un spectre discret comme dans les modeéles cités auparavant. On peut considérer que les spins sont
des vecteurs unitaires a trois dimensions (figure 2.2) représentés soit par deux angles variables 6 et @
en coordonnées sphériques, soit par des vecteurs a trois composantes sy, Sy et s tel que

s?=si+s;i+si=1 (2.7)
Dans ce cas, I’Hamiltonien Hyejs prend la forme

Hyeis = —j X<ij> 5.5, — ons (2.8)
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Figure 2.2 Représentation du modéle de Heisenberg & 3 dimensions
En developpant, on obtient
Hyeis = —J Z<ij> SxiSxj T SyiSyj + SziSzj — Yi(xSyi + LSy + 0282:) (2.9)

ou J est la constante d’échange, hy, hy et h, sont les composantes du champ magnétique suivant 1’axe X,
y et z respectivement. On definit ainsi le modele XYZ qui distingue les trois constantes de couplage sur
les trois axes par

HHeis = _Z<ij>]x5xi5xj +]y5yi5yj +]zsziszj - Zi(stxi + Dysyi + [zszi) (2-10)

Si I’espace de spin est bidimensionnel (seulement deux composantes de spin comme illustré
dans la figure (2.3) dans un plan), le modele se réduit au modele XY défini par

A

N 7
Y V) 7
LT AR
N NN
Figure ( 2.3) XY modéle
HXY = _Z<ij>]xsxisxj +]y5yi5yj - Zi(mxsxi + mysyi) (2-11)

Et également, il se réduit au modele d’Ising pour une seule composante de spin prenant deux valeurs
(projections) possibles.

On s’intéresse par suite a la version classique de ce modele pour des spins de normes 2. Cela
est appelé le modele %2 XY de Heisenberg. La version quantique fut introduire les matrices de Pauli
formant une représentation des opérateurs de spins. Alors pour notre modéle classique %2 XY de
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Heisenberg, et a I’absence d’un champ magnétique extérieur, on écrit 1’Hamiltonien (2.11) sous la
forme

J
Hyy = =7 Y<ij>cos(6; — 6;) (2.12)

ou les angles 6; et ; sont des variables angulaires locales qui spécifient les orientations des spins. Le
facteur ¥4 vient du produit scalaire de deux vecteurs de spins.

2.3.2 Analyse et etude

On considére le XY modeéle sur un réseau carré de parametre a. On s’intéresse a 1’étude des
interactions spin-spin entre les atomes les plus proches voisins. Chaque spin posséde 4 voisins sur le
réseau carré. Si on choisit la notation matricielle (i,j) pour chaque position, alors, les voisins de ce
spin sont (i +1,j),(i,j +1),(i —1,j),et(i,j —1). Le XY modéle considére deux constantes de
couplage J; sur I’axe (x, x") et Jo sur I’axe (v, y")

Dans le cas classique, 1’énergie d’interaction pour le modéle XX prend la forme (2.12)
E=-L1%_ cos(6; - 6) (2.13)
en mettant J/; = J, = J. Et I’énergie de I’état fondamental est

Eg=-2& (2.14)

4

On peut choisir pour I’étude plusieurs réseaux, que ce soit a une dimension (chaine linéaire),
deux dimensions (triangulaire, hexagonal), et a trois dimensions (cubique). La figure (2.4) montre
quelques exemples
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Figure 2.4 Exemples des réseaux pour deux et trois dimensions

En notation matricielle, et sur un réseau carré de taille N = L? spins, 1’énergie (2.13) s’écrit sous la
forme

E = —ﬁ 2ij=1.€0S(0;; — 6; j41) +cos(0;j — O;1q,5) (2.15)

ou on choisit des conditions de limites périodiques : L + 1 = 1 pour les deux axes, et en plus on a
marché de gauche a droite et de haut au bas pour ne pas prendre une interaction deux fois (figure 2.5).

A\ 4
A\ 4
\ 4

A 4
Y
\ 4

Figure 2.5 Représentation de [’interaction spin-sSpin
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On s’intéresse aux gquantités thermodynamiques moyennes : L’énergie, chaleur spécifique,
aimantation, et susceptibilité. Par I’hypothése ergodique, on calcul les moyens temporels de ces
grandeurs. On a pour 1’énergie moyenne, et d’apres la formule (1.31)

EtmaxE
(Ey = —fea ~ (2.16)
tmax_teq
Pour la chaleur spécifique, on a la définition du premier chapitre (1.17). L’aimantation par spin dans
notre cas se définit sur un axe (que I’on choisit (xx")) par la relation

1
A= ;Zi:uv cos(s;) (2.17)
et sa valeur moyenne par
ZtmaxA
(A) = Ztea (2.18)
tmax_teq

d’ou, on peut tirer la susceptibilité par la relation
x =542 = (4)) (2.19)

On va voir dans le chapitre suivant les détails de calcul de ces quatre quantités moyennant ce
qu’on appelle algorithme de Metroplis introduit dans le contexte de simulation Monte Carlo.
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Chapitre 03

ALGORITHME DE METROPOLIS ET
SIMULATION MONTE CARLO
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3.1 Introduction

Dans ce chapitre, on va calculer les quantités thermodynamiques moyennes de : 1’énergie E, la
chaleur spécifique C,, ’aimantation M, et la susceptibilité y pour le modele XY de Heisenberg a deux
dimensions sur un réseau carré de constantes de couplages J; = J,. Pour cela, on va dans un premier
paragraphe, expliquer les concepts de base de la simulation de Monte Carlo, puis dans le paragraphe
suivant, on introduit I’aspect général de 1’algorithme de Metropolis, puis les étapes nécessaires pour le
calcul toute en basant sur les méthodes de Monte Carlo. Le paragraphe suivant explique les résultats
obtenues, puis on va donner quelques interprétations de nos résultats. Ce chapitre se base sur les
références [13], [14], et [15]

3.2 Simulation Monte Carlo

3.2.1 Définition et intérét

La méthode de Monte Carlo, ou la méthode de Monte Carlo, fait référence a une famille de
méthodes de calcul pour calculer la valeur numérique approximative en utilisant des méthodes
aléatoires, c'est-a-dire des techniques probabilistes. Le nom de ces méthodes, qui se référe aux jeux de
fortune pratiqués a Monte Carlo, a été inventé par Nicholas Métropolies en 1947, d'abord publié en
1949 dans un essai coécrit avec Stanistaw Alam.

Les méthodes de Monte Carlo sont notamment utilisées pour calculer des intégrales de plus
grandes dimensions (notamment pour le calcul de surfaces et de volumes). lls sont également
couramment utilisés en physique des particules, ou la simulation probabiliste peut étre utilisée pour
estimer la forme du signal ou la sensibilité du détecteur. La comparaison des données mesurées avec
cette simulation peut révéler des propriétés inattendues, par exemple de nouvelles particules.

La simulation de Monte Carlo permet également d'adopter une approche statistique du risque
dans la décision financiere. Il consiste a isoler un certain nombre de variables clés du projet, telles que
la rotation ou la marge, et a lui affecter une distribution de probabilité. Pour chacun de ces facteurs, un
grand nombre de nuages aléatoires sont effectués dans les distributions de probabilité précédemment
identifiées, afin de trouver la probabilité de chacun des résultats.

3.2.2 Domaines d’applications

La méthode de Monte Carlo, et la simulation en général trouve des applications dans :

- Physique statistique
- Economie

- Médecine

- Sociologie

- Mathématique
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et plusieurs d’autres domaines.

3.2.3 Principe

Pour une description concréte, on va illustrer la méthode par un exemple standard. Supposons
qu’on veut calculer la surface délimitée par une courbe fermée désordonnée représentée dans la figure
(3.1). Pour cela, on trace un rectangle ou un carré englobant notre courbe puis, on dispose des points
de facon aléatoire dans le rectangle (voir figure (3.2)). On remarque que certains points tombent dans
la surface, etil y en a d’autres qui tombent a I’extérieur.

Figure 3.2 Distribution uniforme d 'un nombre N de point dans notre rectangle

La surface qu’on veut déterminer se donne simplement et approximativement par le rapport
— g Mo
S=A4A (3.2)

ou A représente la surface de rectangle, N le nombre total de points, et N, le nombre de points situant
dans la surface. C.-a-d. elle est proportionnelle au pourcentage des points situés dans la surface qui
représente la probabilité pour qu’un point soit entouré par la courbe fermée.

On obtient un bon résultat si on dispose un trés grand nombre de points. Or, on peut écrire

S = limy_eo A= (3.2)
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Il reste une note qu’on doit citer. Si la facon de distribuer les points aléatoires est uniforme,
alors on dit qu’on a choisi une loi uniforme de distribution, et si on favorise une région par rapport
’autre, la loi est dite non uniforme et elle suit une loi parmi les autres lois non uniformes comme la loi
exponentielle, de Gauss,...etc. Dans notre cas, on utilise une loi uniforme.

3.2.4 Nombres aléatoires

Si on veut simuler un probleme similaire, on est besoin d’une série de nombres aléatoires que
ce soit uniformes ou non. Sur les ordinateurs, on parle d’un genérateur de nombres pseudo-aléatoires
(pseudorandom number generator (PRNG) en anglais), qu’est un algorithme qui génére une séquence
de nombres présentant certaines propriétés du hasard. Pour I’exemple précédent, le générateur nous
donne deux séries de nombres aléatoires pour les deux coordonnées sur les deux axes.

Les générateurs de nombres aléatoires utilisent des formules mathématiques dans 1’itération.
Parmi ces formules, la formule congruence qui utilise une égalité modulo un nombre m tres grand
s’appelle période sous la forme

Xiy1 = (aX; + b)[m] (3.3)
a et b sont deux entiers facultatifs.

Le Maple utilise une méthode sous le non MersenneTwister de période m = 219937 — 1.

3.3 Algorithme de Metropolis

On considére un réseau carré de taille N = L? sites. Chaque site porte un spin de direction
aléatoire donnée (figure 2.3). Les spins sont représentés par leurs coordonnées (i,j), de 1 a L avec les
conditions périodiques L + 1 = 1 sur les deux indices. On travaille dans I'ensemble canonique a une
température donnée T. On utilise I'algorithme de Metropolis en envisageant des mouvements locaux
(retournement d'un spin) dans notre systeme Markovien de la fagon suivante :

1. On choisit une configuration initiale globale en donnant a chaque vecteur représentant le spin

un angle approprie 6 entre 0 et 27. Cette configuration a une énergie initiale E;

2. On choisit un spin au hasard suivant deux lois de distributions uniformes pour les deux indices

(@)

3. On envisage comme tentative de mouvement le retournement de ce spin pour avoir une

nouvelle configuration d’énergie E;.

4. On calcule la différence d'énergie d'interaction des spins entre la nouvelle configuration avec le
spin retournée et la configuration initiale de départ

A(E) =E, —E; (3.4)
5. Si A(E) est négatif, ou nul c'est a dire, le retournement du spin diminue I'énergie, ou la laisse
invariante, on accepte la nouvelle configuration

6. Si A(E) est positif, on I’accepte avec une probabilité

34



pr = exp(—A(E)) (3.9)
C'est-a-dire, on tire un nombre aléatoire n suivant une loi uniforme sur le segment [0; 1], puis
sin < pr, on accepte la configuration avec spin retourné comme nouvelle configuration. Sinon
on la rejette et la configuration a I'étape suivante est identique a la précédente.
On calcule les quantités thermodynamiques pour chaque configuration comme il est expliqué
dans le paragraphe suivant

3.4 Procédure de Calcul

Pour chaque configuration acceptée, on associé un pas de simulation, et on calcul pour chaque

pas I’énergie de notre system en question. Puis, on va suivre ces étapes :

1.

On fait un nombre suffisant de pas de calcul (généralement a 1’ordre de N) pour la
thermalisation (équilibre thermique) de notre systeme. Autrement dit, jusqu'a I’énergie ne
dérive plus et fluctue autour d’une valeur de 1’équilibre.

A partir du moment ou I'équilibre est atteint, on va pouvoir calculer les valeurs moyennes des
grandeurs thermodynamiques intéressantes par la relation générale (1.31) donnée au premier
chapitre :

tmax p.
zmax g;

tmax—leq

Q)= (3.6)

U t,q est le nombre de pas nécessaire pour atteindre I’équilibre, et ty,q, l& nombre total des
pas de simulation

On augmente la température par pas discrets (on le prend 0.1) et pour chaque température on
applique l'algorithme précédent sur un nombre suffisant de pas en effectuant les valeurs
mMoyennes sur les ty,q, — teq Pas derniers.

On trace les graphes Q(T) en fonction de T pour chaque quantité.

On fait des analyses sur les résultats.

3.5 Quelques remargues

I1 est approprié de citer quelques remarques concernant cette étude. Tout d’abord, il faut noter

que la simulation ne donne des résultats fiables que pour des systéemes de tailles infinies et également
un nombre de pas important. C’est pour ¢a, on choisit N suffisamment grand dans les limites des
possible pour avoir effectué les calculs, et d’autre part, pour diminuer 1’erreur statistique. Le deuxieme

point concerne le type de I’algorithme. On peut choisir d’autre algorithme qui fait retourner un
ensemble entier des spins de méme propriété (orientation, projection,...etc.) au lieu d’un seule spin.
Celle-ci ne nécessite pas un grand nombre de pas pour atteindre 1’équilibre, mais elle a des
inconveénients.
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3.6 Résultats et interprétations

On a effectué un programme MAPLE de calcul pour un system de taille N = 225 sites (voir
I’annexe) ou on a considéré 600 pas de calcul, et on a fait les moyennes temporelles sur les cents
derniers (I’indice eq dans I’annexe) pour cinquante valeurs de température (de pasl a pas2). On obtient
les graphes suivants pour les quatre quantités thermodynamiques : L’énergie, la chaleur spécifique,
I’aimantation, et la susceptibilité. Notons que pour une taille plus grande (que 225), le temps de calcul
devient trés grand grace au nombre important de boucle. Il nous faut une optimisation de notre
programme pour des tailles plus grandes.

Tout d’abord, on a choisi une température (KT = 5) pour faire la thermalisation de notre
systéme. On constate qu’a partir de 430 pas 1I’équilibre commence (figure 3.3)

0.08- 4

0.10- 4

0.12- 4
H(5.1) |
014
0.16- -
0.18-
0.20-

0.22-

0.24

Figure 3.3 La thermalisation du modéle pour la température KT = 5. L équilibre s atteint a partir a
peu pré de 430 pas

A cette température, on a tracé le graphe de 1’aimantation (figure 3.4)

0.06
0.04

0.0z

0.02- 4

0.04

0.06- 4

Figure 3.4 L aimantation a la température KT = 5
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En suite, pour chaque température, de 1 a 50, on a effectué des moyens temporels sur les cents
valeurs derniers, et on obtient les graphes (3.5), (3.6), (3.7), et (3.8)

0.10-
0.15-
E 020-
0:25-

0.30-

Figure 3.5 L énergie du XX modele

012+
0.10 +
008 +

0.06 +

U@\ w“wcé

Figure 3.6 L aimantation

035

0z

0.1
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Figure 3.7 La chaleur spécifique

000012
000010

0000038

x

0.00006

000004

0.00002

Figure 3.8 La susceptibilité

Concernant ’énergie, on remarque qu’elle tend vers une valeur stable maximum de fagon
croissante a hautes températures, et I’aimantation se fluctue autour d’une valeur positive proche de
zéro. Cela signifie qu’a haute température, les spins se répartissent en zones gauche et droite (en terme
de projection sur xx’) presque équivalentes d’ou le caractére ferromagnétique du modele. La chaleur
spécifique tend a s’annuler puisqu’elle représente la variance de I’énergie. La suceptibilité décroit en
fonction de la température jusqu’ une valeur faible stable & cause de I’agitation thermique qui force le
systéme a perdre son caractére magnétique.

Finalement, on note qu’a la limite thermodynamique ou la taille de réseau est treés grande, notre
systeme présente une transition de phase ferromagnétique-paramagnétique. Ceci, peut étre confirmé
par interpolation des graphes.
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Conclusion

Dans ce mémoire, on a considéré un model de spin important a deux dimensions qui est le
model XY de Heisenberg. La version classique de ce model est une collection de spins de modules %
et deux composantes sur les deux axes cartésiens répartis sur un réseau carré. Pour simplification, on
n’a considéré que les interactions entre les plus proches voisins avec des constantes de couplages
identiques sur les deux axes. Voyons le nombre important des configurations possibles de ce model et
n’importe quel model similaire sur réseau, on a basé pour calculer ses quantités thermodynamiques
(I’énergie, la chaleur spécifique, I’aimantation, et la susceptibilité) sur un algorithme intéressant qui est
I’algorithme de Metropolis en introduisant les méthodes de simulation de Monte Carlo. Nous avons
obtenus des résultats importants donnant le comportement de ce modeéle pour un réseau de taille finie.
Pour des tailles plus importantes ou ce qu’on appelle a la limite thermodynamique, il est nécessaire
d’introduire des algorithmes plus optimisés pour avoir un temps de calcul plus court. Comme
perspectives, on propose d’étudier ce modéle lorsqu’on considére la deuxiéme interaction entre les
deuxiémes voisins avec une autre constante de couplage ferromagnétique ou antiferromagnétique et
voir I’effet sur le comportement physique.
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Annexe : Programme de Calcul

[ > with(RandomTools[ MersenneTwister]), with(LinearAlgebra), with(Statistics ), with(plots,
implicitplot), with( plots) :

] Heiseribare-modeliMetonslis Alasilm

> N:= 15

i N =225 6))
> L:=sqrt(N)

i L=15 @
5 2" configurations
53919893334301279589334030174039261347274288845081144962207220498432 (€))

configurations
> A= 159 (seq(Generatelnteger(range=1.360),i=1.N))

360
1..225 Vector

column

Data Type: anything

A: @)
Storage: rectangular
Order: Fortran_order
[ > evalf (cos(A(1) —A(8)))
0.6560590290 Q)

> s := Matrix(L, L, [seq(A(i),i=1.N)1])
15 x 15 Matrix
Data Type: anythin
. yp ything ©)

Storage: rectangular

Order: Fortran_order

247

180 " ™

> matrixplot(s, heights = histogram, axes = boxed)
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J:=1
J=1 (€))

d - (add(add(cos(s(i,j) —s(i,jmod L+ 1)) + cos(s(i,j) —s(imod L + 1,

HO = evalf(-z

HO:= -7.911752595 )
(e) R e value of a rendom cl i

pas == 600

pas =600 10)
eq = pas — 100 + 1

eq =501 a1
pasl =1

pasl =1 12)
pas2 = 50

pas2 =50 a13)

C = Vector[row]( [ seq(Generatelnteger(range=1..L),i=1 .pas)])
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-Delta(5, t) ) )end do:

> fundamental == - 2,

4
i JSundamental == -8 a7

| (e) Results of normalized energy and aimentation per spin for a given temperature

> plot( <<seq( ﬁ, t=0 ..pas)> <seq(2%, t=0 ..pas)>> )

t
0 0.2 0.4 0.6 0.8 1

0.08- -
0.10- -
0.12- -
H(5,1)
0.14- -
0.16- -
0.18- -
0.20- -

0.22-

0.24-

> Aim(x, t) = % add(add(cos(S(x, t,i,j)),i=1..L),j=1.L)

add(add(cos(S(x, ¢, i,j)),i=1.L),j=1.L)
N

Aim = (x, t) —

> plot( <<seq( L, t=0 ..pas)>
pas

as)

(seq(Aim(5,t), t=O..pas))> )
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0.06

0.04

0.02

0.02-

0.04- 1

0.06-

(f) Mean values of energv and aimentation for last times of calculus

1 H(x,t) ,_
o —eg 1] add(2 N-T ,t eq..pas))

2H(x,t) . _
[add(iNJ il eq..pas)]

pas —eq + 1

> meankE(x) = evalf( (

19)

meankE = x— evalf

> meanAim(x) = 1

= m- evalf (add(Aim(x, t), t=eq..pas))

evalf (add(Aim(x, t), t=eq.pas))
pas —eq + 1

L (g) Results
> plot({(seq(x, x =pasl ..pas2))[(seq(meanE(x), x =pasl ..pas2))) )

meanAim = x—

20)
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10 20 30 40 50

0.05-—5
0. 10-—3
0.15

E 0.20-—5
0.25
0.30

035

_> meank(2)
-0.3505781669 21)

=> plot( ((seq(x, x =pasl ..pas2))|(seq(meanAim(x), x =pasl ..pas2))) )
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0.12

0.10+

0.08

0.067

A -
0.04+
0.02
0 T T 1
| 10 40 50

0.02-

meanAim(1)
0.06465317373
(h) The %uwﬂﬁ'ia heat with K=J=1.38
squaremeank(x) = evalf( PYTE— ( (N— ) t=eq ..pasJ ]
4a dd( Hg 2[) ,t=eq. pas)
squaremeank == x— evalf pr——
K := 138
K:=1.38
_ 2
Ov(x) =K (squaremeanE(x) _ meankE (x) )
(x-K)
_ 2
Cv e xo K (sqmlremeanEz(x)2 meankE (x) )
x'K

plot( ((seq(x, x =pasl ..pas2))|(seq(Cv(x), x =pasl ..pas2))) )
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0.3
0.2
Cv 1
0.1+
0 T T T T T T T T T 1
10 20 30 40 50
T
[> Cv(50)
i 8.542607252 107 (26)
| > (i) The sucibility with K=J=1.38
> squaremeanAim(x) = evalf( 1 add(Aim(x, t)z, t=eq ..pas) )
pas —eq + 1

squaremeanAim :=x—>evalf'( add(4im (x, )", t=eq..pas) J @7
B ‘ pas —eq +1
8 | | 2
> X(x) = (squaremeandim(x) — meandim(x)*)
%K
: . 3
W= s squaremeanAim(x) — meanA4im(x) -

xK
[ > plot( ((seq(x, x = pas] .pas2))\iseq(X (x), x = pas] .pas2))) )
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Résumeé:

Dans ce mémoire, on a considéré un model de spin important a deux dimensions qui est le
model XY de Heisenberg. La version classique de ce model est une collection de spins de modules %2
et deux composantes sur les deux axes cartésiens répartis sur un réseau carré. Pour simplification, on
n’a considéré que les interactions entre les plus proches voisins avec des constantes de couplages
identiques sur les deux axes. Voyons le nombre important des configurations possibles de ce model et
n’importe quel model similaire sur réseau, on a basé¢ pour calculer ses quantités thermodynamiques
(I’énergie, la chaleur spécifique, I’aimantation, et la susceptibilité) sur un algorithme intéressant qui est
’algorithme de Metropolis en introduisant les méthodes de simulation de Monte Carlo. Nous avons
obtenus des résultats importants donnant le comportement de ce modeéle pour un réseau de taille finie.
Pour des tailles plus importantes ou ce qu’on appelle a la limite thermodynamique, il est nécessaire
d’introduire des algorithmes plus optimisés pour avoir un temps de calcul plus court. Comme
perspectives, on propose d’étudier ce modéle lorsqu’on considére la deuxiéme interaction entre les
deuxiémes voisins avec une autre constante de couplage ferromagnétique ou antiferromagnétique et
voir I’effet sur le comportement physique.

Abstract :

In this thesis, we considered an important model of two-dimensional spin which is the XY model of
Heisenberg. The classic version of this model is a collection of spin 2 module and two components on
the two Cartesian axes distributed over a square network. For simplicity, only the interactions
between the nearest neighbors with identical coupling constants on both axes have been considered.
Let's see the large number of possible configurations of this model and any similar model on lattice,
one based on calculating its thermodynamic quantities (energy, specific heat, magnetization, and
susceptibility) on an interesting algorithm that is the Metropolis algorithm by introducing Monte
Carlo simulation methods. We have obtained important results giving the behavior of this model for a
network of finite size. For larger sizes or so-called thermodynamic limit, it is necessary to introduce
more optimized algorithms to have a shorter computation time. As perspectives, we propose to study
this model when we consider the second interaction between the second neighbors with another
ferromagnetic or antiferromagnetic coupling constant and see the effect on the physical behavior.
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