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INTRODUCTION GENERALE 

 

La physique statistique est née au milieu du 19ème siècle de l’hypothèse atomique et de la 

volonté d’expliquer les mystérieuses lois de la thermodynamique dans ce cadre. Parmi les physiciens 

du 19ème siècle, très peu d’entre eux croient en cette hypothèse. En 1859, Maxwell découvre la loi de 

distribution des vitesses d’un gaz. Et en 1872, Boltzmann propose une interprétation statistique de 

l’irréversibilité et de l’atteinte de l’équilibre qui lui vaut de nombreuses critiques et ultérieurement 

Planck en 1900, utilise les travaux de Boltzmann pour résoudre le problème du corps noir. Aussi 

Einstein travaille sur les fondements de la physique statistique appliquée à la mécanique quantique en 

l’année 1925. Ensuite, la physique statistique devient un des piliers de la physique moderne avec la 

mécanique quantique et la relativité, et on définie comme la théorie physique des propriétés 

thermiques de systèmes macroscopiques à partir d'une connaissance des forces microscopiques entre 

les particules constitutives. [a] 

L’éducation de cette branche de physique consiste à expliquer le comportement macroscopique 

à partir des propriétés microscopiques, lesquelles sont régies par les lois de la mécanique quantique. 

Les concepts d’irréversibilité, d’entropie, de température, de pression, de potentiel chimique etc. sont 

en effet des propriétés émergentes de nature statistique. En plus, la physique statistique a un grand 

pouvoir prédictif. Elle donne un sens physique aux propriétés des matériaux en utilisant des concepts 

dont la portée dépasse le cadre de la physique : phénomènes collectifs, brisure de symétrie, transition 

de phase, marche aléatoire, simulation Monte Carlo, groupe de renormalisation …etc. [b]  

Une orientation très importante et également très riche de la physique statistique a apparu au 

cour du siècle passé. C’est les modèles d’interaction spin-spin sur réseaux. C’est une approximation et 

représentation d’une collection d’atomes dans un matériel en plaçant les atomes sur les nœuds ou les 

liens entres ces nœuds de tel réseau. Beaucoup de modèles sont introduit, et chaque model traite un 

problème physique qui lui associé. Dans ce contexte, on cite le model d’Ising introduit en 1920 où on 

traite les couplages des spins de deux projections (états) + ½ et – ½ sur un réseau. Ce model est bien 

traité sur un réseau bidimensionnel où les quantités thermodynamiques sont bien déterminées. [c] 

La généralisation de ce model, est connu sous le nom : Le model de Heisenberg où on n’a pas 

seulement deux états, mais une infinité. La version classique associe à chaque spin un vecteur dans 

l’espace. Dans ce mémoire, on considère un vecteur de spin  à deux composante ou ce qu’on appelle, 

le model XY de Heisenberg.  

Finalement, on doit signaler que dans ce travail, on appuis sur le calcul numérique et non pas 

sur l’étude analytique. Pour cela, on a introduit les méthodes de simulation Monte Carlo en basant sur 

la génération des nombres aléatoires, et d’autre part, on a choisit un algorithme simple pour notre 

calcul qui est l’algorithme de Metropolis expliqué dans ce que suit.  

Notre mémoire est organisé comme suit : On va d’abord rappeler, au premier chapitre, les 

différentes notions de base de la physique statistique. On introduit les concepts des ensembles 
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statistiques et leurs types, et comment tirer les quantités thermodynamiques dans le cas de l’ensemble 

canonique, puis une brève vue autour de quelques notions indispensables dans la simulation comme 

chaîne de Markov et ergodicité, et également des notions autour du comportement magnétique des 

matériaux, et les transitions de phases associées. Dans le deuxième chapitre, nous allons exposer le 

sujet des modèles de spins sur réseaux en particulier notre modèle sous considération : Le XY modèle 

de Heisenberg. On va aussi exposer brièvement certains modèles comme par exemple le modèle 

d’Ising et de Potts. Au troisième chapitre, on va présenter notre procédure de simulation Monte Carlo 

par l’algorithme de Metropolis. Après une description de l’algorithme, on va expliquer comment 

extraire les quantités thermodynamiques en valeurs moyennes. Ensuite, on essaye de trouver des 

interprétations des résultats obtenus. Finalement, on donne une conclusion. [d] 

 

 

Les references bibliographiques: 

 

[b] TEUNIS C DORLAS, STATISTICAL MECHANICS FUNDAMENTALS AND MODEL 

SOLUTIONS, Department of Mathematics University of Wales Swansea, London, 1999 

 

 

[c] C. Domb, M.S. Green, phase transition and critical phenomena, volume 6, New York, 

1976 

 

Référence web : 

 

[a]  http://femt physique.fr/physique statistique/phystat_C1.php. 

 

[d]  cour sahbi toufik 
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1.1 Introduction 

La physique statistique est la branche de la physique qui traite le comportement d'une collection 

ou ensemble de systèmes de structure similaire au système d'intérêt réel, répartis sur une gamme d'états 

précis différents. Ces systèmes présentent alors un très grand nombre de degrés de liberté comme par 

exemple les molécules dans un gaz. L’étude de ces états nous permet de faire des prédictions sur ce qui 

peut être en moyenne pour le comportement global de système qui nous intéresse. Dans ce chapitre, on 

va tous d’abord, rappeler comment décrire un système statistique moyennant deux points de vue : La 

description microscopique et la description macroscopique et l’influence de première sur la deuxième. 

Ensuite,  on parle des ensembles statistiques en basant sur l’ensemble canonique et comment tirer les 

grandeurs macroscopiques. Puis, il est nécessaire d’introduire quelques notions comme chaîne de 

Markov, l’hypothèse ergodique, qui vont nous aider a la simulation par suit. Le dernier paragraphe est 

consacré à une brève présentation de types des matériaux de point de vue magnétique. En particulier, 

la transition de phase ferromagnétique-paramagnétique sera expliquée.  

1.2 État microscopique, état macroscopique 

On distingue dans le domaine de physique statistique deux visions des systèmes. La première 

vision tient compte de l’état de chaque constituant dans le système (que ce soit particule, atome, 

molécule, …etc.) et elle nous demande toute information intrinsèque comme par exemple l’énergie, la 

vitesse, spin de ce constituant. On appelle cette information état microscopique et l’étude description 

microscopique. Par contre si on s’intéresse à la vision globale en ne cherchant que les informations sur 

le groupe complet de ces constituants comme étant un seul objet, on dit qu’on a un état macroscopique 

et l’étude associée une description macroscopique. [1] 

La description macroscopique est l’objectif de la thermodynamique. En fin de l’étude, on peut 

avoir certains quantités importantes comme l’énergie, la pression, l’entropie, …etc. La physique 

statistique essaye de trouver un lien entre les deux descriptions en partant de la description 

microscopique. On note que sous un état macroscopique, on trouve généralement plusieurs états 

microscopiques. En effet l'état microscopique d'un système physique fluctue en général au cours du 

temps, même si celui-ci est à l'équilibre. Sauf pour des systèmes très simples il est impossible de 

connaître exactement à tout instant ces fluctuations, ne serait ce qu'en raison du très grand nombre de 

degrés de liberté microscopiques du système. [1] 

1.3 Ensembles statistiques 
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L'outil théorique fondamental de la physique statistique est l'ensemble statistique. C’est une 

abstraction qui consiste à considérer une collection de copies virtuelles (ou répliques) d'un système 

physique dans l'ensemble des états accessibles où il est susceptible de se trouver, compte tenu des 

contraintes extérieures qui lui sont imposées, telles le volume, le nombre de particules, l'énergie et la 

température. Au sein de l’ensemble de ces répliques, le système ne se trouve pas nécessairement dans 

des micro-états identiques, bien que ceux-ci doivent être compatibles avec les contraintes extérieures 

(états accessibles). Cette notion, introduite par le physicien américain Josiah Willard Gibbs en 1902, 

est un concept central de la physique statistique. Trois situations particulières pour un système donné 

sont généralement envisagées en physique statistique, et correspondent aux trois ensembles statistiques 

suivants : [2] 

1.3.1  Ensemble micro-canonique 

Il est défini dans le cas d'un système isolé thermodynamiquement, c'est-à-dire qui ne peut 

échanger ni énergie, ni particules avec l’extérieur. Pour un tel système, le volume V, l'énergie totale E 

et le nombre de particules N sont des paramètres extérieurs, de valeurs fixées aux incertitudes δV, δE 

et δN près. À l'équilibre, les états accessibles du système son équiprobables. Si Ω représente le nombre 

de ces états alors la probabilité pl de trouver le système à un état microscopique noté « l » suit une loi 

uniforme discrète, et on a 

𝑝𝑙 =
1

 𝛺 
= 𝑐𝑠𝑡𝑒                                                                 (1.1)   

Dans le cas général où on a un système quelconque, on définit l’entropie comme une grandeur 

statistique a été proposée par Gibbs  

𝑆 = −𝐾𝐵 ∑ 𝑝𝑙𝑙𝑛𝑝𝑙𝑙 𝑙𝑛Ω                                                                 (1.2) 

et il devient dans notre cas  

 𝑆 = 𝐾𝐵𝑙𝑛Ω                                                                    (1.3) 

𝐾𝐵 = 1.38. 10−23 𝑆𝐼 étant la constante de Boltzmann.  

L’entropie est une grandeur extensive, il mesure le manque d’information autour de notre 

système, alors il est nul quand l’état microscopique du système est parfaitement connu. Pour deux 

systèmes de températures différentes, la partition la plus probable est celle qui rend les deux 

températures égales et l’entropie totale sera maximale. Si le système n’est pas à l’équilibre, il va 

évoluer de manière à satisfaire au postulat d’équiprobabilité des états (1.1) [2] 

1.3.2  L’ensemble canonique 

Dans ce cas le système considéré est supposé en contact avec un système beaucoup plus  

important, appelé réservoir avec qui il peut échanger librement de l'énergie mais pas de particules ni de 

volume  (contact purement thermique), ces échanges étant considérés comme ne modifiant pas de 

façon appréciable l'état du réservoir. En pratique, le réservoir impose sa température T au système et 
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devient une contrainte extérieure au même titre que le volume V et le nombre de particules N, l'énergie 

E pouvant librement fluctuer. La distribution de probabilité prend la forme :  

𝑝𝑙 =
𝑒𝛽𝐸𝑙

𝑍
                                                                    (1.4) 

𝐸𝑙 Étant l'énergie du micro-état (l) et  

𝑍 = ∑ 𝑒−𝛽𝐸𝑙
𝑙                                                                (1.5) 

Représente la fonction de partition du système, avec : 𝛽 =
1

𝑘𝐵𝑇
. Il n’est qu’une mesure de la 

température du système, alors que les niveaux d'énergie sont les caractéristiques du système lui-même. 

Si le nombre de micro-états d’énergie 𝐸𝑙 est𝑔𝑙, on appelle ça une dégénérescence de niveau 𝐸𝑙 et on 

peut écrire. 

𝑍 = ∑ 𝑔𝑙𝑒
−𝛽𝐸𝑙

𝑙                                                                (1.6) 

La signification de la fonction de partition Z peut être comprise comme suit : En utilisant la 

définition (1.6) pour la fonction de partition, la loi de répartition nous donne la probabilité 𝑝𝑙 de 

trouver le système à l’état d’énergie 𝐸𝑙 

𝑝𝑙 =
nl

N
=

e−βEl

Z
                                                                 (1.7) 

Si 𝐸0désigne l'état d'énergie le plus bas, alors (1.7)  devient : 

n0

N
=

A

Z
                                                                        (1.8) 

Avec 𝐴 = 𝑒−𝛽𝐸0 

On peut définir la fonction de partition comme un inverse de la fraction de particules occupant 

l'état d'énergie la plus basse. En variante, il peut être défini comme le rapport entre le nombre total de 

particules dans un système et le nombre de particules dans l'état d'énergie la plus basse, à partir de ce 

point suivant autour de Z émergent: 

- Elle indique le mode de distribution des particules dans différents niveaux d'énergie. 

- C'est un nombre pur, donc une quantité sans dimension. 

- Elle ne peut jamais être nulle, la valeur la plus basse serait 1, au zéro absolu (0 K) où toutes 

les particules occupent l'état d'énergie la plus basse à une température plus élevée, la valeur 

de Z est beaucoup plus grande que 1. 

 

1.3.3 L’ensemble grand-canonique  

Dans cette situation, le système peut non seulement échanger de l'énergie mais également des 

particules avec le réservoir, le volume V étant fixe. En pratique, non seulement le réservoir impose sa 

température T, mais également son potentiel chimique 𝜇 qui est l’énergie nécessaire pour ajouter une 
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particule au système, en maintenant le volume et l’entropie constante. La distribution de probabilité 

prend la forme : 

𝑝𝑙 =
𝑒−𝛽(𝐸𝑙+𝜇𝑁𝑙)

⌈⧿⌉
                                                                         (1.9) 

𝑁𝑙 étant le nombre de particule du système dans le micro-état l  et 

𝛯 = ∑ 𝑒−𝛽(𝐸𝑙+𝜇𝑁𝑙)
(𝑙)                                                            (1.10) 

étant la grande fonction de partition du système. La répartition la plus probable de l’énergie et du 

nombre de particule entre deux sous systèmes ouverts mis en contact est celle qui fait égaler à la foi les 

deux températures et les potentiels chimiques, en gardent à l’esprit la signification physique du 

potentiel chimique, cette dernière condition indique que les deux systèmes n’ont aucun intérêt 

énergétique, à l’équilibre pour déplacer une particule d’un système à l’autre. [2] 

1.4 Les grandeurs thermodynamiques dans l’ensemble 

canonique 

Aux calculs d’une fonction physique, il faut reconnaître que, tandis que la mécanique quantique 

traite de l'arrangement détaillé et du mouvement des molécules, La thermodynamique traite de leur 

comportement moyen. Par exemple, la pression exercée par le gaz est interprétée comme la force 

moyenne par unité de surface exercée par la molécule et pour spécifier la pression il n'est pas 

nécessaire de savoir laquelle des molécules sont en collision avec la paroi à un instant. La 

Thermodynamiques statique est basée sur le principe que les variables thermodynamiques sont la 

moyenne des propriétés moléculaires et il mit en place le schéma de calcul de ces moyennes. [3]   

À un instant donné, il est possible de dénombrer 𝑁𝑙 les répliques qui au sein des N constituant 

l'ensemble sont dans un micro-état donné, noté (l). À la limite où N devient très élevé, la fréquence 
𝑁𝑙

𝑁 
 

tend vers la probabilité 𝑝𝑙 de trouver le système dans ce micro-état au sein de l'ensemble. À l'équilibre, 

cette probabilité sera indépendante du temps. La détermination de la distribution de probabilité 𝑝𝑙 des 

micro-états du système au sein de cet ensemble permet alors de calculer une grandeur physique donnée 

Q comme une moyenne d'ensemble. Sous la version discrète cette moyenne s’écrit [3] 

〈𝑄〉 = ∑ 𝑝𝑙(𝑙) 𝑄𝑙                                                               (1.11) 

où la sommation portant sur tous les micro-états (l) accessibles du système, pour lesquels la grandeur 

considérée prend la valeur 𝑄𝑙 

1.4.1 Énergie interne 

L'énergie moyenne du système est déterminée à partir de  

〈E〉 =
∑ Ele

−βEll

Z
                                                                          (1.12) 
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En différenciant Z, nous trouvons que : 

〈𝐸〉 =  KB𝑇
2 (

𝜕 𝑙𝑛𝑍 

 𝜕𝑇
)                                                          (1.13) 

1.4.2 Capacité calorifique 

De la thermodynamique, la capacité calorifique est définie comme  

𝐶𝑣 = (
∂ E 

 ∂T
)𝑉                                                                          (1.14) 

Donc en substituant E à partir de (1.13), et en simplifiant le différentiel, on obtient  

𝐶𝑣 =
∂ 

 ∂T
(KB𝑇

2  
𝜕 𝑙𝑛𝑍 

 𝜕𝑇
)𝑉                                                       (1.15) 

Finalement  

𝐶𝑣 =
K 

 𝑇2 ( 
𝜕2 𝑙𝑛𝑍 

 𝜕(
1

𝑇
)
2 )𝑉                                                                    (1.16) 

et en fonction de l’énergie, on peut avoir la relation 

𝐶𝑣 = 𝐾𝐵𝛽2(〈𝐸2〉 − 〈𝐸〉2)                                                           (1.17) 

1.4.3 Entropie 

De la thermodynamique, l'entropie est définie comme  

sT − s0 = ∫
CV

T
dt

T

0
                                                                 (1.18) 

En utilisant (1.15) pour 𝐶𝑣 en (1.18) on obtient  

sT − s0 = ∫
1

T

∂

∂T
(K𝑇2  

𝜕 𝑙𝑛𝑍 

 𝜕𝑇
)dt

T

0
                                                   (1.19) 

En le différenciant par parties, il devient  

sT − s0 =
E

T
+ K ln Z − |K ln Z |𝑇=0                                              (1.20) 

Dans l'expression (1.20), comparer le terme indépendant de la température à la constante 𝑺0 qui 

est l'entropie à t = 0  

s0 = |K ln Z |𝑇=0                                                             (1.21) 

De (1.20), on obtient  

sT =
E

T
+ K ln Z                                                                (1.22) 
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où  

sT = KT(
𝜕 𝑙𝑛𝑍 

 𝜕𝑇
) +  K ln Z                                                      (1.23) 

1.4.4 Énergie libre 

L’énergie libre, a est défini thermodynamiquement par  

   𝐹 = 𝐸 − 𝑇𝑆                                                                 (1.24) 

En remplaçant S, il vient 

𝐹 = 𝐸 − (
𝐸

𝑇
+ 𝐾𝑙𝑛𝑍)                                                         (1.25) 

Nous observons que  

𝐹 = −𝐾𝑇𝑙𝑛𝑍                                                                 (1.26) 

1.4.5 La pression 

En terme d'énergie libre F, la pression est définie par : 

𝑝 = −( 
𝜕𝐴

𝜕𝑉
)𝑇                                                                 (1.27) 

En utilisant (1.25) pour F, on obtient : 

𝑝 = −𝐾𝑇( 
𝜕 𝑙𝑛𝑍 

 𝜕𝑉
)𝑇                                                           (1.28) 

1.4.6 L’aimantation 

            C’est une grandeur caractéristique d'un corps à l'origine d'un champ magnétique. Elle a pour 

origine l'existence d'une densité de moments magnétiques microscopiques portés par les électrons au 

sein de la matière (courants ampériens imaginés par Ampère). On distingue l'aimantation permanente 

(aimant) de l'aimantation induite, provoquée par un champ magnétique extérieur ou un courant 

(induction, électroaimant). L'intensité d'aimantation est reliée au champ magnétique B et à son 

excitation H par la relation  

  𝐵 = 𝜇0(𝐻 + 𝑀)                                                              (1.29) 

où 𝜇0 est la perméabilité du vide, multipliée par une perméabilité relative dans un milieu (équations de 

Maxwell-Ampère). 

1.4.7 La susceptibilité 

Le matériau interagit avec l'application du champ magnétique. Il est susceptible en champ 

https://www.futura-sciences.com/sciences/definitions/physique-champ-magnetique-3878/
https://www.futura-sciences.com/sciences/definitions/matiere-moment-magnetique-3884/
https://www.futura-sciences.com/sciences/definitions/matiere-electron-68/
https://www.futura-sciences.com/sciences/definitions/matiere-matiere-15841/
https://www.futura-sciences.com/sciences/definitions/physique-ampere-328/
https://www.futura-sciences.com/sciences/definitions/matiere-aimant-3883/
https://www.futura-sciences.com/sciences/definitions/matiere-permeabilite-vide-3886/
https://www.futura-sciences.com/sciences/definitions/matiere-permeabilite-relative-3890/
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𝑑𝑀⃗⃗ = 𝜒𝑑𝐻⃗⃗                                                                    (1.30) 

M représente l’aimantation, moments magnétiques par unité de volume, et χ la susceptibilité 

magnétique volumique (sans dimension).                                                                      

1.5 L'hypothèse ergodique 

Comme on a vu dans la section précédente,  le calcul d’une propriété moyenne (quantité 

thermodynamique) d'un système se donne par ce qu’on appelle une moyenne d’ensemble qui n’est que 

le moment d’ordre « 1 » ou bien espérance mathématique de cette propriété cf. (1.11). On assure la 

correspondance entre ces valeurs moyennes d'ensemble et les moyennes temporelles envisagées dans le 

cas d'un système unique. Ces moyennes prennent la forme   

〈𝑄〉 =
∑ 𝑄𝑖

𝑡𝑚𝑎𝑥
𝑡𝑒𝑞

𝑡𝑚𝑎𝑥−𝑡𝑒𝑞
                                                                 (1.31) 

On fait la moyenne sous un intervalle 𝑡𝑚𝑎𝑥 − 𝑡𝑒𝑞 suffisamment grand entre deux temps : 𝑡𝑒𝑞 

qui est le temps où l’équilibre commence en observant des petites fluctuations microscopiques, et 𝑡𝑚𝑎𝑥 

un temps suffisamment large pour avoir des bons résultats. Cette substitution des moyennes 

d'ensemble aux moyennes temporelles qu’on appelle l'hypothèse ergodique est à la base de la physique 

statistique, et elle est devient indispensable pour le calcul numérique par simulation puisque la 

connaissance de la fonction de partition n’est toujours évident. [4] 

1.6 Chaîne de Markov 

Une suite infinie ordonnée 𝑋1, 𝑋2, 𝑋3, … de variables aléatoires est une chaîne de Markov si la 

loi de probabilité conditionnelle de 𝑋𝑡+1 lorsqu'on se donne les valeurs de 𝑋1, 𝑋2, … , 𝑋𝑡 se réduit à la 

loi de probabilité conditionnelle de 𝑋𝑡+1 lorsqu'on se donne seulement la valeur de 𝑋𝑡. t désigne ici un 

entier naturel, faisant référence à un temps discret. Si nous nous restreindrons aux cas où la loi de 

probabilité conditionnelle de 𝑋𝑡+1 lorsqu'on se donne la valeur de 𝑋𝑡  ne dépend pas de t,  on dit que la 

chaîne de Markov est homogène.  Alors la chaîne de Markov est entièrement déterminée par cette loi 

de probabilité conditionnelle appelée loi de transition et par la loi de probabilité initiale de la variable 

aléatoire 𝑋1. Comme un cas particulier, on peut considérer une suite de configurations d’un système où 

on associe une suite des micro-états constituant notre chaîne Markovien. [4]      

1.7 Transition de phase et phénomènes critiques 

Ce domaine est très important et également très riche dans l’étude des modèles statistiques. 

Nous appellerons phase tous domaine de matière homogène limitée par une surface et présentant une 

composition, une organisation atomique et des propriétés bien définie. Une transition de phases 

correspond au passage d’un système initialement sous forme de phase A, vers une autre phase  B. 

L’exemple standard d’une transition de phase est le passage entre les trois états de la matière : liquide, 

gaz, solide (fig. (1.1)) 
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Figure (1.1) Transitions de phase du premier ordre en thermodynamique. 

Ce qui caractérise ces transitions, c'est le changement qualitatif, la discontinuité des propriétés. 

Une petite variation d'un paramètre (température, pression ...) déclenche une modification qualitative 

spectaculaire. Pour un système donné, on fait varier un certain nombre de paramètres (température, 

pression, champs extérieurs, etc. ...) pour mettre en évidence les diverses phases du système et en 

explorer les domaines d'existence, et on consigne les résultats sur une carte : un diagramme de phase 

(fig. (1.2)) [5] 

 

Figure (I.2) Diagramme (pression, température) montrant les domaines d'existence de trois phases 

(solide, liquide, gaz). 

Le point critique est le point d'arrêt à la frontière entre deux phases ou plus de la matière. En 

tournant autour lui, on peut passer continûment ou discrètement d’une phase à l’autre. On appelle 

l’étude des points critiques phénomène critique. On distingue deux types de transition de phase 

1.7.1 Transitions du premier ordre  

Les transitions du premier ordre sont celles pour lesquelles la dérivée première par rapport à 

une des variables thermodynamiques de l'énergie libre est discontinue (présence d'un « saut » dans 

cette dérivée). Par exemple, les transitions solide/liquide/gaz sont de premier ordre : la dérivée de 
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l'énergie libre par rapport à la pression est le volume, qui change de manière discontinue lors des 

transitions. 

1.7.2 Transitions du deuxième ordre 

Les transitions du deuxième ordre sont celles pour lesquelles la dérivée première par rapport à 

une des variables thermodynamiques de l'énergie libre est continue, mais pas la dérivée seconde qui 

présente une discontinuité. La transition paramagnétique/ferromagnétique du fer (en absence de champ 

magnétique) en est un exemple type : la dérivée première de l'énergie libre par rapport au champ 

magnétique appliqué est l'aimantation, la dérivée seconde est la susceptibilité magnétique et celle-ci 

change de manière discontinue à la température dite « de Curie » (ou point de Curie) [6]. 

1.8 Transition ferromagnétique paramagnétique 

1.8.1 Moment magnétique atomique /moléculaire  

En étudiant les expériences d’Oersted sur les champs magnétiques créés par les circuits 

électriques, André Marie Ampère (1775-1836) introduisit l’hypothèse des " courants ampériens ", 

c’est-à-dire l’existence de microcirculations d’électrons dans la matière aimantée. Plus tard, on 

modélisa l’atome comme ayant des électrons en rotation autour du noyau, équivalent alors à des spires 

de courant créant un champ magnétique microscopique. On définit en électromagnétisme une grandeur 

caractéristique de ce dispositif : le moment magnétique : est un vecteur a pour sens et direction ceux du 

champ magnétique créé par I et pour norme [7]. 

𝑀 = 𝐼. 𝑆                                                                 (1.32) 

S est la surface définie par la spire. 

Cependant l’existence du moment magnétique dans certains atomes et molécules est avérée : 

Chaque électron d’un atome possède une propriété analogue à celle qui serait induite par sa rotation 

autour du noyau (le moment angulaire orbital) ou à sa rotation sur lui-même (le spin ou moment 

angulaire intrinsèque). A chaque moment angulaire est associé un moment magnétique[7]. 

 

𝑀⃗⃗ =
𝜇𝐵

ℎ̅
𝐿⃗                                                                    (1.33)                                                         

où 𝜇𝐵 étant le magnéton de Bohr. Il est donné pour une particule de masse m, et de charge q par 

𝜇𝐵 =
𝑞 ℎ̅

2𝑚
                                                                   (1.34) 

Dans un édifice poly-électronique, les interactions entre les électrons conduit à un moment 

magnétique global. Le noyau présente également un moment magnétique si son spin nucléaire est non 

nul mais qui est mille fois plus faible que les précédents. [7]. 

1.8.2 Magnétisme des matériaux 

a) Le paramagnétisme 



18 
 

Le magnétisme habituel, celui qui permet à un aimant de soulever des trombones, c’est le 

paramagnétisme : c’est le magnétisme du fer et de l’acier, mais aussi du nickel ou du cobalt. Dans les 

atomes comme ceux du fer, certains électrons, ceux situés en périphérie de l’atome et qui ne 

participent pas aux liaisons atomiques, sont comme « orientables » (on parle de moment magnétique 

de l’électron, qu’on pourrait décrire comme le sens de l’aimant représenté par l’électron). Quand on 

soumet un échantillon de fer à un champ magnétique, ces électrons s’alignent tous dans le même sens 

que les lignes de champ du champ magnétique [7]. (figure 1.3) : 

 

 
Figure 1.3 Alignement des électrons en présence d’un champ magnétique dans le cas d’un 

matériau paramagnétique 

En résultat, le champ magnétique du matériau et celui de l’aimant s'ajoutent. Le matériau et 

l’aimant sont alors attirés l’un vers l’autre. C’est ce qui permet à un trombone de rester « collé » à un 

aimant. De plus, si on utilise un aimant relativement puissant, on peut créer un sorte de « serpent » 

avec les trombones : le premier trombone est collé à l’aimant, mais les autres trombones peuvent se 

coller au trombone précédent. On peut ainsi en faire coller deux ou trois à la suite, suivant la force de 

l’aimant. Ceci est dû au fait que chaque trombone, en présence de l’aimant, devient un aimant 

également (à cause des électrons, tous alignés). Quand on retire l’aimant, les électrons reprennent une 

orientation aléatoire et l’aimantation disparaît. Le paramagnétisme est caractérisé par une susceptibilité 

relative positive, de faible amplitude, c'est à dire comprise entre 10
-6

 et 10
-3

[7]. 

b) Le ferromagnétisme 

Si on reprend le cas précédent, où on colle des trombones à un aimant, mais que l’on utilise un 

aimant très puissant (aimant au néodyme par exemple), alors les trombones conservent une petite 

aimantation résiduelle même quand l’aimant est retiré. Les électrons dans la matière restent alors 

orientés dans le même sens que l’aimant les as mis, même quand on retire l'aimant. On parle alors de 

ferromagnétisme. Dans ce cas, le matériau est devenu un aimant permanent lui-même, et il conservera 

cette aimantation tant que l’on ne la supprime pas (en chauffant fortement le matériau, par exemple). 

Il faut noter que dans un matériau ferromagnétique, si les électrons s’orientent dans le même 

sens sous l’effet d’un aimant, puis conservent une partie de cette orientation une fois l’aimant retiré, le 

caractère aimanté de l’échantillon n’existe pas « de base ». En fait, la matière est subdivisée en petites 

régions, appelées micro-domaines de Weiss. L’orientation des électrons de chacune de ces régions est 



19 
 

identique, mais chaque domaine a une orientation aléatoire. Au total, l’échantillon dans sa globalité 

n’est pas aimanté tant que l’on n’applique pas un champ magnétique extérieur [7]. 

c) L’antiferromagnétisme 

Dans les matériaux ferromagnétiques, les électrons s’orientent tous dans le même sens que le 

champ magnétique extérieur. Dans l’antiferromagnétisme, l’orientation est inversée d’un atome sur 

l’autre, formant un moment magnétique global nul (figure 1.4): 

 
Figure (1.4) Orientation des électrons lors d’une application d’un champ magnétique pour 

un matériau antiferromagnétique.  

 

Les moments magnétiques d’un atome s’inversent avec celui de l’atome voisin. 

Macroscopiquement, ce matériau réagit comme un matériau non magnétique (il n’est ni attiré, ni 

repoussé par un aimant), mais des phénomènes magnétiques interviennent tout de même au niveau 

microscopique. Les matériaux antiferromagnétiques le sont en dessous d’une certaine température (dite 

de Neel) et sont généralement paramagnétique au dessus [7]. 

En plus des matériaux intrinsèquement antiferromagnétiques, des assemblages de couches 

ferromagnétiques séparées par un isolant ont parfois également un comportement antiferromagnétique. 

Ces dispositifs là sont largement utilisés en électronique et en mécanique, à cause de comportement 

électroniques particuliers. Ces constructions au comportement antiferromagnétique sont utilisés sur les 

têtes de lecture des disques durs, dans la mémoire vive magnétique (la Magnetic Random Access 

Memory, ou MRAM) et plus généralement dans d’autres formes de microsystème électromécanique 

(ou MEMS, de l'anglais) dont font partie les accéléromètres et les capteurs à effet hall que l’on trouve 

dans les smart-phones aujourd’hui [7]. 

d) Le ferrimagnétisme  

Un peu situé à l’intermédiaire entre le paramagnétisme (tous les électrons s’orientent dans le 

même sens) et l’antiferromagnétisme (les électrons s’orientent dans des sens deux à deux opposés), on 

trouve le ferrimagnétisme : les moments magnétiques des électrons sont bien opposés deux à deux, 

mais ceux étant dans le sens le champ magnétique extérieur sont plus forts que ceux dans le sens 
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inverse. Le moment magnétique total dans un sens est donc supérieur à celui dans l’autre sens et le 

moment magnétique total de l’échantillon n’est donc pas nul (figure 1.5) [7]. 

 

Figure (1.5) Le moment magnétique total de l’échantillon n’est pas nul dans le cas d’un 

matériau ferrimagnétique  

Les moments magnétiques dans un sens n’ont pas la même intensité que ceux dans l’autre sens. 

Les matériaux ferrimagnétiques ont des propriétés anisotropiques, c’est à dire que l’orientation des 

cristaux utilisés a son importance. Ceci est utilisé dans le domaine du paléomagnétisme, où les roches 

ferrimagnétiques capturent le magnétisme terrestre de l’époque de leur formation. L’étude de ces 

roches permet de déduire que le champ magnétique terrestre s’inverse régulièrement au fil des éons. 

Inversement, on peut aussi dater une roche en analysant le champ magnétique qu’il a capturé. 

Ces matériaux, ont aussi un intérêt dans les nanotechnologies : leur moment magnétique global 

étant « programmable » sous l’effet de la chaleur, certaines formes de mémoire vives et mortes 

pourraient utiliser des éléments ferrimagnétiques avec une tête de lecteur et d’écriture à base d’un 

laser. Le but étant d’avoir des modules mémoires beaucoup plus rapides que la mémoire actuelle, 

inscrite avec des tensions électriques seulement [7]. 

e) Le diamagnétisme 

Quand, dans un matériau soumis à un champ magnétique, tous les électrons s’orientent dans le 

sens opposé au champ magnétique (donc l'inverse que dans un matériau paramagnétique), alors 

l’aimant et le matériau se repoussent et on parle de diamagnétisme (figure 1.6). Cette répulsion 

intervient à de degrés plus ou moins forts dans tous les matériaux, bien qu’elle soit généralement 

écrasée par d’autres types de magnétisme. Aussi, la répulsion entre un matériau diamagnétique et un 

aimant n’existe pas de façon intrinsèque : elle naît de la présence de l’aimant, et elle disparaît quand 

l’aimant est retiré [7]. 
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Figure 1.6 Matériau diamagnétique 

Ce type de magnétisme est caractérisé par une susceptibilité relative négative, de faible amplitude. 

1.8.3 Influence de la température  

Pour les matériaux ferromagnétiques, il existe une température caractéristique, dite température 

de Curie Tc, au-dessus de laquelle ils perdent leur propriété ferromagnétique pour faire place au 

paramagnétisme. Voir quelques exemples dans la table (1.1). Ceci provient de ce que l’interaction qui 

tend à aligner les spins ne peut plus lutter contre l’agitation thermique qui tend au contraire à leur 

donner une orientation aléatoire[7]. 

Matériau Tc en °C 

Nickel 358 

Fer 770 

Cobalt 1115 

Table 1.1 Température de Curie pour certains matériaux 

Le diagramme (1.7) présente une frontière sur l'axe H = 0 avec un point d'arrêt, qu'on appelle 

aussi point critique. On observe à haute température une phase désordonnée, dite paramagnétique sans 

aimantation [11]. Lorsque T = Tc, au point critique, une transition se produit, et pour T < Tc, on 

observe une phase ordonnée, dite ferromagnétique, présentant une aimantation spontanée. Il y a une 

analogie avec la transition liquide-gaz, H et p jouant des rôles similaires. Dans le 2ème diagramme 

(1.8) si on traverse la frontière (H = 0, 0 < T < Tc), on observe un saut de l'aimantation ; ce saut 

diminue quand le point de franchissement de la frontière se rapproche du point critique; au point 

critique, il n'y a plus de saut de l'aimantation [8]. 
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 Figure (1.7) Diagramme (champ magnétique, température) pour un corps qui présente une transition 

ferromagnétique. 

 

  Figure (1.8)  Courbe d’aimantation M(H) pour un ferromagnétique à différentes températures. 

 

           Autre cas, on a une transition antiferromagnétique leur diagramme est un diagramme (champ 

magnétique, température) mais pour un corps qui présente une transition antiferromagnétique (avec 

une aimantation alternée dans la phase ordonnée). 

 

  Figure (1.9) Diagramme de phase montre un point tri critique pour un matériau antiferromagnétique. 

On observe sur ce diagramme deux domaines séparés par une ligne (une partie en trait gras, 

l'autre en trait fin) : quand on franchit la partie grasse, on observe un saut de l'aimantation alternée ; 

quand on franchit la ligne fine, il n'y a pas de saut. Cette dernière ligne est une ligne de points critiques 

(puisqu'il n'y a pas de saut). La ligne de points critiques a un point d'arrêt, sur la ligne de transition, 

qu'on appelle un point tri critique [8]. 
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Chapitre 2 

 

LE MODEL ½ XY DE HEISENBERG 
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2.1 Introduction 

La représentation des modèles physique sur une géométrie dans un espace euclidien est très 

utile dans la physique statistique. En posant certains contraintes d’approximations, cela nous aidé à 

construire une image concrète concernant notre problème. Cette représentation se disperse au autres 

dans hors de la physique comme les mathématiques, l’économie, sociologie,…etc. Pour simplification, 

on fait souvent un choix des géométries ordonnées et symétriques qu’on appelle réseaux que ce soit à 

deux ou trois dimension. En posant nos objets (atomes, molécules, composant électronique,…etc.) sur 

les nœuds ou bien les liens, on obtient un système global qu’on peut étudier. C’est le cas des modèles 

statistiques de spins où on place un nombre d’atomes sur notre réseau et concentrons sur les 

interactions spin-spin entre ces atomes. Dans ce chapitre, on va expliquer cette approche pour ce qu’on 

appelle le XY modèle de Heisenberg. Après cette introduction, on va citer quelques modèles de spin 

simples comme le modèle d’Ising et de Potts, puis on va passer à un peu de détail autour de notre 

objectif qui est le XY modèle de Heisenberg qui sera une introduction au chapitre suivant.  

2.2 Quelques exemples des modèles de spins 

2.2.1 Modèle d’Ising 

Le modèle d’Ising est l’un des modèles les plus simples qui permet de modéliser des systèmes 

physiques trop complexes à analyser de façon exacte. En raison de sa simplicité et de la richesse de 

son comportement, le modèle d’Ising suscite depuis son introduction un grand intérêt. Il est constitué 

d’une distribution d’atomes dans l’espace. Chacun de ces atomes porte un moment magnétique µB 

(magnéton de Bohr pour l’électron) orienté aléatoirement en spin up (+µB) ou spin down (−µB). Ces 

spins interagissent entre eux deux à deux, uniquement entre premiers voisins avec une énergie 

d’interaction. La figure (2.1) présente un exemple à deux dimensions 

 

  Figure (2.1) Système d’Ising à deux dimensions où le spin central Sc interagit uniquement avec les  

spins indicés 1, 2, 3 et 4. 

L’Hamiltonien du système est donné par : 
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𝐻𝐼𝑠𝑖𝑛𝑔 = −𝐽 ∑ 𝑠𝑖<𝑖𝑗> 𝑠𝑗 − ℎ ∑ 𝑠𝑖𝑖                                                    (2.1) 

où,<i,j> désigne une somme sur les sites qui sont les plus proches voisins, h est le champ magnétique 

extérieur. 𝑠𝑖 représente le spin au site i, et J est l’interaction d’échange. Les signes (-) dans l’équation 

(1.1) sont classiques. Ils dictent simplement le choix du signe pour le paramètre d’interaction J et le 

champ externe h. La simulation d’un système d’Ising de taille finie par la méthode Monte Carlo 

permet de calculer les valeurs des grandeurs physiques telles que l’aimantation, l’énergie, la chaleur 

spécifique et la susceptibilité à une température donnée.  

 Notons que si J > 0, l’interaction est dite ferromagnétique, et inversement, si J < 0, 

l’interaction est dite antiferromagnétique. Deux spins premiers voisins subissent une interaction qui 

tend à les aligner. A température nulle, les spins seront donc tous alignés pour minimiser l'énergie. 

Ceci constitue le modèle le plus simple pour un corps ferromagnétique. En l'absence de champ 

magnétique, l'état fondamental du système est doublement dégénérée car les spins peuvent être alignés 

tous vers le haut ou tous vers le bas. Si on applique une induction magnétique h dirigée vers le haut, 

par exemple, on lève la dégénérescence : tous les spins s'orientent vers le haut. Dans la version 

classique, l’état fondamental en l’absence d’un champ extérieur est simplement 

𝐸0 = −2𝐽𝑁                                                                   (2.2) 

pour un réseau contenant N spins. 

 2.2.2 Modèle de Potts  

En physique statistique, le modèle de Potts est une généralisation du modèle d’Ising. C’est un 

modèle d’interaction de spins sur un réseau cristallin. Ce modèle permet de comprendre le 

comportement des matériaux ferromagnétiques. Il est également utilisé pour expliquer certains 

phénomènes relatifs à la physique des solides tels que les transitions de phases et les propriétés 

magnétiques des structures périodiques en couches.  

Le modèle de Potts est similaire au modèle d’Ising, hormis le fait que le spin si sur chaque site du 

réseau peut prendre plus de deux valeurs discrètes différentes. Habituellement, ces valeurs sont 

représentées par des nombres entiers positifs à partir de 1, et le modèle de Potts à q états est celui dans 

lequel chaque spin peut avoir des valeurs entières. Si = 1 . . . q. L’Hamiltonien HPotts s’exprime comme 

suit : 

𝐻𝑃𝑜𝑡𝑡𝑠 = −𝐽∑ 𝛿𝑠𝑖<𝑖𝑗> 𝑠𝑗                                                        (2.3)    

où δij est le symbole de Kronecker. 

Le modèle de Potts est équivalent au modèle d’Ising pour q = 2. Il découle que l’équation (1.2) 

prend la forme suivante : 

 𝐻𝐼𝑠𝑖𝑛𝑔 = −
1

2
∑ 2(𝛿𝑠𝑖𝑠𝑗 −

1

2
)<𝑖𝑗> − ∑

1

2<𝑖𝑗> 𝑗                                       (2.4) 
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avec: 

{
𝑠𝑖 𝑠𝑖 = 𝑠𝑗 ⇒ 2(𝛿𝑠𝑖𝑠𝑗 −

1

2
) = 1

𝑠𝑖 𝑠𝑖 ≠ 𝑠𝑗 ⇒ 2(𝛿𝑠𝑖𝑠𝑗 −
1

2
) ≠ −1

                                             (2.5) 

Ce Hamiltonien est équivalent à celui d’Ising plus une constante −∑
1

2
𝑗<𝑖𝑗> . Le modèle de Potts avec q 

> 2 transite de l’état ferromagnétique à l’état paramagnétique 

2.2.3 Modèle Blume-Emery-Griffiths  

Le modèle Blume-Emery-Griffiths (BEG) est un modèle de spin qui présente une grande 

variété de phénomènes critiques et multi-critiques. Ce modèle a été introduit au début pour décrire la 

séparation de phase et la superfluidité dans les mélanges 
3
He−

4
He. Par la suite, il a été utilisé pour 

décrire les systèmes caractérisés par trois états de spin. Il est l’un des rares modèles simples qui donne 

à la fois la transition de phase du premier ordre et du second ordre. Le modèle Blume-Emery-Griffiths 

est décrit par l’Hamiltonien HBEG : 

𝐻𝐵𝐸𝐺 = −𝑗∑ 𝑠𝑖𝑠𝑗 − 𝑘 ∑ 𝑠𝑖
2𝑠𝑗

2
<𝑖𝑗> + ∆∑ 𝑠𝑖

2 − ℎ ∑ 𝑠𝑖𝑖𝑖<𝑖𝑗>                               (2.6) 

J et K sont respectivement, l’interaction bilinéaire et l’interaction biquadratique. ∆ et h sont le champ 

cristallin et le champ magnétique. 

2.3 Modèle de Heisenberg 

2.3.1 Définition 

Le modèle de Heisenberg est l’un des modèles de spin continu. Il permet de traiter directement 

la dépendance en spin d’un système de plusieurs électrons. Il constitue une généralisation continue du 

modèle d’Ising. Dans ces modèles, les spins sur le réseau ont une gamme continue de valeurs, plutôt 

qu’un spectre discret comme dans les modèles cités auparavant. On peut considérer que les spins sont 

des vecteurs unitaires à trois dimensions (figure 2.2) représentés soit par deux angles variables θ et Φ 

en coordonnées sphériques, soit par des vecteurs à trois composantes sx, sy et sz tel que 

𝑠2 = 𝑠𝑥
2 + 𝑠𝑦

2 + 𝑠𝑧
2 = 1                                                          (2.7) 

Dans ce cas, l’Hamiltonien HHeis prend la forme 

𝐻𝐻𝑒𝑖𝑠 = −𝑗∑ 𝑠𝑖⃗⃗ <𝑖𝑗> 𝑠𝑗⃗⃗ − ℎ⃗⃗⃗ ∑ 𝑠𝑖⃗⃗ 𝑖                                                     (2.8) 
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Figure 2.2 Représentation du modèle de Heisenberg à 3 dimensions  

En developpant, on obtient      

𝐻𝐻𝑒𝑖𝑠 = −𝐽∑ 𝑠𝑥𝑖𝑠𝑥𝑗 + 𝑠𝑦𝑖𝑠𝑦𝑗 + 𝑠𝑧𝑖𝑠𝑧𝑗 − ∑ (ℎ𝑥𝑠𝑥𝑖 + ℎ𝑦𝑠𝑦𝑖 + ℎ𝑧𝑠𝑧𝑖)𝑖<𝑖𝑗>                  (2.9) 

où J est la constante d’échange, hx, hy et hz sont les composantes du champ magnétique suivant l’axe x, 

y et z respectivement. On définit ainsi le modèle XYZ qui distingue les trois constantes de couplage sur 

les trois axes par  

𝐻𝐻𝑒𝑖𝑠 = −∑ 𝐽𝑥𝑠𝑥𝑖𝑠𝑥𝑗 + 𝐽𝑦𝑠𝑦𝑖𝑠𝑦𝑗 + 𝐽𝑧𝑠𝑧𝑖𝑠𝑧𝑗 − ∑ (ℎ𝑥𝑠𝑥𝑖 + ℎ𝑦𝑠𝑦𝑖 + ℎ𝑧𝑠𝑧𝑖)𝑖<𝑖𝑗>           (2.10) 

Si l’espace de spin est bidimensionnel (seulement deux composantes de spin comme illustré 

dans la figure (2.3) dans un plan), le modèle se réduit au modèle XY défini par  

 

Figure ( 2.3) XY modèle  

𝐻𝑋𝑌 = −∑ 𝐽𝑥𝑠𝑥𝑖𝑠𝑥𝑗 + 𝐽𝑦𝑠𝑦𝑖𝑠𝑦𝑗 − ∑ (ℎ𝑥𝑠𝑥𝑖 + ℎ𝑦𝑠𝑦𝑖)𝑖<𝑖𝑗>                              (2.11) 

Et également, il se réduit au modèle d’Ising pour une seule composante de spin prenant deux valeurs 

(projections) possibles.  

On s’intéresse par suite à la version classique de ce modèle pour des spins de normes ½. Cela 

est appelé le modèle ½ XY de Heisenberg. La version quantique fut introduire les matrices de Pauli 

formant une représentation des opérateurs de spins. Alors pour notre modèle classique ½ XY de 
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Heisenberg, et à l’absence d’un champ magnétique extérieur, on écrit l’Hamiltonien (2.11) sous la 

forme 

𝐻𝑋𝑌 = −
𝐽

4
∑ cos(𝜃𝑖 − 𝜃𝑗)<𝑖𝑗>                                                    (2.12) 

où les angles θi et θj sont des variables angulaires locales qui spécifient les orientations des spins. Le 

facteur ¼ vient du produit scalaire de deux vecteurs de spins.  

2.3.2 Analyse et étude 

On  considère le XY modèle sur un réseau carré de paramètre a. On s’intéresse à l’étude des 

interactions spin-spin entre les atomes les plus proches voisins. Chaque spin possède 4 voisins sur le 

réseau carré. Si on choisit la notation matricielle (𝑖, 𝑗) pour chaque position, alors, les voisins de ce 

spin sont (𝑖 + 1, 𝑗), (𝑖, 𝑗 + 1), (𝑖 − 1, 𝑗), et (𝑖, 𝑗 − 1). Le XY modèle considère deux constantes de 

couplage J1 sur l’axe (𝑥, 𝑥′) et J2 sur l’axe (𝑦, 𝑦′) 

Dans le cas classique, l’énergie d’interaction pour le modèle XX prend la forme (2.12) 

𝐸 = −
𝐽

4
∑ cos(𝜃𝑖 − 𝜃𝑗)<𝑖𝑗>                                                       (2.13) 

en mettant 𝐽1 = 𝐽2 = 𝐽. Et l’énergie de l’état fondamental est 

𝐸0 = −
𝐽𝑁

4
                                                                       (2.14) 

 On peut choisir  pour l’étude plusieurs réseaux, que ce soit à une dimension (chaîne linéaire), 

deux dimensions (triangulaire, hexagonal), et à trois dimensions (cubique). La figure (2.4) montre 

quelques exemples 
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Figure 2.4 Exemples des réseaux pour deux et trois dimensions 

En notation matricielle, et sur un réseau carré de taille 𝑁 = 𝐿2 spins,  l’énergie (2.13) s’écrit sous la 

forme 

 𝐸 = −
𝐽

4
 ∑ cos(𝜃𝑖,𝑗 − 𝜃𝑖,𝑗+1)𝑖,𝑗=1..𝐿 + cos(𝜃𝑖,𝑗 − 𝜃𝑖+1,𝑗)                                 (2.15) 

où on choisit des conditions de limites périodiques : 𝐿 + 1 ≡ 1 pour les deux axes, et en plus on a 

marché de gauche à droite et de haut au bas pour ne pas prendre une interaction deux fois (figure 2.5).  

 

 

 

 

 

 

Figure 2.5 Représentation de l’interaction spin-spin  
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 On s’intéresse aux quantités thermodynamiques moyennes : L’énergie, chaleur spécifique, 

aimantation, et susceptibilité. Par l’hypothèse ergodique, on calcul les moyens temporels de ces 

grandeurs. On a pour l’énergie moyenne, et d’après la formule (1.31) 

〈𝐸〉 =
∑ 𝐸𝑡

𝑡𝑚𝑎𝑥
𝑡𝑒𝑞

𝑡𝑚𝑎𝑥−𝑡𝑒𝑞
                                                                (2.16) 

Pour la chaleur spécifique, on a la définition du premier chapitre (1.17). L’aimantation par spin dans 

notre cas se définit sur un axe (que l’on choisit (𝑥𝑥′)) par la relation 

𝐴 =
1

𝑁
∑ cos (𝑠𝑖)𝑖=1..𝑁                                                                (2.17) 

et sa valeur moyenne par 

〈𝐴〉 =
∑ 𝐴𝑡

𝑡𝑚𝑎𝑥
𝑡𝑒𝑞

𝑡𝑚𝑎𝑥−𝑡𝑒𝑞
                                                               (2.18) 

d’où, on peut tirer la susceptibilité par la relation 

𝜒 =
1

𝛽
(〈𝐴2〉 − 〈𝐴〉2)                                                          (2.19) 

On va voir dans le chapitre suivant les détails de calcul de ces quatre quantités moyennant ce 

qu’on appelle algorithme de Metroplis introduit dans le contexte de simulation Monte Carlo. 
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Chapitre 03 

 

ALGORITHME DE METROPOLIS ET  

SIMULATION MONTE CARLO 
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3.1 Introduction 

Dans ce chapitre, on va calculer les quantités thermodynamiques moyennes de : l’énergie E, la 

chaleur spécifique Cv, l’aimantation M, et la susceptibilité χ pour le modèle XY de Heisenberg à deux 

dimensions sur un réseau carré de constantes de couplages 𝐽1 = 𝐽2. Pour cela, on va dans un premier 

paragraphe, expliquer les concepts de base de la simulation de Monte Carlo, puis dans le paragraphe 

suivant, on introduit l’aspect général de l’algorithme de Metropolis, puis les étapes nécessaires pour le 

calcul toute en basant sur les méthodes de Monte Carlo. Le paragraphe suivant explique les résultats 

obtenues, puis on va donner quelques interprétations de nos résultats. Ce chapitre se base sur les 

références [13], [14], et [15]   

3.2 Simulation Monte Carlo 

3.2.1 Définition et intérêt 

La méthode de Monte Carlo, ou la méthode de Monte Carlo, fait référence à une famille de 

méthodes de calcul pour calculer la valeur numérique approximative en utilisant des méthodes 

aléatoires, c'est-à-dire des techniques probabilistes. Le nom de ces méthodes, qui se réfère aux jeux de 

fortune pratiqués à Monte Carlo, a été inventé par Nicholas Métropolies en 1947, d'abord publié en 

1949 dans un essai coécrit avec Stanisław Alam. 

 

Les méthodes de Monte Carlo sont notamment utilisées pour calculer des intégrales de plus 

grandes dimensions (notamment pour le calcul de surfaces et de volumes). Ils sont également 

couramment utilisés en physique des particules, où la simulation probabiliste peut être utilisée pour 

estimer la forme du signal ou la sensibilité du détecteur. La comparaison des données mesurées avec 

cette simulation peut révéler des propriétés inattendues, par exemple de nouvelles particules. 

 

La simulation de Monte Carlo permet également d'adopter une approche statistique du risque 

dans la décision financière. Il consiste à isoler un certain nombre de variables clés du projet, telles que 

la rotation ou la marge, et à lui affecter une distribution de probabilité. Pour chacun de ces facteurs, un 

grand nombre de nuages aléatoires sont effectués dans les distributions de probabilité précédemment 

identifiées, afin de trouver la probabilité de chacun des résultats. 

3.2.2 Domaines d’applications 

La méthode de  Monte Carlo, et la simulation en général trouve des applications dans : 

- Physique statistique  

- Economie 

- Médecine 

- Sociologie 

            - Mathématique 
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et plusieurs d’autres domaines.   

3.2.3 Principe 

 Pour une description concrète, on va illustrer la méthode par un exemple standard. Supposons 

qu’on veut calculer la surface délimitée par une courbe fermée désordonnée représentée dans la figure 

(3.1). Pour cela, on trace un rectangle ou un carré englobant notre courbe puis, on dispose des points 

de façon aléatoire dans le rectangle (voir figure (3.2)). On remarque que certains points tombent dans 

la surface, et il  y en a  d’autres qui tombent à l’extérieur.  

 

Figure 3.1 Exemple d’une courbe fermée non uniforme. 

 

Figure 3.2 Distribution uniforme d’un nombre N de point dans notre rectangle 

La surface qu’on veut déterminer se donne simplement et approximativement par le rapport 

𝑆 = 𝐴
𝑁0

𝑁
                                                                     (3.1) 

où A représente la surface de rectangle, N le nombre total de points, et 𝑁0 le nombre de points situant 

dans la surface. C.-à-d. elle est proportionnelle au pourcentage des points situés dans la surface qui 

représente la probabilité pour qu’un point soit entouré par la courbe fermée. 

 On obtient un bon résultat si on dispose un très grand nombre de points. Or, on peut écrire 

𝑆 = lim𝑁→∞ 𝐴
𝑁0

𝑁
                                                              (3.2) 
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Il reste une note qu’on doit citer. Si la façon de distribuer les points aléatoires est uniforme, 

alors on dit qu’on a choisi une loi uniforme de distribution, et si on favorise une région par rapport 

l’autre, la loi est dite non uniforme et elle suit une loi parmi les autres lois non uniformes comme la loi 

exponentielle, de Gauss,…etc. Dans notre cas, on utilise une loi uniforme. 

3.2.4 Nombres aléatoires 

Si on veut simuler un problème similaire, on est besoin d’une série de nombres aléatoires que 

ce soit uniformes ou non. Sur les ordinateurs, on parle d’un générateur de nombres pseudo-aléatoires 

(pseudorandom number generator (PRNG) en anglais), qu’est un algorithme qui génère une séquence 

de nombres présentant certaines propriétés du hasard. Pour l’exemple précédent, le générateur nous 

donne deux séries de nombres aléatoires pour les deux coordonnées sur les deux axes. 

Les générateurs de nombres aléatoires utilisent des formules mathématiques dans l’itération. 

Parmi ces formules, la formule congruence qui utilise une égalité modulo un nombre m très grand 

s’appelle période sous la forme 

𝑋𝑖+1 ≡ (𝑎𝑋𝑖 + 𝑏)[𝑚]                                                           (3.3) 

𝑎 et b sont deux entiers facultatifs.  

Le Maple utilise une méthode sous le non MersenneTwister de période 𝑚 = 219937 − 1.     

3.3 Algorithme de Metropolis    

On considère un réseau carré de taille 𝑁 = 𝐿2 sites. Chaque site porte un spin de direction 

aléatoire donnée (figure 2.3). Les spins sont représentés par leurs coordonnées (𝑖, 𝑗), de 1 à L avec les 

conditions périodiques 𝐿 + 1 ≡ 1 sur les deux indices. On travaille dans l'ensemble canonique à une 

température donnée T. On utilise l'algorithme de Metropolis en envisageant des mouvements locaux 

(retournement d'un spin) dans notre système Markovien de la façon suivante : 

1. On choisit une configuration initiale globale en donnant à chaque vecteur représentant le spin 

un angle approprié 𝜃 entre 0 et 2𝜋. Cette configuration a une énergie initiale 𝐸𝑖 

2. On choisit un spin au hasard suivant deux lois de distributions uniformes pour les deux indices 

(𝑖, 𝑗). 

3. On envisage comme tentative de mouvement le retournement de ce spin pour avoir une 

nouvelle configuration d’énergie 𝐸1. 

4. On calcule la différence d'énergie d'interaction des spins entre la nouvelle configuration avec le 

spin retournée et la configuration initiale de départ 

∆(𝐸) = 𝐸1 − 𝐸𝑖                                                                 (3.4) 

 

5. Si ∆(𝐸) est négatif, ou nul c'est à dire, le retournement du spin diminue l'énergie, ou la laisse 

invariante, on accepte la nouvelle configuration 

6. Si ∆(𝐸) est positif, on l’accepte avec une probabilité 
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 𝑝𝑟 = exp (−∆(𝐸))                                                            (3.5) 

C'est-à-dire, on tire un nombre aléatoire 𝜂 suivant une loi uniforme sur le segment [0; 1], puis 

si 𝜂 ≤ 𝑝𝑟, on accepte la configuration avec spin retourné comme nouvelle configuration. Sinon 

on la rejette et la configuration à l'étape suivante est identique à la précédente. 

7. On calcule les quantités thermodynamiques pour chaque configuration comme il est expliqué 

dans le paragraphe suivant 

 

3.4 Procédure de Calcul 

Pour chaque configuration acceptée, on associé un pas de simulation, et on calcul pour chaque 

pas l’énergie de notre system en question. Puis, on va suivre ces étapes : 

1. On fait un nombre suffisant de pas de calcul (généralement à l’ordre de N) pour la 

thermalisation (équilibre thermique) de notre système. Autrement dit, jusqu'à l’énergie ne 

dérive plus et fluctue autour d’une valeur de l’équilibre. 

2. A partir du moment où  l'équilibre est atteint, on va pouvoir calculer les valeurs moyennes des 

grandeurs thermodynamiques intéressantes par la relation générale (1.31) donnée au premier 

chapitre : 

 

〈𝑄〉 =
∑ 𝑄𝑖

𝑡𝑚𝑎𝑥
𝑡𝑒𝑞

𝑡𝑚𝑎𝑥−𝑡𝑒𝑞
                                                                   (3.6) 

 

où 𝑡𝑒𝑞 est le nombre de pas nécessaire pour atteindre l’équilibre, et 𝑡𝑚𝑎𝑥 le nombre total des 

pas de simulation 

3. On augmente la température par pas discrets (on le prend 0.1) et pour chaque température on 

applique l'algorithme précédent sur un nombre suffisant de pas en effectuant les valeurs 

moyennes sur les 𝑡𝑚𝑎𝑥 − 𝑡𝑒𝑞 pas derniers. 

4. On trace les graphes 𝑄(𝑇) en fonction de T pour chaque quantité. 

5. On fait des analyses sur les résultats. 

 

3.5 Quelques remarques 

Il est approprié de citer quelques remarques concernant cette étude. Tout d’abord, il faut noter 

que la simulation ne donne des résultats fiables que pour des systèmes de tailles infinies et également 

un nombre de pas important. C’est pour ça, on choisit N suffisamment grand dans les limites des 

possible pour avoir effectué les calculs, et d’autre part, pour diminuer l’erreur statistique. Le deuxième 

point concerne le type de l’algorithme. On peut choisir d’autre algorithme qui fait retourner un 

ensemble entier des spins de même propriété (orientation, projection,…etc.) au lieu d’un seule spin. 

Celle-ci ne nécessite pas un grand nombre de pas pour atteindre l’équilibre, mais elle a des 

inconvénients. 
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3.6 Résultats et interprétations 

On a effectué un programme MAPLE de calcul pour un system de taille 𝑁 = 225 sites (voir 

l’annexe) où on a considéré 600 pas de calcul, et on a fait les moyennes temporelles sur les cents 

derniers (l’indice eq dans l’annexe) pour cinquante valeurs de température (de pas1 à pas2). On obtient 

les graphes suivants pour les quatre quantités thermodynamiques : L’énergie, la chaleur spécifique, 

l’aimantation, et la susceptibilité. Notons que pour une taille plus grande (que 225), le temps de calcul 

devient très grand grâce au nombre important de boucle. Il nous faut une optimisation de notre 

programme pour des tailles plus grandes.      

 Tout d’abord, on a choisi une température (KT = 5) pour faire la thermalisation de notre 

système. On constate qu’à partir de 430 pas l’équilibre commence (figure 3.3) 

 

 

Figure 3.3 La thermalisation du modèle pour la température KT = 5. L’équilibre s’atteint à partir a 

peu pré de 430 pas 

 A cette température, on a tracé le graphe de l’aimantation (figure 3.4) 

 

Figure 3.4 L’aimantation à la température KT = 5 
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 En suite, pour chaque température, de 1 à 50, on a effectué des moyens temporels sur les cents 

valeurs derniers, et on obtient les graphes (3.5), (3.6), (3.7), et (3.8) 

 

 

Figure 3.5 L’énergie du XX modèle 

 

Figure 3.6 L’aimantation 
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Figure 3.7 La chaleur spécifique 

 

 

Figure 3.8 La susceptibilité 

 Concernant l’énergie, on remarque qu’elle tend vers une valeur stable maximum de façon 

croissante à hautes températures, et l’aimantation se fluctue autour d’une valeur positive proche de 

zéro. Cela signifie qu’à haute température, les spins se répartissent en zones gauche et droite (en terme 

de projection sur xx’) presque équivalentes d’où le caractère ferromagnétique du modèle. La chaleur 

spécifique tend à s’annuler puisqu’elle représente la variance de l’énergie. La suceptibilité décroit en 

fonction de la température jusqu’ une valeur faible stable à cause de l’agitation thermique qui force le 

système à perdre son caractère magnétique.     

 Finalement, on note qu’à la limite thermodynamique où la taille de réseau est très grande, notre 

système présente une transition de phase ferromagnétique-paramagnétique. Ceci, peut être confirmé 

par interpolation des graphes.  
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Conclusion 

Dans ce mémoire, on a considéré un model de spin important a deux dimensions qui est le 

model XY de Heisenberg. La version classique de ce model est une collection de spins de modules ½ 

et deux composantes sur les deux axes cartésiens répartis sur un réseau carré. Pour simplification, on 

n’a considéré que les interactions entre les plus proches voisins avec des constantes de couplages 

identiques sur les deux axes. Voyons le nombre important des configurations possibles de ce model et 

n’importe quel model similaire sur réseau, on a basé pour calculer ses quantités thermodynamiques 

(l’énergie, la chaleur spécifique, l’aimantation, et la susceptibilité) sur un algorithme intéressant qui est 

l’algorithme de Metropolis en introduisant les méthodes de simulation de Monte Carlo. Nous avons 

obtenus des résultats importants donnant le comportement de ce modèle pour un réseau de taille finie. 

Pour des tailles plus importantes ou ce qu’on appelle à la limite thermodynamique, il est nécessaire 

d’introduire des algorithmes plus optimisés pour avoir un temps de calcul plus court. Comme 

perspectives, on propose d’étudier ce modèle lorsqu’on considère la deuxième interaction entre les 

deuxièmes voisins avec une autre constante de couplage ferromagnétique ou antiferromagnétique et 

voir l’effet sur le comportement physique. 
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Annexe : Programme de Calcul 
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Résumé: 

Dans ce mémoire, on a considéré un model de spin important a deux dimensions qui est le 

model XY de Heisenberg. La version classique de ce model est une collection de spins de modules ½ 

et deux composantes sur les deux axes cartésiens répartis sur un réseau carré. Pour simplification, on 

n’a considéré que les interactions entre les plus proches voisins avec des constantes de couplages 

identiques sur les deux axes. Voyons le nombre important des configurations possibles de ce model et 

n’importe quel model similaire sur réseau, on a basé pour calculer ses quantités thermodynamiques 

(l’énergie, la chaleur spécifique, l’aimantation, et la susceptibilité) sur un algorithme intéressant qui est 

l’algorithme de Metropolis en introduisant les méthodes de simulation de Monte Carlo. Nous avons 

obtenus des résultats importants donnant le comportement de ce modèle pour un réseau de taille finie. 

Pour des tailles plus importantes ou ce qu’on appelle à la limite thermodynamique, il est nécessaire 

d’introduire des algorithmes plus optimisés pour avoir un temps de calcul plus court. Comme 

perspectives, on propose d’étudier ce modèle lorsqu’on considère la deuxième interaction entre les 

deuxièmes voisins avec une autre constante de couplage ferromagnétique ou antiferromagnétique et 

voir l’effet sur le comportement physique. 

 

 

 

 

Abstract : 

In this thesis, we considered an important model of two-dimensional spin which is the XY model of 

Heisenberg. The classic version of this model is a collection of spin ½ module and two components on 

the two Cartesian axes distributed over a square network. For simplicity, only the interactions 

between the nearest neighbors with identical coupling constants on both axes have been considered. 

Let's see the large number of possible configurations of this model and any similar model on lattice, 

one based on calculating its thermodynamic quantities (energy, specific heat, magnetization, and 

susceptibility) on an interesting algorithm that is the Metropolis algorithm by introducing Monte 

Carlo simulation methods. We have obtained important results giving the behavior of this model for a 

network of finite size. For larger sizes or so-called thermodynamic limit, it is necessary to introduce 

more optimized algorithms to have a shorter computation time. As perspectives, we propose to study 

this model when we consider the second interaction between the second neighbors with another 

ferromagnetic or antiferromagnetic coupling constant and see the effect on the physical behavior. 

 


