
الشعبيةالجمهورية الجزائرية الديمقراطية

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

 وزارة التعليم العالي و البحث العلمي

MINISTERE DE L’ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

 Université Dr. Tahar Moulay SAIDA جامعة د. الطاهر مولاي سعيدة

 Faculté : Technologie كلية : التكنولوجيا

 Département : Informatique قسم : الإعلام الآلي

MEMOIRE DE MASTER

Option : RISR

THEME

Une stratégie de réplication dynamique de données dans les Cloud

Computing

Présenté par : Encadré par :

-MEGLALI Oussama Djamel Eddine -LIMAM Saïd

-HADDI Mohamed Reda

2015 - 2016

Remerciements

En préambule à ce mémoire, on souhaite adresser nos remerciements les plus sincères
aux personnes qui nous ont apporté leur aide et qui ont contribué à l'élaboration de ce

mémoire.

On tient à remercier sincèrement Monsieur LIMAM Saïd, qui en tant qu'encadreur de
mémoire, s'est toujours montré à l'écoute et très disponible tout au long de la

réalisation de ce mémoire, ainsi pour l'inspiration, l'aide et le temps qu'il a bien voulu
nous consacrer et sans qui ce mémoire n'aurait jamais vu le jour.

On n'oublie pas nos parents pour leur contribution, leur soutien et leur patience.

En�n, on adresse nos plus sincères remerciements à tous nos proches et amis, qui nous
ont toujours soutenu et encouragé au cours de la réalisation de ce mémoire.

On remercie en�n tous ceux qui n'ont pas été cités dans ces quelques lignes et qui ont
contribué de près ou de loin par leur aide au bon déroulement de ce travail.

Merci à tous et à toutes.

Dédicace Reda Haddi

Je dédie ce travail à :

Ma très chère mère qui a toujours et qui a été toujours présente à mes côtés, dans les
moments les plus di�ciles que le bon Dieu me la garde.

A la mémoire de mon père, qu'il repose en paix.

A mes très chers frères Zakaria, Abdelillah, Yacine, Amine, Oussama, Seddik et Samir
Mes très chères s÷urs.

A tous mes Oncles, Mes tantes.

A mes meilleur amis : Habbaz, Alaa, Idrici, Zoheir, Abdelkrim et Bourass

A tout mes amies qui mon beaucoup aidé même si nous avons oublié le nom de
quelqu'un soyez sur que vous êtes dans notre c÷ur et sans oublier mes collègues de la

promotion 2016.

Dédicace Oussama Meglali

Je dédie ce travail à :

A mes chers parents, je vous dédie ce modeste travail qui est le fruit de vos
interminables conseils, assistance et soutient moral, en témoignage de ma
reconnaissance et mon a�ection, dans l'espoir que vous en serez �ers.

A mes très chers frères Abdelmoumen et Abdelrahmane.

A tous mes Oncles, Mes tantes.

A tout mes amis : Abbes, Sidahmed, Mohamed, Kamel, Samir, Habbaz, Alaa, Idrici,
Zoheir, Abdelkrim et Bourass.

A tout mes amies qui mon beaucoup aidé même si nous avons oublié le nom de
quelqu'un soyez sur que vous êtes dans notre c÷ur et sans oublier mes collègues de la

promotion 2016.

Table des matières

1 Les systèmes distribués à large échelle 5
1.1 Introduction . 5
1.2 Caractéristiques des systèmes distribué à large échelle 5

1.2.1 Transparence . 6
1.2.2 Passage à l'échelle . 6
1.2.3 Disponibilité . 7
1.2.4 Autonomie . 7

1.3 Quelques systèmes distribués . 8
1.3.1 systèmes P2P . 8
1.3.2 Grilles de calculs . 9
1.3.3 Cloud computing . 12

1.4 Composants du Cloud . 15
1.5 L'informatique en tant que service . 17

1.5.1 Infrastructure as a Service (IaaS) 18
1.5.2 Platform as a Service (PaaS) . 20
1.5.3 Software as a Service (SaaS) . 21
1.5.4 Avantages et Inconvénients des services 22

1.6 Modèles de déploiement . 23
1.6.1 Le nuage privé . 24
1.6.2 Le nuage public . 24
1.6.3 Le nuage hybride . 24
1.6.4 La di�érence entre le cloud privé et le cloud public 24

1.7 Vers la fédération de nuages ou Intercloud 25
1.8 Avantages et inconvénients du Cloud Computing 26

1.8.1 Avantages . 26
1.8.2 Inconvénients . 26

1.9 La sécurité . 27
1.10 Conclusion . 28

2 Réplication et cohérence dans les systèmes distribués 29
2.1 Introduction . 29
2.2 Principe de réplication . 29
2.3 La réplication dans les grilles informatiques 30
2.4 Avantages et inconvénients de la réplication 30

2.4.1 Avantages : . 30

1

TABLE DES MATIÈRES 0

2.4.2 Inconvénients : . 31
2.5 Technique de réplication des données 31

2.5.1 Création des répliques : . 32
2.6 Protocoles de réplication . 33

2.6.1 Protocole de réplication passive 33
2.6.2 Protocole de réplication active 34
2.6.3 Protocole de réplication semi-active 34

2.7 Notion de cohérence . 38
2.7.1 Modèles de cohérence . 39

2.8 Conclusion . 41

3 Description et modélisation de l'approche proposée 42
3.1 Introduction . 42
3.2 Création et placement de répliques . 42

3.2.1 Topologie du Cloud . 42
3.2.2 Modèle de coût . 44
3.2.3 Algorithme de base . 45

3.3 Algorithme de l'approche proposée . 48
3.4 Exemple de démonstration . 49

4 54
4.1 Langage et environnement de développement 54

4.1.1 Langage de programmation Java 54
4.1.2 Environnements de développement 55
4.1.3 Architecture de CloudSim . 56

4.2 Description du fonctionnement de notre application 57
4.2.1 Interface principale . 57
4.2.2 Con�guration des paramètres de simulation 57

4.3 Résultats expérimentaux . 61
4.3.1 Expérience 1 . 61
4.3.2 Expérience 2 . 63
4.3.3 Expérience 3 . 64
4.3.4 Expérience 4 . 65

4.4 Interprétation des résultats : . 67
4.5 Conclusion . 68

page 2

Introduction générale

L'informatique dans les nuages (Cloud Computing en anglais) s'est imposée ces der-

nières années comme un paradigme majeur d'utilisation des infrastructures informa-

tiques. Celui-ci répond à des besoins et demandes croissantes en terme de disponibilité

et �exibilité. Le développement remarquable du Cloud Computing, ces dernières années,

suscite de plus en plus l'intérêt des di�érents utilisateurs de l'Internet et de l'informa-

tique qui cherchent à pro�ter au mieux des services et des applications disponibles en

ligne à travers le Web en mode services à la demande et facturation à l'usage.

L'approche du Cloud Computing s'appuie principalement sur le concept de virtua-

lisation. Ce concept est un ensemble de techniques permettant de faire fonctionner sur

une seule machine plusieurs systèmes d'exploitation et/ou plusieurs applications, isolés

les uns des autres. Un Cloud est constitué d'un ensemble de machines virtuelles qui

utilisent la même infrastructure physique.

La �abilité d'une Cloud computing est assurée par la disponibilité et l'accessibilité

des données par rapport à l'utilisateur. Comme les N÷uds peuvent tomber en panne

et les données se déplacent à travers le réseau, la �abilité peut être diminuée. Les de-

mandes cumulées sur une machine virtuelle ou bien sur un data center sur une donnée

ne peuvent pas répondre aux besoins des utilisateurs au même temps.

Dans ce travail, l'objectif visé est de proposer une stratégie basée sur la création des

répliques, en appliquant des méthodes et des algorithmes. Notre politique de création

vise à optimiser le temps de réponse des Cloudlets, garantir et améliorer un certain

degré de disponibilité pour les données du système.

Organisation du mémoire : Le présent mémoire est structuré autour de

quatre principaux chapitres qui se résument comme suit :

3

TABLE DES MATIÈRES 0

Chapitre 1 : Dans le premier chapitre, nous présenterons une entrée sur les systèmes

à grande échelles.

Chapitre 2 : Le second chapitre présentera quelques di�érentes techniques de données

tel que la réplication de donnée et la gestion de cohérence dans les systèmes distribué.

Chapitre 3 : Le troisième chapitre sera réservé à la description détaillée de la concep-

tion de la stratégie utilisée que nous avons proposé.

Chapitre 4 : Ce dernier chapitre présentera les étapes de l'implémentation de l'ap-

proche proposée. Nous y détaillerons la réalisation de certaines fonctionnalités ainsi que

l'étude d'évaluation de cette stratégie. Les résultats d'expérimentation seront interpré-

tés. En�n, Une synthèse et un ensemble de perspectives viendront pour clôturer notre

travail.

page 4

CHAPITRE I :

Les systèmes distribués à large échelle

Chapitre 1

Les systèmes distribués à large échelle

1.1 Introduction

L'informatique du début du 21 ème siècle, qu'elle soit visible (système d'information

d'une entreprise) ou enfoui dans un processus industriel (voiture, avion, etc.) est répar-

tie "par nature". Les systèmes informatiques de nos jours sont par essence distribués. Ils

sont souvent composés de "sites" (processeurs, capteurs, ordinateurs, émetteurs, etc.)

reliés en réseaux [1]. Ces sites sont caractérisés par une :

- distribution géographique étendue.

- hétérogénéité et mobilité des composants (PC, PDA, téléphones, capteurs, etc.).

- volatilité et une disponibilité partielle.

La gestion des données dans un environnement à grande échelle est indispensable

pour prendre en compte les besoins des nouvelles applications. Si la gestion des données

dans les systèmes distribués a été largement étudiée ces dernières années, des solutions

e�caces et à bas coût tardent à voir le jour à cause de la complexité des problèmes

introduits par la largeur de l'échelle et le caractère hétérogène et dynamique de l'envi-

ronnement.

1.2 Caractéristiques des systèmes distribué à large

échelle

Un système réparti doit assurer plusieurs propriétés pour être considéré comme

performant : la transparence, le passage à l'échelle, la disponibilité et l'autonomie [2].

5

CHAPITRE 1. LES SYSTÈMES DISTRIBUÉS À LARGE ÉCHELLE 1

1.2.1 Transparence

La transparence permet de cacher aux utilisateurs les détails techniques et organi-

sationnels d'un système distribué et complexe. L'objectif est de pouvoir faire béné�cier

aux applications une multitude de services sans avoir besoin de connaître exactement

la localisation ou les détails techniques des ressources qui les fournissent. Ceci rend

plus simple, le développement des applications mais aussi leur maintenance évolutive

ou corrective. Selon la norme (ISO, 1995) la transparence a plusieurs niveaux :

1. Accès : cacher l'organisation logique des ressources et les moyens d'accès à une

ressource.

2. Localisation : l'emplacement d'une ressource du système n'a pas à être connu.

3. Migration : une ressource peut changer d'emplacement sans que cela ne soit aperçu.

4. Réplication : les ressources sont dupliquées mais les utilisateurs n'ont aucune

connaissance de cela.

5. Panne : si un n÷ud est en panne, l'utilisateur ne doit pas s'en rendre compte et

encore moins de sa reprise après panne.

6. Concurrence : rendre invisible le fait qu'une ressource peut être partagée ou sol-

licitée simultanément par plusieurs utilisateurs. Le parcours de cette liste montre qu'il

n'est pas évident d'assurer une transparence totale. En e�et, masquer complètement

les pannes des ressources est quasi impossible aussi bien d'un point de vue théorique

que pratique. Ceci est d'autant plus vrai qu'il n'est pas trivial de dissocier une machine

lente ou surchargée de celle qui est en panne.

1.2.2 Passage à l'échelle

Le concept de passage à l'échelle désigne la capacité d'un système à continuer à

délivrer avec un temps de réponse constant un service même si le nombre de clients ou

de données augmente de manière importante. Le passage à l'échelle peut être mesuré

avec au moins trois dimensions :

1- Le nombre d'utilisateurs et/ou de processus (passage à l'échelle en taille) ;

2- La distance maximale physique qui sépare les n÷uds ou ressources du système (pas-

sage à l'échelle géographique) ;

3- Le nombre de domaines administratifs (passage à l'échelle administrative).

page 6

CHAPITRE 1. LES SYSTÈMES DISTRIBUÉS À LARGE ÉCHELLE 1

1.2.3 Disponibilité

Un système est dit disponible s'il est en mesure de délivrer correctement le ou les

services de manière conforme à sa spéci�cation. Pour rendre un système disponible, il

faut donc le rendre capable de faire face à tout obstacle qui peut compromettre son bon

fonctionnement. En e�et, l'indisponibilité d'un système peut être causée par plusieurs

sources parmi lesquelles nous citons :

- Les pannes qui sont des conditions ou événements accidentels empêchant le système,

ou un de ses composants, de fonctionner de manière conforme à sa spéci�cation ;

- Les surcharges qui sont des sollicitations excessives d'une ressource du système en-

traînant sa congestion et la dégradation des performances du système ;

- Les attaques de sécurité qui sont des tentatives délibérées pour perturber le fonction-

nement du système, engendrant des pertes de données et de cohérences ou l'arrêt du

système.

Pour faire face aux pannes, deux solutions sont généralement utilisées :

1. La première consiste à détecter la panne et à la résoudre, et ce dans un délai très

court. La détection des pannes nécessite des mécanismes de surveillance qui s'appuient

en général sur des timeouts ou des envois de messages périodiques entre ressources sur-

veillées et ressources surveillantes.

2. La deuxième solution consiste à masquer les pannes en introduisant de la réplication.

Ainsi, quand une ressource est en panne, le traitement qu'elle e�ectuait est déplacé sur

une autre ressource disponible. La réplication peut être aussi utilisée pour faire face à

la seconde cause d'indisponibilité d'un système (surcharge du système). Pour réduire la

surcharge d'une ressource, les tâches sont traitées parallèlement sur plusieurs répliques

ou sur les di�érentes répliques disponibles à tour de rôle. Une autre technique qui per-

met de réduire la surcharge d'une ressource consiste à distribuer les services et/ou les

données sur plusieurs sites et donc de les solliciter de manière parallèle.

1.2.4 Autonomie

Un système ou un composant est dit autonome si son fonctionnement ou son inté-

gration dans un système existant ne nécessite aucune modi�cation des composants du

système hôte. L'autonomie des composants d'un système favorise l'adaptabilité, l'ex-

tensibilité et la réutilisation des ressources de ce système. Par exemple, une ressource

autonome peut être remplacée avec une autre ressource plus riche en termes de fonction-

nalités, ce qui étend les services du système. Une solution pour garder l'autonomie d'une

page 7

CHAPITRE 1. LES SYSTÈMES DISTRIBUÉS À LARGE ÉCHELLE 1

application est d'intégrer toute nouvelle fonctionnalité supplémentaire et spéci�que à

une application sous forme d'intergiciel.

1.3 Quelques systèmes distribués

Dans cette section, nous étudions trois catégories de systèmes distribués à savoir

les systèmes pair-à-pair (P2P), les grilles informatiques et le cloud. Le choix d'étudier

ces trois catégories est fortement tributaire de leur caractère très hétérogène et leur

besoin de passage à l'échelle. L'étude met l'accent sur les architectures et les méca-

nismes permettant d'assurer la disponibilité, le passage à l'échelle, la transparence et

l'autonomie.

1.3.1 systèmes P2P

Le terme P2P fait référence à une classe de systèmes distribués qui utilisent des

ressources distribuées pour réaliser une tâche particulière de manière décentralisée. Les

ressources sont composées d'entités de calcul (ordinateur ou PDA), de stockage de

données, d'un réseau de communication, etc. La tâche à exécuter peut être du calcul

distribué, du partage de données (ou de contenu), de la communication et collaboration,

d'une plateforme de services, etc. La décentralisation, quant à elle, peut s'appliquer soit

aux algorithmes, soit aux données, soit aux méta données, soit à plusieurs d'entre eux.

Le paradigme pair à pair de la communication comble cette lacune et a été claire-

ment identi�ée comme un moyen pertinent de construire de grands systèmes distribués.

Alors que les réseaux de pairs structurés ont dominé dans un premier temps, les réseaux

non structurés sont maintenant reconnus comme des infrastructures e�caces pour de

nombreuses applications distribuées. Dans ce contexte, les systèmes basés sur la com-

munication sont devenus un outil puissant pour construire et entretenir les réseaux de

pairs distribués qu'ils soient structurés ou non structurés, et peuvent être utilisés pour

soutenir de nombreuses applications distribuées. Le principe de cette technique, en ana-

logie avec la propagation d'une rumeur parmi les gens, est que les entités participantes

échangent des informations en continu, a�n de l'étendre progressivement dans le sys-

tème.

Les réseaux pair-à-pair sont considérés aujourd'hui comme l'une des plus importantes

sources de partage de données et leur intérêt ne cesse de croître au fur et à mesure qu'ils

sont utilisés dans de nombreux domaines. L'une des particularités des systèmes P2P

est que tous les n÷uds (pairs) sont en général symétriques, c'est à dire qu'ils jouent

page 8

CHAPITRE 1. LES SYSTÈMES DISTRIBUÉS À LARGE ÉCHELLE 1

à la fois le rôle de client et de serveur. En particulier, les systèmes de partage de �-

chiers permettent de rendre les objets d'autant plus disponibles qu'ils sont populaires,

en les répliquant sur un grand nombre de n÷ud. Cela permet alors de diminuer la

charge (en nombre de requêtes) imposée aux n÷uds partageant les �chiers populaires,

ce qui facilite l'augmentation du nombre de clients et donc le passage à l'échelle en

taille des données. Un système est dit P2P lorsqu'il autorise la communication directe

entre entités d'un réseau, sans passer par une autorité centrale, telle qu'un serveur.

Dans un réseau P2P, chaque entité se comporte à la fois comme un client et un serveur.

L'architecture des systèmes P2P est donc généralement décentralisée. Les Pair-à-Pair

sont en général utilisés pour partager des données entre les utilisateurs ou les applica-

tions sont réparties géographiquement. Les données partagées sont souvent distribuées

et répliquées pour plus d'évolutivité et de disponibilité. La réplication des données sur

un système à grande échelle est très di�cile à cause de la dynamicité des n÷uds qui

peuvent compromettre la cohérence et la disponibilité[3]. Le succès des systèmes P2P

est dû aux " bonnes propriétés " de ces systèmes (dynamicité, passage à l'échelle et

autonomie). Une classi�cation des systèmes P2P est donnée par la Figure 1.1

Figure 1.1 � Classi�cation des systèmes P2P

1.3.2 Grilles de calculs

Le terme Grille a été introduit pour la première fois aux état Unis durant les an-

nées 1990 pour décrire une infrastructure de calcul distribuée, utilisée dans les projets

de recherche scienti�ques et industriels. Une grille mutualise un ensemble de machines

géographiquement distribuées sur plusieurs sites. Un site peut être vu comme un en-

semble de clusters, composé d'un ensemble de machines situées généralement à la même

localité et qui forment un domaine d'administration local, uniforme et coordonné. La

vision des inventeurs de ce terme est qu'il sera possible, à terme, de se brancher sur

une grille informatique pour obtenir de la puissance de calcul et/ou de stockage de

page 9

CHAPITRE 1. LES SYSTÈMES DISTRIBUÉS À LARGE ÉCHELLE 1

données sans savoir ni ou ni comment cette puissance est fournie, à l'image de ce qui

se passe pour l'électricité. Cependant la mise en oeuvre de cette transparence n'est pas

triviale vue les caractéristiques spéci�ques aux grilles. Une grille est caractérisée par

sa répartition sur di�érents sites qui ne sont pas sous administration commune. Cela

conduit à une grande hétérogénéité tant au niveau matériel que de l'environnement lo-

giciel. Chaque site d'une grille admet sa propre politique d'administration, son propre

protocole d'accès et d'authenti�cation. Les politiques de sécurité peuvent aussi être

di�érentes d'un site à l'autre. Les sites ne partagent pas non plus un même système de

�chiers. La grille n'a pas une structure statique. Que ce soit du fait de pannes maté-

rielles, de remplacements ou d'ajouts, des ressources peuvent apparaitre ou disparaitre

à tout instant. Une grille peut comporter une grande variété de technologies d'inter-

connexion réseau, et toute une hiérarchie de réseaux en termes d'étendue géographique,

et en termes de performances des communications (débit, latence, etc.). Des réseaux

longue distance (Wide-Area Network,WAN) relient les sites de la grille. Les n÷uds à

l'intérieur de chaque site peuvent être inter-connectés par des réseaux locaux (LAN) ou

par des réseaux haute performance (SAN) au sein d'un cluster. La Figure 1.2 montre

un exemple d'une grille informatique [2]

Figure 1.2 � Les composants de la grille informatique [4]

Il est important de savoir quels avantages une grille est en mesure d'o�rir et que

les infrastructures et les technologies actuelles ne sont pas capables d'assurer. Nous ex-

posons par la suite quelques unes des raisons pouvant amener à déployer une grille de

calcul :

page 10

CHAPITRE 1. LES SYSTÈMES DISTRIBUÉS À LARGE ÉCHELLE 1

- Exploiter les ressources sous utilisées : les études montrent que les ordina-

teurs personnels et les stations de travail sont inactifs la plupart du temps. Le taux

d'utilisation varie entre 30% pour les milieux académiques et industriels et 5% pour les

machines de grand public. Les grilles de calcul permettront ainsi d'utiliser les cycles

processeurs durant lesquels les machines sont inactives a�n de faire tourner une appli-

cation nécessitant une puissance de calcul importante et que les machines qui lui sont

dédiées n'arrivent pas à assurer. Les cycles processeurs ne sont pas la seule ressource

sous utilisée, souvent les capacités de stockage le sont aussi. Ainsi il est possible qu'une

grille agrégé toutes ces ressources a�n de les partager entre les di�érents utilisateurs

(on parle alors de Grille de Données ou Data Grid). Une autre conséquence d'une telle

utilisation est la possibilité de faire du partage de charge entre les di�érentes ressources

d'une grille.

- Fournir une importante capacité de calcul parallèle : le fait de pouvoir

fournir une importante capacité de calcul parallèle constitue une caractéristique im-

portante des grilles de calcul. En plus du domaine académique, le milieu industriel

béné�ciera énormément d'une telle capacité : bioinformatique, exploration pétrolière,

industrie cinématographique, etc. En e�et les applications sont écrites d'une façon à

pouvoir exploiter parallèlement des ressources (clusters, machines multiprocesseur,. .).

Les grilles de calcul peuvent de la même manière fournir des ressources dont l'utilisation

pourra se faire en parallèle.

- Meilleure utilisation de certaines ressources : en partageant les ressources, une

grille pourra fournir l'accès à des ressources spéciales comme des équipements spéci-

�ques (microscope électronique, bras robotique, . . .) ou des logiciels dont le prix de

la licence est élevée. Ainsi ces ressources exposées à tous les utilisateurs seront mieux

utilisées et partagées et ainsi on évitera d'avoir recours à installer du nouveau matériel

ou acheter de nouvelles licences.

- Fiabilité et disponibilité des services : du fait que les ressources fédérées par

une grille de calcul soient géographiquement dispersées et disponibles en importantes

quantités permet d'assurer la continuité du service si certaines ressources deviennent

inaccessibles. Les logiciels de contrôle et de gestion de la grille seront en mesure de

soumettre la demande de calcul à d'autres ressources.

page 11

CHAPITRE 1. LES SYSTÈMES DISTRIBUÉS À LARGE ÉCHELLE 1

1.3.3 Cloud computing

Le "cloud computing" est un néologisme utilisé pour décrire l'association d'Internet

(" cloud ", le nuage) et l'utilisation de l'informatique ("computing"). C'est une manière

d'utiliser l'informatique dans laquelle tout est dynamiquement couplé et évolutif et dans

laquelle les ressources sont fournies sous la forme de services au travers d'Internet. Les

utilisateurs n'ont ainsi besoin d'aucune connaissance ni expérience en rapport avec la

technologie derrière les services proposé[5].

Figure 1.3 � Cloud Computing

Le Cloud Computing est un nuage de services et de données. Plus précisément, c'est

un paradigme, et à ce titre, il est di�cile de lui donner une dé�nition exacte et de dire

avec certitude s'il s'agit ou non de Cloud.

Il faut donc être vigilant, car de nombreux fournisseurs de services utilisent le mot

"Cloud" des �ns marketings. Sur Internet, il n'y a pas de dé�nition exacte du Cloud

Computing et donc pas de certi�cation pour dire si nous avons faire un "vrai Cloud".

Nous tenterons toutefois, au travers de ce mémoire, de donner les principales clés pour

comprendre le Cloud Computing.

-Pour Wikipédia, il s'agit d'un concept de déportation sur des serveurs distants et trai-

tements informatiques traditionnellement localisés sur le poste client [6].

-Pour le Syntec, cela consiste en "une interconnexion et une coopération de res-

sources informatiques, situées au sein d'une même entité ou dans diverses structures

internes, externes ou mixtes, et dont le mode d'accès est basé sur les protocoles et stan-

page 12

CHAPITRE 1. LES SYSTÈMES DISTRIBUÉS À LARGE ÉCHELLE 1

dards Internet [7].

Pour vulgariser, L'informatique dans le nuage s'appuie sur une infrastructure (le nuage)

composée d'un grand nombre de ressources virtualisées (par exemple : réseaux, serveurs,

stockage, applications ou services), distribuées dans le monde entier. Ces ressources

peuvent être allouées, puis relâchées rapidement, avec des e�orts de gestion minimaux

et avec peu d'interactions entre le client et le fournisseur. Aussi, cette infrastructure

peut être dynamiquement recon�gurée pour s'ajuster à une charge de travail variable

(passage à l'échelle). Finalement, les garanties de prestation o�ertes par l'informatique

dans le nuage prennent typiquement la forme de contrats de niveau de service [8].

Le Cloud Computing n'impose aucune dépense en immobilisation puisque les services

sont payés en fonction de l'utilisation. Cela permet aux entreprises de ne plus se foca-

liser sur la gestion, la maintenance et l'exploitation de l'infrastructure ou des services

applicatifs.

Les fortes avancées dans le domaine de la virtualisation ont rendu possible le Cloud

Computing. Cette virtualisation permet d'optimiser les ressources matérielles en les

partageant entre plusieurs environnements (time-sharing). De même, il est possible de

coupler l'application (et son système d'exploitation) et le matériel (en capsulé dans la

machine virtuelle), cela assure également un provisionning , c'est-à-dire la capacité de

déploiement d'environnement, de manière automatique.

Le Cloud Computing couplé, aux technologies de virtualisation, permet la mise à dis-

position d'infrastructures et de plate-forme à la demande. Mais le Cloud Computing ne

concerne pas seulement l'infrastructure, il bouleverse la plate-forme d'exécution et les

applications [8].

Le cloud computing correspond au développement et à l'utilisation d'applications acces-

sibles uniquement via Internet. Les utilisateurs dépendent ainsi uniquement d'Internet

pour utiliser leurs logiciels, ils ont la possibilité d'accéder à des services sans installer

quoique ce soit d'autre qu'un simple navigateur Internet. Aujourd'hui, le cloud compu-

ting est exploité par la quasi-totalité des grandes entreprises car il fournit une analyse

sophistiquée des données de la manière la plus rapide possible [5].

Historique

Techniquement, le concept de cloud computing est loin d'être nouveau, il est même

présent depuis des décennies. On en trouve les premières traces dans les années 1960,

quand John McCarty [9] a�rmait que cette puissance de traitement informatique serait

accessible au public dans le futur. Le terme en lui-même est apparu plus couramment

page 13

CHAPITRE 1. LES SYSTÈMES DISTRIBUÉS À LARGE ÉCHELLE 1

aux alentours de la �n du XXe siècle et il semblerait que Amazon.com soit l'un des

premiers à avoir assemblé des data centers et fournit des accès à des clients. Les entre-

prises comme IBM et Google ainsi que plusieurs universités ont seulement commencé à

s'y intéresser sérieusement aux alentours de 2008, quand le cloud computing est devenu

un concept "à la mode" [5]. Réalisant ce qu'ils pourraient faire de toute cette puis-

sance, de nombreuses compagnies ont ensuite commencé à montrer un certain intérêt

à échanger leurs anciennes infrastructures et applications internes contre ce que l'on

appelle les "pay per-use service" (services payés à l'utilisation) [5]. Auparavant, seuls

les super-ordinateurs permettaient de fournir cette puissance et étaient principalement

utilisés par des gouvernements, des militaires, des laboratoires et des universités pour

réaliser des calculs aussi complexes que prédire le comportement d'un avion en vol,

les changements climatiques ou la simulation d'explosions nucléaires. Désormais, des

entreprises comme Google fournissent des applications qui exploitent le même type de

puissance et sont accessibles à tout moment, de n'importe où et par tout via Internet.

Quelques universités prestigieuses ont également lancé leurs propres programmes de

cloud computing en fournissant des accès à des maillages de centaines ou milliers de

processeurs ; des entreprises comme IBM ont récemment annoncé leur intention d'uti-

liser massivement le cloud computing a l'avenir. Ces derniers ont récemment dévoilé

un système ultra-performant connu sous le nom de "Blue Cloud" qui permettra d'aider

les banques et diverses entreprises à distribuer leurs calculs sur un très grand nombre

de machines sans posséder d'infrastructure interne. Le 24 mars 2008, Yahoo ! a même

annoncé avoir débuté un partenariat avec la Carnegie Mellon University de Pittsburgh

a�n de leur mettre à disposition, à des �ns de recherche, un ordinateur doté de 4 000

processeurs situe dans les locaux de la �rme [10].

Figure 1.4 � Interet pour le terme "cloud computing" sur Internet

Actuellement les experts sont convaincu que bientôt, nous utiliserons le cloud com-

puting de la même manière que nous utilisons l'électricité, c'est à dire en payant unique-

page 14

CHAPITRE 1. LES SYSTÈMES DISTRIBUÉS À LARGE ÉCHELLE 1

ment ce que nous consommons sans même nous soucier des aspects techniques néces-

saires au bon fonctionnement du système. Le principal facteur de développement restant

le fait que toute cette puissance est à tout moment partagée par plusieurs utilisateurs

et évite ainsi de perdre du "temps machine" à ne rien faire. Cela devrait également

drastiquement réduire les coûts de développements et donc les prix [5].

La virtualisation

La virtualisation a été la première pierre vers l'ère du Cloud Computing. En ef-

fet, cette notion permet une gestion optimisée des ressources matérielles dans le but

de pouvoir y exécuter plusieurs systèmes "virtuels" sur une seule ressource physique

et fournir une couche supplémentaire d'abstraction du matériel. Les premiers travaux

peuvent être attribués à IBM, qui dans les années 60, travaillait déjà sur les mécanismes

de virtualisation en développant dans les centres de recherche de Cambridge et de Gre-

noble, CMS (Conversation Monitor System), le tout premier hyperviseur.

C'est donc depuis presque 50 ans que l'idée d'une informatique à la demande est pré-

sente dans les esprits même si les technologies n'étaient jusqu'alors pas au rendez-vous

pour pouvoir concrétiser cette idée. Avec les di�érents progrès technologiques réali-

sés durant ces 50 dernières années, tant sur le plan matériel, logiciel et conceptuel,

aux avancées des mécanismes de sécurité, à l'élaboration de réseaux complexes mais

standardisés comme Internet, et à l'expérience dans l'édition et la gestion de logiciels,

services, infrastructures et stockage de données, nous sommes maintenant prêts à entrer

dans l'ère du Cloud Computing, telle que rêvait par John McCarthy en 1961 [11].

1.4 Composants du Cloud

La Figure 1.5 illustre les composants communs de cloud computing [12].

page 15

CHAPITRE 1. LES SYSTÈMES DISTRIBUÉS À LARGE ÉCHELLE 1

Figure 1.5 � Composants du cloud

a. Applications virtualisées : Les applications virtualisées rendent compatible les

applications de l'utilisateur avec les hardwares, les systèmes d'exploitations, le réseau

et le stockage pour permettra la �exibilité du déploiement.

b. Infrastructure virtualisée : L'infrastructure virtualisée fournit l'abstraction né-

cessaire pour s'assurer qu'une application ou un service ne soit pas directement attachée

à l'infrastructure matérielle (serveurs, stockage ou réseaux). Ceci permet au service de

se déplacer dynamiquement à travers les ressources virtualisées d'infrastructure.

c. Gestion de sécurité et d'identité : Le système de gestion de sécurité fournie

les commandes nécessaire pour assurer les informations sensibles (les protéger) et re-

pendre au exigence de conformité.

d. Développement : Les infrastructures de développement facilitent non seulement

l'orchestration de service mais permettent également aux processus d'être développés.

C'est les outils de développement comme le compilateur, SDK (Software Development

Kit) et l'environnement de développement.

e. Gestion d'entreprise : La couche de gestion d'entreprise manipule le cycle de

vie des ressources virtualisées et fournit les éléments additionnels d'infrastructure com-

page 16

CHAPITRE 1. LES SYSTÈMES DISTRIBUÉS À LARGE ÉCHELLE 1

mune pour la gestion de taux de disponibilité, utilisation dosée, gestion de politique,

gestion de permis, et recouvrement des pertes.

1.5 L'informatique en tant que service

On distingue trois sous-ensembles de services (Figure 1.6) au sein de l'informatique

dans le nuage : le logiciel en tant que service (SaaS), la plateforme en tant que service

(PaaS) et l'infrastructure en tant que service (IaaS). Chacun de ces types de service

correspond à un niveau d'abstraction logiciel précis par rapport aux ressources infor-

matiques matérielles accessibles via Internet, et donc hébergées au sein du nuage du

point de vue de l'utilisateur [13].

Figure 1.6 � Les di�érents types de services dans le Cloud

C'est l'infrastructure en tant que service qui correspond au plus faible niveau d'abs-

traction que l'on peut obtenir par rapport aux ressources informatiques partagées via le

nuage. En utilisant ce type de service, les utilisateurs peuvent directement administrer

les ressources informatiques qu'ils consomment. Un exemple de service appartenant à

cette catégorie est la location de serveurs virtuels proposée par Amazon EC2 [14]. Avec

cette solution, les clients peuvent installer le système d'exploitation et les composants

logiciels de leur choix au sein des espaces d'exécution virtualisés distribués par Amazon,

comme ils le feraient sur une grappe de machines privées. A un niveau d'abstraction

supérieur, on trouve la plateforme en tant que service qui étend la gamme de services

proposés par l'infrastructure en tant que service avec des outils de développement d'ap-

plications Web qui sont totalement hébergés chez le fournisseur. Finalement, au plus

page 17

CHAPITRE 1. LES SYSTÈMES DISTRIBUÉS À LARGE ÉCHELLE 1

haut niveau d'abstraction, on trouve les logiciels en tant que services, qui correspondent

à des services logiciels classiques (bureautique, gestion de base de données simpli�ée,

etc.), dont la particularité est d'être hébergé au sein du nuage et non sur une infra-

structure privée.

1.5.1 Infrastructure as a Service (IaaS)

L'infrastructure en tant que service est plus connue sous le nom d'IaaS pour Infra-

structure as a Service . Ce type de service consiste à distribuer des ressources informa-

tiques telles que de la capacité de calcul, des moyens de stockage et de communication,

de façon publique via Internet et sous une forme de paiement à l'utilisation. Les clients

de l'infrastructure en tant que service peuvent donc exécuter et héberger leurs appli-

cations informatiques dans le nuage et ne paient que les ressources qu'ils consomment.

Ces services d'approvisionnement en infrastructure peuvent servir, d'une part à héber-

ger des logiciels ou plateformes en tant que services et, d'autre part, à être utilisés de

façon plus générique en tant que ressources informatiques pour des applications très

variées, allant de la sauvegarde de données jusqu'au calcul haute performance, en pas-

sant par l'analyse statistique de données. La variété d'utilisation des services proposés

par l'infrastructure en tant que service en fait la technologie de l'informatique dans le

nuage la plus populaire. Aussi lorsque l'on parle d'informatique dans le nuage, on fait

souvent référence à l'infrastructure en tant que service.

La particularité de l'infrastructure en tant que service est de fournir un approvisionne-

ment en ressources informatiques de qualité, qui soit extensible sur commande et dont

la capacité dépasse généralement la demande. Le nuage est alors vu par ses utilisateurs

comme une source in�nie de capacité de calcul, de stockage et de communication. In-

ternet devient alors une place de marché ou l'infrastructure informatique est distribuée,

et consommée en tant que marchandise, selon le modèle illustré sur la Figure 1.7.

page 18

CHAPITRE 1. LES SYSTÈMES DISTRIBUÉS À LARGE ÉCHELLE 1

Figure 1.7 � Modèle de distribution de l'infrastructure en tant que service

Ce modèle de distribution d'infrastructure assouplit le mode d'investissement en

ressources matérielles et logicielles des industries, ouvrant des perspectives jusqu'alors

inconnues pour les sociétés et organismes ayant besoin de disposer d'un accès direct

à une infrastructure informatique. En e�et, d'après les chercheurs de l'Université de

Berkeley [15], les trois raisons majeures du succès de l'infrastructure en tant que service

sont les suivantes :

1. L'illusion d'une capacité de calcul in�nie de la part des utilisateurs du nuage, permet-

tant aux clients de l'informatique dans les nuages de se reposer sur un unique service

pour l'approvisionnement de ressources de calcul à long terme.

2. L'assouplissement du mode d'investissement des utilisateurs du nuage, permettant

aux entreprises de commencer petit, puis d'augmenter les ressources informatiques ma-

térielles seulement si le besoin s'en fait sentir.

3. La possibilité de payer pour l'utilisation de ressources de calcul sur une base à court

terme (c-à-d. accès aux serveurs virtuels à l'heure), permettant une utilisation économe

des capacités informatiques, en relâchant les ressources de calcul dés qu'elles deviennent

inutilisées.

page 19

CHAPITRE 1. LES SYSTÈMES DISTRIBUÉS À LARGE ÉCHELLE 1

1.5.2 Platform as a Service (PaaS)

La plateforme en tant que service, plus connue sous l'appellation anglophone Plate-

forme as a Service (PaaS) se trouve à mi-chemin entre le logiciel en tant que service et

l'infrastructure en tant que service. Aussi, il est di�cile de dé�nir les frontières entre

plateforme et infrastructure, aussi bien qu'entre plateforme et logiciel en tant que service

[15]. Cependant, nous proposons de caractériser ce type de service comme suit : la pla-

teforme en tant que service o�re un environnement de développement et de déploiement

pour les logiciels en tant que service, qui est accessible et hébergé au sein du nuage. Les

services o�erts par cette technologie facilitent le déploiement des applications (souvent

déployées comme logiciels en tant que service), en abstrayant à ses utilisateurs les coûts

et la complexité de maintenance de l'infrastructure sous-jacente, et ce, pendant l'inté-

gralité du cycle de vie des applications. Ainsi, ces services sont généralement adressés

à des développeurs de logiciels souhaitant utiliser une même plateforme pour les cycles

de développement et de déploiement de leurs applications. Les plateformes en tant que

services incluent généralement des services d'aide au développement tels que des appli-

cations de conceptions, de versionnement, de test, d'intégration de service Web ou de

base de données, etc. Elles incluent également des services d'aide au déploiement tels

que l'hébergement d'application, la surveillance des applications, le stockage de don-

nées, l'allocation dynamique de ressources, la gestion de la persistance des données, etc.

En�n, les services proposés par une plateforme en tant que service sont générale-

ment délivrés sous la forme d'une solution intégrée accessible via des interfaces Web

publiques. On peut distinguer deux types principaux de plateformes en tant que ser-

vices : les plateformes de développement d'extension et les plateformes de dévelop-

pement d'applications autonomes. Les plateformes de développement d'extension sont

généralement mises à disposition par les grands éditeurs de logiciels en tant que services,

dans le but de permettre à leurs utilisateurs d'ajouter des fonctions personnalisées aux

services classiques. Les plateformes de développement d'extension les plus connues sont

proposées par de grands éditeurs de logiciels en tant que services tels que Salesforce

[16] et Netsuite [17]. Par exemple, Salesforce propose des outils de création assistée

de base de données ou encore de personnalisation d'interface graphique qui sont conçu

pour que les utilisateurs puissent personnaliser leur environnement de travail au sein

de la plateforme en tant que service. Les plateformes de développement d'applications

autonomes sont, dans leur principe, plus proches de l'infrastructure en tant que service.

Elles proposent généralement, en plus de la distribution d'infrastructure, des services

de développement permettant de se reposer sur le Nuage pour l'intégralité du cycle de

page 20

CHAPITRE 1. LES SYSTÈMES DISTRIBUÉS À LARGE ÉCHELLE 1

vie des applications clientes. C'est le cas, par exemple, du service Google Code [18] qui

prend en charge l'hébergement du code d'une application ainsi que son versionnement.

Les plateformes en tant que service favorisent généralement l'utilisation d'une technolo-

gie propriétaire ou de services ciblés, comme c'est le cas pour les o�res Windows Azure

[19] ou Google App Engine [20]. Par exemple, la plateforme Google App Engine met

à disposition de ses clients des interfaces de programmation qui facilitent l'intégration

des services logiciels distribués par Google, comme la gestion des comptes utilisateurs

ou encore la gestion de partage des documents. La plateforme Windows Azure, elle

favorise l'utilisation des technologies et services appartenant à Microsoft, comme l'en-

vironnement de développement ".Net" ou la gamme de services "Live" .

1.5.3 Software as a Service (SaaS)

Le logiciel en tant que service est un logiciel accessible à la demande, via Internet.

Il est également connu sous l'appellation "SaaS" , dérivée de l'expression anglophone

"Software as a Service" . Le logiciel en tant que service est un concept apparu au dé-

but du siècle. Les logiciels en tant que service sont les services du nuage qui visent le

plus grand nombre d'utilisateurs, car contrairement à l'infrastructure et à la plateforme

en tant que service, leur utilisation ne demande aucune connaissance particulière en

technologie de l'information et des télécommunications. Ces services sont accessibles

via Internet, c'est-à-dire hébergés dans le nuage du point de vue de l'utilisateur, et

sont généralement utilisables via un simple navigateur web. Une autre particularité est

d'être facturé par abonnement plutôt que par licence logicielle. Ils ont été initialement

déployés pour automatiser les forces de ventes des entreprises, ainsi que la gestion de

leur clientèle, comme ce fut le cas avec la solution Salesforce [16], considérée comme

pionnier du logiciel en tant que service. Aujourd'hui, les logiciels en tant que services

sont largement utilisés par les entreprises pour di�érentes tâches telles que la comptabi-

lité, la facturation en ligne, la gestion de ressources humaines et les suites bureautiques

de gestion de documents.

L'avantage des logiciels en tant que services est multiple pour les utilisateurs. En premier

lieu, ils béné�cient d'un accès nomade et multi plateforme à leurs applications, grâce à

l'hébergement dans le nuage et grâce à l'utilisation d'accès standardisés (accès via in-

terface Web). Ensuite, la distribution de logiciel à la demande et le mode de facturation

par abonnement permettent aux entreprises clientes d'assouplir leur mode d'investis-

sement dans les technologies informatiques : ils peuvent dynamiquement adapter leur

consommation logicielle en fonction de leur besoin. Finalement, ils jouissent d'une uti-

page 21

CHAPITRE 1. LES SYSTÈMES DISTRIBUÉS À LARGE ÉCHELLE 1

lisation plus simple des services logiciels, sans avoir à se soucier de leur installation ou

de leur mise à jour.

Il existe une catégorie particulière de service logiciel distribué via Internet qui n'est pas

systématiquement considérée comme faisant partie du logiciel en tant que service, il

s'agit des services gratuits à l'utilisation. Ces services sont indirectement �nancés par

la publicité, ou par des produits dérivés de l'analyse statistique à grande échelle.

La distribution du logiciel en tant que service est principalement freinée par deux pro-

blématiques : la dépendance technologique vis-à-vis du fournisseur et la con�dentialité

des données produites par les clients. Ces deux problèmes se généralisent à tous les

types de services accessibles via le nuage. Cependant, il est important de comprendre

que la con�ance accordée au prestataire qui fournit le service logiciel est une compo-

sante importante du marché de la distribution logiciel, en particulier lorsque celle-ci est

réalisée via le Nuage. Cette notion de con�ance explique, en partie, la polarisation du

marché vers un faible nombre de grands distributeurs tels que Salesforce [16] ou encore

Net Suite [17].

En résumé, le logiciel en tant que service peut être gratuit ou payant, intégrer des no-

tions de rèseautage social ou encore de di�usion de média. Les services ainsi proposés,

en particulier lorsqu'ils sont payants, sont régis par des contrats de niveau de service.

Ces contrats dé�nissent typiquement le dédommagement prévu pour les clients en cas

d'indisponibilité du service vendu. Par exemple, les contrats de niveau de service fournis

par Salesforce [16] prévoient de dédommager les clients sous forme de remise forfaitaire

en cas d'indisponibilité du service. Le mode de facturation de ce service étant mensuel,

lorsque l'abonnement d'un client arrive à échéance, les deux partis (le client et le pres-

tataire) établissent un bilan au sein duquel le taux d'indisponibilité du service durant

le mois écoulé est mesuré. Des remises forfaitaires, inscrites au contrat de niveau de

service, sont alors appliquées en fonction de cette mesure.

1.5.4 Avantages et Inconvénients des services

Le tableau 1.1 illustre les services de Cloud Computing qui ont été décrites dans la

section précédente tout en montrant les avantages et les inconvénients de chaque service

[21].

page 22

CHAPITRE 1. LES SYSTÈMES DISTRIBUÉS À LARGE ÉCHELLE 1

Table 1.1 � Les avantages et les inconvénients des di�érents services

1.6 Modèles de déploiement

Un nuage correspond à une infrastructure distante, dont on ne connait pas les dé-

tails architecturaux, et qui est connue pour les services informatiques qu'elle o�re. Aussi,

il est courant d'utiliser le terme un nuage pour désigner l'infrastructure gérée par un

prestataire donné. On peut distinguer trois types principaux de modèles de déploiement

pour ces nuages : le nuage privé, le nuage public et le nuage hybride, (Voir Figure 1.8).

Figure 1.8 � Type de cloud computing

page 23

CHAPITRE 1. LES SYSTÈMES DISTRIBUÉS À LARGE ÉCHELLE 1

1.6.1 Le nuage privé

L'infrastructure d'un nuage privé n'est utilisée que par un unique client. Elle peut

être gérée par ce client ou par un prestataire de service et peut être située dans les

locaux de l'entreprise cliente ou bien chez le prestataire, le cas échéant. L'utilisation

d'un nuage privé permet de garantir, par exemple, que les ressources matérielles allouées

ne seront jamais partagées par deux clients di�érents.

1.6.2 Le nuage public

L'infrastructure d'un nuage public est accessible publiquement ou pour un large

groupe industriel. Son propriétaire est une entreprise qui vend de l'informatique en

tant que service.

1.6.3 Le nuage hybride

L'infrastructure d'un nuage hybride est une composition de deux types de nuages

précédemment cités. Les di�érents nuages qui la composent restent des entités indé-

pendantes à part entière, mais sont reliés par des standards ou par des technologies

propriétaires qui permettent la portabilité des applications déployées sur les di�érents

nuages. Une utilisation type de nuage hybride est la répartition de charge entre plusieurs

nuages pendant les pics du taux d'utilisation [22].

1.6.4 La di�érence entre le cloud privé et le cloud public

Dans le cas du cloud public, votre cloud ne vous appartient pas entièrement. Un

grand nombre de ressources informatiques sont partagées avec de nombreuses entreprises

à travers l'ensemble du réseau Internet. Si ce modèle possède de nombreux avantages en

termes de réduction des coûts, de collaboration et d'agilité, pour certaines entreprises,

en revanche, il soulève, parfois à juste titre et parfois tort, certaines questions sur la

sécurité et la con�dentialité des données.

De son coté, le cloud privé propose des ressources informatiques dont l'usage est uni-

quement réservé à votre entreprise. Vous pouvez héberger votre cloud privé soit sur site,

dans votre centre de données (en utilisant une virtualisation et une automatisation à

grande échelle), soit hors site chez un fournisseur de services de cloud. Le cloud privé

possède la plupart des avantages du cloud public (options de libre-service, relative ca-

pacité de montée en charge et facturation interne, par exemple) mais permet davantage

page 24

CHAPITRE 1. LES SYSTÈMES DISTRIBUÉS À LARGE ÉCHELLE 1

de contrôle et de personnalisation du fait que des ressources dédiées sont à votre dis-

position. Il peut o�rir encore plus de �exibilité, ce qui peut rendre son coût prohibitif

et amoindrir les économies d'échelle pour certaines entreprises [22].

1.7 Vers la fédération de nuages ou Intercloud

Un nuage correspond à une infrastructure et à son domaine d'administration. De

façon plus simple, il est courant d'associer un nuage à l'entreprise qui est responsable

de la gestion de l'infrastructure associée. On parlera alors du nuage d'Amazon, de celui

de Google, du nuage de Microsoft,... Cependant, du point de vue d'un utilisateur, cet

ensemble de nuages accessibles publiquement via Internet peut être vu comme un méta

nuage, au sein duquel un certain nombre de services et de ressources informatiques sont

disponibles. De la même façon qu'internet est le réseau des réseaux. Ce méta-nuage est

le nuage des nuages et on l'appelle "Intercloud" , son principe est illustré sur la Figure

1.9.

Figure 1.9 � Intercloud : le nuage des nuages

Intercloud est un ensemble de services et de ressources informatiques qui sont publi-

quement disponibles via Internet. Comme décrit au précédent, on retrouve trois grandes

page 25

CHAPITRE 1. LES SYSTÈMES DISTRIBUÉS À LARGE ÉCHELLE 1

catégories de services : le logiciel, la plateforme et l'infrastructure en tant que service.

Le modèle de déploiement des applications distribuées sur une fédération de nuages

correspond au nuage hybride. Il a pour particularité d'utiliser plusieurs nuages au sein

d'un même environnement de déploiement.

1.8 Avantages et inconvénients du Cloud Computing

Les principaux avantages et inconvénients associés au cloud computing sont les sui-

vants [21] :

1.8.1 Avantages

- Un démarrage rapide : Le cloud computing permet de tester le business plan rapide-

ment, à coût réduits et avec facilité.

- L'agilité pour l'entreprise : Résolution des problèmes de gestion informatique simple-

ment sans avoir à vous engager à long terme.

- Un développement plus rapide des produits : Réduisons le temps de recherche pour

les développeurs sur le paramétrage des applications.

- Pas de dépenses de capital : Plus besoin des locaux pour élargir vos infrastructures

informatiques.

1.8.2 Inconvénients

- La bande passante peut faire exploser votre budget : La bande passante qui serait

nécessaire pour mettre cela dans le Cloud est gigantesque, et les coûts seraient tellement

importants qu'il est plus avantageux d'acheter le stockage nous-mêmes plutôt que de

payer quelqu'un d'autre pour s'en charger.

- Les performances des applications peuvent être amoindries : Un Cloud public

n'améliorera dé�nitivement pas les performances des applications.

- La �abilité du Cloud : Un grand risque lorsqu'on met une application qui donne

des avantages compétitifs ou qui contient des informations clients dans le Cloud.

page 26

CHAPITRE 1. LES SYSTÈMES DISTRIBUÉS À LARGE ÉCHELLE 1

- Taille de l'entreprise : Si votre entreprise est grande alors vos ressources sont

grandes, ce qui inclut une grande consommation du cloud. vous trouverez peut- être plus

d'intérêt à mettre au point votre propre Cloud plutôt que d'en utiliser un externalisé.

Les gains sont bien plus importants quand on passe d'une petite consommation de

ressources à une consommation plus importante.

1.9 La sécurité

Les exigences de sécurité constituent souvent un problème majeur avec des solutions

de Software ou de Platform as a Service. Une étude menée par l'Université de Darmstadt

révélé que 22 % des personnes interrogées perçoivent les exigences de sécurité comme

le principal obstacle à la mise en oeuvre du cloud computing [23]. Les exigences juri-

diques, de con�dentialité et de conformité arrivent en deuxième et troisième positions

avec 19,8 % et 11,9 % respectivement. étonnamment, les problèmes techniques sont bien

moins perçus comme des obstacles : seulement 7,9 % de personnes expriment des doutes

quant à la �abilité de la solution et un pourcentage très bas (3,4 %) fait référence à des

coûts potentiels de performances comme argument contre le cloud computing. Certains

s'inquiètent principalement que les données ou l'identité tombent entre de mauvaises

mains. Cela a été con�rmé dans une étude menée par IBM [23] concluant que 80 % des

entreprises craignent pour leur sécurité avec l'introduction du cloud computing.

En dépit des problèmes de sécurité existants, le triomphe du cloud computing sera

à peine perturbé. L'aspect �nancier joue toujours un rôle central dans le processus de

prise de décision lorsqu'il s'agit de sélectionner la bonne solution. Mais le cloud le de-

vance : vous ne payez que pour les services que vous utilisez vraiment. Si le nombre

d'utilisateurs augmente, il su�t simplement d'ajouter de la capacité pour satisfaire

cet accroissement des demandes ; si le nombre d'utilisateurs en ligne diminue, il su�t

simplement de réduire la capacité a�n de ne pas laisser une infrastructure informa-

tique inutilisée. Au lieu de faire face à de forts investissements initiaux, les entreprises

choisissent des coûts opérationnels �exibles et déductibles d'impôt. L'étude menée par

l'université de Darmstadt stipule que 22,4 % des répondants considèrent la réduction

des coûts comme argument principal dans le choix d'une solution de cloud. L'évoluti-

vité(20,4 %) et la �exibilité accrue (19,9 %) sont les deuxième et troisième raisons [23].

Peu importe que vous pensiez qu'il soit bon ou mauvais, et malgré toutes les pré-

occupations liées à la sécurité, le cloud computing est la tendance informatique des

page 27

CHAPITRE 1. LES SYSTÈMES DISTRIBUÉS À LARGE ÉCHELLE 1

années à venir. Vu cette tendance, il convient d'accorder une grande importance au-

jourd'hui et à l'avenir pour gagner la con�ance des entreprises et de s'y tenir.

1.10 Conclusion

L'informatique dans les nuages est un paradigme qui o�re un nouveau modèle de

distribution et de consommation de ressources informatiques à grande échelle. Les tech-

nologies associées à cette discipline permettent aux propriétaires de grands centres de

traitement de données de louer les ressources inutilisées dont ils disposent, et de ce fait

d'augmenter la rentabilité de leur investissement matériel. Les clients de l'informatique

dans le nuage béné�cient également de ce modèle de distribution de ressources, car

il leur permet d'assouplir leur mode d'investissement en ressources informatiques, par

exemple en ajustant la capacité de traitement de leur infrastructure informatique au

fur et à mesure que leurs besoins évoluent.

L'informatique dans le nuage est un concept jeune et en constante évolution. Une des

évolutions les plus prometteuses d'après la communauté scienti�que est le déploiement

d'applications distribuées sur une fédération de nuages. En e�et, ce mode de déploie-

ment permet, entre autres, d'atténuer le risque de verrouillage propriétaire, de stimuler

la concurrence des di�érents fournisseurs d'infrastructure dans le nuage, et de contrôler

une partie de la con�dentialité des données utilisées par les applications déployées dans

le nuage. Néanmoins, la gestion des ressources informatiques provenant de plusieurs

nuages est un dé� technologique et scienti�que d'actualité. En e�et, la grande taille

des fédérations de nuages et l'hétérogénéité des ressources qui les composent sont des

aspects di�cilement pris en compte par les solutions de l'informatique dans le nuage

d'aujourd'hui.

page 28

CHAPITRE II :

Réplication et cohérence dans les

systèmes distribués

Chapitre 2

Réplication et cohérence dans les

systèmes distribués

2.1 Introduction

L'utilisation des techniques de réplication de données permet de mettre en place

des solutions, avec plus ou moins d'e�cacité, à des catégories de problèmes. Ainsi, la

réplication peut contribuer à réduire la latence, à tolérer des fautes et à améliorer les

performances. Cependant, malgré les béné�ces qu'elle peut procurer, la réplication pose

de nombreux problèmes quant à sa mise en oeuvre : placement, recherche et accès aux

répliques, gestion de la cohérence, etc.

Plusieurs travaux de recherches sont actuellement menés pour répondre à ces problèmes.

Par exemple, pour déterminer quand et où créer une réplique, un certain nombre de

stratégies de réplication ont été proposées.

2.2 Principe de réplication

La réplication met en ÷uvre un processus qui est chargé de la création, du place-

ment et de la gestion de copies d'entités physiques et/ou logicielles. Les entités répliquées

peuvent être des données, du code, des objets, des composants physiques ou une com-

binaison de tous ces éléments.

La création des copies ou répliques d'une entité consiste à reproduire la structure et

l'état des entités répliquées. La copie d'un �chier est un autre �chier de même contenu.

La copie d'un programme est un autre programme qui exécute le même code et dont

29

CHAPITRE 2. RÉPLICATION ET COHÉRENCE DANS LES SYSTÈMES DISTRIBUÉS 2

l'état d'exécution est celui du programme initial. L'intérêt premier de cette réplication

est que, si une donnée n'est plus disponible, le système peut continuer à assurer ses

fonctionnalités en utilisant une donnée répliquée, ce qui permet d'augmenter la dis-

ponibilité des données et la tolérance aux pannes. D'autre part, l'utilisation de cette

technique va générer un coût supplémentaire à cause de l'augmentation du travail à

fournir, la di�culté principale de la réplication est où faut il placé la réplique ?

2.3 La réplication dans les grilles informatiques

Dans les grilles informatiques la réplication peut être statique ou dynamique [24].

a - Dans la réplication statique les répliques sont manuellement crées, gérées ou sup-

primées. La réplication statique a donc le problème de ne pas pouvoir être adaptée

aux changements suivant le comportement de l'utilisateur. Dans un réel scénario où les

données se mesurent par de péta-octets et où existent des centaines de communautés

d'utilisateurs du monde entier la réplication statique ne peut être faisable. Elle est par

contre utilisée dans les systèmes orientés partage de données et non stockage de don-

nées. Exemple : les systèmes pair à pair (P2P).

b - Dans la réplication dynamique la création, la gestion et la suppression se font au-

tomatiquement. Les stratégies de réplication dynamiques ont la capacité de s'adapter

aux changements suivant le comportement de l'utilisateur.

2.4 Avantages et inconvénients de la réplication

La réplication présente des avantages di�érents selon le type de réplication et les

options choisis, mais l'intérêt général de la réplication est la disponibilité des données à

tout moment et en tout lieu. Mais malgré tous les avantages qu'elle procure, la technique

de réplication soulève un certain nombre de problèmes. [1]

2.4.1 Avantages :

. Permettre un parallélisme dans la consultation de la même donnée ;

. Améliorer la tolérance aux pannes : la réplication permet les accès aux données

même en cas de défaillance d'un support puisque la donnée se trouve sur plusieurs en-

page 30

CHAPITRE 2. RÉPLICATION ET COHÉRENCE DANS LES SYSTÈMES DISTRIBUÉS 2

droits ;

.Améliorer les performances : La réplication permet d'améliorer le temps de ré-

ponse des requêtes et l'accès aux données pour deux raisons essentielles :

i) les requêtes sont traitées sur un serveur local sans accès à un réseau étendu qui né-

cessite de la communication ;

ii) le traitement local allège la charge globale des serveurs.

2.4.2 Inconvénients :

- Placement des répliques : Ce problème consiste à choisir, en fonction des objectifs

des applications et de la réplication, des localisations physiques pour les répliques, qui

réduisent les coûts de stockage et d'accès aux données ;

- Choix d'une réplique : Il s'agit ici de sélectionner, parmi toutes les répliques d'une

donnée, celle qui est la meilleure du point de vue de la consistance ;

- Degré de réplication : Ce problème concerne la recherche du nombre minimal de

répliques qu'il faut créer pour une donnée, sans réduire les performances des applica-

tions ;

- Cohérence des répliques : les techniques de réplication n'assurent pas une cohé-

rence des données de l'ensemble des répliques. Ainsi, il est possible d'avoir, à un instant

donnée, des copies di�érentes d'un même ensemble de données sur di�érents n÷uds.

2.5 Technique de réplication des données

La réplication est aujourd'hui largement utilisée dans les Clouds. Elle consiste à

créer plusieurs copies d'un même �chier sur des ressources de stockage di�érentes en

mettant en ÷uvre un processus de création et de placement des copies d'entités logiciels.

La phase de création consiste à reproduire la structure et l'état des entités répliquées,

tandis que la phase de placement consiste à choisir, en fonction des objectifs de la ré-

plication, le bon emplacement de cette nouvelle reproduction. Cette technique permet

d'améliorer la �abilité, la tolérance aux pannes, l'accessibilité et d'augmenter la dispo-

nibilité des données, la charge étant alors répartie sur les di�érents n÷uds possédant

une réplique [25] [24] [26].

page 31

CHAPITRE 2. RÉPLICATION ET COHÉRENCE DANS LES SYSTÈMES DISTRIBUÉS 2

2.5.1 Création des répliques :

Ranganathan et Foster dé�nissent les quatre questions auxquelles une stratégie de

création de répliques doit répondre : [24] [26]

-Quand créer les répliques ? moment de la réplication.

-Quels �chiers doivent être répliqués ? choix de l'entité à répliquer.

-Où les répliques doivent-elles être placées ? placement des répliques.

-Comment une copie est-elle crée ? manière de répliquer une entité.

1. .Moment de la réplication : Pour répondre à la question quand ? deux solu-

tions sont possibles [27] :

- Réplication statique : les répliques persistent jusqu'à ce qu'elles soient ef-

facées par l'utilisateur du n÷uds sur lequel elles sont hébergées ou que leurs

durées de vie respectives expirent. L'avantage de ce schéma est sa simplicité,

son inconvénient est sa non-adaptabilité aux changements de comportement des

participants.

- Réplication dynamique : contrairement à la réplication statique, la réplica-

tion dynamique crée et supprime automatiquement les copies selon l'évolution

des demandes des utilisateurs. L'avantage est la réduction des points d'engor-

gements et l'équilibrage de la charge. L'inconvénient observé est l'induction de

coûts supplémentaires causés par l'évaluation en temps-réel du tra�c réseau pour

prendre les décisions de réplication.

Selon le moment de la réplication, on distingue :

o Réplication à la demande : la réplique est créée suite à la demande d'un client.

o Réplication périodique : elle est indépendante des requêtes des clients. Son but

est de permettre la gestion automatique de répliques avec des stratégies adap-

tées aux comportements des clients. Le processus de réplication est déclenché à

chaque intervalle de temps (période).

2. .Choix de l'entité à répliquer : Pour répondre à la question quoi : les données

répliquées sont généralement de deux types : des �chiers ou des objets. Les objets

peuvent être composés d'un ensemble de �chiers distribués (on les appelle aussi

collection). Selon les stratégies de réplication, les données à répliquer, peuvent

être les plus populaires ou encore les plus fréquemment accédées.

3. .Placement des répliques : Pour répondre à la question où : les stratégies de

page 32

CHAPITRE 2. RÉPLICATION ET COHÉRENCE DANS LES SYSTÈMES DISTRIBUÉS 2

placement de répliques doivent tenir compte du fait que les sites potentiels :

a. ne possèdent pas déjà de réplique de la donnée ;

b. possèdent l'espace de stockage su�sant ;

c. sont à une distance raisonnable en termes de temps de transfert.

4. .Manière de répliquer une entité : Pour répondre à la question comment :

Le processus de création de copie dépend de la structure et de l'état de l'entité

à répliquer. La structure de l'entité peut être indivisible ou composée, alors

que l'état peut être constitué de données, de code et éventuellement d'un état

d'exécution. Les problèmes de coûts sont au centre des stratégies de réplication.

Un enjeu majeur de la réplication est la réduction de la latence d'accès ainsi que

la consommation de bande passante [36].

2.6 Protocoles de réplication

Trois principaux protocoles sont utilisés pour la gestion des répliques dans les sys-

tèmes distribués :

2.6.1 Protocole de réplication passive

Dans ce protocole, une seule copie reçoit une requête d'un client et l'exécute. Cette

copie est désignée sous le nom de copie primaire (primary copy). Elle a la tâche d'ef-

fectuer tous les traitements, alors que les copies secondaires ne font aucune action (voir

Figure 2.1). En cas de défaillance de la copie primaire, une copie secondaire devient

(par un protocole d'élection) la nouvelle copie primaire [32]. Pour assurer la cohérence,

la copie primaire di�use régulièrement son nouvel état à toutes les copies secondaires

page 33

CHAPITRE 2. RÉPLICATION ET COHÉRENCE DANS LES SYSTÈMES DISTRIBUÉS 2

Figure 2.1 � Protocole de réplication passive

2.6.2 Protocole de réplication active

Dans un protocole de réplication active, chaque copie joue un rôle identique à celui

des autres copies. Toutes les copies reçoivent la même séquence, totalement ordonnée,

des requêtes des clients, les exécutent puis renvoient la même séquence, totalement

ordonnée, des réponses(voir Figure 2.2).

Figure 2.2 � Protocole de réplication active

2.6.3 Protocole de réplication semi-active

C'est un protocole hybride qui se situe entre les deux protocoles précédents, où

toutes les copies exécutent en même temps la requête du client, mais une seule copie

(leader) d'entre elles émet la réponse, les autres copies (suiveurs) mettent à jour leur

page 34

CHAPITRE 2. RÉPLICATION ET COHÉRENCE DANS LES SYSTÈMES DISTRIBUÉS 2

état interne et sont donc étroitement synchronisées avec le leader(voir Figure 2.3).

Figure 2.3 � Protocole de réplication semi-active

Les principales caractéristiques d'un protocole de réplication sont :

1. Le nombre de copies concernées par une lecture ou une écriture :

Pour pouvoir répondre à une requête externe de lecture ou d'écriture, chaque protocole

de réplication suit ses propres contraintes sur le nombre de copies à consulter.

Par exemple, certains protocoles font une écriture sur toutes les copies avant de valider

une requête externe d'écriture. Dans ce cas, ils n'ont besoin de consulter qu'une copie

pour répondre à une requête externe d'écriture, alors que d'autres protocoles valident

une requête externe d'écriture lorsque n/2+1 copies sont mises à jour (n est le nombre

total de copies). Lors d'une requête externe de lecture, il su�t alors de consulter n/2

copies, pour pouvoir répondre au demandeur[1].

2. Les droits d'accès : Il existe deux approches selon lesquelles la détermination des

copies qui peuvent être modi�ées est faite :

l'approche maître-esclaves ou primaire-secondaire (master-slave ou primary-secondary)

et l'approche copies identiques (update anywhere ou peer to peer)[28].

i) Approche maître-esclaves : Chaque objet répliqué possède une copie dite maî-

tresse, les autres étant des copies esclaves. Toutes les mises à jour (requêtes d'écriture)

sont d'abord exécutées sur la copie maîtresse (primaire), ensuite les modi�cations sont

di�usées aux copies esclaves (voir la Figure 2.4).

page 35

CHAPITRE 2. RÉPLICATION ET COHÉRENCE DANS LES SYSTÈMES DISTRIBUÉS 2

Figure 2.4 � Approche maître-esclaves

ii) Approche copies identiques : Toutes les copies sont des maîtresses, c'est-a

dire, chaque requête de type lecture ou écriture peut être traitée sur n'importe quelle

réplique en concurrence. A chaque fois qu'une copie traite une requête d'écriture, elle

propage les mises à jour aux autres copies (voir la Figure 2.5)[29].

Figure 2.5 � Approche copies identiques

3. Synchronisation des répliques La mise à jour des di�érentes copies peut

se faire simultanément sur toutes les copies ou d'abord sur une et ensuite sur les

autres. Nous pouvons classi�er les moments de synchronisation en sept instants de

page 36

CHAPITRE 2. RÉPLICATION ET COHÉRENCE DANS LES SYSTÈMES DISTRIBUÉS 2

déclenchement[30] :

a. Conditions sur le délai : Ces conditions portent sur le temps. Elles expriment la

durée maximale que le protocole peut attendre avant la propagation d'une mise à jour.

Par exemple, un délai maximum de 60 secondes signi�e que, toutes les mises à jour

d'une copie doivent être propagées vers une autre copie, avant l'expiration de ce délai.

b. Conditions sur la périodicité : Elles expriment qu'une copie d'un objet doit

être mise à jour avec la dernière valeur de l'objet, toutes les n unités de temps (pé-

riodes), que l'objet ait été modi�é ou non.

c. Conditions sur le moment : Ces contraintes expriment le fait qu'une copie d'un

objet doit être mise à jour avec la dernière valeur de l'objet à un instant donné.

d. Conditions sur la version : Elles spéci�ent le nombre de modi�cations pou-

vant avoir lieu sur une copie avant de propager les mises à jour sur une autre copie.

e. Conditions numériques : Si la donnée est numérique, ces conditions permettent

de limiter l'écart "d" entre les valeurs des di�érentes copies d'un objet.

f. Conditions sur les objets : Ces conditions portent sur la structure des objets.

Il est possible de spéci�er qu'une copie X d'un objet O doit être mise à jour avec la

dernière valeur de O.

g. Conditions d'événements : Ces conditions portent sur les événements de dé-

clenchement des mises à jour des copies.

4. L'initiative de la mise la jour des répliques

Les politiques de propagation des mises à jour peuvent être classi�ées en deux approches[29] :

i) Approche Push : Lorsque une copie reçoit une mise à jour, elle initie l'opération

de mise à jour des autres copies.

ii) Approche Pull : Chaque copie demande la mise à jour aux autres, c'est-a-dire,

que si une copie reçoit une mise à jour, elle n'informe pas les autres, mais ce sont les

autres qui initient la propagation de mise à jour.

5. La nature des mises à jour

page 37

CHAPITRE 2. RÉPLICATION ET COHÉRENCE DANS LES SYSTÈMES DISTRIBUÉS 2

Les mises à jour utilisées peuvent être soit un transfert d'état soit un transfert d'opérations[29] :

i) Un transfert d'état : C'est de transférer l'état (le contenu en entier) de la copie

source vers les autres copies.

ii) Un transfert d'opération : C'est de di�user l'opération exécutée sur la copie

source vers les autres copies pour y être exécutée.

6. Le cheminement (ou la topographie) des mises à jour

La propagation des mises à jour peut suivre plusieurs chemins. Le choix du chemin se

justi�e, soit par le fait que certaines copies doivent être mises à jour avant d'autres,

soit par la topologie du réseau qu'elles utilisent. La propagation des mises à jour peut

utiliser des protocoles de communication des réseaux tels que Unicast, Multicast ou

Broadcast[30].

7. La capture des mises à jour

Le mécanisme utilisé, pour détecter et sélectionner les changements sur une copie, a�n

de les propager aux autres copies est appelé la capture. Il peut s'implanter de diverses

façons. Une manière de faire, consiste simplement à consulter la copie, a�n de connaître

son dernier état. Une deuxième façon de faire, consiste à enregistrer les modi�cations

sur un support particulier : un journal (log sni�ng) ou une copie ombre (shadow)[30].

8. La gestion des con�its

Dans certains protocoles, deux copies peuvent être modi�ées de manière concurrente.

Lorsque le protocole désire synchroniser les copies (pas forcément immédiatement), il

se trouve face à des con�its, donc, il détecte le con�it et réconcilie les di�érentes copies,

a�n de ne pas perdre de modi�cations[1].

- Détection d'un con�it : lors du fonctionnement normal d'un protocole de réplication,

la détection des con�its est l'action à postériori des accès con�ictuels sur di�érentes

copies.

- Réconciliation d'un con�it : suite à la détection d'un con�it, la réconciliation est

l'action de résoudre un con�it [1].

2.7 Notion de cohérence

La cohérence est une relation qui dé�nit le degré de similitude entre les copies d'une

entité répliquée. Dans le cas idéal, cette relation caractérise des copies qui ont des com-

portements identiques. Dans les cas réels, où les copies évoluent de manière di�érente,

la cohérence dé�nit les limites de divergence autorisées entre copies. La relation de co-

hérence est assurée par synchronisation entre copies. [31]

page 38

CHAPITRE 2. RÉPLICATION ET COHÉRENCE DANS LES SYSTÈMES DISTRIBUÉS 2

Traditionnellement on dit que la mémoire est cohérente si la valeur retournée par une

opération de lecture d'une donnée correspond toujours à la dernière valeur écrite de

cette même donnée (cohérence stricte). Il existe des modèles de cohérence plus faibles

qui permettent l'implémentation de protocoles moins coûteux en nombre et en taille

des messages, en imposant en contrepartie plus de contraintes au programmeur.

2.7.1 Modèles de cohérence

La notion centrale dans un système distribué est le modèle de cohérence utilisé.

Un modèle de cohérence s'a�che comme un contrat passé entre le système et le pro-

grammeur. Il dé�nit les critères déterminant la valeur retournée par une lecture en

fonction des écritures précédentes. Il existe plusieurs modèles de cohérence appartenant

aux classes de cohérence forte et relâchée.

I) Modèles de cohérence forte : Les modèles de cohérence forte sont caractérisés

pas des contraintes fortes entre la dernière écriture et la prochaine lecture.

1)Le modèle strict (atomic consistency) : est un modèle idéal où chaque lecture

rend la dernière valeur écrite dans la donnée. Dans les systèmes distribués, le protocole

associé nécessite l'utilisation d'une horloge globale, ce qui rend son implémentation im-

possible.

2)Le modèle séquentiel (sequential consistency (SC)) : Ce model est forma-

lisé par Lamport en 1979 assure que chaque site voit toutes les opérations dans le même

ordre. Les premières MVP(Minimum Viable Product), comme IVY(Integrated shared

Virtual memory at Yale) , utilisent ce modèle de cohérence et propose de combiner les

modèles strict et séquentiel en o�rant deux primitives de lecture en fonction du modèle

à utiliser pour la donnée considérée.

3)Le modèle causal (causal consistency) : Il se base sur la relation de causalité

introduite pour déterminer un ordre entre les écritures. De nombreuses applications

tolèrent que deux évènements ne soient pas vus dans le même ordre sur tous les sites.

Le modèle causal permet alors de lier certains évènements entre eux par un ordre bien

fondé tout en relâchant les contraintes sur les évènements indépendants.

II) Modèles de cohérence relachée : Les modèles de cohérence relâchée ont été

introduits a�n de diminuer le nombre d'échanges réseau induit par les protocoles de

page 39

CHAPITRE 2. RÉPLICATION ET COHÉRENCE DANS LES SYSTÈMES DISTRIBUÉS 2

cohérence forte. Ils tirent parti du fait quelles applications distribuées imposent déjà un

ordre sur les accès mémoire par l'utilisation explicite de mécanismes de synchronisation.

Ce modèle est composé de :

1)La cohérence faible (weak consistency) Il fait la distinction entre les accès or-

dinaires à la mémoire et les accès synchronisés. Seuls les accès synchronisés garantissent

la cohérence de la mémoire partagée par l'utilisation d'objets de synchronisation comme

les verrous ou les barrières. Ce modèle garantit que la mémoire est cohérente à chacun

des points de synchronisation pendant le quels toutes les informations sont mises à jour.

2)La cohérence à la libération (Eager Release Consistency (ERC)) : Ce

modèle améliore la cohérence faible en ne mettant à jour que les données modi�ées

entre deux synchronisations. Ce modèle utilise le principe de section critique gérée par

un verrou et délimitée par les primitives acquire et release. La cohérence de la mémoire

est assurée par la propagation vers les autres sites des modi�cations e�ectuées sur la

donnée dans la section critique. La particularité de ce modèle est que la mise à jour

intervient lors de l'appel à la primitive release. Ce protocole génère des communications

inutiles vers des sites n'e�ectuant par la suite aucun accès sur les données mises à jour.

Le protocole associé est mis en ÷uvre dans le système à MVP Munin .

3)La cohérence à la libération paresseuse (Lazy Release Consistency

(LRC)) : est une version plus relachée d'ERC qui tente de réduire les communica-

tions inutiles de ce dernier. Une liste des données modi�ées (write notice (wn)) est

envoyée au site e�ectuant le prochain appel à la primitive acquire.

Les modi�cations ne s'appliquent alors que sur ce site et uniquement lors de l'accès en

lecture ou écriture à une donnée déclarée modi�ée dans wn.

4)La cohérence à l'entrée (Entry Consistency (EC)) : Elle a été proposée

par le système à MVP Midway et elle tente de limiter les e�ets du faux-partage appa-

raissant dans LRC en associant à chaque variable partagée un objet de synchronisation.

L'établissement de cette relation est laissée à la charge du programmeur.

5)La cohérence de portée (Scope Consistency (ScC)) : Elle reprend le prin-

cipe de l'EC et tente d'éviter au programmeur d'e�ectuer lui-même l'association entre

verrous et données. Cette technique se base sur les instructions de synchronisation déjà

présentées dans le programme. Lors de l'acquisition d'un verrou par un site, seules les

page 40

CHAPITRE 2. RÉPLICATION ET COHÉRENCE DANS LES SYSTÈMES DISTRIBUÉS 2

modi�cations e�ectuées dans les portées correspondant à ce verrou sont visibles.

2.8 Conclusion

Ce chapitre a été axé sur la technique de la réplication de données. Nous avons

signalé également que cette technique peut améliorer la disponibilité de données et la

performance de l'accès aux données. A travers ce chapitre, nous avons présenté dans

un premier lieu les principales techniques et stratégies de réplication et puis nous avons

terminé ce chapitre par la description des protocoles de cohérence qui permettent la

convergence des répliques. Elle peut nécessiter la technique de réplication de données

a�n d'augmenter la disponibilité de données localement. Nous pensons que cette dé-

marche pourra améliorer les performances.

page 41

CHAPITRE III :

Description et modélisation de

l'approche proposée

Chapitre 3

Description et modélisation de

l'approche proposée

3.1 Introduction

Il y a Plusieurs stratégies pour la réplication . Certaines d'entre elles utilisent un

seuil (si le nombre de demandes d'un �chier dépasse ce seuil, alors une réplique du �chier

est créée). La plupart des travaux utilisent un seuil �xe pour tous les �chiers et pour

tous les Hosts du Data Center. Nous proposons dans ce chapitre une stratégie utilisant

un seuil dynamique qui varie, d'une part, selon le comportement de l'utilisateur, et

d'autre part selon les niveaux du Cloud à travers la largeur de la bande passante.

3.2 Création et placement de répliques

La distribution de répliques dans le Cloud computing peut prendre plusieurs formes.

Dans ce travail, nous avons utilisé une distribution sur une topologie réseau d'architec-

ture hiérarchique multi-niveau.

3.2.1 Topologie du Cloud

La topologie du Cloud utilisée dans le modèle et inspirée de l'architecture de grille

de données CERN et de l'Article .Elle est composée de trois niveaux : les Data Centers

(niveau 1), deux niveaux intermédiaires contenant des n÷uds (niveau 2 à 3) . Tous

les n÷uds y compris les Data Centers, représentant des serveurs, peuvent avoir des

répliques des données, sauf le dernier niveau, celui des VM et les feuilles qui représente

les clients (Cloudlets) d'où les requêtes sont émises.

42

CHAPITRE 3. DESCRIPTION ET MODÉLISATION DE L'APPROCHE PROPOSÉE 3

Figure 3.1 � Topologie du Cloud utilisée

L'architecture hiérarchique multi-niveau du système du cloud supporte une méthode

e�cace pour le partage de données, calculs et autres ressources, comme la représentation

dans la Fig.3.1. Elle se compose typiquement de plusieurs niveaux di�érents avec des

tailles di�érentes. Les Data Centers qui se trouvent dans le niveau 1 vont s'occuper de

l'analyse des données dans l'intra domaine et l'échange d'information de données entre

les inters domaines. Les Hosts sont dans le niveau 2, les VMs sont dans le niveau 3 et

les Cloudlets sont les feuilles. L'architecture minimise le temps d'accès au données et la

charge du réseau en créant et déployant des répliques depuis les Data Centers vers des

Data Centers di�érents ou bien des Hosts. Les Data Centers collectionnent et di�usent

l'information global périodiquement.

page 43

CHAPITRE 3. DESCRIPTION ET MODÉLISATION DE L'APPROCHE PROPOSÉE 3

3.2.2 Modèle de coût

La stratégie de placement proposée est basée sur un modèle de coût qui utilise les

paramètres décrits dans le tableau suivant :

Treq Taille de la requête

Td Taille de la donnée

Tres Taille de la réponse (résultat de la requête)

BW n+1
n Largeur de bande entre le niveau n et le niveau n+1

S Le seuil

Creq Coût de transmission de la requête

Cres Coût de réponse

Crep Coût de réplication de la donnée du niveau n au niveau n-1

Cacc(C) Coût d'accès à la donnée d'une Cloudlet C

CA Le nombre de demande d'accès au �chier

Table 3.1 � Paramètres utilisés dans le modèle

La décision de réplication se fait en comparant deux coûts :

. coût d'accès à la donnée.

. coût de la réplication.

Le coût d'accès à la donnée est composé de deux coûts :

Cacc = Creq + Cres

Notons que c'est le coût d'un seul accès.

. Coût de transmission de la requête Creq :

Creq = Treq ∗
∑i+1

n=3
1

BWn−1
n

. Coût de réponse Cres :

Cres = Tres ∗
∑2

n=1
1

BWn+1
n

page 44

CHAPITRE 3. DESCRIPTION ET MODÉLISATION DE L'APPROCHE PROPOSÉE 3

i : le niveau où se trouve la donnée demandée par les clients (initialement égal à 0 :

le niveau de la racine). Le coût de réplication de la donnée d'un niveau i au niveau i+1

est calculé comme suit :

Crep = Td ∗ 1

BW i+1
i

+ C i+1
acc

Ci+1
acc : Le coût d'accès au nouveau niveau où la donnée est répliquée.

3.2.3 Algorithme de base

Pour prendre une décision de réplication, il faut comparer entre le coût d'accès à la

donnée et le coût de la réplication.

Plusieurs stratégies utilisent un seuil a�n de prendre une décision de réplication. Quand

le nombre de d'accès dépasse un seuil, on fait répliquer le �chier demandé. Le seuil est

prédé�ni et �xé pour tous les niveaux de l'architecture hiérarchique, et pour n'importe

quelle donnée.

Plusieurs facteurs peuvent in�uer sur la précision du seuil tels que la largeur de la bande

passante entre les Cloudlets et les sources de données, et la taille de la donnée demandée

par une Cloudlets.

Notre algorithme est composé de trois phases :

a. calcul des coûts et nombres d'accès : À travers les enregistrements d'accès

historiques des �chiers au niveau des Cloudlets, nous calculons les coûts d'accès Cacc

d'une donnée pour chaque Cloudlet :

Cacc = 1 ∗ (Creq + Cres)

Note : le coût d'accès est calculé par rapport à une seule demande de chaque Cloud-

let (on ne tient pas compte du nombre d'accès), puisque par la suite nous allons calculer

le seuil, qui est expliqué par le nombre de demande maximal.

Ensuite, le calcul additionne simplement les nombres d'accès et les coûts d'accès

pour les enregistrements dont les n÷uds sont des enfants de mêmes parents et qui se

rapportent aux mêmes �chiers, étape par étape jusqu'au Data Center.

page 45

CHAPITRE 3. DESCRIPTION ET MODÉLISATION DE L'APPROCHE PROPOSÉE 3

Figure 3.2 � Calcul des coûts et nombres d'accès de bas en haut.

Pour l'exemple de la �gure 3.2, le coût d'accès d'une donnée D, qui se trouve dans

le Data Center, par la Cloudlet C1 est calculé comme suit :

Cacc(c1) = 1 ∗ (Creq + Cres)

Supposons que c'est égal à 85 ms pour C1, 73 ms pour C2, 52 pour C3, 50 pour C4

et 90 pour C5.

Au niveau du N÷ud VM5, le coût d'accès et le nombre d'accès sont égales à la somme

de celles des Cloudlets C2,C3 et C4 ; au niveau du n÷ud H2, le coût d'accès et le nombre

d'accès sont égales à la somme de celles des VMs VM1,VM2 et VM3 ; de la même ma-

nière on peut calculer les coûts et les nombres d'accès de tous les n÷uds de l'architecture.

b. calcul du seuil : le calcul se fait au niveau de chaque n÷ud du Cloud.

Commençons par le Data Center (niveau 0 de l'architecture) ; à partir d'un seuil S0 on

doit toujours trouver que le coût d'accès est supérieur au coût de réplication, on aura

la formule suivante :

S0 ∗ Cacc > Crep

Ce qui implique

page 46

CHAPITRE 3. DESCRIPTION ET MODÉLISATION DE L'APPROCHE PROPOSÉE 3

S0 >
Creq

Cacc

Le coût de réplication initialement est calculé en répliquant la donnée du niveau 0

au niveau 1. Donc :

S0 >
Td∗ 1

BW1
0
+C1

acc

Cacc
= S ′0

L'équation précédente donne les résultats suivants :

S0 ∈]S ′0,+∞[

Comme solution optimale on prend le plus petit seuil, on aura :

S0 = Int(S ′0) + 1

Int(S ′
0) : La partie entière de S ′

0 , puisque le seuil est un nombre entier positif.

Note : Concernant le calcul du seuil des autres n÷uds, nous devons refaire la phase a,

tout simplement parce que le coût d'accès tient compte du nouveau placement de la

donnée. Donc le seuil dépend de la taille de la donnée, de la réponse et dépend aussi

du niveau de l'architecture, qui est expliqué par la largeur de la bande passante entre

les niveaux.

c. Placement de réplique et Suppression : en utilisant les nombres d'accès calculés

dans la première phase et les seuils déterminés dans la deuxième phase, nous pouvons

dé�nir la stratégie de placement de réplique comme suit :

En commençant par le Data Center, nous traversons le fond de la hiérarchie tant que

le nombre d'accès de l'un des �ls est supérieur ou égal au seuil du père, jusqu'à arriver

au dernier niveau. Une réplique est placée sur le n÷ud le plus populaire (le Host qui

contient le plus de VM) ceci est dans le cas où le �chier demandé se trouve dans le même

Data Center, Si le �chier demandé se trouve dans un autre Data Center la réplique est

créer dans le Data Center dont la requête a était émise .

La suppression s'e�ectue seulement si l'espace de stockage est plein, dans ce cas là on

tri les �chiers par leurs taille et on supprime le �chier le plus volumineux, on refait la

même chose jusqu'à ce qu'il ya un espace su�sant pour créer la réplique .

page 47

CHAPITRE 3. DESCRIPTION ET MODÉLISATION DE L'APPROCHE PROPOSÉE 3

Remarque : On supprime seulement les répliques et non pas les �chiers originaux.

Un exemple de démonstration est donné dans la section 4.

Note : puisque le niveau des Cloudlets n'est pas concerné par le placement de répliques,

alors le dernier niveau intermédiaire (niveau 3) ne possède pas de seuils. L'algorithme

de réplication proposé avec ses trois phases est répété dans chaque intervalle de temps

dt en réinitialisant les nombres d'accès des Cloudlets au 0.

3.3 Algorithme de l'approche proposée

Notre algorithme permet de déterminer quand et où placer la réplique.

N.B : On suppose que chaque Data Center a son propre serveur de données qui est

représenté dans les Caractéristiques du Data Center en tant qu'espace de stockage.

Le Host le plus populaire est celui qui possède le plus de VMs et de Cloudlets, vue

qu'on va utiliser le Binding a�n d'exécuter les Cloudlets dans des VMs spéci�que.

On supprime seulement les répliques et non pas les �chiers originaux.

Algorithm 1 Approche proposée
Début
Lancement de la Cloudlet ;
Obtention de la liste des �chiers demandés par la Cloudlet ;
Comparer et localiser les �chiers du Data Center ;
Calculer les seuils seulement des �chiers demandés ;
Si le �chier demandé se trouve dans le même Data Center où la Cloudlet est exécutée
et que le nombre d'accès dépasse le seuil Alors
Déterminer le Host le plus populaire ;
Si l'espace de stockage est su�sant alors créer la réplique ;
Sinon trier les �chiers par taille et supprimer le �chier le plus volumineux Jusqu'à ce
que l'espace disponible permet de créer la réplique ;
Si le �chier demandé se trouve dans un autre Data Center où la Cloudlet est exécutée
que le nombre d'accès dépasse le seuil Alors
Si l'espace de stockage est su�sant alors créer la réplique ;
Sinon trier les �chiers par taille et supprimer seulement le �chier le plus volumineux
et qui est une réplique (n'est pas un �chier original) ;
Répété le processus de suppression Jusqu'à ce que l'espace disponible permet de créer
la réplique
Fin.

page 48

CHAPITRE 3. DESCRIPTION ET MODÉLISATION DE L'APPROCHE PROPOSÉE 3

Figure 3.3 � Les étapes d'algorithme

3.4 Exemple de démonstration

Le but de cette partie est de donner une petite démonstration de l'algorithme pro-

posé.

Nous avons deux cas :

1- Fichier se trouvant dans le même Data Center.

2- Fichier se trouvant dans un autre Data Center.

On commence par le premier cas.

A�n de simpli�er les calculs, nous avons simpli�é la topologie du Cloud comme le

montre le schéma suivant :

page 49

CHAPITRE 3. DESCRIPTION ET MODÉLISATION DE L'APPROCHE PROPOSÉE 3

Figure 3.4 � Topologie du Cloud premier cas.

Dans le schéma proposé, nous avons 7 Cloudlets , qui envoient des requêtes à une

donnée d qui se trouve initialement dans le Data Center DC. Initialement, prenons les

données suivantes :

On suppose que toutes les Cloudlets demandent le même (F1).

Td = 30 Mo

Treq = 6 Ko, en supposant que les requêtes des Cloudlets ont la même taille.

Tres1 = 2 Mo, taille de la réponse du Cloudlets C1

Tres2 = 1,5 Mo, taille de la réponse du Cloudlets C2

Tres3 = 3 Mo, taille de la réponse du Cloudlets C3

Tres4 = 2 Mo, taille de la réponse du Cloudlets C4

Tres5 = 1,25 Mo, taille de la réponse du Cloudlets C5

Tres6 = 1 Mo, taille de la réponse du Cloudlets C6

Tres7 = 1,5 Mo, taille de la réponse du Cloudlets C7

BW n+1
n = 12 Ko /ms, largeur de la bande passante entre deux niveaux qui se suit.

La première phase de l'algorithme consiste à calculer les coûts et nombres d'accès au

niveau de chaque n÷ud.

page 50

CHAPITRE 3. DESCRIPTION ET MODÉLISATION DE L'APPROCHE PROPOSÉE 3

Cacc(C1) = (6 * [1
12
+ 1

12
] + 2048 * [1

12
+ 1

12
]) = 342,33 ms

Cacc(C2) = (6 * [1
12
+ 1

12
] + 1536 * [1

12
+ 1

12
]) = 257 ms

Cacc(C3) = (6 * [1
12
+ 1

12
] + 3072 * [1

12
+ 1

12
]) = 513 ms

Cacc(C4) = (6 * [1
12
+ 1

12
] + 2048 * [1

12
+ 1

12
]) = 342,33 ms

Cacc(C5) = (6 * [1
12
+ 1

12
] + 1280 * [1

12
+ 1

12
]) = 214,33 ms

Cacc(C6) = (6 * [1
12
+ 1

12
] + 1024 * [1

12
+ 1

12
]) = 171,66 ms

Cacc(C7) = (6 * [1
12
+ 1

12
] + 1536 * [1

12
+ 1

12
]) = 257 ms

Sur la base des nombres et coûts d'accès des Cloudlets nous calculons ceux des n÷uds

pères ; on aura le tableau suivant :

n÷ud Cloudlets(CA,Cacc)

H1 (1 ; 342,33)

H2 (5 ; 1498,32)

H3 (1 ; 257)

DC (7 ; 2097,65)

Table 3.2 � Calcul des nombres et coûts d'accès des n÷uds

Passons à la deuxième phase de l'algorithme qui consiste à calculer le seuil :

S
′
0 =

(30∗ 1
12)+C1

acc

2097,65 = 2560+C1
acc

2097,65

Nous avons besoin de calculer C1
acc , qui est le coût du nouvel accès au niveau 1 où

se trouvera la donnée d.

C1
acc = [(6 * 1

12
)+(2048 * 1

12
)] + [(6 * 1

12
)+(1536 * 1

12
)] + [(6 * 1

12
)+(3072 * 1

12
)] + [(6

* 1
12
)+(2048 * 1

12
)] + [(6 * 1

12
)+(1280 * 1

12
)] +[(6 * 1

12
)+(1024 * 1

12
)] + [(6 * 1

12
)+(1536 * 1

12
)]

C1
acc = 171,16 + 128,5 + 256,5 + 171,16 + 107,16 + 85,83 + 128,5

= 1048,81

S
′
0 =

2560+1048,81
2097,65 = 1,72

S0 = 2

page 51

CHAPITRE 3. DESCRIPTION ET MODÉLISATION DE L'APPROCHE PROPOSÉE 3

Le placement de la réplique se fait au niveau du Host dont les requêtes proviennent

le plus ou bien au niveau du Host le plus performant, donc dans cet exemple c'est : H2

Deuxième cas :Fichier se trouvant dans un autre Data Center.

Figure 3.5 � Topologie du Cloud deuxiéme cas.

Supposons maintenant que les Cloudlets demandent le �chier F2 qui se trouve dans

le Data Center 2 DC2.

Dans ce cas là il y a le niveau entre les DC qui va être pris en considération et la bande

passante entre les DC sera inclus dans les calculs.

Td = Taille du �chier F2 = 30 Mo.

Cacc(C1) = (6 * [1
12
+ 1

12
+ 1

12
] + 2048 * [1

12
+ 1

12
+ 1

12
]) = 513,5 ms

Cacc(C2) = (6 * [1
12
+ 1

12
+ 1

12
] + 1536 * [1

12
+ 1

12
+ 1

12
]) = 385,5 ms

Cacc(C3) = (6 * [1
12
+ 1

12
+ 1

12
] + 3072 * [1

12
+ 1

12
+ 1

12
]) = 769,5 ms

Cacc(C4) = (6 * [1
12
+ 1

12
+ 1

12
] + 2048 * [1

12
+ 1

12
+ 1

12
]) = 513,5 ms

Cacc(C5) = (6 * [1
12
+ 1

12
+ 1

12
] + 1280 * [1

12
+ 1

12
+ 1

12
]) = 321,5 ms

page 52

CHAPITRE 3. DESCRIPTION ET MODÉLISATION DE L'APPROCHE PROPOSÉE 3

Cacc(C6) = (6 * [1
12
+ 1

12
+ 1

12
] + 1024 * [1

12
+ 1

12
+ 1

12
]) = 257,5 ms

Cacc(C7) = (6 * [1
12
+ 1

12
+ 1

12
] + 1536 * [1

12
+ 1

12
+ 1

12
]) = 385,5 ms

L'agrégation des nombres et coûts d'accès donne le tableau suivant :

n÷ud Cloudlets(CA,Cacc)

H1 (1 ; 513,5)

H2 (5 ; 2247,5)

H3 (1 ; 385,5)

DC1 (7 ; 3146,5)

DC2 (7 ; 3146,5)

Table 3.3 � Calcul des nombres et coûts d'accès des n÷uds, la donnée se

trouve dans DC2

Passons au calcul du seuil :

S
′
1 =

(30∗ 1
12)+C2

acc

3146,5

C2
acc = [6 * (1

12
+ 1

12
)+(2048 *(1

12
+ 1

12
)] + [6 * (1

12
+ 1

12
)+(1536 *(1

12
+ 1

12
)] + [6 *

(1
12
+ 1

12
)+(3072 *(1

12
+ 1

12
)] + [6 * (1

12
+ 1

12
)+(2048 *(1

12
+ 1

12
)] + [6 * (1

12
+ 1

12
)+(1280 *(

1
12
+ 1

12
)] + [6 * (1

12
+ 1

12
)+(1024 *(1

12
+ 1

12
)] + [6 * (1

12
+ 1

12
)+(1536 *(1

12
+ 1

12
)] = 2097,65

ms

S
′
1 =

2560+2097,65
3146,5 = 1,48

S1 = 2

Rappelons qu'on n'a pas à calculer les seuils des autres n÷uds qui se trouvent au

dernier niveau intermédiaire.

Le placement de la réplique se fait au niveau du DC donc dans cet exemple c'est : DC1

page 53

CHAPITRE IV :

Implémentation

Chapitre 4

Ce chapitre est consacré à la réalisation et la concrétisation de notre approche

proposée, qui consistent à la réplication des données dans les environnements de Cloud

Computing. Dans un premier temps, nous présentons l'environnement de notre travail,

puis nous dé�nissons les di�érents services du simulateur CloudSim ainsi l'extension que

nous avons réalisé pour intégrer la gestion des données, ensuite nous décrivons quelques

interfaces graphiques, et �nalement nous présentons une série de simulations et leurs

interprétations pour mettre en évidence notre proposition.

4.1 Langage et environnement de développement

Nous avons utilisé l'environnement de développement netbeans.

4.1.1 Langage de programmation Java

Java est un langage de programmation à usage général, évolué et orienté objet dont

la syntaxe est proche du C++. Il a été mis au point en 1991 par la �rme Sun Micro-

systems [33]. Il s'agissait de concevoir un langage bien adapté aux environnements de

travail en réseau et capable de gérer des informations de nature variées (données numé-

riques, informations sonores et graphiques). Java est devenu aujourd'hui une direction

incontournable dans le monde de la programmation, parmi les di�érentes caractéris-

tiques qui sont attribuées à son succès :

- L'indépendance de toute plate-forme : le code reste indépendant de la machine sur

laquelle il s'exécute. Il est possible d'exécuter des programmes Java sur tous les envi-

ronnements qui possèdent une Java Virtual Machine.

- Java est également portable, permettant à la simulation d'être distribuée facilement

sans avoir à recompiler le code pour les di�érents systèmes.

- Le code est structuré dans plusieurs classes, dont chacune traite une partie di�érente

54

CHAPITRE 4. 4

de la simulation.

- Il assure la gestion de la mémoire.

- Java est multitâches : il permet l'utilisation de Threads qui sont des unités d'exécution

isolées.

Aussi, une des principales raisons de ce choix est que le simulateur CloudSim est déve-

loppé avec ce langage.

4.1.2 Environnements de développement

Netbeans [34] est l'environnement de Développement Intégré (EDI) supporté par

SUN. Il est particulièrement bien adapté pour le développement d'applications WEB.

Il remplace l'IDE Java Studio Creator.

C'est un IDE moderne o�rant un éditeur avec des codes couleurs et un ensemble de

signes, des modèles de projets multi-langage et de di�érents types (application indé-

pendante, distribuée, plugin, mobiles, ...), le refactoring, l'éditeur graphique d'interfaces

et de pages web pour supporter le programmeur dans son travail. Il permet d'accéder

rapidement à la documentation détaillée, de naviguer dans les sources et de faire des

recherches d'usage des classes, méthodes et propriétés. Netbeans indique à l'utilisateur

les erreurs et fait des propositions pour y remédier. Un déboggeur permet l'exécution

pas à pas. Un suivi des ressources utilisées (cpu, mémoire) par le logiciel développé peut

être fait via un pro�ler. Un framework de test unitaire tel que Junit Fiche Junit peut

être utilisé.

L'EDI NetBeans fournit des outils pour construire tous les composants Java EE, ce qui

inclut les Enterprise Java Beans (EJBs), les pages web, les servlets, et les services web.

Il intègre le serveur d'application Glass�sh, ce qui permet de facilement développer des

EJB et de les déployer.

Il intègre la norme WebService JAX-WS. Il est aisé de lier un WS avec un EJB pour

faire son implémentation. CloudSim Objectif principal de simulateur CloudSim est de

fournir un cadre de simulation généralisé et extensible qui permet la modélisation, la

simulation et l'expérimentation des nouvelles infrastructures du Cloud Computing et

les services d'application, permettant aux utilisateurs de se concentrer sur des questions

de conception du système qu'ils veulent étudier, sans être préoccupé aux détails relatifs

aux services et infrastructures Cloud.

Nous avons utilisé pour la réalisation de notre travail la version du simulateur Cloudsim

3.0.2 [35]

page 55

CHAPITRE 4. 4

4.1.3 Architecture de CloudSim

La structure logicielle de CloudSim et ses composants est représentée par une ar-

chitecture en couches comme il est montré par la Figure 4.1. Les premières version

de CloudSim utilise SimJava, un moteur de simulation d'événement discret qui met

en ÷uvre les principales fonctionnalités requises pour des structures de simulation de

haut niveau comme la formation d'une �le d'attente et le traitement d'événements, la

création de composants système (les services, les machines (Host), le centre de données

(Datacenter), le courtier (Broker), les machines virtuelles), la communication entre les

composants et la gestion de l'horloge de simulation. Cependant, dans la version actuelle,

la couche SimJava a été supprimée a�n de permettre à certaines opérations avancées

qui ne sont pas pris en charge par celle-ci.

Figure 4.1 � Architecture de CloudSim

page 56

CHAPITRE 4. 4

4.2 Description du fonctionnement de notre applica-

tion

4.2.1 Interface principale

Au lancement de notre application l'interface qui s'a�che est montré dans la Figure

4.2 cette interface contient deux bouton le 1er permet de lancer la con�guration pour

la simulation le deuxième a�che quelques information a propos de l'application.

Figure 4.2 � Accueil

4.2.2 Con�guration des paramètres de simulation

L'onglet DC a�che l'interface pour con�gurer les DCs (le nombre de DC, con�-

gurations des Hosts, le nombre et la taille des �chiers, la vitesse de chaque CPU, le

coût de traitement, la taille de la mémoire, le coût de la mémoire, l'espace de stockage

du serveur de données, la bande passante, le coût de stockage et le coût de la bande

passante) et le choix de la stratégie avec laquelle fonctionnent les DCs.

Remarque : avant de créer les DCs, Il faut d'abord con�gurer les Hosts (Figure 4.4).

page 57

CHAPITRE 4. 4

Figure 4.3 � Onglet con�guration des DC

La fenêtre de con�guration des Hosts permet d'entrer le nombre de Pes, MIPS, la

RAM, l'espace de stockage et la bande passante.

Figure 4.4 � Interface con�guration des Hosts

page 58

CHAPITRE 4. 4

L'onglet VM a�che l'interface pour con�gurer les VMs (le nombre de VMs, MIPS,

Size, la RAM, la bande passante, le nombre de Pes nécessaire et le nom de la VM).

Figure 4.5 � Onglet con�guration des VMs

L'onglet Cloudlet a�che l'interface pour con�gurer les Cloudlets : Length, File Size,

Output Size, les �chiers demandé par la cloudlet (chaque �chier séparé entre le suivant

par un point virgule ;) et l'ID de la VM a la quelle on veut a�ecter la Cloudlet.

page 59

CHAPITRE 4. 4

Figure 4.6 � Onglet con�guration des Cloudlets

Pour lancer la simulation on clique sur Lancer la simulation et puis A�cher les

résultats pour voir les résultats de la simulation.

page 60

CHAPITRE 4. 4

Figure 4.7 � Fenêtre des résultats

4.3 Résultats expérimentaux

Nous allons e�ectué quelques expérience (Expérience 1, 2 et 3) a�n de comparer

notre stratégie avec une autre et déterminer le temps d'exécution moyen des Cloudlets

tout en changeant quelques paramètres (Nombre DC, taille des �chiers et nombre de

Cloudlets), la stratégie avec la quelle on va comparer notre approche est nommé stra-

tégie RANDOM et a pour principe de créer des répliques aléatoirement dans le Cloud.

Puis nous allons voir le nombre de réplique créer (Expérience 5, 4 et 6).

Nous avons choisis de créer 4 Hosts et 8 VMs pour cette expérience.

4.3.1 Expérience 1

A travers cette expérience, notre objectif était de voir comment l'augmentation du

nombre de Datacenter pouvait avoir un e�et sur le temps d'exécution des cloudlets.

Dans Cette simulation nous avons varié le nombre de Datacenter par pas de 1 ; nous

avons �xé le nombre de cloudlets à 20 ;

page 61

CHAPITRE 4. 4

1 2 3 4

Stratégie Randam 233577 234308 236242 239477

Stratégie Dynamique 229953 230100 230340 230500

Table 4.1 � Impact du nombre de DC sur le temps d'exécution

Figure 4.8 � Impact du nombre de DC sur le temps d'exécution

Le tableau 4.1 compare entre les deux approches selon le nombre de Datacenter, où

nous pouvons déduire que le temps de réponse de notre approche reste presque constant,

car notre stratégie va crées des réplique dans chaque datacenter, la di�érence dans le

temps peut être expliqué par le temps du 1er transfert de la donnée de datacenter qui

contient la donnée originale vers le nouveau datacenter ; Dans l'autre approche, nous re-

marquons que le temps réponse s'augmente lorsque le nombre de datacenter augmente ;

parce que la stratégie randam crée de manière aléatoire les répliques, donc on peut avoir

page 62

CHAPITRE 4. 4

dans un datacenter plusieurs répliques et dans un autre datacenter aucune réplique.

4.3.2 Expérience 2

Dans cette simulation, nous avons créé deux Data Center contenant 10 hôsts hétéro-

gène, Chaque hôte posséde 1 processeur avec une vitesse variante en MIPS entre (1000,

2000), bande passante entre(100,1000). Cette simulation consiste à varier la taille de la

donnée (200, 500, 1000, 1500)

200 500 1000 1500

Stratégie Randam 233577 237913 239238 242103

Stratégie Dynamique 229953 231233 232122 232508

Table 4.2 � Impact de la taille du �chier sur le temps d'exécution

Figure 4.9 � Impact de la taille du �chier sur le temps d'exécution

La �gure montre de manière évidente, la supériorité de l'approche dynamique par

rapport à l'approche random. Nous remarquons que le temps d'exécution des cloudlets

page 63

CHAPITRE 4. 4

dans la stratégie random augmente avec l'augmentation de la taille de la donnée ; La

taille des �chiers détermine le temps de transfert des �chiers, la stratégie Random

place les réplique aléatoirement, donc elle peut les placer dans des n÷uds qui ne sont

pas proche des VMs exécutant les Cloudlets, ou dans des n÷uds moins populaire par

conséquent le temps de transfert va être important. et ça va a�ecter le temps d'exécution

des Cloudlets qui sera grand aussi. Par contre notre stratégie qui place les répliques aux

bons endroits, a permis de diminuer le temps de transfert des �chiers ; et l'augmentation

dans le temps d'exécution totale est moins signi�cative par rapport à l'autre stratégie ;

4.3.3 Expérience 3

Dans cette simulation, nous avons créé deux Data Center contenant 10 hôsts hé-

térogène, chaque hôte posséde 1 processeur avec une vitesse variante en MIPS entre

(1000, 2000), bande passante entre (100,1000), la taille de la donnée est 200 MB. Cette

simulation consiste à varier le nombre de cloudlet par pas de 20 et voir l'impact sur le

temps d'exécution ;

20 40 60 80

Stratégie Randam 233577 239913 242538 248652

Stratégie Dynamique 229953 231233 232122 232508

Table 4.3 � Impact du nombre de Cloudlets sur le temps d'exécution

page 64

CHAPITRE 4. 4

Figure 4.10 � Impact du nombre de Cloudlets sur le temps d'exécution

Nous remarquons une diminution signi�cative dans le temps d'exécution des cloudlets

avec l'approche proposée par rapport à la stratégie de réplication statique (Random).

Parce que l'approche proposé s'adapte selon les requêtes, des nouvelle réplique seront

créés si le seuil est dépassé ; Les réplique sont placées dans les hosts les plus populaires,

c'est à dire les hosts qui subissent plus de requêtes. Ce qui diminue le temps de transfert

et donc le temps d'exécution totale ;

4.3.4 Expérience 4

Dans cette expérience, nous allons augmenter le nombre de Data Centers et on verra

l'impact sur le nombre de réplique.

NB : Une Cloudlet ou deux au maximum on étaient exécuté dans chaque nouveau Data

Center.

page 65

CHAPITRE 4. 4

Figure 4.11 � Impact du nombre de DC sur le nombre de réplique

page 66

CHAPITRE 4. 4

Figure 4.12 � Espace de stockage d'un Host après la création de réplique

4.4 Interprétation des résultats :

Nous remarquons une diminution signi�cative dans le temps d'exécution des cloud-

lets avec l'approche proposée par rapport au stratégie de réplication statique. parce

que l'approche proposé s'adapte selon les requêtes, et les réplique sont placées dans les

hosts les plus populaires, c'est à dire les hosts qui subissent plus de requêtes.

page 67

CHAPITRE 4. 4

4.5 Conclusion

Dans ce chapitre nous avons expliquer le fonctionnement de notre stratégie dans

notre application et nous avons démontrer que notre stratégie lorsque le nombre de

Data Centers et de �chiers est élevé permet une exécution des Cloudlets plus rapidement

que la stratégie Random, par contre notre stratégie à certain cas ne s'avère pas plus

rapide lorsque le nombre de Cloudlets est élevé et cela aussi dépends de la topologie

(répartition de tout les noeuds).

page 68

Conclusion générale

Le cloud computing est en pleine expansion et tend à s'imposer comme un des

paradigmes dominants dans l'univers informatique. Les infrastructures proposant des

services de cloud computing deviennent donc de plus en plus nombreuses, et de plus

en plus complexes pour répondre à cette demande croissante de services décentralisés.

Aujourdhui on n'a pas un problème de stockage mais on a un problème de gestion et

de récupération de l'information avec le minimum temps. Il faut donc concevoir des

techniques et outils a�n de répondre à ces nouveaux besoins de gestion.

La réplication de données est une technique qui permet de régler en général certains

problèmes dans le Cloud tels que les problèmes de la disponibilité des données à chaque

instant.

Cette technique consiste à répliquer les données dans les n÷uds selon une disponi-

bilité exigé par l'utilisateur dont le but d'améliorer la disponibilité et réduire le temps

de réponse selon certains critères.

Pour béné�cier au maximum du gain que peuvent apporter la réplication. Au cours

de ce projet, nous avons dé�ni et implémenter un algorithme de réplication et place-

ment de données dans l'environnement de Cloud Computing. Qui permet de mettre

les bonnes données au bon endroit et au bon moment. Ce qui permet d'économiser le

temps et l'argent tout en augmentant la protection des données.

A�n de valider et d'évaluer l'approche proposée, nous avons réalisé plusieurs séries

d'expérimentations en faisant varier plusieurs paramètres. Les résultats montrent de

manière évidente, la supériorité de l'approche proposée par rapport à l'approche sta-

tique. La stratégie proposée nous a permis de réduire de façon signi�cative le temps

d'exécution des Cloudlets.

69

CHAPITRE 4. 4

Résumé

Le cloud computing ou " informatique dans les nuages " nous permet d'accéder à

toutes nos applications et services de partout et à tout moment via l'Internet. Le Cloud

permet une réduction des coûts pour les entreprises, ce qui est plus intéressent que

d'acheter des ordinateurs plus rapides ou meilleure en termes de mémoire et espace de

stockage, tout ordinateur ou smart phone peut accéder aux services du cloud à l'aide

d'un navigateur ou d'une application. Aussi les entreprises n'ont plus besoin d'acheter

des équipements tels que des serveurs coûteux a�n de fournir un service e-mail pour

leurs employés, ou de grandes unités de stockage pour e�ectuer des sauvegardes de

données et d'informations pour la société. C'est pourquoi au cours de ce travail, nous

nous sommes intéressés à la gestion des données dans le Cloud Computing, où nous

avons présenté notre approche de réplication qui permet de mettre les bonnes données

au bon endroit et au bon moment. L'approche proposée permet d'économiser le temps

et l'argent tout en augmentant la protection des données.

The Cloud computing allows to access our applications and services from anywhere,

anytime from the web ; The Cloud allows to reduce costs for companies, which is better

than buying better computers in term of speed, memory and storage space, any PC

or smart phone can access to the cloud services using a navigator or an application.

Also the companies aren't required to buy equipment like expensive servers to provide

e-mail services for the workers, or high storage units to save all data and information for

society. Therefore in this work, we focused management Data in the Cloud computing,

where we presented our replication approach that can put the right data in the right

place at the right time. This can save time and money while increasing data protection.

page 70

CHAPITRE 4. 4

page 71

Bibliographie

[1] S. Drapeau. RS2.7 : Canevas Adaptable de services de duplication. PhD thesis,
Institut National Polytechnique de Grenoble, France, Juin 2003.

[2] N. Hadi. : Réplication et ordonnancement dans les grilles de calcul, Une approche
basée sur les méthodes d'aide à la décision multicritères. PhD thesis, Département
informatique, Faculté des sciences, Université Oran, juin 2013.

[3] I. SARR. : Routage des Transactions dans les Bases de Données à Large
Echelle. PhD thesis, La boratoire d'informatique Paris 6, Université de Pierre
et Marie Curie, France, Octobre 2010. http ://download.intel.com/ press-
room/pdf/computertrendsrelease.pdf.

[4] B. Meroufel : Tolérance aux pannes dans les grilles de données. Master's thesis,
Département informatique, Faculté des sciences, Université Oran, Juin 2011.

[5] N. Grevet : Le cloud computing : évolution ou révolution. Mémoire de recherche,
Aout 2009.

[6] Cloud computing. http :fr.wikipedia.org/wiki/Cloud-computing

[7] Syntec informatique. : Tout ce que vous devez savoir sur l'informatique dans
le nuage. Le Livre Blanc du Cloud Computing. http ://journal-ntic.fr/wp-
content/uploads/2011/06/Livre-blanc-cloudcomputing.pdf.

[8] I. Foster and C.Kesselman : The grid : blueprint for a new computing infrastructure.
Morgan Kaufmann, 1999.

[9] L. Alvisi and K.Marzullo : Message logging : Pessimistic, optimistic, causal, and
optimal. IEEE Transactions on Software Engineering, 24(2) pp. 149ñ159, 1998.

[10] Yahoo ! Inc., Yahoo ! and CRL to Collaborate on Cloud Computing Research, 2008.

[11] S. Warin : Le Cloud Computing. Réelle révolution ou simple
évolution. Livre Blanc sur le Cloud Computing, Février 2011.
http ://www.wygwam.com/documents/cloud-computing.pdf.

[12] Oracle White Paper in Enterprise Architecture-Architectural Strategies for Cloud
Computing.

[13] W. Malvault : Vers une architecture pair-à-pair pour l'informatique dans le nuage.
Thèse de Doctorat, Université de Grenoble, France, Octobre 2011.

[14] Amazon EC2, Amazon Elastic Compute Cloud, http ://aws.amazon.com/ec2/

[15] M. Armbrust ,A. Fox ,R. Gri�th ,A. D. Joseph ,R. H. Katz ,A. Konwinski ,G. Lee ,
D. A. Patterson ,A. Rabkin ,I. Stoica and M. Zaharia : A view of cloud computing.
Commun. ACM, 53(4) pp. 50-58, 2010.

72

BIBLIOGRAPHIE 4

[16] Salesforce. https ://www.salesforce.com/.

[17] Netsuite. http ://www.netsuite.com/.

[18] Google code. http ://code.google.com/.

[19] Windows azure. http ://www.microsoft.com/windowsazure/windowsazure/.

[20] Google app engine. http ://code.google.com/intl/fr-FR/appengine/.

[21] A. Lefort : Cloud Computing. Projet tutoré en licence professionnelle ASRALL,
2010.

[22] J. Anderson : Choisissez votre cloud, Août 2011.
http ://www.thecloudadvantage.com/downloads/frFR/CloudPublicVsPrivate-
PoV.pdf.

[23] L'avenir est au cloud computing. http ://www.cfo-news.com/L-avenir-est-aucloud-
computing-a20143.html.

[24] I. Foster K.Ranganathan : "Identifying dynamic replication strategies for high
performances data grids", Proceedings. 3 rd IEEE/ACM International Workshop
of grid computing, London, UK, 2001, pp 75-76.

[25] I. Foster and C. Kesselman : "The Grid : Blueprint for a New Computing Infra-
structure", Morgan Kaufmann, edition, 1998, San Francisco, USA.

[26] D.Yang et Al : "A Comparative study of Replicas Placement Strategies in Data
Grids", Proceedings of Advances in Web and Network Technologies, and Informa-
tion Management, Computer Sciences vol 4537,2007, pp 135-143.

[27] Y. Nemati et Al : "A novel data replication policy in data grid", Australian Journal
of Basics and Applied Sciences, Vol.6, Numéro 7, 2012, pp 339-344.

[28] L. Allal and C. Dad : Gestion de la cohérence des répliques de données orientée QoS
dans les Wireless Grid. Mémoire d'ingénieur d'état en informatique, Département
d'informatique, Faculté des sciences, Université d'Oran, Algérie (Juin 2009).

[29] N. Belayachi and R. Behidji : In�uence de l'équilibrage de charge sur la cohérence
des répliques dans les grilles de données. Mémoire d'ingénieur d'état en informa-
tique, Département d'informatique, Faculté des sciences, Université d'Oran, Algérie
(Juin 2009).

[30] L. MOINE : La gestion et la sécurité dans une architecture de ressources de calcul
distribuées sur l'Internet. Mémoire d'ingénieur c.n.a.m. en informatique, UREC
(Unité Réseaux du CNRS), Centre d'enseignement de Grenoble, Grenoble Cedex
9, France (Juillet 2002).

[31] G. Oster : Réplication optimiste et cohérence des données dans les environnements
collaboratifs répartis. PhD thesis, Université Henri Poincaré, Nancy 1, France,
Novembre 2005.

[32] S. KOUIDRI : Gestion de la coherence des répliques tolérente aux fautes dans une
grille de données. Master's thesis, Département informatique, Faculté des sciences,
Université Oran, Juin 2011.

[33] http ://fr.wikipedia.org/wiki/Java(langage).

page 73

BIBLIOGRAPHIE 4

[34] https ://www.projet-plume.org/�che/netbeans

[35] https ://github.com/Cloudslab/cloudsim/releases/tag/cloudsim-3.0.2 consulté le
20-11-2015

[36] F. Z.Bellounar : "Stratégies e�caces de réplication de données sur les grilles",
Thèse de doctorat, Université d'Oran, Algérie, 2014

page 74

Table des �gures

1.1 Classi�cation des systèmes P2P . 9
1.2 Les composants de la grille informatique 10
1.3 Cloud Computing . 12
1.4 Interet pour le terme "cloud computing" sur Internet 14
1.5 Composants du cloud . 16
1.6 Les di�érents types de services dans le Cloud 17
1.7 Modèle de distribution de l'infrastructure en tant que service 19
1.8 Type de cloud computing . 23
1.9 Intercloud : le nuage des nuages . 25

2.1 Protocole de réplication passive . 34
2.2 Protocole de réplication active . 34
2.3 Protocole de réplication semi-active . 35
2.4 Approche maître-esclaves . 36
2.5 Approche copies identiques . 36

3.1 Topologie du Cloud utilisée . 43
3.2 Calcul des coûts et nombres d'accès de bas en haut. 46
3.3 Les étapes d'algorithme . 49
3.4 Topologie du Cloud premier cas. 50
3.5 Topologie du Cloud deuxiéme cas. 52

4.1 Architecture de CloudSim . 56
4.2 Accueil . 57
4.3 Onglet con�guration des DC . 58
4.4 Interface con�guration des Hosts . 58
4.5 Onglet con�guration des VMs . 59
4.6 Onglet con�guration des Cloudlets . 60
4.7 Fenêtre des résultats . 61
4.8 Impact du nombre de DC sur le temps d'exécution 62
4.9 Impact de la taille du �chier sur le temps d'exécution 63
4.10 Impact du nombre de Cloudlets sur le temps d'exécution 65
4.11 Impact du nombre de DC sur le nombre de réplique 66
4.12 Espace de stockage d'un Host après la création de réplique 67

75

Liste des tableaux

1.1 Les avantages et les inconvénients des di�érents services 23

3.1 Paramètres utilisés dans le modèle . 44
3.2 Calcul des nombres et coûts d'accès des n÷uds 51
3.3 Calcul des nombres et coûts d'accès des n÷uds, la donnée se trouve dans

DC2 . 53

4.1 Impact du nombre de DC sur le temps d'exécution 62
4.2 Impact de la taille du �chier sur le temps d'exécution 63
4.3 Impact du nombre de Cloudlets sur le temps d'exécution 64

76

