

 الجمهورية الجزائرية الديمقراطية الشعبية
République Algérienne Démocratique et Populaire

والبحث العلميوزارة التعليم العالي
 Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

 مولاي سعيدة الطاهر .د جامعة

Université Dr. Tahar Moulay Saida

 كلية التكنولوجيا

Faculté de la Technologie

الآلي الاإعلام قسم Département d’Informatique

Mémoire de Master
 Option : sécurité informatique et cryptographie

Thème :

Modélisation et génération des
attaques dans les politiques de

sécurité

Présenté par :
KOUBI Mohamed
SAYAH Mohamed Kamel Eddine

Encadré par :

Mr ADJIR Noureddine

Septembre 2016

Remerciement

Nous remercions en premier notre grand Dieu pour nous avoir donné le
courage et la volonté durant les moments difficiles.

Au terme de ce travail, je tiens à exprimer ma profonde gratitude et mes
sincères remerciements aux personnes qui nous ont apporté leur aide et
qui ont contribué à l’élaboration de ce mémoire ainsi qu’à la réussite de

cette formidable année universitaire et durant toutes les années de notre
étude.

Mes profonds remerciements vont à mon encadrant à Noureddine
Adjir qui a accepté d’encadrer notre travail, Nous exprimons nos

gratitudes à tous les consultants et internautes rencontrés lors des efforts
effectués et qui ont accepté de répondre à nos questions avec gentillesse.

Nous tiens également à remercier les membres du Jury.

Mes plus vifs remerciements s’adressent aussi à tout le cadre professoral

et administratif de Faculté de technologie d’université de

DR. MoulayTaher, Saida.

Et bien sûr nous gardons une place toute particulière à nos parents, nos
frères, nos sœurs et mes oncles, nos amis qui sont toujours à nos côtés.
Mes remerciements vont enfin à toute personne qui a contribué de près

ou de loin à l’élaboration de ce travail.

Dédicace

 Merci Allah (mon dieu) de m’avoir donné la capacité

d’écrire et de réfléchir, la force d’y croire, la patience

d’aller jusqu’au bout du rêve et le bonheur de lever mes

mains vers le ciel et de dire « Ya Kayoum ».

Je dédie ce modeste travail à celle qui m’a donné la vie,

le symbole de tendresse qui s’est sacrifiée pour mon

bonheur et ma réussite, à ma mère, à mon père, à mes
frères et Sœurs, à La Famille

Koubi,SAYAH,ZERROUKI , à mes amis, à tous
l’ensemble des étudiants du département d’informatique

et à tous ceux qui m’aiment

iii

ACRONYMES ET ABRÉVIATIONS

AC Access Control

MAC Mandatary Access Control

DAC Discretionary Access
Control

RBAC Role-Based Access Control

ORBAC Organization-Based Access
Control

XACML Extensible Access Control
Markup Language

HRU Harrisson,ruzzo,ullman

SOD Ségrégation of Duties
(répartition des taches)

ITSEC Information Technology
Security Evaluation
Criteria

OASIS Organization for the
Advancement of
Structured Information
Standards

LMS Système de gestion de

bibliothèque

https://www.google.dz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjM74XI9vLOAhUIDxoKHaKiDqMQFggnMAE&url=https%3A%2F%2Ffr.wikipedia.org%2Fwiki%2FOrganization_for_the_Advancement_of_Structured_Information_Standards&usg=AFQjCNGOGdUlYCiWwZAhgPomskSUTDjxsQ&sig2=GTLA0OLu244OBMG-3xXbBw
https://www.google.dz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjM74XI9vLOAhUIDxoKHaKiDqMQFggnMAE&url=https%3A%2F%2Ffr.wikipedia.org%2Fwiki%2FOrganization_for_the_Advancement_of_Structured_Information_Standards&usg=AFQjCNGOGdUlYCiWwZAhgPomskSUTDjxsQ&sig2=GTLA0OLu244OBMG-3xXbBw
https://www.google.dz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjM74XI9vLOAhUIDxoKHaKiDqMQFggnMAE&url=https%3A%2F%2Ffr.wikipedia.org%2Fwiki%2FOrganization_for_the_Advancement_of_Structured_Information_Standards&usg=AFQjCNGOGdUlYCiWwZAhgPomskSUTDjxsQ&sig2=GTLA0OLu244OBMG-3xXbBw
https://www.google.dz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjM74XI9vLOAhUIDxoKHaKiDqMQFggnMAE&url=https%3A%2F%2Ffr.wikipedia.org%2Fwiki%2FOrganization_for_the_Advancement_of_Structured_Information_Standards&usg=AFQjCNGOGdUlYCiWwZAhgPomskSUTDjxsQ&sig2=GTLA0OLu244OBMG-3xXbBw

Table des matières

Table des figures…………………………………………………………………………………………….i

Liste des tableaux…………………………………………………………………………………………..ii

Acronymes et Abréviations…………………………………………………………………………….iii

Glossaire………………………………………………………………………………………………………..iv

Introduction générale... 1

1 Les modèles de contrôle d'accès 4
1.1 Introduction .. 4

1.2 Les propriétés de sécurité .. 4

1.3 Les menaces .. 4

1.4 Les objectifs de la sécurité informatique .. 5

1.5 Le contrôle d'accès ... 5

1.5.1 Le but et les principes de base du contrôle d'accès ... 8

1.5.2 Les phases d'élaboration d'un système de contrôle d'accès 9

1.6. Les modèles de contrôle d'accès .. 9

1.6.1 Les contrôles d'accès discrétionnaires (DAC) .. 9

1.6.1.1 Modèle de Lampson ... 11

1.6.1.2 Modèle HRU ... 12

1.6.1.3 Modèle TAM ... 13

1.6.1.4 Les limites des politiques discrétionnaires .. 15

1.6.2 Les contrôles d'accès obligatoires (MAC) .. 15

1.6.2.1 Modèle de Bell-LaPadula ... 16

1.6.2.2 Le modèle de Brewer- Nash ... 19

1.6.3 Les modèles de contrôle d'accès basées sur les rôles RBAC 20

1.6.4 Les modèles de contrôle d'accès basées sur l'organisation OrBAC 26

2 Les langages de spécification de politiques de sécurité et les attaques 30

2.1 Introduction ... 30

2.2 Tests de sécurité .. 30

2.2.1Exemple Test de sécurité .. 30

2.3 la mutation .. 31

2.3.1 La création des mutants ... 31

2.4 langage de politiques de sécurité XACML .. 34

2.4.1 Définition ... 34

2.4.2 La norme XACML ... 34

2.4.3 Description du langage XACML .. 34

2.4.3.1 La cible ... 37

2.4.3.2 La règle ... 37

2.4.3.3 La politique .. 39

2.4.3.4 Algorithme de combinaison ... 39

2.4.4 Evaluation de la politique XACML ... 40

2.5 Exemple de la politique XACML : ... 40

2.6 L'architecture de XACML ... 42

2.7 Autre langages de politiques de sécurité ... 44

2.7.1Langage de politiques Rei... 44

2.7.2 Langage de politiques Ponder ... 46

2.8 Comparaison des langages de politiques ... 48

3 Conception et implémentation 49
3.1 Introduction...49

3.2 Environnement de programmation…………………………………………………………..49

3.2.1 Langage JAVA…………………………………………………………………………………….49

3.2.2 L’environnement matériel………………………………………………………………….51

3.4 Application …………………………………………………………………………………………….51

3.4.1L’objectif…………………………………………………………………………………………….51

3.4.2 Schéma général de l’application……………………………………………………………..52

3.4.3 Présentationd’Application…………………………………………………………………..53

4 Conclusion générale …………………………………………………………………………………58

i

Table des figures

Figure 1.1 Les entités de LMS...7

Figure 1.2 Les niveaux de sensibilité dans le modèle MAC..13

Figure 1.3 Modèle de Bell-LaPadula...14

Figure 1.4 Model RBAC...22

FIGURE 1.5 Modèle OrBAC..29

Figure 2.1 Exemple de la structure d'une politique XACML...34

Figure 2.2 Modèle du langage XACML..35

Figure 2.3 Un exemple de la politique XACML..41

Figure 2.4: Schéma d'une requête de permission avec le langage XACML.............42

Figure 2.5 : Exemple de la politique « rulePriority » ...43

Figure 2.6: Exemple de politique d'autorisation..46

Figure 3.1 logo java...50

Figure 3.2 logo axiomatics...50

Figure 3.3 Schéma général de l’application..52

Figure 3.4 L’interface principale...53

Figure 3.5 Ouvrir ficher XACML..54

Figure 3.6 interface Comparaison entre les fichiers XACML..55

Figure 3.7 ouverture des fichiers XACML initial et mutant...56

Figure 3.8 Exemple ficher XACML..57

ii

Liste des tableaux

Tab 1 Modèle de Lampson...11

Tab 2 Exemple des valeurs de la cible XACML..40

Tab 3 Comparaison des langages de politiques ...47

Introduction générale

1

Introduction générale

 La sécurité est de plus en plus en importance et devient actuellement une

question clé pour toute application ou système informatique pour les

organisations, les entreprises et les gouvernements. Le marché se déplace dans

l'Internet et le montant des actifs en cause est énorme.

Pour les entreprises à vendre leurs produits et services sur Internet, la

sécurité est un problème majeur à résoudre. Pour les banques en ligne, garantir la

sécurité est cruciale et une condition préalable avant même l'exécution du service.

 Les entreprises ont consenti des efforts significatifs dans la mise en place de

politiques et de procédures de sécurité. Et pourtant, force est de constater que des

lacunes importantes laissent à désirer.

Les systèmes de stockage de données et les réseaux d'informations des

entreprises doivent répondre à des exigences opposées, à savoir la protection de

la vie privée et la divulgation des informations.

En d'autres termes, ce qui doit être protégé dans certaines situations et par

rapport à certaines entités doit probablement être divulgué dans d'autres

situations et par rapport à d'autres entités. Par exemple dans les applications

médicales, les informations échangées contiennent généralement des données

très sensibles. En effet, la fuite d'information ne devrait jamais être permise.

Par exemple, lors d'une urgence médicale, l'interdiction d'accès à

l'information pourrait mettre des vies en danger.

 Les lois exigent que les entreprises disposent de mécanismes fiables pour

mettre en œuvre ces exigences dans leurs systèmes informatiques, dans leurs

services Web, etc. Ainsi, les organismes gouvernementaux et les compagnies qui

ne se conforment pas à ces lois risquent d'encourir de véritables conséquences ;

par exemple entacher leur réputation et/ou devoir se soumettre à des obligations

légales. Dans ces systèmes, l'accès aux données est gouverné par des politiques ou

des règles de contrôle d'accès. Ou, la définition des politiques ne garantit pas à elle

seule le fonctionnement correct du système.

 Des politiques mises en place peuvent engendrer des décisions d'accès ne

traduisant pas les exigences de sécurité souhaitées.

Introduction générale

2

 Ces politiques doivent respecter certaines propriétés essentielles pour

pouvoir admettre que le système est sécurisé. Parmi ces propriétés, nous avons la

validité, la cohérence, la complétude, le déterminisme. Ainsi, les systèmes de

contrôle d'accès doivent être vérifiés de telle manière à ne pas empêcher les

utilisateurs d'avoir les usages qui leur sont nécessaires, à ne pas permettre des

fuites d'information, et ainsi, de faire en sorte que les systèmes d'informations

puissent être utilisés en toute confiance. Une politique de sécurité se développe

selon trois axes : physique, administratif et logique.

Le premier précise l’environnement physique du système à protéger. Le

deuxième décrit les procédures organisationnelles (répartition des tâches,

séparation des pouvoirs). Le troisième a trait aux contrôles d’accès logiques (qui,

quoi, quand, pourquoi, comment) et s’intéresse aux fonctions d’identification,

d’authentification et d’autorisation mises en œuvre par le système informatique.

Dans ce mémoire, nous nous intéressons particulièrement aux politiques

d’autorisation (dites aussi politiques de contrôle d’accès).

 Le contrôle d'accès est un mécanisme par lequel un système autorise ou

interdit le droit à des entités actives (sujets : personnes, processus, machines, etc.)

d'accéder et d'effectuer des opérations sur des entités passives (objets : fichier,

dossier, etc).

La validation du mécanisme de contrôle d'accès est très importante pour

garantir la fiabilité de la sécurité de l'application et l'absence de failles.

 Notre travail s’intéresse donc à la validation. Notre objectif est de valider

la conformité du mécanisme de sécurité vis-à-vis de sa politique de CA et faire la

génération des attaques dans les politiques de sécurité. Ceci en utilisant la

technique de mutation par l’exécution de certains scénarii qui déclenchent les

mécanismes de CA. La mutation est une technique de test fonctionnel.

Les tests de sécurité sont générés à la partir de la politique de CA. Pour cela,

nous proposons une technique d'injection de fautes en se basant sur un modèle de

fautes pour politiques de contrôle d'accès. Nous pouvons donc détecter des

erreurs par les tests fonctionnels et par les tests de sécurité.

Ce mémoire est structuré, en plus de l’introduction et de la conclusion

générale, en trois chapitres. Le premier chapitre rappelle les concepts de base des

Introduction générale

3

politiques et des modèles de sécurité existants. Le deuxième chapitre montre la

nécessité de valider la politique de sécurité implémentée et les langages utilisés

pour exprimer les règles de politique de sécurité pour un système ou une

organisation et par conséquent comment bâtir des cas de test basés sur la

mutation pour tester une politique de sécurité. Le troisième chapitre présente

notre application. Il s’agira de décrire une concrétisation de nos idées à travers

une implémentation d’un logiciel pour tester les règles de contrôle d’accès.

Chapitre 1 : Les modèles de contrôle d'accès

4

1.1 Introduction

 Dans le présent chapitre nous présentons les principaux modèles de

sécurité publiés dans la littérature, en l'occurrence les politiques discrétionnaires,

Les politiques obligatoires et les politiques à base de rôles. Nous évaluons les

avantages et les limites de ces modèles et politiques de sécurité.

Une politique de sécurité se développe selon trois axes : physique,

administratif et logique. Le premier précise l’environnement physique du système

à protéger (les éléments critiques, les mesures prises vis-à-vis du vol et des

catastrophes).

Le deuxième décrit les procédures organisationnelles (répartition des

tâches, séparation des pouvoirs).

Le troisième a trait aux contrôles d’accès logiques (qui, quoi, quand,

pourquoi, comment) et s’intéresse aux fonctions d’identification,

d’authentification et d’autorisation mises en œuvre par le système informatique.

Dans ce mémoire, nous nous intéressons particulièrement aux politiques

d’autorisation (dites aussi politiques de contrôle d’accès).

1.2 Les propriétés de sécurité

 L'objectif de la sécurité informatique est la mise en œuvre de protection

permettant d'assurer les propriétés suivantes : [SG06]

 La confidentialité : Assurer que l'information ne soit divulguée ou révélée

qu'aux personnes autorisées.

 L'intégrité : Assurer que l'information contenue dans les objets ne soit ni

créée, ni altérée, ni détruite de manière non autorisée.

 La disponibilité : L'accès par un sujet autorisé aux ressources et

informations du système doit être toujours possible.

1.3 Les menaces

Ce sont les sources de violations potentielles de la sécurité. C'est l'ensemble

des personnes et des événements qui présentent un danger pour un patrimoine

Chapitre 1 : Les modèles de contrôle d'accès

5

en termes de confidentialité, d'intégrité, et de disponibilité. On cite à titre

d'exemple :

1. Usurpation de l'identité : un utilisateur anonyme utilise l'identité d’un

utilisateur valide d'une application.

2. Accès aux données (tampering with data) : un utilisateur détruit ou modifie

le contenu d'un message sans autorisation.

3. Divulgation d'informations (information disclosure) : des données

confidentielles sont rendues visibles à des utilisateurs non autorisés.

4. Répudiation (Repudiability) : la possibilité qu'un utilisateur nie d'avoir

effectué telle ou telle opération.

1.4 Les objectifs de la sécurité informatique

La sécurité informatique a pour objectif de répondre aux différentes

menaces et tenant compte des types de ressources à protéger et leur niveau des

sensibilités, Néanmoins, les principaux points sont les suivants : [SG06]

1. Empêcher la divulgation non autorisée de données.

2. Empêcher la modification non autorisée de données.

3. Empêcher l'utilisation non autorisée des ressources réseaux ou

informatiques de façon générale.

1.5 Le contrôle d'accès

 Le contrôle d'accès est un mécanisme par lequel un système autorise ou

interdit le droit à des entités actives (sujets : personnes, processus, machines, etc.)

d'accéder et d'effectuer des opérations sur des entités passives (objets : fichier,

dossier, etc). Le contrôle d'accès fonctionne à plusieurs niveaux :

 Les mécanismes de contrôle d'accès au niveau des applications expriment

des politiques de sécurité. Par exemple, dans une entreprise le personnel

pourrait être affecté à plusieurs rôles différents. Chaque rôle peut initier

plusieurs opérations possibles dans le système. Chaque opération

nécessite des autorisations préalables pour pouvoir être exécutée.

 Les applications peuvent être au-dessus d'un « middleware », comme un

système de gestion de base de données, qui met en application un certain

Chapitre 1 : Les modèles de contrôle d'accès

6

nombre de propriétés de protection. Le middleware utilisera les moyens

fournis par les systèmes d'exploitation sous-jacent. Comme ce dernier

construit les ressources de bas niveau telles que les fichiers et les ports de

communication, il a donc la responsabilité de fournir les moyens de

contrôler l'accès à ceux-ci.

 Finalement, les commandes d'accès de système d'exploitation se basent sur

des fonctionnalités du matériel fourni par le processeur ou celle de la

gestion de mémoire associée. Ces derniers contrôlent les accès d'un

processus donné aux adresses de la mémoire.

Les modèles de CA (comme OrBAC ou RBAC par exemple) permettent de

définir un ensemble de règles qui constitueront la politique de CA. Dans cette

étude, nous considérons un modèle inspire par RBAC et étendu pour intégrer les

notions de contexte et les règles d'interdiction. Nous avons essayé d'avoir une

approche plus générale qui ne soit pas limitée à un modèle donnè. Plus

formellement, une règle de CA consiste en cinq paramètres [TEJ09] :

 Statut S : permission ou interdiction

 Rôle R : dans un domaine de noms défini RN

 Permission P : dans PN

 Contexte C : dans CN

Une règle de CA est de définie ainsi : S (R, P, C)

 Pour illustrer les règles d'une politique de CA, prenons l'exemple d'un

système de librairie LMS (qui sera aussi utilisé après pour illustrer d'autres

aspects) qui offre des fonctionnalités de gestion des livres, des comptes des

utilisateurs et des prêts. Dans ce système, les utilisateurs peuvent réaliser trois

opérations emprunter les livres, les réserver et les rendre. Les ressources dont on

veut contrôler l'accès sont les livres et les comptes. Les entités (RN, PN) peuvent

être ordonnées de manière hiérarchique. Par exemple, dans le cas de LMS, il y a

deux types de rôles qui sont les emprunteurs et le personnel.

 Les rôles Etudiant et Enseignant héritent donc du rôle Emprunteur. Cette

hiérarchisation permet de définir des règles au niveau du rôle Emprunteur pour

Chapitre 1 : Les modèles de contrôle d'accès

7

qu'elles soient ensuite appliquées pour les rôles Etudiant et Enseignant. Enfin, on

distingue trois contextes temporels qui sont les jours travailles, les jours fériés et

les jours de maintenance. Les différentes entités sont présentées dans la figure 1.1.

 Une fois les entités définies, il faut écrire la politique de contrôle d'accès. Voici

quelques exemples de règles :

 R1: Permission (Administrator, Create Account, default)

 R2: Permission (Borrower, Borrower Activities, Working Days)

 R3: Prohibition (Borrower, Modify Account,default)

 On distingue 2 types de règles : les règles primaires et les règles concrètes. Les

règles primaires représentent l'ensemble des règles de nies. Quant aux règles

concrètes, ce sont l'ensemble des règles obtenues après avoir dérivé les règles

primaires en se basant sur la hiérarchie. C'est le cas de R2, qui s'applique a

'BorrowerActivity' et qui désigne l'ensemble des actions qu'un emprunteur peut

effectuer (qui sont d'après la figure1.1) : BorrowerBook, ReserveBook et

ReturnBook). Les règles primaires n'incluent pas ces règles dérivées.

 Figure 1.1 : Les entités de LMS

Borrower

Teache Student

Personnel

Director Secretay Administator

BorrowAcivity

Reservebook Borrowook retunBook

AdminAcitivity

Create account ModifyAccount ManageAccess

PersonnelAcitivy

DeliverBook ConsultAccount FixBook

Chapitre 1 : Les modèles de contrôle d'accès

8

 La distinction entre règles primaires et concrètes est importante pour la

suite de l'article, quand on définira les critères de génération de tests. Après

n’avoir défini la politique de CA.

1.5.1 Le but et les principes de base du contrôle d'accès

 Les concepts de rôles, de vues et d'activités sont des concepts

organisationnels. Chaque organisation définit ainsi les rôles, les activités et les

vues dont elle souhaite réglementer l'accès en appliquant une politique

d'autorisation.

 Les modèles de contrôle d'accès (DAC, MAC, RBAC, ORBAC) reposent

habituellement sur les trois entités : sujet, action, objet. Donc, pour contrôler

l'accès, on spécifie si un sujet a la permission de réaliser une action sur un objet.

 Les sujets sont abstraits en rôle. Un rôle est un ensemble de sujets sur lequel

les mêmes règles de sécurité sont appliquées.

 Les actions sont abstraites en activité. Une activité est un ensemble d'actions

sur lequel les mêmes règles de sécurité sont appliquées.

 Les objets sont abstraits en vue. Une vue est un ensemble d'objets sur lequel

les mêmes règles de sécurité sont appliquées.

 Chaque politique de sécurité est définie pour et par une organisation. Donc,

la spécification de la politique de sécurité est complètement paramétrée par

l'organisation. Donc il est possible de spécifier simultanément plusieurs politiques

de sécurité associées à différentes organisations.

 Le contrôle d'accès est le moyen le plus utilisé pour sécuriser les systèmes

et les réseaux informatiques. L'utilité du contrôle d'accès est d'assurer les

propriétés de sécurité tel que :

 La confidentialité : assurer que l'information ne soit accessible qu'à ceux qui

ont l'autorisation.

 L'intégrité : assurer que l'information ne puisse être modifiée par des

personnes non autorisées.

Chapitre 1 : Les modèles de contrôle d'accès

9

 La disponibilité : empêcher les données d'être supprimées ou de devenir

inaccessibles. Cela s'applique non seulement aux informations mais aussi aux

machines en réseau ou à d'autres aspects de l'infrastructure technologique.

 L'impossibilité d'accéder à des ressources requises est appelée un refus de

service (Denial of Service). [NET01]

1.5.2 Les phases d'élaboration d'un système de contrôle d'accès

 L'élaboration d'un système de contrôle d'accès s'effectue par une approche

multi phases basée sur les concepts suivants :

 Les politiques de sécurité : Le standard européen des ITSEC définit une

politique de sécurité comme étant " l'ensemble des lois, règles et pratiques

qui régissent la façon dont l'information sensible et les autres ressources

sont gérées, protégées et distribuées à l'intérieur d'un système spécifique

".Un mécanisme de contrôle d'accès est l'un des outils permettant

d'implémenter une politique d'accès aux données pour préserver la vie

privée (Privacy) des utilisateurs.

 Les modèles de sécurité : ces modèles décrivent une représentation

abstraite (souvent formelle) des politiques de sécurité et de leur

fonctionnement. Ils permettent de faciliter la construction de preuves sur

la sécurité d'un système, c'est la raison pour laquelle les efforts se sont

focalisés autour de la construction des modèles pour la sécurité.

 Les mécanismes de sécurité : ceux-ci définissent les fonctions de bas

niveau (logiciels et matériels) permettant de mettre en application les

contrôles imposés par la politique de sécurité [MIC76].

1.6. Les modèles de contrôle d'accès

1.6.1 Les contrôles d'accès discrétionnaires (DAC)

 Proposées en 1971 par Lampson, les politiques discrétionnaires sont

basées sur l'identité des utilisateurs et les règles explicites d'accès qui stipulent

que les utilisateurs (sujets) sont autorisés à définir leur propre règlement de

sécurité sur les informations (objets) dont ils sont propriétaires. En d'autres

termes, chaque objet a un propriétaire qui décide des sujets qui y ont accès.

Chapitre 1 : Les modèles de contrôle d'accès

10

Ces permissions d'accès sont représentées par une matrice dans laquelle

chaque ligne correspond à un utilisateur, chaque colonne à une ressource et le

contenu de cette matrice définit le droit d'accès (lecture, écriture, exécution, ...) de

l'utilisateur sur la ressource.

Cependant, leur mise en œuvre est coûteuse en mémoire lorsque le nombre

d'utilisateurs est important. Leur mise à jour est difficile et ne permet pas de

contrôler une information ou ce qui en est fait une fois qu'elle a été accédée par un

utilisateur légitime, ce qui rend le système vulnérable à des chevaux de Troie et

l'expose à des fuites d'informations. Son avantage est l'utilisation d'une politique

de gestion décentralisée. DAC est apte à être appliqué aux systèmes de fichiers.

 Par exemple, appliqué aux systèmes de fichiers, les types d'accès de DAC :

- r : l'autorisation de lire l'objet

w: la permission d'écrire

- x: l'autorisation d'exécuter

- c: l'autorisation de contrôle l'autorisation, la possibilité de modifier 'r w x'

pour cet objet.

- Cp: le contrôle et la capacité passant de contrôle.

Voici un exemple simple de la politique du DAC.

La politique suivante définit deux sujets (kamel et Admin).

kamel peut lire ou exécuter fichier1, tandis que d'administration a le droit de lire,

écrire et exécuter le fichier en plus du contrôle et capacité de passage.

1. POLICY systemDAC (DAC)

 R1 -> DAC Rule (kamel r fichier1)

 R2 -> DAC Rule (kamel x fichier1)

 R3 -> DAC Rule (Admin cp fichier1)

 R4 -> DAC Rule(Admin r fichier1)

 R5 -> DAC Rule(Admin w fichier1)

 Le contrôle d'accès discrétionnaire est un contrôle d'accès qui est à la

discrétion du propriétaire de l'objet ou de toute personne qui est autorisée à

Chapitre 1 : Les modèles de contrôle d'accès

11

contrôler l'accès à l'objet. Des droits peuvent être passés d'un sujet (aussi appelé

utilisateur) à un autre. [MEM13]

1.6.1.1 Modèle de Lampson

Dans ce modèle, le contrôle d'accès a trois composantes principales : un

ensemble d'objets, un ensemble de domaines et une matrice d'accès. Les objets

sont les entités dans le système qui doivent être protégées. Les domaines sont les

entités qui ont accès à des objets. Chaque objet a un identificateur unique.

 Chaque entrée dans la matrice est composée d'une liste d'opérations d'accès

(attributs d'accès) permises pour être effectuées par un domaine sur un objet :

 Tab 1 Modèle de Lampson

* drapeau pour indiquer le droit de délégation de l'attribut d'accès Le modèle

présente un ensemble de règles qui déterminent comment les entrées de la

matrice peuvent être modifiés :

1. R1 : un domaine peut supprimer des attributs d'accès pour n'importe quel

domaine qui le contrôle. Exemple : domaine 2 peut supprimer des attributs

de la ligne 1 car domaine 2 contrôle domaine 1.

2. R2 : un domaine ayant un privilège sur un objet o avec le droit de

délégation, sans en être le propriétaire, peut transmettre ce privilège à

d'autres domaines.

3. R3 : un domaine propriétaire d'un objet peut ajouter des attributs d'accès

sur cet objet pour d'autres domaines.

4. R4 : un domaine propriétaire d'un objet peut supprimer des attributs

d'accès sur cet objet

 O1 O2=D2 O3 O4

D1 Lire

*Propriétaire

D2 Lire ; écrire Control *Lire

D3 Propriétaire

Chapitre 1 : Les modèles de contrôle d'accès

12

 La mise à jour d'une politique de sécurité exprimée par ce modèle est

coûteuse car si de nouveaux objets, de nouveaux sujets ou de nouvelles actions

sont ajoutés dans le système, il devient nécessaire d'enregistrer toutes les

permissions accordées pour ces nouvelles entités. Enfin, ce modèle ne permet

pas de contrôler les interdictions ou d'exprimer des obligations. [MAH06]

1.6.1.2 Modèle HRU

Ce modèle est similaire à celui de BUTLER Lampson. Le système de

protection est un ensemble fini R de droits et un ensemble fini C de commandes.

Le système est un triplé (S, O, M), où S est l'ensemble de sujets courants, O est

l'ensemble des objets courants, S ⊆ O, et M est une matrice d'accès, avec une ligne

pour chaque sujet dans S et une colonne pour chaque objet dans O. M[s,o] est un

sous ensemble de R. M[s,o] donne les droits que possède un sujet sur un objet.

L'arrangement d'autorisations est déni par un ensemble de commandes.

Chaque commande a une partie conditionnelle et un corps.

 La partie conditionnelle spécifie les droits qui doivent exister dans la

matrice avant qu'un corps ne soit exécuté pour les arguments actuels. Le corps

consiste en une séquence d'opérations primitives.

Ces dernières ajoutent ou suppriment des droits dans les cellules de la

matrice, créent une ligne ou une colonne ou détruisent une ligne ou une colonne

déjà existante dans la matrice. Il existe six primitives pour manipuler S, O et M :

1. ajouter r dans Mso∗.

2. retirer r de Mso.

3. créer sujet s.

4. détruire sujet s.

5. créer objet o.

6. détruire objet o.

∗ Mso désigne l'entrée de la matrice M contenant les droits d'accès du sujet s sur

l'objet o.

Chapitre 1 : Les modèles de contrôle d'accès

13

Exemple :

{

command c(x1...xk)

if a1 in M [s1,o1] a2 in M [s2,o2] ...an in M [sm,om]

then op1 op2 ...opn

}

end

La flexibilité dans la définition des commandes fait apparaître un problème

lié à la protection dans le système de contrôle d'accès ou « safety problem «. Etant

donné un système avec une configuration initiale Q, le problème de protection

détermine si un sujet « s « peut obtenir une autorisation « a « sur un objet « o

« suite à l'exécution d'une séquence de commandes. Les auteurs montrent que le

problème de protection est indécidable.

 Cependant, il devient décidable dans le cas des systèmes mono-

opérationnels (c.à.d chaque opération consiste en une seule action : lire, écrire,

etc).Les mêmes auteurs ont proposé un algorithme de vérification de sûreté pour

le système mono opérationnel. L’algorithme consiste à tester un ensemble fini

d'exécutions.

Cependant, l'algorithme est difficilement utilisable du fait de sa complexité

(NP-Complete) et l'hypothèse d'un système mono-opérationnel ne correspond

pas aux systèmes réels[MIC76].

Enfin, ce modèle ne permet pas d'exprimer des interdictions, des obligations

ou des recommandations.

1.6.1.3 Modèle TAM
 Ce modèle est une extension du modèle HRU mais qui introduit la notion de

type. La matrice d'accès typé (noté TAM pour Typed Accès Matrix) développée par

Sandhu est composée de trois éléments :

R : définit un ensemble fini des droits d'accès.

Chapitre 1 : Les modèles de contrôle d'accès

14

T : définit un ensemble fini de types d'objets (types).

Ts : définit un ensemble fini de sujets avec Ts inclus dans T.

 Les types et les droits sont définis quand le système est initialisé et

demeurent constants. Exemple : T = {utilisateur, os, fichier}, Ts = {utilisateur,

os}, R = {lire, écrire, exécuter, propriétaire}.

 Ici le type os désigne un officier de sécurité. Le modèle présente la

distribution des droits dans le système avec une matrice d’accès ; une ligne pour

chaque sujet et une colonne pour chaque objet. L'état de protection est un

quadruplet (S, O, t, M) où :

1. S : l'ensemble des sujets.

2. O : ensembles des objets.

3. t : la fonction qui accorde un type à chaque objet.

4. M : la matrice d'accès.

 Un point important, dans ce modèle, est que la création de nouveaux types

n'est pas possible. La gestion des types est prise en compte dans les opérations

élémentaires décrites plus haut pour HRU.

 Sandhu s'est intéressé à la version monotone de TAM, soit MTAM

(Monotonic Typed Access Matrix), obtenue en ôtant les opérations de suppression

(droits, sujets ou objets).

 Il démontre que le problème de la sûreté est décidable dans le cas d'un

modèle de protection MTAM où le graphe de création des sujets et objets est

acyclique. Toutefois la complexité de ce problème reste NP.

 C'est pourquoi Sandhu définit le modèle MTAM ternaire, dans lequel toutes

les commandes ont au maximum trois arguments [MEM 10].

Au prix d'une perte d'expressivité, le problème de sûreté voit sa complexité

ramenée à un degré polynomial.

Chapitre 1 : Les modèles de contrôle d'accès

15

1.6.1.4 Les limites des politiques discrétionnaires

 L'avantage évident du DAC est qu'il est extrêmement flexible. Cependant,

DAC ne fournit pas une vraie assurance sur la protection du flux d'information

dans un système. Il est possible de dévier les restrictions d'accès indiquées par les

autorisations.

Par exemple, un utilisateur qui est autorisé à lire des données peut les passer

à d'autres qui ne sont pas autorisés à les lire sans que le propriétaire des données

le sache. De plus, une analyse plus précise du problème de contrôle d'accès fait

surgir l'utilité d'établir la distinction entre sujets et utilisateurs.

Le terme utilisateur désigne des entités passives possédant des

autorisations et qui se connectent au système. Un utilisateur connecté au système

génère un sujet ou un processus qui effectue à son compte les demandes au

système.

Le fait que ces modèles ne font pas cette distinction les rend vulnérables aux

attaques malveillantes telles que des chevaux de Troie [GIA95]

 Ainsi, DAC semble être approprié aux environnements dont le partage

d'informations est plus important que sa protection.

1.6.2 Les contrôles d'accès obligatoires (MAC)

 Introduites en 1976 par Bell et LaPadula afin d'apporter une solution aux

problèmes de fuites d'informations des modèles DAC, les politiques mandataires

sont utilisées spécialement dans les environnements militaires à cause de leurs

contrôles centralisés. Elles permettent à l'administrateur du système de définir

des privilèges pour protéger la confidentialité et l'intégrité des ressources dans le

système et affectent aux sujets et objets d'une organisation, des niveaux de

sécurité qui sont non modifiables par les utilisateurs et qui régissent la manière

dont l'information est transmise dans les systèmes. [NET02].

Chapitre 1 : Les modèles de contrôle d'accès

16

Figure1.2 : Les niveaux de sensibilité dans le modèle MAC.

 En effet chaque sujet reçoit un niveau d'habilitation et chaque objet un

niveau de classification. Si le niveau d'habilitation d'un sujet est supérieur ou égal

au niveau de classification d'un objet, alors ce sujet a la permission d'accéder à cet

objet.

Les règles de cette politique diffèrent selon qu'il s'agisse de maintenir des

propriétés de confidentialité (on a le modèle Bell-Lapadula utilisé pendant

longtemps dans les systèmes militaires pour assurer la confidentialité) ou

d'intégrité (on a les modèles Biba, DTE, Clark et Wilson, la Muraille de Chine).

 Ce modèle est très rigide car, il ne permet pas de gérer les exceptions entre

les différents niveaux de sécurité. Il est adapté pour les administrations

centralisées, les systèmes clos et contrôlés à haute confidentialité ou intégrité. Les

systèmes ici peuvent être détournés et exploités pour transférer des informations

via des canaux cachés non désignés pour la communication.

 Dans ce modèle, les politiques de sécurité imposent que les décisions de

protection ne doivent pas être prises par le propriétaire des objets concernés, et

doivent lui être imposées par le système.

1.6.2.1 Modèle de Bell-LaPadula

 Élaboré en 1975 pour le département de la défense américaine, ce modèle

propose des règles pour prévenir la divulgation de l'information dans un système

informatique. Les entités de base dans ce modèle sont [NET02]:

Chapitre 1 : Les modèles de contrôle d'accès

17

1. Entité active : sujet (processus, programmes en exécution)

2. Entité passive protégée : objets (données, fichiers, programmes, sujets)

 Figure1.3 Modèle de Bell-LaPadula

* Confidential cannot read secret

* Confidential cannot write unclassified

Simple proprieté de securité: no read up

*Propriété : no write down

La classification des sujets et des objets accorde un niveau de sécurité à

chaque sujet et chaque objet. Formellement, chaque objet est associé à un niveau

de sécurité de la forme (niveau de classification, un ensemble de catégories).

Chaque sujet est également associé à un niveau de sécurité maximum et un niveau

de sécurité courant, qui peut être changé dynamiquement. L'ensemble des

niveaux de classification est ordonné par la relation « < «.

Top secret

Secret

confidentiel

unclassified

Chapitre 1 : Les modèles de contrôle d'accès

18

Le niveau de sécurité A dominé B si et seulement si le niveau de classification

de A est supérieur au niveau de classification de B, et l'ensemble de catégories de

B est inclus dans l'ensemble de catégories de A. Par exemple, si on a l'ensemble

(top secret, secret, confidentiel, non classifié) et un ensemble de catégories

(nucléaire, défense, etc) où : Non classifié < confidentiel < secret < top secret

 Le niveau de sécurité (top secret, {nucléaire, défense}) domine le niveau de

sécurité (secret, {nucléaire}) car top secret > secret et l'ensemble de catégories

{nucléaire} est inclus dans l'ensemble {nucléaire, défense}. Le modèle est une

machine à état (B, M, F, H) où :

B : représente l'accès courant d'un sujet à un objet. C'est un triplet (sujet, objet,

attribut d'accès). Les attributs d'accès permis dans le modèle sont :

E : non observation et non altération

R : observation et non altération

A : non observation et altération

W : observation et altération M : la matrice(Mso), s ∈ S, o ∈ O, enregistre les modes

d'accès permis pour un sujet sur un objet.

H : la hiérarchie, structures orientées imposées aux objets du système (arbres

orientés, points isolés).

F : la fonction de niveau, les sujets et les objets reçoivent deux types de

désignations formelles de sécurité : niveau de classification (non classifié,

confidentiel, secret, top secret, etc) et une catégorie (nucléaire, défense, etc.).

Donc, la désignation de sécurité est une paire (classification, catégorie) cette

paire est appelée niveau de sécurité.

Pour éviter la divulgation de l'information, deux caractéristiques doivent

être maintenues : La propriété simple (no Read up) : si on a un accès courant

(sujet, objet, attribut d'accès) alors le niveau de sécurité du sujet domine celui de

l'objet. Propriété étoile (no write down) : si un sujet a accès à un objet o1 et peut

Chapitre 1 : Les modèles de contrôle d'accès

19

altérer un objet o2 alors le niveau de l'objet o1 doit être dominé par le niveau de

l'objet o2.

Exemple : admettons que le niveau de sécurité de l'objet o1 domine celui

de l'objet o2. Si Sujet1 lit l'objet o1 et Sujet1 écrit les informations de l'objet o1

dans l'objet o2, Alors il y aura une fuite de données. [UNI76]

1.6.2.2 Le modèle de Brewer- Nash

 Ce modèle pour régler le problème de conflit d'intérêt relié aux activités de

consultation à l'intérieur des banques et autres institutions financières. L'objectif

de ce modèle est de prévenir le flux d'information illicites. Exemple : un consultant

ne doit pas avoir le droit d'accéder aux données confidentielles de deux

compagnies concurrentes (conflit d'intérêt).

Muraille de chine (The Chinese Wall) Toute l'information de corporation

est stoquée dans un système de fichiers disposés hiérarchiquement. Il y a trois

niveaux d’importance :

1. Bas niveau : ce niveau comprend les items individuels d'information, chacun

concernant une simple société. Les fichiers dans lesquels une telle information est

stoquée sont dits des objets.

2. Niveau intermédiaire : tous les objets concernant la même société sont groupés

dans ce qui est appelé un ensemble de données de compagnie (company dataset).

3. Haut niveau : tous les ensembles de données de compagnie dont les sociétés

sont en concurrence sont groupés ensemble. Chaque groupe est appelé une classe

de conflit d'intérêt (conflit of interest class). Ainsi, si dans une application, nous

avons des informations sur la banque A, la compagnie pétrolière B et la compagnie

pétrolière C. Deux classes de conflit d'intérêt sont créés, une pour les banques

(contenant l'ensemble des données de la banque A) et une autre pour les

compagnies pétrolières (contenant les ensembles de données pour la compagnie

B et la compagnie C. La permission d'accès à un objet (o) est accordée pour un

sujet (s) seulement si :

Chapitre 1 : Les modèles de contrôle d'accès

20

(a) L'objet o appartient au même ensemble de données déjà accédées par le sujet

s (à l'intérieur de la muraille) ou

(b) L'objet o appartient à une autre classe de conflits d'intérêt

 Une des distinctions par rapport aux politiques de Bell-LaPadula est le fait que

les permissions d'accès d'un sujet à un objet dépendent des anciens accès de ce

sujet.

 L'information aseptisée (Sanitized information) : Une information est dite

aseptisée si elle a été purgée de détails sensibles et elle n'est pas sujette à des

restrictions d'accès. Considérons maintenant le cas suivant :

1. Sujet1 accède aux données de la compagnie C1 et les données de la banque

A.

2. Sujet2 accède aux données de la compagnie C2 et les données de la banque

A.

3. La compagnie 1 et la compagnie C2 appartiennent à la même classe

d'intérêt.

4. Si Sujet1 lit les données de la compagnie C1 et les écrit dans des fichiers

de la banque A, cela ne doit pas être permis car le Sujet2 peut accéder aux

données de la compagnie C1.

Donc le modèle propose deux règles pour gérer la permission d'écriture

(propriété étoile). L'accès en écriture à un objet O est permis seulement si les deux

conditions suivantes sont vraies [TCW89]:

1. Accès en lecture est permis par les deux règles précédentes.

2. S ne peut lire aucun objet appartenant à un ensemble de données de compagnies

différent de celui de O, et contenant des données non aseptisées.

1.6.3 Les modèles de contrôle d'accès basées sur les rôles RBAC

 Proposées en 1992 par David Ferrailo et Richard Kuhn, les politiques basées

sur les rôles sont adaptées pour les organisations comportant un nombre

Chapitre 1 : Les modèles de contrôle d'accès

21

important d'utilisateurs et d'objets. Leur principe général est d'introduire un

niveau d'indirection entre utilisateurs et permissions. C'est le concept de rôle qui

a été intercalé entre eux afin de mieux structurer les droits d'accès.

 Il représente une fonction dans le cadre d'une organisation, c'est-à-dire qu'il

décrit facilement les activités qu'un sujet a le droit d'accomplir au sein de cette

organisation. Les sujets ayant reçus l'autorisation de jouer un rôle, héritent alors

des permissions associées à ce rôle. Ceci dit, d'un côté nous avons des permissions

qui sont accordées aux rôles, et de l'autre côté, des utilisateurs se voient affecter

un ou plusieurs rôles.

 De ce fait, si un nouvel employé est recruté dans une organisation, il suffit de

lui assigner un (des) rôle(s) pour que le système l'intègre automatiquement dans

les limites autorisées par la politique de cette organisation. Ce modèle simplifie

l'administration des systèmes, facilite la compréhension de la structure de

l'organisation et même de la politique de sécurité, réduit la complexité de gestion

des droits d'accès et permet à ce que les rôles soient organisés de manière à

former une hiérarchie permettant de raffiner les différentes permissions

attribuées à chaque rôle. L'un de ses problèmes majeurs est le fait que, les

utilisateurs ayant le même rôle obtiennent les mêmes privilèges.

 Ce qui réduit la flexibilité des politiques de sécurité. On souhaiterait par

exemple que dans certaines organisations telles qu'un hôpital, un médecin n'ait

accès qu'aux dossiers de ses patients et ce n'est pas exprimable dans RBAC.

 RBAC est le modèle le plus populaire et largement utilisé le contrôle d'accès.

Plusieurs produits de l'industrie (bases de données, OS, applications d'entreprise,

etc.) dépendent.

 RBAC définit trois entités, à savoir :

1. Les utilisateurs,

2. Les rôles,

3. Les permissions.

Chapitre 1 : Les modèles de contrôle d'accès

22

Figure 1.4 model RBAC

RBAC associe les utilisateurs aux rôles d'une part et des rôles avec des

autorisations d'autre part. Deux types de règles doivent être définies :

 Rôle de l'utilisateur : les règles qui ont deux paramètres : un utilisateur et

un rôle.

 Règles Rôle d'autorisation qui ont deux paramètres : rôles et autorisations

 Pour illustrer comment construire une politique RBAC, nous utilisons

l'exemple d'un système de gestion de bibliothèque. Ce système définit trois types

d'utilisateurs : les étudiants, les secrétaires et un directeur.

 Les étudiants peuvent emprunter des livres à la bibliothèque, le secrétaire gère

les comptes des étudiants, mais seul le directeur peut créer des comptes.

 Le modèle ORBAC (organisation Based Access Control) a été proposé pour

faire face à cette limite.

POLICY LibraryRBAC (RBAC)

 R1 -> User Role(kamel Student)

 R2 -> UserRole(mohamed Director)

 R3 -> User Role (reda Secretary)

 R4 -> Role Permission (Student Borrow Book)

Users Rôles Operations OBJETS

Permissions

Chapitre 1 : Les modèles de contrôle d'accès

23

 R5 -> Role Permission (Personnel ModifyUserAccount)

 R6 -> Role Permission (Director CreateUserAccount)

Il étend le modèle RBAC et attribut des

Permissions|obligations|recommandations|interdictions pour la

réalisation d'activités dans une organisation par un rôle dans un contexte donné.

[LUC04]

 Le cœur de RBAC (core RBAC) : Il couvre les critères de base inclus dans

tous les systèmes RBAC. Il reconnaît cinq éléments administratifs

1. Utilisateur : se réfère à la personne qui interface avec le système

informatique. Dans plusieurs conceptions, un utilisateur peut avoir

plusieurs login IDs et ces derniers sont actifs simultanément. Le terme

sujet se réfère au processus jouant au nom d'un utilisateur.

Deux relations sont définies : la première relie un utilisateur à un sujet et une autre

relie un sujet à l'ensemble de ces rôles actifs.

2. Rôle : les fonctions ou les responsabilités des employés dans une

organisation.

3. Opération : c'est un processus actif invoqué par le sujet (exemple : lire,

écrire, etc).

4. Objet : toute ressource accessible dans un système informatique

(fichiers, périphériques comme l'imprimante, etc).

5. Permission : (privilège) une autorisation d'exécuter une opération sur

un objet.

 Propriétés :

1. Autorisation d'un rôle : un sujet ne peut jamais avoir un rôle actif qui ne

lui est pas permis.

Chapitre 1 : Les modèles de contrôle d'accès

24

2. Autorisation d'accès à un objet : un sujet S peut exécuter une opération

Op sur un objet O seulement s'il existe un rôle R qui appartient à l'ensemble

des rôles actifs du sujet S et il existe une permission accordée au rôle R qui

autorise ce rôle à exécuter l'opération Op sur l'objet O.

 Hiérarchie RBAC : La motivation d'introduire cet aspect dans le RBAC c'est

qu'à l'intérieur d'une organisation plusieurs rôles peuvent avoir des

permissions communes. Par exemple : des permissions générales comme

l'accès à un site Web interne, la possibilité de télécharger des documents,

etc. Ces permissions peuvent être accordées à tous les employés ou à la

plupart d'entre eux. Outre l'assignation de rôles et de permissions qui

caractérisent la structure plate de rôle, la relation d'héritage de rôle crée

une troisième forme d'autorisation. Si le rôle

A hérite du rôle B, cela veut dire que toutes les permissions de B sont

permises via le rôle A. En d'autres mots, les permissions de B sont un sous-

ensemble de l'ensemble de permissions de A et tous les utilisateurs

pouvant jouer le rôle A peuvent aussi jouer le rôle B. Deux types de

hiérarchie entre les rôles ont été définis :

1. Général : permet l'héritage multiple des permissions. Cela signifie qu'un

rôle peut en même temps avoir un ou plusieurs descendants

(potentiellement hérite des permissions à partir de plusieurs sources).

De manière formelle, nous définissons un ordre partiel noté « ≥ « sur

RH ⊆ ROLES ×ROLES tel que : étant donné deux rôles r1 et r2 :

r1 ≥ r2 ⇒ authorized−permissions(r2) ⊆ authorized−permissions(r1)∧

authrized−users(r1) ⊆ authorized−users(r2) avec authorized−users(r)

= u ∈ USERS,|r1 ≥ r2∧(u,r1) ∈ UA et authorized−permissions(r) = p ∈

PRMS,|r1 ≥ r2,(p,r1) ∈ PA. où UA est l'ensemble des paires (utilisateur,

rôle) et PA est l'ensemble des paires (permission, rôle).

2. Limité : est défini comme la hiérarchie générale mais il ne permet pas

l'héritage multiple.

Chapitre 1 : Les modèles de contrôle d'accès

25

3. Séparation de tâches (SOD) : La notion de séparation de tâches a été

ajoutée ultérieurement dans le modèle RBAC.

 Ce concept permet d'assurer qu'aucune personne n'a la capacité de commander

toutes les étapes impliquées dans une opération à haut risque. Aucun utilisateur

n'a assez de droits pour abuser seul du système. Cela permet d'éviter des fraudes

et des erreurs majeures. Dans la littérature, plusieurs variétés de SOD ont été

proposées où deux larges catégories :

1. Séparation statique de tâches (static separation of duty) : aucun usager ne peut

avoir deux rôles qu'on peut désigner comme mutuellement exclusifs

(conflictuels).

2. Séparation Dynamique de tâches (dynamic separation of duty) : aucun usager

ne peut avoir, pendant une même session, deux rôles dits mutuellement exclusifs.

Critique de RBAC :

1. L'un des problèmes majeurs de ce modèle est le fait que tous les

utilisateurs associés au même rôle possèdent forcément les mêmes

privilèges. Ceci réduit la flexibilité des politiques de sécurité ainsi

modélisées. En effet, dans une organisation tel qu'un hôpital, on peut

souhaiter qu'un médecin n'ait accès qu'aux dossiers des patients dont il a

le consentement.

2. Le concept de permission est primitif. Il n'y a pas de structure générique

de permissions. Celles-ci sont considérées comme dépendantes de

l'application concrète du modèle.

3. Le concept de permission est général, il est incorrect de considérer que la

hiérarchie des rôles correspond à la hiérarchie organisationnelle. Par

exemple, le directeur de l'hôpital a un rôle administratif supérieur au rôle

de médecin. Pour autant, un directeur de l'hôpital n'est pas

nécessairement un médecin, ainsi il n'est pas souhaitable d'accorder au

directeur les permissions du médecin.

4. Il n'est pas possible de définir des obligations et des recommandations.

Chapitre 1 : Les modèles de contrôle d'accès

26

1.6.4 Les modèles de contrôle d'accès basées sur l'organisation

OrBAC

 Proposé en 2003 par Abou El Kalam , le contrôle d'accès basé sur l'organisation

reprend les principes de rôles du modèle RBAC en offrant en plus, la possibilité de

modifier la politique de sécurité en fonction d'une circonstance concrète, c'est-à-

dire qu'il exprime facilement les permissions qui dépendent d'un contexte. En

dehors des permissions, il offre la possibilité d'exprimer des obligations, des

interdictions et même des recommandations dépendant bien évidemment des

contextes. Il est centré sur le concept d'organisation (groupe structuré d'entités

actives), et tous ses autres concepts sont définis par rapport à l'organisation. A

partir des relations ternaires (habilite, utilise et considère), il définit les relations

qui existent entre les entités du niveau concret (sujets, objets, et actions), du

niveau abstrait (rôles, vues et activités) et l'entité contexte ainsi qui suit :

1. Entité Sujet : qui réfère aux utilisateurs par exemple, "Jean", "Marie ", "

Pierre ", etc.

2. Entité Organisation : comme " département comptable ".

3. Entité Rôle : est utilisée pour structurer le lien entre les sujets et les

organisations. Dans le domaine médical, le rôle " cardiologue " est joué par

des utilisateurs alors que le rôle "service des urgences " est joué par des

organisations.

4. Entité Objet : représente principalement les entités non actives comme les

fichiers, les courriers électroniques, les formulaires imprimés, etc.

5. Entité Action : en globe principalement les actions informatiques comme "

lire ", "écrire ", "envoyer ", etc

6. Entité Vue : un ensemble d'objets qui satisfont une propriété commune, ex

: dans un hôpital, la vue "dossiers administratifs" peut désigner l'ensemble

des dossiers administratifs du patient.

 La même vue peut être définie différemment suivant l'organisation. Exemple : la

vue "dossier médical » peut être définie dans un hôpital comme un ensemble de

documents Word, et comme un ensemble de documents Latex dans un autre

hôpital.

Chapitre 1 : Les modèles de contrôle d'accès

27

7. Entité Activité : correspond à des actions qui ont un objectif commun.

Exemple : " consulter", "modifier ", " transmettre ", etc. L'activité " consulter

" peut correspondre, dans l'organisation hôpital, à l'action " lire " un fichier,

mais peut tout aussi bien correspondre à l'action " select " sur une base de

données dans une autre organisation.

8. Entité Contexte : permet d'exprimer des circonstances telles que "urgence",

" médecin traitant ", etc.

 Douze relations ont été introduites : La relation Habilite entre

l'organisation, le sujet et le rôle.

 La relation Utilise lie une organisation, un objet et une vue.

 La relation Considère lie une organisation, une action et une activité.

 La relation Définit lie une organisation, un sujet, un objet, une action et un

contexte.

 La relation Permission (org, r, a, v) signifie que l'organisation org accorde

au rôle r la permission de réaliser l'activité a sur la vue v.

 Les relations Obligation et recommandation peuvent être définies de

manière analogue à celle de la relation Permission.

 La relation Est_permis entre les sujets, les objets et les actions. Les relations

Est_interdit, Est_obligatoire et Est_recommandé sont dénies de façon

analogue à la relation Est_permis.

 La relation Sous-rôle (ST1, r1, r2) : est une relation introduite pour pouvoir

modéliser la notion de hiérarchie entre les rôles.

 Les contraintes sont exprimées dans le modèle par des règles s'appliquant

à diverses relations.

OrBAC introduit la notion d'organisation, qui définit un champ

d'application des règles de contrôle d'accès, et il est très utile pour traiter

l'interopérabilité entre les différentes organisations. Il ajoute également la notion

de contexte.Ce qui permet de définir des politiques dynamiques.

OrBAC définit les entités suivantes; organisations, rôles, activités, points de vue, le

contexte. Il permet de définir trois types de règles

Chapitre 1 : Les modèles de contrôle d'accès

28

 Permission (Organisation, Rôle, Activité, vue, contexte).

 Interdiction (Organisation, Rôle, Activité, vue, contexte).

 Obligation (Organisation, Rôle, Activité, vue, contexte).

En outre, OrBAC soutient les hiérarchies plus des organisations, des rôles, des

vues et même délégation et l'administration de la politique. Pour illustrer les

politiques OrBAC, nous utilisons l'exemple du système de gestion de bibliothèque.

 POLICY LibraryOrBAC (OrBAC)

 R1 -> Permission (Library Student Borrow Book Working Days)

 R2 -> Prohibition (Library Student Borrow Book Holidays)

 R3 -> Prohibition (Library Secretary Borrow Book Default)

 R4->Permission (Library Personnel ModifyAccount UserAccount

WorkingDays)

 R5->Permission (Library Director CreateAccount UserAccount

WorkingDays)

 L'avantage de ce modèle est qu'il permet d'exprimer des règles contextuelles

qui peuvent être spécifiques à une organisation. Il permet de spécifier au sein

d'une même organisation structurée en plusieurs sous organisations plusieurs

politiques de sécurité. Contrairement aux autres modèles qui ne modélisent que

des politiques de sécurité se restreignant à des permissions statiques.

OrBAC offre la possibilité d'exprimer des règles relatives aux permissions,

interdictions, obligations et recommandations. Malheureusement, il ne permet

pas d'assurer qu'il n'y aura pas de conflits dans la politique de sécurité (par

exemple, pour un sujet donné, une action donnée, et un objet donné, il nous faut

détecter et résoudre une situation dans laquelle il serait possible de dériver à la

fois une permission et une interdiction). Il ne montre pas comment détecter une

violation de la politique de sécurité et pour finir, ne dit en rien si une politique de

sécurité est cohérente ou pas.

En vue de se rassurer de sa sûreté, il faut vérifier que la politique mise en

place est cohérente.

Chapitre 1 : Les modèles de contrôle d'accès

29

FIGURE 1.5 Modèle OrBAC

Contexte Vue

Permission

Role

Acitivite

Considere

Organisation

Utilise
Habilite

Object

Est_permit

Action

Subject

Chapitre 2 : Les langages de spécification de politiques de sécurité et
des attaques

30

2.1 Introduction

Les politiques permettent de définir les règles de la sécurité et de la gestion

des différents composants du système. Cela implique l'emploi d'un langage pour

exprimer les règles d'affaires et les règles non fonctionnelles, et de donner aux

utilisateurs la possibilité de tester et de corriger les politiques. Plusieurs langages

tels que XACML, Rei ou PONDER, sont utilisés pour exprimer les politiques par

rapport aux objectifs du système d'information. Ces langages peuvent définir

plusieurs règles et politiques.

2.2 Tests de sécurité

 Les tests de sécurité sont générés à la partir de la politique de CA. Ils ont

pour objectifs de valider la conformité du mécanisme de sécurité vis-à-vis de sa

politique de CA et faire la génération des attaques dans les politique de sécurité.

 Les tests sécurité est composé de trois parties : l'intention du test (ce qu'on

veut tester), la séquence du test (la suite d'opérations effectue) et l'oracle (qui

vérifie et décide si le test réussi ou échoue)

2.2.1 Exemple Test de sécurité

Test qu'un emprunteur peut emprunter et rendre un livre les jours travaillés

(comme spécifié par la politique de CA) :

 Intention : tester qu'un emprunteur a le droit d'emprunter et rendre

un livre les jours travaillés

 Séquence : emprunter un livre et ensuite le rendre pendant les jours

travaillés

 Oracle : Interroger le PDP pour vérifier que les bonnes règles ont été

activées.

Chapitre 2 : Les langages de spécification de politiques de sécurité et
des attaques

31

Les tests de sécurité peuvent être génères la partir de différents critères.

Nous proposons, les critères suivants :

 Toutes les règles primaires : couvrir les règles primaires, si une règle

est dérivable, tester une de ses règles dérivées.

 Toutes les règles concrètes : couvrir l'ensemble des règles concrètes.

 Avant de faire le test de sécurité, Nous créons des mutants, Un mutant est une

Utilisations de la mutation pour les tests de contrôle d'accès. Les tests sont lances

sur les mutants pour détecter les erreurs.

2.3 la mutation

2.3.1 La création des mutants

La création des mutants est effectuée de manière systématique via des

opérateurs de Mutation, Chaque opérateur injecte un type particulier d'erreur.

Une seule erreur est injectée à la fois, pour créer chaque mutant. On propose les

opérateurs de mutations Suivants :

1. Operateurs basiques modifiant le type :

 PPR (permission to prohibition) : remplace une règle de permission par

une interdiction.

 PRP (prohibition to permission) : remplace une règle d'interdiction par

une permission.

Exemple 1:

 Règle initial:

Permission (Secretary, Consult BorrowerAccount ,BorrowerAccount,default)

 Règle utiliser à la place (PPR) :

Prohibition (Secretary, ConsultBorrowerAccount, BorrowerAccount,default)

Exemple 2:

 Règle initial :

Chapitre 2 : Les langages de spécification de politiques de sécurité et
des attaques

32

 Prohibition (Student,GiveBackBook, Book, Holidays)

 Règle utiliser à la place (PRP) :

 Permission (Student, GiveBackBook, Book, Holidays)

2.Operateurs basiques modifiant les paramètres :

 RRD (role replaced with different one) : remplace dans une règle le rôle

d'une règle par un autre rôle pris au hasard.

 CRD (context replaced with different one) : remplace dans une règle le

contexte par un autre contexte pris au hasard.

Exemple 1 :

 Règle initial :

Permission (Administrator,ModifyAccount, BorrowerAccount, default)

 Règle utiliser à la place (RRD) :

Permission (Secretary,ModifyAccount, BorrowerAccount, default)

Exemple 2:

 Règle initial :

Permission (Student, BorrowBook, BorrowerAccount, WorkingDays)

 Règle utiliser à la place (CRD)

Permission (Student, BorrowBook, BorrowerAccount, Holidays)

3.Operateurs basiques modifiant la hiérarchie :

 RPD (parent role replaced with a descendant) : remplace dans une règle un rôle

par un de ses descendants (modifiant ainsi les règles dérivées)

 APD (parent action replaced with a descendant) : remplace dans une règle

une permission par un de ses descendants (modifiant les règles dérivées)

Exemple 1 :

 Changer les hiérarchies de rôle, Règle initial :

Permission (Borrower,reserveBook, Book,WorkingDays)

 Règle utiliser à la place(RPD) :

Permission (Teacher,reserveBook, Book,WorkingDays)

Chapitre 2 : Les langages de spécification de politiques de sécurité et
des attaques

33

Exemple 2 :

 Changer activité hiérarchies, règle initiale :

Permission (Student,BorrowerActivity, Book,WorkingDays)

 Règle utiliser à la place (APD) :

Permission (Student,BorrowBook, Book,WorkingDays)

2.Operateur avance :

 ANR (Add New Rule) : ajoute une nouvelle règle ne faisant pas partie des

règles définies.

Examples de ANR

Permission(Teacher,consultPersonnelAccount,PersonnelAccount, WorkingDays)

Permission (Secretary,ManageAccess , PersonnelAccount,MaintenanceDay)

 Les mutants crées contiennent par construction des règles différentes de

la politique initiale parce qu'ils ajoutent une nouvelle règle ou modifient une règle

existante.

 On distingue deux types d'opérateurs de mutation, les opérateurs basiques

(tous les opérateurs sauf ANR) et l'opérateur avancé de mutation qui est ANR. Ce

dernier est particulier parce qu'il vise la tester le comportement par défaut du

mécanisme de CA. En effet, toute politique de CA contient X règles et 1 règle par

défaut (permission ou interdiction) qui s'appliquent quand les autres règles ne

correspondent pas aux entités d'une requête. L'opérateur ANR permet de créer

des règles qui viennent se substituer la règle par défaut et viennent compléter les

X règles définies. Il s'agit donc d'un operateur avancé puisqu'il permet de tester

plutôt la robustesse du mécanisme de CA.

Chapitre 2 : Les langages de spécification de politiques de sécurité et
des attaques

34

2.4 langage de politiques de sécurité XACML

2.4.1 Définition

XACML (eXtensible Access Control Markup Language) est un langage de

politique permettant d'exprimer les règles utilisées pour le contrôle d'accès. La

spécification du langage XACML est définie par un ensemble de schémas XML, qui

décrit la syntaxe des règles et des politiques d'accès. Le langage XACML vise à

atteindre plusieurs objectifs comme :

 Assurer une protection efficace pour les ressources du système.

 Permettre de concevoir un système indépendant de la plate-forme utilisée.

 Permettre d'intégrer les politiques XACML dans des applications déjà
existantes.

2.4.2 La norme XACML

XACML est une norme de l’OASIS. Elle consiste essentiellement en un langage

XML qui permet d’encoder, d’une part, des politiques de contrôle d’accès de type

RBAC étendu et, d’autre part, des requêtes/réponses aux décisions d’autorisation.

La norme décrit aussi un modèle de flux de données pour une application et un

gestionnaire de mise en œuvre d’une politique XACML [MEG12].

 2.4.3 Description du langage XACML

Une politique en XACML (figure 2.1) est composée d'une cible, d'une ou

plusieurs règles et d'un algorithme de combinaison des règles.

Chapitre 2 : Les langages de spécification de politiques de sécurité et
des attaques

35

Figure 2.1: Exemple de la structure d'une politique XACML

La décision de la politique est calculée en utilisant des algorithmes de combinaison

sur les décisions des règles.

 La figure (2.2) suivante présente le diagramme de classes d’un modèle

XACML qui illustre les concepts du langage utiles pour la description d’un

document XACML. Un document XACML définit un ensemble de politiques

(PolicySet).

<policy PolicyId="deny-test"
RuleCombiningAlgld= " rule-combining-algorithm:fist-applicable"
< Description > structure de la politique </Description>
<Target>
<Subjccts> … </Subjects>
<Resources>… </ Resources >
<Actions>.. </Actions>
<target>
<Rule/> </Rule> #
régIe 1 <Rule/>
</Rule> # régIe 1

</Policy>

Chapitre 2 : Les langages de spécification de politiques de sécurité et
des attaques

36

 Figure 2.2: Modèle du langage XACML [NET03]

Chaque politique (Policy) vise une cible (Target) et comporte des règles

(Rule) qui sont évaluées dans le contexte courant de la requête d’autorisation

reçue de l’environnement. Les règles d’une politique sont évaluées seulement

lorsque la cible de celle-ci correspond à la cible de la requête d’autorisation et les

résultats de cette évaluation sont combinés pour fournir un résultat unique pour

la politique. La combinaison de ces résultats est faite suivant un algorithme de

combinaison (Rule Combining Algorithm) précisé par la politique. La politique

comporte également des obligations (Obligation).

XACML définit les obligations comme des actions à exécuter par le

gestionnaire de mise en œuvre lorsque la requête d’autorisation traitée est

autorisée. Cette fonctionnalité est utilisée par les règles, les politiques et les

ensembles de politiques. [MEG12]

Chapitre 2 : Les langages de spécification de politiques de sécurité et
des attaques

37

2.4.3.1 La cible

XACML a introduit la notion cible « Target » afin d'identifier les règles et les

politiques qui concernent une requête. La cible est composée d'attributs qui

décrivent le sujet, les ressources, les actions et l’environnement :

 Le sujet décrit les attributs de l'utilisateur qui a fait une demande d'accès.

 La ressource décrit les attributs de l'objet auquel l'accès est demandée.

 L'action représente les attributs qui décrivent les mesures que le sujet veut
prendre sur la ressource demandée.

 L'environnement concerne les attributs détenant des informations sur le
contexte.

Chacun de ces composants est déterminé par des propriétés. Un sujet peut être

défini par un identificateur, un groupe auquel il appartient, un rôle etc. Une

ressource peut être caractérisée par un identificateur, des propriétés et un type.

La même chose pour l'action qui peut être définie par un identificateur, le nom

d'action à effectuer. Par exemple, nous considérons la requête suivante :

Un étudiant identifie par « user_id » qui appartient au groupe « A » veut

accéder à un document public en mode écriture. Pour cette requête nous pouvons

distinguer :

 Le sujet : user_id .

 La ressource : document public.

 L'action : écriture.

Les propriétés des sujets, ressources et actions sont appelées attributs. Chaque
attribut possède une valeur.

2.4.3.2 La règle

Une règle de contrôle d'accès est définie avec le langage XACML comme étant

un ensemble de prédicats qui répondent aux questions suivantes :

 Quels sont les sujets concernés ?

 Quelles sont les ressources demandées ?

 Quelles sont les actions demandées ?

 Quelle est la décision à renvoyer ?

Chapitre 2 : Les langages de spécification de politiques de sécurité et
des attaques

38

Une règle XACML est composée d'un effet, d'une cible et d'une condition :

 Effet : détermine la décision de la règle. C'est soit « Permit » soit « Deny » .

 Cible : permet de déterminer si la règle correspond à la requête ou non.

 Condition : décrite par un prédicat sur les attributs de la règle.

Par exemple, soit « R » une requête que nous désirons évaluer par rapport à

une règle. La première étape de validation consiste à évaluer la cible de cette

requête afin de savoir si la règle « R » peut être appliquée ou non :

 Si la cible de la règle satisfait celle de la requête, les conditions de la règle

seront évaluées ;

 Dans le cas où ces conditions seraient satisfaites, la réponse de la règle sera

l'effet spécifié.

 Dans le cas contraire ou si la cible de la règle ne correspond pas à la requête, la

règle « R » ne sera pas considérée. Prenons l'exemple suivant :

 Cible :

- L'identificateur du sujet est l'étudiant.

- La ressource est un document public.

- L'action est écriture.

 Condition :

- L'étudiant doit appartenir au groupe des étudiants de maitrise (groupe A).

 Effet :

- Autorisation d'écriture.

 Si un étudiant de groupe « A » demande de modifier un document

public, cette règle sera appliquée et retournera la décision « permit ». Si un

étudiant de groupe « A » demande de modifier un document privé, cette

règle ne sera pas appliquée car elle traite seulement les documents publics.

Si l'étudiant n'appartient pas au groupe « A », cette règle ne sera pas

appliquée car sa condition n'est pas satisfaite.

Chapitre 2 : Les langages de spécification de politiques de sécurité et
des attaques

39

2.4.3.3 La politique

Une politique est exprimée par une cible, un ensemble de règles et un

algorithme de combinaison.

 Pour identifier les politiques appropriées à l'évaluation de la requête, il faut

d'abord comparer la cible de la requête avec la cible de la politique, et par la suite,

vérifier les conditions des règles de la politique afin de déterminer la décision «

permit» ou « deny ».

Il est possible que les règles d'une politique retournent des décisions

différentes par rapport à une requête donnée. L'algorithme de combinaison des

règles permet de spécifier comment déterminer la décision de la politique.

Les décisions possibles sont :

 Permit : l'accès est autorisé.

 Deny : l'accès à la ressource est refusé.

 Indeterminate : il n'est pas possible d'appliquer la politique à la requête

parce qu'un élément (sujet, ressource, etc) est inconnu ou parce que la

construction de la politique ne permet pas d'aboutir à une décision

(erreur)

 NotApplicable : il n'est pas possible d'appliquer la politique à la requête

car elle ne contient aucune règle qui s'applique à la requête.

 Un ensemble de Politiques (Policyset) est une agrégation de plusieurs

politiques ou des ensembles de politiques. Policyset contient aussi un algorithme

de combinaison pour combiner la décision de politiques.

2.4.3.4 Algorithme de combinaison

 Nous rappelons qu'un algorithme de combinaison permet de calculer la

décision d'une politique et d'un ensemble de politiques à partir des décisions de

leurs agrégats. XACML offre quatre algorithmes de combinaison prédéfinis :

Chapitre 2 : Les langages de spécification de politiques de sécurité et
des attaques

40

- Permit-overrides : s'il y a une règle évaluée avec effet « Permit » alors

la décision de combinaison donne également un effet «permit» .

- Deny-overrides : s'il y a une règle évaluée avec effet « Deny » alors la

décision de combinaison donne un effet « Deny ».

- First-applicable : avec l'algorithme First-applicable, l'ordre

d'évaluation des règles est important. La politique prend l'effet de la

première règle qui s'applique (on ignore la règle non applicable).

- Only-one-applicable : si plusieurs règles sont applicables, la décision

«Indeterminate » est retournée, sinon la décision de la politique est

celle de la règle applicable.

2.4.4 Evaluation de la politique XACML

En plus des informations fournies dans la requête, une politique XACML

pourrait exiger des informations supplémentaires pour prendre une décision. Ces

informations sont récupérées à partir d'une base de données externe.

Lors de ('évaluation d'une requête par rapport à une règle ou une politique,

plusieurs types d'erreurs peuvent engendrer la décision « lndeterminat » :

 •Des erreurs de réseau : une politique XACML peut contenir une règle qui

réside sur une machine distante temporairement inaccessible.

 •Des erreurs de syntaxe : la requête et la politique XACML peuvent

comporter des erreurs de syntaxe .

 •Les requêtes incomplètes : si la requête ne contient pas les valeurs de

certains attributs utilisés dans la cible d'une politique.

 Si aucune erreur ne se produit au moment de l'évaluation de la cible d'un

contenant, sa décision dépend de l'évaluation des décisions des contenus en

utilisant l'algorithme de combinaison. [GH97]

2.5 Exemple de la politique XACML :

 Soit « Pol_document » une politique qui permet le contrôle d'accès aux

documents. L'accès à un document dépend du rôle de l'utilisateur, du type de

document et de l'action demandée, voir le tableau 3.1 :

Chapitre 2 : Les langages de spécification de politiques de sécurité et
des attaques

41

- La politique est décrite de la façon suivante : Tous les utilisateurs

ont le droit de consulter les documents « public » ;

- Les gestionnaires ont le droit d'accès aux documents « privé » en

lecture seulement ;

- Par contre l'administrateur a le droit de consulter et de modifier les

documents « privé ».

Tab 3 Exemple des valeurs de la cible XACML

 Pour mettre en place la politique « Pol_document », nous décrivons d'abord
les règles suivantes :

 • R1 : L'administrateur a le droit de consulter et de modifier tous les documents.
 • R2 : Les gestionnaires ont le droit de consulter les documents privés.
 • R3 : Tous les utilisateurs ont le droit de consulter les documents publics.

La politique « Pol_document » est représentée schématiquement par la figure
2.3

 Attribut Valeur

Sujets Rôle Administrateur

Manager

Employé

Ressources Document Privé

Public

Actions Action Consulter

Modifier

Chapitre 2 : Les langages de spécification de politiques de sécurité et
des attaques

42

 Figure 2.3 Un exemple de la politique XACML

2.6 L'architecture de XACML

L'architecture du système utilisant XACML se compose d'entités. La figure

(2.4) synthétise l'ensemble des entités de l'architecture de XACML :

 Seuil d'application de politique (Policy Enforcement Point (PEP)) est

l'entité du système qui contrôle la protection des ressources. Le PEP

fonctionne en collaboration avec le gestionnaire de contexte qui permet

d'obtenir les valeurs des attributs des entités du système.

 Centre de décision de politique (PDP : Policy Decision Point) est l'entité

qui prend en charge de déterminer les règles et les politiques applicables

à une demande. Après l'évaluation des cibles et des conditions de

l'ensemble des règles, le PDP renvoie la réponse au PEP.

 La source d'information de politique (PlP : Policy Information Point) a le

rôle d'extraire des informations supplémentaires non présentes dans la

demande d'accès. Le PIP permet de chercher les informations au sein des

sources externes dans différentes plates-formes.

Policyid = pol_documentTarget= ("anysubject ,
document_private.document_public} ,anyaction)

algorithm =permti_overried

Rule_id=rule1

Traget=(admin,
Anyressource, ,anyaction)

Effect=permit

Rule_id=rule2

Target=(manageme
nt,Doc_privat,write)

Effect=deny

Rule_id=rule3

target=(employé,do
c_public,read)

Effect=permit

Rule_id=rule4

Effect=deny

Chapitre 2 : Les langages de spécification de politiques de sécurité et
des attaques

43

 Le centre de décision de politique « PDP : Policy Decision Point » est

considéré comme une boîte noire, la requête XACML serait à l'entrée de PDP, puis

la sortie serait la réponse du XACML. Sur la base des informations fournies par la

requête, une politique XACML est vérifiée pour déterminer si la demande d'accès

à une ressource est autorisée ou non. [ME11]

 Figure 2.4: Schéma d'une requête de permission avec le langage XACML [ME11]

Chapitre 2 : Les langages de spécification de politiques de sécurité et
des attaques

44

2.7 Autre langages de politiques de sécurité

2.7.1 Langage de politiques Rei

Description du langage Rei

 Le langage de politiques Rei' permet aux utilisateurs de spécifier des

politiques basées sur la logique déontique qui est une formalisation

mathématique qui permet de modéliser les obligations, les interdictions et les

permissions dans une organisation.

Chaque politique décrit avec le langage Rei est associée à une entité. Elle

est définie par des règles qui gèrent l'ensemble des droits de ['entité, ses

interdictions et ses obligations.

La spécification du langage Rei offre des moyens d'analyse des politiques

et une résolution des conflits avec l'utilisation de la classe « RulePrioriy » qui

spécifie la priorité des règles.

Par exemple, pour fixer les priorités entre deux règles potentiellement

contradictoires RuleA (a la permission d'imprimer) et RuieB (une interdiction de

l'impression), la classe rulePriority peut être utilisée pour indiquer que

l'interdiction détient la priorité sur l'autorisation.

Figure 2.5 : Exemple de la politique « rulePriority »

- La spécification du langage Rei

<policy:rulePriority rdf:resource="#PriorityBA"1>
<metapolicy:RulePriority rdfJD="PriorityBA"> <metapolicy:ruleOfGreaterPriority

rdfresource="#RuleB"I> <metapol icy: ru leOtLesserPriority
rdfresource="#RuleA "I>

<mctapolicy:RulcPriority>

Chapitre 2 : Les langages de spécification de politiques de sécurité et
des attaques

45

La spécification du langage Rei est composée de plusieurs ontologies :

 ReiPolicy .

 ReiMetaPolicy

 ReiEntity .

 ReiDeontic.

 ReiConstraint.

 ReiAnalysis.

 ReiAction.

 Chacune de ces ontologies décrit des classes et des propriétés. L'ontologie de

base « ReiAction » comprend la description des actions.

Chaque action est décrite par :

 Son identificateur unique.

 Les objets de la cible, sur laquelle l'action peut être effectuée ;

 Un ensemble de conditions préalables qui doivent être remplies avant que

l'action puisse être effectuée.

 Les effets.

- Analyse des politiques Rei

La classe « What-if » permet d'analyser les politiques. Plus précisément, elle

permet de spécifier des modifications temporaires portées à la politique ou à des

entités afin de tester leurs effets.

 Il existe deux sous-classes d'analyse de la classe « what-if» :

 WhatifProperty cette classe permet d'ajouter ou de retirer
temporairement une propriété d'une certaine valeur à une entité pour
vérifier des modifications portées aux entités.

 WhatifPolicyRule cette classe permet d'ajouter ou de retirer une règle
pour vérifier les changements portés aux politiques. [NET04]

Chapitre 2 : Les langages de spécification de politiques de sécurité et
des attaques

46

2.7.2 Langage de politiques Ponder

Description du langage Ponder

 Ponder est un langage orienté objet permettant de spécifier les politiques

de sécurité et de gestion des systèmes d'objets distribués. Il fournit des

techniques de structuration des politiques visant à répondre à la complexité

de gestion des politiques dans les grands systèmes d'information de

l'entreprise.

Le langage Ponder permet de décrire quatre types de politiques : les

autorisations, les retenues, les délégations, et les obligations :

 Politique d'autorisation : Ce type de politique définit, pour un ensemble

de domaines, les actions qui peuvent être effectuées ou non. Une politique

d'autorisation positive définit les actions autorisées pour les sujets. Une

politique d'autorisation négative précise les actions interdites pour les

sujets.

 Politique de retenue (Restrain Policies) : Consiste à définir les actions que

les sujets ne doivent pas effectuer sur les objets. Ce type de politiques agit

comme des restrictions sur les actions mises en œuvre par les sujets.

 Politiques de délégation : ce type de politique décrit les autorisations et

les droits d'accès à transférer d'un groupe d'utilisateur à un autre.

 Politiques d'obligation : ce type de politique permet de préciser les

actions qui doivent être effectuées au sein du système quand certains

événements se produisent, fournissant ainsi la capacité de réagir aux

circonstances changeantes.

Les deux exemples de la figure 2.6 décrivent l'autorisation d'accès au
document privé :

1. La première règle décrit une autorisation positive : l'utilisateur avec le

profil administrateur « admin » a le droit d'accès au document de type «

documentprivat » en mode lecture, écriture, et modification.

Chapitre 2 : Les langages de spécification de politiques de sécurité et
des attaques

47

2. La deuxième règle décrit une autorisation négative : les sujets ayant le

profil gestionnaire « manager » n'ont pas le droit d'écrire ou de modifier

les documents de type « documentprivat ».

inst auth+ documentPolicyOps {
subject /Admin;
target <document_privat> /document;
action read(), write(), update;
 }

 inst auth-documentPolicyOps {

 subject /manager;

 target <document_privat> /document;

 action write(), update;

}

 Figure 2.6 Exemple de politique d'autorisation

Les composantes clés du langage Ponder (groupes, rôles, relations et le rôle

hiérarchie) permettent de structurer les règles, et de réutiliser les spécifications :

 Les groupes : Il s'agit d'un regroupement des politiques. C'est un concept

commun à la plupart des langages de politique (comme Policy Sel pour

langage XACML).

 Le rôle : cette composante fournit un regroupement sémantique des

politiques avec un thème commun. Le rôle est représenté par un ensemble

de propriétés profile, classe, type.

 Les relations : une relation est une composante qui inclut des politiques

ayant des rôles communs.

 Les rôles hiérarchie : Ponder permet la spécialisation des types de

politiques à travers le mécanisme d'héritage semblable aux langages

orienté objets. [NNEM01]

Chapitre 2 : Les langages de spécification de politiques de sécurité et
des attaques

48

2.8 Comparaison des langages de politiques

[PLJS] décrit un ensemble des critères qui permettent de juger la qualité d'un

langage de politique :

 Formalisme : la syntaxe et la structure du langage de la politique doit être

claire et sans ambiguïté. Le sens d'une politique écrite avec le langage

devrait être indépendant de sa mise en œuvre particulière.

 La flexibilité est la définition des abstractions pour gérer une grande

variété de types. L'architecture du système devrait être suffisamment

souple pour autoriser l'ajout de nouveaux types.

 L'interopérabilité : le langage doit disposer une architecture lui

permettant d'inter opérer avec d'autres architectures qui peuvent exister

dans d'autres plates-formes.

 Détection des conflits : le langage doit être en mesure de vérifier qu'une

politique n'entre pas en conflit avec une autre.

 Évolutivité : il convient de maintenir des performances de qualité sous une

charge accrue du système.

 Le tableau suivant présente une comparaison des langages XACML, Ponder et Rei

selon un ensemble des critères préétablis considérés comme importantes :

Langage XACML Ponder Rei

Flexibilité Oui Oui Non

Formalisme Oui Oui Non

L'interopérabilité Oui Non Oui

Détection des conflits Oui Oui Oui

Evolutivité Moyen Moyen Elevé

 Tab 4 : Comparaison des langages de politiques [PLJS]

Chapitre 03 : Conception et implémentation

49

3.1 Introduction

 L’Implémentation est la dernière étape dans ce travail, elle est l’étape la plus

importante pour atteindre l’objectif voulu qui est la réalisation des fonctionnalités

présentés dans notre application. Pour obtenir le succès il faudra regrouper plusieurs

facteurs majeurs comme les logiciels utilisés dans travail est le langage de

programmations ….

 Une politique de sécurité est une déclaration d’intention concernant les méthodes

envisagées pour protéger vos actifs numériques et surveiller l’organisation. Elle

représente un référentiel d’informations central pour la gestion, le personnel et les tiers,

et regroupe tout, des processus et procédures à une description des mesures techniques

en place et des méthodes de reprise sur sinistre, en passant par les fonctions et

responsabilités des employés.

La politique de sécurité doit s'appuyer sur une connaissance des menaces les plus

sérieuses auxquelles vous êtes confronté.

Considérez la politique de sécurité comme un plan d’action qui décrit dans les grandes

lignes les informations critiques de la société et les méthodes de protection de celles-ci.

3.2 Environnement de programmation

3.2.1 Langage JAVA :

Notre application a été réalisée avec Le langage java Eclipse neon,Le langage Java

est un langage de programmation informatique orienté objet créé par James Gosling et

Patrick Naughton, employés de Sun Microsystems, avec le soutien de Bill Joy

(cofondateur de Sun Microsystems en 1982), présenté officiellement le 23 mai 1995 au

SunWorld.

Chapitre 03 : Conception et implémentation

50

 Figure 3.1 logo java

La société Sun a été ensuite rachetée en 2009 par la société Oracle qui détient et

maintient désormais Java.

La particularité et l'objectif central de Java est que les logiciels écrits dans ce

langage doivent être très facilement portables sur plusieurs systèmes d’exploitation tels

que UNIX, Windows, Mac OS ou GNU/Linux, avec peu ou pas de modifications. Pour cela,

divers plateformes et frameworks associés visent à guider, sinon garantir, cette

portabilité des applications développées en Java. .[NET05]

 ALPFA plugin Conçu pour intégrer à votre environnement de développement, la

langue Axiomatics d'autorisation (ALFA) est similaire à la hausse des langages de haut

niveau comme Java et C #, ce qui permet aux développeurs d'écrire rapidement et

facilement des politiques XACML.

 Axiomatics a proposé ALFA en tant que profil de XACML intitulé «Abbreviated

Langue d'autorisation" .[NET06]

Figure 3.2 logo axiomatics

Le plug-in pour Eclipse ALFA est un outil qui convertit votre IDE de

programmation Eclipse à un éditeur de stratégies d'autorisation en utilisant la syntaxe

ALFA.

ALFA politiques peuvent alors facilement être convertis, au sein de l'IDE, en

XACML 3.0 politiques réelles et ensuite chargés dans votre outil de gestion de la politique

XACML.

Chapitre 03 : Conception et implémentation

51

3.2.2 L’environnement matériel :

Pour développer cette application nous avons utilisé une machine configurée comme

suit :

 Pc portable HP

 Mémoire Vive : 4 Go.

 Disque Dur : 500 Go.

 Processeur : AMD E1_2100 APU with Radeon™ HD graphique 1.00 GHZ.

 Type de système : Windows 8.1

3.4 Application :

3.4.1 L’objectif

L’objectif de notre application est l’utilisation du langage XACML pour exprimer les

règles des contrôle d'accès en politique XACML , après cette création du politique XACMl

(fichier xml) on fait une génération des mutants avec les différents opérateurs de

mutation. Ces mutants sont des attaques générées dans les politique de sécurité initial.

Enfin on fait une comparaison entre le fichier xml initial et le fichier xml mutant.

Chapitre 03 : Conception et implémentation

52

3.4.2 Schéma général de l’application

Crée un fichier XACML

Ouvrir fichier XACML

Mutation

ANR (Add new rule)
RRD (rule replaced with

a differet one)

Comparaison

Figure 3.3 Schéma général de l’application

Chapitre 03 : Conception et implémentation

53

3.4.3 Présentation d’Application

 Figure 3.4 L’interface principale

Chapitre 03 : Conception et implémentation

54

Figure 3.5 Ouvrir ficher XACML

Chapitre 03 : Conception et implémentation

55

Figure 3.6 interface de Comparaison entre les fichiers XACML

Chapitre 03 : Conception et implémentation

56

Figure 3.7 ouverture des fichiers XACML initial et mutant

Chapitre 03 : Conception et implémentation

57

 Figure 3.8 Exemple ficher XACML

<?xml version="1.0" encoding="UTF-8"?>
 <!--This file was generated by the ALFA Plugin for Eclipse from
Axiomatics AB (http://www.axiomatics.com).
 Any modification to this file will be lost upon recompilation of
the source ALFA file-->
<xacml3:Policy
xmlns:xacml3="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"

PolicyId="http://axiomatics.com/alfa/identifier/test.puchaseOrders"
 RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-
combining-algorithm:first-applicable"
 Version="1.0">
 <xacml3:Description />
 <xacml3:PolicyDefaults>
 <xacml3:XPathVersion>http://www.w3.org/TR/1999/REC-xpath-
19991116</xacml3:XPathVersion>
 </xacml3:PolicyDefaults>
 <xacml3:Target>
 <xacml3:AnyOf>
 <xacml3:AllOf>
 <xacml3:Match
MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <xacml3:AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">purchase
order</xacml3:AttributeValue>
 <xacml3:AttributeDesignator
 AttributeId="resource-type"

DataType="http://www.w3.org/2001/XMLSchema#string"

Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
 MustBePresent="false"
 />
 </xacml3:Match>
 <xacml3:Match
MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <xacml3:AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">purchasing</xacm
l3:AttributeValue>
 <xacml3:AttributeDesignator
 AttributeId="department"

DataType="http://www.w3.org/2001/XMLSchema#string"

Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-
subject"
 MustBePresent="false"
 />
 </xacml3:Match>
 </xacml3:AllOf>
 </xacml3:AnyOf>
 </xacml3:Target>
 <xacml3:Rule
 Effect="Permit"

RuleId="http://axiomatics.com/alfa/identifier/test.raisePO">
 <xacml3:Description />
 <xacml3:Target>
 <xacml3:AnyOf>
 <xacml3:AllOf>
 <xacml3:Match
MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <xacml3:AttributeValue

Conclusion générale

58

Conclusion générale

Dans ce travail, nous nous sommes intéressés aux mécanismes de sécurité,

et plus précisément à la génération des attaques pour tester la sécurité. Après une

recherche dans le domaine, notre étude s’est penchée précisément sur les

mécanismes de contrôle d’accès. Premièrement, nous avons illustré ces

mécanismes avec ces principes de base et leurs buts d'assurer les propriétés de

sécurité. Deuxièmement, nous avons donné une revue de la littérature portant sur

les modèles de politiques de contrôle d’accès, pour modéliser des politiques tels

que RBAC, OrBAC, DAC et MAC. Après une comparaison des langages de politiques,

on a choisi le langage XACML pour exprimer ces politiques de sécurité et faciliter

l’utilisation de la mutation. Troisièmement, on a utilisé les opérateurs de la

mutation dans les politiques XACML pour générer des mutants. Finalement, nous

avons implémenté ceci dans une application.

59

Bibliographie

[IKH10] IKHLASS HATTAK , ANALYSE FORMELLE DES
POLITIQUES DE SÉCURITÉ pour l'obtention du grade de maîtreès science (M.Sc.)

[SG06] Solange Ghernaouti-Hélie, Sécurité informatique et réseaux, Livre, Dunod,

Février2006

[MEM10] mémoire intitulé : ANALYSE FORMELLE DES POLITIQUES DE SECURITE

UNIVERSITE DU QUEBEC EN OUTAOUAIS 2010

[TAJ09] Tejeddine Mouelhi , Utilisations de la mutation pour les tests de controle d’acces

dans les applications 2009

[MIC76] MichaelA.Harrison,WalterL.Ruzzo,andJereyD.Ullman. Protection in operating

systems.1976.

[MAH06] MahdiMankai. Véricationetanalysedespolitiquesdecontrôled'accès: Application

au langage xacml. Master's thesis, Université du Québec en Outaouais, 2006

 [GIA95] Giancarlo Martella Pierangela Samarati Silvana Castano, Maria Grazia Fugini.

Database Security. Addison-Wesley & ACM Press, 1995

[UNI76] D. Elliott Bell; Leonard J. La Padula. Secure computer system : Unied exposition

and multics interpretation.Proc. IEEE Computer Society Symposium on Research in

Security and Privacy, pp. 215-228.

[TCW89] D. Brewer and M. Nash. The chinese wall security policy. Proc. IEEComputer

Society Symposium on Research in Security and Privacy,

[LUC04]

LucaCardelli.Typesystems.http://www.eecs.umich.edu/~bchandra/courses/papers/Ca

rdelli_Types.pdf, February 2004 consulté le 26 AVRIL 2016.

[MEG12] Michel Embe Jiague : MISE EN OEUVRE DE POLITIQUES DE CONTRÔLE D’ACCÈS

FORMELLES POUR DES APPLICATIONS BASÉES SUR UNE ARCHITECTURE ORIENTÉE

SERVICES '2012

60

[ME11] MOHAMMED ERRACHID VÉRIFICATION DES POLITIQUES XACML AVEC LE

LANGAGE EVENT-B MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE DE LA

MAÎTRISE EN INFORMATIQUE ' 2011

[NNEM01] Nicodemos Damianou, Naranker Dulay, Emil Lupu, Morris Sloman : The

Ponder Policy Specification Language ' Department of Computing, Imperial College, '2001

[PLJS] Ponnurangam Kumaraguru,Lorrie Faith Cranor,Jorge Lobo,Seraphin B. Calo : A

Survey of Privacy Policy Languages from Carnegie Mellon University and IBM Research,

USA

[GH97] Gerard J. Holzmann,IEEE Transactions on Software Engineering - Special issue on

formal methods in software practice 05/May/1997 p:279-295

Webographie

 [NET01]

https://fr.wikipedia.org/wiki/Contr%C3%B4le_d%27acc%C3%A8s_bas%C3%A9_sur_l

%27organisation 20/06/2016-22:20

[NET02]

http://www.memoireonline.com/11/15/9285/m_Conception-et-verification-de-la-

coherence-dune-politique-de-securite-dans-un-reseau-local0.html 07/07/2016-00:20

[NET03]

https://yuwang.gitbooks.io/dataprotection/content/extensible_access_control_markup

_language_xacml_2.html 28/07/2016-20:20

[NET 04] http://www.csee.umbc.edu/~lkagal1/rei/ 29/07/2016-21:00

[NET05] https://fr.wikipedia.org/wiki/Java_(langage) 16/08/2016-17:00

[NET06]

https://www.axiomatics.com/solutions/products/authorization-for-

applications/developer-tools-and-apis/192-axiomatics-language-for-authorization-

alfa.html 16/08/2016-18:00

http://www.memoireonline.com/11/15/9285/m_Conception-et-verification-de-la-coherence-dune-politique-de-securite-dans-un-reseau-local0.html
http://www.memoireonline.com/11/15/9285/m_Conception-et-verification-de-la-coherence-dune-politique-de-securite-dans-un-reseau-local0.html
https://fr.wikipedia.org/wiki/Java_(langage)
https://www.axiomatics.com/solutions/products/authorization-for-applications/developer-tools-and-apis/192-axiomatics-language-for-authorization-alfa.html
https://www.axiomatics.com/solutions/products/authorization-for-applications/developer-tools-and-apis/192-axiomatics-language-for-authorization-alfa.html
https://www.axiomatics.com/solutions/products/authorization-for-applications/developer-tools-and-apis/192-axiomatics-language-for-authorization-alfa.html

	وزارة التعليم العالي والبحث العلمي
	Table des figures
	Liste des tableaux
	Introduction générale
	1.1 Introduction
	1.2 Les propriétés de sécurité
	1.3 Les menaces
	1.4 Les objectifs de la sécurité informatique
	1.5 Le contrôle d'accès
	1.5.1 Le but et les principes de base du contrôle d'accès
	1.5.2 Les phases d'élaboration d'un système de contrôle d'accès

	1.6. Les modèles de contrôle d'accès
	1.6.1 Les contrôles d'accès discrétionnaires (DAC)
	1.6.1.1 Modèle de Lampson
	1.6.1.2 Modèle HRU
	1.6.1.3 Modèle TAM
	1.6.1.4 Les limites des politiques discrétionnaires

	1.6.2 Les contrôles d'accès obligatoires (MAC)
	1.6.2.1 Modèle de Bell-LaPadula
	1.6.2.2 Le modèle de Brewer- Nash

	1.6.3 Les modèles de contrôle d'accès basées sur les rôles RBAC
	1.6.4 Les modèles de contrôle d'accès basées sur l'organisation OrBAC
	2.1 Introduction
	2.2 Tests de sécurité
	2.2.1 Exemple Test de sécurité

	2.3 la mutation
	2.3.1 La création des mutants

	2.4 langage de politiques de sécurité XACML
	2.4.1 Définition
	2.4.2 La norme XACML
	2.4.3 Description du langage XACML
	2.4.3.1 La cible
	2.4.3.2 La règle
	2.4.3.3 La politique
	2.4.3.4 Algorithme de combinaison

	2.4.4 Evaluation de la politique XACML

	2.5 Exemple de la politique XACML :
	2.6 L'architecture de XACML
	2.7 Autre langages de politiques de sécurité
	2.7.1 Langage de politiques Rei
	2.7.2 Langage de politiques Ponder

	2.8 Comparaison des langages de politiques
	3.1 Introduction
	3.2 Environnement de programmation
	3.2.1 Langage JAVA :
	3.2.2 L’environnement matériel :

	3.4 Application :
	3.4.1 L’objectif
	3.4.2 Schéma général de l’application
	3.4.3 Présentation d’Application

	Conclusion générale

