
Faculté de Technologie Département d’Informatique

MÈMOIRE

présentée et soutenue le : 2 Juin 2016

pour l’obtention du

Licence de l’université Dr. Tahar Moulay – Saida

(spécialité Informatique)

par

Mahsar Fadila & Mebarki Zohra

Encadré par

Mekour Mansour, Mâıtre Assistant à l’Université de Saida

Résumé

Les dernières décennies ont été marquées par le développement rapide des sys-
tèmes d’information distribués, et tout particulièrement par la vulgarisation de l’ac-
cès à Internet. Cette évolution a entraîné le développement de nouveaux paradigmes
d’interaction entre applications tel que les «services web». Un service web est un
programme modulaire, indépendant et auto-descriptif, qui peut être publié, décou-
vert et invoqué via Internet ou intranet. La composition des services web permet de
créer des nouveaux services web (dits services web composés) par regroupement des
services web existants. Ainsi, un service web composé peut être vu comme une ap-
plication distribuée qui possède des caractéristiques spécifiques. Ces caractéristiques
influencent les aspects transactionnels dans ce domaine et engendrent le besoin de
solutions flexibles et adaptables pour la composition des services web avec propriétés
transactionnelles. L’étude présentée dans ce document nous a permis d’identifier les
problèmes liés d’une part, à la composition de services web, et d’autre part à l’as-
sociation des propriétés transactionnelles à cette composition. Notre travail permet
de composer des services et de prendre en compte les propriétés transactionnelles.

Mots-clés:
Service web, Composition des service web, transaction ,Propriétés transaction-

nelles de services web .

Abstract

The last decades have been marked by the rapid development of distributed in-
formation systems, especially through extension of the Internet. This has led to the
development of new paradigms for interaction between applications such as "web
services". A web service is a modular program, independent and self-descriptive,
which can be published, discovered and invoked over the Internet or intranet. The
composition of web services can create new web services (compounds called web
services) by consolidating existing web services. Thus, a compound web service can
be seen as a distributed application that has specific characteristics. These char-
acteristics influence the transactional aspects in this area and create the need for
flexible and adaptable solutions for the composition of web services with transac-
tional properties.

The study presented in this document allowed us to identify the one hand
problems, the composition of web services, and on the other hand the association of
the transactional properties of this composition. Our work for dialing services and
take into account transactional properties.

Keywords:
web service, Composition of web service, transaction,transactional properties of

web services.

iii

Remerciements

Nous tenons à remercier :

Allah le tous puissant .

Mr MEKOUR MANSOUR , notre encadreur, pour ses conseils ,

sa disponibilité et son encouragement qui nous ont permis de

réaliser ce travail dans les meilleures conditions .

Je tiens à remercier également les membres du jury pour l’honneur
qu’ils m’ont attribué en acceptant d’examiner et d’évaluer mon travail.
J’espère que ce travail sera à la hauteur de leurs exigences scientifiques.

Aux enseignants de notre université et du département d’informatique .

iv

v

Je dédie ce travail à :

Mes parents

Vous vous êtes dépensés pour moi sans

compter.

En reconnaissance de tous les sacrifices

consentis par tous et chacun pour me

permettre d’atteindre cette étape de ma vie.

Avec toute ma tendresse.

A mes frère et mes soeurs.

A tous les membres de ma promotion.

A mes amis.

A tous mes ensiegnant.
DADAH SIDI MAHFUD

vi

A mes parents ;

A mes soeurs et mes frères ;

A tous ceux qui me sont chers.

OULD BAKAY MOHAMED

Table des matières

Table des figures xi

Liste des tableaux xiii

Introduction Générale 1

Glossaire 5

Chapitre 1

L’architecture SOA et les services web

1.1 Introduction . 8

1.2 Architecture orientée services . 8

1.2.1 Historique . 8

1.2.2 Définition d’architecture de service orientée (SOA) 10

1.2.3 Les caractéristiques d’architecture orientée services 11

1.2.4 Les rôles dans une architecture orientée services 12

1.2.5 Concepts de l’architecture orientée services 13

1.2.6 Approches de SOA . 14

1.2.7 Les avantages et inconvénients de SOA 15

1.3 Services web . 15

1.3.1 Origines . 15

1.3.2 Définition des web services 16

1.3.3 Les caractéristiques des services web 17

1.3.4 Les applications des services web : 17

1.3.5 L’intérêt des services web : . 18

1.3.6 Langages et protocoles associés aux services web : 18

1.3.7 Les avantages et les inconvénients des services web 26

vii

viii Table des matières

1.4 Conclusion : . 27

Chapitre 2

La composition des services web avec propriétés transactionnelles

2.1 Introduction . 30

2.2 Architecture étendue . 30

2.3 Composition des services web . 31

2.3.1 Définition de composition de services web : 32

2.3.2 Comparaison : . 34

2.3.3 Langages de composition des services web 35

2.3.4 Concepts de base du traitement transactionnel 39

2.3.5 Mécanismes garantissant les propriétés d’ACIDité 41

2.3.6 La validation de transactions dans les systèmes distribués : . . 42

2.4 Aspect transactionnel pour la composition 44

2.4.1 Les services web et les aspects transactionnels 44

2.4.2 Notions Transactionnelles pour la composition 46

2.4.3 Protocoles spécifiques . 47

2.4.4 Approches académiques . 49

2.5 Conclusion . 51

Chapitre 3

Implémentation

3.1 Introduction . 54

3.2 L’architecture proposée . 54

3.3 Présentation . 55

3.3.1 Plateforme de services web : 55

3.3.2 Plateformes d’exécution côté serveur : 57

3.4 Etude de cas : Agence de voyage : . 58

3.4.1 L’invocation de services dans une composition : 59

3.4.2 Création de processus BPEL : 62

3.5 Implémentation : . 66

3.5.1 La transformation d’un processus BPEL en graphe : 66

3.5.2 La composition des services web : 67

3.5.3 Composition transactionnelle 68

3.6 Expérimentations . 69

ix

3.7 Conclusion : . 70

Conclusion Générale 71

Bibliographie 73

x Table des matières

Table des figures

1.1 Interactions dans une architecture orientée services. 12
1.2 Approches de développement SOA. 14
1.3 Structure du message SOAP. 21
1.4 Structure de document WSDL. 23
1.5 Entités composant un annuaire UDDI. 25

2.1 La pile des services web. 31
2.2 Vue générale de l’orchestration . 33
2.3 Vue générale de la chorégraphie . 34
2.4 Structure d’un fichier BPEL. 37
2.5 Exemple de process BPEL. 39
2.6 Digramme d’état d’une transaction. 42
2.7 Le protocole 2PC de base. 44

3.1 Architecture proposée. 54
3.2 Modélisation graphique Agence de voyage. 58
3.3 Exécution séquentielle. 59
3.4 Exécution parallèle. 60
3.5 Exécution conditionnelle. 60
3.6 Exécution en boucle. 61
3.7 Processus BPEL Complet (cas séquentielle). 63
3.8 Code source de fichier BPEL. 64
3.9 Fichier WSDL de processus BPEL. 65
3.10 Transformation d’un processus BPEL en graphe. 67
3.11 Composition des services web. 68
3.12 La composition des services web avec les propriétés transactionnelles. 69
3.13 Expérimentation . 70

xi

xii Table des figures

Liste des tableaux

xiii

xiv Liste des tableaux

Introduction Générale

2 Introduction Générale

Depuis l’invention du World Wide Web par Tim Berners-Lee et Robert Cailliau
et le développement des technologies associées, le web et l’Internet sont devenus bien
plus qu’un simple instrument de partage d’information. La manière dont les systèmes
d’information interagissent au travers des réseaux, et la façon dont les applications
sont développées ont été complètement remises en cause. En effet, l’Internet fournit
un moyen universel aux organisations pour composer leurs applications (on parle
alors de services), partager leurs ressources et savoir-faire, afin de minimiser leurs
coûts, d’offrir de nouvelles applications à valeur ajoutée, sans pour autant perdre de
leur autonomie. Ainsi, l’évolution de ces systèmes d’information et le développement
de processus métiers entre plusieurs entreprises ont fait du web le support idéal
des interactions inter processus. Cependant, la mise en oeuvre de processus métiers
interagissant sur le web reste une tâche complexe. Le concept de service web, basé sur
les standards de l’Internet, vise à faciliter le développement de ce type de processus.
Cependant, chaque entreprise a ses propres règles de gestion et donc ses propres
services. Ces derniers, qui vont devoir interagir avec des services provenant d’autres
entreprises, doivent être traités comme des boîtes noires, ou seulement les interfaces
qu’ils fournissent sont connues.

Les services web ont été créés pour faciliter les interactions entre plusieurs par-
tenaires dans le but de produire un service à valeur ajoutée. Mais, paradoxalement,
le développement de services créés par chaque entreprise de manière autonome a
donné lieu à une hétérogénéité. qui pose divers problèmes au moment de l’exécution
de la composition obtenue, surtout lorsque celle-ci est munie de propriétés transac-
tionnelles.

L’étude présentée dans ce document nous a permis d’identifier les problèmes
liés d’une part, à la composition de services web, et d’autre part à l’association de
propriétés transactionnelles à cette composition. C’est en nous intéressant à ces deux
problématiques que nous avons conçu une plate-forme de composition de services
dont le principal objectif est de maximiser les chances pour une exécution de réussir,
tout en satisfaisant au mieux les besoins des clients de la composition.

3

Organisation du mémoire :
Ce document est composé d’une introduction générale, de trois chapitres et d’une

conclusion générale.
Chapitre 1 :
Le chapitre 1 présente un rapide historique de l’architecture SOA, reprenant

et complétant les différents points abordés dans cette introduction, pour permettre
d’aborder la présentation et les questions amenant aux services web. Dans le chapitre
1 nous introduisons des définitions générales du :«L’architecture SOA» et «Service
web» ; mais également en présentant la définition d’un service web par le W3C.
Une rapide présentation des différents langages et technologies de services web est
réalisée.

Chapitre 2 :
Ce chapitre est le coeur de notre travail. Il se divise en deux parties : la premiere

partie nous abordons le sujet de la composition des services web.ainsi que les langages
et protocoles utilisés pour leur déploiement ;et la deuxième partie nous introduisons
la notion de transaction et l’aspect transactionnele dans le domaine de services web.

Chapitre 3 :
Le chapitre 3 présente la plateforme de test que nous avons développé pour le

test de la composition de services. Il expose aussi une étude de cas que nous avons
réalisé avec cette plateforme.

4 Introduction Générale

Glossaire

AOS : Architecture Orientée Service
API : Application Programming Interface
B2B : Business to Business
B2C : Business to Consumer
BEEP : Blocks Extensible Exchange Protocol
BPEL4WS :Business Process Execution Language for Web Services
BPEL :Business Process Execution Language
CORBA : Common Object Request Broker Architecture
FTP : File Transfer Protocol
HTTP : HyperText Transfer Protocol
IBM : International Business Machines
IDL : Interactive Data Language
IP : Internet Protocol
MIME : Multipurpose Internet Mail Extersin
POP : Post Office Protocol
RPC : Remote Procedure Call
SI : Système Information
SMTP :Simple Mail Transfer Protocol
SOAP : Simple Object Access Protocol
TCP : Transmission Control Protocol
UDDI : Universal Description, Discovery and Integration
URL :Uniform Resource Locator
W3C : World Wide Web Consortium
WSDL :Web Service Description Language
WSCL :Web Service Conversation Language
WSFL :Web Service Flow Language
XML : eXtensible Markup Language

5

6 Glossaire

Chapitre 1

L’architecture SOA et les services
web

Sommaire
1.1 Introduction . 8

1.2 Architecture orientée services 8

1.2.1 Historique . 8

1.2.2 Définition d’architecture de service orientée (SOA) 10

1.2.3 Les caractéristiques d’architecture orientée services 11

1.2.4 Les rôles dans une architecture orientée services 12

1.2.5 Concepts de l’architecture orientée services 13

1.2.6 Approches de SOA . 14

1.2.7 Les avantages et inconvénients de SOA 15

1.3 Services web . 15

1.3.1 Origines . 15

1.3.2 Définition des web services 16

1.3.3 Les caractéristiques des services web 17

1.3.4 Les applications des services web : 17

1.3.5 L’intérêt des services web : 18

1.3.6 Langages et protocoles associés aux services web : 18

1.3.7 Les avantages et les inconvénients des services web 26

1.4 Conclusion : . 27

8 Chapitre 1. L’architecture SOA et les services web

1.1 Introduction

L’orientation service permet d’organiser des ressources informatiques distribuées
dans une solution intégrée, en éliminant les informations isolées. Et conférant da-
vantage de souplesse à l’entreprise. Elle organise les ressources informatiques en mo-
dules, créant des processus métier faiblement couplés qui intègrent des informations
provenant de différents systèmes. L’un des facteurs de réussite d’une architecture
orientée services est la création de processus métier un peu soumis aux contraints
de l’infrastructure informatique sous-jacente, afin de fournir à l’entreprise toute la
latitude dont elle a besoin. L’architecture orientée services permet de créer toute
une nouvelle génération d’applications dynamiques (parfois nommées applications
composites). Ces applications offerent aux utilisateurs des informations plus pré-
cises et plus complètes ainsi qu’une meilleur connaissance des processus, mais aussi
la possibilité d’accéder à ces informations en utilisant la forme et la présentation les
mieux adaptées, que ce soit par le biais du web, d’un client riche ou d’un dispositif
mobile.

1.2 Architecture orientée services

L’architecture orientée service s’imposée aujourd’hui comme un thème majeur
pour les systèmes d’information d’entreprise. Plus qu’une nouvelle technologie ou
méthode, c’est la convergence de plusieurs approches existantes, et l’émergence d’un
style d’architecture et de gouvernance de SI.

1.2.1 Historique

Au niveau industriel, l’évolution de la complexité des systèmes informatiques,
de même que leurs coûts et leurs fonctionnalités se traduit par une évolution des
architectures logiciels (et matériels), avec un impératif qui revient régulièrement :
la réutilisation de l’existant. Ainsi, les industriels sont confrontés au problème de
l’interopérabilité des données et des architectures à travers le temps. Il est effecti-
vement impossible (impensable) de redévelopper une application complète, dont le
premier développement a pris plusieurs années, à chaque changement de machine
(bien souvent accompagné par un changement de logiciels).
L’évolution de l’architecture est la conséquence de principaux facteurs tels que :
- la prise de conscience que la méthode précédente était imparfaite (souvent dûe à

1.2. Architecture orientée services 9

une évolution des besoins de l’utilisateur également) ;
- l’évolution de la capacité des machines (tant en mémoire qu’en puissance de calcul)
se traduisant par l’évolution de leurs fonctionnalités ;
- mais également la complexité des systèmes informatiques et leurs coûts.
Nous allons étudier les trois évolutions majeures de l’architecture de programma-
tion : la programmation modulaire, la programmation orientée objet et enfin la
programmation orientée composant.
Architecture basée sur la programmation modulaire
Fin des années 70, début des années 80, la programmation structurée ou modulaire
était très à la mode, en même temps que l’arrivée des langages C (langage utilisé
pour l’écriture des systèmes Unix), Pascal (langage développé dans un but princi-
pal d’enseignement) ou encore Ada (langage utilisé dans le domaine militaire). Le
programmeur utilise des structures de données permettant de regrouper les infor-
mations ayant une relation entre elles, de plus il regroupe également le code traitant
ces informations ou données dans un même module.
Architecture basée sur la programmation orientée objet
Parallèlement à l’arrivée de la programmation structurée, la programmation objet
est arrivée début des années 80. La programmation objet reprenait le concept du
regroupement des données et des fonctions (appelées méthodes en terminologie ob-
jet), pour obtenir un seul module : une classe, qui une fois instanciée, devient un
objet.
Architecture orientée composant
L’architecture orientée objet et ses objectifs initiaux ne permettent pas d’utiliser la
puissance et les nouvelles méthodes issues de l’évolution des architectures (grilles
de calcul, l’utilisation du pair à pair, architecture 3-tiers ou même n-tiers) tendant
toujours vers plus d’uniformisation tout en augmentant la complexité des modèles,
et ce dans le but de séparer la logique métier et la logique système.
Une nouvelle architecture est apparue progressivement répondant à ces besoins :
l’architecture orientée composant.

Cette nouvelle architecture orientée composant prend en compte les nouvelles ar-
chitectures système comme le P2P (peer to peer) permettant de considérer chaque "
acteur " du système sur un pied d’égalité, contrairement au modèle client-serveur ou
n-tiers ; ou encore l’architecture basée sur les grilles de calcul, permettant de répartir
les calculs et donc les composants sur un grand nombre de noeuds ou processeurs.
De l’architecture orientée objet à l’architecture orientée service :
Les différentes architectures vues précédemment ont évolué, et ce, particulièrement

10 Chapitre 1. L’architecture SOA et les services web

car les besoins ont, encore une fois, changé et la puissance des machines également.
De même, l’arrivée du réseau Internet sur toutes les machines favorise l’utilisation de
protocoles de communication solutionnant les problèmes d’interopérabilités entres
les différentes applications. Ainsi, avoir une base de données locale au niveau d’un
poste et consultable uniquement sur ce poste n’est plus envisageable :
Les informations doivent être consultables depuis n’importe quel ordinateur à l’in-
térieur, voir à l’extérieur de la société. Toutes ces raisons ont favorisé l’évolution
de l’architecture orientée objet et/ou composant en architecture orientée service. Le
concept d’architecture orientée service, décrit la première fois par le groupe améri-
cain de recherche en technologie Gartner Group en 1996, se présente comme étant
la solution adéquate à la demande actuelle des entreprises. Pour la première fois,
l’architecture orientée service fut définie comme " client-server software design ap-
proach in which an application consists of software services and software service
consumers (also know as clients or service requesters). SOA differs from the more
general client/server model in its definitive emphasis on loose coupling between soft-
ware components, and in its use of separately standing interfaces ".
Le passage à l’architecture orientée services (SOA - Service Oriented Architecture)
se fait sur le long terme. La conservation de l’existant et la migration petit à petit
est donc indispensable.
La méthode la plus adaptée est l’encapsulation de l’existant (existant reposant gé-
néralement sur CORBA, J2EE, DCOM, etc.) en respectant les nouveaux standards
des publications. Ainsi, les applications métiers développées jusque là continuent
de fonctionner, et les données et leurs traitements sont disponibles sous une forme
publiée à travers un réseau et un protocole de communication standardisé. [10]

Cette architecture est construite autour de la notion de service, qui est matéria-
lisée par un composant logiciel assurant une fonctionnalité particulière et accessible
via son interface. Un service est toujours accompagne d’une description fournissant
aux applications les informations nécessaires à son utilisation. L’objectif de la notion
de service est de promouvoir un accès simple et rapide aux fonctionnalités mises à
disposition par les organisations. [4]

1.2.2 Définition d’architecture de service orientée (SOA)

On trouve plusieurs définitions de l’architecture SOA dans la littérature, le
concept de SOA est le sujet de définitions très variées propose la définition sui-
vante :

1.2. Architecture orientée services 11

L’architecture SOA permet l’intégration d’applications et de ressources de manière
flexible, en représentant chaque application ou ressource sous la forme d’un service
exposant une interface standardisée, permettant un service d’échanger des informa-
tions structurées (messages, documents, objets métier), coordonnant et en organisant
les services, afin d’assurer qu’ils puissent être invoqués, utilisés et changés efficace-
ment.
D’autre définition :
" Une architecture orientée service est un style d’architecture logiciels multi-tiers
qui aide les organisations à partager leurs logiques métier et leurs données entre
plusieurs applications et plusieurs modèles d’usage." (donnée en 1996 par le groupe
Gartner) [31], et d’autres proposées par différents experts du domaine peuvent être
trouvées dans la littérature [6, 9, 11].
Ces définitions se placent selon différents points de vue qui vont plus ou moins dans
le même sens . Nous pouvons affirmer d’une manière générale que l’architecture
orientée services est un style architectural pour la conception, le développement,
le déploiement et la gestion de systèmes logiciels distribués qui délivre des fonc-
tionnalités d’application sous forme de services interopérables, soit à l’utilisateur
final ou à d’autres services. Les systèmes qui sont construits en se basant sur les
caractéristiques SOA sont appelés système orientés services.

1.2.3 Les caractéristiques d’architecture orientée services

Les caractéristiques principales d’une architecture orientée services sont :
Le couplage faible, l’indépendance par rapport aux aspects technologiques et l’ex-
tensibilité .[4, 29]
- La propriété de couplage faible implique qu’il est possible de fournir et d’utiliser
des services tout en restant indépendants les uns des autres, et sans divulguer leur
fonctionnement interne. Cette exigence est satisfaite par l’adoption de protocoles et
langages standardises fournissant un accès uniforme aux services et à leurs descrip-
tions.
- L’indépendance par rapport aux aspects technologiques : assurée par le fait que les
contrats d’utilisation qu’exposent les services sont auto-descriptifs et indépendants
de la plateforme technique utilisée par le fournisseur du service. Par exemple WSDL
(Web Service Description Language) permet d’exposer les fonctionnalités des web
services en assurant cette indépendance.
- Enfin, l’extensibilité est rendue possible par le fait que de nouveaux services peuvent

12 Chapitre 1. L’architecture SOA et les services web

être découverts et invoques à l’exécution.
Les architectures orientées services se construisent autour de plusieurs protocoles et
Langages, selon quatre couches de fonctionnalités, à savoir [4] :
- La couche publication, qui permet la centralisation, le stockage et la diffusion des
descriptions de services.
- La couche description, qui regroupe les détails nécessaires à l’invocation des ser-
vices dans un document.
- La couche message, qui assure la structuration et l’échange uniformes des messages.
- La couche transport, qui permet de véhiculer les messages à travers le réseau.

Fig. 1.1: Interactions dans une architecture orientée services.

1.2.4 Les rôles dans une architecture orientée services

Pour garantir une évolution et une intégration facile des applications hétérogènes
au sien d’une architecture orientée services, l’approche à service prévoit un modèle
d’interaction basé sur différents acteurs et des interactions entre eux. La figure1.1
montre que l’utilisation de ces services par ces acteurs suit un protocole spécifique
qui est : la publication, la découvert, l’invocation. Les acteurs collaborant dans une
SOA sont :

1.2. Architecture orientée services 13

1. Le fournisseur du service : il désigne l’entité propriétaire du service. D’un
point de vue technique, un fournisseur peut designer la plateforme d’accueil
du service.

2. Le client du service : correspond au demandeur de service. D’un point de
vue opérationnel, c’est le service client qui sollicite et invoque le service requis.

3. L’annuaire des services : est un registre qui donne la possibilité aux
fournisseurs de service de publier des descriptions des services. Il permet aussi
aux consommateurs de service de pouvoir consulter les différentes descriptions
disponibles. En plus des spécifications de service, l’annuaire contient des réfé-
rences vers les fournisseurs de service. Ceci va permettre aux consommateurs
de localiser les fournisseurs des spécifications de service qui correspondent à
leurs besoins, l’annuaire sert donc d’acteur intermédiaire entre fournisseurs et
consommateurs de service.

Les opérations possibles dans une architecture orientée services sont :
a) Publication : pour être accessible, une description de service doit être publiée

de sorte qu’elle puisse être découverte et appelée par un consommateur de services.
b) Découverte : un demandeur de services localise un service via une requête,

l’annuaire de services portant sur les critères du service recherché.
c) Invocation : après recherche de la description de service, le consommateur de

services procède par appel du service selon les informations relatives à la description
du service.

1.2.5 Concepts de l’architecture orientée services

L’architecture orientée services est axée autour de trois concepts fondamentaux
qui sont :[25]

Service :

C’est-à-dire une fonction que l’on peut interroger à l’aide d’une requête et qui
fournit une ou plusieurs réponses.

Interopérabilité :

Il permet la propagation des fonctionnalités des services web via des systèmes
hétérogènes.

14 Chapitre 1. L’architecture SOA et les services web

Couplage faible :

Couplage faible est le concept qui assure l’évolutive, la flexibilité et la tolérance.
Son but est de minimiser les dépendances. Quand on minimise les dépendances on
va aussi minimiser l’influence sur les autres systèmes.

1.2.6 Approches de SOA

Deux approches sont définies pour implémenter l’architecture SOA tel qu’il est
présenté dans la figure1.2 :

Bottom-Up :

Cette approche est inventée par Krafzig and Slama [5]. Son principe est de com-
mencer par un petit groupe et on jouter jusqu’à on obtient une grande entreprise.

Top-down :

Cette approche aussi est inventée par Krafzig and Slama. On peut dire que c’est
l’adverse de Bottom-Up. Top-down est la décomposition d’un système ou problème
jusqu’à l’obtient d’un petit service de base. [25]

Fig. 1.2: Approches de développement SOA.

1.3. Services web 15

1.2.7 Les avantages et inconvénients d’architecture orientée

services

1. Les avantages :
- Obligation d’avoir une modélisation poussée.
- Possibilité de découpler les accès aux traitements.
- Localisation et interfaçage transparents (ouverture accrue).
- Possibilité de mise en place facilitée à partir d’une application objet exis-
tante.
- Réduction des coûts en phase de maintenance et d’évolution.
- Facilité d’amélioration des performances pour des applications importantes
(répartition des traitements facilitée).

2. Les inconvénients :
- Coûts de conception et de développement initiaux plus conséquents.
- Nécessité d’appréhender de nouvelles technologies.
- Existant non SOA dans les entreprises.
- Performances réduites pour des traitements simples (couche supplémentaire).

1.3 Services web

Afin de mettre en oeuvre une SOA, il est essentiel d’avoir une compréhension
claire de ce qu’est un service web.

1.3.1 Origines

Les services web sont considères comme étant l’évolution naturelle du web. Ils
s’inscrivent dans la continuité d’initiatives telle que CORBA (Common Ob-
ject Request Architecture de l’OMG) en apportant toutefois une réponse plus
simple, s’appuyant sur des technologies et standards reconnus et maintenant
acceptés de tous.
On peut distingue trois phases de développement dans l’histoire du web :
Le web du document : le phénomène Internet original, utilisé principalement
par des organisations et des particuliers pour publier des informations sur leur
travail, leurs produits, etc..

16 Chapitre 1. L’architecture SOA et les services web

Le web applicatif : le progrès grâce auquel les entreprises ont commencé à
utiliser le web à des fins commerciales.
Le web des services : est la phase émergente, dans laquelle les serveurs d’ap-
plication précédents communiquent désormais entre eux. Cette évolution a été
poussée par le désir de pouvoir réaliser des échanges interentreprises dans un
environnement automatisé et ouvert tel qu’Internet. L’échange de données in-
formatisées entre deux applications nécessite une normalisation des messages
échangés.
Une approche web service du système d’information vise à transformer chaque
composant, base de données, applicatif métier, application de bureautique, en
noeud s’exposant sur des standards de l’Internet, pour soit consommer des
web services, soit pour en fournir.
Ainsi, on passe d’une interopérabilité applicative à une interopérabilité entre
services.
Cette approche propose une API (Application Programming Interface) univer-
selle qui ne requiert pas d’autres protocoles que ceux d’Internet : HTTP (Hy-
perText Transfer Protocol) [48] sur TCP/IP (Transmission Control Protocol/
Internet Protocol) principalement. De plus, ils normalisent l’appel, l’échange
et l’organisation de services applicatifs.

1.3.2 Définition des web services

Les services web représentent un domaine de recherche jeune, plusieurs défini-
tions des services web ont été mises en avant par différents auteurs. Ci-dessous,
nous citons quelques définitions généralement acceptées et fournies :
Selon IBM :
« web services are a new breed of web applications. They are self-contained,
self- describing, modular applications that can be published, located, and in-
voked across the web. web services perform functions that can be anything
from simple requests to complicated business processes ».
Cette définition affirme que les services web sont accessibles par d’autres à
travers le web, en utilisant des protocoles et des formats standards.
Selon le W3C :
« A web service is a software system identified by a URI and designed to sup-
port interoperable machine-to-machine interaction over a network. It has an
interface defined and described in a machine-processable format (wsdl) . Its

1.3. Services web 17

definition can be discovered by other software systems. Other systems may
then interact with the web service in a manner prescribed by its description
using SOAP messages, typically conveyed using HTTP with an XML seriali-
zation in conjunction with other web-related standards».
Le consortium W3C (http ://www.w3.org/2002/ws/) définit un service web
comme étant une application ou un composant logiciel qui vérifie les propriétés
suivantes :
- Il est identifié par un URI.
- Ses interfaces et ses liens (binding) peuvent être décrits en XML.
- Sa définition peut être découverte par d’autres services web.
- Il peut interagir directement avec d’autres services web à travers le langage
XML et en utilisant les protocoles d’Internet.

1.3.3 Les caractéristiques des services web

Un service web possède les caractéristiques suivantes :
- Il est accessible via le réseau ;
- Il dispose d’une interface publique (ensemble d’opérations) décrite en XML ;
- Ses descriptions (fonctionnalités, comment l’invoquer et où le trouver ?) sont
stockées dans un annuaire ;
- Il communique en utilisant des messages XML, ces messages sont transportés
par des protocoles Internet (généralement HTTP, mais rien n’empêche d’uti-
liser d’autres protocoles de transfert tels : SMTP, FTP, BEEP...) ;
- L’intégration d’application en implémentant des services web produit des sys-
tèmes faiblement couplés, le demandeur du service ne connaît pas forcément
le fournisseur.
Ce dernier peut disparaître sans perturber l’application cliente qui trouvera
un autre fournisseur en cherchant dans l’annuaire.

1.3.4 Les applications des services web :

L’application des services web est multiple, autant dans les domaines du B2C,
B2B que pour des domaines de gestion, par exemple gestion de stock, gestion
commerciale, etc..
B2C (Business to Consumer) : Qualifie une application, un site Internet
destiné au grand public.
B2B (Business to Business) : Qualifie une application, un site Internet

18 Chapitre 1. L’architecture SOA et les services web

destiné au commerce de professionnel à professionnel. [1]

1.3.5 L’intérêt des services web :

Les services web fournissent un lien entre applications. Ainsi, des applications
utilisant des technologies différentes peuvent envoyer et recevoir des données
au travers de protocoles compréhensibles par tout le monde. Les services web
sont normalisés car ils utilisent les standards XML et HTTP pour transférer
des données et ils sont compatibles avec de nombreux autres environnements
de développement. Ils sont donc indépendants des plates-formes. C’est dans
ce contexte qu’un intérêt très particulier a été attribué à la conception des
services web puisqu’ils permettent aux entreprises d’offrir des applications ac-
cessibles à distance par d’autres entreprises. Cela s’explique par le fait que
les services web n’imposent pas de modèles de programmation spécifiques. En
d’autres termes, les services web ne sont pas concernés par la façon dont les
messages sont produits ou consommés par des programmes. Cela permet aux
vendeurs d’outils de développement d’offrir différentes méthodes et interfaces
de programmation au-dessus de n’importe quel langage de programmation,
sans être contraints par des standards comme c’est le cas de la plateforme
CORBA qui définit des ponts spécifiques entre le langage de définition IDL
et différents langages de programmation. Ainsi, les fournisseurs d’outils de dé-
veloppement peuvent facilement différencier leurs produits avec ceux de leurs
concurrents en offrant différents niveaux de sophistication.
Les services web représentent donc la façon la plus efficace de partager des
méthodes et des fonctionnalités. De plus, ils réduisent le temps de réalisation
en permettant de tirer directement parti de services existants.

1.3.6 Langages et protocoles associés aux services web :

L’originalité de l’infrastructure des services web consiste à mettre en place ces
services en se basant exclusivement sur les protocoles les plus répandus d’In-
ternet. Pour garantir l’interopérabilité des trois opérations précédentes (publi-
cation,recherche et lien), l’infrastructure services web s’est concrétisé autour
d’un ensemble de spécifications considérées comme des standards pour chaque
type d’interactions :
Un protocole abstrait de description et de structuration des messages, SOAP1[35],

1.3. Services web 19

une spécification XML qui permet la publication et la localisation des services
dans les annuaires, UDDI2 [39] et un format de description des services web
publiées dans les annuaires, WSDL3.[40]

Le langage XML (eXtensible Markup Language)

Le langage XML standardisé par le W3C en 1998 est aujourd’hui largement re-
connu et utilisé par de nombreuses entreprises comme format universel d’échange
de données. XML est un métalangage de représentation de données. Il définit
un ensemble de règles de formatage pour composer des données valides.
XML constitue la technologie de base des architectures web services ; c’est
un facteur important pour contourner les barrières techniques. XML est un
standard qui permet de décrire des documents structurés transportables sur
les protocoles d’Internet. En effet, il apporte à l’architecture des services web
l’extensibilité et la neutralité vis à vis des plateformes et des langages de déve-
loppement [23]. De plus, grâce à la structuration, XML permet la distinction
entre les données des applications et les données des protocoles.
La technologie des services web a été conçue pour fonctionner dans des en-
vironnements totalement hétérogènes. Cependant, l’interopérabilité entre les
systèmes hétérogènes demande des mécanismes puissants de correspondance et
de gestion des types de données des messages entre les différents participants
(clients et fournisseurs). C’est une tâche où les schémas de type de données
XML s’avèrent bien adaptés. C’est pour cette raison que la technologie des
services web est essentiellement basée sur XML ainsi que les différentes spé-
cifications qui tournent autour (les espaces de nom, les schémas XML, et les
schémas de Type). [38]

La communication : SOAP (Simple Object Acess Protocol)

Les communications entre les différentes entités impliquées dans le dialogue
avec le service web se font par l’intermédiaire du protocole SOAP (Simple
Object Access Protocol). Ce protocole est normalisé par le W3C.

Principe :

SOAP, est un standard du Consortium W3C définissant un protocole de trans-
mission de messages permettant la normalisation des échanges de données. Il

20 Chapitre 1. L’architecture SOA et les services web

présente un ensemble de règles pour structurer des messages, qui peuvent être
utilisées dans de simples transmissions unidirectionnelles, mais il est particuliè-
rement utile pour exécuter des dialogues requête-réponse RPC (Remote Proce-
dure Call) en utilisant HTTP comme protocole de communication, mais aussi
les protocoles SMTP (Simple Mail Transport Protocol) et POP (Post Office
Protocol) [24]. SOAP assure l’interopérabilité entre composants tout en restant
indépendant des systèmes d’exploitation et des langages de programmation,
donc, théoriquement, les clients et serveurs de ces dialogues peuvent fonction-
ner sur n’importe quelle plateforme et être écrits dans n’importe quel langage à
partir du moment où ils peuvent formuler et comprendre des messages SOAP.
Il représente donc un composant de base pour développer des applications dis-
tribuées, qui exploitent des fonctionnalités publiées comme services par des
intranets ou Internet. SOAP utilise principalement les deux standards HTTP
et XML :
HTTP : comme protocole de transport des messages SOAP. Il constitue un
bon moyen de transport en raison de sa popularité sur le web.
XML : pour structurer les requêtes et les réponses, indiquer les paramètres
des méthodes, les valeurs de retours, et les éventuelles erreurs de traitements.

Structure du message SOAP :

Les messages échangés lors de l’utilisation du protocole SOAP sont basés sur
le langage XML. Ils sont composés de deux parties, l’en-tête de protocole de
transport et l’enveloppe SOAP.(la Figure1.3).

(a) L’en-tête du protocole de transport : qui dépend de protocole de
transport utilisé, par exemple si le protocole HTTP est utilisé, l’en-tête
contient :
- La version de protocole HTTP utilisée.
- La date de génération de message SOAP.
- Le type d’encodage du contenu (généralement de type XML).

(b) L’enveloppe SOAP : la partie principale d’un message SOAP est l’en-
veloppe (symbolisée par la balise enveloppe), cette dernière est subdivisée
en deux sous-parties : la partie en-tête (Header) et la partie corps du mes-
sage (Body).

1.3. Services web 21

SOAP Header : l’en-tête de message SOAP, est le premier fils de l’élé-
ment enveloppe. Même s’il peut être vide, il doit impérativement être
écrit. Cet élément apporte des données supplémentaires à SOAP. Ces
données peuvent être des informations d’authentification, de gestion de
transactions, de paiement, etc..
SOAP Body : l’élément Body contient l’information destinée au rece-
veur. Il faut que cet élément encadre une balise contenant le nom de la
méthode invoquée (pour une requête), ou le nom de la méthode suivie de
Response (pour la réponse). Cette balise doit aussi contenir l’espace de
noms correspondant au nom de service.
Un message SOAP peut aussi contenir un ou plusieurs attachements (do-
cument, images, etc.) à transmettre avec le message. Ces données ne sont
pas représentables en XML.
De ce fait, SOAP utilise un mécanisme d’inclusion appelé MIME (Mul-
tipurpose Internet Mail Extensions), cette méthode est répandue pour
transmettre des documents autres que du texte dans des courriers élec-
troniques.

Fig. 1.3: Structure du message SOAP.

22 Chapitre 1. L’architecture SOA et les services web

Couche de Description de Service WSDL (Web Service Description
Language) :

WSDL [48] a été crée dans le but de fournir une description unifiée des services
web. Il se présente comme un standard actuel dans ce domaine, et il est de
plus normalisé par le W3C. Son objectif principal est de séparer la description
abstraite du service de son implémentation. Le langage de description WSDL
se comporte donc comme un langage permettant de décrire l’interface visible
(ou publiée) du service web.

Il décrit à l’aide du langage de balises XML les différents éléments de service.
WSDL se compose en deux parties. Une premiere partie définit de manière
abstraite les éléments, les opérations et les types de données, tandis qu’une
seconde partie précise de manière concrète les adresses physiques de ces opéra-
tions ainsi que le mapping des données avec les protocoles de transport. Cette
distinction est utile car elle permet de concevoir le service indépendamment
de l’environnement de déploiement.

Plus précisement, le WSDL définit les services web à travers six éléments :

- Types : décrivent sous la forme d’une spécification XML Schéma les types
des données échangées entre le client et le fournisseur de services.

- Message : définit les informations échangées lors d’une requête ou d’une
réponse. Un message a un nom et potentiellement des parts qui font référence
à des paramètres et des valeurs de retour.

- PortType : combine plusieurs messages pour former une opération. Il y a
quatre types d’opérations : one-way, request-response, solicit-response et noti-
fication.

- Binding : spécifie le protocole de communication (le plus souvent HTTP,
mais aussi SMTP, FTP, etc..) et le format d’encodage des données (encodage
RPC, Literal Document, etc..) pour les opérations et messages définis par un
type de port donné. Il est possible grâce à des extensions internes de WSDL
de définir des binding SOAP.

- Port : est un point d’accés au service identifié de manière unique par la
combinaison d’un binding et d’une adresse Internet.

- Service : regroupe un ensemble de ports, chaque port offre une alternative
(différents protocoles, etc..) pour accéder au service.[50]

1.3. Services web 23

Fig. 1.4: Structure de document WSDL.

Comme nous remarquons, la portée de WSDL est limitée aux descriptions struc-
turelles, WSDL ne renseigne donc pas sur le comportement du service web décrit.
Plusieurs initiatives de recherche, de développement et de standardisation sont en
cours afin de définir des langages de description de services prenant en compte les
aspects comportementaux, et d’utiliser ces descriptions comportementales lors du
développement et de l’exécution des services. Le langage de description de processus
métiers exécutables pour services web (Web Services Business Process Execution
Language, BPEL) est utilisé dans ce contexte.

Aussi, WSDL ne permet pas de décrire des aspects non-fonctionnels des services
tels que leur capacité à garantir une certaine qualité de service par rapport à des
préoccupations telles que la sécurité, la fiabilité, la journalisation des accès ou la
gestion de transactions. Le langage «WS-Policy » est présenté comme solution à
ce problème, il est basé sur le concept de politiques d’usage. Une politique d’usage
est une énonciation explicite des possibilités et des restrictions d’usage d’un service
web.

24 Chapitre 1. L’architecture SOA et les services web

UDDI (Universel Description, Discovery and Integration) :

UDDI est un standard défini par OASIS. Il définit la structure d’un annuaire
de services web, et la structure de gestion de services (publication, localisation,
découverte) sous forme de répertoire, il permet de stocker les informations nécessaires
pour retrouver et accéder à un service, telles que les informations techniques et
l’adresse des services web, le nom de la personne/société qui gère un service donné,
la description des fonctionnalités [8].

Un service d’annuaire UDDI est un service web qui gère les méta-données des
services, l’information sur les fournisseurs de services et les implémentations des
services. Afin de trouver un service web, il est possible d’utiliser un annuaire UDDI
en précisant des exigences concernant service requis. On cherche le service par son
nom et/ou par des mots clés.

Consultation de l’annuaire :
L’annuaire UDDI se concentre sur le processus de découverte de l’architecture orien-
tée services (SOA), et utilise des technologies standards telles que XML, SOAP et
WSDL qui permettent de simplifier la collaboration entre partenaires dans le cadre
des échanges commerciaux. L’accès au référentiel s’effectue de différentes manières.
Les informations sur un service publié dans un annuaire UDDI se présentent sous
trois facettes comme illustre dans la figure1.5 [19] :
Les pages blanches comprennent la liste des entreprises ainsi que des informations
associées à ces dernières (coordonnées, description de l’entreprise, identifiants...).
Les pages jaunes recensent les services web de chacune des entreprises sous le stan-
dard WSDL.
Les pages vertes fournissent des informations techniques précises sur les services
fournis.
Le modèle d’information UDDI est composé de cinq types d’entités :

BusinessEntity : cette entité décrit l’entreprise (également appelée fournisseur)
qui permet d’accéder aux services web qu’elle publie : cette entité permet de
regrouper toutes les informations concernant le nom, les contacts de l’entre-
prise. Chaque enregistrement est associé à une clé unique appelée UID (Uni-
versal Unique Identifier). Ce sont les éléments accessibles par l’annuaire pages
blanches.

BusinessService : cette entité représente une classification des services. Elle est

1.3. Services web 25

contenue dans l’entité BusinessEntity décrite précédemment, et elle contient
une clé unique identifiant un service particulier. Ce sont les éléments accessibles
par l’annuaire pages jaunes.

BindingTemplate : cette entité est utilisée pour les détails techniques des services
web. Elle contient des informations sur le point d’accès du service (l’adresse
du service). Ce sont les éléments accessibles par l’annuaire pages vertes.

TModel : cette entité permet de stocker les informations spécifiques aux services,
comme le comportement, les conventions de typages et les types eux-mêmes
utilisés par les services. Elle regroupe donc les informations contenues dans les
fichiers WSDL.

Publisher Assertion : ensemble d’informations contractuelles entre partenaires
dans le cadre d’échanges commerciaux.

Fig. 1.5: Entités composant un annuaire UDDI.

26 Chapitre 1. L’architecture SOA et les services web

1.3.7 Les avantages et les inconvénients des services web

1. Les avantages :
Parmi les avantages des services web on trouve :
- Les services web fournissent l’interopérabilité entre divers logiciels fonction-
nant sur diverses plates-formes.
- Les services web utilisent des standards et protocoles ouverts.
- Les protocoles et les formats de données sont au format texte dans la mesure
du possible, facilitant ainsi la compréhension du fonctionnement global des
échanges.
- Basé sur le protocole HTTP, les services web peuvent fonctionner au travers
de nombreux pare-feux sans nécessiter des changements sur les règles de fil-
trage.
- Les outils de développement, s’appuyant sur ces standards, permettent la
création de nouveaux programmes utilisant les services web existants.

2. Les inconvénients :
Parmi les inconvénients des services web on trouve :
- La multiplication de la masse d’information véhiculée.
- Le surcharge de traitement.
- La complexité d’implémentation.

1.4. Conclusion : 27

1.4 Conclusion :

Les services web assurent, à travers l’Internet, l’interaction entre les applications,
les ordinateurs et les processus métier en permettant d’accéder à partir d’un seul site
web à plusieurs services distants. Ce nouveau modèle de programmation et de dé-
ploiement d’application assure l’interaction de services web basant sur les standards
suivants : HTTP, SOAP, WSDL, et UDDI.

Dans ce chapitre, nous avons détaillé comment les services web permettent à des
applications de dialoguer via Internet par échange de messages, et ceci indépendam-
ment des plates formes et les langages sur les quelles sont implémentées.

Nous avons également exploré les différentes technologies, qui permettent la mise
en oeuvre des services web.

Nous continuerons avec les services web dans le chapitre suivant, et nous allons
présenter en détail un concept important qui est : la composition des services web, en
fournissant la description, le fonctionnement et les différents langages(spécifications
et standards)de définition de ce concept et l’aspect transactionnel au sein de la
composition.

28 Chapitre 1. L’architecture SOA et les services web

Chapitre 2

La composition des services web avec
propriétés transactionnelles

Sommaire
2.1 Introduction . 30

2.2 Architecture étendue . 30

2.3 Composition des services web 31

2.3.1 Définition de composition de services web : 32

2.3.2 Comparaison : . 34

2.3.3 Langages de composition des services web 35

2.3.4 Concepts de base du traitement transactionnel 39

2.3.5 Mécanismes garantissant les propriétés d’ACIDité 41

2.3.6 La validation de transactions dans les systèmes distribués : 42

2.4 Aspect transactionnel pour la composition 44

2.4.1 Les services web et les aspects transactionnels 44

2.4.2 Notions Transactionnelles pour la composition 46

2.4.3 Protocoles spécifiques . 47

2.4.4 Approches académiques 49

2.5 Conclusion . 51

30 Chapitre 2. La composition des services web avec propriétés transactionnelles

2.1 Introduction

Les services web offrent une architecture par composants permettant à des appli-
cations d’offrir leurs fonctionnalités sous formes de services à travers des protocoles
Internet universels. Ceci marque une évolution significative dans l’histoire d’Inter-
net qui jusque là a été destiné à jouer le rôle d’un vecteur d’échange de données.
Avec les services web, Internet se transforme en une plate-forme de composants auto
descriptifs, facilement intégrables et faiblement couplés [13]. Comme toute innova-
tion, l’apparition des services web donne lieu à un ensemble d’opportunités et de
nouvelles applications. Dans ce travail une motivation anime notre intérêt pour les
services web à savoir la composition des services web et l’aspect transactionnel. Le
problème de la composition de services web se réfère à la construction des nouveaux
services web «services web composites» à partir des services existants. Dans cette
partie nous présentons d’abord le besoin de composition des services web, puis nous
détaillons le concept de transaction, et l’aspect transactionnel dans la composition
mais avant ça nous introduisons l’archietcture étendu de service web.

2.2 Architecture étendue

Actuellement ; SOAP, WSDL et UDDI sont les trois standards qui constituent
l’architecture des services web. Ensemble ; ils résolvent les problèmes de l’hétéro-
généité des systèmes pour l’intégration d’applications en ligne [41] cependant, une
application B2B nécessite d’invoquer un ensemble de services dans un ordre précis
et selon une logique bien définie. Ou SOAP, WSDL et UDDI ne s’intéressent pas à
ce problème et se situe plutôt au niveau transport et données. Toutefois, il existe
d’autres aspects essentiels à mettre en oeuvre avant de parler d’automatisation de
processus de découverte et d’intégration des services web. A ce propos, plusieurs
technologies ont été proposées. Ces technologies s’intéressent à différents problèmes
et à différents niveaux, des propriétés non fonctionnelles (comme la sécurité et la
fiabilité) au niveau transport à la qualité de services au niveau procédé.
L’architecture étendue (avancée) est constituée de plusieurs couches se superposant
les unes sur les autres, d’où le nom de la pile des web services. La figure 2.1 décrit
un exemple d’une telle pile.

La pile est constituée de plusieurs couches, chaque couche s’appuyant sur un
standard particulier. On retrouve, au dessus de la couche transport, les trois couches
formant l’infrastructure de base décrit précédemment. Ces couches s’appuient sur

2.3. Composition des services web 31

Fig. 2.1: La pile des services web.

les standards émergents SOAP, WSDL et UDDI. Comme mentionné précédemment,
l’infrastructure de base définit les fondements techniques permettant de rendre les
business processes accessibles à l’intérieur d’une entreprise et au-delà même de fron-
tières d’une entreprise. Dans ce contexte deux types de couches permettant de la
compléter :
(i) les couches dites transversales [20](eg : sécurité, administration, transaction et
qualité des services (QoS)) rendent viable l’utilisation effective des services web dans
le monde industriel.
(ii) une couche Business processus permet l’utilisation effective des services web dans
le domaine e-bussiness.

2.3 Composition des services web

La composition de services web est la plus importante fonctionnalité assurée
par une architecture SOA. Celle-ci offre un environnement homogène pour la com-
position dans la mesure où toutes les parties de la composition sont des services
idéalement décrits de la même façon et communiquant par les mêmes standards

32 Chapitre 2. La composition des services web avec propriétés transactionnelles

d’échange de messages. Dans cette section nous allons présenter le concept de com-
position de services web ainsi que les deux approches de composition l’orchestration
et la chorégraphie.

2.3.1 Définition de composition de services web :

Une composition de services web est constituée de plusieurs services qui inter-
agissent les uns avec les autres [2], afin d’offrir de nouvelles fonctionnalités qu’un
seul service ne pourrait pas les offrir. La composition permet de combiner des ser-
vices pour former un nouveau service dit composé ou composite. L’exécution d’un
service composé implique des interactions avec des services partenaires en faisant
appel à leurs fonctionnalités. Le but de la composition est avant tout la réutilisation
de services(simples ou composés) et de préférence sans aucune modification de ces
derniers.

Orchestration :

L’orchestration décrit l’interaction des services au niveau de messages, incluant
le logique métier et l’ordre d’exécution des interactions. Les services web n’ont pas
de connaissance (et n’ont pas besoin de l’avoir) d’être mêlées dans une composition
et d’être partie d’un processus métier. Seulement le coordinateur de l’orchestration
a besoin de cette connaissance.

La figure suivante montre le workflow dans l’orchestration des services web. Un
coordinateur prend le control de tous les services web impliqués et coordonne l’exé-
cution des différentes opérations des services web qui participent dans le processus.

2.3. Composition des services web 33

Fig. 2.2: Vue générale de l’orchestration [7].

La chorégraphie :

Dans [32], l’auteur a mentionné : « La chorégraphie permet de tracer la séquence
de messages échangés dans un contexte de composition de services web. Elle est
typiquement liée à la description de conversations existantes entre les services tout en
impliquant plusieurs parties, incluant les clients, les fournisseurs et les partenaires».

Contrairement à l’orchestration, la chorégraphie offre une vision décentralisée de
la composition (elle ne repose pas sur un procédé central pour gérer la composition).
Chaque service web mêlé dans la chorégraphie connaît exactement quand ses opéra-
tions doivent être exécutées et avec qui l’interaction doit avoir lieu [26]. Le principe
de la chorégraphie est illustré par la figure suivante :

34 Chapitre 2. La composition des services web avec propriétés transactionnelles

Fig. 2.3: Vue générale de la chorégraphie [7].

2.3.2 Comparaison :

Quoi qu’il en soit, il y a une différence importante entre les deux conceptions.
Dans une orchestration, le processus est toujours contrôlé du point de vue de l’une
des parties. Une orchestration exprime une organisation de workflow spécifique. Cela
signifie que l’organisation possède et contrôle la logique d’une orchestration, même
si cette logique implique une interaction avec les partenaires commerciaux externes.
La chorégraphie est plus axée sur la collaboration : toutes les parties impliquées dans
le processus doivent décrire complètement le rôle qu’elles jouent dans le processus.

Elle n’est pas nécessairement la propriété d’une entité unique. Elle agit comme
un modèle communautaire d’échanges utilisé à des fins de collaboration par les ser-
vices de fournisseur de différentes entités. Une orchestration de services web est vue
comme un orchestre, où un processus particulier joue le rôle de chef d’orchestre.
Celui-ci coordonne l’exécution des autres services. Il s’agit d’un point de vue indi-
vidualiste : les services, à l’exception de l’orchestrateur, n’ont pas besoin de savoir
qu’ils font partie d’une plus grande partie. Il y a un seul document de haut niveau
représentant les étapes du processus et ce document est seulement connu et traité
par l’orchestrateur. Dans une chorégraphie, en revanche, les services sont vus comme
des danseurs qui savent exactement quoi faire et de quelle manière interagir avec les

2.3. Composition des services web 35

autres parties. Il s’agit d’une approche collaborative et chacun des participants a
besoin d’un document dans lequel l’interaction est décrite. Ces documents mettent
l’accent sur l’échange de message.

2.3.3 Langages de composition des services web

Ils existent plusieurs langages de définition pour la composition de services web.
Dans cette section nous allons présenter brièvement quelques uns d’entre eux , no-
tamment les plus connus et acceptés afin de faire le choix le plus convenant pour
notre projet.

XLANG : XML Business Process Language

Le langage XLANG [22] est une extension de la spécification WSDL. Elle fournit
en même temps un modèle pour une orchestration des services et des contrats de
collaboration entre celles-ci.

Les actions sont les constituants de base d’une définition de processus de XLANG.
Le fichier de description de service XLANG contient donc la description WSDL, et
y ajoute les deux autres genres d’action : arrêts (date-limite et durée) et exceptions.

WSCI : Web Service Choreography Interface

WSCI [43] est un langage reposant sur XML. Il propose de se focaliser sur la
représentation des services web en tant qu’interfaces décrivant le flux de messages
échangés (la chorégraphie de messages).

Il propose ainsi de décrire le comportement externe observable du service. Pour
cela, WSCI propose d’exprimer les dépendances logiques et temporelles entre les
messages échangés à l’aide de contrôles de séquences, corrélation, gestion de fautes
et transactions. On remarque que WSDL et ses définitions abstraites sont réutilisées
afin de pouvoir également décrire par la suite les modalités de concrétisation des
éléments manipulés pour modéliser un service.

WSCL : Web Service Conversation Language

WSCL [44] propose de décrire à l’aide de documents XML les services web en
mettant l’accent sur les conversations de ceux-ci. En outre, les messages à échanger
sont pris en compte. WSCL a été pensé pour s’employer conjointement avec WSDL.

36 Chapitre 2. La composition des services web avec propriétés transactionnelles

Les définitions WSDL peuvent être manipulées par WSCL pour décrire les opé-
rations possibles ainsi que leur chorégraphie. En retour, WSDL fournit les concréti-
sations vers des définitions de messages et des détails techniques pour les éléments
manipulés par WSDL.

Le Langage BPEL : Business Process Execution Language

BPEL [13] ou BPEL4WS est un langage issu de la fusion de deux langages
prédécesseurs :

WSFL (Web Services Flow Language) et XLANG (Web Services for Business
Process Design). WS-BPEL 2.0 est devenu un standard OASIS en 2007. BPEL
permet de modéliser les processus métiers en termes d’orchestration, en décrivant
le flux de données (les variables) et le flux de contrôle (les activités simples et
composées, les partenaires, etc.), son but est de créer une fonctionnalité complexe
qui réutilise les services existants. Il permet aussi de donner une vue centralisée
de l’exécution de la composition. Nous distinguons deux types de processus BPEL
(abstrait et exécutable).

Processus abstrait :

Ce processus spécifie les messages échangés entre les différents services web com-
posants sans indiquer le comportement de chacun d’eux.

Processus exécutable :

Ce processus permet de spécifier l’ordre d’exécution des activités, les partenaires
concernés, les messages échangés entre ces partenaires, et les mécanismes de ges-
tion des erreurs potentielles. ce processus peut être exécuté au moyen d’un engin
d’orchestration.

Comme montré dans la figure 2.4, la spécification BPEL offre plusieurs éléments
décrits comme suit :

<Process> : L’élément < process > représente la racine du fichier BPEL. Il
contient l’attribut " name " qui permet de définir le nom du processus.

<PartnerLinks> : Il permet de spécifier les différents partenaires participant
dans la composition. Il est composé d’un ou plusieurs éléments <Partner-
Link>. Ce dernier contient les attributs suivants :

- name : nom donné au PartnerLink.

2.3. Composition des services web 37

Fig. 2.4: Structure d’un fichier BPEL.

- myRole : spécifie le rôle du processus BPEL.

- partnerRole :spécifie le rôle du partenaire ou du client.

- partnerLinkType :représente le type de PartnerLink défini dans la description
WSDL.

Si l’attribut < myRole > est uniquement utilisé (sans <partnerRole >), cela
signifie que seules les interactions vers le processus sont autorisées. Dans le cas
opposé (si l’attribut <partnerRole > est uniquement utilisé sans <myRole >),
seules les interactions vers les partenaires et les clients sont autorisées. Il est à
noter que les deux attributs peuvent être utilisés en même temps.

<Variables> : Il permet de définir les différentes variables utilisées dans le
processus BPEL. Ces dernières servent à stocker des données ou des messages
échangés afin de les réutiliser ultérieurement.

<CorrelationSets> : Une orchestration peut être exécutée plusieurs fois. Chaque
exécution est nommée instance. Pour acheminer les données à une instance
particulière, nous utilisons l’élément <correlationSets>.

<FaultHandlers> : permet de gérer les exceptions au niveau du <catch>.

<EventHandlers> : Il représente les événements pouvant survenir au cours de
l’exécution. Il permet aussi d’associer un traitement à chacun de ces évène-

38 Chapitre 2. La composition des services web avec propriétés transactionnelles

ments.

Les activités :

- <receive> :une attente bloquante d’un message entrant.

- <reply> : Elle retourne un message suite à une réception d’un autre message
(à l’aide de la primitive <receive>).

La combinaison receive-reply utilise une opération request-response d’un port-
Type du processus.

- <invoke> : Elle permet l’appel d’un partenaire (service) en se basant sur
une opération de type one way ou request-response.

- <Assign> :Cette activité permet la mise à jour des variables.

- <Throw> : Elle permet d’indiquer les erreurs et les exceptions survenues
lors de l’exécution du processus et de les envoyer au catch de fault handler.

- <Wait> : Elle permet de bloquer l’exécution du processus pour une période
donnée.

- <Empty> : C’est l’opération rien-faire, elle est utile pour la synchronisation.

Activités de base peuvent être combinées pour définir un algorithme complexe
spécifiant les étapes par lesquelles passe le processus en utilisant les activités
structurées telles que :

- <Sequence> : Elle définit une suite d’activités exécutées par ordre d’ap-
parition dans la séquence.

- <flow> : Elle définit des activités exécutées en parallèle.

- <if> : Elle définit un branchement conditionnel.

- <while> : Elle modélise une boucle conditionnelle.

- <Pick> : Elle bloque une activité jusqu’à la réception d’un message ou
l’expiration d’une période de temps.

De façon générale, un processus BPEL commence par une activité <receive>
et se termine par une activité <reply>. Il est interprété par un moteur d’or-
chestration tels que : Oracle BPEL Process Manager, TIBCO Business Works,
etc..

2.3. Composition des services web 39

Fig. 2.5: Définition du processus exécutable de la demande du service de météoro-
logie myMeteo à l’aide de BPEL4WS.

2.3.4 Concepts de base du traitement transactionnel

Notion de Transaction :

Une transaction peut être considérée comme une unité de traitement cohérente
et fiable. Une transaction prend un état d’une base de données, effectue une ou des
actions sur elle et génère un autre état de celle-ci. Les actions effectuées sont des
opérations de lecture ou d’écriture sur les données de la base. Par conséquent, une
transaction peut être définie comme étant une séquence d’opérations de lecture et
d’écriture sur une base de données, qui termine en étant soit validée soit abandonnée.
Si la base de donnée est cohérente au début de la transaction, alors elle doit rester
cohérente à la fin de l’exécution de la transaction bien que cette dernière peut
s’exécuter de manière concurrente avec d’autres ou qu’une panne survienne lors de
son exécution. Une base de données est dite cohérente si elle est correcte du point
de vue de l’utilisateur, c’est à dire qu’elle maintient les invariants de la base ou les
contraintes d’intégrité. La notion de cohérence recouvre plusieurs dimensions comme
décrit dans [21]. Du point de vue des demandes d’accès, il s’agit de gérer l’exécution
concurrente de plusieurs transactions sans que les mises à jour d’une transaction

40 Chapitre 2. La composition des services web avec propriétés transactionnelles

ne soient visibles avant sa validation, on parle de cohérence transactionnelle ou
isolation. Du point de vue des données répliquées, il consiste à garantir que toutes
les copies d’une même donnée soient identiques, on parle de cohérence mutuelle. La
cohérence transactionnelle est assurée à travers quatre propriétés, résumées sous le
vocable ACID :

Atomicité : toutes les opérations de la transaction sont exécutées ou aucune ne
l’est. C’est la loi du tout ou rien. L’atomicité peut être compromise par une panne
de programme, du système ou du matériel et plus généralement par tout évènement
susceptible d’interrompre la transaction.

Cohérence : La cohérence signifie que la transaction doit être correcte du point
de vue de l’utilisateur, c’est-à-dire maintenir les invariants de la base ou contraintes
d’intégrité.

Une transaction cohérente transforme une base de données cohérente en un base
de données cohérente. En cas de non succès, l’état cohérent initial des données doit
être restauré.

Isolation : elle assure qu’une transaction voit toujours un état cohérent de la
base de données.

Pour ce faire, les modifications effectuées par une transaction ne peuvent être
visibles aux transactions concurrentes qu’après leur validation. En outre, une tran-
saction a une opération marquant son début (begin transaction) et une autre indi-
quant sa fin (end transaction). Si la transaction s’est bien déroulée, la transaction
est terminée par une validation (commit). Dans le cas contraire, la transaction est
annulée (rollback, abort).

Durabilité :une fois que la transaction est validée, ses modifications sont per-
sistantes et ne peuvent être défaites. En cas de panne de disque, la durabilité peut
être compromise.

Les propriétés ACID sont très difficiles à maintenir car elles représentent un frein
aux performances du système. Par exemple, l’atomicité cause un sérieux problème
quand l’environnement est réparti sur un système à large échelle puisque toutes les
sites participant à une transaction doivent valider localement avant que la transac-
tion ne soit validée globalement. Autrement dit, le maintien de la cohérence exige
que toutes les sites participants soient mises à jour au sein de la même transaction,
ce qui ralentit la validation. Pour des besoins de performances, certaines propriétés
ne sont pas parfois garanties dans l’optique d’améliorer les performances du sys-
tème. En effet, les propriétés C et I peuvent être relâchées au profit d’un degré de
concurrence plus élevé et donc d’un débit transactionnel plus important.

2.3. Composition des services web 41

2.3.5 Mécanismes garantissant les propriétés d’ACIDité

1 Contrôle de concurrence :

Le contrôle de concurrence est chargé d’empêcher les transactions d’utiliser de
manière intempestive les données modifiées par les transactions concurrentes non
encore validées. On distingue deux grandes familles de contrôle de concurrence :
continues et par certification. Les méthodes continues, ou pessimistes, effectuent un
contrôle lors de chaque accès à une donnée partagée afin de détecter les conflits a
priori, tandis que les méthodes par certification, ou optimistes, attendent la fin de
la transaction pour vérifier a posteriori si des conflits se sont produits. Dans les
deux familles de méthodes, si les conflits entraînent que les transactions en cause ne
peuvent pas être sérialisées alors il faut choisir une ou plusieurs victimes qui seront
rejetées.

Les effets engendrés sur la base par les victimes sont annulés avant que celles-ci
ne puissent tenter de s’exécuter de nouveau. Si le but essentiel du contrôle de concur-
rence est de garantir l’isolation, les rejets qu’il génère sont gérés par la composante
suivante qui assure l’atomicité.

2 Validation Et Reprise aprés panne : Il s’agit de garantir les propriétés
d’atomicité et de permanence en présence de défaillances telles que celles qui pro-
voquent l’arrêt de la transaction avant sa terminaison (Violation de la propriété
de l’atomicité) et celle qui entraîne une disparition de l’information en mémoire
secondaire (Violation de la propriété de permanence).

La mise en oeuvre du contrôle de l’atomicité repose sur deux principes de base
la redondance et l’exécution de la transaction en deux étapes [27] :

La redondance : un journal est prévu en mémoire permanente permet l’en-
registrement des informations nécessaires pour défaire (undo) et refaire (redo) les
actions d’une transaction. Les deux formes de journaux les plus répondu sont le
Journal avant (before journal) : qui stocke les valeurs des objets avant leur modifi-
cation par une transaction, il est utilisé pour défaire les actions d’une transaction
et le journal-après(after-journal) qui stocke les valeurs des objets modifiés par une
transaction, il est utilisé pour refaire les actions d’une transaction.
L’exécution de la transaction se fait en deux étapes : calcul et validation.
Pendant l’étape de calcul qui correspond à l’exécution de la transaction, les modifi-
cations sur les objets sont enregistrées dans le (les) journal (aux), et pendant l’étape
de validation (commitment) le système consolide les actions qui ont été exécutées
sur les objets pendant la phase de calcul. La validation consiste à propager les mo-

42 Chapitre 2. La composition des services web avec propriétés transactionnelles

difications enregistrées dans l’espace de travail de la transaction vers la mémoire
secondaire. Les journaux permettent de fiabiliser cette opération. Lors d’un redé-
marrage après une défaillance, le système transactionnel parcourt le journal pour
analyser l’état des transactions interrompues au moment de l’incident.

Pour chaque transaction, il exécute une procédure selon l’état enregistré dans le
journal :

- Etat actif : défaire les actions de la transaction.
- Etat validé : refaire la procédure de validation.
- Etat invalidé : refaire la procédure d’invalidation.
- Etat terminé ou abandonné : pas d’action.

Fig. 2.6: Digramme d’état d’une transaction.

2.3.6 La validation de transactions dans les systèmes distri-

bués :

Revenons sur la terminaison d’une transaction. Si la transaction est répartie,
il n’est pas certain qu’elle puisse être validée, malgré le fait qu’elle s’est déroulée
normalement jusqu’au point de terminaison. Par exemple, elle a pu modifier des
objets se trouvant sur un site qui est ensuite tombé en panne. Si les effets de la

2.3. Composition des services web 43

transaction sont perdus sur le site défaillant, la transaction ne peut pas être validée.

Autrement dit, la validation d’une transaction répartie nécessite un protocole
permettant d’établir un consensus entre les participants de la transaction. La mise
en oeuvre d’un tel protocole est compliquée par le fait qu’il doit être résistant aux
pannes (par exemple, il doit prendre en compte les pannes de communication). Par
ailleurs, il est souhaitable qu’il puisse permettre aux participants d’abandonner la
transaction à tout moment (par exemple, pour débloquer une ressource afin qu’une
autre transaction puisse y accéder). En fait, ceci n’est pas toujours possible, chaque
protocole ayant "une fenêtre de vulnérabilité" dans laquelle les participants n’ont
pas le droit d’abandonner la transaction unilatéralement. Un participant entre dans
la fenêtre de vulnérabilité lorsqu’il est prêt à valider ; après avoir communiqué cette
décision aux autres participants, il reste bloqué jusqu’à l’obtention d’un consensus
sur le mode de terminaison (par validation ou par abandon). Dans la suite nous
présentons le protocole de validation à deux phases [16] qui est le plus répandu, car
assez général et performant.

Le protocole de validation à deux phases : Considérons le modèle centralisé
(l’un des participants est le coordinateur et les autres sont les subordonnés).

1. Dans la 1-ère phase, le coordinateur demande aux participants s’ils peuvent
valider la transaction.

- Si un des participants répond NON, la transaction est abandonnée.

- Un participant répond OUI, s’il a réussi à préparer la transaction pour la vali-
dation (par exemple, il a sauvegardé dans le journal les enregistrements permettant
de refaire localement la transaction). De plus, en répondant OUI, le participant re-
nonce au droit d’annuler la transaction unilatéralement (il entre dans la fenêtre de
vulnérabilité) et il attend la décision du coordinateur.

2. Le coordinateur décide de valider la transaction si tous les participants ont
répondu par OUI. Dans ce cas, il doit enregistrer dans le journal le fait que la
transaction peut être considérée comme validée. À partir de cet instant, rien ne
peut empêcher la validation de la transaction.

Dans la deuxième phase, le coordinateur fait connaître sa décision aux partici-
pants des autres sites. Si la décision est celle de valider, les participants valident
localement les effets de la transaction. Dans le cas contraire, les participants qui ont
répondu OUI abandonnent localement la transaction.

44 Chapitre 2. La composition des services web avec propriétés transactionnelles

Fig. 2.7: Le protocole 2PC de base.

2.4 Aspects transactionnels dans la composition de

services web

2.4.1 Les services web et les aspects transactionnels

Les services web sont des programmes modulaires, indépendants et auto des-
criptifs, qui peuvent être découverts et invoqués via Internet ou un intranet. Les
services web présentent une technologie qui permet des interactions entre applica-
tions qu’elles soient intra ou interentreprises. Leurs particularités par rapport aux
autres technologies de l’informatique répartie résident dans le fait qu’ils offrent un
modèle de composants à couplage faible en utilisant la technologie Internet comme
infrastructure pour la communication. La technologie des services web utilise des
langages et des protocoles qui reposent sur XML (WSDL : pour décrire les services
web, SOAP : pour structurer les messages). [4, 36]

Un des concepts intéressants qu’offre la technologie des services web est la pos-
sibilité de définir un nouveau service à valeur ajouté (dit service web composé) par
composition de services web existants. Par exemple, pour partir en vacances, le client
fait appel au service composé " organiser un voyage ", ce dernier regroupe des ser-

2.4. Aspect transactionnel pour la composition 45

vices web appartenant à des organisations différentes pour réaliser les fonctionnalités
demandées : (acheter un billet de train, réserver une chambre d’hôtel ,etc..).

1 Classification transactionnelle des services web élémentaires :

Un service web munie de propriétés transactionnelles ou simplement un service
web transactionnel, est un service web qui permet l’acquisition de ressources par
un client (par exemple l’achat d’un billet de train, la réservation d’une chambre
d’hôtel). Cette acquisition ne peut s’opérer que par le biais d’une transaction entre
le client et le fournisseur du service. Ainsi, le fournisseur doit doter ses services web
d’opérations pour permettre la cession de la ressource au client. Il est possible de
caractériser un service web selon les propriétés des transactions qu’il est capable
d’exécuter [14, 15]. Plusieurs classifications transactionnelles ont été proposées :

Dans [14, 15], une classification basée sur le degré d’atomicité du service web a
été proposée. Par conséquence, un service web peut être : atomique, quasi-atomique
ou non-atomique :

un service est dit d’exécution atomique (c’est-à-dire avec la sémantique du tout
ou rien) lorsqu’il offre les opérations suivantes : obtenir (si possible) la réservation
d’une ressource, annuler une réservation demandée, valider définitivement l’acqui-
sition d’une ressource réservée ; un service quasi-atomique offre une opération pour
acquérir (si possible) définitivement une ressource, il offre aussi une opération de
compensation ; un service est dit non-atomique lorsqu’il fournit seulement une opé-
ration pour acquérir définitivement une ressource. Il n’y a pas d’opération de réser-
vation ni de compensation.

Dans [33, 34], les auteurs se sont inspirés du modèle de transaction flexible d’où
les définitions suivantes :

-Un service S est dit compensable " Compensatable " s’il offre des mécanismes
de compensation pour annuler sémantiquement son travail.

-Un service S est dit rejouable " Retriable " s’il se termine toujours avec succès
après un nombre fini d’activation.

-Un service S est dit pivot " Pivot " si une fois qu’il se termine avec succès, ses
effets ne peuvent pas être compensés.

Un service web peut être : compensable, rejouable, pivot, et peut même combi-
ner deux propriétés telles que (rejouable et pivot) ou (rejouable et compensable).
Dans [30], les auteurs ont considéré qu’une opération offerte par un service web
peut être soit : compensable, quasi-compensable, rejouable ou pivot. Une opération
quasi-compensable est une opération qui s’exécute sous un système qui supporte les
mécanismes de validation à deux phases 2PC.

46 Chapitre 2. La composition des services web avec propriétés transactionnelles

2.4.2 Notions transactionnelles dans la composition de ser-

vices web

Un service web composé peut être modélisé par un graphe des tâches. Un service
web composé peut être validé même si certaines de ses tâches échouent, ces tâches
sont dites non vitales, les autres sont dites vitales. Un service web composé ne peut
être validé que si toutes ses tâches vitales ont été validées.

Une tâche peut avoir des tâches alternatives ou contingentes ; dans ce cas elle
est dite remplaçable. Une tâche alternative est exécutée si la tâche à laquelle elle
est associée échoue. La vitalité et la "remplaçabilité " des tâches sont des propriétés
transactionnelles qui doivent être exprimées au niveau du service web composé.
Remarquons que les propriétés transactionnelles d’un service web composés peuvent
être changées durant l’exécution. Par exemple si une tâche vitale échoue, l’utilisateur
peut rendre cette tâche non vitale empêchant ainsi l’annulation de la composition.

La sélection des services web participant à une composition consiste à choisir des
services web qui répondent aux tâches qui composent un service web composé. Les
services web participants sont faiblement couplés, indépendants les uns des autres,
et ont des propriétés transactionnelles hétérogènes. Un service web composé doit
supporter les propriétés des services web participants à sa composition. En effet, il
arrive très fréquemment que plusieurs services web répondent à une même tâche.
Ces services sont dits des services alternatifs. Si un service web participant échoue,
il est possible de le remplacer par l’un des ses services alternatifs, empêchant ainsi
l’abandon de la composition.

Le domaine des services web est dynamique et évolutif ; de nouveaux services
peuvent y être ajoutés, les services existants sont constamment modifiés, momen-
tanément suspendus, ou finalement supprimés. Une réponse à cette volatilité des
services web peut être le choix dynamiquement (au moment de l’exécution de la
composition) des services participants (ou des services web alternatifs), cela permet
d’augmenter les chances de validation de la composition. Il faut noter que les inter-
actions entre les services web ont des durées variables, elles peuvent être de courtes
ou de longues durées.

La volatilité des services web, la variabilité et le changement dynamique des pro-
priétés transactionnelles des services web composés rendent difficile, voir impossible,
la prévision statique dès la conception de tous les scénarios pouvant se présenter du-

2.4. Aspect transactionnel pour la composition 47

rant la composition d’un service web composé ; d’où le besoin de techniques dyna-
miquement adaptables. Les caractéristiques citées ci-dessous montrent le besoin de
solutions flexibles et adaptables pour la composition de services web avec propriétés
transactionnelles. En effet, plusieurs solutions ont été proposées pour résoudre le
problème de la composition des services web avec propriétés transactionnelles. Ces
solutions s’inscrivent soit dans le cadre des protocoles spécifiques ou dans le cadre
des propositions académiques.

2.4.3 Protocoles spécifiques

Les efforts de standardisation ont abouti à un certains nombre de protocoles que
nous citons dans ce qui suit :

1. " BTP " Business Transactions Protocol [18] :

BTP s’appuie sur une variante du protocole de validation à deux phases pour
garantir la propriété d’atomicité. Il introduit deux modèles de transactions :

(i) Atom : pour garantir une atomicité stricte.

(ii) Cohésion : qui permet de relâcher la propriété d’atomicité.

BTP souffre d’un inconvénient majeur : il ne fait pas la distinction entre le
protocole de transaction, et les aspects fonctionnels. Aussi, il exige que tous
les services web participants supportent les mécanismes de validation à deux
phases, cette condition rend la solution très restrictive.

2. " WSTF " Web Services Transaction Framework [28] : La spécifi-
cation WSTF sépare le protocole chargé de la coordination " Web Services
Coordination : WS-C " du protocole chargé de la transaction " Web Services
Transaction WS-T ".

WS-T introduit deux modèles de transactions :

(i) Web Services Atomic Transaction " WS-AT " : garantie l’atomicité stricte
pour les transactions courtes.

(ii) Web Services Business Activity " WS-BA " : permet le relâchement de la
propriété d’atomicité.

WS-T exige soit que tous les services web participants disposent des méca-
nismes de validation de deux phases, soit tous les services web participants
exposent des opérations de compensation ce qui est très exigeant.

3. " WS-CAF " Web Service Composite Application Framework [3, 15,
45] :

48 Chapitre 2. La composition des services web avec propriétés transactionnelles

WS-CAF est un canevas pour composer des services web de différentes origines
(.Net,J2EE, CORBA, etc..). Il fournit les spécifications pour résoudre les pro-
blèmes liés à la fourniture d’une infrastructure commune où il est nécessaire de
gérer les différents contextes liés à la diversité des données, comme c’est le cas
des services web appartenant à différentes entreprises mais qui sont composés
pour produire un résultat commun. WS-CAF comporte trois spécifications :
un gestionnaire de contexte, un coordinateur générique et un support pour les
modèles de transactions.

" WS-CTX " Web Service Context :

Le contexte présente des informations additionnelles qui permettent d’amélio-
rer l’utilisation d’un service web. Les informations de contexte sont transférées
dans les messages SOAP. WS-CTX comporte des mécanismes qui permettent
de définir, de structurer et de partager le contexte [47].

" WS-CF " Web Services Coordination : définit " le coordinateur "
qui est responsable d’augmenter et de diffuser le contexte. WS-CF supporte
les trois services suivants [46] :

(i) Service d’activation : commence une nouvelle activité et spécifie les proto-
coles de coordination disponibles.

(ii) Service d’enregistrement : permet aux services web de s’enregistrer et de
choisir le protocole de coordination.

(iii) Service de coordination : définit le comportement des modèles de coordi-
nation spécifique. Par exemple : ACID Transaction,..

" WS-TXM " Web Services Transaction Management : il permet
de définir trois modèles de transaction [3, 45] :

- ACID Transaction (AT) : conçu pour gérer des transactions courtes selon la
sémantique ACID.

- Long Running Action (LRA) : est une activité, ou groupe d’activités, qui ne
garantissent pas obligatoirement les propriétés ACID. Tous les services web
participants à une LRA doivent avoir des opérations de compensation (Com-
pensators).

Lors de l’exécution d’une LRA si tous les services web participants valident
les activités demandées, la LRA sera validée. Sinon, la LRA sera annulée et
les participants qui ont déjà validé des activités demandées procèdent à des
compensations.

- Business Process (BP) : ce modèle reflète le concept de " processus métier "

2.4. Aspect transactionnel pour la composition 49

qui a pour rôle la réalisation d’une fonction spécifique de l’entreprise. Un BP
regroupe un ensemble de transactions atomiques (AT) ou de Long Running
Actions (LRA) selon les besoins de l’application.

2.4.4 Approches académiques

Parmi les solutions académiques proposées, nous avons étudié deux approches
que nous avons jugé les plus pertinentes.

1. " ABT " Web Services In an Agent Based Transaction Model [37] :

L’approche ABT décrite dans [37] définie un système multi-agents pour gérer
les transactions pour les services web. Elle propose l’utilisation des quatre
agents :

(i) l’agent de coordination et de délégation.

(ii) l’agent de ressource.

(iii) l’agent d’encapsulation.

(iv) l’agent de découverte et d’estimation.

Cette approche permet de composer des services web et des ressources locales
en :

- respectant l’autonomie des services participants.

- incluant des agents permettant d’encapsuler les services web. Ces derniers
permettent de cacher l’hétérogénéité des services web participants.

- incluant un agent de découvert et d’estimation évolutif.

- utilisant une liste des participants alternatifs.

Mais cette approche n’a pas bien étudié les problèmes transactionnels rencon-
trés lors de la composition de services web à savoir :

- l’expression des propriétés transactionnelles au niveau de service web composé
n’est pas étudiée.

- les interactions entre les agents d’encapsulation et les services encapsulés.

2. Reliable Web Services Compositions By Ensuring The Failure Ato-
micity [33] :

Cette étude propose un modèle de services web transactionnel qui a pour but
d’assurer des exécutions correctes des services web composés. Ce modèle dis-
tingue en particulier entre le flot de contrôle et le flot transactionnel d’un
service web composé transactionnel (SCT). Le flot de contrôle définit l’ordre

50 Chapitre 2. La composition des services web avec propriétés transactionnelles

d’invocation des services composants. Le flot transactionnel définit les méca-
nismes de recouvrement en cas d’échecs.

Dans ce modèle, trois approches ont été développées pour assurer des composi-
tions fiables de services web : la première repose sur la validation du modèle de
composition du SCT conformément aux besoins des concepteurs. La deuxième
procède par réingénierie du SCT. La troisième repose sur le concept de patron
transactionnel. Bien que cette approche présente une solution pour assurer
des compositions fiable des services web, elle ne permet pas d’exprimer les
propriétés transactionnelles au niveau du service web composé.

2.5. Conclusion 51

2.5 Conclusion

La composition des services web permet de combiner des services web élémen-
taires afin d’obtenir des services plus élaborés. Elle décrit un ensemble d’interactions
ou processus métier, faisant intervenir différents services web. La composition est
décrite indépendamment de sa implémentation futur i.e. elle indique uniquement
les types de services web nécessaires mais ne précise pas nominativement les ser-
vices web qui serons utilisés. Par ailleurs, la composition peut comporter plusieurs
niveaux en permettant à des services web élaborés d’être à leur tour combiné pour
construire de nouveaux services.

Dans ce chapitre nous avons présenté quelques langages et spécifications qui per-
mettent la composition des services, et nous avons détaillé le concept de transaction
et l’effet de l’aspect transactionnel sur la composition des services web.

52 Chapitre 2. La composition des services web avec propriétés transactionnelles

Chapitre 3

Implémentation

Sommaire
3.1 Introduction . 54

3.2 L’architecture proposée . 54

3.3 Présentation . 55

3.3.1 Plateforme de services web : 55

3.3.2 Plateformes d’exécution côté serveur : 57

3.4 Etude de cas : Agence de voyage : 58

3.4.1 L’invocation de services dans une composition : 59

3.4.2 Création de processus BPEL : 62

3.5 Implémentation : . 66

3.5.1 La transformation d’un processus BPEL en graphe : . . . 66

3.5.2 La composition des services web : 67

3.5.3 Composition transactionnelle 68

3.6 Expérimentations . 69

3.7 Conclusion : . 70

54 Chapitre 3. Implémentation

3.1 Introduction

Afin de pallier aux problèmes transactionnels rencontrés dans l’environnement
des services web, de nombreux protocoles et approches académiques ont été propo-
sés. Une des limitations principales de ces solutions est qu’elles n’offrent pas un bon
niveau d’adaptabilité, en termes de support restreint du changement dynamique
caractérisant cet environnement et aussi le changement dynamiques des besoins
transactionnels des utilisateurs. Nous présentons notre implémentation ; nous nous
concentrerons tout particulièrement sur la vérification des propriétés transaction-
nelles.

Dans ce chapitre nous décrivons un prototype implémentant l’environnement de
recherche, de composition de services web. Nous décrivons en premier lieu, larchi-
tecture proposée , ensuite nous présentons les corpus utilisés pour évaluer l’envi-
ronnement, après nous montrons les expérimentations menées, et finalement nous
discutons les résultats obtenus.

3.2 L’architecture proposée

L’architecture globale que nous proposons pour la composition des services web
avec propriétés transactionnelles est illustrée par la figure suivante :

Fig. 3.1: Architecture proposée.

3.3. Présentation 55

L’architecture est composée de deux parties :
La composition de services est gérée par le premier composant de l’architecture

Dans laquelle, on distingue deux types de services :
Les services élémentaires : Ces services sont des services web élémentaires

(service1.. n). Chaque service possède sa description WSDL et sa propriété transac-
tionnelle.

Les services composés : (composite services) regroupent un ensemble de ser-
vices. Chaque service composite est écrit en BPEL. Lors de l’étape de composition,
plusieurs plans de composition peuvent être trouvés qui satisferaient les besoins de
client, aprés de mettre en oeuvre la composition, on vérifie les propriétés transac-
tionnelles donc on obtient un service composite transactionnel qui est noté CST. Ce
dernier sera présenté dans le registre UDDI.

3.3 Présentation

La présentation de la mise en oeuvre de notre étude, se concentre, dans un
premier temps, sur le cadre et les objectifs du développement d’une plateforme
de services web, suivis, dans un deuxième temps, par la présentation de quelques
outils technologiques utilisés permettant de déployer et d’exécuter des services web
possédant une description comportementale.

3.3.1 Plateforme de services web :

Pour obtenir la plus grande portabilité, le langage Java a été retenu. De plus,
de nombreux outils du domaine des services web étant développés principalement
en Java, l’utilisation de Java nous permet de rester le plus proche de ceux-ci. Le
tout, en utilisant au maximum les outils et bibliothèques libres de droit, permettant
ainsi de s’affranchir des problèmes d’un outil non porté sur une plateforme donné
ou dont le développement n’est plus assuré. Avant de vouloir aller plus loin dans la
composition de services web avec vérification de certaines propriétés pour assurer
que l’interaction se déroulera sans soucis, il est nécessaire de disposer d’un module
permettant d’invoquer n’importe quel service web répondant à certains critères. Ce
travail part d’un constat : l’invocation d’un service web basique disposant d’une
description WSDL est réalisable relativement aisément avec les outils actuels. Par
contre, l’invocation d’un service web complexe disposant d’une description compor-
tementale avec un langage tel que BPEL n’est pas aussi facilement réalisable avec les

56 Chapitre 3. Implémentation

outils actuels. L’approche utilisée par les industriels consiste souvent à écrire du code
guidant cette invocation pour un service web donné, ce code est alors trop proche
de ce service web et n’est pas réutilisable pour un autre service web ou même une
nouvelle version de celui-ci. Dans ce qui suit nous allons présenter plus de détails.

Langage de programmation :

Le langage utilisé pour la réalisation de notre outil est le langage orienté objet
" Java " qui a été créé à la fin des années 80 lorsque bill Joy, cofondateur de Sun
Microsystems en 1982, commença à imaginer un nouveau langage. Ceci incita un
groupe de programmeurs de Sun Microsystems en l’occurrence : James Osling ,Pa-
trick Naughton et MikeSheridan à développer un langage de programmation qu’ils
ont baptisé OAK dans un premier stade pour prendre par la suite en janvier 1995
le nom JAVA qui veut dire café en argot American. Ce langage a été présenté offi-
ciellement le 23 mai 1995 au Sun World, après quoi plusieurs autres versions plus
améliorées ont été réalisées par la maison Sun.La société Sun a été ensuite rache-
tée en 2009 par la société Oracle qui détient et maintient désormais Java. Notre
choix s’est posé sur ce langage compte tenu des multiples avantages qu’il offre, entre
autres :

- Java est un langage dynamique, simple et robuste.

- La sémantique du langage Java est indépendante de la plateforme. Donc un
programme écrit en Java fonctionne de manière indépendante de l’architecture ma-
térielle.

Les logiciels développés avec le langage Java sont facilement portables sur plu-
sieurs systèmes d’exploitation tels que : UNIX, Microsoft Windows, Mac OS.

- Java reprend en grande partie la syntaxe du langage C++, très utilisé par les
informaticiens. Néanmoins, Java a été épuré des concepts les plus subtils du langage
C++ et à la fois les plus déroutants, tels que l’héritage multiple qui a été remplacé
par les interfaces. Les concepteurs ont privilégié l’approche orientée objet de sorte
qu’en Java, tout est objet à l’exception des types primitifs (nombres entiers, nombres
à virgule flottante, etc.).

- Java a donné naissance à un ensemble d’environnements de développement
(Eclipse, Netbeans, etc.), des machines virtuelles (MSJVM, JRE) applicatives mul-
tiplateformes (JVM), une plateforme java de base (java SE) avec des API pour la
création des interfaces graphiques (AWT, Swing). La portabilité du code Java est
assurée par la machine virtuelle.

3.3. Présentation 57

Environnement de développement :

NetBeans 8.0 :
NetBeans est un environnement de développement intégré (IDE) pour Java, placé

en open source par Sun. En plus de Java, NetBeans permet également de supporter
différents autres langages, comme C, C++, XML et HTML. Il comprend toutes les
caractéristiques d’un IDE moderne (éditer en couleur, projets multi-langage, éditeur
graphiques d’interfaces et de pages web).

NetBeans est disponible sous Windows, Linux et d’autres systèmes d’exploita-
tion. Il est lui-même développé en Java, ce qui peut le rendre assez lent et gourmand
en ressources mémoires.

3.3.2 Plateformes d’exécution côté serveur :

Nous n’allons pas faire ici l’inventaire de toutes les plateformes d’exécution de
services web, mais seulement présenter une plateforme que nous avons sélectionnée.
Les critères de sélections sont basés sur leur disponibilité, leur état d’avancement
dans leur développement et la communauté gravitant au tour de ces produits. Notre
environnement de test est basé sur le serveur ActiveBPEL pour des raisons pratiques
concernant l’installation et la configuration sur la plateforme utilisées pour notre
travail. Bien évidement, la plateforme du côté client ne se limite pas à ce serveur,
mais fonctionne avec tous les serveurs respectant le standard BPEL.

ActiveBPEL :
Le serveur d’applications inclus dans les outils ActiveBPEL est un serveur sous

licence libre. Il est agrémenté par des outils, développés par Active Endpoints, de
conception et de développement de services BPEL qui eux sont payants. Il repose
sur le serveur Tomcat d’Apache, libre également. L’ajout à Tomcat du serveur Acti-
veBPEL est relativement simple. De plus, une fois déployé, il possède une interface
d’administration entièrement utilisable par une interface web. Cette interface permet
le déploiement et la gestion des services sur le serveur.

Afin de mieux connaître cet outil que nous avons utilisé pour la génération des
processus BPEL, nous introduisons dans ce qui suit les capacités qu’il offre. Il offre
une palette avec toutes les opérations possibles (voir section 2.2.3). Il faut sélection-
ner l’opération adéquate, la glisser-déposer (drag-drop) jusqu’à la représentation
graphique du processus et la mettre dans l’emplacement préféré.

58 Chapitre 3. Implémentation

3.4 Etude de cas : Agence de voyage :

L’objectif principal de ce scénario est de faciliter la compréhension et de montrer
l’enchaînement d’événements de notre étude à travers un exemple simple et réaliste.
Nous ne cherchons pas ici à montrer que notre étude peut être utilisée pour le
développement de service composés complexes, bien que cela soit tout à fait possible.

Une agence de voyage " e-TravelAgency " fournit typiquement les services pour :
consultation, réservation, paiement et annulation de billet d’avion, de chambre

d’hôtel et de locations de voiture. Afin de fournir ces services à ses clients, l’agence
de voyage doit établir des liens avec d’autres entreprises : compagnies aériennes,
compagnies de location de voitures et réseaux hôteliers.

Une institution financière (banque) est également nécessaire pour faciliter les
transactions financières entre le client et l’agence de voyages, ou entre l’agence de
voyage et les autres partenaires.

Afin d’illustrer les propriétés transactionnelles des services web composés, nous
utilisons la représentation à l’aide du graphe de tâches présentée dans [17]. Un
service web composé peut être modélisé par un graphe des tâches, où chaque tâche
représente une fonctionnalité demandée par le client (figure 3.2).

Fig. 3.2: Modélisation graphique Agence de voyage.

3.4. Etude de cas : Agence de voyage : 59

La figure 3.2 présente le service web composé SWC " Organiser un voyage "
qui comporte quatre tâches t1, t2, t3 et t4 qui représentent respectivement une
réservation de chambre de d’hôtel, une réservation de vol, une réservation de train
et une réservation de table de restaurants.

Propriétés transactionnelles :
Prenons par exemple l’acquisition d’un billet d’avion. Si le service a un com-

portement atomique, il est possible de réserver le billet, en général pour un temps
déterminé. Le fait de réserver le billet le rend indisponible aux autres clients, la res-
source est donc verrouillée. C’est la garantie qu’au moment de valider la transaction
la ressource sera toujours disponible. Avant que le délai ait expiré, le client peut soit
annuler sa réservation, soit acheter le billet réservé. Dans le premier cas, la transac-
tion est annulée et la ressource est rendue disponible à nouveau. Dans le second cas
la transaction a réussi. L’expiration du délai provoque l’annulation de la transac-
tion et libère la ressource. Si le service est quasi-atomique, le client peut acquérir le
billet d’avion s’il est disponible, la compagnie peut cependant offrir des conditions
particulières pour le report du voyage. L’opération de compensation consiste ici à
modifier les dates du voyage par exemple, il s’agit de libérer la ressource acquise
puis d’en acquérir une nouvelle. Finalement, dans le cas d’un service non-atomique
le client peut acheter un billet d’avion mais, s’il change d’avis, il ne dispose d’aucune
opération, ni d’annulation ni de compensation.

3.4.1 L’invocation de services dans une composition :

Les invocation des services dans une composition sont dans un ordre bien précis.
On distingue les types d’exécution suivant :

- Exécution séquentielle : Dans une exécution séquentielle, un service est invoqué
une fois que tous les web services précédents ont été exécutés.

Fig. 3.3: Exécution séquentielle.

60 Chapitre 3. Implémentation

- Exécution en parallèle : Dans ce cas, les web services s’exécutent en parallèle.
Elle peut être représentée par l’opérateur AND, le web service 2 s’exécute en parallèle
avec le web service 3.

Fig. 3.4: Exécution parallèle.

- Exécution conditionnelle : Un chemin est choisi parmi plusieurs, ce choix est
fait à l’aide d’une décision prise au moment de l’exécution. Elle peut être représentée
par l’opérateur OR.

Fig. 3.5: Exécution conditionnelle.

3.4. Etude de cas : Agence de voyage : 61

- Exécution en boucle Un web service peut être invoqué plusieurs fois.

Fig. 3.6: Exécution en boucle.

62 Chapitre 3. Implémentation

3.4.2 Création de processus BPEL :

Notre processus BPEL Agence de voyage implémente trois services web : réser-
vation de vol, réservation d’hôtel et location de voiture. Conformément à la ter-
minologie BPEL, impliqués par PartnerLinks dans le processus BPEL. Les étapes
suivantes sont prises pour créer le processus décrit utilisant ActiveBPEL Designer :

Etape 1 : Démarrage d’un nouveau processus.

Etape 2 : Ajout de références web.

Etape 3 : Planification et conception d’un processus :

Une fois les références web des PartnerLinks sont disponibles le processus BPEL
peut être créé . Ce nouveau fichier .bpel aura au moins deux messages d’erreur. Igno-
rer ces erreurs pour le moment ; ouvrez le fichier de processus BPEL et commencer
à spécifier les activités au processus BPEL. Dans ce qui suit, nous présentons toutes
les activités nécessaires à la réalisation du notre processus BPEL.

Etape 4 : Ajout d’activités de processus et propriétés :

Utilisez l’Assistant Opération pour créer un BPEL activité avec le approprié
WSDL la description. L’assistant vous aide ainsi à créer un nouveau fichier WSDL
avec le partenaire type de lien, de type port, le fonctionnement et messages. Sinon,
utilisez la palette d’outils du processus.

Comme premier pas sélectionnez une activité Sequence puisque tous les activités
serons exécuté de manière séquentielle.

Sélectionnez une activité Receive-Reply, puisque les opérations de notre processus
reçoit les entrées de la composition et répond à la fin d’exécution en récupérant
les sorties engendrées par cette exécution. Terminer cet assistant, en utilisant les
propriétés par défaut pour les options restantes.

La seconde activité dans le processus BPEL consiste à récupérer certaines don-
nées dans la demande de l’utilisateur (par exemple le nombre de place réservé dans
un vol, le nombre de chambre, le nom de client, etc..). Pour ce faire, utilisez une
activité Invoke BPEL, qui met en oeuvre un appel synchrone à une opération. Après
cela, terminez l’assistant pour cette activité ; pour exécuter l’activité d’appel créé
précédemment, un message doit être créé pour être utilisé dans l’opération réserva-
tion de vol. Utilisez donc une activité BPEL Assign.

Connecter les activités BPEL dans le processus à l’autre, selon l’ordre d’exé-
cution ; pour compléter la spécification de processus BPEL, définir quelle activité
instancie le processus BPEL. Dans cet exemple, ceci est la première activité de ré-
ception. Pour ce faire, sélectionnez l’activité Recevoir, allez à l’onglet de propriétés,

3.4. Etude de cas : Agence de voyage : 63

et définissez l’option Instance Créer Oui. Après tout ce que les messages d’erreur
devraient avoir disparu et le processus BPEL est complet et prêt à être déployé et
exécuté.

A la fin de ces étapes du processus BPEL doit ressembler à celui présenté dans
la figure suivant :

Fig. 3.7: Processus BPEL Complet (cas séquentielle).

Etape 5 : Ajout de la rémunération et de corrélation (Ceci est en fait une étape
vide).

Etape 6 : Simuler le processus.
Etape 7 : Déploiement du processus et Exécution du processus sur le serveur.
Une fois un processus BPEL est créé, il doit être déployé afin d’être exécuté. Pour

déployer un processus BPEL dans le ActiveBPEL Engine,des fichiers de déploiement
doivent être créés, qui sont utilisés par le ActiveBPEL Engine pour déployer et
exécuter le processus BPEL. Nous utilisons le Designer ActiveBPEL pour créer de
tels fichiers. Dans ce qui suit, nous discutons les mesures nécessaires pour effectuer le
déploiement, et de donner quelques indications sur la façon d’exécuter le processus.
Nous discutons également comment surveiller et déboguer un processus BPEL.

Afin de déployer un processus BPEL, prendre les mesures suivantes :

64 Chapitre 3. Implémentation

Fig. 3.8: Code source de fichier BPEL.

Dans le Concepteur de ActiveBPEL créer un nouveau descripteur de déploiement,
sélectionnez le fichier BPEL du processus créé, utilisez l’option par défaut pour
le déploiement, et dans le menu Liens partenaires sélectionner le type Endpoint :
statique pour les liens partenaires, assurez-vous que l’adresse, le nom de service et
les opérations sont correctement définies.

Après cela, générer une archive de processus d’affaires (.bpr) pour déployer dans
le ActiveBPEL Engine. Dans le menu suivant, spécifier des informations sur la desti-
nation où le fichier .bpr doit être enregistré dans votre espace de travail (sélectionnez
la destination d’exportation, le fichier bpr), et le répertoire de déploiement dans le
serveur, cliquez sur Suivant et terminer l’assistant. En ce moment, le processus BPEL
est déployé sur le serveur Tomcat, et prêt à être exécuté.

Pour exécuter le processus BPEL, Tomcat doit être en cours d’exécution. Une
fois Tomcat est en cours d’exécution, ouvrez une fenêtre de navigateur et vérifier la
console Engine ActiveBPEL, en ouvrant le lien http : // localhost : 8080 / BpelAd-
min /.

Une interface avec le ActiveBPEL Engine devrait apparaître montrant des détails
de configuration, l’état du déploiement, et l’état du processus. Cela permet de vérifier

3.4. Etude de cas : Agence de voyage : 65

si un processus BPEL est correctement déployé, et aussi pour surveiller les processus
BPEL qui exécutent. Dans cette interface, nous pouvons vérifier le fichier processus
de WSDL (agence de voyage .wsdl), et va être utilisé pour créer les services client
web nécessaires au processus BPEL.

Une fois le processus BPEL est déployé, il peut être exécuté. Pour réaliser cette
opération d’appel, nous supposons que le service web de propositions a accès au
fichier WSDL du processus BPEL déployé pour créer un client pour accéder à cette
opération de processus, ce fichier WSDL (figure 3.9). Nous utilisons l’assistant de
service client web Eclipse pour générer le service web client pour le processus BPEL.

Fig. 3.9: Fichier WSDL de processus BPEL.

66 Chapitre 3. Implémentation

Une fois que nous avons un client pour le service de l’agence de voyage, nous
sommes en mesure d’introduire toutes les données requises pour instancier le pro-
cessus BPEL et de commencer à toutes les activités du processus BPEL. Avant cela,
cependant, nous devons nous assurer que les services web de tous les PartnerLinks
sont déployés quelque part, par exemple, dans un serveur d’application Tomcat.
À ce stade, nous pouvons tester notre processus BPEL en démarrant Tomcat, le
ActiveBPEL Engine.

3.5 Implémentation :

3.5.1 La transformation d’un processus BPEL en graphe :

Avant de faire la composition on passe par la transformation du processus de
BPEL à un graphe orienté. Et pour faire on doit suivre les règles suivantes :

- les PartnerLinks (les services)sont transformmés aux sommets. D’où S : le nom
du sommet et (x,y) : les coordonnés associés.

- les Links sont transformés aux arcs.
La première étape consiste à charger le fichier BPEL stocké sur la machine pour

dessiner le graphe manuellement.

3.5. Implémentation : 67

Fig. 3.10: Transformation d’un processus BPEL en graphe.

3.5.2 La composition des services web :

L’une des fonctionnalités principales de l’application est celle de la composition.
Cette dernière prend en entrée un service ou un ensemble de services sur lesquels elle
applique une opération ou une suite d’opérations pour retourner un service composé
comme résultat.

Pour notre application nous réalisons une composition manuelle ; la composition
manuelle des services web suppose que l’utilisateur génère la composition à la main
via un éditeur de texte et sans l’aide d’outils dédiés. Pour accéder à cette opéra-
tion, l’utilisateur doit choisir la fonctionnalité " Service Composite". Cette dernière
permet de charger ou afficher le graphe de composition à réaliser et de tester la
disponibilité de chacun de service participant à la composition en cliquant sur le
bouton "Trouver les services" comme montré dans la figure suivante :

68 Chapitre 3. Implémentation

Fig. 3.11: Composition des services web.

3.5.3 La composition des services web avec les propriétés

transactionnelle :

C’est l’interface la plus importante dans notre application elle se décompose de
deux parties, la premiere contient la barre des boutons standard," Service Compo-
site" pour afficher le service composite à réaliser,et "Vérifier les propriétés transac-
tionnelles" pour vérifier la compatibilité des propriétés transactionnelles de chaque
service elémentaire avec celle dans la composition.

La deuxième est un panel où on peut dessiner ou afficher le graphe et les ré-
sultats de la composition avec propriétés transactionnelles. Chaque service possède
une propriété transactionnelle, on commence par le premier service participant à
la composition jusqu’on arrive à la fin de la composition. Si les propriétés transac-
tionnelles des services élémentaires sont compatibles avec celles dans le graphe de
service composite ,celui-ci affiche le message de la figure (la composition est réalisée
avec les propriétés transactionnelles).

3.6. Expérimentations 69

Fig. 3.12: La composition des services web avec les propriétés transactionnelles.

3.6 Expérimentations

Dans cette section nous décrivons les expériences menées pour analyser les per-
formances de notre étude.

L’expérience qui nous avons effectuée consiste à mesurer le temps en rapport
avec le nombre de composition (figure 3.13). Le service web que nous utilisons est
un service web composite (une composition traditionnelle , et autre transactionnelle).

La figure montre les résultats de cette expérimentation. On remarque que le
temps d’exécution est trés élevé dans le cas de la composition traditionnelle, puisque
cette composition ne prend pas en compte l’aspect transactionnel c’est-à-dire que
la composition est assurée mais n’est pas réaliste. Contrairement à l’autre cas(la
composition avec propriétés transactionnelles) qui supporte les mécanismes de com-
pensation, validation et annulation alors , cela peut être expliqué par la felxibilté et
augmentation de la chance de composition avec succès.

70 Chapitre 3. Implémentation

Fig. 3.13: Une comparaison entre la composition traditionnelle et transactionnelle.

3.7 Conclusion :

Dans la première partie de ce chapitre, nous avons présenté quelques détails
relatifs à la réalisation de notre outil. Nous avons choisi le langage de programmation
Java pour les raisons de compatibilités avec notre environnement de test, et aussi
pour ses multiples caractéristiques de simplicité, robustesse et portabilité.

Nous avons proposé également une étude de cas où nous avons utilisé notre outil
pour permettre de bien illustrer l’approche de composition et de vérification des
propriétés transactionnelles des services web élémentaires et composites présentées
dans le chapitre précédent.

Dans la deuxième partie nous avons présenté les principes de conception et d’im-
plémentation des différentes parties de notre application. , nous présentons une ex-
périmentation qui assure des exécutions correctes de services composés en intégrant
de façon complémentaire l’aspect transactionnel, qui permet de définir la fiabilité
des exécutions.

Conclusion Générale

72 Conclusion Générale

Aujourd’hui, l’interopérabilité est devenue un domaine de recherche fondamental
des systèmes d’information distribués et hétérogènes. Les services web sont considé-
rés comme une solution potentielle aux problèmes d’interopérabilités. Ils définissent
un nouveau paradigme de développement des interactions entre des applications dis-
tribuées de manière à ce qu’elles restent indépendantes des environnements et des
plateformes d’exécution d’une part et aussi des choix des langages de développement
et technologies d’implémentations utilisés d’une autre part. La composition de ser-
vices web en particulier permet de combiner plusieurs fonctionnalités des services
Web afin de répondre aux exigences qu’un seul service ne peut satisfaire.

Dans ce mémoire nous nous sommes intéressés à la composition de services web
avec propriétés transactionnelles et plus spécifiquement à la propriété d’atomicité.
Pour cela, nous avons réalisé une étude concernant les aspects transactionnels dans la
composition des services web. Cette étude nous a permis de concevoir un service web
composé comme une application distribuée qui doit offrir à ses utilisateurs la pos-
sibilité d’exprimer leurs besoins transactionnels (à savoir la vitalité et la possibilité
de remplacement des tâches) en prenant en compte que ces besoins peuvent changer
dynamiquement lors de l’exécution de la composition. Un service web composé doit
aussi supporter les propriétés transactionnelles des services web participants à sa
composition. Ces derniers étant accessibles dans un domaine dynamique et évolutif,
dont les interactions ont des durées de vie variables. Ces caractéristiques montrent
le besoin de flexibilité et d’adaptabilité.

Finalement, on a réussi à implémenter cette application d’une manière simple
et compréhensible, même si elle est loin d’être utilisable sur le plan pratique mais
elle reste une bonne expérience, cette dernière est un bon complément de notre
formation de base, elle nous a permis d’enrichir nos connaissances théoriques et
pratiques, et constitue la base de départ pour des futurs travaux. Nos perspectives
étant de continuer dans le domaine des web services, de bâtir une base solide pour
pouvoir développer des applications plus consistantes, et plus complètes.

Bibliographie

[1] Amara Mohamed«Interopérabilité des services Web hétérogènes, Mémoire de pro-
jet de fin d’étude», Université de Tlemcen 2009 .

[2] A.Ait-Bachir,Archi Med«un canevas pour la détection et la résolution des incom-
patibilités des conversations entre services Web», Thèse de doctorat, Université
Joseph Fourier-Grenoble1, 2008.

[3] B.A.Schmit,S.Dustdar«Towards Transactional Web services» Proceedings of the
2005 Seventh IEEE International Conference on commerce Technology Work-
shops (CECW’05).

[4] C.Ba«TComposition des services Web avec PEWS : approche par la théorie des
traces »Thèse de doctorat en informatique, Université Francois Rabelais Tours,
24 Novembre 2008.

[5] Carl Jones«Do More Wirh SOA Integration : Best of Packt Integrate, automate
and regulate your business processes with the best of packt’s SOA books», packt
publishing,December 2011, BIRMINGAM.

[6] C.Marin«une approche orientée domaine pour la composition de services.»,
Thèse de doctorat Université Joseph Fourier 2008.

[7] C. Lopez-velasco«Sélection et composition de services Web pour la génération
d’applications adaptées au contexte d’utilisation»,thèse de doctorat, université
JOSEPH FOUR IER, 2008.

[8] Clement L,Hately A,Von Riegen C,Rogers T«UDDI.3.0.2 , OSASIS Specifica-
tion.», http ://uddi.org/pubs/uddi-v3, 2004.

[9] Endrie Mark,Jenny Ang,Ali Arsajani,Sook Philippe comotr,Pal Krog-
dahl,Minluo,Tony Newling-2004«Pattern :Service oriented architecture and web
services»,IBM INTERNTIONAL TECHNICAL SUPPORT ORGANIZATION
ISBN073845371X.

[10] Frédéric Peschanski , Jean-Pierre Briot «Architectures de composants répartis.»
In Mourad Oussalah, editor, Composants

74 Bibliographie

[11] F.Porraz, Diapason «approche formelle et centrée architecture pour la composi-
tion évolutive de service web.»,Thèse de doctorat, LISTIC, Université de Savoie
, France 2007.

[12] F.Curbera, A.Nagy, , S.Weerawarana «Web Service : Why and How.»,Dans
workshop on Object-Oriented Web Services(in OOPSLA), Aout 2001.
http ://www.research.ibm.com/people/b/bth/OOWS2001.html.

[13] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte
and S.Weerawarana, «Business Process Execution Language for Web Service
(BPEL4WS) 1.0.»,Published on the World Wide Web by BEA Corp, IBM Corp
and Microsoft Corp, Aug 2002.

[14] H.Duarte , M-C.Fauvet, M.Dumas, B.Benatallah «vers un modèle de compo-
sition de services Web avec proprieties transactionnelles.»,Revue Ingénierie des
systemes d’informations Numéro spécial Service Web, Vol 10,no3/2005, pp.9-
28,2005.

[15] H.DUARTE-AMAYA «TCOWS : canevas pour la composition de services Web
avec propriétés transactionnelles .», Thèse de doctorat en informatique, Univer-
sité JOSEPH FOURIER France, 13 Novembre 2007.

[16] J.N.Gray «Notes on database operating systems -Operating Systems An advan-
ced Course .», lecture Notes in Computer Science 60 ; édité par R.Bayer, R.M.
Graham et G.Seegmueller,pp.393-481,Springer-verlag, Berlin, 1978.

[17] J.EL Haddad, O.Spanjaord «Composition de services Web et équité vis-à-vis
des utilisateurs finaux.», 10éme Congrès de la société Française de recherche
opérationnelle et d’aide à la décision, ROADER 2009 Nancy 10-12-Février 2009.

[18] J.Daniel«Services Web - Concepts, techniques et outils .»,Editions Vuibert In-
formatique, Paris 2003. ISBN 2-7117-4813-8.

[19] K.Hubert, M.Valérie «LES WEB SERVICES .», Edition DUNOD, 2003.
Concepts,techniques et outils.»,Vuiber, 2005. Chapitre9.(in french).

[20] K.D.Gottschalk, S.Graham , H.Kreger , J.Snell «Introduction To Web Service
Architecture .», IBM Systems Journal L1(2) :170-177,2002.

[21] K.Ramamrithan , P.K.Chrysanthis «A taxonomy of correction criteria in da-
tabase applications .», The VLDB Journal, 5(1) : 085-097,1996.

[22] Leymann F «web service Flow language .», 1.0.TBM Report [en ligne],2001.
http ://www-306.ibm.com/software/solutions/webservices/pdf/wsfl.pdf.

75

[23] M.Gharzouli «Composition des web services sémantiques dans les systèmes
peer-to-peer (in french) .», PhD thesis, Departement of computer science, Uni-
versity of constantine2,septembre 2011.

[24] Mitra N, Lafon Y«SOAP.», Version 1.2 Part 0 : primer (Second Edition), W3C
, http ://www.w3.org/TR/soap12-Part0/, 2003.

[25] Nicolai M.Josuttis «SOA in Pratice .», O’Reilly Medias August 2007.

[26] N. Arenaza «Composition semi-automatique des web services (in french) .»,
Master project, Federal Polytechnic School of Lausane, Switzerland, Fev 2006.

[27] N.Nouali-Taboudjemat «Modèles et techniques adaptable pour les environne-
ments mobiles.», Thèse de doctorat en informatique ;USTHB, Alger N09/2007-
E/IN, 17 Novembre 2007.

[28] OASIS Standard «Web Services Coordination (WS-Coordination) Version
1.2.»,02 fevier 2009. Disponible sur (Derniere visite : Mars 2011) :
http ://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os.pdf .

[29] Projet RNTL FAROS «Etat de l’art sur la constraculalisation et la compo-
sition.», Aout 2006, Version : 1.0a, http ://www.lifl-fr/faros. (Derniere vvisite
juillet 2009.

[30] P.F.Pires , M.R.Benevides, M.Mattoso«Building Reliable Web Services Compo-
sition.», In Web, Web-Services and Database Systems, LNCS 2593,59-72, Sprin-
ger,2003.

[31] RW.Schult,YV.Natis«Service oriented architectures .», part1 et 2
http ://www.granter.com ;1996.

[32] S.Sanlaville« Environnement de procédé extensible pour l’orchestration : Ap-
plication aux services web (in French)», PhD thesis Departement of computer
science ,Univesity of JOSEPH FOURIER, Grenoble, France ,December 2005.

[33] S.Bhiri« Approche Transactionnelle pour assurer des compositions fiables de
services web.», Thèse de doctorat en informatique, Université Henri Poincaré-
Nancy 1, octobre 2005.

[34] S.Bhiri, O.Perrin, C.Godart« Ensuring Required Failure Atomicity of Composite
Web Services .», in Proceedings of WWW, 138-147, ACM Press, 2005.

[35] SOAP «Simple Object Acess Protocol (SOAP)1.1 .»,rapport may 2000,world
wide web consortium,http ://www.w3.org/TR/soap.

76 Bibliographie

[36] T.HANH« Coordination adaptative de services à base de contrats.», Thèse de
doctorat en informatique, Université JOSEPH FOURIER France, 2009. Institut
Polytechnique de Grenoble.

[37] T.Jin,S.Goschnick«Utilizing Web Services in an Agentbased Transaction Mo-
del (ABT). Proceedings, Workshop on Web Services and Agent-based Enginee-
ring.»,at the AAMAS-2003 conference, Melbourne, Australia.

[38] T.Mellit « Interopérabilité des services web complexes, application aux system
multi-agents (in french).», PhD thesis Departement of computer science, Uni-
versity of paris IX Dauphine,2004.

[39] UDDI «Universal Description Discovery and Integration .»,rap-
port may 2000,OSASIS UDDI specification technical commit-
tee,http ://www.osasisopen.org/cover/uddi.html.

[40] WSDL «Web Service Description Language (WSDL)1.1 .»,rapport may
2000,world wide web consortium,http ://www.w3.org/TR/wsdl.

[41] Worx Author Team « Service Web XML Professionnel.», Wrax, Paris,December
2001.

[42] Web Service Composition Standars «Web Service Composition Standars
.»,http ://Lsdis.cs.uga.edu/proj/meteor/mwscf/standards.html.

[43] Web Service Cheography Interface WSCI «Web Service
Cheography Interface WSCI .»,http ://www.w3.org/TR/wsci
http ://www.isima.fr/ponge/dea/rapport-dea.pdf.

[44] Web Service Conversation Language WSCL «Web Service
Conversation Language WSCL.»,http ://www.w3.org/TR/wsci
http ://www.isima.fr/ponge/dea/rapport-dea.pdf.

[45] Web Services Composite Application Framework«Web Services Com-
posite Application Framework (WS-CAF) Ver1.0»,July 28, 2003.
Disponible sur (Dernière visite : Mars 2011) : http ://www.oasis-
open.org/committees/download.php/4343/WS-CAF Primer.pdf.

[46] Web Services Coordination Framework Specification «Web Services Coordina-
tion Framework (WS-CF) Ver1.0.»,28 Juillet 2003.

[47] Mark Little, Eric Newcomer, Greg Pavlik «Web Services Context Specification
(WS-Context) Version 1.0.»,20 Janvier 2006. Disponible sur(Dernière visite :
Mars 2011) : http ://docs.oasis-open.org/ws-tx/wstxwsat-1.1-spec-os.pdf

77

[48] W3C «Web Services Description Language (WSDL) 1.1 .»,W3C
Note 15 March 2001. Disponible sur (Dernière visite : Mars
2011) :http ://www.w3.org/TR/2001/NOTE-wsdl-2001-03-15 .

[49] WS-C1.2,OASIS Standard «Web Services Coordination (WS-Coordination)
Version 1.2.»,02 fevier 2009. Disponible sur (Derniere visite : Mars 2011) :
http ://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os.pdf.

[50] Z.I.Kazi Aoul«une architecture orientée service pour la fourniture de documents
multimédia composés adaptables.»,Thèse de doctorat en informatique,Ecole Na-
tionale Superieure des Télécommunications PARIS,18 Janvier 2008 .

78 Bibliographie

Résumé

Les dernières décennies ont été marquées par le développement rapide des sys-
tèmes d’information distribués, et tout particulièrement par la vulgarisation de l’ac-
cès à Internet. Cette évolution a entraîné le développement de nouveaux paradigmes
d’interaction entre applications tel que les «services web». Un service web est un
programme modulaire, indépendant et auto-descriptif, qui peut être publié, décou-
vert et invoqué via Internet ou intranet. La composition des services web permet de
créer des nouveaux services web (dits services web composés) par regroupement des
services web existants. Ainsi, un service web composé peut être vu comme une ap-
plication distribuée qui possède des caractéristiques spécifiques. Ces caractéristiques
influencent les aspects transactionnels dans ce domaine et engendrent le besoin de
solutions flexibles et adaptables pour la composition des services web avec propriétés
transactionnelles. L’étude présentée dans ce document nous a permis d’identifier les
problèmes liés d’une part, à la composition de services web, et d’autre part à l’as-
sociation des propriétés transactionnelles à cette composition. Notre travail permet
de composer des services et de prendre en compte les propriétés transactionnelles.

Mots-clés:
Service web, Composition des service web, transaction ,Propriétés transaction-

nelles de services web .

Abstract

The last decades have been marked by the rapid development of distributed in-
formation systems, especially through extension of the Internet. This has led to the
development of new paradigms for interaction between applications such as "web
services". A web service is a modular program, independent and self-descriptive,
which can be published, discovered and invoked over the Internet or intranet. The
composition of web services can create new web services (compounds called web
services) by consolidating existing web services. Thus, a compound web service can
be seen as a distributed application that has specific characteristics. These char-
acteristics influence the transactional aspects in this area and create the need for
flexible and adaptable solutions for the composition of web services with transac-
tional properties.

The study presented in this document allowed us to identify the one hand
problems, the composition of web services, and on the other hand the association of
the transactional properties of this composition. Our work for dialing services and
take into account transactional properties.

Keywords:
web service, Composition of web service, transaction,transactional properties of

web services.

	Couverture
	Résumé
	Abstract
	Remerciements
	Dédicace
	Table des matières
	Table des figures
	Liste des tableaux
	Introduction Générale
	Glossaire
	Chapitre 1 L'architecture SOA et les services web
	1.1 Introduction
	1.2 Architecture orientée services
	1.2.1 Historique
	1.2.2 Définition d'architecture de service orientée (SOA)
	1.2.3 Les caractéristiques d'architecture orientée services
	1.2.4 Les rôles dans une architecture orientée services
	1.2.5 Concepts de l'architecture orientée services
	1.2.6 Approches de SOA
	1.2.7 Les avantages et inconvénients de SOA

	1.3 Services web
	1.3.1 Origines
	1.3.2 Définition des web services
	1.3.3 Les caractéristiques des services web
	1.3.4 Les applications des services web :
	1.3.5 L'intérêt des services web :
	1.3.6 Langages et protocoles associés aux services web :
	1.3.7 Les avantages et les inconvénients des services web

	1.4 Conclusion:

	Chapitre 2 La composition des services web avec propriétés transactionnelles
	2.1 Introduction
	2.2 Architecture étendue
	2.3 Composition des services web
	2.3.1 Définition de composition de services web :
	2.3.2 Comparaison :
	2.3.3 Langages de composition des services web
	2.3.4 Concepts de base du traitement transactionnel
	2.3.5 Mécanismes garantissant les propriétés d'ACIDité
	2.3.6 La validation de transactions dans les systèmes distribués :

	2.4 Aspect transactionnel pour la composition
	2.4.1 Les services web et les aspects transactionnels
	2.4.2 Notions Transactionnelles pour la composition
	2.4.3 Protocoles spécifiques
	2.4.4 Approches académiques

	2.5 Conclusion

	Chapitre 3 Implémentation
	3.1 Introduction
	3.2 L'architecture proposée
	3.3 Présentation
	3.3.1 Plateforme de services web :
	3.3.2 Plateformes d'exécution côté serveur:

	3.4 Etude de cas : Agence de voyage:
	3.4.1 L'invocation de services dans une composition :
	3.4.2 Création de processus BPEL :

	3.5 Implémentation :
	3.5.1 La transformation d'un processus BPEL en graphe :
	3.5.2 La composition des services web :
	3.5.3 Composition transactionnelle

	3.6 Expérimentations
	3.7 Conclusion:

	Conclusion Générale
	Bibliographie
	Résumé
	Abstract

