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Résumé 

Isolement et évaluation du potentiel antimicrobien des actinomycètes isolés à partir 

de différents types de sols de l’Ouest algérien 

Ce travail s’inscrit dans le cadre de la recherche de nouvelles sources naturelles de 

biomolécules à activité antimicrobienne. Il vise à isoler et évaluer le potentiel antimicrobien 

des actinomycètes issus de différents types de sols de l’Ouest algérien. Un total de 38 isolats 

d’actinobactéries a été obtenu : 16 de Djbarat (Saïda), 4 de Bougtob (El Bayadh), 16 de la 

rhizosphère d’acacia de Tindouf et 2 du sol marin de Kristel (Oran). 

Le criblage primaire, réalisé par la méthode du cylindre d’agar, a révélé que sept 

isolats présentaient une activité antimicrobienne positive. Ces souches ont ensuite été 

fermentées, puis les métabolites secondaires ont été extraits à partir des milieux liquide et 

solide. Cependant, le criblage secondaire, effectué par diffusion sur puits et méthode de 

disque, a montré que les extraits atteignant des zones jusqu’à 40 mm. Les isolats A8 et A13 

ont présenté les activités antimicrobiennes les plus marquées, traduisant leur capacité à 

produire des métabolites secondaires bioactifs. 

Les extraits issus de ces souches ont montré des zones d’inhibition élevées contre les 

bactéries à Gram positif, atteignant jusqu’à 41 mm contre Bacillus cereus ATCC 25921, 33 

mm contre Staphylococcus aureus ATCC 6538 et 27 mm contre Bacillus subtilis ATCC 

6633. Une activité antifongique notable a également été observée, avec des zones 

d’inhibition pouvant atteindre 31 mm contre Phytophthora infestans, 27 mm contre Candida 

albicans et 21 mm contre Rhizoctonia. 

Ces résultats mettent en évidence le potentiel antimicrobien élevé des actinomycètes 

isolés, en particulier des souches A8 et A13, et suggèrent qu’elles constituent des candidats 

prometteurs pour la découverte de nouveaux composés antimicrobiens d’origine naturelle. 

Mots clés : Actinomycètes – Activité antimicrobienne – Sols de l’Ouest algérien– 

Métabolites secondaire – Fermentation et extraction des métabolites 
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 ملخص

 في غرب الجزائر ةعزل وتقييم القدرة المضادة للميكروبات للأكتينوميسيتات المعزولة من أنواع مختلفة من الترب

للجزيئات الحيوية ذات النشاط المضاد يندرج هذا العمل في إطار البحث عن مصادر طبيعية جديدة  

المستخلصة من أنواع مختلفة من الترب  (Actinomycetes) للميكروبات. يهدف إلى عزل وتقييم السلالات الشعاعية

 .في الجهة الغربية من الجزائر، بغرض الكشف عن قدرتها على إنتاج مركبات مضادة للجراثيم والفطريات

من تربة  16، منها: (Actinobacteria) ( عزلة من البكتيريا الشعاعية38) تم الحصول على ثمانٍ وثلاثين

من تربة بحرية من كريستال  2من ريزوسفير الأكاسيا بتندوف، و 16من بوغطوب )البيض(، و 4جبّارات )سعيدة(، و

 .)وهران(

 Agar Cylinder) أظهر التحري الأولي للنشاطات المضادة للميكروبات باستعمال تقنية أسطوانة الأجار

وجود نشاط إيجابي في سبع عزلات. وقد خضعت هذه السلالات بعد ذلك إلى عملية التخمير على أوساط سائلة وصلبة، 

 .باستعمال مذيبات عضوية مناسبة (Secondary Metabolites) تلتها عملية استخلاص المستقلبات الثانوية

 ي تم تطبيقه بطريقتي الانتشار عبر الآبارأما التحري الثانوي للنشاط المضاد للميكروبات الذ

 (Well Diffusion Method)والأقراص (Disk Diffusion Method)  فقد بيّن أن بعض ،

نشاطًا  A13و A8 مم. وأظهرت العزلتان 40بلغت حتى  (Zones of Inhibition) المستخلصات شكلت مناطق تثبيط

 .العالية على إنتاج مركبات حيوية فعالةمضاداً قويًا، مما يشير إلى قدرتهما 

أن المستخلصات  (Gram-positive bacteria) أثبتت نتائج الاختبارات المضادة للبكتيريا موجبة الغرام

 مم ضد 33، وBacillus cereus ATCC 25921 مم ضد 41سجلت مناطق تثبيط بلغت 

Staphylococcus aureus ATCC 6538مم ضد 27، و Bacillus subtilis ATCC 6633.  كما أظهرت

 مم ضد 31مناطق تثبيط وصلت إلى  (Antifungal Activity) اختبارات النشاط المضاد للفطريات

Phytophthora infestansمم ضد 27، و Candida albicansمم ضد 21، و Rhizoctonia  

لدى السلالات الشعاعية المعزولة، ولا سيما  تبُرز هذه النتائج الكفاءة العالية للنشاط المضاد للميكروبات

، مما يجعلها مرشحين واعدين لاكتشاف مركبات جديدة ذات أصل طبيعي قد تسُهم في تطوير A13و A8العزلتين 

 مضادات حيوية فعالة ضد الكائنات الممرضة.

المستقلبات   – تراب غرب الجزائر –مضاد للميكروبات  نشاط –البكتريا الشعاعية الكلمات المفتاحية:  

التخمير واستخلاص المستقلبات  –  الثانوية
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Abstract 

Isolation and evaluation of the antimicrobial potential of actinomycetes isolated from 

different soil types of Western Algeria 

       This study is part of the search for new natural sources of bioactive molecules with 

antimicrobial activity. It aims to isolate and evaluate the antimicrobial potential of 

actinomycetes obtained from various soil types in western Algeria. A total of 38 

actinobacterial isolates were obtained: 16 from Djbarat (Saïda), 04 from Bougtob (El 

Bayadh), 16 from the rhizosphere of acacia in Tindouf, and 02 from marine soil in Kristel 

(Oran). 

 Primary screening, carried out using the agar cylinder method, revealed that seven 

isolates exhibited positive antimicrobial activity. These strains were then fermented and their 

secondary metabolites were extracted from both liquid and solid media. Secondary 

screening, performed using the well diffusion and disk diffusion methods, showed inhibition 

zones reaching up to 40 mm. Isolates A8 and A13 exhibited the strongest antimicrobial 

activities, demonstrating their ability to produce bioactive secondary metabolites with a 

broad spectrum of action. 

 The extracts from these strains showed high inhibition zones against Gram-positive 

bacteria, reaching 41 mm against Bacillus cereus ATCC 25921, 33 mm against 

Staphylococcus aureus ATCC 6538, and 27 mm against Bacillus subtilis ATCC 6633. A 

significant antifungal activity was also observed, with inhibition zones up to 31 mm against 

Phytophthora infestans, 27 mm against Candida albicans, and 21 mm against Rhizoctonia. 

 These findings highlight the high antimicrobial potential of the isolated 

actinomycetes, particularly strains A8 and A13, suggesting that they are promising 

candidates for the discovery of new naturally derived antimicrobial compounds. 

Keywords: Actinomycetes – Antimicrobial activity – Western Algerian soils – Secondary 

metabolites – Fermentation and extraction of metabolites 
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Introduction 

L’Algérie, de par son étendue et sa diversité géographique, présente une grande variété 

d’écosystèmes comprenant des zones marines, montagneuses, forestières, sub-sahariennes 

et sahariennes (Meddour et al., 2021). Cette richesse écologique offre un réservoir 

considérable de microorganismes, parmi lesquels les actinobactéries occupant une place 

prépondérante. Ces bactéries Gram positives, caractérisées par une teneur élevée en bases 

guanine et cytosine (G+C) dans leur ADN, représentent l’un des groupes microbiens les plus 

importants et les plus diversifiés au sein du règne bactérien. Elles sont largement distribuées 

dans divers habitats terrestres et aquatiques, et jouent un rôle écologique essentiel en 

participant à la dégradation de la matière organique et au recyclage des nutriments (Ranjani 

et al., 2016). 

Les actinobactéries, notamment celles appartenant à l’ordre des Actinomycetales, se 

distinguent par leur capacité remarquable à produire une grande variété de métabolites 

secondaires bioactifs. Ces composés présentent des propriétés antibiotiques, antifongiques, 

antiparasitaires, antivirales, anticancéreuses et immunomodulatrices, faisant des 

actinobactéries une source majeure de molécules d’intérêt pharmaceutique et 

biotechnologique (Selim et al., 2021). Le genre Streptomyces, en particulier, est reconnu 

comme le producteur le plus prolifique d’antibiotiques naturels connus à ce jour. Sa présence 

dans des environnements normaux ou extrêmes témoigne de sa grande adaptabilité et de son 

potentiel métabolique exceptionnel (Barbuto Ferraiuolo et al., 2021). 

Dans un contexte mondial marqué par l’augmentation alarmante de la résistance 

microbienne aux antibiotiques conventionnels (Christaki et al., 2020) , la recherche de 

nouvelles souches productrices de composés antimicrobiens est devenue une priorité 

scientifique. L’exploration de nouveaux habitats, encore peu étudiés, tels que les sols 

extrêmes (salins, arides, ou marins), constitue   une approche prometteuse pour la découverte 

de nouvelles molécules bioactives  (Sayed et al., 2020). Ainsi, les sols de l’Ouest algérien, 

comprenant des écosystèmes variés sédiments marins, sols rhizosphériques, et sebkhas 

représentent un milieu propice à l’isolement d’actinomycètes potentiellement   producteurs   

de    nouvelles    substances antimicrobiennes (Sayed et al., 2020). 

Le présent travail s’inscrit dans cette perspective. Il vise à isoler et évaluer le potentiel 

antimicrobien des actinomycètes issus de différents types de sols collectés dans plusieurs 

régions de l’Ouest de l’Algérie (Saïda, Oran, Bougtoub et Tindouf). L’objectif principal est 
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de contribuer à la valorisation de la biodiversité microbienne algérienne et de participer à la 

recherche de nouvelles sources naturelles d’agents antimicrobiens. 

Ce mémoire s’articule autour de trois grandes parties : 

➢ La première partie est consacrée à une recherche bibliographique sur les 

actinomycètes, leur écologie, leurs caractéristiques morphologiques et 

physiologiques, ainsi que leur potentiel dans la production de métabolites bioactifs. 

➢ La deuxième partie présente le matériel et les méthodes expérimentales utilisées pour 

l’isolement, la fermentation et le criblage des activités antimicrobiennes des souches 

isolées. 

➢ La troisième partie expose les résultats obtenus, suivis d’une discussion mettant en 

relation les observations expérimentales avec les données de la littérature. 
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II.1. GENERALITES SUR ACTINOBACTERIES 

II.1.1. Historique  

Les actinobactéries existent sur terre depuis environ 2,7 milliards d’années, 

ce qui signifie qu’elles étaient déjà présentes avant le grand événement 

d’oxydation, survenu il y a environ 2,3 milliards d’années (Lewin et al., 2016). 

Cependant, leur découverte scientifique ne remonte qu’à la fin du XIXe siècle. En 

1875, le botaniste allemand Ferdinand Cohn observe et décrit pour la première 

fois des formes filamenteuses ressemblant à des actinomycètes, bien qu’il ne les 

ait pas encore classées. Peu après, entre 1877 et 1878, le médecin James Israel 

identifie chez l’humain un agent pathogène filamenteux, qu’il nomme plus tard 

Actinomyces israelii. En 1878, le vétérinaire allemand Otto Bollinger identifie 

une bactérie similaire chez les bovins, qui sera par la suite nommée Actinomyces 

bovis par Harz (Barka et al., 2016). 

L’importance médicale des actinobactéries se confirme au XXe siècle, notamment 

en 1943, lorsque Selman Waksman et Albert Schatz isolent la streptomycine à 

partir de Streptomyces griseus. Cet antibiotique marque une avancée majeure 

dans le traitement de la tuberculose et inaugure une nouvelle ère de découvertes 

en microbiologie médicale.(Hopwood, 2007). 

II.1.2. Définition des actinobactéries  

Le terme actinomycète est issu du grec ancien aktis signifiant « rayon », et mykēs 

signifiant « champignon », en référence à la morphologie filamenteuse de ces micro-

organismes, semblable à celle des champignons.(Meddour et al., 2021). 

Les actinobactéries constituent un vaste groupe de bactéries Gram positives, 

caractérisées par une teneur élevée en guanine et en cytosine dans leur ADN, 

généralement comprise entre 60 et 70 %, selon le coefficient de Chargaff (GC%). 

Elles présentent une structure filamenteuse complexe, souvent ramifiée, qui 

évoque un réseau mycélien.(Chan et al., 2012). 

Les actinomycètes appartiennent à l’ordre des Actinomycetales et se 

distinguent par la formation de filaments fins, cloisonnés, à l’image de ceux des 

champignons filamenteux (Kieser et al., 2014). 
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II.1.3. Caractéristiques morphologiques  

Les actinobactéries présentent une grande diversité morphologique, allant 

des formes coccoïdes et bacillaires aux filaments ramifiés ou aux mycéliums 

fragmentés. Cette variabilité, influencée par le genre et les conditions de culture, 

reflète la complexité de leur cycle de vie (Wink Joachim, 2017) 

Figure 01: Images au microscope électronique à balayage (MEB)  

(a) coques de Micrococcus luteus (Public Health Image Library (PHIL), ID#:9761) ; 

(b) bacilles de Mycobacterium tuberculosis (PHIL, ID#:9997) ; 

(c) hyphes ramifiés de Micromonospora schwarzwaldensis (Gurovic et al., 2013) ; 

(d) mycéliums fragmentés de Nocardia asteroides (Ribeiro et al., 2008) ; 

(e) hyphes aériens ramifiés de Streptomyces mangrovisoli (Ser et al., 2015). 

II.1.3.1. Structure cellulaire  

Les actinobactéries présentent une structure cellulaire typique des bactéries à Gram 

positif, caractérisée par une paroi épaisse riche en peptidoglycane et en acides mycoliques 

chez certaines espèces. Leur cytoplasme contient un seul chromosome circulaire, dépourvu 

de noyau véritable, mais organisé en un nucléoïde. Ces micro-organismes possèdent 

également des ribosomes de type 70S, assurant la synthèse des protéines, ainsi que divers 

granules de réserve tels que le glycogène ou le polyphosphate. Leur paroi complexe confère 

une résistance élevée aux conditions environnementales défavorables et joue un rôle 

essentiel dans la morphogenèse filamenteuse (Wink Joachim, 2017). 



Partie II. Synthèse bibliographique 

 

8 | P a g e  

 

II.1.3.2. Appartenance au règne des bactéries filamenteuses  

Les actinobactéries appartiennent au règne des bactéries filamenteuses en raison de 

leur mode de croissance particulier, formant un réseau de filaments appelé mycélium 

(Figure 02). Cette organisation morphologique les rapproche superficiellement des 

champignons, bien qu’elles soient des procaryotes dépourvus de noyau et de mitochondries. 

Le développement de filaments aériens et de spores leur confère un avantage écologique, 

facilitant leur dispersion et leur survie dans des milieux variés. Cette structure filamenteuse 

est également liée à leur capacité à produire une grande diversité de métabolites secondaires, 

dont de nombreux antibiotiques d’intérêt industriel. (Li et al., 2016). 

 

 

 

 

 

 

 

 

Figure 02 : Structure filamenteuse caractéristique des actinomycètes montrant le 

mycélium du substrat et les hyphes aériennes (Li et al., 2016) 

II.1.4. Physiologie des actinomycètes 

Les actinomycètes sont des microorganismes saprophytes filamenteux capables de 

dégrader la matière organique complexe grâce à des enzymes extracellulaires variées. Ils 

croissent sur divers substrats, même pauvres en nutriments, et présentent un cycle de vie 

différencié incluant la formation de mycélium et de spores. Cette différenciation est souvent 

liée à la production de métabolites secondaires (Zhang et al., 2022). 

II.1.4.1. Métabolisme primaire  

Le métabolisme primaire des actinomycètes regroupe l’ensemble des réactions qui 

assurent leur croissance et leur survie. Il permet à ces bactéries de produire l’énergie et les 

molécules nécessaires à la formation de la biomasse. Les actinomycètes vivent souvent dans 



Partie II. Synthèse bibliographique 

 

9 | P a g e  

 

des milieux pauvres en nutriments, comme le sol, et possèdent donc des mécanismes très 

efficaces pour utiliser différentes sources de carbone et d’azote (Gao et al., 2023). 

Les glucides représentent la principale source d’énergie, le glucose est alors 

transformé en glucose-6-phosphate par le glucose kinase, puis utilisé dans plusieurs voies 

métaboliques : La glycolyse (voie Embden-Meyerhof) produit de l’énergie, tandis que la 

voie des pentoses phosphates fournit des précurseurs pour la synthèse de nouveaux 

composés. Le cycle de Krebs joue aussi un rôle central dans la production d’énergie et 

d’intermédiaires nécessaires à la biosynthèse des acides aminés et d’autres molécules 

(Moore et al., 2002). 

 

 

 

 

 

 

 

 

 

Figure 03 : Les principales voies du catabolisme des glucides (Wink Joachim, 2017). 

Les actinomycètes ont un métabolisme primaire très complet et flexible, 

régulé par des facteurs comme GlnR, ce qui leur permet de s’adapter à différents 

milieux et de produire efficacement de la biomasse (Gao et al., 2023). C’est cette 

base métabolique solide qui soutient ensuite la production de métabolites 

secondaires  (Zhang et al., 2022). 

II.1.4.2. Métabolisme secondaire  

Les métabolites secondaires, contrairement aux métabolites primaires, ne sont pas 

indispensables à la croissance cellulaire, mais jouent un rôle essentiel dans l’adaptation et la 

survie des actinobactéries. (Selim et al., 2021). Leur production, étroitement régulée, est 

coordonnée avec le cycle de développement bactérien et contribue à la communication 
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microbienne, à la symbiose et à la défense environnementale. Ces composés, synthétisés à 

partir de précurseurs issus du métabolisme primaire (Yan et al., 2024), sont fortement 

influencés par les flux métaboliques en carbone et en azote. Des modifications dans les voies 

glycolytiques ou dans la disponibilité des précurseurs peuvent ainsi stimuler ou inhiber leur 

biosynthèse (Selim et al., 2021). 

Les gènes responsables de la production de métabolites secondaires sont 

généralement regroupés en clusters, contrôlés par des régulateurs transcriptionnels 

spécifiques. Parmi eux, les régulateurs de type SARP (Streptomyces Antibiotic Regulatory 

Proteins) et LAL (LuxR family) jouent un rôle clé dans l’activation ou la répression des 

gènes de biosynthèse d’antibiotiques tels que l’actinorhodine, la streptomycine ou la 

nystatine (Zhang et al., 2022). 

 

 

 

 

 

 

 

Figure 04 :  Carte génétique du chromosome de Streptomyces ambofaciens et localisation 

des différents clusters de gènes de biosynthèse de métabolites secondaires (Aigle et al., 

2014). 

II.1.5. Écologie des actinomycètes  

Les actinomycètes appartiennent à un groupe bactérien extrêmement diversifié présent 

dans une grande variété d’habitats. On les retrouve dans les sols terrestres, les 

environnements marins, les écosystèmes aquatiques et intertidaux, ainsi que dans des 

milieux extrêmes ou encore en association symbiotique avec différents organismes 

supérieurs, tels que les éponges marines, les tuniciers, les fourmis et les termites. Grâce à 

leurs capacités hydrolytiques remarquables, ces micro-organismes jouent un rôle essentiel 

dans la dégradation de composés organiques complexes et récalcitrants (Ngamcharungchit 

et al., 2023). 
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Figure 05 : Diversité des habitats des actinomycètes (Ngamcharungchit et al., 2023). 

Les actinomycètes sont principalement présents dans divers habitats écologiques, par 

exemple les écosystèmes marins (plans d'eau, récifs coralliens, eau de mer, sédiment) et 

terrestres (sols, plantes et insectes)  

II.1.5.1. Actinomycètes du sol  

Les actinomycètes croissent sous forme d’hyphes, à la manière des champignons, et 

sont responsables de l’odeur caractéristique de terre (provient surtout d’un composé appelé 

géosmine) que dégage un sol sain et fraîchement retourné. Leur population est la plus 

abondante dans la couche superficielle du sol, puis diminue avec la profondeur en raison de 

leur besoin en oxygène. Leur concentration est estimée entre 10⁴ et 10⁸ cellules par gramme 

de sol. (Zenova et al., 2011). 

Ces microorganismes sont sensibles à l’acidité (leur pH optimal se situe entre 6,5 et 

8,0) et ne se développent pas bien dans des sols saturés d’eau. Ils sont principalement 

mésophiles, se développant à des températures comprises entre 25 °C et 30 °C. Les 

actinomycètes jouent un rôle écologique essentiel en tant que saprophytes, participant 

activement à divers processus biologiques tels que le recyclage de la matière organique, la 

bioremédiation et la stimulation de la croissance des plantes.(Bhatti et al., 2017). 

Les actinomycètes favorisant la croissance des plantes, agissent par des mécanismes directs 

comme la production d’hormones végétales et indirects comme l’inhibition des agents 
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pathogènes des plantes (Nonthakaew et al., 2022). Ils influencent également la 

décomposition de la biomasse végétale et le microbiome de la rhizosphère. (Goodfellow, 

2012). 

Les actinomycètes ont également été identifiés dans les sols salés. Des études portant sur le 

microbiome de ces environnements ont permis de caractériser leur structure naturelle ainsi 

que les éléments génétiques associés aux mécanismes d’osmoadaptation (Ahmed et al., 

2018). 

II.1.5.2. Actinomycètes marins  

Les habitats marins constituent une source riche en actinomycètes diversifiés, dont la 

majorité reste encore peu caractérisée. Ces habitats comprennent les zones côtières, les 

sédiments des grands fonds marins, l’eau de mer (Jensen et al., 1991). Des études sur les 

microbiomes et l’énumération traditionnelle des bactéries ont été menées dans divers 

écosystèmes marins, notamment dans l’eau de mer, les récifs coralliens et les mangroves et 

Les sédiments (Ngamcharungchit et al., 2023). 

Les Streptomyces et Micromonospora d’origine marine sont considérés comme de 

bons candidats pour l’isolement de composés bioactifs présentant des propriétés 

antitumorales ou inhibitrices de la croissance. Leurs métabolites secondaires présentent une 

grande diversité d’activités biologiques, notamment antifongiques, antitumorales et 

antibactériennes (Xu et al., 2018). 

II.1.5.3. Actinomycètes dans habitats extrêmes  

Les actinobactéries sont capables de coloniser une grande variété d’environnements 

extrêmes tels que les zones arides, les déserts, les sources chaudes, les milieux salins ou 

encore les régions polaires. Leur remarquable capacité d’adaptation repose sur des 

mécanismes physiologiques et génétiques leur permettant de résister à des conditions de 

stress intense, notamment la sécheresse, la salinité, la radiation et les variations thermiques. 

Ces micro-organismes développent des structures de résistance comme les spores et 

produisent des métabolites secondaires protecteurs. Leur présence dans ces milieux hostiles 

fait des actinobactéries une source prometteuse de nouvelles enzymes thermostables et de 

composés bioactifs d’intérêt biotechnologique (Liu et al., 2014). 
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Figure 6: Environnements extrêmes pouvant être explorés pour la recherche 

d’extrêmophiles  (Duarte et al., 2012) . 

A: grotte de la Chapada Diamantina (Nord-Est du Brésil) ; B: paysage typique de la 

Caatinga ;C: carte topographique de la partie sud de la côte brésilienne montrant 

l’élévation du Rio Grande ; D: échantillonnage de sédiments marins en Antarctique 

II.1.6. Taxonomie et critères d’identification 

II.1.6.1. Taxonomie phénétique 

La classification phénétique des actinobactéries repose principalement sur 

l’observation de leurs caractères morphologiques. Les milieux standards du Projet 

International Streptomyces (ISP) sont utilisés pour étudier la couleur des colonies, la texture, 

la production de pigments, ainsi que la formation du mycélium aérien et substrat. Ces 

caractères permettent de distinguer les genres et les espèces (Shirling et al., 1966). 

Sur le plan microscopique, les actinobactéries présentent une grande diversité de formes : 

coccoïdes, bacilloïdes ou filamenteuses. Certaines espèces, comme Streptomyces, 

développent un mycélium très ramifié et produisent des chaînes de spores caractéristiques. 

D’autres, comme Nocardia ou Actinomyces, montrent des hyphes fragmentés ou faiblement 

ramifiés (Goodfellow, 2012). 
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Figure 07 :  Caractéristiques morphologiques des spores chez différents genres 

d’actinobactéries (Barka et al., 2016) 

La surface, la forme et la disposition des spores constituent également des critères 

taxonomiques importants. Ces spores peuvent être lisses, épineuses ou velues, disposées 

seules ou en chaînes (Figure 07). Enfin, la production de pigments (rouges, jaunes, bruns, 

noirs, etc.), notamment la mélanine, représente un autre caractère distinctif utile à la 

différenciation des genres d’actinobactéries (Barka et al., 2016). 

II.1.6.2. Taxonomie chimiotaxonomique  

La chimiotaxonomie repose sur l’étude des composants chimiques stables de la cellule, 

tels que la paroi cellulaire, les ménaquinones, les phospholipides, les acides gras et les acides 

mycoliques. Ces caractères constituent des marqueurs fiables pour la classification et 

l’identification des actinobactéries au niveau du genre et de l’espèce (Ramasamy et al., 

2022). 
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II.1.6.2.1.  Paroi cellulaire  

La paroi des actinobactéries contient du peptidoglycane dont la composition (type 

d’acide aminé diamine et sucres spécifiques) permet de définir plusieurs chémotypes. 

Certains genres comme Mycobacterium et Nocardia possèdent des acides mycoliques, 

responsables de leur paroi épaisse et hydrophobe (Alderwick et al., 2015). 

II.1.6.2.2. Quinones isoprénoïdes  

Les ménaquinones sont des composés respiratoires présents dans les membranes des 

bactéries et essentielles à la chaîne de transport des électrons. Chez les Actinobacteria, elles 

constituent le seul type de quinones isoprénoïdes et servent de critères taxonomiques grâce 

à la variation de leur structure (méthylation, longueur, saturation et cyclisation de la chaîne 

latérale) (Xie et al., 2021). 

II.1.6.2.3. Phospholipides et acides gras  

Les phospholipides (phosphatidyléthanolamine, phosphatidylcholine, etc.) et les 

acides gras (iso-, anteiso-, saturés ou insaturés) présentent des profils caractéristiques selon 

les genres. Leur analyse, souvent réalisée par chromatographie en phase gazeuse, fournit une 

empreinte chimique utile à l’identification.(Gago et al., 2011). 

II.1.6.2.4.  Acides mycoliques  

Ils sont présents dans certains genres, ce sont des acides gras à longue chaîne qui 

confèrent la résistance et l’imperméabilité à la paroi. Leur longueur et leur structure varient 

selon le genre, servant ainsi de critère taxonomique majeur (Brennan, 2003). 

II.1.6.3. Taxonomie génotypique (moléculaire)  

II.1.6.3.1. Séquençage de l'ADN ribosomique 16S  

Le gène 16S rRNA est un marqueur essentiel utilisé pour identifier et classer les 

bactéries, car il est présent chez tous les procaryotes et évolue lentement. Son séquençage 

permet de comparer la parenté entre différentes souches bactériennes. Cependant, ce gène 

n’est pas toujours suffisant pour distinguer certaines espèces très proches, car il est parfois 

trop conservé (Ramasamy et al., 2014). Aujourd’hui, une similarité de 98,7 à 99 % est 

souvent utilisée pour définir une nouvelle espèce. Des outils comme le serveur EzTaxon 

facilitent ces comparaisons et la construction d’arbres phylogénétiques (Chun et al., 2007) 
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II.1.6.3.2. Gènes alternatifs pour l’analyse phylogénétique des 

actinobactéries  

Pour mieux comprendre les relations entre actinobactéries, d’autres gènes que le 16S 

rRNA sont utilisés, comme rpoB, recA, gyrB ou groEL. Ces gènes évoluent plus rapidement 

et offrent une meilleure résolution (Adékambi et al., 2011). Par exemple, le gène rpoB a 

permis de mieux classer les espèces de Frankia, tandis que gyrB a distingué des souches 

proches de Kribbella. L’utilisation combinée de plusieurs gènes donne des arbres 

phylogénétiques plus précis et fiables (Verma et al., 2013). 

II.1.6.3.3. Hybridation ADN-ADN et valeur ANI  

L’hybridation ADN-ADN (DDH) est une méthode ancienne pour mesurer la 

similarité génétique entre deux bactéries. Si l’hybridation atteint 70 %, cela signifie qu’il 

s’agit de la même espèce (Auch et al., 2010). Aujourd’hui, cette méthode a été remplacée 

par des approches génomiques plus modernes, comme l’identité nucléotidique moyenne 

(ANI), qui compare directement les séquences d’ADN. Une valeur d’ANI de 95 à 96 % 

correspond généralement au seuil de 70 % du DDH, et sert de référence pour définir une 

espèce bactérienne (Chan et al., 2012). 

II.1.6.3.4. Séquençage du génome entier (WGS)  

Le séquençage complet du génome est devenu un outil majeur pour la classification 

des bactéries. Il permet d’étudier toute l’information génétique d’une souche et de 

comprendre sa phylogénie avec précision. Le premier génome d’actinobactérie entièrement 

séquencé fut celui de Mycobacterium tuberculosis en 1998. Les actinobactéries possèdent 

soit un génome circulaire, soit un génome linéaire, comme c’est le cas pour le genre 

Streptomyces (Redenbach et al., 2000). 

II.1.6.3.5.  Phylogénie des actinobactéries basée sur l’analyse du génome 

complet  

L’analyse phylogénétique basée sur le génome entier donne une vision beaucoup plus 

précise de l’évolution des actinobactéries que celle basée sur un seul gène. Elle permet de 

corriger les incohérences observées dans les arbres phylogénétiques traditionnels et 

d’obtenir une meilleure résolution, même entre des souches très proches. Des études récentes 

ont montré que les approches sans alignement « alignment-free » sont les plus efficaces et 

fiables pour retracer l’évolution des actinobactéries (Verma et al., 2013). 
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II.1.7. Cycle de vie des actinomycètes 

Les actinobactéries, en particulier les genres Streptomyces, Nocardia et 

Micromonospora, présentent un cycle de vie complexe et unique parmi les bactéries. Leur 

développement morphologique rappelle celui des champignons filamenteux, avec la 

formation de mycéliums et de spores. Ce cycle comprend plusieurs étapes successives, allant 

de la germination à la sporulation, qui sont fortement influencées par les conditions 

environnementales et nutritionnelles (Ngamcharungchit et al., 2023). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 08 :   Cycle de vie des actinomycètes et les différents types de conidiospores 

(Ngamcharungchit et al., 2023) 

II.1.7.1. Germination des spores  

La germination marque le début du cycle de vie. Sous des conditions favorables, 

notamment en présence de sources de carbone, d’azote et d’humidité suffisantes, les spores 

dormantes reprennent leur activité métabolique. La spore gonfle, rompt sa paroi externe et 

donne naissance à un filament primaire appelé hyphae végétative. Cette étape dépend de 

l’hydratation et de la disponibilité en nutriments, qui déclenchent la synthèse des 

macromolécules nécessaires à la croissance cellulaire  (Wink Joachim, 2017). 
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II.1.7.2. Croissance végétative (mycélium substrat)  

Les hyphes issus de la germination s’allongent et forment un réseau de filaments 

appelé mycélium substrat, ancré dans le milieu de culture ou le sol. Ce mycélium assure 

l’absorption des nutriments et la croissance active de la bactérie. Durant cette phase, la 

cellule effectue des divisions incomplètes, formant des compartiments reliés entre eux, sans 

séparation complète. Cette organisation multicellulaire permet une efficacité métabolique 

élevée et la production d’enzymes extracellulaires nécessaires à la dégradation des matières 

organiques (Wink Joachim, 2017). 

II.1.7.3. Différenciation morphologique  

La différenciation débute lorsque les nutriments deviennent limitants, notamment les 

sources de carbone et d’azote. Cette situation entraîne une réponse physiologique complexe, 

régulée par des signaux intracellulaires tels que le guanosine tétraphosphate (ppGpp) et des 

molécules de signalisation appelées γ-butyrolactones. Ces composés, analogues hormonaux, 

contrôlent la transition du stade végétatif vers la formation du mycélium aérien et la 

sporulation. De plus, les interactions microbiennes dans l’environnement, comme la 

compétition ou la prédation, peuvent influencer cette différenciation (Kieser et al., 2014). 

II.1.7.4. Formation du mycélium aérien  

Lorsque le mycélium substrat atteint une densité suffisante, certains hyphes 

se développent vers la surface pour former le mycélium aérien. Ce dernier joue un 

rôle clé dans la dispersion et la survie des actinobactéries. La croissance aérienne 

s’arrête dès qu’un signal intracellulaire est transmis, amorçant alors la phase de 

sporulation. Ces hyphes aériens se distinguent morphologiquement des hyphes 

végétatifs par leur structure plus résistante et leur capacité à se segmenter (Kieser 

et al., 2014). 

II.1.7.5. Sporulation  

La sporulation est un processus de différenciation terminale au cours duquel 

les hyphes aériens se divisent en cellules indépendantes appelées spores. Cette 

division, dite spécifique de sporulation, implique la formation de septa 

symétriques appelés septa de sporulation. Contrairement aux cloisons végétatives, 

ces septas séparent complètement les cellules, formant des spores distinctes. Cette 
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étape a pour but principal d’assurer la survie de la bactérie face aux conditions 

défavorables (Kieser et al., 2014). 

 

 

 

 

 

 Figure 09 : Morphologie et sporulation des hyphes aériens(Wink Joachim,2017)  

(a) Chaîne de spores produite sur les hyphes aériens, 

(b) Microscopie à fluorescence des hyphes aériens sporogènes les cloisons végétatives sont 

visibles dans la partie non sporulée de l’hyphe aérien (Wink Joachim, 2017) 

II.1.7.6. Maturation des spores  

Après la formation des septas, chaque spore entre en phase de maturation. Une paroi 

épaisse et résistante se forme à l’intérieur du présore, conférant une grande tolérance aux 

stress chimiques et physiques. Des protéines associées à l’ADN protègent le matériel 

génétique contre les dommages oxydatifs et mécaniques. Enfin, la spore acquiert une 

coloration caractéristique due à la synthèse de pigments, comme la pigmentation grise 

observée chez Streptomyces coelicolor.(Barka et al., 2016). 

Le cycle de vie des actinobactéries illustre une remarquable adaptation évolutive. Ce 

développement complexe leur permet de survivre dans des environnements variables et de 

produire une grande diversité de métabolites secondaires, dont plusieurs ont un intérêt 

biotechnologique majeur (antibiotiques, enzymes, pigments, etc.). Comprendre ce cycle est 

essentiel non seulement pour la taxonomie et la physiologie de ces bactéries, mais aussi pour 

optimiser leur utilisation dans les procédés industriels et pharmaceutiques (Kieser et al., 

2014). 

II.1.8. Mise en évidence du genre Streptomyces  

Le genre Streptomyces représente le groupe le plus étudié et le plus représentatif des 

actinobactéries. Il regroupe plus de 800 espèces identifiées, largement distribuées dans les 

sols, les sédiments marins et les environnements extrêmes. Ces bactéries jouent un rôle 

écologique essentiel dans la décomposition de la matière organique et dans la production de 
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métabolites secondaires d’un grand intérêt biotechnologique (Barbuto Ferraiuolo et al., 

2021). 

II.1.8.1. Rôle majeur dans production d’antibiotiques 

Streptomyces est reconnu comme le producteur naturel le plus important 

d’antibiotiques connus à ce jour. Environ 70 % des antibiotiques d’origine microbienne 

proviennent de ce genre. Parmi les plus célèbres, on peut citer la streptomycine, la 

tétracycline, l’érythromycine, le chloramphénicol et la vancomycine. (Donald et al., 2022). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 : Dates clés des antibiotiques et contributions du genre Streptomyces (de Lima 

Procópio et al., 2012) 

II.1.8.2. Importance génétique et industrielle  

Le genre Streptomyces possède un génome particulièrement grand et complexe, 

souvent supérieur à 8 Mb, ce qui est exceptionnel pour une bactérie. Cette richesse génétique 

confère à ces microorganismes une grande plasticité métabolique, leur permettant de 

produire une diversité remarquable de composés secondaires.(Auch et al., 2010). D’un point 

de vue industriel, Streptomyces constitue une plateforme biotechnologique majeure utilisée 
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pour la production d’antibiotiques, d’antifongiques, d’anticancéreux, d’enzymes et de 

pigments naturels (Donald et al., 2022). 

II.1.8.3. Particularités morphologiques et génétiques 

Les Streptomyces se distinguent par une morphologie filamenteuse complexe, 

rappelant celle des champignons. Leur cycle de développement comprend la germination, la 

formation de mycélium végétatif, le développement du mycélium aérien et la sporulation (Li 

et al., 2016). 

Sur le plan génétique, ces bactéries possèdent un chromosome linéaire, fait rare chez 

les procaryotes, comportant des régions télomériques analogues à celles des eucaryotes. Leur 

génome contient également de nombreux plasmides linéaires ou circulaires, souvent porteurs 

de gènes impliqués dans la production de métabolites secondaires (Aigle et al., 2014). Cette 

organisation génétique particulière favorise l’évolution rapide de nouveaux gènes et de 

nouveaux clusters biosynthétiques. Ainsi, la diversité métabolique observée chez les 

Streptomyces reflète leur capacité à s’adapter à des environnements variés et à produire une 

vaste gamme de composés bioactifs (Ayoib et al., 2024). 
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II.2. INTERET BIOTECHNOLOGIQUE DES ACTINOMYCETES  

Les actinomycètes représentent un groupe de bactéries filamenteuses du 

phylum Actinobacteria, largement reconnus pour leur extraordinaire potentiel 

métabolique et biotechnologique. Leur capacité à produire une grande diversité de 

métabolites secondaires, d’enzymes industrielles et de composés bioactifs a fait 

des actinomycètes des micro-organismes d’un intérêt majeur dans les domaines 

pharmaceutique, agricole, environnemental et industriel (Selim et al., 2021). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 :  Les différents produits issus des actinomycètes et leurs perspectives (Selim et 

al., 2021) . 

II.2.1. Producteurs de métabolites secondaires à haute valeur ajoutée  

II.2.1.1.  Agents antibactériens  

Les actinomycètes, en particulier le genre Streptomyces, représentent une ressource 

biotechnologique majeure grâce à leur capacité exceptionnelle à produire une vaste gamme 

de métabolites secondaires bioactifs. Ils sont à l’origine de plus de 70 % des antibiotiques 
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d’origine microbienne connus, tels que la streptomycine, la tétracycline, l’érythromycine et 

le chloramphénicol (De Simeis et al., 2021). 

Tableau 01 : Exemples des antibiotiques produits par les actinomycètes. 

 

 

 

 

 

 

 

 

 

 

Ces composés d'actinomycète ont profondément transformé la médecine moderne en 

permettant de traiter efficacement un large éventail d’infections bactériennes. De plus, 

l’émergence de nouvelles molécules comme la daptomycine et la téicoplanine illustre le rôle 

central des actinomycètes dans le développement de la prochaine génération d’antibiotiques 

capables de contourner les mécanismes de résistance microbienne (Barbuto Ferraiuolo et 

al., 2021). 

II.2.1.2. Agents antifongiques  

Les actinomycètes produisent également des substances antifongiques 

d’une grande importance thérapeutique et agricole. Des molécules telles que la 

nystatine, l’amphotéricine B ou la candicidine exercent une action puissante 

contre divers champignons pathogènes en altérant leur membrane cellulaire. Ces 

composés trouvent ainsi des applications variées, allant du traitement des 

mycoses humaines à la protection des cultures contre les maladies fongiques 

(Georgopapadakou, 1998). 
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Figure 12 : structure chimique des substances antifongiques (1) amphotericin B (2) 

nystatin 

II.2.1.3. Agents antiviraux  

Certaines souches d’actinomycètes synthétisent des métabolites à activité 

antivirale, comme la rimocidine et la neoviridine, capables d’inhiber la réplication 

ou l’assemblage viral. Bien que leur nombre reste limité, ces composés suscitent 

un intérêt croissant pour la mise au point de nouveaux agents antiviraux d’origine 

naturelle, dans un contexte mondial marqué par la recrudescence des infections 

virales émergentes.(Raveh et al., 2013). 

Tableau 02 : Exemples de métabolites antiviraux identifiés chez les Actinomycètes entre 

2016 et 2023 (Ngamcharungchit et al., 2023) 

 

 

 

 

 

 

II.2.1.4. Agents antiparasitaires 

Les actinomycètes se distinguent également par la production de molécules 

antiparasitaires, dont l’exemple emblématique est l’avermectine, isolée à partir de 
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Streptomyces avermitilis. Cette molécule et ses dérivés, tels que l’ivermectine, 

sont largement utilisés pour le traitement des parasitoses humaines et animales, 

démontrant ainsi le potentiel pharmaceutique et vétérinaire de ces 

microorganismes (Kim et al., 2002). 

II.2.1.5. Agents immunosuppresseurs  

Les actinomycètes, notamment les espèces du genre Streptomyces, sont largement 

exploités pour la production d’immunosuppresseurs d’origine naturelle capables d’inhiber 

la réponse immunitaire. Ils sont utilisés principalement pour prévenir le rejet des greffes 

d’organes et traiter les maladies auto-immunes. Parmi les exemples les plus importants 

figurent la cyclosporine A, produite par Streptomyces hygroscopicus, et le tacrolimus 

(FK506), isolé de Streptomyces tsukubaensis. Ces molécules agissent en bloquant 

l’activation et la prolifération des lymphocytes T, réduisant ainsi la réponse immunitaire. 

Grâce à cette capacité unique, les actinomycètes représentent une source majeure 

d’immunosuppresseurs à fort potentiel thérapeutique (Ngamcharungchit et al., 2023). 

II.2.1.6. Composés anticancéreux 

Plusieurs métabolites secondaires issus des actinomycètes possèdent des propriétés 

anticancéreuses remarquables. Des composés comme la mitomycine C, la doxorubicine et 

la daunorubicine agissent en intercalant leur structure dans l’ADN, inhibant la prolifération 

des cellules tumorales. Ces découvertes confirment l’intérêt biotechnologique exceptionnel 

des actinomycètes, non seulement comme source historique de médicaments essentiels, mais 

aussi comme plateforme prometteuse pour la découverte de nouvelles molécules 

thérapeutiques innovantes à fort potentiel médical et industriel(Wink Joachim, 2017).   

II.2.2. Agents de biocontrôle et biofertilisation  

Les actinomycètes jouent également un rôle clé dans la protection des plantes et la 

promotion de la croissance végétale. Certaines espèces, telles que Streptomyces griseus ou 

Streptomyces lydicus, produisent des métabolites antifongiques qui inhibent les pathogènes 

du sol comme Fusarium oxysporum, Rhizoctonia solani ou Pythium spp.. Ce rôle de 

biocontrôle constitue une alternative écologique aux pesticides chimiques (Vurukonda et 

al., 2018). 
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Tableau 03 : Liste des produits à base de Streptomyces spp. utilisés comme agents de 

biocontrôle disponibles sur le marché mondial (Vurukonda et al., 2018). 

 

 

 

 

 

 

 

 

En parallèle, les actinomycètes participent à la biofertilisation grâce à la production de 

phytohormones (auxines, gibbérellines), à la solubilisation du phosphate et à la fixation 

indirecte de l’azote. Leur interaction avec la rhizosphère favorise la colonisation racinaire et 

améliore l’absorption des nutriments, contribuant ainsi à une croissance végétale plus 

vigoureuse et durable. Ces propriétés font des actinomycètes des partenaires privilégiés dans 

les programmes d’agriculture durable et de biotechnologie végétale (Vurukonda et al., 

2018). 

II.2.3. Actinomycètes dans l’industrie enzymatique  

Les actinomycètes sont aussi réputés pour leur aptitude à sécréter une large gamme 

d’enzymes extracellulaires d’intérêt industriel. Parmi celles-ci figurent les cellulases, 

xylanases, amylases, lipases, protéases et chitinases, essentielles pour la dégradation des 

polymères naturels comme la cellulose, la chitine et les hémicelluloses. (Mukhtar et al., 

2017). 

Ces enzymes trouvent de nombreuses applications industrielles  : 

• Dans l’industrie agroalimentaire, pour l’hydrolyse de l’amidon et 

l’amélioration de la texture des produits ; 

• Dans l’industrie pharmaceutique, pour la synthèse de molécules actives ou la 

modification de composés naturels ; 

• Dans l’industrie textile et papetière, pour le blanchiment écologique et la 

transformation des fibres végétales. (Mukhtar et al., 2017). 
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Grâce à leur stabilité thermique et leur large spectre d’activité, les enzymes d’actinomycètes 

représentent une ressource précieuse pour le développement de procédés biotechnologiques 

durables (Prakash et al., 2013). 

II.2.4. Applications en bioremediation  

Les actinomycètes contribuent activement à la bioremédiation des environnements 

pollués. Leur métabolisme complexe leur permet de dégrader les hydrocarbures 

aromatiques, les pesticides persistants et certains métaux lourds. Des espèces telles que 

Rhodococcus erythropolis et Streptomyces albidoflavus sont capables d’utiliser des 

composés toxiques comme sources de carbone et d’énergie, participant ainsi à la 

détoxification des sols et des eaux contaminées (Behera et al., 2023). 

De plus, ces micro-organismes interviennent dans la valorisation des déchets organiques 

en convertissant la matière organique complexe en composés simples utilisables, contribuant 

ainsi à la production de composts riches en nutriments. Ces propriétés font des actinomycètes 

des acteurs clés dans la gestion environnementale et la lutte contre la pollution industrielle 

(Behera et al., 2023). 

II.2.5. Avancées en génomique et ingénierie génétique  

Les progrès récents en génomique et en biologie synthétique ont profondément élargi 

les perspectives biotechnologiques des actinomycètes. Le génome des Streptomyces est 

particulièrement grand (6–12 Mb) et contient de nombreux clusters de gènes "silencieux", 

souvent non exprimés dans les conditions de laboratoire classiques. Ces clusters codent 

potentiellement pour des métabolites encore inconnus (Auch et al., 2010). 

Les nouvelles technologies, telles que le système CRISPR-Cas9, permettent aujourd’hui 

d’activer ces gènes silencieux, d’optimiser la production de métabolites secondaires et de 

créer de nouvelles molécules hybrides par recombinaison. Par ailleurs, les plateformes de 

screening métabolique à haut débit facilitent la détection rapide de nouveaux composés 

bioactifs. Ces avancées ouvrent la voie à la découverte de molécules inédites et renforcent 

la place des actinomycètes comme outils essentiels en biotechnologie moderne. Mais malgré 

ces avancées, des défis persistent tels que : toxicité de Cas9, instabilité chromosomique, et 

difficulté d’accès à certains clusters biosynthétiques (Auch et al., 2010; Mitousis et al., 

2025).
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Afin d’explorer le potentiel biotechnologique des actinobactéries issues de 

différents environnements algériens, ce travail a été conçu dans l’objectif d’isoler et 

d’évaluer la capacité de ces micro-organismes à produire des métabolites 

secondaires à activité antimicrobienne. Pour ce faire, une approche méthodologique 

intégrée a été adoptée, comprenant le prélèvement d’échantillons de sol et de 

sédiments issus de milieux contrastés, leur prétraitement sélectif, l’isolement sur 

milieux spécifiques, puis la purification et la conservation des souches 

actinobactériennes obtenues, permettant de constituer une collection représentative 

de la diversité microbienne locale. 

 

Par la suite, un criblage primaire et secondaire de l’activité antimicrobienne a 

été réalisé afin d’identifier les isolats présentant un potentiel bioactif et d’évaluer 

leur spectre d’inhibition contre différents micro-organismes indicateurs. Enfin, des 

fermentations en milieu liquide et solide, suivies de procédés d’extraction des 

métabolites, ont permis d’obtenir des extraits bruts destinés à l’évaluation de leur 

activité antibactérienne et antifongique, offrant ainsi des indications précieuses sur 

leur capacité à produire des composés bioactifs. 

 

Cette démarche méthodique vise ainsi à contribuer à la recherche de nouvelles 

sources naturelles de biomolécules antimicrobiennes d’intérêt thérapeutique ou 

biotechnologique, tout en enrichissant les connaissances sur la biodiversité des 

actinobactéries dans les sols algériens et en ouvrant de nouvelles perspectives pour 

des applications futures dans les domaines médical et industrie 
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III.1.  Prélèvement des échantillons de sol  

III.1.1. Sites d’échantillonnage  

  L’échantillonnage des sols a été effectué en janvier 2025 à partir de quatre 

échantillons prélevés sur quatre sites distincts situés dans l’ouest de l’Algérie 

(Figure 02) : 

➢ Sebkha de Bougtob (région d'El Bayadh) ; 

➢ Sédiments marins de la zone côtière de Kristal (wilaya d'Oran) ; 

➢ Rhizosphère de Ziziphus (Djebarat, wilaya de Saïda) ; 

➢ Rhizosphère de Acacia (région de Tindouf). 

Les prélèvements ont été effectués selon une procédure standardisée de collecte suivant la 

technique décrite par Pochon et Tradieux (1962), avec conservation immédiate à 4°C avant 

l’analyse. Le Tableau 04 décrit les caractéristiques géographiques des échantillons. 

Tableau 04 :  Repérage géographique des stations d’échantillonnage par GPS 

Sites d’échantillonnage Code Région La position géographique 

Sebkha Bougtob SB 
Bougtob, El 

bayadh 
34°03'24.9" N           0°05'20.8"E 

Rhizosphère Ziziphus RZ 
Djebarat, 

Saïda 
34°49'12.0"N            0°10'39.6"E 

Sédiments Marins Kristal SMk Kristal, Oran 35°50'58.8"N          0°28'59.7"W 

Tindouf Acacia TA Tindouf 7°42'05.7"N           8°05'23.8"W 
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Figure 13 :Localisation géographique des sites de prélèvement des sols 

 : Localisation des sites de prélèvement des échantillons de sol. 

III.1.2. Caractéristiques du sol  

III.1.2.1. pH des échantillons  

Pour le pH, 10 g de chaque échantillon préalablement séché ont été mélangés avec 50 ml 

d'eau distillée, selon un ratio masse/volume de 1 : 5. Le mélange a été agité pendant 2 

minutes pour assurer une homogénéisation optimale. Après agitation, le pH a été mesuré 

directement à partir du surnageant à l'aide d'un pH-mètre équipé d'une électrode (modèle 

HANNA HI9125)  (Mosley et al., 2024). 

III.1.2.2. Couleur des échantillons  

L’aspect visuel des échantillons de sol a été examiné immédiatement après leur 

préparation. Les variations de couleurs ont été notées à l’œil nu (Du et al., 2025). 
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III.1.3. Méthodologie du prélèvement  

• Prélèvement des sols  

Les sols ont été collectés dans la rhizosphère de Ziziphus, la rhizosphère 

d’Acacia et dans la sebkha de Bougtob. Après avoir retiré les débris superficiels, 

le sol a été prélevé à une profondeur de 5 à 10 cm. Pour chaque site, cinq sous-

échantillons d’environ 50 à 100 g ont été mélangés pour former un échantillon 

composite de 250 g (Pochon et Tradieux ,1962). 

 

 

 

 

 

 

 

Figure 14 : Photographies des sites de prélèvement des échantillons de sol 

 (A) Site d’échantillonnage situé dans la sebkha de Bougtob ; 

(B) Vue générale de la sebkha de Bougtob ;  

(C) Site d’échantillonnage dans la rhizosphère de Ziziphus (Djebarat, Saïda) ; 

(D) Site d’échantillonnage dans la rhizosphère d'Acacia (région de Tindouf).  

 

A B 

C D 
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• Prélèvement des sédiments marins  

Les sédiments marins ont été collectés dans la zone côtière de Kristal, Oran. 

Une fine couche superficielle (environ 1 à 3 mm) déposée sur la surface de roches 

en zone intertidale a été délicatement grattée. Environ 50 à 100 g de sédiment sec 

ont été prélevés  (Abdel-Razik et al., 2025). 

 

Figure 15 : Site de prélèvement des sédiments marins 

(A) Site d’échantillonnage dans la zone côtière de Kristal (Oran) 

(B) Vue générale de Site de prélèvement Kristal (Oran) 

III.2. Prétraitement des échantillons de sol  

Le prétraitement est réalisé afin de réduire la flore microbienne compétitive et 

ainsi favoriser l’isolement des actinobactéries, plus résistantes à certaines 

conditions sélectives  (Balagurunathan et al., 2020). 

III.2.1.1. Séchage et Tamisage  

Les échantillons ont d’abord été tamisés à l’aide d’un tamis 2 mm afin 

d’éliminer les débris grossiers  (Valli et al., 2012). Par la suite, ils ont été soumis 

à un prétraitement consistant en un séchage à l’air libre pendant sept jours à 

température ambiante. Cette étape permet de réduire la viabilité des bactéries et 

des champignons non sporulés sensibles à la dessiccation, tout en favorisant la 

survie des actinomycètes sporulés, plus résistants à ces conditions (Messaoudi et 

al., 2015). 

 

A B 
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III.2.1.2. Traitements chimiques et physiques  

• Traitements chimiques  

10 g d’échantillon de sol ont été mélangés avec 1 g de carbonate de 

calcium L’ajout de CaCO₃ permet de neutraliser l’acidité du sol et de maintenir 

un pH légèrement alcalin, une condition favorable à la croissance et à la 

germination des spores d’actinomycètes. Ce prétraitement contribue également à 

réduire la croissance de nombreuses bactéries et champignons concurrents, 

généralement sensibles à des conditions alcalines. (Tiwari et al., 2021) 

• Traitements physiques  

Un prétraitement thermique à sec 110 °C pendant 10 min a été appliqué 

aux échantillons de sol de Rhizosphère de Acacia (région de Tindouf) afin 

d’éliminer les bactéries non sporulées, réduire la charge microbienne totale et 

sélectionner préférentiellement les actinobactéries sporulées résistantes à la 

chaleur (Suzuki, 2000) 

Tableau 05 : Tableau récapitulatif des prétraitements appliqués aux échantillons 

Code de 

L’échantillon 

Prétraitement des échantillons de sol 

Séchage  Tamisage Traitements 

chimiques 

Traitements 

physiques 

SB     

RZ     

SMk     

TA     

 Signe qui montre que le traitement a été effectué 

 Signe montrant que le traitement n’a pas été effectué 

  



Partie III. Matériels et méthodes 

36 | P a g e  

 

III.3. Isolement des actinobactéries  

III.3.1.1. Milieux de cultures utilisés  

Les milieux de culture utilisés (annexe 01) pour l’isolement des actinomycètes sont : 

1. Milieu GYM (gélose–extrait de levure–extrait de malt) (Smaoui et al., 2018) 

2. Milieu SCA (Starch Casein Agar) (KÜSTER et al., 1964) 

3. Milieu ISP2 (International Streptomyces Project) (Zakari et al., 2025)  

Après stérilisation par autoclavage, les milieux sont refroidis à environ 45 °C. Ils sont ensuite 

supplémentés, de manière aseptique, avec 5 µg/ml d’actidione (le cycloheximide)  (Ayoib 

et al., 2024). L’incorporation de ce composé a pour objectif de limiter la croissance des 

champignons et de favoriser ainsi l’isolement sélectif des actinomycètes. 

III.3.1.2. Préparation de suspension-dilution et ensemencement  

L’isolement des actinobactéries a été effectué selon la méthode des suspensions-

dilutions. Pour ce faire, 5 g de chaque échantillon sec, préalablement traité comme décrit ci-

dessus, ont été mis en suspension dans 45 mL d’une solution physiologique stérile (NaCl 9 

g/L). Cette étape a permis d’obtenir, pour chaque échantillon, une solution mère distincte 

(Budhathoki et al., 2020). À partir de chaque suspension mère, une série de dilutions 

décimales successives a été réalisée, allant de 10⁻¹ à 10⁻⁵. Par la suite, 100 µL des trois 

dernières dilutions (10⁻³, 10⁻⁴ et 10⁻⁵) ont été prélevés et étalés en surface sur le milieu de 

culture, avec trois répétitions indépendantes pour chaque dilution. (Balagurunathan et al., 

2020) 

Les boîtes ainsi ensemencées ont été incubées dans une étuve à 28 ± 2 °C pendant une durée 

de 7 à 21 jours avec atmosphère saturée d'humidité afin de permettre la croissance et le 

développement des colonies d’actinobactéries (Ribeiro et al., 2025). 

III.3.1.3. Reconnaissance et sélection des actinobactéries  

Pendant la période d’incubation, les boîtes de Pétri inoculées ont été 

inspectées périodiquement à l’œil nu afin de suivre l’évolution et la morphologie 

des colonies d’actinomycètes. Les observations ont porté sur des critères 

macroscopiques caractéristiques, tels que l’aspect poudreux ou crayeux des 

colonies, leur implantation parfois en profondeur dans le milieu (colonies 

incrustées dans la gélose avec une texture sèche), ainsi que la présence d’un 

centre proéminent et de bords frangés. Ces caractères morphologiques ont permis 
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de distinguer les isolats bactériens présentant un profil compatible avec celui des 

actinobactéries (Li et al., 2016). 

Les colonies bactériennes répondant aux caractéristiques décrites ci-dessus 

ont été soigneusement sélectionnées pour une étude plus approfondie. Afin de 

confirmer leur appartenance au groupe des actinobactéries, une coloration de 

Gram a été réalisée (Coico, 1997). Les résultats ont montré des bactéries Gram 

positives, filamenteuses, confirmant leur nature d’actinomycètes et validant ainsi 

la pertinence de la sélection. 

III.3.1.4. Purification et conservation des actinobactéries  

Les colonies sélectionnées ont été prélevées avec précaution à l’aide d’une 

anse stérile, puis ensemencées sur les milieux GYM ou ISP2 en vue d’obtenir des 

cultures pures. Les isolats ainsi obtenus ont été numérotés. 

Les isolats purifiés ont été conservés sur tubes de milieu GYM inclinés à 4 °C, 

ainsi qu’en suspension dans du glycérol (20 %, v/v) à –20 °C  (Franco Correa et 

al., 2016). 

III.4. Criblage de l’activité antimicrobienne des actinobactéries  

Le criblage de l’activité antimicrobienne permet d’évaluer la capacité des actinobactéries 

isolées à inhiber la croissance de micro-organismes cibles. Cette étape est essentielle pour 

identifier les souches présentant un potentiel producteur de métabolites bioactifs, notamment 

à visée antibactérienne (Balouiri et al., 2016) 

III.4.1. Microorganismes-cibles  

D’une part, les souches bactériennes cibles utilisés dans cette étude proviennent de 

l’Université Abou Bekr Belkaïd de Tlemcen, dont plusieurs souches sont cataloguées et 

déposées dans les collections internationales de référence (ATCC). Pour leur purification et 

la préparation de jeunes cultures, les bactéries ont été cultivées sur milieu gélosé nutritif. 

Elles ont ensuite été réactivées dans 9 mL de bouillon nutritif et incubées à 37 °C pendant 

18 à 24 heures afin d’obtenir des cultures fraîches et actives (Qureshi et al., 2021). D’autre 

part, les souches fongiques ont été isolées puis purifiées sur le milieu PDA avant d’être 

observées au microscope afin de vérifier leurs caractéristiques microscopiques (GAUTAM 

et al., 2025). 
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Les souches bactériennes cibles ont été sélectionnées en raison de leur importance 

pathologique et alimentaire, afin d’évaluer le spectre d’activité des actinobactéries isolées. 

De même, les souches fongiques indicatrices ont été choisies en fonction de leur 

pathogénicité chez l’homme et les plantes (Belt et al., 2025). 

 

Tableau 06 : Caractéristiques des souches indicatrices 

Les souches indicatrices Intérêt du choix 

 

 

Escherichia coli ATCC 8739 Pathogène / 

Alimentaire 

Klebsiella pneumoniae IBMC Strasbourg Pathogène 

 Staphylococcus aureus ATCC 6538 Pathogène / 

Alimentaire 

Bacillus cereus ATCC 25921 Alimentaire/ 

Pathogène 

Bacillus subtilis ATCC 6633 Alimentaire 

Levures Candida albicans       Opportuniste humaine 

 

Champignons 

Phytophthora infestans Champignons phytopathogènes  

Agent du mildiou 

Rhizoctonia Phytopathogène 

ATCC: American Type Culture Collection  

IBMC Strasbourg : Institut de Biologie Moléculaire et Cellulaire Strasbourg 

III.4.2. Standardisation des inocula  

Afin d’assurer une charge identique chez tous les micro-organismes cibles et de garantir 

une évaluation fiable de l’activité antimicrobienne, les inocula ont été standardisés en 

ajustant les suspensions bactériennes à l’étalon 0,5 McFarland, correspondant à une 

concentration d’environ 10⁶ UFC/mL (Loffredo et al., 2020). Les suspensions de spores ont 

Gram négatif 

Gram positif 
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été préparées puis ajustées à une turbidité équivalente à l’étalon 0,5 de McFarland, 

correspondant à une concentration estimée de (1–5) × 10⁶ spores/mL (Belt et al., 2025) 

 

III.4.3. Criblage primaire de l’activité antimicrobienne  

• Méthode des cylindres d’agar  

Les souches d’actinobactéries isolées sont ensemencées en stries serrées sur le milieu ISP-2 

et incubées pendant 7 jours à 28 °C. La recherche des métabolites antibactériens est effectuée 

par la technique des cylindres d’agar qui consiste à prélever à l’aide d’un emporte-pièce des 

cylindres de 6 mm de diamètre de cultures et de les déposer sur la surface du milieu Mueller-

Hinton gélosé, préalablement ensemencé par écouvillonnage par les bactéries tests (Balouiri 

et al., 2016). 

 

 

 

 

 

 

 

 

Figure 16 : Méthode des cylindres d’agar 

Les boites de Pétri sont ensuite maintenues à 4 °C pendant 4 heures pour permettre une 

diffusion des substances antimicrobiennes actives dans le milieu de culture avant d’être 

incubées à 37 °C (Pongtharangkul et al., 2004) 

III.4.4. Observation et interprétation des zones d’inhibition  

Après incubation, la présence des zones d’inhibition indique un résultat positif. Cette zone 

est observée autour des disques d’actinomycètes ce qui signifie que ces bactéries produisent 

des molécules antimicrobiennes capables de stopper la croissance des bactéries (Yadav et 

al., 2024). 
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III.5. Fermentation et extraction des métabolites  

III.5.1. Fermentation des isolats pour  production des métabolites  

Afin de maximiser la production de métabolites secondaires, les isolats identifiés ont été 

soumis à un processus de fermentation en milieu submergé. Chaque isolat a été cultivé dans 

un erlenmeyer 500 ml (Figure 17) contenants 100 mL de milieu GYM liquide (pH : 7,2), 

puis incubé à 28 °C sous agitation constante à 180 rpm pendant une durée de 7 à 10 jours. 

Ces conditions de température et d’aération ont été optimisées afin de favoriser une 

croissance optimale (Al-ghazali et al., 2017) 

Par la suite, 10 mL de cette culture ont été transférés dans le milieu 5294 pour l’induction 

de la production de métabolites (Khodja et al.,2023). Le succès de la fermentation a été 

confirmé par des signes visibles tels que la formation de pellets, l’agrégation cellulaire ou 

encore une augmentation notable de la turbidité (Yadav et al., 2024). 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 : Processus de fermentation en milieu liquide dans des erlenmeyers de 500 mL. 
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III.5.2. Extraction des métabolites  

III.5.2.1. Extraction à partir de milieu liquide  

Un volume de 20 mL de chaque culture, préalablement filtrée sur papier filtre, a 

été mélangé à 20 mL d’acétate d’éthyle puis soumis à une agitation pendant 12 

minutes. Les tubes ont ensuite été centrifugés à 6 000 rpm pendant 10 minutes et 

la phase organique (supérieure) a été recueillie dans un flacon de 50 mL. 

L’acétate d’éthyle a ensuite été éliminé à l’aide d’un évaporateur rotatif sous vide 

à 40 °C. Le résidu sec obtenu a finalement été dissous dans 1 mL de méthanol 

(Teklemichael et al., 2024) 

 

 

 

 

 

 

 

 

Figure 18 :  Étapes du processus d’extraction des métabolites secondaires par extraction 

liquide-liquide et concentration par évaporation sous vide (rotavapor). 

 

III.5.2.2. Extraction à partir de milieu solide  

Les extraits ont été obtenus à partir de la biomasse cellulaire de l’actinobactérie, 

par une extraction solide-liquide au méthanol dans un rapport de 1:5 (p/v), sous 

agitation lente pendant 30 minutes. La phase méthanolique a ensuite été séparée 

des cellules par centrifugation à 6000 rpm, 22 °C, pendant 15 minutes, puis 

concentrée à l’aide d’un évaporateur rotatif sous vide à 40 °C (Rakhmawatie et 

al., 2024) 
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III.6. Criblage secondaire de l’activité antimicrobienne  

• Evaluation de l’activité antimicrobienne des extraits  

L’activité antibactérienne a été évaluée par la méthode de diffusion en puits sur 

gélose. Les extraits bruts ont été déposés dans des cavités creusées des puits de 06 mm de 

diamètre à la surface des milieux préalablement ensemencés avec les suspensions 

bactériennes. Les boîtes ont ensuite été maintenues à 4 °C pendant 4 heures afin de favoriser 

la diffusion des métabolites antibactériens, puis incubées à 28 °C pendant 24 heures. Les 

zones d’inhibition ont ensuite été observées et mesurées.(Singh et al., 2016) 

Pour l’évaluation de l’activité antifongique, des disques stériles imprégnés des 

extraits bruts des souches A13 et A8 ont été déposés sur les milieux gélosés. Les boîtes ont 

été maintenues à 4 °C pendant 4 heures pour permettre une diffusion optimale des 

métabolites antifongiques, puis incubées à 28 °C. Après une incubation de 3 à 7 jours, les 

zones d’inhibition ont été observées et mesurées. (Yadav et al., 2024) 
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IV.1. Prélèvement des échantillons de sol  

IV.1.1.  Caractéristiques du sol  

IV.1.1.1. pH des échantillons  

Les valeurs de pH mesurées dans les différents échantillons analysés sont 

mentionnés dans le Tableau 07. Les résultats révèlent une variation notable en 

fonction de leur origine géographique et écologique. Le sol rhizosphérique de 

Tindouf présente un pH légèrement acide (pH 5,33), tandis que celui de Djebarat 

(Saïda) est proche de la neutralité (pH 6,0). Le sol de Bougtob (El Bayadh) montre 

également une tendance faiblement acide (pH 6,06). En revanche, le sol marin de 

Kristel (Oran) se caractérise par un pH alcalin (pH 7,88), ce qui est en accord avec la 

nature des environnements marins généralement riches en sels minéraux (Wang et 

al., 2019)  

Tableau 07 : Résultats du pH des échantillons 

Echantillon Site de prélèvement Type de sol H 

SB Bougtob, Elbayadh Sol de sebkha 6.06 

RZ Djebarat, Saïda Sol rhizosphérique 6 

SMk Kristal, Oran Sol de Sédiments  7.88 

TA Tindouf  Sol rhizosphérique 5.33 

 

Cette variabilité du pH est importante, car elle influence directement la 

structure et la densité des communautés microbiennes, notamment les 

actinobactéries. Les sols légèrement acides à neutres, comme ceux de Saïda, Tindouf 

et Bougtob, sont généralement favorables à la croissance et à la diversité des 

actinobactéries (Wan et al., 2020). 
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IV.1.1.2. Couleur des échantillons  

Sur le plan visuel, une variation nette de la couleur a été observée entre les échantillons, 

allant du brun foncé au beige clair, traduisant potentiellement des différences en matière 

organique, en teneur en argiles, ou en composition minérale (Du et al., 2025). Figure 19 montre 

la variation des couleurs observée entre les différents échantillons de sol collectés. 

 

 

 

 

 

 

Figure 19 :  Différences de couleurs observées entre les échantillons de sol collectés 

IV.2. Isolement des actinomycètes  

Après une incubation de 7 à 21 jours à 28 °C sur les milieux d’isolement SCA et GYM 

supplémentés en actidione, des colonies d’actinomycètes mycéliens ont été observées. Celles-

ci présentaient un aspect sec, rugueux, parfois pigmenté, avec un diamètre variant de 1 à 10 

mm. Elles étaient généralement compactes, bien incrustées dans la gélose, et caractérisées par 

la présence simultanée d’un mycélium aérien et d’un mycélium végétatif. Les colonies isolées 

ont ensuite été purifiées par repiquages successifs sur les milieux ISP2 ou GYM, puis incubées 

à 28 °C pendant 14 jours.  Figure 20 montre le résultat de l'isolement d’actinobactéries à partir 

de l'échantillon de sol rhizosphérique (RZ) sur le milieu SCA, après ensemencement de la 

dilution 10⁻³. Les boîtes de Pétri montrent l’apparition de colonies mycéliennes caractéristiques.    

 

 

 

 

 

Figure 20 :  Boîtes de Pétri montrant l’isolement d’actinobactéries à partir d’un échantillon 

de sol rhizosphérique (RZ) sur milieu SCA, après ensemencement de la dilution 10⁻³ 
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Lors de l’isolement, une difficulté majeure a été rencontrée c'est la présence des 

bactéries à Gram positif, principalement du genre Bacillus. Ces bactéries, caractérisées par une 

croissance rapide et envahissante (Koech et al., 2025), forment des plages qui compliquent 

l’observation et entravent le processus de purification. 

 Étant elles-mêmes à Gram positif, leur élimination par des antibiotiques ciblant ce 

groupe bactérien s’avère impossible, car ces derniers affecteraient également les actinobactéries 

recherchées. De ce fait, l’utilisation de tels antibiotiques dans nos milieux de culture ne pouvait 

pas être envisagée (Schneider et al., 2022).  

 

 

 

 

 

 

 

 

 

Figure 21 :  contamination par les gram positive Bacillus 
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 Dans notre étude, les dilutions sur le milieu GYM (10⁻⁴ à 10⁻⁶) n’ont pas permis de 

détecter de colonies d’actinobactéries, probablement en raison d’une concentration bactérienne 

faible et de l’absence d’une étape d’enrichissement préalable. D’autres études ont montré qu’un 

enrichissement du sol permet d’obtenir des colonies même à ces dilutions (10⁻⁴ à 10⁻⁶), 

confirmant l’importance de cette étape pour la récupération d’actinobactéries rares (Dwiyani et 

al., 2025). 

 En revanche, l’utilisation du milieu SCA avec des dilutions plus faibles (10⁻² et 10⁻³) a 

conduit à l’isolement d’un nombre plus élevé de colonies, ce qui est cohérent avec les résultats 

rapportés dans la littérature, où ce milieu favorise la croissance d’actinobactéries à des dilutions 

relativement élevées (Yadav et al., 2024). Le graphique de la figure 22 illustre la variation du 

nombre d’isolats en fonction des dilutions d’ensemencement 

 

 

 

 

 

 

 

 

 

 

Figure 22 :  Variation du nombre d’isolats selon la dilution d’ensemencement 

L’utilisation du milieu Starch Casein Agar (SCA) s’est révélée particulièrement efficace 

pour l’isolement des actinobactéries à partir des échantillons de sol étudiés. Ce milieu, enrichi 

en substrats complexes tels que l’amidon et la caséine, a favorisé la croissance sélective des 

actinobactéries tout en limitant celle des bactéries à croissance rapide et des champignons 

filamenteux.(Dwiyani et al., 2025). 
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  Un total de 38 isolats d’actinobactéries a été obtenu à partir des différents 

échantillons de sol analysés. Parmi eux, 16 provenaient d’échantillons collectés dans 

la région de Djbarat (Saïda), 4 de la région de Bougtob (wilaya d’El Bayadh), 16 de 

la rhizosphère d’acacia de Tindouf, et 2 du sol sédimentaire marin de la région de 

Kristel (Oran).  

La figure 23 montre, à travers un graphique, la variation du nombre d’isolats 

selon le type d’échantillon de sol. Il a été constaté que les sols rhizosphériques 

présentaient une plus grande capacité à favoriser l’isolement de ces micro-

organismes par rapport à d’autres types de sols, notamment les sols salins ou marins 

(Islam et al., 2022). 

 Cette différence peut être attribuée à la richesse en matière organique et à la 

forte activité microbienne caractéristique de la rhizosphère. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 :  Nombre des isolats par apport le type d'échantillon de sol 
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Le nombre total d’isolats obtenus (38) peut sembler inférieur à celui rapporté 

dans d’autres travaux (Islam et al., 2022) , mais cela s’explique par plusieurs 

facteurs méthodologiques. 

 D’une part, le nombre d’échantillons de sol collectés dans certaines zones, notamment 

les milieux extrêmes tels que les sols salins ou marins, était limité (seulement deux 

échantillons), ce qui réduit naturellement la probabilité d’obtenir un nombre élevé 

d’actinobactéries. (Yadav et al., 2024).  

D’autre part, afin d’éviter la sur-représentation de souches similaires, toutes les colonies 

actinobactériennes n’ont pas été systématiquement purifiées. Seules les colonies présentant des 

morphotypes macroscopiques distincts (Yadav et al., 2024),ont été sélectionnées pour la 

purification, dans le but d’augmenter les chances d’obtenir une diversité maximale en termes 

d’espèces et de genres. Cette stratégie, privilégiant la représentativité plutôt que la quantité, 

explique également le nombre réduit mais scientifiquement pertinent d’isolats retenus pour 

l’étude  

L’échantillon prélevé dans les sédiments marins SMk avait déjà un pH basique, de 7,98. 

Pour les autres échantillons, nous avons ajouté du CaCO3 afin de neutraliser le pH et favoriser 

la germination des spores d’actinobactéries (Guo et al., 2019). Cependant, pour l’échantillon 

des sédiments marins, cet ajout était inutile et a probablement influencé négativement les 

résultats (Fang et al., 2017). 

Une diversité morphologique marquée a été observée parmi les isolats d’actinobactéries 

obtenus Figure 24. Cette variation se manifeste par des différences de forme, de texture, de 

couleur et de structure des colonies. Elle s’explique principalement par des différences 

génétiques entre les souches, mais également par l’influence des conditions de culture, telles 

que la composition du milieu, la température et le pH. Ces facteurs peuvent moduler la 

croissance, la sporulation et la production de pigments, entraînant ainsi une large variabilité 

d’aspects morphologiques. (Li et al., 2016) . 

 Cette diversité traduit la capacité d’adaptation élevée des actinobactéries aux conditions 

environnementales (Li et al., 2016) . 
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 Tableau 08 : Aspect macroscopique des isolats d’actinobactéries isolés à partir des 

échantillons du sol 

 

 

 
CODE DE 

L’ECHANTILLON 

ISOLATS 

TAILLE DES 

COLONIES (MM) 

ASPECT DES COLONIES 

 

RZ 
 

A17 - A32 

Moyenne 

2-8 

Petit 

1-5 

Colonies cotonneuses, 

irrégulières, de couleur blanche, 

grise, noire, verdâtre, avec 

mycélium aérien 

TA 

 

 

A1 -A16 

Moyenne 

2-8 

Petit 

1-5 

Colonies de taille moyenne à 

petite, incrustées dans la gélose, 

de couleur noire, beige ou rouge, à 

aspect poudreux ou granuleux 

 SMk 
 

A33 A34 

Petit 

1-5 

Petite colonie jaune verdâtre A33, 

entourée d’une colonie blanche 

A34 

 SB 
 

A35 -A38 

Moyenne 

2-8 

Petit 

1-5 

Colonies de taille moyenne à 

petite de couleur blanche 
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Figure 24 :  Aspect macroscopique des isolats 

(A) isolat A12                              (B) isolat  A6                              (C) isolat A7        

(D) isolat A8                                (E) isolat A13                              (F) isolat A15 

 

 

 

 

 

 

Figure 25 : Aspect microscopique des isolats 

(A) Observation de l’isolat A8 après coloration de Gram au microscope optique à un 

grossissement de ×100 ; (B) Observation de l’isolat A13 après coloration de Gram au 

microscope optique à un grossissement de ×100 ; (C) Observation de l’isolat A13 après 

coloration de Gram au microscope optique à un grossissement de ×60 

Les résultats obtenus à la suite des observations macroscopiques et microscopiques 

confirment l’appartenance des isolats étudiés au groupe des actinomycètes. En effet, sur milieu 

A 

A B C 

B C 

D E F 
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solide, les colonies présentent des caractéristiques typiques de ce groupe, telles qu’un aspect 

poudreux ou crayeux, une morphologie compacte et souvent colorée, témoignant de la 

formation d’un mycélium aérien (Kim et al., 2002). L’examen microscopique, réalisé après 

coloration de Gram, a révélé la présence de cellules filamenteuses ramifiées à Gram positif, 

confirmant la nature actinobactérienne des isolats (Li et al., 2016). 

IV.3. Criblage primaire de l’activité antimicrobienne  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26 :  Criblage primaire des isolats (méthode cylindre d'agar) contre: 

(A)  Bacillus subtilis ATCC 6633                           (B) Bacillus cereus    ATCC25921         

(C)  Staphylococcus aureus   ATCC 6538              (D) Escherichia coli   ATCC8739              

(E) Klebsiella pneumoniae  IBMC Strasbourg        (F)  Bacillus cereus    ATCC25921        

                                                              

Nos résultats  (Tableau 09)  concordent avec ceux rapportés par d’autres auteurs (Ruppé 

et al., 2015; Barar et al., 2025) , qui ont montré que les bactéries à Gram négatif présentent 

une résistance plus élevée aux métabolites produits par les actinomycètes que les bactéries à 

Gram positif. Cette résistance peut s’expliquer par la présence, chez les bactéries à Gram 

négatif, d’une couche de lipopolysaccharides (LPS) qui agit comme une barrière protectrice,  

L’absence d’activité antibactérienne chez certains isolats d’actinomycètes contre les 

souches testées pourrait s’expliquer par le développement d’une résistance à ces composés. 

A B C 

D E F 
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 En effet, la résistance bactérienne aux antibiotiques d’origine actinomycétale peut 

résulter soit d’une inactivation enzymatique de ces molécules, soit d’une diminution de la 

perméabilité de la membrane bactérienne (Ruppé et al., 2015). 

Tableau 09 :  Résultats du criblage primaire de l’activité antimicrobienne (méthode cylindre 

d'agar) 

Les micro-organismes cibles 

Zone d’inhibition en mm 

A13 A7 A9 A8 A15 A12 A6 

 

 

 

 

 

Staphylococcus aureus ATCC 6538 20 10 10 20 15 13 12 

Bacillus cereus ATCC25921 17 10 10 17 15 11 8 

Bacillus subtilis ATCC6633 17.5 10 9 22.5 17 12 7 

 

 

 

 

 

 

 

Escherichia coli 

 

ATCC8739 

 

0 

 

0 

 

0 

 

0 

 

0 

 

0 

 

0 

Klebsiella pneumoniae 
IBMC 

Strasbourg 
0 0 0 0 0 0 0 
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IV.4. Fermentation et d'extraction des substances actives  

Au terme de la période d’incubation, les cultures des différents isolats ont présenté des 

modifications macroscopiques notables, témoignant du bon déroulement du processus de 

fermentation. Une formation de pellets et une agrégation cellulaire dense ont été observées.   De 

plus, un changement marqué de la couleur du milieu de culture a été constaté selon l’isolat 

(Yadav et al., 2024) certains milieux ont viré au noir, d’autres ont pris des teintes vertes ou 

brunâtres (Figure 27). Ces variations chromatiques sont généralement associées à la production 

de pigments diffusibles et de métabolites secondaires spécifiques à chaque souche (Selim et al., 

2021)  

 

 

 

 

 

 

 

 

Figure 27 :  Résultats visuels de la fermentation des isolats 

Les différences de couleurs observées entre les milieux traduisent la diversité des 

métabolites secondaires produits par les isolats. Les teintes noires ou brunes indiquent souvent 

la formation de mélanines (Tang et al., 2025). Le milieu 5294 a été choisi en raison de sa 

richesse nutritive favorable à la production de métabolites secondaires. Il contient des sources 

azotées complexes (extrait de levure, peptone, corn steep liquor) fournissant les éléments 

essentiels à la biosynthèse des métabolites. La présence de CaCO₃ contribue au maintien du pH, 

condition indispensable pour une production optimale d’antibiotiques (Pan et al., 2019). 

IV.5. Criblage secondaire de l’activité antimicrobienne  

Après l’extraction des métabolites secondaires à partir du milieu liquide, l’extrait 

méthanolique obtenu a été testé afin de réaliser le criblage secondaire de l’activité 

antimicrobienne par la méthode de diffusion sur puits contre les différents micro-

organismes cibles. Les résultats obtenus ne correspondaient pas aux attentes, car 
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l’extrait a présenté des zones d’inhibition très faibles, généralement inférieures à 10 

mm. Ces observations indiquent une faible activité antimicrobienne de l’extrait issu 

du milieu liquide (Figure 28).  

 

 

 

 

 

 

 

 

Figure 28 :  Criblage secondaire de l’activité antimicrobienne de la phase liquide et du 

méthanol (contrôle négatif), ainsi que de l’extrait de la souche A8 obtenu à partir de 

l’extraction en milieu liquide, testés contre: 

   (A)   Bacillus subtilis    ATCC 6633  (B)   Bacillus cereus  ATCC25921   

(C) Bacillus cereus ATCC25921           

La faible activité antimicrobienne observée pourrait être liée à plusieurs facteurs. En 

premier lieu, une dégradation partielle de certains composés bioactifs pourrait être produite au 

cours du processus d’extraction, entraînant une diminution de leur stabilité et de leur pouvoir 

inhibiteur. Il est également possible qu’une partie des métabolites intracellulaires ait été 

éliminée lors de la phase de filtration, destinée à séparer la biomasse du surnageant. Cette étape 

pourrait avoir conduit à la perte de composés intracellulaires présentant une activité 

complémentaire à celle des métabolites extracellulaires, alors que l’effet antimicrobien global 

résulte souvent d’une synergie entre ces deux fractions (Barar et al., 2025). 

En second lieu, la faible concentration des métabolites actifs dans le milieu liquide 

pourrait également expliquer les zones d’inhibition réduites observées. Cette limitation peut 

être attribuée aux conditions de culture, notamment au type de milieu utilisé, qui influence 

directement la production, la composition et la nature des métabolites secondaires synthétisés 

par les actinobactéries (RIZKY et al., 2025)  

L’extraction des métabolites secondaires à partir du milieu solide a permis d’obtenir des 

extraits présentant une activité antimicrobienne nettement plus marquée. Les zones d’inhibition 

A B C 
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enregistrées étaient significativement plus importantes, atteignant jusqu’à 40 mm selon les 

isolats testés et micro-organisme ciblé. Le Tableau 10 montre les résultats du criblage 

secondaire. Ces résultats indiquent une production accrue et une meilleure concentration des 

composés bioactifs dans les conditions de culture en milieu solide. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29 :  Mise en évidence de l’activité antimicrobienne de l’extrait en utilisant la 

méthode de diffusion en puits sur milieu MHA après 24H d’incubation contre : 

(A)  Bacillus subtilis ATCC 6633                            (B) Bacillus cereus    ATCC25921 

(C)  Staphylococcus aureus   ATCC 6538              (D) Escherichia coli   ATCC8739 

(E) Klebsiella pneumoniae  IBMC Strasbourg        (F)  Bacillus cereus    ATCC25921 

Ces observations montrent que le milieu solide conduit généralement à des 

concentrations plus élevées de métabolites antimicrobiens et à une activité 

biologique plus marquée que celles obtenues en milieu liquide (Waithaka et al., 

2019). Cela confirme qu’il s’agit d’une condition favorable pour maximiser la 

production et l’efficacité des métabolites secondaires d’origine actinobactérienne. 
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Tableau 10 :  Résultats du criblage secondaire des extraits produits par les isolats à l’aide de la 

méthode de diffusion en puits et méthode de disque 

 

 

Les micro-organismes cibles Zone d’inhibition en (mm) 

A8 A13 

 Staphylococcus aureus ATCC 6538 25 33 

Bacillus cereus ATCC25921 25 41 

Bacillus subtilis ATCC6633 27 26 

 Escherichia coli ATCC8739 0 0 

Klebsiella pneumoniae IBMC 

Strasbourg 

0 0 

 Candida albicans  22 27 

 

 

Phytophthora infestans  24 31 

Rhizoctonia  20 21 
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Les extraits issus des souches A8 et A13 présentent une activité variable 

selon la nature du micro-organisme cible. Les deux extraits se sont révélés efficaces 

principalement contre les bactéries à Gram positif (Staphylococcus aureus, Bacillus 

cereus et Bacillus subtilis), avec des zones d’inhibition allant de 25 à 41 mm, tandis 

qu’aucune activité n’a été observée contre les bactéries à Gram négatif (Escherichia 

coli et Klebsiella pneumoniae). Cette différence de sensibilité pourrait s’expliquer 

par la structure particulière de la paroi des bactéries à Gram négatif, dont la 

membrane externe riche en lipopolysaccharides (LPS) limite la diffusion des 

composés antimicrobiens (Paracini et al., 2022). En revanche, la paroi plus 

perméable des bactéries à Gram positif facilite l’action des métabolites produits. 

Notamment, isolat A13 a montré une activité plus marquée, suggérant une 

production plus élevée ou plus puissante de métabolites antibactériens. 

 

 

 

 

 

 

 

 

 

 

Figure 30 :   Résultats du criblage secondaire d'activité antibactérienne d’extrait de l’isolat 

A8 et A13 
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L’absence d’activité observée contre les bactéries à Gram négatif pourrait 

également être liée à leur capacité à développer divers mécanismes de résistance 

face aux composés antimicrobiens. Ces micro-organismes produisent fréquemment 

des enzymes capables de dégrader ou de modifier les molécules bioactives  (Ruppé 

et al., 2015) 

 

 

 

 

 

 

 

 

Figure 31 : Criblage secondaire d'extrait d'isolat A13 par la méthode de disque contre 

                (A) Phytophthora infestans         (b) Rhizoctonia 

 

Actuellement, les antifongiques de nature polyénique utilisés dans le 

traitement des infections fongiques, notamment des mycoses profondes, ne 

présentent pas toutes les caractéristiques souhaitées d’un antibiotique idéal. En 

raison de leur toxicité élevée, leur utilisation demeure limitée, malgré leur intérêt 

thérapeutique avéré. Ainsi, la recherche de nouveaux antifongiques non toxiques et 

non polyéniques s’avère essentielle afin de développer des alternatives plus sûres et 

plus efficaces (Cavassin et al., 2021). Dans ce contexte, les extraits issus des 

souches A8 et A13 ont montré une activité antifongique notable vis-à-vis des 

champignons testés. En effet, les deux extraits se sont révélés efficaces contre 

Candida albicans, Phytophthora infestans et Rhizoctonia sp., avec des zones 

d’inhibition comprises entre 20 et 31 mm. Ces résultats suggèrent que les 

métabolites produits par ces souches possèdent des composés bioactifs prometteurs, 

susceptibles de constituer une nouvelle source d’antifongiques naturels présentant 

une toxicité réduite. L’efficacité observée, variable selon les espèces fongiques, 
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pourrait être attribuée à la composition chimique spécifique des extraits ou à la 

différence de sensibilité des microorganismes cibles.(Singh et al., 2016) 

 

 

 

 

 

 

  

 

 

Figure 32 :  Résultats du criblage secondaire d'activité antifongique d'extrait de l'isolat A8 et 

A13 
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Conclusion 

Le présent travail s’inscrit dans le cadre de la recherche de nouvelles 

sources naturelles de biomolécules à activité antimicrobienne. Dans cette optique, 

l’étude a porté sur l’isolement et l’évaluation du potentiel antimicrobien 

d’actinomycètes issus de divers types de sols de l’Ouest algérien, une région 

reconnue pour sa richesse écologique et sa diversité édaphique. 

L’analyse des échantillons prélevés dans quatre zones géographiques 

distinctes :  Djbarat (Saïda), Bougtob (El Bayadh), la rhizosphère d’acacia 

(Tindouf) et le sol marin de Kristel (Oran) a permis d’obtenir 38 isolats 

d’actinobactéries présentant des morphologies typiques du genre Streptomyces. 

Ces isolats se distinguent par la présence de mycélium aérien et de substrat, une 

pigmentation variable, et une croissance adaptée à différents milieux sélectifs, 

confirmant leur appartenance au groupe des actinomycètes filamenteux. 

Le criblage primaire, effectué par la méthode du cylindre d’agar, a mis en 

évidence la capacité antimicrobienne de sept isolats parmi les 38 testés. Ce 

résultat témoigne de la spécificité métabolique de certaines souches, dont la 

biosynthèse de métabolites secondaires est influencée par les conditions 

environnementales et la composition du sol. Ces sept isolats ont ensuite été 

sélectionnés pour une fermentation à plus grande échelle en erlenmeyers de 500 

mL, permettant la production et l’extraction des métabolites secondaires à partir 

des fractions liquide et solide. 

Les tests de criblage secondaire, réalisés par les méthodes de diffusion sur 

disque et sur puits, ont permis de mesurer l’efficacité des extraits bruts contre un 

large spectre de microorganismes de référence. Les résultats ont révélé que deux 

isolats, désignés A8 et A13, se distinguent par des zones d’inhibition 

particulièrement importantes, atteignant jusqu’à 41 mm contre Bacillus cereus 

ATCC 25921, 33 mm contre Staphylococcus aureus ATCC 6538 et 27 mm contre 

Bacillus subtilis ATCC 6633. 

De plus, une activité antifongique marquée a été observée, notamment 

contre Phytophthora infestans (31 mm), Candida albicans (27 mm) et 

Rhizoctonia (21 mm). Ces valeurs traduisent un potentiel biosynthétique élevé et 
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la capacité de ces souches à produire des composés antifongiques et 

antibactériens efficaces. 

Ces observations confirment que les sols algériens, notamment ceux des 

zones semi-arides et marines, constituent un réservoir microbiologique encore peu 

exploité mais prometteur pour la découverte de nouvelles molécules bioactives. 

Les souches A8 et A13, par leur profil antimicrobien élargi, pourraient appartenir 

à des espèces rares ou nouvelles d’actinomycètes, capables de synthétiser des 

métabolites d’intérêt pharmaceutique et biotechnologique. 

L’ensemble de ces résultats souligne l’importance d’explorer systématiquement les 

écosystèmes locaux et extrêmes pour enrichir la biodiversité microbienne exploitée en 

biotechnologie. Ce travail contribue ainsi à la valorisation du patrimoine microbien algérien, 

tout en apportant une base expérimentale solide pour la recherche de nouveaux agents 

antimicrobiens naturels. 

Perspectives 

Le travail réalisé constitue une première étape dans la recherche de nouvelles 

sources naturelles de biomolécules à activité antimicrobienne. Les résultats 

obtenus ouvrent plusieurs perspectives de recherche complémentaires qui seront 

approfondies dans le cadre de la bourse que j’ai obtenue pour poursuivre mes 

travaux de recherche au Instituto Politécnico de Bragança (IPB) au Portugal:  

➢ Identification moléculaire précise des souches actives (A8 et A13) par 

séquençage du gène 16S rRNA et analyse phylogénétique, afin de 

déterminer leur position taxonomique exacte et d’évaluer leur originalité 

génétique. 

➢ Purification et caractérisation structurale des composés bioactifs par 

chromatographie (CCM, HPLC, CPG) et spectrométrie (UV, IR, RMN, 

MS) afin d’élucider leur nature chimique et leur structure moléculaire. 

➢ Évaluation d’autres activités biologiques potentielles des extraits purifiés, 

notamment les effets antioxydants, cytotoxiques, antitumoraux ou 

immunomodulateurs, dans une approche multidisciplinaire. 

➢ Exploration du génome et des clusters biosynthétiques responsables de la 

production de ces métabolites, à travers des approches de génomique et de 

métabolomique comparatives. 
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VII.1. Milieux de cultures 

VII.1.1.  Composition de milieu de culture 

VII.1.1.1.  Milieux d’identification des actinobacteries 

Milieu GYM – Yeast – Malt extract Agar 

Glucose : 4,0 g 

Extrait de levure : 4,0 g 

Extrait de malt : 10,0 g 

CaCO₃ : 2,0 g 

Agar : 20,0 g                                                     Eau distillée : 1000 ml 

 Ajuster le pH à 7,2 avant l’ajout de l’agar 

Milieu SCA – Starch Casein Agar 

Amidon soluble : 10,0 g 

Caséine (hydrolysat) : 0,3 g 

NaCl : 2,0 g 

KNO₃ : 2,0 g 

K₂HPO₄ : 2,0 g 

MgSO₄·7H₂O : 0,05 g 

CaCO₃ : 0,02 g 

FeSO₄·7H₂O: 0,01 g 

Agar : 20,0 g                                                      Eau distillée : 1000 ml 

Ajuster le pH à 7,0 avant stérilisation. 

ISP2 – International Streptomyces Project   

Glucose : 4 g 

 Extrait de levure : 4 g                       Ajuster le pH à 7,2 avant stérilisation.      

  Extrait de malt : 10 g 

Agar : 20 g.                                                         Eau distillée : 1000 ml 
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Eau physiologique : 

NaCl…………. 9g 

Eau distillée…… 1000 ml 

Autoclavage 20 min à 120 °C 

 

VII.1.1.2. Milieux utilisés pour l’activité antimicrobienne  

Milieu Mueller Hinton 

 Infusion de viande de bœuf : 300,0 ml, 

Peptone de caséine : 17,5 g  

amidon: 1,5 g 

 Agar :17,0g                                                                       pH : 7,4 

Milieu Sabouraud 

 Peptone:10g; 

 Glucose : 40g ;  

Agar : 15g                                                                      Eau distillée : 1000ml 

VII.1.1.3.  Milieux De Production d’antibiotiques 

Milieu 5294 

 Composition (g/l).  

Starch (soluble): 10,0 

Yeast extract: 2,0   

Glucose :10,0 

          Glycerol: 10,0 

 Corn steep liquor: 2,5 

Peptone: 2,0 

NaCl : 1,0.  
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Milieu ISP2 

Glucose: 4 g 

Extrait de levure: 4 g; 

Extrait de malt: 10 g 

Eau distillée: 1000ml                                                                 pH : 7, 2 

VII.1.1.4.  Milieu Pour Les Champignons 

Milieu PDA 

Filtrat de pomme de terre: 500 ml 

glucose: 20 g 

          agar: 20 g 

Eau distillée: 500 ml.                                                               pH : 5,6.  

Le filtrat est préparé en mettant à bouillir 200 à 250 g de pomme de terre 

épluchée dans 500 ml d’eau distillée. 

Milieu Sabouraud 

 Peptone:10g 

 Glucose : 40g  

 Agar : 15g                                                                    Eau distillée : 1000ml 

VII.1.2.  Les colorants de coloration de gram : 

Lugol : 

 Iode : 1g ; Iode de potassium : 2g ; Eau distillée : 300 ml. 

Violet de gentian:  

Violet de gentiane : 1g ; Ethanol à 90 : 10g Violet de gentian : 1g  

Fuchsine: 

 Fuchsine basique : 02g ; Acide phénique : 10g ; Alcool absolu : 20ml. 

Phénol : 2g  

Eau distillée 
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VII.2. .Mesure du Ph 

 

 

VII.3. Nombre des isolats par apport le type d'échantillon de sol 

 

 

 

 

 

 

 

 

 

Echantillon Site de prélèvement Type de sol pH 

SB Bougtob, Elbayadh Sol de sebkha 6.06 

RZ Djebarat, Saïda Sol rhizosphérique 6 

SMk Kristal, Oran Sol de Sédiments 7.88 

TA Tindouf Sol rhizosphérique 5.33 

Echantillon Site de prélèvement Type de sol Nombre d'isolats 

SB Bougtob, Elbayadh Sol de sebkha 4 

RZ Djebarat, Saïda Sol rhizosphérique 16 

SMk Kristal, Oran Sol de Sédiments 2 

TA Tindouf Sol rhizosphérique 16 
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VII.4. Résultats du criblage primaire de l’activité antimicrobienne  

 

Les micro-organismes cibles 

Zone d’inhibition en mm 

A13 A7 A9 A8 A15 A12 A6 

 

 

 

 

 

Staphylococcus aureus ATCC 6538 20 10 10 20 15 13 12 

Bacillus cereus ATCC25921 17 10 10 17 15 11 8 

Bacillus subtilis ATCC6633 17.5 10 9 22.5 17 12 7 

 

 

 

 

 

 

 

Escherichia coli 

 

ATCC8739 

 

0 

 

0 

 

0 

 

0 

 

0 

 

0 

 

0 

Klebsiella pneumoniae 
IBMC 

Strasbourg 
0 0 0 0 0 0 0 
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VII.5. Résultats du criblage secondaire de l’activité antimicrobienne 

 

 

Les micro-organismes cibles Zone d’inhibition en (mm) 

A8 A13 

 Staphylococcus aureus ATCC 6538 25 33 

Bacillus cereus ATCC25921 25 41 

Bacillus subtilis ATCC6633 27 26 

 Escherichia coli ATCC8739 0 0 

Klebsiella pneumoniae IBMC 

Strasbourg 

0 0 

 Candida albicans  22 27 

 

 

Phytophthora infestans  24 31 

Rhizoctonia  20 21 
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