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Résumé

Résumé

Isolement et évaluation du potentiel antimicrobien des actinomycetes isolés a partir

de différents types de sols de I’Ouest algérien

Ce travail s’inscrit dans le cadre de la recherche de nouvelles sources naturelles de
biomolécules a activité antimicrobienne. 1l vise a isoler et évaluer le potentiel antimicrobien
des actinomycetes issus de différents types de sols de I’Ouest algérien. Un total de 38 isolats
d’actinobactéries a été obtenu : 16 de Djbarat (Saida), 4 de Bougtob (EI Bayadh), 16 de la

rhizosphére d’acacia de Tindouf et 2 du sol marin de Kristel (Oran).

Le criblage primaire, réalisé¢ par la méthode du cylindre d’agar, a révélé que sept
isolats présentaient une activité antimicrobienne positive. Ces souches ont ensuite été
fermentées, puis les métabolites secondaires ont été extraits a partir des milieux liquide et
solide. Cependant, le criblage secondaire, effectué par diffusion sur puits et méthode de
disque, a montré que les extraits atteignant des zones jusqu’a 40 mm. Les isolats A8 et A13
ont présenté les activités antimicrobiennes les plus marquées, traduisant leur capacité a

produire des métabolites secondaires bioactifs.

Les extraits issus de ces souches ont montré des zones d’inhibition élevées contre les
bactéries a Gram positif, atteignant jusqu’a 41 mm contre Bacillus cereus ATCC 25921, 33
mm contre Staphylococcus aureus ATCC 6538 et 27 mm contre Bacillus subtilis ATCC
6633. Une activité antifongique notable a également été observée, avec des zones
d’inhibition pouvant atteindre 31 mm contre Phytophthora infestans, 27 mm contre Candida

albicans et 21 mm contre Rhizoctonia.

Ces résultats mettent en évidence le potentiel antimicrobien élevé des actinomycétes
isolés, en particulier des souches A8 et A13, et suggerent qu’elles constituent des candidats

prometteurs pour la découverte de nouveaux compose€s antimicrobiens d’origine naturelle.

Mots clés : Actinomycetes — Activité antimicrobienne — Sols de 1’Ouest algérien—
Meétabolites secondaire — Fermentation et extraction des métabolites
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Abstract

Abstract

Isolation and evaluation of the antimicrobial potential of actinomycetes isolated from

different soil types of Western Algeria

This study is part of the search for new natural sources of bioactive molecules with
antimicrobial activity. It aims to isolate and evaluate the antimicrobial potential of
actinomycetes obtained from various soil types in western Algeria. A total of 38
actinobacterial isolates were obtained: 16 from Djbarat (Saida), 04 from Bougtob (EI
Bayadh), 16 from the rhizosphere of acacia in Tindouf, and 02 from marine soil in Kristel

(Oran).

Primary screening, carried out using the agar cylinder method, revealed that seven
isolates exhibited positive antimicrobial activity. These strains were then fermented and their
secondary metabolites were extracted from both liquid and solid media. Secondary
screening, performed using the well diffusion and disk diffusion methods, showed inhibition
zones reaching up to 40 mm. Isolates A8 and A13 exhibited the strongest antimicrobial
activities, demonstrating their ability to produce bioactive secondary metabolites with a

broad spectrum of action.

The extracts from these strains showed high inhibition zones against Gram-positive
bacteria, reaching 41 mm against Bacillus cereus ATCC 25921, 33 mm against
Staphylococcus aureus ATCC 6538, and 27 mm against Bacillus subtilis ATCC 6633. A
significant antifungal activity was also observed, with inhibition zones up to 31 mm against

Phytophthora infestans, 27 mm against Candida albicans, and 21 mm against Rhizoctonia.

These findings highlight the high antimicrobial potential of the isolated
actinomycetes, particularly strains A8 and A13, suggesting that they are promising

candidates for the discovery of new naturally derived antimicrobial compounds.

Keywords: Actinomycetes — Antimicrobial activity — Western Algerian soils — Secondary

metabolites — Fermentation and extraction of metabolites
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L’ Algérie, de par son étendue et sa diversité géographique, présente une grande variété
d’écosystémes comprenant des zones marines, montagneuses, forestiéres, sub-sahariennes
et sahariennes (Meddour et al.,, 2021). Cette richesse écologique offre un réservoir
considérable de microorganismes, parmi lesquels les actinobactéries occupant une place
prépondérante. Ces bactéries Gram positives, caractérisées par une teneur élevée en bases
guanine et cytosine (G+C) dans leur ADN, représentent I’un des groupes microbiens les plus
importants et les plus diversifiés au sein du régne bactérien. Elles sont largement distribuées
dans divers habitats terrestres et aquatiques, et jouent un rble écologique essentiel en
participant a la dégradation de la matiére organique et au recyclage des nutriments (Ranjani
etal., 2016).

Les actinobactéries, notamment celles appartenant a 1’ordre des Actinomycetales, se
distinguent par leur capacité remarquable & produire une grande variété de métabolites
secondaires bioactifs. Ces composés présentent des propriétés antibiotiques, antifongiques,
antiparasitaires, antivirales, anticancéreuses et immunomodulatrices, faisant des
actinobactéries une source majeure de molécules d’intérét pharmaceutique et
biotechnologique (Selim et al., 2021). Le genre Streptomyces, en particulier, est reconnu
comme le producteur le plus prolifique d’antibiotiques naturels connus a ce jour. Sa présence
dans des environnements normaux ou extrémes témoigne de sa grande adaptabilité et de son

potentiel métabolique exceptionnel (Barbuto Ferraiuolo et al., 2021).

Dans un contexte mondial marqué par 1’augmentation alarmante de la résistance
microbienne aux antibiotiques conventionnels (Christaki et al., 2020) , la recherche de
nouvelles souches productrices de composés antimicrobiens est devenue une priorité
scientifique. L’exploration de nouveaux habitats, encore peu étudiés, tels que les sols
extrémes (salins, arides, ou marins), constitue une approche prometteuse pour la découverte
de nouvelles molécules bioactives (Sayed et al., 2020). Ainsi, les sols de I’Ouest algérien,
comprenant des écosystemes variés sédiments marins, sols rhizosphériques, et sebkhas
représentent un milieu propice a I’isolement d’actinomyceétes potentiellement producteurs

de nouvelles substances antimicrobiennes (Sayed et al., 2020).

Le présent travail s’inscrit dans cette perspective. Il vise a isoler et évaluer le potentiel
antimicrobien des actinomyceétes issus de différents types de sols collectés dans plusieurs

régions de I’Ouest de 1’ Algérie (Saida, Oran, Bougtoub et Tindouf). L’objectif principal est
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de contribuer a la valorisation de la biodiversité microbienne algérienne et de participer a la

recherche de nouvelles sources naturelles d’agents antimicrobiens.
Ce mémoire s’articule autour de trois grandes parties :

» La premiere partie est consacrée a une recherche bibliographique sur les
actinomycetes, leur écologie, leurs caractéristiques morphologiques et
physiologiques, ainsi que leur potentiel dans la production de métabolites bioactifs.

» Ladeuxieme partie présente le matériel et les méthodes expérimentales utilisées pour
I’isolement, la fermentation et le criblage des activités antimicrobiennes des souches
isolées.

» La troisiéme partie expose les résultats obtenus, suivis d’une discussion mettant en

relation les observations expérimentales avec les données de la littérature.
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11.1. GENERALITES SUR ACTINOBACTERIES
11.1.1. Historique

Les actinobactéries existent sur terre depuis environ 2,7 milliards d’années,
ce qui signifie qu’elles étaient déja présentes avant le grand événement

d’oxydation, survenu il y a environ 2,3 milliards d’années (Lewin et al., 2016).

Cependant, leur découverte scientifique ne remonte qu’a la fin du XIXe siecle. En
1875, le botaniste allemand Ferdinand Cohn observe et décrit pour la premiere
fois des formes filamenteuses ressemblant a des actinomycetes, bien qu’il ne les
ait pas encore classées. Peu apres, entre 1877 et 1878, le médecin James Israel
identifie chez I’humain un agent pathogéne filamenteux, qu’il nomme plus tard
Actinomyces israelii. En 1878, le vétérinaire allemand Otto Bollinger identifie
une bactérie similaire chez les bovins, qui sera par la suite nommée Actinomyces
bovis par Harz (Barka et al., 2016).

L’importance médicale des actinobactéries se confirme au XXe siecle, notamment
en 1943, lorsque Selman Waksman et Albert Schatz isolent la streptomycine a
partir de Streptomyces griseus. Cet antibiotique marque une avancée majeure
dans le traitement de la tuberculose et inaugure une nouvelle ére de découvertes

en microbiologie médicale.(Hopwood, 2007).
11.1.2. Définition des actinobactéries

Le terme actinomyceéte est issu du grec ancien aktis signifiant « rayon », et mykes
signifiant « champignon », en référence a la morphologie filamenteuse de ces micro-

organismes, semblable a celle des champignons.(Meddour et al., 2021).

Les actinobactéries constituent un vaste groupe de bactéries Gram positives,
caractérisées par une teneur élevée en guanine et en cytosine dans leur ADN,
généralement comprise entre 60 et 70 %, selon le coefficient de Chargaff (GC%).
Elles présentent une structure filamenteuse complexe, souvent ramifiée, qui

évoque un réseau mycélien.(Chan et al., 2012).

Les actinomycetes appartiennent a 1'ordre des Actinomycetales et se
distinguent par la formation de filaments fins, cloisonnés, a I’image de ceux des

champignons filamenteux (Kieser et al., 2014).
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11.1.3. Caractéristiques morphologiques

Les actinobactéries présentent une grande diversité morphologique, allant
des formes coccoides et bacillaires aux filaments ramifiés ou aux mycéliums
fragmentés. Cette variabilité, influencée par le genre et les conditions de culture,
refléte la complexité de leur cycle de vie (Wink Joachim, 2017)

Figure 01: Images au microscope électronique a balayage (MEB)
(a) coques de Micrococcus luteus (Public Health Image Library (PHIL), ID#:9761) ;
(b) bacilles de Mycobacterium tuberculosis (PHIL, 1D#:9997) ;
(c) hyphes ramifiés de Micromonospora schwarzwaldensis (Gurovic et al., 2013) ;

(d) mycéliums fragmentés de Nocardia asteroides (Ribeiro et al., 2008) ;
(e) hyphes aériens ramifiés de Streptomyces mangrovisoli (Ser et al., 2015).
11.1.3.1. Structure cellulaire

Les actinobactéries présentent une structure cellulaire typique des bactéries a Gram
positif, caractérisée par une paroi épaisse riche en peptidoglycane et en acides mycoliques
chez certaines espéces. Leur cytoplasme contient un seul chromosome circulaire, dépourvu
de noyau véritable, mais organisé en un nucléoide. Ces micro-organismes possedent
également des ribosomes de type 70S, assurant la synthese des protéines, ainsi que divers
granules de réserve tels que le glycogéne ou le polyphosphate. Leur paroi complexe confére
une résistance élevée aux conditions environnementales défavorables et joue un réle

essentiel dans la morphogenése filamenteuse (Wink Joachim, 2017).
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11.1.3.2. Appartenance au régne des bactéries filamenteuses

Les actinobactéries appartiennent au régne des bactéries filamenteuses en raison de
leur mode de croissance particulier, formant un réseau de filaments appelé mycélium
(Figure 02). Cette organisation morphologique les rapproche superficiellement des
champignons, bien qu’elles soient des procaryotes dépourvus de noyau et de mitochondries.
Le développement de filaments aériens et de spores leur confére un avantage écologique,
facilitant leur dispersion et leur survie dans des milieux variés. Cette structure filamenteuse
est également liée a leur capacité a produire une grande diversité de métabolites secondaires,

dont de nombreux antibiotiques d’intérét industriel. (Li et al., 2016).

Substrate mycelium

VA\. -

Figure 02 : Structure filamenteuse caractéristique des actinomycétes montrant le
mycélium du substrat et les hyphes aériennes (L.i et al., 2016)

11.1.4. Physiologie des actinomycetes

Les actinomycetes sont des microorganismes saprophytes filamenteux capables de
dégrader la matiere organique complexe grace a des enzymes extracellulaires variées. Ils
croissent sur divers substrats, méme pauvres en nutriments, et présentent un cycle de vie
différencié incluant la formation de mycélium et de spores. Cette différenciation est souvent

liée a la production de métabolites secondaires (Zhang et al., 2022).
11.1.4.1. Métabolisme primaire

Le métabolisme primaire des actinomycetes regroupe 1’ensemble des réactions qui
assurent leur croissance et leur survie. Il permet a ces bactéries de produire I’énergie et les

molécules nécessaires a la formation de la biomasse. Les actinomycétes vivent souvent dans
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des milieux pauvres en nutriments, comme le sol, et possédent donc des mécanismes trés

efficaces pour utiliser différentes sources de carbone et d’azote (Gao et al., 2023).

Les glucides représentent la principale source d’énergie, le glucose est alors
transformé en glucose-6-phosphate par le glucose kinase, puis utilisé dans plusieurs voies
métaboliques : La glycolyse (voie Embden-Meyerhof) produit de 1’énergie, tandis que la
voie des pentoses phosphates fournit des précurseurs pour la synthese de nouveaux
composés. Le cycle de Krebs joue aussi un role central dans la production d’énergie et
d’intermédiaires nécessaires a la biosynthése des acides aminés et d’autres molécules

(Moore et al., 2002).
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Figure 03 : Les principales voies du catabolisme des glucides (Wink Joachim, 2017).

Les actinomycetes ont un métabolisme primaire tres complet et flexible,
régulé par des facteurs comme GInR, ce qui leur permet de s’adapter a différents
milieux et de produire efficacement de la biomasse (Gao et al., 2023). C’est cette
base métabolique solide qui soutient ensuite la production de métabolites
secondaires (Zhang et al., 2022).

11.1.4.2. Métabolisme secondaire

Les métabolites secondaires, contrairement aux métabolites primaires, ne sont pas
indispensables a la croissance cellulaire, mais jouent un role essentiel dans I’adaptation et la
survie des actinobactéries. (Selim et al., 2021). Leur production, étroitement régulée, est

coordonnée avec le cycle de développement bactérien et contribue a la communication
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microbienne, a la symbiose et & la défense environnementale. Ces composés, synthétisés a
partir de précurseurs issus du métabolisme primaire (Yan et al., 2024), sont fortement
influencés par les flux métaboliques en carbone et en azote. Des modifications dans les voies
glycolytiques ou dans la disponibilité des précurseurs peuvent ainsi stimuler ou inhiber leur
biosynthese (Selim et al., 2021).

Les genes responsables de la production de métabolites secondaires sont
généralement regroupés en clusters, contr6lés par des régulateurs transcriptionnels
specifiques. Parmi eux, les régulateurs de type SARP (Streptomyces Antibiotic Regulatory
Proteins) et LAL (LuxR family) jouent un réle clé dans 1’activation ou la répression des
genes de biosynthése d’antibiotiques tels que I’actinorhodine, la streptomycine ou la

nystatine (Zhang et al., 2022).

‘ Streptomyces ambofaciens chromosome .
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Figure 04 : Carte génétique du chromosome de Streptomyces ambofaciens et localisation
des différents clusters de genes de biosynthése de métabolites secondaires (Aigle et al.,
2014).

11.1.5. Ecologie des actinomycétes

Les actinomycetes appartiennent a un groupe bactérien extrémement diversifié présent
dans une grande variété d’habitats. On les retrouve dans les sols terrestres, les
environnements marins, les écosystémes aquatiques et intertidaux, ainsi que dans des
milieux extrémes ou encore en association symbiotique avec différents organismes
supérieurs, tels que les éponges marines, les tuniciers, les fourmis et les termites. Grace a
leurs capacités hydrolytiques remarquables, ces micro-organismes jouent un réle essentiel
dans la degradation de composés organiques complexes et récalcitrants (Ngamcharungchit
et al., 2023).
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Figure 05 : Diversité des habitats des actinomycetes (Ngamcharungchit et al., 2023).

Les actinomycetes sont principalement présents dans divers habitats écologiques, par
exemple les écosystemes marins (plans d'eau, récifs coralliens, eau de mer, sédiment) et
terrestres (sols, plantes et insectes)

11.1.5.1. Actinomycétes du sol

Les actinomyceétes croissent sous forme d’hyphes, a la maniére des champignons, et
sont responsables de I’odeur caractéristique de terre (provient surtout d’un composé appelé
géosmine) que dégage un sol sain et fraichement retourné. Leur population est la plus
abondante dans la couche superficielle du sol, puis diminue avec la profondeur en raison de
leur besoin en oxygene. Leur concentration est estimée entre 10* et 108 cellules par gramme

de sol. (Zenova et al., 2011).

Ces microorganismes sont sensibles a I’acidité (leur pH optimal se situe entre 6,5 et
8,0) et ne se développent pas bien dans des sols saturés d’eau. Ils sont principalement
mésophiles, se développant a des températures comprises entre 25 °C et 30 °C. Les
actinomycetes jouent un rble écologique essentiel en tant que saprophytes, participant
activement a divers processus biologiques tels que le recyclage de la matiere organique, la
bioremédiation et la stimulation de la croissance des plantes.(Bhatti et al., 2017).

Les actinomyceétes favorisant la croissance des plantes, agissent par des mécanismes directs

comme la production d’hormones végétales et indirects comme I’inhibition des agents
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pathogenes des plantes (Nonthakaew et al.,, 2022). Ils influencent également la
décomposition de la biomasse végétale et le microbiome de la rhizosphére. (Goodfellow,
2012).

Les actinomycétes ont également été identifiés dans les sols salés. Des études portant sur le
microbiome de ces environnements ont permis de caractériser leur structure naturelle ainsi

que les éléments génétiques associés aux mécanismes d’osmoadaptation (Ahmed et al.,

2018).
11.1.5.2. Actinomycétes marins

Les habitats marins constituent une source riche en actinomyceétes diversifiés, dont la
majorité reste encore peu caractérisée. Ces habitats comprennent les zones cotiéres, les
sédiments des grands fonds marins, 1’eau de mer (Jensen et al., 1991). Des études sur les
microbiomes et 1’énumération traditionnelle des bactéries ont ét¢ menées dans divers
écosysteémes marins, notamment dans 1’eau de mer, les récifs coralliens et les mangroves et

Les sédiments (Ngamcharungchit et al., 2023).

Les Streptomyces et Micromonospora d’origine marine sont considérés comme de
bons candidats pour I’isolement de composés bioactifs présentant des propriétés
antitumorales ou inhibitrices de la croissance. Leurs métabolites secondaires présentent une
grande diversité d’activités biologiques, notamment antifongiques, antitumorales et

antibactériennes (Xu et al., 2018).
11.1.5.3. Actinomyceétes dans habitats extrémes

Les actinobactéries sont capables de coloniser une grande variété¢ d’environnements
extrémes tels que les zones arides, les déserts, les sources chaudes, les milieux salins ou
encore les régions polaires. Leur remarquable capacité d’adaptation repose sur des
mécanismes physiologiques et génétiques leur permettant de résister a des conditions de
stress intense, notamment la sécheresse, la salinité, la radiation et les variations thermiques.
Ces micro-organismes développent des structures de résistance comme les spores et
produisent des métabolites secondaires protecteurs. Leur présence dans ces milieux hostiles
fait des actinobactéries une source prometteuse de nouvelles enzymes thermostables et de

composés bioactifs d’intérét biotechnologique (Liu et al., 2014).
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Figure 6: Environnements extrémes pouvant étre explorés pour la recherche
d’extrémophiles (Duarte et al., 2012) .

A: grotte de la Chapada Diamantina (Nord-Est du Brésil) ; B: paysage typique de la
Caatinga ;C: carte topographique de la partie sud de la cote brésilienne montrant

I’élévation du Rio Grande ; D: échantillonnage de sédiments marins en Antarctique
11.1.6. Taxonomie et critéres d’identification
11.1.6.1. Taxonomie phénétique

La classification phénétique des actinobactéries repose principalement sur
I’observation de leurs caractéres morphologiques. Les milieux standards du Projet
International Streptomyces (ISP) sont utilisés pour étudier la couleur des colonies, la texture,
la production de pigments, ainsi que la formation du mycélium aérien et substrat. Ces
caracteres permettent de distinguer les genres et les especes (Shirling et al., 1966).

Sur le plan microscopique, les actinobactéries présentent une grande diversité de formes :
coccoides, bacilloides ou filamenteuses. Certaines espéces, comme Streptomyces,
développent un mycélium tres ramifié et produisent des chaines de spores caractéristiques.
D’autres, comme Nocardia ou Actinomyces, montrent des hyphes fragmentés ou faiblement
ramifiés (Goodfellow, 2012).
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Figure 07 : Caractéristiques morphologiques des spores chez différents genres
d’actinobactéries (Barka et al., 2016)

La surface, la forme et la disposition des spores constituent également des critéres
taxonomiques importants. Ces spores peuvent étre lisses, épineuses ou velues, disposées
seules ou en chaines (Figure 07). Enfin, la production de pigments (rouges, jaunes, bruns,
noirs, etc.), notamment la mélanine, représente un autre caractére distinctif utile & la

différenciation des genres d’actinobactéries (Barka et al., 2016).
11.1.6.2. Taxonomie chimiotaxonomique

La chimiotaxonomie repose sur 1’étude des composants chimiques stables de la cellule,
tels que la paroi cellulaire, les ménaquinones, les phospholipides, les acides gras et les acides
mycoliques. Ces caractéres constituent des marqueurs fiables pour la classification et

I’identification des actinobactéries au niveau du genre et de 1’espece (Ramasamy et al.,
2022).
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11.1.6.2.1. Paroi cellulaire

La paroi des actinobactéries contient du peptidoglycane dont la composition (type
d’acide aminé diamine et sucres spécifiques) permet de définir plusieurs chémotypes.
Certains genres comme Mycobacterium et Nocardia possédent des acides mycoliques,
responsables de leur paroi épaisse et hydrophobe (Alderwick et al., 2015).

11.1.6.2.2. Quinones isoprénoides

Les menaquinones sont des composés respiratoires présents dans les membranes des
bactéries et essentielles a la chaine de transport des électrons. Chez les Actinobacteria, elles
constituent le seul type de quinones isoprénoides et servent de criteres taxonomiques grace
a la variation de leur structure (méthylation, longueur, saturation et cyclisation de la chaine
latérale) (Xie et al., 2021).

11.1.6.2.3. Phospholipides et acides gras

Les phospholipides (phosphatidyléthanolamine, phosphatidylcholine, etc.) et les
acides gras (iso-, anteiso-, saturés ou insaturés) présentent des profils caractéristiques selon
les genres. Leur analyse, souvent réalisée par chromatographie en phase gazeuse, fournit une
empreinte chimique utile a I’identification.(Gago et al., 2011).

11.1.6.2.4. Acides mycoliques

Ils sont présents dans certains genres, ce sont des acides gras a longue chaine qui
confeérent la résistance et I’imperméabilité a la paroi. Leur longueur et leur structure varient

selon le genre, servant ainsi de critere taxonomique majeur (Brennan, 2003).
11.1.6.3. Taxonomie génotypique (moléculaire)
11.1.6.3.1. Séquencage de I'ADN ribosomique 16S

Le géne 16S rRNA est un marqueur essentiel utilise pour identifier et classer les
bacteries, car il est présent chez tous les procaryotes et évolue lentement. Son séquencage
permet de comparer la parenté entre différentes souches bactériennes. Cependant, ce géne
n’est pas toujours suffisant pour distinguer certaines especes tres proches, car il est parfois
trop conservé (Ramasamy et al., 2014). Aujourd’hui, une similarité de 98,7 a 99 % est
souvent utilisée pour définir une nouvelle espece. Des outils comme le serveur EzTaxon

facilitent ces comparaisons et la construction d’arbres phylogénétiques (Chun et al., 2007)
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11.1.6.3.2. Génes alternatifs pour ’analyse phylogénétique des

actinobactéries

Pour mieux comprendre les relations entre actinobactéries, d’autres génes que le 16S
rRNA sont utilisés, comme rpoB, recA, gyrB ou groEL. Ces genes évoluent plus rapidement
et offrent une meilleure résolution (Adékambi et al., 2011). Par exemple, le géne rpoB a
permis de mieux classer les espéces de Frankia, tandis que gyrB a distingué des souches
proches de Kribbella. L’utilisation combinée de plusieurs genes donne des arbres

phylogénétiques plus précis et fiables (Verma et al., 2013).
11.1.6.3.3. Hybridation ADN-ADN et valeur ANI

L’hybridation ADN-ADN (DDH) est une méthode ancienne pour mesurer la
similarité génétique entre deux bactéries. Si I’hybridation atteint 70 %, cela signifie qu’il
s’agit de la méme espece (Auch et al., 2010). Aujourd’hui, cette méthode a été remplacée
par des approches génomiques plus modernes, comme 1’identité nucléotidique moyenne
(ANI), qui compare directement les séquences d’ADN. Une valeur d’ANI de 95 a 96 %
correspond généralement au seuil de 70 % du DDH, et sert de référence pour définir une

espéce bactérienne (Chan et al., 2012).
11.1.6.3.4. Séquencage du génome entier (WGS)

Le séquencage complet du génome est devenu un outil majeur pour la classification
des bactéries. Il permet d’étudier toute I’information génétique d’une souche et de
comprendre sa phylogénie avec précision. Le premier génome d’actinobactérie enticrement
séquencé fut celui de Mycobacterium tuberculosis en 1998. Les actinobactéries possédent
soit un génome circulaire, soit un génome linéaire, comme c’est le cas pour le genre

Streptomyces (Redenbach et al., 2000).

11.1.6.3.5. Phylogénie des actinobactéries basée sur I’analyse du génome

complet

L’analyse phylogénétique basée sur le génome entier donne une vision beaucoup plus
précise de 1’évolution des actinobactéries que celle basée sur un seul gene. Elle permet de
corriger les incohérences observees dans les arbres phylogénétiques traditionnels et
d’obtenir une meilleure résolution, méme entre des souches tres proches. Des études récentes
ont montré que les approches sans alignement « alignment-free » sont les plus efficaces et

fiables pour retracer 1’évolution des actinobactéries (Verma et al., 2013).
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11.1.7. Cycle de vie des actinomycétes

Les actinobactéries, en particulier les genres Streptomyces, Nocardia et
Micromonospora, présentent un cycle de vie complexe et unique parmi les bactéries. Leur
développement morphologique rappelle celui des champignons filamenteux, avec la
formation de mycéliums et de spores. Ce cycle comprend plusieurs étapes successives, allant
de la germination a la sporulation, qui sont fortement influencées par les conditions

environnementales et nutritionnelles (Ngamcharungchit et al., 2023).
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Figure 08 : Cycle de vie des actinomyceétes et les différents types de conidiospores
(Ngamcharungchit et al., 2023)

11.1.7.1. Germination des spores

La germination marque le début du cycle de vie. Sous des conditions favorables,
notamment en présence de sources de carbone, d’azote et d’humidité suffisantes, les spores
dormantes reprennent leur activité métabolique. La spore gonfle, rompt sa paroi externe et
donne naissance a un filament primaire appelé hyphae végétative. Cette étape dépend de
I’hydratation et de la disponibilit¢ en nutriments, qui déclenchent la synthese des

macromolécules nécessaires a la croissance cellulaire (Wink Joachim, 2017).
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11.1.7.2. Croissance végétative (mycélium substrat)

Les hyphes issus de la germination s’allongent et forment un réseau de filaments
appelé mycélium substrat, ancré dans le milieu de culture ou le sol. Ce mycélium assure
I’absorption des nutriments et la croissance active de la bactérie. Durant cette phase, la
cellule effectue des divisions incompletes, formant des compartiments reliés entre eux, sans
séparation compléte. Cette organisation multicellulaire permet une efficacité métabolique
¢levée et la production d’enzymes extracellulaires nécessaires a la dégradation des matiéres

organiques (Wink Joachim, 2017).
11.1.7.3. Différenciation morphologique

La différenciation débute lorsque les nutriments deviennent limitants, notamment les
sources de carbone et d’azote. Cette situation entraine une réponse physiologique complexe,
régulée par des signaux intracellulaires tels que le guanosine tétraphosphate (ppGpp) et des
molécules de signalisation appelées y-butyrolactones. Ces composés, analogues hormonaux,
contrélent la transition du stade végétatif vers la formation du mycélium aérien et la
sporulation. De plus, les interactions microbiennes dans 1’environnement, comme la

compétition ou la prédation, peuvent influencer cette différenciation (Kieser et al., 2014).
11.1.7.4. Formation du mycélium aérien

Lorsque le mycélium substrat atteint une densité suffisante, certains hyphes
se développent vers la surface pour former le mycélium aérien. Ce dernier joue un
role clé dans la dispersion et la survie des actinobactéries. La croissance aérienne
s’arréte dés qu’un signal intracellulaire est transmis, amorgant alors la phase de
sporulation. Ces hyphes aériens se distinguent morphologiquement des hyphes
végétatifs par leur structure plus résistante et leur capacité a se segmenter (Kieser
etal., 2014).

11.1.7.5. Sporulation

La sporulation est un processus de différenciation terminale au cours duquel
les hyphes aériens se divisent en cellules indépendantes appelées spores. Cette
division, dite spécifique de sporulation, implique la formation de septa
symétriques appelés septa de sporulation. Contrairement aux cloisons vegetatives,

ces septas separent completement les cellules, formant des spores distinctes. Cette
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¢tape a pour but principal d’assurer la survie de la bactérie face aux conditions

défavorables (Kieser et al., 2014).

Figure 09 : Morphologie et sporulation des hyphes aériens(Wink Joachim,2017)

(a) Chaine de spores produite sur les hyphes aériens,
(b) Microscopie a fluorescence des hyphes aériens sporogenes les cloisons végeétatives sont
visibles dans la partie non sporulée de I’hyphe aérien (Wink Joachim, 2017)

11.1.7.6. Maturation des spores

Apres la formation des septas, chaque spore entre en phase de maturation. Une paroi
épaisse et résistante se forme a I’intérieur du présore, conférant une grande tolérance aux
stress chimiques et physiques. Des protéines associées a I’ADN protegent le matériel
génétique contre les dommages oxydatifs et mécaniques. Enfin, la spore acquiert une
coloration caractéristique due a la synthése de pigments, comme la pigmentation grise

observée chez Streptomyces coelicolor.(Barka et al., 2016).

Le cycle de vie des actinobactéries illustre une remarquable adaptation évolutive. Ce
développement complexe leur permet de survivre dans des environnements variables et de
produire une grande diversité de métabolites secondaires, dont plusieurs ont un intérét
biotechnologique majeur (antibiotiques, enzymes, pigments, etc.). Comprendre ce cycle est
essentiel non seulement pour la taxonomie et la physiologie de ces bactéries, mais aussi pour
optimiser leur utilisation dans les procédés industriels et pharmaceutiques (Kieser et al.,
2014).

11.1.8. Mise en évidence du genre Streptomyces

Le genre Streptomyces représente le groupe le plus étudié et le plus représentatif des
actinobacteéries. 1l regroupe plus de 800 especes identifiées, largement distribuees dans les
sols, les sédiments marins et les environnements extrémes. Ces bactéries jouent un role

écologique essentiel dans la décomposition de la matiere organique et dans la production de
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métabolites secondaires d’un grand intérét biotechnologique (Barbuto Ferraiuolo et al.,
2021).

11.1.8.1. Role majeur dans production d’antibiotiques

Streptomyces est reconnu comme le producteur naturel le plus important
d’antibiotiques connus a ce jour. Environ 70 % des antibiotiques d’origine microbienne
proviennent de ce genre. Parmi les plus célebres, on peut citer la streptomycine, la

tétracycline, I’érythromycine, le chloramphénicol et la vancomycine. (Donald et al., 2022).

A

Platensimycin%8 S. platensis
Daptomycin2°®2 S. roseosporus

2000 —8— Linezolid2"® Synthetic
Mupirocin1985 Pseudomonas fluorescens
1970 —8— Ribostamycin'?70 S. ribosidificus

Fosfomycin'?88 S, fradiae
Trimethoprim1968 Synthetic
Gentamicin%83 Micromonospora purpurea
Fusidic acid#62 Fusidium coccineum
1960 8 Nalidixic acid'®2 Synthetic

Tinidazole95% Synthetic

Kanamycin'9s7 S. kanamyceticus
Rifamycin'957 Amycolatopsis mediterranei
Noviobiocin'958 S. niveus

Vancomycin'9%8 5. grientalis
Cycloserine955 S. garyphalus
Lincomycin'#52 S. fincolnensis
Erithromycin'#52 Saccharopolyspora erythraea
Virginiamycin'952 jn S. pristinaespiralis S. virginiae
Isoniazid'95" Synthetic

Viomycin%5' S, vinaceus e S. capreolus
Isoniazid!951 Synthetic

Viomycin%51 S, vinaceus e S. capreolus
Nystatin'®0 S, noursei

1950 B Tetracycline'950 S, aureofaciens
Neomycin'?4? S, fradiae
Chloramphenicol'#4? S. venezuelae
Polymyxin1%47 Bagillus polymyxa
Nitrofurantein'#7 Synthetic
Cephalosporins®4 S, clavuligerus
Bacitracin®5 Bacillus licheniformis
Cephalosporins9% . clavuligerus
Streptomycin'@# S, griseus

1940 B Penicillin'®1 Penicillium chrysogenum

Figure 10 : Dates clés des antibiotiques et contributions du genre Streptomyces (de Lima
Procopio et al., 2012)

11.1.8.2. Importance génétique et industrielle

Le genre Streptomyces possede un génome particulierement grand et complexe,
souvent supérieur a 8 Mb, ce qui est exceptionnel pour une bactérie. Cette richesse génetique
confere a ces microorganismes une grande plasticité métabolique, leur permettant de
produire une diversité remarquable de composés secondaires.(Auch et al., 2010). D’un point

de vue industriel, Streptomyces constitue une plateforme biotechnologique majeure utilisée
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pour la production d’antibiotiques, d’antifongiques, d’anticancéreux, d’enzymes et de

pigments naturels (Donald et al., 2022).
11.1.8.3. Particularités morphologiques et genétiques

Les Streptomyces se distinguent par une morphologie filamenteuse complexe,
rappelant celle des champignons. Leur cycle de développement comprend la germination, la
formation de mycélium végétatif, le développement du mycélium aérien et la sporulation (Li
etal., 2016).

Sur le plan génétique, ces bactéries possedent un chromosome linéaire, fait rare chez
les procaryotes, comportant des régions télomériques analogues a celles des eucaryotes. Leur
génome contient également de nombreux plasmides linéaires ou circulaires, souvent porteurs
de genes impligués dans la production de métabolites secondaires (Aigle et al., 2014). Cette
organisation génétique particuliére favorise 1’évolution rapide de nouveaux génes et de
nouveaux clusters biosynthétiques. Ainsi, la diversité métabolique observée chez les
Streptomyces refléte leur capacité a s’adapter a des environnements variés et a produire une

vaste gamme de composés bioactifs (Ayoib et al., 2024).
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11.2. INTERET BIOTECHNOLOGIQUE DES ACTINOMYCETES

Les actinomycétes représentent un groupe de bactéries filamenteuses du
phylum Actinobacteria, largement reconnus pour leur extraordinaire potentiel
métabolique et biotechnologique. Leur capacité a produire une grande diversité de
métabolites secondaires, d’enzymes industrielles et de composés bioactifs a fait
des actinomycetes des micro-organismes d’un intérét majeur dans les domaines

pharmaceutique, agricole, environnemental et industriel (Selim et al., 2021).

Actinomycete Products
Mikes] teee Envim‘;:enental Ind use
Antibiotics Antifungals Biofouling Probiotics Detergents
Current
Applications Antitumors  Anthelmintics Bioremediation
Anti-MDR
Future Treatments Waste R ; 1 Biofuels Development
Directions Probiotics Biom:ﬁon Zymology and Enology
Experimental Evolution

Figure 11 : Les différents produits issus des actinomyceétes et leurs perspectives (Selim et
al., 2021) .

11.2.1. Producteurs de métabolites secondaires a haute valeur ajoutée
11.2.1.1. Agents antibactériens

Les actinomyceétes, en particulier le genre Streptomyces, représentent une ressource
biotechnologique majeure gréace a leur capacité exceptionnelle a produire une vaste gamme

de métabolites secondaires bioactifs. Ils sont a 1’origine de plus de 70 % des antibiotiques
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d’origine microbienne connus, tels que la streptomycine, la tétracycline, I’érythromycine et

le chloramphenicol (De Simeis et al., 2021).

Tableau 01 : Exemples des antibiotiques produits par les actinomycetes.

Streptomyces Antibiotique Streptomyces sp. Antibiotique

sp.

S. orchidaccus Cycloserin n S. erythraeus Erythromycin

S. oriantalis  Vancomycin S. vensuella Chloramphenicol

S. fradiae Neomycin, actinomycin, fosfomycin, S. aureofaciens  Chlortetracycline,
dekamycin Dimethylchlor

S. nodosus Amphotricin B S. ambofaciens Spiramycin

S. noursei Nistatin S. avemitilis Avermicin

S. mediterranei Rifampin S. alboniger Puromycin

S. griseus Streptomycin S. niveus Novobicin

S. knanamyceticdKanamycin S. platensis Platenmycin

S. tenebrarius Tobramycin S. roseosporius Daptomycin

S. spectabilis  Spectinomycin S. ribosidificus Ribostamycin

S. viridifaciens Tetracycline S. garyphalus Cycloserine

S. lincolensis Lincomycin, clindamycin S. vinaceus Viomycin

S. rimosus Oxytetracyclin S. clavuligerus Cephalosporin

Ces composés d'actinomycéte ont profondément transformé la médecine moderne en
permettant de traiter efficacement un large éventail d’infections bactériennes. De plus,
I’émergence de nouvelles molécules comme la daptomycine et la téicoplanine illustre le rdle
central des actinomycetes dans le développement de la prochaine génération d’antibiotiques
capables de contourner les mécanismes de résistance microbienne (Barbuto Ferraiuolo et
al., 2021).

11.2.1.2. Agents antifongiques

Les actinomycetes produisent également des substances antifongiques
d’une grande importance thérapeutique et agricole. Des molécules telles que la
nystatine, 1’amphotéricine B ou la candicidine exercent une action puissante
contre divers champignons pathogénes en altérant leur membrane cellulaire. Ces
composés trouvent ainsi des applications variées, allant du traitement des
mycoses humaines a la protection des cultures contre les maladies fongiques

(Georgopapadakou, 1998).
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Figure 12 : structure chimique des substances antifongiques (1) amphotericin B (2)

11.2.1.3. Agents antiviraux

Certaines souches d’actinomycétes

synthétisent des métabolites a activité

antivirale, comme la rimocidine et la neoviridine, capables d’inhiber la réplication

ou l’assemblage viral. Bien que leur nombre reste limité, ces composés suscitent

un intérét croissant pour la mise au point de nouveaux agents antiviraux d’origine

naturelle, dans un contexte mondial marqué par la recrudescence des infections

virales émergentes.(Raveh et al., 2013).

Tableau 02 : Exemples de métabolites antiviraux identifiés chez les Actinomyceétes entre
2016 et 2023 (Ngamcharungchit et al., 2023)

Organism (s)

Compound Name (s)

Actinomadura sp. 2EPS
Kibdelosporangium persicum

Kutzneria albida DSM 43870
Streptonnyces kebangsaanensis WS-68302
Streptomyces jiujiangensis NBERC-24992
Streptomyces bacillaris

Streptomyces koyangensis SCSIO 5802
Streptomyces sp. AM-2504
Streptomyces sp. CPCC 200267
Streptomyces sp. HK18

Streptomyces sp. JA74

Streptomyces sp. SMU 03

Decatromicins

Persicamidines A-E

Huimycin

Napyradiomycin A4, A80915 H
Virantmycins D-G
Zelkovamycins E G
Neoabyssomicins F, G
Virantmycins B

Geninthiocins E, F

Xiamycins D
Dihydromaniwamycin E
dichloromethane extracts (DCME)

Les actinomycetes se distinguent également

par la production de molécules

antiparasitaires, dont I’exemple emblématique est 1’avermectine, isolée a partir de
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Streptomyces avermitilis. Cette molécule et ses dérivés, tels que I’ivermectine,
sont largement utilisés pour le traitement des parasitoses humaines et animales,
démontrant  ainsi  le  potentiel  pharmaceutique et  vétérinaire de  ces

microorganismes (Kim et al., 2002).
11.2.1.5. Agents immunosuppresseurs

Les actinomycétes, notamment les especes du genre Streptomyces, sont largement
exploités pour la production d’immunosuppresseurs d’origine naturelle capables d’inhiber
la réponse immunitaire. Ils sont utilisés principalement pour prévenir le rejet des greffes
d’organes et traiter les maladies auto-immunes. Parmi les exemples les plus importants
figurent la cyclosporine A, produite par Streptomyces hygroscopicus, et le tacrolimus
(FK506), isolé de Streptomyces tsukubaensis. Ces molécules agissent en bloquant
I’activation et la prolifération des lymphocytes T, réduisant ainsi la réponse immunitaire.
Gréce a cette capacité unique, les actinomyceétes représentent une source majeure

d’immunosuppresseurs a fort potentiel thérapeutique (Ngamcharungchit et al., 2023).
11.2.1.6. Composés anticancéreux

Plusieurs métabolites secondaires issus des actinomycétes possedent des propriétés
anticancéreuses remarquables. Des composés comme la mitomycine C, la doxorubicine et
la daunorubicine agissent en intercalant leur structure dans I’ADN, inhibant la prolifération
des cellules tumorales. Ces découvertes confirment I’intérét biotechnologique exceptionnel
des actinomyceétes, non seulement comme source historique de médicaments essentiels, mais
aussi comme plateforme prometteuse pour la découverte de nouvelles molécules

thérapeutiques innovantes a fort potentiel médical et industriel(Wink Joachim, 2017).
11.2.2. Agents de biocontroéle et biofertilisation

Les actinomycetes jouent également un réle clé dans la protection des plantes et la
promotion de la croissance végétale. Certaines especes, telles que Streptomyces griseus ou
Streptomyces lydicus, produisent des métabolites antifongiques qui inhibent les pathogénes
du sol comme Fusarium oxysporum, Rhizoctonia solani ou Pythium spp.. Ce réle de
biocontrdle constitue une alternative écologique aux pesticides chimiques (Vurukonda et
al., 2018).
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Tableau 03 : Liste des produits a base de Streptomyces spp. utilisés comme agents de
biocontrole disponibles sur le marché mondial (Vurukonda et al., 2018).

Organism As Aclive Registered As a Microbial Targeted

Commercial Product Name Substance Pesticide Pest/Pathogen/Disease

Soilborne diseases, viz.
Pythium, Fusarium,
Phytophthora, Rhizoctonia, and
Verticillium; foliar diseases
such as powdery and

downy mildew,

Botrytis, Alternaria, Poshia,
Geotrichum, and Sclerotinia
Damping off caused by

Actinovate, Novozymes ) . .
BioAg Inc,, Milwaukee, WI, USA 5. Iydicus WYEC 108 Canada, USA

Mycostop, Verdera Oy, Alternaria, R. solani, Fusarium,
Espoa, Finland Streptomyces K61 EU, Conada, USA Phytophthora, Pythium wilt,
and root diseases
Mykocide, KIBC Co., Lid., Yongin, L . K Powdery mildews,
Gyeonggi-do, Republic of Korea §. colombicnsia Republic of grey mold, and brown patch
. ) . Seed germination
Bactophil Streptomyces albus Ukraine diseases

En parallele, les actinomycetes participent a la biofertilisation gréce a la production de
phytohormones (auxines, gibbérellines), a la solubilisation du phosphate et a la fixation
indirecte de I’azote. Leur interaction avec la rhizosphére favorise la colonisation racinaire et
améliore I’absorption des nutriments, contribuant ainsi a une croissance végétale plus
vigoureuse et durable. Ces propriétés font des actinomycetes des partenaires privilégiés dans
les programmes d’agriculture durable et de biotechnologie végétale (Vurukonda et al.,

2018).

11.2.3. Actinomyceétes dans I’industrie enzymatique

Les actinomycetes sont aussi réputés pour leur aptitude a sécréter une large gamme
d’enzymes extracellulaires d’intérét industriel. Parmi celles-ci figurent les cellulases,
xylanases, amylases, lipases, protéases et chitinases, essentielles pour la dégradation des
polymeéres naturels comme la cellulose, la chitine et les hémicelluloses. (Mukhtar et al.,
2017).

Ces enzymes trouvent de nombreuses applications industrielles :

e Dans [lindustrie agroalimentaire, pour I’hydrolyse de I’amidon et
I’amélioration de la texture des produits ;

e Dans I’industrie pharmaceutique, pour la syntheése de molécules actives ou la
modification de composés naturels ;

e Dans l’industrie textile et papetiére, pour le blanchiment écologique et la

transformation des fibres végétales. (Mukhtar et al., 2017).
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Grace a leur stabilité thermique et leur large spectre d’activité, les enzymes d’actinomyceétes
représentent une ressource précieuse pour le développement de procédés biotechnologiques
durables (Prakash et al., 2013).

11.2.4. Applications en bioremediation

Les actinomycetes contribuent activement a la bioremédiation des environnements
pollués. Leur métabolisme complexe leur permet de dégrader les hydrocarbures
aromatiques, les pesticides persistants et certains métaux lourds. Des espéces telles que
Rhodococcus erythropolis et Streptomyces albidoflavus sont capables d’utiliser des
composés toxiques comme sources de carbone et d’énergie, participant ainsi a la

détoxification des sols et des eaux contaminées (Behera et al., 2023).

De plus, ces micro-organismes interviennent dans la valorisation des déchets organiques
en convertissant la matiere organique complexe en composés simples utilisables, contribuant
ainsi a la production de composts riches en nutriments. Ces propriétés font des actinomycetes
des acteurs clés dans la gestion environnementale et la lutte contre la pollution industrielle
(Behera et al., 2023).

11.2.5. Avancées en génomique et ingénierie génétique

Les progreés récents en génomique et en biologie synthétique ont profondément élargi
les perspectives biotechnologiques des actinomycétes. Le génome des Streptomyces est
particulierement grand (6-12 Mb) et contient de nombreux clusters de génes "silencieux",
souvent non exprimés dans les conditions de laboratoire classiques. Ces clusters codent

potentiellement pour des métabolites encore inconnus (Auch et al., 2010).

Les nouvelles technologies, telles que le systéme CRISPR-Cas9, permettent aujourd’hui
d’activer ces geénes silencieux, d’optimiser la production de métabolites secondaires et de
créer de nouvelles molécules hybrides par recombinaison. Par ailleurs, les plateformes de
screening métabolique a haut débit facilitent la détection rapide de nouveaux composés
bioactifs. Ces avancées ouvrent la voie a la découverte de molécules inédites et renforcent
la place des actinomycétes comme outils essentiels en biotechnologie moderne. Mais malgré
ces avancees, des défis persistent tels que : toxicité de Cas9, instabilité chromosomique, et
difficulté d’acces a certains clusters biosynthétiques (Auch et al., 2010; Mitousis et al.,
2025).
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Afin d’explorer le potentiel biotechnologique des actinobactéries issues de
différents environnements algériens, ce travail a ¢été concu dans 1’objectif d’isoler et
d’évaluer la capacité de ces micro-organismes a produire des métabolites
secondaires a activité antimicrobienne. Pour ce faire, une approche méthodologique
intégrée a ¢été adoptée, comprenant le prélevement d’échantillons de sol et de
sédiments issus de milieux contrastés, leur prétraitement sélectif, 1’isolement sur
milieux spécifiques, puis la purification et la conservation des souches
actinobactériennes obtenues, permettant de constituer une collection représentative

de la diversité microbienne locale.

Par la suite, un criblage primaire et secondaire de 1’activité antimicrobienne a
¢té réalis€¢ afin d’identifier les isolats présentant un potentiel bioactif et d’évaluer
leur spectre d’inhibition contre différents micro-organismes indicateurs. Enfin, des
fermentations en milieu liquide et solide, suivies de procédés d’extraction des
métabolites, ont permis d’obtenir des extraits bruts destinés a [’évaluation de leur
activité antibactérienne et antifongique, offrant ainsi des indications précieuses sur

leur capacité a produire des composés bioactifs.

Cette démarche méthodique vise ainsi a contribuer a la recherche de nouvelles
sources naturelles de biomolécules antimicrobiennes d’intérét thérapeutique ou
biotechnologique, tout en enrichissant les connaissances sur la biodiversité des
actinobactéries dans les sols algériens et en ouvrant de nouvelles perspectives pour

des applications futures dans les domaines médical et industrie
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111.1. Prélevement des échantillons de sol
I11.1.1. Sites d’échantillonnage

L’échantillonnage des sols a été effectué en janvier 2025 a partir de quatre

échantillons prélevés sur quatre sites distincts situés dans ['ouest de 1’Algérie
(Figure 02) :

» Sebkha de Bougtob (région d'El Bayadh) ;

» Sédiments marins de la zone cotiere de Kristal (wilaya d'Oran) ;

» Rhizosphére de Ziziphus (Djebarat, wilaya de Saida) ;

» Rhizospheére de Acacia (région de Tindouf).

Les prélévements ont été effectués selon une procedure standardisée de collecte suivant la
technique décrite par Pochon et Tradieux (1962), avec conservation immédiate a 4°C avant

I’analyse. Le Tableau 04 décrit les caractéristiques géographiques des échantillons.

Tableau 04 : Repérage géographique des stations d’échantillonnage par GPS

Sites d’échantillonnage | Code Région La position géographique
Bougtob, El
Sebkha Bougtob SB 34°03'24.9" N 0°05'20.8"E
bayadh
. . Djebarat,
Rhizosphére Ziziphus RZ Said 34°49'12.0"N 0°10'39.6"E
aida

Sédiments Marins Kristal SMk Kristal, Oran 35°50'58.8"N 0°28'59.7"W

Tindouf Acacia TA Tindouf 7°42'05.7"N 8°05'23.8"W
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Figure 13 :Localisation géographique des sites de prélévement des sols
O: Localisation des sites de prélevement des échantillons de sol.

I11.1.2. Caractéristiques du sol
111.1.2.1. pH des échantillons

Pour le pH, 10 g de chaque échantillon préalablement séché ont été mélangés avec 50 ml
d'eau distillée, selon un ratio masse/volume de 1: 5. Le mélange a été agité pendant 2
minutes pour assurer une homogénéisation optimale. Aprés agitation, le pH a été mesuré
directement a partir du surnageant a l'aide d'un pH-meétre équipé d'une électrode (modele
HANNA H19125) (Mosley et al., 2024).

111.1.2.2. Couleur des échantillons

L’aspect visuel des échantillons de sol a ¢été examiné immédiatement aprés leur

préparation. Les variations de couleurs ont été notées a 1’ceil nu (Du et al., 2025).
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111.1.3. Méthodologie du prélevement
e Prélevement des sols

Les sols ont été collectés dans la rhizosphére de Ziziphus, la rhizosphere
d’Acacia et dans la sebkha de Bougtob. Aprés avoir retiré les débris superficiels,
le sol a été préleve a une profondeur de 5 a 10 cm. Pour chaque site, cing sous-
¢échantillons d’environ 50 a 100 g ont ét¢ mélangés pour former un échantillon

composite de 250 g (Pochon et Tradieux ,1962).

o

Figure 14 : Photographies des sites de prélévement des échantillons de sol
(A) Site d’échantillonnage situé dans la sebkha de Bougtob ;
(B) Vue générale de la sebkha de Bougtob ;
(C) Site d’échantillonnage dans la rhizosphére de Ziziphus (Djebarat, Saida) ;

(D) Site d’échantillonnage dans la rhizosphére d'Acacia (région de Tindouf).
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e Prélévement des sédiments marins

Les sédiments marins ont été collectés dans la zone cétiére de Kristal, Oran.
Une fine couche superficielle (environ 1 & 3 mm) déposée sur la surface de roches
en zone intertidale a été délicatement grattée. Environ 50 a 100 g de sédiment sec
ont éte prélevés (Abdel-Razik et al., 2025).

Figure 15 : Site de prélévement des sédiments marins

(A) Site d’échantillonnage dans la zone cotiere de Kristal (Oran)
(B) Vue générale de Site de prélevement Kristal (Oran)
111.2. Prétraitement des échantillons de sol

Le prétraitement est réalisé afin de réduire la flore microbienne compétitive et
ainsi favoriser I’isolement des actinobactéries, plus résistantes a certaines

conditions sélectives (Balagurunathan et al., 2020).
111.2.1.1. Séchage et Tamisage

Les échantillons ont d’abord été tamisés a I’aide d’un tamis 2 mm afin
d’éliminer les débris grossiers (Valli et al., 2012). Par la suite, ils ont été soumis
a un prétraitement consistant en un séchage a [’air libre pendant sept jours a
température ambiante. Cette étape permet de réduire la viabilité des bactéries et
des champignons non sporulés sensibles a la dessiccation, tout en favorisant la
survie des actinomycetes sporulés, plus résistants a ces conditions (Messaoudi et
al., 2015).
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111.2.1.2. Traitements chimiques et physiques
e Traitements chimiques

10 g d’¢chantillon de sol ont ét¢é mélangés avec 1 g de carbonate de
calcium L’ajout de CaCOs; permet de neutraliser 1’acidité du sol et de maintenir
un pH légérement alcalin, une condition favorable a la croissance et a la
germination des spores d’actinomycetes. Ce prétraitement contribue également a
réduire la croissance de nombreuses bactéries et champignons concurrents,

généralement sensibles a des conditions alcalines. (Tiwari et al., 2021)
e Traitements physiques

Un prétraitement thermique a sec 110 °C pendant 10 min a été appliqué
aux échantillons de sol de Rhizosphére de Acacia (région de Tindouf) afin
d’éliminer les bactéries non sporulées, réduire la charge microbienne totale et
sélectionner préférentiellement les actinobactéries sporulées résistantes a la
chaleur (Suzuki, 2000)

Tableau 05 : Tableau récapitulatif des prétraitements appliqués aux échantillons

Code de Prétraitement des échantillons de sol
L celienitilion Séchage Tamisage Traitements Traitements
chimiques physiques

SB ® ® ®
RZ °® °® °®
SMk
Y Y ®
U ° ° ® °

@ Signe qui montre que le traitement a été effectué

- Signe montrant que le traitement n’a pas ¢€té effectué
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111.3. Isolement des actinobacteries
111.3.1.1. Milieux de cultures utilisés
Les milieux de culture utilisés (annexe 01) pour I’isolement des actinomycétes sont :

1. Milieu GYM (gélose—extrait de levure—extrait de malt) (Smaoui et al., 2018)
2. Milieu SCA (Starch Casein Agar) (KUSTER et al., 1964)
3. Milieu ISP2 (International Streptomyces Project) (Zakari et al., 2025)

Apreés sterilisation par autoclavage, les milieux sont refroidis a environ 45 °C. Ils sont ensuite
supplémentés, de maniére aseptique, avec 5 pg/ml d’actidione (le cycloheximide) (Ayoib
et al., 2024). L’incorporation de ce composé a pour objectif de limiter la croissance des

champignons et de favoriser ainsi I’isolement sélectif des actinomycétes.
111.3.1.2. Préparation de suspension-dilution et ensemencement

L’isolement des actinobactéries a été effectué selon la méthode des suspensions-
dilutions. Pour ce faire, 5 g de chaque échantillon sec, préalablement traité comme décrit ci-
dessus, ont été mis en suspension dans 45 mL d’une solution physiologique stérile (NaCl 9
g/L). Cette étape a permis d’obtenir, pour chaque échantillon, une solution mere distincte
(Budhathoki et al., 2020). A partir de chaque suspension mére, une série de dilutions
décimales successives a été réalisée, allant de 107" a 107°. Par la suite, 100 pL des trois
dernieres dilutions (1073, 10~ et 10~°) ont été préleves et étalés en surface sur le milieu de
culture, avec trois répétitions indépendantes pour chaque dilution. (Balagurunathan et al.,
2020)

Les boites ainsi ensemencées ont été incubées dans une étuve a 28 + 2 °C pendant une durée
de 7 a 21 jours avec atmosphére saturée d'humidité afin de permettre la croissance et le

développement des colonies d’actinobactéries (Ribeiro et al., 2025).
111.3.1.3. Reconnaissance et sélection des actinobactéries

Pendant la période d’incubation, les boites de Pétri inoculées ont été
inspectées périodiquement a D’ceil nu afin de suivre 1’évolution et la morphologie
des colonies d’actinomycétes. Les observations ont porté sur des critéres
macroscopiques caractéristiques, tels que I’aspect poudreux ou crayeux des
colonies, leur implantation parfois en profondeur dans le milieu (colonies
incrustées dans la gelose avec une texture séche), ainsi que la présence d’un

centre proéminent et de bords frangés. Ces caractéres morphologiques ont permis
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de distinguer les isolats bactériens présentant un profil compatible avec celui des
actinobactéries (Li et al., 2016).

Les colonies bactériennes répondant aux caractéristiques décrites ci-dessus
ont été soigneusement sélectionnées pour une étude plus approfondie. Afin de
confirmer leur appartenance au groupe des actinobactéries, une coloration de
Gram a été réalisée (Coico, 1997). Les résultats ont montré des bactéries Gram
positives, filamenteuses, confirmant leur nature d’actinomycétes et validant ainsi

la pertinence de la sélection.
111.3.1.4. Purification et conservation des actinobactéries

Les colonies sélectionnées ont ¢té prélevées avec précaution a 1’aide d’une
anse stérile, puis ensemencées sur les milieux GYM ou ISP2 en vue d’obtenir des

cultures pures. Les isolats ainsi obtenus ont été numérotés.

Les isolats purifies ont été conservés sur tubes de milieu GYM inclinés a 4 °C,
ainsi qu’en suspension dans du glycérol (20 %, v/v) a —20 °C (Franco Correa et
al., 2016).

I11.4. Criblage de P’activité antimicrobienne des actinobactéries

Le criblage de I’activité antimicrobienne permet d’évaluer la capacité des actinobactéries
isolées a inhiber la croissance de micro-organismes cibles. Cette étape est essentielle pour
identifier les souches présentant un potentiel producteur de métabolites bioactifs, notamment

a visée antibactérienne (Balouiri et al., 2016)
111.4.1. Microorganismes-cibles

D’une part, les souches bactériennes cibles utilisés dans cette étude proviennent de
I’Université Abou Bekr Belkaid de Tlemcen, dont plusieurs souches sont cataloguées et
déposées dans les collections internationales de référence (ATCC). Pour leur purification et
la préparation de jeunes cultures, les bactéries ont été cultivées sur milieu gélosé nutritif.
Elles ont ensuite éte réactivées dans 9 mL de bouillon nutritif et incubées a 37 °C pendant
18 a 24 heures afin d’obtenir des cultures fraiches et actives (Qureshi et al., 2021). D’autre
part, les souches fongiques ont été isolées puis purifiées sur le milieu PDA avant d’étre
observées au microscope afin de vérifier leurs caractéristiques microscopiques (GAUTAM
et al., 2025).
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Les souches bactériennes cibles ont été sélectionnées en raison de leur importance

pathologique et alimentaire, afin d’évaluer le spectre d’activité des actinobactéries isolées.

De méme, les souches fongiques indicatrices ont été choisies en fonction de leur

pathogénicité chez ’homme et les plantes (Belt et al., 2025).

Tableau 06 : Caractéristiques des souches indicatrices

Les souches indicatrices Intérét du choix

Escherichia coli ATCC 8739 Pathogene /

Gram négatif Alimentaire

Klebsiella pneumoniae | IBMC Strasbourg Pathogéne

Staphylococcus aureus ATCC 6538 Pathogene /

Alimentaire

Gram positif

Bacillus cereus ATCC 25921 Alimentaire/

Pathogéne
Bacillus subtilis ATCC 6633 Alimentaire

Levures Candida albicans Opportuniste humaine

Champignons

Phytophthora infestans

Champignons phytopathogenes

Agent du mildiou

Rhizoctonia

Phytopathogéne

ATCC: American Type Culture Collection

IBMC Strasbourg : Institut de Biologie Moléculaire et Cellulaire Strasbourg

111.4.2. Standardisation des inocula

Afin d’assurer une charge identique chez tous les micro-organismes cibles et de garantir

une évaluation fiable de 1’activité antimicrobienne, les inocula ont été standardisés en

ajustant les suspensions bactériennes a I’étalon 0,5 McFarland, correspondant a une

concentration d’environ 10° UFC/mL (Loffredo et al., 2020). Les suspensions de spores ont
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été préparées puis ajustées a une turbidité équivalente a 1’étalon 0,5 de McFarland,

correspondant & une concentration estimée de (1-5) x 10°¢ spores/mL (Belt et al., 2025)

111.4.3. Criblage primaire de I’activité antimicrobienne
e Méthode des cylindres d’agar

Les souches d’actinobactéries isolées sont ensemencées en stries serrées sur le milieu ISP-2
et incubées pendant 7 jours & 28 °C. La recherche des métabolites antibactériens est effectuée
par la technique des cylindres d’agar qui consiste a prélever a I’aide d’un emporte-piéce des
cylindres de 6 mm de diametre de cultures et de les déposer sur la surface du milieu Mueller-
Hinton gélosé, préalablement ensemencé par écouvillonnage par les bactéries tests (Balouiri
etal., 2016).

Figure 16 : Méthode des cylindres d’agar

Les boites de Pétri sont ensuite maintenues a 4 °C pendant 4 heures pour permettre une
diffusion des substances antimicrobiennes actives dans le milieu de culture avant d’étre

incubées a 37 °C (Pongtharangkul et al., 2004)
111.4.4. Observation et interprétation des zones d’inhibition

Aprées incubation, la présence des zones d’inhibition indique un résultat positif. Cette zone
est observée autour des disques d’actinomycétes ce qui signifie que ces bactéries produisent
des molécules antimicrobiennes capables de stopper la croissance des bactéries (Yadav et
al., 2024).
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I11.5. Fermentation et extraction des métabolites
111.5.1. Fermentation des isolats pour production des métabolites

Afin de maximiser la production de métabolites secondaires, les isolats identifiés ont été
soumis a un processus de fermentation en milieu submergé. Chaque isolat a été cultivé dans
un erlenmeyer 500 ml (Figure 17) contenants 100 mL de milieu GYM liquide (pH : 7,2),
puis incubé a 28 °C sous agitation constante a 180 rpm pendant une durée de 7 a 10 jours.
Ces conditions de température et d’aération ont été optimisées afin de favoriser une

croissance optimale (Al-ghazali et al., 2017)

Par la suite, 10 mL de cette culture ont été transférés dans le milieu 5294 pour I’induction
de la production de métabolites (Khodja et al.,2023). Le succeés de la fermentation a été
confirmé par des signes visibles tels que la formation de pellets, 1’agrégation cellulaire ou

encore une augmentation notable de la turbidité (Yadav et al., 2024).

Figure 17 : Processus de fermentation en milieu liquide dans des erlenmeyers de 500 mL.
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111.5.2. Extraction des métabolites
111.5.2.1. Extraction a partir de milieu liquide

Un volume de 20 mL de chaque culture, préalablement filtrée sur papier filtre, a
ét¢ mélangé a 20 mL d’acétate d’¢thyle puis soumis a une agitation pendant 12
minutes. Les tubes ont ensuite été centrifugés & 6 000 rpm pendant 10 minutes et
la phase organique (supérieure) a été recueillie dans un flacon de 50 mL.
L’acétate d’éthyle a ensuite été éliminé a l’aide d’un évaporateur rotatif sous vide
a 40 °C. Le résidu sec obtenu a finalement été dissous dans 1 mL de méthanol
(Teklemichael et al., 2024)

Figure 18 : Etapes du processus d’extraction des métabolites secondaires par extraction
liquide-liquide et concentration par évaporation sous vide (rotavapor).

111.5.2.2. Extraction a partir de milieu solide

Les extraits ont été obtenus a partir de la biomasse cellulaire de 1’actinobactérie,
par une extraction solide-liquide au méthanol dans un rapport de 1:5 (p/v), sous
agitation lente pendant 30 minutes. La phase méthanolique a ensuite été séparée
des cellules par centrifugation a 6000 rpm, 22 °C, pendant 15 minutes, puis
concentrée a l’aide d’un évaporateur rotatif sous vide a 40 °C (Rakhmawatie et
al., 2024)
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111.6. Criblage secondaire de I’activité antimicrobienne
e Evaluation de ’activité antimicrobienne des extraits

L’activité antibactérienne a été évaluée par la méthode de diffusion en puits sur
gélose. Les extraits bruts ont été déposés dans des cavités creusées des puits de 06 mm de
diamétre a la surface des milieux préalablement ensemencés avec les suspensions
bactériennes. Les boites ont ensuite été maintenues a 4 °C pendant 4 heures afin de favoriser
la diffusion des métabolites antibactériens, puis incubées a 28 °C pendant 24 heures. Les

zones d’inhibition ont ensuite été observées et mesurées.(Singh et al., 2016)

Pour I’évaluation de I’activité antifongique, des disques stériles imprégnés des
extraits bruts des souches A13 et A8 ont été déposés sur les milieux gélosés. Les boites ont
été maintenues a 4 °C pendant 4 heures pour permettre une diffusion optimale des
métabolites antifongiques, puis incubées a 28 °C. Apres une incubation de 3 a 7 jours, les

zones d’inhibition ont été observées et mesurées. (Yadav et al., 2024)
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IV.1. Prélévement des échantillons de sol
IV.1.1. Caractéristiques du sol
IV.1.1.1. pH des échantillons

Les valeurs de pH mesurées dans les différents échantillons analysés sont
mentionnés dans le Tableau 07. Les résultats révelent une variation notable en
fonction de leur origine géographique et écologique. Le sol rhizosphérique de
Tindouf présente un pH légérement acide (pH 5,33), tandis que celui de Djebarat
(Saida) est proche de la neutralit¢ (pH 6,0). Le sol de Bougtob (EI Bayadh) montre
également une tendance faiblement acide (pH 6,06). En revanche, le sol marin de
Kristel (Oran) se caractérise par un pH alcalin (pH 7,88), ce qui est en accord avec la
nature des environnements marins généralement riches en sels minéraux (Wang et
al., 2019)

Tableau 07 : Résultats du pH des échantillons

Echantillon Site de prélevement Type de sol H
SB Bougtob, Elbayadh Sol de sebkha 6.06
RZ Djebarat, Saida Sol rhizosphérique 6
SMk Kristal, Oran Sol de Sédiments 7.88
TA Tindouf Sol rhizosphérique 5.33

Cette variabilité du pH est importante, car elle influence directement Ila
structure et la densitt des communautés microbiennes, notamment les
actinobactéries. Les sols légérement acides a neutres, comme ceux de Saida, Tindouf
et Bougtob, sont généralement favorables a la croissance et a la diversité des
actinobactéries (Wan et al., 2020).
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1VV.1.1.2. Couleur des échantillons

Sur le plan visuel, une variation nette de la couleur a été observee entre les échantillons,
allant du brun foncé au beige clair, traduisant potentiellement des différences en matiere
organique, en teneur en argiles, ou en composition minérale (Du et al., 2025). Figure 19 montre

la variation des couleurs observée entre les différents échantillons de sol collectés.

Figure 19 : Différences de couleurs observées entre les échantillons de sol collectés
IV.2. Isolement des actinomycetes

Apres une incubation de 7 a 21 jours a 28 °C sur les milieux d’isolement SCA et GYM
supplémentés en actidione, des colonies d’actinomycetes mycéliens ont été observées. Celles-
ci présentaient un aspect sec, rugueux, parfois pigmenté, avec un diamétre variant de 1 a 10
mm. Elles étaient généralement compactes, bien incrustées dans la gélose, et caractérisées par
la présence simultanée d’un mycélium aérien et d’un mycélium végétatif. Les colonies isolées
ont ensuite été purifiées par repiquages successifs sur les milieux ISP2 ou GYM, puis incubées
a 28 °C pendant 14 jours. Figure 20 montre le résultat de I'isolement d’actinobactéries a partir
de I'échantillon de sol rhizosphérique (RZ) sur le milieu SCA, apres ensemencement de la

dilution 1073, Les boites de Pétri montrent I’apparition de colonies mycéliennes caractéristiques.

Figure 20 : Boites de Pétri montrant I’isolement d’actinobactéries a partir d’un échantillon

de sol rhizosphérique (RZ) sur milieu SCA, aprés ensemencement de la dilution 1073
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Lors de I’isolement, une difficulté majeure a été rencontrée c'est la présence des
bactéries a Gram positif, principalement du genre Bacillus. Ces bactéries, caractérisées par une
croissance rapide et envahissante (Koech et al., 2025), forment des plages qui compliquent

I’observation et entravent le processus de purification.

Etant elles-mémes a Gram positif, leur élimination par des antibiotiques ciblant ce
groupe bactérien s’avere impossible, car ces derniers affecteraient également les actinobactéries
recherchées. De ce fait, I’utilisation de tels antibiotiques dans nos milieux de culture ne pouvait

pas étre envisagée (Schneider et al., 2022).

Figure 21 : contamination par les gram positive Bacillus
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\

Dans notre étude, les dilutions sur le milieu GYM (10* a 107¢) n’ont pas permis de
détecter de colonies d’actinobactéries, probablement en raison d’une concentration bactérienne
faible et de ’absence d’une étape d’enrichissement préalable. D’autres études ont montré qu’un
enrichissement du sol permet d’obtenir des colonies méme a ces dilutions (10™* a 107°),

confirmant I’importance de cette étape pour la récupération d’actinobactéries rares (Dwiyani et
al., 2025).

En revanche, I’utilisation du milieu SCA avec des dilutions plus faibles (102 et 107%) a
conduit a I’isolement d’un nombre plus €levé de colonies, ce qui est cohérent avec les résultats
rapportés dans la littérature, ou ce milieu favorise la croissance d’actinobactéries a des dilutions
relativement élevées (Yadav et al., 2024). Le graphique de la figure 22 illustre la variation du

nombre d’isolats en fonction des dilutions d’ensemencement

Variation du nombre d’isolats selon la dilution

d’ensemencement
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Figure 22 : Variation du nombre d’isolats selon la dilution d’ensemencement
L’utilisation du milieu Starch Casein Agar (SCA) s’est révélée particulierement efficace
pour I’isolement des actinobactéries a partir des échantillons de sol étudiés. Ce milieu, enrichi
en substrats complexes tels que ’amidon et la caséine, a favorisé la croissance sélective des
actinobactéries tout en limitant celle des bactéries a croissance rapide et des champignons

filamenteux.(Dwiyani et al., 2025).
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Un total de 38 isolats d’actinobactéries a été obtenu a partir des différents
¢chantillons de sol analysés. Parmi eux, 16 provenaient d’échantillons collectés dans
la région de Djbarat (Saida), 4 de la région de Bougtob (wilaya d’El Bayadh), 16 de
la rhizosphére d’acacia de Tindouf, et 2 du sol sédimentaire marin de la région de
Kristel (Oran).

La figure 23 montre, a travers un graphique, la variation du nombre d’isolats
selon le type d’échantillon de sol. I1 a été constat¢ que les sols rhizosphériques
présentaient une plus grande capacit¢é a favoriser I’isolement de ces micro-
organismes par rapport a d’autres types de sols, notamment les sols salins ou marins

(Islam et al., 2022).

Cette différence peut étre attribuée a la richesse en matiére organique et a la

forte activité microbienne caractéristique de la rhizospheére.

Variation du nombre d’isolats selon le type
d'echantillon de sol
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Figure 23 : Nombre des isolats par apport le type d'échantillon de sol
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Le nombre total d’isolats obtenus (38) peut sembler inférieur a celui rapporté
dans d’autres travaux (Islam et al., 2022) , mais cela s’explique par plusieurs

facteurs méthodologiques.

D’une part, le nombre d’échantillons de sol collectés dans certaines zones, notamment
les milieux extrémes tels que les sols salins ou marins, était limité (seulement deux
échantillons), ce qui réduit naturellement la probabilit¢ d’obtenir un nombre ¢élevé

d’actinobactéries. (Yadav et al., 2024).

D’autre part, afin d’éviter la sur-représentation de souches similaires, toutes les colonies
actinobactériennes n’ont pas été systématiquement purifiées. Seules les colonies présentant des
morphotypes macroscopiques distincts (Yadav et al., 2024),ont été selectionnées pour la
purification, dans le but d’augmenter les chances d’obtenir une diversité maximale en termes
d’especes et de genres. Cette stratégie, privilégiant la représentativité plutdt que la quantité,
explique également le nombre réduit mais scientifiquement pertinent d’isolats retenus pour
I’étude

L’échantillon prélevé dans les sédiments marins SMK avait déja un pH basique, de 7,98.
Pour les autres échantillons, nous avons ajouté du CaCO3 afin de neutraliser le pH et favoriser
la germination des spores d’actinobactéries (Guo et al., 2019). Cependant, pour 1’échantillon
des sédiments marins, cet ajout était inutile et a probablement influencé négativement les
résultats (Fang et al., 2017).

Une diversité morphologique marquée a été observée parmi les isolats d’actinobactéries
obtenus Figure 24. Cette variation se manifeste par des différences de forme, de texture, de
couleur et de structure des colonies. Elle s’explique principalement par des différences
génétiques entre les souches, mais également par I’influence des conditions de culture, telles
que la composition du milieu, la température et le pH. Ces facteurs peuvent moduler la
croissance, la sporulation et la production de pigments, entrainant ainsi une large variabilité

d’aspects morphologiques. (Li et al., 2016) .

Cette diversité traduit la capacité d’adaptation élevée des actinobactéries aux conditions

environnementales (Li et al., 2016) .
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CODE DE TAILLE DES
ISOLATS ASPECT DES COLONIES
L’ECHANTILLON COLONIES (MM)
Moyenne i
Colonies cotonneuses,
. 2-8 irréguliéres, de couleur blanche,
Ar7 - Az Petit grise, noire, verdatre, avec
mycélium aérien
1-5
Moyenne . . X
Colonies de taille moyenne a
A 2-8 petite, incrustées dans la gélose,
Petit de couleur noire, beige ou rouge, a
A1-Ass 1.5 aspect poudreux ou granuleux
. Petite colonie jaune verdatre A33,
Petit
SMk entourée d’une colonie blanche
Asz Azs 1-5 A34
Moyenne
2 Colonies de taille moyenne a
SB petite de couleur blanche
Ass -Aszs Petit
1-5

Tableau 08: Aspect macroscopique

échantillons du sol

des isolats d’actinobactéries isolés a partir des
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Figure 24 : Aspect macroscopique des isolats
(A) isolat Al12 (B) isolat A6 (C) isolat A7

(D) isolat A8 (E) isolat A13 (F) isolat A15

Figure 25 : Aspect microscopique des isolats
(A) Observation de I’isolat A8 aprés coloration de Gram au microscope optique a un
grossissement de x100; (B) Observation de I’isolat A13 aprés coloration de Gram au
microscope optique a un grossissement de x100; (C) Observation de I’isolat A13 aprés

coloration de Gram au microscope optigue a un grossissement de x60

Les résultats obtenus a la suite des observations macroscopiques et microscopiques

confirment I’appartenance des isolats étudiés au groupe des actinomycetes. En effet, sur milieu
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solide, les colonies présentent des caractéristiques typiques de ce groupe, telles qu™un aspect
poudreux ou crayeux, une morphologie compacte et souvent colorée, témoignant de la
formation d’un mycélium aérien (Kim et al., 2002). L’examen microscopique, réalisé aprés
coloration de Gram, a révelé la présence de cellules filamenteuses ramifiées a Gram positif,
confirmant la nature actinobactérienne des isolats (Li et al., 2016).

IV.3. Criblage primaire de I’activité antimicrobienne

Figure 26 : Criblage primaire des isolats (méthode cylindre d'agar) contre:
(A) Bacillus subtilis ATCC 6633 (B) Bacillus cereus ATCC25921
(C) Staphylococcus aureus ATCC 6538 (D) Escherichia coli ATCC8739
(E) Klebsiella pneumoniae IBMC Strasbourg (F) Bacillus cereus ATCC25921

Nos résultats (Tableau 09) concordent avec ceux rapportés par d’autres auteurs (Ruppé
et al., 2015; Barar et al., 2025) , qui ont montré que les bactéries a Gram négatif présentent
une résistance plus élevée aux métabolites produits par les actinomycetes que les bactéries a
Gram positif. Cette résistance peut s’expliquer par la présence, chez les bactéries a Gram

négatif, d’une couche de lipopolysaccharides (LPS) qui agit comme une barriére protectrice,

L’absence d’activité antibactérienne chez certains isolats d’actinomycétes contre les

souches testées pourrait s’expliquer par le développement d’une résistance a ces composés.
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En effet, la résistance bactérienne aux antibiotiques d’origine actinomycétale peut
résulter soit d’une inactivation enzymatique de ces molécules, soit d’une diminution de la

perméabilité de la membrane bactérienne (Ruppé et al., 2015).

Tableau 09 : Résultats du criblage primaire de I’activité antimicrobienne (méthode cylindre
d'agar)

Zone d’inhibition en mm
Les micro-organismes cibles
Al3 A7 A9 A8 Al5 Al2 A6

Staphylococcus aureus ATCC 6538 20 10 10 20 15 13 12

Bacillus cereus ATCC25921 17 10 10 17 15 11 8
Bacillus subtilis ATCC6633 175 10 9 22.5 17 12 7
Escherichia coli ATCC8739 0 0 0 0 0 0 0
_ ) IBMC
Klebsiella pneumoniae 0 0 0 0 0 0 0
Strashourg
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1V.4. Fermentation et d'extraction des substances actives

Au terme de la période d’incubation, les cultures des différents isolats ont présenté des
modifications macroscopiques notables, témoignant du bon déroulement du processus de
fermentation. Une formation de pellets et une agrégation cellulaire dense ont été observées. De
plus, un changement marqué de la couleur du milieu de culture a été constaté selon 1’isolat
(Yadav et al., 2024) certains milieux ont viré au noir, d’autres ont pris des teintes vertes ou
brunatres (Figure 27). Ces variations chromatiques sont genéralement associées a la production
de pigments diffusibles et de métabolites secondaires spécifiques a chaque souche (Selim et al.,
2021)

Figure 27 : Résultats visuels de la fermentation des isolats

Les différences de couleurs observées entre les milieux traduisent la diversité des
métabolites secondaires produits par les isolats. Les teintes noires ou brunes indiquent souvent
la formation de mélanines (Tang et al., 2025). Le milieu 5294 a été choisi en raison de sa
richesse nutritive favorable a la production de métabolites secondaires. Il contient des sources
azotées complexes (extrait de levure, peptone, corn steep liquor) fournissant les éléments
essentiels a la biosynthése des métabolites. La présence de CaCOs contribue au maintien du pH,

condition indispensable pour une production optimale d’antibiotiques (Pan et al., 2019).
IV.5. Criblage secondaire de I’activité antimicrobienne

Apres Dextraction des métabolites secondaires a partir du milieu liquide, 1’extrait
méthanolique obtenu a été testé afin de réaliser le criblage secondaire de Dactivité
antimicrobienne par la méthode de diffusion sur puits contre les différents micro-
organismes cibles. Les résultats obtenus ne correspondaient pas aux attentes, car
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I’extrait a présenté des zones d’inhibition trés faibles, généralement inférieures a 10
mm. Ces observations indiquent une faible activit¢ antimicrobienne de I’extrait issu

du milieu liquide (Figure 28).

Figure 28 : Criblage secondaire de I’activité antimicrobienne de la phase liquide et du
méthanol (contrble négatif), ainsi que de I’extrait de la souche A8 obtenu a partir de
I’extraction en milieu liquide, testés contre:

(A) Bacillus subtilis ATCC 6633 (B) Bacillus cereus ATCC25921
(C) Bacillus cereus ATCC25921
La faible activité antimicrobienne observée pourrait étre liee a plusieurs facteurs. En

premier lieu, une dégradation partielle de certains composés bioactifs pourrait étre produite au
cours du processus d’extraction, entrainant une diminution de leur stabilité et de leur pouvoir
inhibiteur. Il est également possible qu’une partie des métabolites intracellulaires ait été
éliminée lors de la phase de filtration, destinée a séparer la biomasse du surnageant. Cette étape
pourrait avoir conduit a la perte de composés intracellulaires présentant une activité
complémentaire a celle des métabolites extracellulaires, alors que I’effet antimicrobien global

résulte souvent d’une synergie entre ces deux fractions (Barar et al., 2025).

En second lieu, la faible concentration des métabolites actifs dans le milieu liquide
pourrait également expliquer les zones d’inhibition réduites observées. Cette limitation peut
étre attribuée aux conditions de culture, notamment au type de milieu utilisé, qui influence
directement la production, la composition et la nature des metabolites secondaires synthétisés
par les actinobactéries (RIZKY et al., 2025)

L’extraction des métabolites secondaires a partir du milieu solide a permis d’obtenir des

extraits présentant une activité antimicrobienne nettement plus marquée. Les zones d’inhibition
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enregistrées étaient significativement plus importantes, atteignant jusqu’a 40 mm selon les
isolats testés et micro-organisme ciblé. Le Tableau 10 montre les résultats du criblage
secondaire. Ces résultats indiquent une production accrue et une meilleure concentration des

composés bioactifs dans les conditions de culture en milieu solide.

Figure 29 : Mise en évidence de I’activité antimicrobienne de I’extrait en utilisant la
méthode de diffusion en puits sur milieu MHA aprés 24H d’incubation contre :

(A) Bacillus subtilis ATCC 6633 (B) Bacillus cereus ATCC25921

(C) Staphylococcus aureus ATCC 6538 (D) Escherichia coli ATCC8739
(E) Klebsiella pneumoniae IBMC Strasbourg (F) Bacillus cereus ATCC25921

Ces observations montrent que le milieu solide conduit généralement a des
concentrations plus élevées de métabolites antimicrobiens et a une activité
biologique plus marquée que celles obtenues en milieu liquide (Waithaka et al.,
2019). Cela confirme qu’il s’agit d’une condition favorable pour maximiser Ila

production et I’efficacité des métabolites secondaires d’origine actinobactérienne.
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Tableau 10 : Résultats du criblage secondaire des extraits produits par les isolats a I’aide de la
méthode de diffusion en puits et méthode de disque

Les micro-organismes cibles Zone d’inhibition en (mm)
A8 Al3
Staphylococcus aureus ATCC 6538 25 33
>
€ Bacillus cereus ATCC25921 25 41
£
IS
o
o
% Bacillus subtilis ATCC6633 27 26
g
o0
L Escherichia coli ATCC8739 0 0
IS
(@]
2
§  Klebsiella pneumoniae IBMC 0 0
O
@ Strasbourg
o
<
0
L
> Candida albicans 22 27
-
Phytophthora infestans 24 31
S
c
2
o
£ Rhizoctonia 20 21
=
@)
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Les extraits issus des souches A8 et A13 présentent une activité variable
selon la nature du micro-organisme cible. Les deux extraits se sont révéles efficaces
principalement contre les bactéries a Gram positif (Staphylococcus aureus, Bacillus
cereus et Bacillus subtilis), avec des zones d’inhibition allant de 25 a 41 mm, tandis
qu’aucune activité n’a été observée contre les bactéries a Gram négatif (Escherichia
coli et Klebsiella pneumoniae). Cette différence de sensibilité pourrait s’expliquer
par la structure particuliere de la paroi des bactéries a Gram négatif, dont la
membrane externe riche en lipopolysaccharides (LPS) limite la diffusion des
composés antimicrobiens (Paracini et al., 2022). En revanche, la paroi plus
perméable des bactéries a Gram positif facilite 1’action des métabolites produits.
Notamment, isolat A13 a montré une activité plus marquée, suggérant une

production plus élevée ou plus puissante de métabolites antibactériens.

Résultats du criblage secondaire des extraits
produits par les isolats a I'aide de |la méthode de
diffusion en puits

A8 A13

EMEc WBs mS53 WEC WKp

Figure 30 : Résultats du criblage secondaire d'activité antibactérienne d’extrait de 1’isolat
A8 et Al13
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L’absence d’activit¢ observée contre les bactéries a Gram négatif pourrait
également étre liée a leur capacité a développer divers mécanismes de résistance
face aux composés antimicrobiens. Ces micro-organismes produisent fréquemment
des enzymes capables de dégrader ou de modifier les molécules bioactives (Ruppé
et al., 2015)

Figure 31 : Criblage secondaire d'extrait d'isolat A13 par la méthode de disque contre
(A) Phytophthora infestans (b) Rhizoctonia

Actuellement, les antifongiques de nature polyénique utilisés dans le
traitement des infections fongiques, notamment des mycoses profondes, ne
présentent pas toutes les caractéristiques souhaitées d’un antibiotique idéal. En
raison de leur toxicité élevée, leur utilisation demeure limitée, malgré leur intérét
thérapeutique avéré. Ainsi, la recherche de nouveaux antifongiques non toxiques et
non polyéniques s’avére essentielle afin de développer des alternatives plus slres et
plus efficaces (Cavassin et al., 2021). Dans ce contexte, les extraits issus des
souches A8 et A13 ont montré une activité antifongique notable vis-a-vis des
champignons testés. En effet, les deux extraits se sont révélés efficaces contre
Candida albicans, Phytophthora infestans et Rhizoctonia sp., avec des zones
d’inhibition comprises entre 20 et 31 mm. Ces résultats suggérent que les
métabolites produits par ces souches possédent des composés bioactifs prometteurs,
susceptibles de constituer une nouvelle source d’antifongiques naturels présentant

une toxicité réduite. L’efficacité observée, variable selon les espéces fongiques,
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pourrait étre attribuée a la composition chimique spécifique des extraits ou a la

différence de sensibilité des microorganismes cibles.(Singh et al., 2016)

Résultats du criblage secondaire des extraits
produits par les isolats a I'aide de la méthode de

disque
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Figure 32 : Résultats du criblage secondaire d'activité antifongique d'extrait de l'isolat A8 et
Al3
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Conclusion

Le présent travail s’inscrit dans le cadre de la recherche de nouvelles
sources naturelles de biomolécules a activité antimicrobienne. Dans cette optique,
I’étude a porté sur [I'isolement et [’évaluation du potentiel antimicrobien
d’actinomyceétes issus de divers types de sols de 1’Ouest algérien, une région

reconnue pour sa richesse écologique et sa diversité édaphique.

L’analyse des échantillons prélevés dans quatre zones géographiques
distinctes : Djbarat (Saida), Bougtob (EI Bayadh), la rhizosphére d’acacia
(Tindouf) et le sol marin de Kristel (Oran) a permis d’obtenir 38 isolats
d’actinobactéries présentant des morphologies typiques du genre Streptomyces.
Ces isolats se distinguent par la présence de mycélium aérien et de substrat, une
pigmentation variable, et une croissance adaptée a différents milieux sélectifs,

confirmant leur appartenance au groupe des actinomyceétes filamenteux.

Le criblage primaire, effectué par la méthode du cylindre d’agar, a mis en
évidence la capacité antimicrobienne de sept isolats parmi les 38 testés. Ce
résultat témoigne de la speécificité métabolique de certaines souches, dont la
biosynthése de métabolites secondaires est influencée par les conditions
environnementales et la composition du sol. Ces sept isolats ont ensuite été
sélectionnés pour une fermentation a plus grande échelle en erlenmeyers de 500
mL, permettant la production et [’extraction des métabolites secondaires a partir

des fractions liquide et solide.

Les tests de criblage secondaire, réalisés par les méthodes de diffusion sur
disque et sur puits, ont permis de mesurer I’efficacité¢ des extraits bruts contre un
large spectre de microorganismes de référence. Les résultats ont révélé que deux
isolats, désignés A8 et Al3, se distinguent par des zones d’inhibition
particuliérement importantes, atteignant jusqu’a 41 mm contre Bacillus cereus
ATCC 25921, 33 mm contre Staphylococcus aureus ATCC 6538 et 27 mm contre
Bacillus subtilis ATCC 6633.

De plus, une activité antifongigue marquée a été observée, notamment
contre Phytophthora infestans (31 mm), Candida albicans (27 mm) et
Rhizoctonia (21 mm). Ces valeurs traduisent un potentiel biosynthétique éleve et

62|Page



Partie V. Conclusion et perspectives

la capacitt de ces souches a produire des composés antifongiques et
antibactériens efficaces.

Ces observations confirment que les sols algériens, notamment ceux des
zones semi-arides et marines, constituent un réservoir microbiologique encore peu
exploité mais prometteur pour la découverte de nouvelles molécules bioactives.
Les souches A8 et Al3, par leur profil antimicrobien élargi, pourraient appartenir
a des especes rares ou nouvelles d’actinomycétes, capables de synthétiser des

métabolites d’intérét pharmaceutique et biotechnologique.

L’ensemble de ces résultats souligne I’importance d’explorer systématiquement les
écosystemes locaux et extrémes pour enrichir la biodiversité microbienne exploitée en
biotechnologie. Ce travail contribue ainsi a la valorisation du patrimoine microbien algérien,
tout en apportant une base expérimentale solide pour la recherche de nouveaux agents

antimicrobiens naturels.
Perspectives

Le travail réalisé constitue une premiere étape dans la recherche de nouvelles
sources naturelles de biomolécules a activité antimicrobienne. Les résultats
obtenus ouvrent plusieurs perspectives de recherche complémentaires qui seront
approfondies dans le cadre de la bourse que j’ai obtenue pour poursuivre mes

travaux de recherche au Instituto Politécnico de Braganca (IPB) au Portugal:

» ldentification moléculaire précise des souches actives (A8 et A13) par
séquencage du geéne 16S rRNA et analyse phylogénétique, afin de
déterminer leur position taxonomique exacte et d’évaluer leur originalité
génétique.

» Purification et caractérisation structurale des composés bioactifs par
chromatographie (CCM, HPLC, CPG) et spectrométrie (UV, IR, RMN,
MS) afin d’¢lucider leur nature chimique et leur structure moléculaire.

> Evaluation d’autres activités biologiques potenticlles des extraits purifiés,
notamment les effets antioxydants, cytotoxiques, antitumoraux ou
immunomodulateurs, dans une approche multidisciplinaire.

» Exploration du génome et des clusters biosynthétiques responsables de la
production de ces meétabolites, a travers des approches de génomique et de

métabolomique comparatives.
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VI1.1. Milieux de cultures
VI1.1.1. Composition de milieu de culture
VII1.1.1.1. Milieux d’identification des actinobacteries
Milieu GYM - Yeast — Malt extract Agar
Glucose : 4,0 g
Extrait de levure : 4,0 ¢
Extrait de malt: 10,0 g
CaCOs:20¢g
Agar:20,0g Eau distillée : 1000 ml
Ajuster le pH a 7,2 avant ’ajout de 1’agar
Milieu SCA - Starch Casein Agar
Amidon soluble : 10,0 g
Caséine (hydrolysat) : 0,3 g
NaCl: 2,09
KNO;:2,0g
K:HPO.4:2,0 g
MgS0O4-7H.0 : 0,05 g
CaC05:0,02 g
FeS04-7H:0: 0,01 g
Agar : 20,0 ¢ Eau distillée : 1000 ml
Ajuster le pH a 7,0 avant stérilisation.
ISP2 — International Streptomyces Project
Glucose : 4 g
Extrait de levure : 4 g Ajuster le pH a 7,2 avant stérilisation.
Extrait de malt: 10 g

Agar : 20 g. Eau distillée : 1000 ml
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Eau physiologique :

Fau distillée...... 1000 ml

Autoclavage 20 min a 120 °C

VI11.1.1.2. Milieux utilisés pour I’activité antimicrobienne
Milieu Mueller Hinton
Infusion de viande de beeuf : 300,0 ml,
Peptone de caséine : 17,5 g
amidon: 1,5 g
Agar :17,0g pH: 7,4
Milieu Sabouraud
Peptone:10g;
Glucose : 40g ;
Agar : 15¢ Eau distillée : 2000ml
VI11.1.1.3. Milieux De Production d’antibiotiques
Milieu 5294
Composition (g/1).
Starch (soluble): 10,0
Yeast extract: 2,0
Glucose :10,0
Glycerol: 10,0
Corn steep liquor: 2,5
Peptone: 2,0

NaCl : 1,0.
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Milieu ISP2
Glucose: 4 g
Extrait de levure: 4 g;
Extrait de malt: 10 g
Eau distillée: 1000ml pH: 7,2
VI1.1.1.4. Milieu Pour Les Champignons
Milieu PDA
Filtrat de pomme de terre: 500 ml
glucose: 20 g
agar: 20 g
Eau distillée: 500 ml. pH : 5,6.

Le filtrat est préparé en mettant a bouillir 200 a 250 g de pomme de terre

épluchée dans 500 ml d’eau distillée.
Milieu Sabouraud
Peptone:10g
Glucose : 409
Agar : 15¢ Eau distillée : 1000ml
VI1.1.2. Les colorants de coloration de gram :
Lugol :
lode : 1g ; lode de potassium : 2g ; Eau distillée : 300 ml.
Violet de gentian:
Violet de gentiane : 1g ; Ethanol a 90 : 10g Violet de gentian : 1g
Fuchsine:
Fuchsine basique : 02g ; Acide phénique : 10g ; Alcool absolu : 20ml.
Phénol : 2g

Eau distillée
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Echantillon Site de prélevement Type de sol pH
SB Bougtob, Elbayadh Sol de sebkha 6.06

RZ Djebarat, Saida Sol rhizosphérique 6
SMk Kristal, Oran Sol de Sédiments 7.88
TA Tindouf Sol rhizosphérique 5.33

VI11.3. Nombre des isolats par apport le type d'échantillon de sol

Echantillon Site de prélevement Type de sol Nombre d'isolats
SB Bougtob, Elbayadh Sol de sebkha 4
RZ Djebarat, Saida Sol rhizosphérique 16
SMk Kristal, Oran Sol de Sédiments 2
TA Tindouf Sol rhizosphérique 16
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VI1.4. Résultats du criblage primaire de I’activité antimicrobienne

Zone d’inhibition en mm
Les micro-organismes cibles
Al3 | A7 | A9 A8 Al5 | A12 | A6
«» | Staphylococcus aureus ATCC 6538 20 | 10 10 20 15 13 12
=
2
e
g
o Bacillus cereus ATCC25921 17 | 10 10 17 15 11 8
()
3}
3
0
Bacillus subtilis ATCC6633 175 | 10 9 22.5 17 12 7
(5]
=
;!‘.;, Escherichia coli ATCC8739 0 0 0 0 0 0 0
c
=
o
O
2
i
8 _ _ IBMC
Klebsiella pneumoniae 0 0 0 0 0 0 0
Strasbourg
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VI1.5. Résultats du criblage secondaire de ’activité antimicrobienne

Les micro-organismes cibles

Zone d’inhibition en (mm)

A8 Al3
Staphylococcus aureus ATCC 6538 25 33
(5]
=
é Bacillus cereus ATCC25921 25 41
£
o
O
2
% Bacillus subtilis ATCC6633 27 26
s}
o | Escherichia coli ATCC8739 0 0
g
N
<
£ | Klebsiella pneumoniae IBMC 0 0
o
@ Strasbourg
3}
3
o0
o | Candida albicans 22 27
3
|
Phytophthora infestans 24 31
[
2
2
o . .
£ | Rhizoctonia 20 21
&
&)
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