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Résumé 

Dans ce travail nous avons étudié les propriétés structurales, électroniques et 

magnétiques du composé binaire RbN dans la structure (CsCl) par la méthode des ondes 

planes augmentées linéarisé avec potentiel complet (FP-LAPW) qui se base sur la théorie 

de la fonctionnelle de la densité (DFT) en utilisant le code de WIEN2K. Nous avons utilisé 

l'approximation du gradient généralisé (GGA-PBE) pour le terme du potentiel d'échange et 

de corrélation (XC). Les propriétés étudies montrent que RbN est un demi-métal 

ferromagnétique avec une polarisation de 100% au niveau de Fermi, et de moment 

magnétique total égale à 2 μB. Ce composé est de bon candidat pour les applications 

spintroniques. 

 

Mots clés : spin, magnétisme, spintronique, HMF, FP-LAPW, Wien2k, DFT, GGA-PBE. 
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Abstract  

In this work we studied the structural, electronic and magnetic properties of the 

binary compound RbN in the (CsCl) structure. by the full potential-linearized augmented 

plane wave method (FP-LAPW) which is based on density functional theory (DFT) using 

the WIEN2K code. We used the generalized gradient approximation (GGA-PBE) for the 

term exchange and correlation potential (XC). The properties studied show that RbN is a 

ferromagnetic half-metal with a polarization of 100% at Fermi level, and with a total 

magnetic moment of 2 μB. This compound is a good candidate for spintronics applications. 

 

Keywords: half-metal, ferromagnetism, DFT, FP-LAPW, WIEN2k. 
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Introduction générale 

Jusqu’à la fin du siècle précédent, les dispositifs électroniques étaient basés 

seulement sur l’électronique usuelle. L’utilisation du spin de l’électron a permis de 

découvrir une nouvelle technologie appelée la spintronique. Cette dernière est utilisée 

pour le stockage de l’information et la création de composants à courant de spin non 

dissipatif donc des dispositifs caractérisés par une faible consommation. 

Parmi les difficultés inhérentes à cette découverte c’est la recherche de matériaux 

qui sont porteurs de cette technologie. C'est-à-dire des matériaux qui sont magnétiques et 

qu’on peut utiliser en électronique. Ceci ouvre directement la voix aux matériaux semi-

conducteurs et aux métaux. Parmi les matériaux utilisés au début de cette technologie, on 

trouve les semi-conducteurs II-VI et III-V dilués (DMS) [01] et beaucoup plus les 

matériaux demi-métalliques ferromagnétiques (HMF pour Half Metallic Ferromagnetic). 

Ces matériaux sont caractérisés par un double comportement selon les deux types spins up 

ou down (c’est à-dire un comportement métallique dans un sens de spin et semi-

conducteur ou isolant pour l’autre sens de spin). 

 

   Les études initiales sur les HMF ont été effectuées sur les demi-Heusler NiMnSb et 

PtMnSb [02]. Ensuite sur les oxydes de métaux de transition [02,03], les pnictides [04,05], 

les chalcogénures [06,07], les pérovskites [04]. Ces HMF comportent le plus souvent un 

métal de transition où le magnétisme était dû à l’implication des orbitales « d » 

partiellement remplie. Quelques années plus tard, une nouvelle classe de matériaux 

possédant les caractéristiques HMF a vu le jour [08, 09,10]. Cette nouvelle classe de 

matériaux utilise, au lieu d’un métal de transition, des éléments non transitionnels des 

colonnes IA, IIA, IVA, VA ou VIA et qui ne possèdent nullement les orbitales « d ». En 

fait le magnétisme semble exister à cause du couplage des orbitales p et s des éléments 

présents dans le composé en question et pour lesquels l’énergie de Hund est proche de 

celle des atomes de métaux de transition. 

Dans ce cadre, nous nous sommes proposé d’étudier le matériau binaire RbN où 

nous allons étudier les propriétés structurales, électroniques et magnétiques en utilisant la 

méthode FP-LAPW dans le cadre de la théorie de la fonctionnelle de la densité (DFT) et 

implémenté dans un code informatique connu sous le nom du code Wien2k. 

A travers ce qui suit, nous rappelons dans le premier chapitre les principes de base 

du magnétisme et de la spintronique. Puis dans le second chapitre, nous exposons la 
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théorie de la DFT suivi par une description détaillée du code Wien2k. Et en fin dans le 

troisième chapitre nous résumons les principaux résultats de notre étude ainsi que les 

différentes interprétations et nous terminons ce travail par nos conclusions et nos 

perspectives.        
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I.1. Introduction : 

Le magnétisme représente un ensemble de phénomènes physiques dans lesquels les 

objets exercent des forces attractives ou répulsives sur d'autres matériaux. Les courants 

électriques et les moments magnétiques des particules élémentaires fondamentales sont à 

l’origine du champ magnétique qui engendre ces forces. Tous les matériaux sont 

influencés, de manière plus ou moins complexe, par la présence d'un champ magnétique, 

et l’état magnétique d'un matériau dépend de sa température (et d'autres variables telles 

que la pression et le champ magnétique extérieur) de sorte qu'un matériau peut présenter 

différentes formes de magnétisme selon sa température. Mais de façon générale, nous 

considérons que la source principale de force magnétique est le mouvement de particules 

chargées électriquement. Les électrons dans les atomes ont un mouvement planétaire 

lorsqu'ils tournent autour du noyau, ceci contribue au comportement magnétique du 

matériau. Ainsi, chaque matériau peut répondre au champ magnétique. Cependant, la 

réaction du matériau dépend fortement de sa composition atomique et détermine si le 

matériau sera fortement magnétique ou faible. Il existe de nombreuses façons d’attirer des 

matériaux, toutes sortes de magnétismes. Ainsi, les trois types de base du magnétisme sont 

: le diamagnétisme, le paramagnétisme et le ferromagnétisme. Par ailleurs, on peut dire 

que les propriétés magnétiques des matériaux jouent un rôle important dans les machines 

et les appareils électriques comme les moteurs, les transformateurs ainsi, que dans les 

appareils modernes qui utilisent la technologie de stockage. Ils sont également utilisés 

dans les appareils téléphoniques, les télévisions et les superordinateurs. Dans ce chapitre, 

nous allons débuter par des notions sur le magnétisme, son origine et ces différentes 

formes. Ensuite, nous parlerons des différentes formes du magnétisme puis nous 

introduisons la définition des demi-métaux et nous finirons ce chapitre par des notions sur 

la spintronique et ses applications. 

I.2. Magnétisme : 

Le terme "magnétisme" désigne tous les phénomènes qui se produisent dans le 

cœur et autour des matériaux magnétiques, qu’il s’agisse d’un magnétisme naturel ou bien 

d’une zone à induction (électrique ou magnétique). De nombreuses applications du 

magnétisme, de l'informatique à la médecine, en passant par la physique des particules, 

remontent à l'Antiquité, mais ce phénomène n'a été étudié avec intérêt qu'à partir du 

XVIIIe siècle. Charles Augustine de Coulomb prouve que les forces qui s'exercent entre 

deux charges magnétiques sont inversement proportionnelles au carré de la distance qui 
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les sépare. Il est aujourd'hui reconnu que le magnétisme est un phénomène quantique dont 

les effets sont observés à l'échelle de l'œil. Au niveau de l'atome, chaque électron a un 

petit moment magnétique. Bien sûr, les électrons de moments magnétiques en conflit 

tendent à s'assembler par paires. À l'échelle microscopique, l'aimant est nul. Cependant, si 

les électrons eux-mêmes se retrouvent sans partenaires, leurs moments magnétiques 

augmentent. Ils produisent alors une aimantation universelle de la matière. Les métaux de 

transition (fer, nickel, etc.) et les terres rares sont les seuls éléments porteurs de ce 

moment magnétique, et on peut dire que la rotation de l'électron sur son orbite génère un 

moment magnétique perpendiculaire à l'orbite, L’intensité de ce moment magnétique est 

mesurée par le nombre quantique magnétique ml [11]. De même, la rotation (spin) de 

l’électron sur lui-même engendre également un moment magnétique qui est quantifié par 

le nombre magnétique de spin ms et qui peut prendre deux valeurs (+
1

2
  et−

1

2
), (Figure 

I.1). 

Tel que : 

Pour ms = +
1

2
 , le moment magnétique est parallèle au champ magnétique, et pour    

 ms = −
1

2
, le moment magnétique est orienté dans une direction opposée à celle du champ 

magnétique. 

 

 

 

 

 

 

 

 

 

 

 

 + 

Noyau 

Électron 

Moment 

magnétique 

Électron 

Moment 

magnétique 

 

Figure I.1 : Le moment magnétique associé : a) avec un électron en orbite 

 b) un électron en rotation 

Direction de 
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(a) (b) 
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L’application d’un champ magnétique externe H⃗⃗  sur un matériau fait l’interagir 

avec les champs magnétiques électroniques, produisant dans ce matériau un champ 

d’induction magnétique B⃗⃗  et d’intensité proportionnelle à H⃗⃗  

B⃗⃗  =  μ · H⃗⃗                                                                                                                          (I.1)  

Où μ est une constante de proportionnalité appelée la perméabilité magnétique du 

matériau considéré. 

Ainsi, En l’absence de matière, la valeur de l’induction magnétique B0
⃗⃗⃗⃗  est donnée par : 

B0
⃗⃗⃗⃗ = μ0. H⃗⃗                                                              (I.2) 

Où : μ0  est la perméabilité magnétique du vide. 

On définit, le vecteur aimantation M⃗⃗⃗   tel que : 

M⃗⃗⃗ =  χr. H⃗⃗                                                                        (I.3) 

Où : χr est la susceptibilité magnétique relative du matériau considéré. 

L’aimantation représente le champ magnétique local induit par le champ 

magnétique externe H⃗⃗  ⃗.Le vecteur aimantation M⃗⃗⃗  est directement proportionnel à H⃗⃗  et on 

peut écrire : 

B⃗⃗  =  μ0. H⃗⃗  (1 + χr)                                                  (I.4) 

D’où la relation :  

μ =  μ0(1 + χr)                                                  (I.5) 

On définit la perméabilité magnétique relative : 

μr =
μ

μ0
                                                              (I.6)  

Donc : 

μr  =  1 + χr                                                  (I.7) 
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Ainsi, on peut distinguer les phases suivantes : 

μr  ≤  1 (Ou χr ≤ 0) Le matériau est diamagnétique. 

μr  ≥  1  (Ou χr ≥ 0) Le matériau est paramagnétique. 

μr  >>  1 (Ou χr >> 0) Le matériau est ferromagnétique. 

 

I.3. Les différentes formes du magnétisme : 

Comme on vient de le voir rapidement dans le paragraphe précédent, il existe 

plusieurs formes de magnétisme. En fonction de la valeur deχr, on peut dire qu’il existe 

cinq formes magnétiques différentes [12,13]:  

   I.3. A. Le Diamagnétisme  

Dans ce cas, on peut dire que les matériaux magnétiques sont des substances qui 

n'ont pas de moments magnétiques en l'absence d'un champ magnétique appliqué. 

Lorsqu’on applique un champ magnétique extérieur, ces matériaux acquièrent une 

polarisation magnétique dans la direction opposée à celle du champ appliqué.  

 Une autre explication suppose que l'origine de ce phénomène provient de la 

distorsion des orbites atomiques et elle peut être décrite par l'application de la loi de Lenz. 

Par conséquent, un tel matériau est caractérisé par une susceptibilité magnétique négative 

[14]. 

   I.3. B. Le Paramagnétisme  

Dans les solides paramagnétiques et en absence d’un champ magnétique externe, 

les atomes possèdent des moments magnétiques permanents, orientés aléatoirement et 

donnant une aimantation nulle, qui est le moment magnétique par unité de volume. 

Lorsqu’on applique un champ magnétique externe, les moments s’orienteront suivant ce 

champ et il en résulte une aimantation non nulle, et donc une susceptibilité positive. Ce 

phénomène se rencontre dans les atomes, les molécules et les défauts cristallins possédant 

un nombre impair d’électrons, les atomes et les ions avec une couche interne incomplète : 

l’aluminium, le manganèse et le tungstène sont des exemples de matériaux 

paramagnétiques [15,16]. 

Le paramagnétisme est une propriété qui n'est pas intrinsèque à un matériau, mais 

c’est une réponse à l’application d’un champ magnétique. C’est un comportement qui 
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dépend de la température, par exemple la matière perd son aimantation permanente au-

dessus d'une certaine température critique appelée la température de Curie. La 

susceptibilité magnétique χ
r
 de ces matériaux est comprise entre 10−6 et 10−3 et diminue 

avec la température T selon la loi de Curie : 

χr  =
C

T
                                                                             (I.8) 

𝐶 : est une constante parfois appelée constante de Curie. 

   I.3. C. Le Ferromagnétisme : 

Dans ce type de matériau, tous les moments magnétiques sont orientés 

parallèlement. Il existe alors une aimantation spontanée même en l’absence d’un champ 

magnétique appliqué. La plupart des solides ferromagnétiques sont des métaux tels que les 

métaux de transition (Co, Fe, Ni) et leurs alliages. Les éléments de transition sont les 

éléments de la classification périodique qui possèdent des orbitales d partiellement 

occupées par des électrons (figure I.2). Le premier corps ferromagnétique connu est la 

magnétite (roche qui a la propriété d’attirer les métaux) [17,18]. 

 

 

Figure I.2 : Classification périodique des éléments, les orbitales d des éléments de transition sont 

à l’origine des propriétés magnétiques, électriques et optiques de ces éléments et de leurs 

composés. 
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   I.3. D. L’antiferromagnétisme : 

Grâce à ce que nous avons déjà étudié, il est possible de dire que dans les 

matériaux antiferromagnétiques, l’interaction d’échange est telle que ces matériaux se 

décomposent en deux sous-réseaux ferromagnétiques de sens opposé. La susceptibilité 

magnétique de ces matériaux est positive mais généralement plus faible que celle des 

matériaux ferromagnétiques. De manière similaire aux ces derniers, pour des températures 

supérieures à une température critique, appelée température de Néel θN, ces matériaux se 

comportent comme des paramagnétiques. Si le couplage des spins d'électrons aboutit à un 

alignement antiparallèle, les spins s'annuleront et aucun moment magnétique se produira. 

C'est ce qu'on appelle l’antiferromagnétisme [19]. 

   I.3. E. Le ferrimagnétisme : 

Nous remarquons que les moments magnétiques des atomes ne sont égaux et ils 

sont alignés de manière antiparallèle, donc le moment magnétique total dans un sens est 

supérieur à celui de l’autre sens, alors le moment magnétique total du matériau n’est pas 

nul. La susceptibilité magnétique reste élevée jusqu’à la température de Néel θN [20]. 

Pour chaque cas que nous avons vus précédemment, il y a une représentation des 

directions des dipôles, ce que nous allons donner dans la figure ci-dessous : 

 

 

Figure I. 3 : Représentation des dipôles magnétiques dans un cristal paramagnétique, 

ferromagnétique, antiferromagnétique et ferrimagnétique. 

1- Paramagnétique 3- Antiferromagnétique 

2- Ferromagnétique 4- Ferrimagnétique 
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I.4. La température de Curie : 

La température de Curie est la température au-dessus de laquelle les matériaux 

ferromagnétiques n’ont plus de champ magnétique autour d’eux. Au-delà de cette 

température, le matériau est paramagnétique. Lorsque la température monte, la fluctuation 

de température provoque une rupture progressive de l’ordre de spin. Arrivé à la 

température de Curie, l’ordre s’effondre complètement parce que l’énergie thermique est 

devenue plus importante que l’énergie de l’interaction magnétique. Il est difficile de 

mesurer exactement la température de Curie, a cause, premièrement, le champ magnétique 

permanent qui se trouve autour du matériau ne disparaît que progressivement. 

Deuxièmement, la température de Curie dépend fortement des petites impuretés dans le 

matériau. Par exemple, lorsqu’un aimant AlNiCo est réchauffé au-dessus de la température 

de Curie de 850°C, il n’est plus ferromagnétique, il devient alors paramagnétique. Lorsque 

l’aimant se refroidit, le champ magnétique ne revient pas. Même si un champ magnétique 

réapparaît dans des petites parties du matériau, appelé les domaines de Weiss (Weiss 

1865-1904), ces domaines indiquent des directions au hasard, et aucun champ magnétique 

externe n'est engendré. Il est cependant possible de démagnétiser l'aimant. 

Dans le tableau ci-dessous, on donne la température de Curie de quelques éléments 

et quelques alliages ferromagnétiques :        

Matériau Température de Curie 

Fe 770°C 

Co 1115°C 

Ni 354°C 

Gd 19°C 

AlNiCo 850°C 

Ferriet 450°C 

Sm Kobalt 750-825°C 

Nd-Fe-B 310-340°C 

 

Tableau I. 1 : Représentation des éléments et alliages ferromagnétiques avec leurs températures 

de Curie. 
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I.5. Le cycle d’hystérésis : 

L’aimantation du matériau ferromagnétique en fonction du champ magnétique 

extérieur appliqué présente un cycle d'hystérésis (figure I.5). L’hystérésis est le cœur du 

comportement ferromagnétique. Toutes les applications de moteurs électriques, de 

transformateurs, de l’enregistrement magnétique reposent massivement sur l’aspect 

particulier de l’hystérésis. En plus de ça, selon la forme du cycle d’hystérésis, il existe 

deux types de matériaux ferromagnétiques, matériaux doux (soft matériels) caractérisés 

par un cycle d’hystérésis étroit donc un faible champ coercitif, et matériaux durs (hard 

matériels) dont le cycle d’hystérésis est étendu et le champ coercitif grand. 

I.6. La coercivité : 

Le champ coercitif Hc est défini comme le champ magnétique nécessaire pour 

annuler l’aimantation (figure I.4), ou en d’autres termes, c’est le champ qui réduit 

l’aimantation de la rémanence vers zéro. La coercivité est une propriété extrinsèque. Elle 

est fortement influencée par les propriétés microstructurales de la couche telles que la 

taille et la forme des grains, la composition et la texture. Ces propriétés sont directement 

liées aux conditions de préparation. 

 

 

 

 

 

 

 

 

 

 

Figure I. 4 : Courbe d'hystérésis typique de l'aimantation M en fonction du champ magnétique H 

avec la définition des principales grandeurs la caractérisant : saturation rémanente (Mrs) et le 

champ coercitif (Hc). 

Mh 

Hc 

Mrs 

H 
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I.7. Matériaux magnétiques doux : 

Les matériaux ferromagnétiques doux forment un sous-groupe des matériaux 

ferromagnétiques, ce qui signifie qu’ils sont capables de s'aimanter lorsqu'ils sont soumis 

à un champ magnétique extérieur. La particularité des matériaux ferromagnétiques doux 

est que l'action de créer ou d’annuler l’aimantation dans le matériau nécessite moins 

d'énergie que pour les matériaux ferromagnétiques durs. Ils possèdent un champ coercitif 

très faible avec une très forte susceptibilité qui permet d'obtenir une forte induction à 

partir d'un faible champ extérieur. En plus de la coercivité faible, la perméabilité et la 

saturation sont faibles pour les matériaux ferromagnétiques doux. Les ferromagnétiques 

doux sont utilisés dans les transformateurs, électro-aimant, moteurs et les circuits de 

commutation … etc. 

I.8. Matériaux magnétiques durs : 

Ce type des matériaux ferromagnétiques possèdent une aimantation naturelle 

présente en absence de champ magnétique extérieur, ainsi qu'un champ coercitif et        

une rémanence élevée. Comme pour les autres matériaux ferromagnétiques, les 

ferromagnétiques durs ont la particularité de s’aimanter fortement en présence d’un champ 

magnétique extérieur. En termes de comportement d'hystérésis, un matériau magnétique 

dur a une densité de flux de saturation élevé, ainsi qu'une faible perméabilité initiale et des 

pertes d'énergie d'hystérésis élevées. Les ferromagnétiques durs sont utilisés dans les 

supports d'enregistrement, moteurs de petite taille, mini-pompes, etc. 

I.9. Les demi-métaux : 

   I.9.1 Définition d’un demi-métal : 

La première apparition du terme « demi-métal » date du début des années 1980 (de 

Groot et al. 1983). Dans un demi-métal, d’après de Groot, seuls les électrons d’une 

orientation de spin donnée (« up » ou « down ») sont métalliques, tandis que les électrons 

de l’autre orientation de spin ont un comportement isolant [21]. Autrement dit, les demi-

métaux ont une polarisation en spin de 100 % au niveau de Fermi puisque ne contribuent à 

la conduction que soit des électrons de spin « up » soit des électrons de spin « down » 

(Figure I.5). 
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Figure I. 5 : représentation schématique des densités d’états et polarisation en spin d’un métal non 

ferromagnétique (A), d’un matériau ferromagnétique (B) et d’un matériau demi métallique (C). 

 

 

 

On observe que pour un matériau demi métallique le niveau de Fermi passe par un 

gap d’énergie pour une direction de spin et par une bande d’énergie pour l’autre direction. 

Les demi-métaux ne doivent pas être confondus avec les ferromagnétiques forts 

comme le Co ou le Ni. En effet, les bandes 3d du Co ou Ni sont bien polarisées en spin à 

100% mais les bandes 4s, qui se trouvent au niveau de Fermi, ne sont pas polarisées. Des 

électrons « up » ou « down » sont donc présents au niveau de Fermi. Pour obtenir un 

demi-métal, il faut alors une hybridation des bandes 3d et 4s pour que le niveau de Fermi 

ne se trouve plus dans la bande 4s. C’est pour cela qu’aucun matériau constitué d’un seul 

atome n’est demi métallique [22,23]. 

   I.9.2 Quelques exemples de demi-métaux : 

 

Tableau I.2 : quelques exemples de demi-métaux avec leur structure, leur polarisation en spin 

mesurée, leur aimantation à saturation et leur température de Curie. 
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I.10. L’électronique de spin ou spintronique : 

   I.10.1. Définition : 

L’électronique de spin est née en 1988, année de découverte de la 

magnétorésistance géante par les équipes d’Albert Fert [24,25] en France et Peter 

Grunberg [26] en Allemagne, et pour laquelle le prix Nobel de physique 2007 leur a été 

attribué. Il est important de revenir sur cette découverte qui a été la première utilisation de 

la polarisation en spin des électrons dans le cadre de l’électronique, c’est-à-dire du 

transport de charge. Le concept général de la spintronique est de placer des matériaux 

ferromagnétiques sur le trajet des électrons et d’utiliser l’influence du spin sur la mobilité 

des électrons dans ces matériaux. Cette influence d’abord suggérée par Mott en 1936, a été 

ensuite démontrée expérimentalement et décrite théoriquement à la des années. 

   I.10.2. Les applications de la spintronique : 

     I.10.2.a. La magnétorésistance géante (Giant Magneto-Resistance ou 

GMR) : 

La magnétorésistance géante (GMR) est un phénomène apparait dans les systèmes 

des couches ultra minces de fer séparées par un métal non ferromagnétique. Ce 

phénomène est un changement significatif de la résistance électrique basé sur la 

dépendance de la dispersion électronique dans la direction de spin [27]. 

Cette découverte a entraîné un bouleversement technologique majeur dans le 

secteur de la microinformatique. Le développement de nouvelles architectures de têtes de 

lecture de disque dur basées sur ce principe ont permis d'accroitre la densité des disques 

durs des ordinateurs dont les capacités ont augmenté de manière immense passant de 

quelques Gigaoctets au début des années 1990 aux capacités actuelles pouvant atteindre le 

Téraoctet. D'autres applications ont également vu le jour. 

     I.10.2.b. Magnétorésistance Tunnel (TMR) : 

La TMR peut être observé dans les systèmes Ferro/Isolant/Ferro. Elle se manifeste 

comme une variation de résistance électrique, d’un courant traversant l’isolant par effet 

tunnel, en fonction de la configuration de matériaux ferromagnétiques. La conduction 

purement quantique entre les deux matériaux ferromagnétiques implique que la TMR est 

liée à la différence d’états disponibles pour les spins up et pour les spins down, de part et 

d’autre de la barrière [28]. 
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     I.10.2.c. MRAM (Magnetic Random Acces Memory): 

Le MRAM (mémoire aléatoire des appels) c’est une application de la 

magnétorésistance géante et la magnétorésistance tunnel. Elle est devenue de plus en plus 

intéressante. En fait, le MRAM est pour remplacer la mémoire vive dynamique (DRAM) 

dans la mémoire RAM des ordinateurs actuels avec des temps d'accès beaucoup plus 

courts. Contrairement aux DRAM, les informations ne sont plus stockées dans les MRAM 

sous la forme de charges électriques mais sous la forme de moments magnétiques grâce à 

la technologie de cintrage des tunnels magnétiques [29]. Ce type de mémoire n’exige pas 

que les données soient continuellement mises à jour, donc consommer beaucoup moins 

d'énergie que dans les mémoires DRAM actuelles. 

I.11. Conclusion : 

Dans cette étude, nous avons rappelé quelques notions de base sur le magnétisme 

tel que son origine et ses différentes formes originales. Nous avons également montré 

l’influence de la température sur le magnétisme notamment la température caractéristique   

de Curie.   D’un point de vue pratique, nous avons vu que le magnétisme se trouve à 

l’origine de différents comportements, en particulier les matériaux demi-métalliques. Nous 

avons mis en évidence le lien entre ce comportement et la technologie de la spintronique.  
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II.1. Introduction :        

En physique du solide, les propriétés optoélectroniques (électroniques, 

vibrationnelles, thermiques, optiques, etc.) d’un matériau peuvent être déterminées en 

résolvant l’équation de Schrödinger d’un système de N particules (corps) en interaction 

modélisant le matériau étudié. Cependant la résolution de l’équation de Schrödinger pour 

un tel système n’est possible qu’après avoir recours à quelques approximations 

fondamentales de mécanique quantique. Parmi ces approximations on trouve en premier 

l’approximation de Born-Oppenheimer qui permet de séparer le mouvement des électrons 

de celui des noyaux et ceci à cause du rapport de masse très grand entre l’électron et le 

noyau. La deuxième approximation est celle de Hartree puis celle de Hartree-Fock et qui 

considère que les électrons sont indépendants. Malheureusement, ces approximations 

peuvent être appliquées à des systèmes ne comportant qu’un nombre d’électron vraiment 

petit comme des atomes hydrogénoïdes mais pas pour des systèmes comportant un grand 

nombre de particules. C’est pour cette raison que de nouvelles théories se sont introduites 

par la suite pour prendre au sérieux ce problème de N corps. Parmi ces théories, on trouve 

la Théorie de la Fonctionnelle de la Densité. (DFT). Elle est basée sur deux aspects 

importants : le premier c’est l’utilisation de la densité électronique au lieu de la fonction 

d’onde, d’où une diminution drastique dans le nombre de variables du système à N 

particules. Le deuxième aspect consiste à réintroduire les potentiels due aux interactions 

au sein du système réel en entier, notamment les potentiels d'échanges et des corrélations 

électroniques (XC) et qui ont été négligés en adoptant les approximations précédentes 

(Born-Oppenheimer, Hartree et Hartree-Fock). Ces potentiels d’échange-corrélation 

peuvent être décrits par différentes approches. Parmi eux, on peut trouver l’approximation 

de la densité locale (Local Density Approximation, LDA) et celle du Gradient Généralisé 

(Generalized Gradient Approximation, GGA) et qui sont les plus utilisées en physique du 

solide. Dans ce qui suit, nous allons débuter ce chapitre par un rappel sur l'équation de 

Schrödinger qui permet de décrire le mouvement d'un système de N particules dans un 

potentiel V, puis nous décrivons les approximations Born-Oppenheimer puis celle de 

Hartree et Hartree-Fock. Ensuite, nous entamons la théorie de la DFT suivi par une 

description de la méthode FP-LAPW qui permet de mettre en pratique la DFT et nous 

terminons ce chapitre par une brève description du code Wien2k associé à cette méthode. 
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II.2. Équation de Schrödinger : 

               Les solides sont constitués d’un arrangement périodique de molécules ou 

d’atomes : Ces derniers comportent les noyaux lourds de charge positive et les électrons 

légers de charge négative. Le calcul des propriétés électromagnétiques de ce solide repose 

sur la résolution de l’équation de Schrödinger pour cet arrangement de particules 

(atomes): 

 

Où : H est l’opérateur Hamiltonien du système (le solide), ψ sa fonction d’onde et E 

l’énergie propre du système. Pour un système constitué de N noyaux et de n électrons, 

l’Hamiltonien H est donné par : 

 

Ht̂ = T̂e + T̂N + V̂e−e + V̂N−N + V̂e−N                                   (II. 2)                          

Tel que : 

𝑇̂𝑒 = −
1

2
∑ ∇⃗⃗ i

2n
i=1  : est l’opérateur de l’énergie cinétique des électrons.                        (II. 3) 

T̂N = −
1

2
∑ ∇⃗⃗ I

2N
I=1  : est l’opérateur de l’énergie cinétique des noyaux.                          (II. 4)  

𝑉̂𝑒−𝑒 =
1

2
∑

1

|r⃗ i−r⃗ j|

n
i≠j  : est l’opérateur de l’énergie potentielle de répulsion entre deux 

électrons (é–é).                                                                                                               (II. 5) 

V̂N−N =
1

2
∑

ZIZJ

|R⃗⃗ I−R⃗⃗ J|

N
I≠J  : est l’opérateur de l’énergie potentielle de répulsion entre deux 

noyaux (N–N).                                                                                                               (II. 6) 

𝑉̂𝑒−𝑁 = −∑ ∑
ZI

|r⃗ i−R⃗⃗ I|

n
i=1

N
I=1  : est l’opérateur de l’énergie potentielle d’attraction noyaux-

électrons (N- é).                                                                                                             (II. 7)                         

r i, rj : définissent les positions des électrons (i) et (j ), respectivement. 

RI , RJ : définissent les positions des noyaux (I) et (), respectivement. 

ZI, ZJ : sont les nombres atomiques des noyaux (k) et (l), respectivement. 

 



Chapitre II : la Théorie de le Fonctionnelle de la Densité 

 

 

33 

Nous remarquons que pour un tel système l’équation de Schrödinger est une 

équation différentielle du second d’ordre avec un potentiel complexe et qui est connu sous 

le nom de problème à N corps. Ceci rend impossible sa résolution sauf pour l’atome 

d’Hydrogène ou des atomes hydrogénoïdes. Par conséquent, des approximations sont 

nécessaires pour simplifier la forme du potentiel et permettre ainsi sa résolution. Dans le 

paragraphe suivant nous allons commencer par la première approximation, à savoir 

l’approximation de Born-Oppenheimer.   

 

II.3. Approximation de Born-Oppenheimer : 

Cette approximation suppose que les noyaux sont très lourds par rapport aux 

électrons. Le noyau est constitué des protons et des neutrons, en plus la masse du proton 

est 1836 supérieures à celle de l'électron. Born et Oppenheimer [30] néglige le mouvement 

des noyaux à celui des électrons, et on ne prend en compte que ceux des électrons dans le 

réseau rigide périodique des potentiels nucléaires. Dans le cadre de cette approximation, 

l’énergie cinétique TN des noyaux devient nulle et l’énergie potentielle noyaux–noyaux 

VN-N n’est qu’une constante. Ainsi, l'Hamiltonien total est réduit à ce qu'on appelle 

l'Hamiltonien électronique donné par : 

Hé̂ = T̂e + +V̂e−e + +V̂N−e                                                              (II. 8)            

La complexité du problème à N corps est réduite sous l’effet de cette 

approximation, mais elle demeure toujours insuffisante, d’où la nécessité d’autres 

simplification. C’est ce que nous allons voir avec l’approximation de Hartree. 

II.4. Approximation de Hartree : 

Cette approximation [31] est basée sur la notion des électrons indépendants 

[Hartree (1928)]. C’est à-dire, le système à n électrons devient un ensemble d’électrons 

indépendants, sans corrélations et sans spin, chacun se déplaçant dans le champ moyen 

créé par les noyaux et les autres électrons du système. L’Hamiltonien peut alors être écrit 

comme une somme d’Hamiltoniens mono-électronique décrivant un seul électron, ainsi : 

H=∑Hi                                                                                                                    (II.  9) 

Ĥeff
(i)

 =  −
1

2
∇⃗⃗ i

2 + 𝑉̂ext(ri⃗⃗ , R⃗⃗ ) + 𝑉̂H(ri⃗⃗ , rj⃗⃗ )                                      (II. 10) 
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 Où V̂ext(ri⃗⃗ , R⃗⃗ )  représente l’interaction attractive entre l’électron de coordonnée ri⃗⃗  et 

les noyaux de coordonnésR⃗⃗ . 

Et  V̂H(ri⃗⃗ , rj⃗⃗ ) = ∑ ∫drj⃗⃗ 
|Ψj(rj⃗⃗⃗  )|

2

|ri⃗⃗  ⃗−rj⃗⃗⃗  |

n
j     est le champ effectif de Hartree. 

             La fonction d’onde du système électronique entier, quant à elle, à la forme d’un 

produit de fonctions d’ondes mono-électroniques, soit        

  ψe(r1,r2,…,rN) = ∏ ψi (ri)                                                                                (II. 11) 

L’énergie totale E se compose de deux parties : 

 La première partie E(1) est due au mouvement d’une seule particule en interaction 

avec les noyaux du système : 

    E(1) = ∑ Eii
n
i=1                                                                        (II. 12)                             

    Eii = ∫ Ψi
∗(ri⃗⃗ )(−

1

2
∇⃗⃗ i

2 + 𝑉̂ext(ri⃗⃗ , R⃗⃗ ) )Ψi(ri⃗⃗ )dri⃗⃗                                                         (II. 13)      

 La deuxième partie E(2) de l’énergie totale inclut la contribution de deux électrons 

i et j (c’est l’énergie de Hartree) : 

E(2) =
1

2
∑ ∑ Jij

n
j≠i

n
i=1                                                  (II.14) 

Jij : est appelée l’intégrale de Coulomb. 

Jij = ∬
|Ψi(ri⃗⃗  ⃗)|

2|Ψj(rj⃗⃗⃗  )|
2

|ri⃗⃗  ⃗−rj⃗⃗⃗  |
dri⃗⃗ drj⃗⃗                                                                                        (II. 15) 

On note que dans cette approximation les électrons ne sont pas traités comme des 

fermions, c.à.d. ils sont considérés sans spin, par conséquent les solutions ne sont pas 

antisymétriques et ne vérifient pas le principe de Pauli, d'où l'approximation de Hartree-

Fock qui va prendre en considération ce problème. 

II.5. Approximation de Hartree –Fock :  

Le principe de cette approximation consiste à écrire la fonction d’onde 

multiélectronique Ψ sous la forme d’un déterminant de Slater composé de « n » fonctions 

d’onde mono électroniques 𝛹𝑖 [32]. Ainsi, La fonction d’onde totale s’écrit : 
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𝛹(𝑟 1, 𝑟 2 …𝑟 𝑛) =
1

√𝑛!
[

𝛹1(𝑟 1) 𝛹1(𝑟 2)

𝛹2(𝑟 1) 𝛹2(𝑟 2)
⋯

𝛹1(𝑟 𝑛)

𝛹2(𝑟 𝑛)
⋮ ⋱ ⋮

𝛹𝑛(𝑟 1) 𝛹𝑛(𝑟 2) ⋯ 𝛹𝑛(𝑟 𝑛)

]                                                 (II. 16) 

En introduisant cette fonction d’onde dans l’équation de Schrödinger, on obtient 

une nouvelle valeur de l’énergie qui est donnée par : 

EHF = ⟨ΨHF|Ĥ|ΨHF⟩ = ∑ εi
n
i=1 +

1

2
∑ ∑ (Jij − Kij)

n
j=1

n
i=1                                               (II. 17) 

𝜀𝑖 = ∫𝛹𝑖
∗(𝑟 ) (−

1

2
∇⃗⃗ 𝑖

2 + 𝑉̂𝑒𝑥𝑡(𝑟 ))𝛹𝑖(𝑟 )𝑑 𝑟                                                                (II.18)                  

Avec 𝜀𝑖 est l’énergie mono-électronique. 

𝐾𝑖𝑗  S’appellent les intégrales d'échange : 

𝐾𝑖𝑗 = ∫∫
𝛹𝑖

∗(𝑟𝑖⃗⃗⃗  )𝛹𝑗
∗(𝑟𝑗⃗⃗  ⃗)𝛹𝑗(𝑟𝑖⃗⃗⃗  )𝛹𝑖(𝑟𝑗⃗⃗  ⃗)

|𝑟𝑖⃗⃗⃗  −𝑟𝑗⃗⃗  ⃗|
𝑑𝑟𝑖⃗⃗ 𝑑𝑟𝑗⃗⃗                                                                   (II. 19)                                          

Nous avons les propriétés : 

 𝐽𝑖𝑗≥ 𝐾𝑖𝑗 ≥ 0 

 𝐽𝑖𝑗 = 𝐾𝑖𝑗  

Fock [32] a employé le déterminant de Slater dans sa méthode, méthode de 

Hartree-Fock (HF), et qui stipule que pour chercher les fonctions d’ondes spin-orbitales                  

mono-électroniques Ψi(ri⃗⃗ ), (orthonormées) minimisant l’énergie, on résout l’équation de 

Schrödinger en insérant ΨHF(r ) sous la forme du déterminant de Slater avec un 

Hamiltonien Ĥ comportant quatre termes d’énergie ; ainsi nous aurons : 

Pour déterminer les fonctions  Ψ𝑖(𝑟 ) , on utilise la minimisation de l’énergie avec des 

conditions de normalisation : 

∫Ψ𝑖
∗ (𝑟 )Ψ𝑗(𝑟 )𝑑𝑟 = 𝛿𝑖𝑗                                                                                                (II. 20) 

On résout l’équation de Schrödinger en insérant 𝛹𝐻𝐹(𝑟 ) sous la forme d’un déterminant 

de Slater avec un Hamiltonien  𝐻̂ tel que :  

(−
1

2
∇⃗⃗ 𝑖

2 + 𝑉̂𝑒𝑥𝑡(𝑟 ) + 𝑉̂𝐻(𝑟 ) + 𝑉̂𝑋(𝑟 ))𝛹𝐻𝐹(𝑟 ) = 𝐸𝛹𝐻𝐹(𝑟 )                                        (II. 21)     
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Où  𝑉̂𝑋(𝑟 )  est le potentiel d’échange : 

𝑉̂𝑋(𝑟 ) = ∑ ∫
𝛹𝑖

∗(𝑟𝑖⃗⃗⃗  )𝛹𝑗
∗(𝑟𝑗⃗⃗  ⃗)𝛹𝑗(𝑟𝑖⃗⃗⃗  )𝛹𝑖(𝑟𝑗⃗⃗  ⃗)

|𝑟𝑖⃗⃗⃗  −𝑟𝑗⃗⃗  ⃗|
𝑑𝑟𝑗⃗⃗ 

𝑛
𝑗                                                                         (II. 22)       

Nous remarquons que l’approche d’HF prend en considération l’échange 

électronique, mais ignore ce qu’on appelle la corrélation existante entre le mouvement 

d’un électron et ceux des autres, et qui devient considérable lorsque le nombre de 

particules devient trop important (cas d’un solide). C’est pour cette raison que de 

nouvelles théories se sont développées pour répondre de façon concrète au problème à N 

corps. Parmi ces théories, on citer la Théorie de la Fonctionnelle de la Densité (DFT : 

Density Functional theory). C’est ce que nous allons développer dans le paragraphe 

suivant. 

II.6. La Théorie de la Fonctionnelle de Densité (DFT) : 

Historiquement, les premières idées de la DFT furent introduites dans les travaux 

de Thomas [33] et Fermi [34] en 1927. Dans leur modèle, les interactions électroniques 

sont traitées classiquement et l’énergie cinétique est calculée sur la base d’une densité 

électronique homogène. D’où l’idée d’utiliser la densité électronique au lieu de la fonction 

d’onde. Autrement dit, nous allons en fait passer d’un système de (3N variables) vers un 

système N système à trois variables.    

            Dans la DFT, les états des n électrons du système sont détermines en appliquant le 

principe variationnel a une fonctionnelle, c.-a-d. Une fonction d’une autre fonction, la 

première étant l’énergie totale et la deuxième la densité électronique 𝜌(𝑟 ). Cette théorie a 

été établie, formellement, en 1964 par deux théorèmes qui furent énoncés et démontrés par 

Hohenberg et Kohn dans la référence [35] et également dans des livres plus récents dédiés 

à la DFT comme celui d’Eschrig [36] et de Parr et Yang [37]. 

   II.6 1. Théorèmes d’Hohenberg-Kohn (1964) : 

Les théorèmes de Hohenberg-Kohn (1964) [38] s’appliquent pour tout système à 

plusieurs particules en interaction évoluant dans un potentiel externe. C’est ce que nous 

allons développer dans les paragraphes suivants.  
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     II.6. 1. a. Premier théorème : 

Ce théorème montre que le potentiel externe 𝑉̂𝑒𝑥𝑡(𝑟 ),  à une constante additive 

près, est une fonctionnelle unique de la densité électronique 𝜌(𝑟 ). En d’autres termes, il 

existe une correspondance univoque entre la densité électronique de l’état fondamental ρ0 

(r) et le potentiel externe  𝑉̂𝑒𝑥𝑡(𝑟 ) et donc entre ρ(r) et la fonction d’onde de l’état 

fondamental Ψ.            

Nous savons que la densité électronique de l’état fondamental est suffisante pour 

obtenir toutes les propriétés de cet état, mais comment peut-on savoir si une densité 

quelconque est celle de l’état fondamental ? Ceci fera l’objet du deuxième théorème de 

Hohenberg et Kohn. 

     II.6. 1. b. Deuxième théorème : 

Ce théorème s’énonce comme suit : Il existe une fonctionnelle universelle 

𝐹𝐻𝐾[𝜌(𝑟 )]  exprimant l'énergie en fonction de la densité électronique 𝜌(𝑟 ) valide pour tout 

potentiel externe 𝑉̂𝑒𝑥𝑡(𝑟 ). Pour chaque  𝑉̂𝑒𝑥𝑡(𝑟 ) particulier, l'énergie de l'état fondamental 

du système est la valeur qui minimise cette fonctionnelle, la densité 𝜌(𝑟 ) qui lui est 

associée correspond à la densité ≪ exacte ≫  𝜌0(𝑟 ) de l'etat fondamental. 

En réalité, ce théorème montre que l'énergie apparait comme une fonctionnelle de la 

densité, et que pour tout potentiel extérieur, la densité qui minimise cette fonctionnelle est 

la densité exacte de l'état fondamental. 

Ainsi, la fonctionnelle de l’énergie totale E s’écrit : 

𝐸[𝜌(𝑟 )] = 𝐹𝐻𝐾[𝜌(𝑟 )] + ∫  𝑉̂𝑒𝑥𝑡(𝑟 )𝜌(𝑟 )𝑑𝑟                                                                   (II. 23) 

Avec : 

𝐹𝐻𝐾[𝜌(𝑟 )] = 𝑇[𝜌(𝑟 )] + 𝑉[𝜌(𝑟 )]                                                                                        (II. 24) 

Où :  𝐹𝐻𝐾[𝜌(𝑟 )]  est La fonctionnelle de Hohenberg et Kohn. 

𝑇[𝜌(𝑟 )] : est l’énergie cinétique   

𝑉[𝜌(𝑟 )] : est L’interaction électron-électron. 
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Nous remarquons que les deux théorèmes montrent seulement l’existence de la 

fonctionnelle E mais ils ne proposent pas une forme explicite de cette fonctionnelle 

𝐹𝐻𝐾[𝜌(𝑟 )] qui est bien nécessaire pour la résolution de l’équation de Schrödinger à N 

corps. La question qui se pose est comment déterminer la fonctionnelle 𝐹𝐻𝐾[𝜌(𝑟 )]de 

manière plus simple. 

   II.6.2 Approche de Kohn-Sham : 

              En 1965 Kohn et Sham (KS) [39] proposent une méthode pratique permettant 

d’utiliser la théorie de la fonctionnelle de la densité. Ces auteurs ont considéré 

l’équivalence entre un système d’électrons en interaction dans un potentiel extérieur 

𝑉̂𝑒𝑥𝑡(𝑟 ) et un système d’électrons sans interaction dans un potentiel effectif  𝑉̂𝑒𝑓𝑓(𝑟 ) tout 

en ayant la même densité électronique.   

La différence entre l’énergie cinétique réelle et celle des électrons sans interaction 

ainsi que la différence entre l’énergie d’interaction réelle et celle de Hartree sont prises en 

compte dans l’énergie d’échange-corrélation 𝐸𝑋𝐶[𝜌(𝑟 )], avec : 

𝐸𝑋𝐶[𝜌(𝑟 )] = 𝐸𝐶[𝜌(𝑟 )] + 𝐸𝑋[𝜌(𝑟 )]                                                                                    (II. 25) 

Kohn et Sham ont introduit le regroupement de tous les termes compliqués et 

difficiles à évaluer, dans une fonctionnelle d’échange-corrélation 𝐸𝑋𝐶[𝜌(𝑟 )] : 

𝐹𝐻𝐾[𝜌(𝑟 )] = 𝐸𝑐𝑖𝑛
𝑖𝑛𝑑[𝛹𝑖(𝑟 )] + 𝐸𝐻[𝜌(𝑟 )] + 𝐸𝑥𝑐[𝜌(𝑟 )]                                                   (II. 26)  

Où :𝐸𝑐𝑖𝑛
𝑖𝑛𝑑[𝛹𝑖(𝑟 )] Est la fonctionnelle de l'énergie cinétique d'un gaz d'électrons 

indépendants et 𝛹𝑖(𝑟 )  sont les orbitales de Kohn et Sham.                                                  

𝐸𝐻[𝜌(𝑟 )] est le terme de Hartree des électrons 

𝐸𝑋𝐶[𝜌(𝑟 )] est l’énergie d’échange-corrélation (exchange corrélation, XC) 

La fonctionnelle de l’énergie totale du système peut être exprimée par l’expression 

suivante : 

𝐸[𝜌(𝑟 )] = 𝐸𝑐𝑖𝑛
𝑖𝑛𝑑[𝛹𝑖(𝑟 )] + 𝐸𝐻[𝜌(𝑟 )] + 𝐸𝑋𝐶[𝜌(𝑟 )] + ∫ 𝜌(𝑟) 𝑉̂𝑒𝑥𝑡(𝑟) 𝑑𝑟3                   (II. 27)                   
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Après l’approche de Kohn Sham, on obtient un système de « n » équations appelé 

les équations de Kohn-Sham, et l’Hamiltonien de ce système est également appelé 

l’Hamiltonien de Kohn-Sham 𝐻̂𝐾𝑆 : 

𝐻̂𝐾𝑆𝛹𝑖(𝑟 ) = 𝐸𝑖𝛹𝑖(𝑟 )                                                                                                          (II. 28) 

(−
1

2
∇⃗⃗ 𝑖

2 + 𝑉̂𝑒𝑥𝑡(𝑟 ) + 𝑉̂𝐻(𝑟 ) + 𝑉̂𝑋𝐶(𝑟 ))𝛹𝑖(𝑟 ) = 𝐸𝑖𝛹𝑖(𝑟 )                                             (II. 29)  

𝑉̂𝑒𝑓𝑓(𝑟) est le potentiel effectif tel que :𝑉̂𝑒𝑓𝑓(𝑟) = 𝑉̂𝑒𝑥𝑡(𝑟 ) + 𝑉̂𝐻(𝑟 ) + 𝑉̂𝑋𝐶(𝑟 )           (II. 30) 

𝑉̂𝑋𝐶[𝜌(𝑟)] est le potentiel d’échange et de corrélation tel que : 

 𝑉̂𝑋𝐶[𝜌(𝑟)] =
𝛿𝐸𝑋𝐶[𝜌(𝑟)]

𝛿𝜌(𝑟)
                                                                                                (II. 31) 

   II.6.3 Résolution des équations de Kohn-Sham : 

Dans l’approche de Khon-Sham le problème de n corps est réduit en simples 

équations d’électrons indépendants. Les équations de Kohn-Sham doivent être résolues de 

façon auto-cohérente. Celle-ci est obtenue à l'aide d'un processus itérative où on introduit 

au départ une certaine densité 𝜌0 pour construire un Hamiltonien de départ 𝐻̂𝐾𝑆1. On 

résout l’équation aux valeurs propres et on obtient une densité𝜌1. Pour la plupart des cas, 

𝜌1 diffère de𝜌0. Maintenant le 𝜌1 est employé de nouveau pour construire un nouveau 

Hamiltonien 𝐻̂𝐾𝑆2 et qui aboutira à son tour à une nouvelle densité 𝜌2 comme le montre la 

(figure II.1). A la fin de chaque cycle, on réalise le test de convergence et qui consiste à 

vérifier si  𝜌𝑛 = 𝜌𝑛−1 et auquel cas le processus d’itération est arrêté. Sur la (figure II.1), 

nous schématisons le principe général de la résolution auto-cohérente.  
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Figure II.1 : Schéma itératif de la procédure auto cohérente destine à résoudre les équations de 

Kohn-Sham. 

Nous remarquons que dans le calcul auto-cohérent, le terme Exc[ρ(r )] n’est connu 

et par conséquent la résolution n’est pas possible à ce niveau. Pour cette raison, plusieurs 

approximations ont été proposées. Parmi ces propositions, on peut citer l’Approximation 

de la Densité Locale (LDA) et celle du Gradient Généralisé (GGA). Dans le présent travail 

et au regard de notre problème (les demi-métaux), nous avons utilisé l’approximation de la 

GGA, c'est ce que nous développer dans ce qui suit. 

   II.6.4. Approximation du Gradient Généralisé (GGA) : 

Dans cette approximation, on prend en considération l’inhomogénéité de la densité 

électronique (ce qui n’était pas le cas dans les approximations antérieures) par 

l'intermédiaire de la densité électronique et de son gradient. Ainsi, l’expression la plus 

utilisée de la fonctionnelle d’échange-corrélation dans le cadre de la GGA s'exprime sous 

la forme [40, 41, 42, 43,44] : 
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EXC
GGA[ρ↑(r ), ρ↓(r ), s(r )] = ∫ρ(r ) εXC

hom(ρ(r ))FXC
GGA[rs, ξ(r ), s(r )]dr                           (II. 32) 

Tel que : 

FXC
GGA[rs, ξ(r ), s(r )] : est un facteur d’amélioration (de l’approximation ultérieure LDA). 

ξ(r ) =
ρ↑(r⃗ )−ρ↓(r⃗ )

ρ(r⃗ )
 : La densité de magnétisation (relatif à la polarisation de spin). 

s(r ) =
|∇⃗⃗ ρ(r⃗ )|

2(3π2)1/3ρ4/3 : Le gradient de densité. 

Plus explicitement, Perdew-Burke-Ernzerhof [41] ont proposé un facteur 

d’amélioration correspondant à l’énergie d’échange donné par :  

Fx(s) = 1 + κ −
κ

1+
μs2

κ⁄
                     (II. 33) 

 κ = 0.804, μ = β (
π2

3
) = 0.21951 et β = 0.066725 

On note que l'avantage de ces dernières formules de fonctionnelle c'est qu’elle 

permet de retrouver de façon correcte les cas limites de la physique (gaz d'électrons 

uniforme par exemple).  

La GGA a été appliquée avec succès dans l'étude du magnétisme ainsi que dans 

l’étude des propriétés électroniques des métaux et de semi-conducteurs. Cependant, la 

GGA a échoué à déterminer les largeurs de bandes interdites. Dans certains cas, la sous-

estimation du gap peut atteindre jusqu'à 50% par rapport aux valeurs expérimentales [45, 

46,47]. Dans ce sens, d'autres améliorations ont été apportées telle que le l'approximation 

mBJ (Becke-Johnson modifié (mBJ)), proposée par Tran et Blaha en 2009.  

II.7. La méthode des ondes planes augmentées linéarisées (FP-LAPW) : 

La méthode des ondes planes augmentées linéarisées (FP-LAPW), basée sur la 

méthode LAPW (Linearized Augmented Plane Waves) développée par Andersen [48], elle 

est fondamentalement une amélioration de la méthode des ondes planes augmentées 

(APW), élaborée par Slater [49,50]. Elle reste la méthode la plus Précisé actuellement 

pour le calcul de la structure électronique des solides dans le cadre de la théorie de la 

fonctionnelle de densité (DFT). 

 



Chapitre II : la Théorie de le Fonctionnelle de la Densité 

 

 

42 

   II.7.1. La méthode APW (Méthode des Ondes Planes Augmentées) : 

La méthode des ondes planes augmentées (APW) a été élaborée par Slater [53]. 

Dans cette méthode Slater a considère qu’au voisinage d’un noyau atomique le potentiel et 

les fonctions d’onde sont de la forme " Muffin-Tin " (MT) présentant une symétrie 

sphérique à l’intérieur de la sphère MT de rayon 𝑅𝛼  Entre les atomes le potentiel et les 

fonctions d’onde peuvent être considérés comme étant lisses. En conséquence, les 

fonctions d’onde du cristal sont développées dans des bases différentes selon la région 

considérée : Solutions radiales de l’équation de Schrödinger à l’intérieur de la sphère MT 

et ondes planes dans la région interstitielle (figure II.2). 

 

 

 

 

Figure II.2 : Représentation du potentiel ‘Muffin-Tin’  

Alors la fonction d'onde ϕ(r) est de la forme : 

𝜙(𝑟) = {
1

𝛺1/2
∑ 𝐶𝐺𝑒𝑖(𝐺+𝐾)𝑟

𝐺   ,                    𝑟 > 𝑅𝛼

∑ 𝐴𝑙𝑚𝑈𝑙(𝑟)𝑌𝑙𝑚(𝑟)𝑙𝑚   ,                           𝑟 <  𝑅𝛼      
                                       (II. 34)   

Où :  

𝑅𝛼 : est le rayon de la sphère MT  

Ω : est le volume de la cellule  
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𝐶𝐺  et  𝐴𝑙𝑚 : Les coefficient du développement en harmoniques sphériques  𝑌𝑙𝑚 

 La fonction 𝑈𝑙(r) est une solution régulière de l'équation de Schrodinger pour la 

partie radiale qui s'écrit sous la forme : 

{−
𝑑2

𝑑𝑟2 +
𝑙(𝑙+1)

𝑟2 + 𝑉(𝑟) − 𝐸𝑙} 𝑟𝑈𝑙(𝑟) = 0                                                                    (II. 35)   

Où : 

V(r) : représente le potentiel Muffin-Tin 

El :   représente l’énergie de linéarisation 

 Les fonctions radiales définies par (II. 35)  sont orthogonales à tout état propre 

du cœur. Cette orthogonalité disparaît en limite de sphère [51] comme le montre l'équation 

de Schrödinger suivante : 

(𝐸2 − 𝐸1)𝑟𝑈1𝑈2 = 𝑈2
𝑑2𝑟𝑈1

𝑑𝑟2 − 𝑈1
𝑑2𝑟𝑈2

𝑑𝑟2                                                                       (II. 36)   

 

Où U1 et U2 sont des solutions radiales pour les énergies E1 et E2  

Slater justifie le choix particulier de ces fonctions en notant que les ondes planes 

sont des solutions de l’équation de Schrödinger lorsque le potentiel est constant. Quand 

aux fonctions radiales, elles sont des solutions dans le cas d’un potentiel sphérique, 

lorsque 𝐸𝑙 est une valeur propre. Pour assurer la continuité de la fonction ϕ(r) a la surface 

de la sphère MT, les coefficients Alm doivent être développes en fonction des coefficients 

CG des ondes planes existantes dans les régions interstitielles. 

𝐴𝑙𝑚 =
4𝜋𝑖𝑙

𝛺
1
2𝑈𝑙(𝑅𝛼)

∑ 𝐶𝐺𝑗𝑙(|𝑘 + 𝑔|𝑅𝛼)𝑌𝑙𝑚
∗ (𝐾 + 𝐺)  𝐺                                                          (II. 37) 

 

𝐣𝐥: est la fonction de Bessel à l’ordre l. 

La méthode APW, ainsi construite, présente quelques difficultés liées à la fonction 

𝑈𝑙(𝑅𝛼) En effet, suivant la valeur du paramètre 𝐸𝑙 la valeur de 𝑈𝛼(𝑅𝛼) peut devenir nulle 

à la surface de la sphère MT, entraînant une séparation des fonctions radiales par rapport 

aux fonctions d'onde plane. Afin de surmonter ce problème plusieurs modifications à la 
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méthode APW ont été apportées notamment celles proposées par Koelling [52] et par 

Andersen [49], donnant ainsi naissance à la méthode LAPW. 

   II.7.2. La méthode des ondes planes augmentées linéarisées (Linearized 

Augmented Plane Waves ou LAPW) : 

En 1975, Andersen a proposé la méthode linéaire des ondes planes augmentées 

(LAPW), dans laquelle les fonctions de base et leurs dérivées sont continués par 

adaptation à la fonction radiale et sa dérivée, avec la fixation du paramètre El. Ce choix 

résous les problèmes rencontrés dans la méthode APW. 

          L’idée de base est d'ajouter un supplément de liberté variationnel à la base à 

l'intérieur des sphères muffin-tins. Cela se fait en utilisant la dérivée par rapport à 

l’énergie. Ainsi, Ul Peut être développé dans une série de Taylor autour El 

𝑈𝑙(𝐸, 𝑟) = 𝑈𝑙(𝐸𝑙 , 𝑟) + (𝐸 − 𝐸𝑙)𝑈𝑙
̇ (𝐸, 𝑟) + 𝑂((𝐸 − 𝐸𝑙)²)                                          (II. 38)   

Où 𝑂((𝐸 − 𝐸𝑙)²) représente l'erreur quadratique énergétique.  

            Les fonctions de base dans les sphères MT sont des combinaisons linéaires des 

fonctions radiales.  𝑈𝑙(𝑟)𝑌𝑙𝑚(𝑟), et de leurs dérivées 𝑈𝑙
̇ (𝑟)𝑌𝑙𝑚(𝑟) par rapport à l’énergie. 

Les fonctions   𝑈𝑙 sont définies comme dans la méthode (II. 31)  et la fonction 𝑈𝑙
̇ (𝑟)𝑌𝑙𝑚(𝑟) 

doit satisfaire la condition suivante :  

{−
𝑑2

𝑑𝑟2 +
𝑙(𝑙+1)

𝑟2 + 𝑉(𝑟) − 𝐸𝑙} 𝑟𝑈̇𝑙(𝑟) = 𝑟𝑈𝑙(𝑟)                                                            (II. 39)  

Ainsi, la base LAPW est donnée par les formules générales suivantes :  

𝜙(𝑟) = {

1

𝛺1/2
∑ 𝐶𝐺𝑒𝑖(𝐺+𝐾)𝑟

𝐺                                ,                          𝑟 > 𝑅𝛼

∑ [𝐴𝑙𝑚𝑈𝑙(𝑟) + 𝐵𝑙𝑚𝑈𝑙
̇ (𝑟)]𝑌𝑙𝑚(𝑟)𝑙𝑚   ,                 𝑟 <  𝑅𝛼      

                         (II. 40)  

Où les coefficients  𝐵𝑙𝑚 , correspondent à la fonction 𝑈𝑙
̇  et sont de même nature que les 

coefficients  𝐴𝑙𝑚 . 

   II.7.3. La méthode APW+lo : 

La méthode APW+lo, (Augmented Plane Wave + Local Orbitals, APW+lo), est 

une base indépendante de l’énergie et qui ne requiert qu’une énergie de coupure d’ondes 

planes très faiblement supérieure à celle de nécessaire dans le cadre de la méthode APW. 

Elle consiste à utiliser une base APW standard mais en considérant Ul(r) pour une énergie 

El fixée de manière à conserver l’avantage apporté par la linéarisation du problème aux 
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valeurs propres. Mais du fait qu’une base d’énergies fixes ne fournit pas une description 

satisfaisante des fonctions propres, on y ajoute également des orbitales locales qui 

permettent d’assurer une flexibilité variationnelle au niveau des fonctions de base radiales. 

 Une base « APW+lo » est définie par l’association des deux types de fonctions d’onde 

suivantes : 

 Des ondes planes APW avec un ensemble d’énergies El fixées : 

𝜙(𝑟) = {
1

𝛺1/2
∑ 𝐶𝐺𝑒𝑖(𝐺+𝐾)𝑟            ,           𝐺                      𝑟 > 𝑅𝛼

∑ 𝐴𝑙𝑚𝑈𝑙(𝑟)𝑌𝑙𝑚(𝑟)𝑙𝑚          ,                              𝑟 <  𝑅𝛼       
                              (II. 41)   

 Des orbitales locales : 

(𝑟) = {
𝑂                                                                    ,                     𝑟 > 𝑅𝛼

[𝐴𝑙𝑚
𝑙𝑜 𝑈𝑙(𝑟, 𝐸𝑙) + 𝐵𝑙𝑚

𝑙𝑜 𝑈̇𝑙(𝑟, 𝐸𝑙)]𝑌𝑙𝑚(𝑟)  ,                     𝑟 <  𝑅𝛼
                              (II. 42)   

Les deux coefficients sont déterminés par normalisation en considérant que l’orbitale 

locale ait une valeur zéro en bord de sphère MT (mais sa dérivée est non nulle). 

   II.7.4. Principe de la méthode FP-LAPW : 

             La méthode des ondes planes augmentées linéarisées ''Full Potentiel Linearized 

Augmented Plane Waves'' (FP LAPW, (1993)), telle qu’elle est implémentée dans le code 

wien2k. La base LAPW et la base APW+lo sont utilisées en fonction de la nature des états 

électroniques du système étudié. En revanche, aucune approximation n’est faite pour la 

forme du potentiel ni de la densité de charge. Ils sont plutôt développés en des 

harmoniques du réseau à l’intérieur de chaque sphère atomique, et en des séries de 

Fourrier dans les régions interstitielles. Ce qui est à l’origine du nom « Full-Potential ». 

 Cette méthode assure donc la continuité du potentiel à la surface de la sphère MT 

et le développe sous la forme suivante : 

𝑉(𝑟) = {
∑ 𝑉𝑙𝑚𝑙𝑚 (𝑟)𝑌𝑙𝑚(𝑟)   ⟹   à 𝑙′𝑖𝑛𝑡 é𝑟𝑖𝑒𝑢𝑟 𝑑𝑒 𝑙𝑎 𝑠𝑝ℎè𝑟𝑒  

∑ 𝑉𝑘𝑘 𝑒𝑖𝑘𝑟              ⟹    à 𝑙′𝑒𝑥𝑡é𝑟𝑖𝑒𝑢𝑟 𝑑𝑒 𝑙𝑎 𝑠𝑝ℎè𝑟𝑒
                               (II. 43)  

Le potentiel a alors une dépendance angulaire à l’intérieur par l’intervention 

d’harmoniques sphériques. L’introduction d’un potentiel de ce type donne à la méthode 

FP-LAPW la caractéristique « full potentiel » car elle prend en compte la dépendance 

angulaire dans tout l’espace. 
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II.8.  Le code WIEN2k : 

Le code WIEN2k est un programme de calcul de la structure électronique des 

solides dans le cadre de la Théorie de la Fonctionnelle de la Densité (DFT) basé sur la 

méthode FPLAPW. 

Il a été développé par P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka et J. Luitz 

[54] (Vienna University of Technology, Austria).  

Il existe plusieurs versions du code WIEN dont le WIEN97 [55], qui a été par la 

suite amélioré pour donner le WIEN2k. 

Le code WIEN2k est formé de plusieurs programmes indépendants (figure II. 3) 

qui sont liés par C. Shell Script : 

NN : Un sous-programme permettant de calculer les distances entre les plus proches 

voisins et les positions équivalentes (non chevauchement des sphères) ainsi que la 

détermination du rayon atomique des sphères atomiques. 

LSTART : Un programme qui génère les densités atomiques et détermine comment les 

différentes orbitales sont traitées dans le calcul de la structure de bande, comme des états 

du cœur avec ou sans orbitales locales, Il est utilisé dans la génération du potentiel 

atomique tronqué au rayon muffin-tin. 

SYMMETRY : Il génère les opérations de symétrie du groupe spatial, détermine le 

groupe ponctuel des sites atomiques individuels, génère l’expansion LM pour les 

harmoniques du réseau et détermine les matrices de rotation locale. 

KGEN : Il génère le nombre de points spéciaux (points K) dans la zone de Brillouin. 

DSTART : Il génère une densité de départ pour le cycle SCF par la superposition des 

densités atomiques générées dans LSTART. 

Alors un cycle self consistant est initialisé et répété jusqu'à ce que le critère de 

convergence soit vérifié. Ce cycle s’inscrit dans les étapes suivantes : 

LAPW0 : Génère le potentiel à partir de la densité. 

LAPW1 : Calcule les bandes de valence, les valeurs propres et les vecteurs propres. 

LAPW2 : Calcule les densités de valence à partir des vecteurs propres. 

LCORE : Calcule les états du cœur et les densités. 

MIXER : Mélange les densités d’entrée et de sortie. 

               La plus importante étape dans le calcul est l’initialisation. Un bon calcul qui 

donne un bon résultat nécessite un choix judicieux des paramètres de calcul (Rmt × kmax, 

Gmax et Nkpt). Ces paramètres jouent un rôle important dans le calcul notamment dans la 

précision et le temps de calcul. 
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Rmt×kmax : le cut-off des fonctions d’ondes qui limite le nombre des vecteurs du réseau 

réciproque qui entre dans le développement des fonctions d’ondes de Kohn-Sham sur les 

fonctions de la base LAPW, donc il limite la taille de la matrice de l’Hamiltonien. Le 

nombre de la base LAPW est proportionnel à (kmax)3  et le temps nécessaire pour résoudre 

l’équation séculaire est proportionnel à (kmax)9. 

Gmax : le cut-off dans l’espace réciproque qui limite le nombre d’ondes planes utilisées 

dans le développement de la densité de charge et le potentiel dans la région interstitielle. 

lmax : limite le nombre des harmoniques du réseau utilisé pour le développement de la 

densité de charge et le potentiel dans les sphères muffin-tin. 

Rmt : le rayon de la sphère muffin-tin. 

Nkpt : le nombre de points spéciaux (de haute symétrie) dans la zone irréductible de 

Brillouin utilisés pour l’intégration par la méthode des tétraèdres. 

El : l’énergie de linéarisation. 

Une fois l’auto-cohérence atteinte, il est possible de calculer les différentes propriétés du 

solide telles que la densité d’états totale (DOS), les densités d’états partielles ou projetées 

(par type d’atome et d’orbitale), la structure de bandes électroniques, les constantes 

élastiques et les propriétés optiques. 

 

  



Chapitre II : la Théorie de le Fonctionnelle de la Densité 

 

 

48 

 

Figure II.3 : Schéma du code WIEN2k. 
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II.9. Conclusion  

Dans cette partie, Nous avons rappelé l’équation de Schrödinger et nous avons vu 

que lorsque cette dernière est sous sa forme générale, c’est à-dire sous son état initial et 

sans aucune simplification, demeure difficile à résoudre lorsqu’il s’agit d’un cristal 

(problème à N corps en interaction). L’existence des approximations telle que celle de 

Born-Oppenheimer et celle de Hartree-Fock ne suffissent pas pour résoudre ce problème. 

L’introduction des théories telle que la DFT a permis de franchir cette difficulté. Dans 

notre cas, la mise en pratique de cette théorie est effectuée par la méthode FP-LAPW. Des 

approximations comme la GGA peuvent être employé pour décrire le potentiel d’échange 

et corrélation. En fin nous avons vu qu’il existe bien un code informatique appelé Wien2k 

qui reprend point pour point tout ce formalisme mathématique et il est prêt à être appliqué 

à l’étude des matériaux. 
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III.1. Introduction : 

D’après le chapitre précédent, nous avons vu que la méthode FP-LAPW dans le 

cadre de la théorie de la DFT et les approximations sur le terme d’échange et corrélation 

(GGA-PBE) est un outil bien approprié pour la détermination des propriétés 

optoélectroniques des matériaux. Dans notre cas, nous avons appliqué cette technique à 

l’étude du composé binaire RbN. 

Dans les conditions ambiantes, ce composé se cristallisé dans la structure CsCl avec 

le groupe de symétrie spatial (Pm3m). Nous allons donc débuter ce chapitre par une partie 

d’optimisation des paramètres numériques relatifs à l’outil numérique utilisé (FP-LAPW). 

Ces paramètres numériques sont l’énergie de coupure qui est contrôlée par le paramètre 

RMT×KMAX et le maillage dans la zone de Brillouin contrôlé par le paramètre k-point. En 

fonction des paramètres optimisés obtenus, nous étudions la stabilité énergétique de notre 

matériau et ceci dans les phases magnétique (FM) et non magnétique (noté NM ou PM). 

Nous poursuivons cette étude par l’examen des propriétés électroniques et magnétiques, 

mais commençons d’abord par rappeler la structure cristalline du composé RbN et quelques 

données nécessaires pour le calcul.  

III.2. La structure CsCl : 

Très peu de composés ioniques cristallisent dans cette structure, en particulier 

aucun oxyde binaire métallique. Seuls les halogénures de césium-excepté le fluorure-

cristallisent dans la structure CsCl, dans les conditions ordinaires de température et de 

pression. Cette structure est néanmoins courante pour les composés « intermétalliques » 

ou les alliages. L’exemple qui donne son nom à la structure géométrique est le chlorure de 

césium. 

III.3. Description de la structure CsCl : 

     III.3.a. L’assemblage anionique : 

L’assemblage hôte est un système cubique simple de paramètre « a ». Les anions 

sont situés aux sommets du cube et les cations aux centres des cubes anioniques, dans une 

cavité à symétrie cubique. 
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La maille cubique (réseau des anions, figure III.1) contient en propre un anion et un 

cation, soit un groupe CsCl [56]. La neutralité électrique et la stœchiométrie sont bien 

respectées. 

 

Figure III.1 : La structure cristalline de chlorure de césium (CsCl). 

Chaque cation est alors entouré par huit anions à la distance 𝑎√3/2 et, comme les 

réseaux anioniques et cationiques sont équivalents, chaque anion est entouré par huit cations 

à la distance𝑎√3/2. La coordinence de chaque ion prend la valeur 8.   

La figure III.2 représente des sections selon plusieurs plans, notamment selon le plan 

réticulaire (0, 1, 1). Le cation y est tangent aux anions le long de la grande diagonale du 

cube et nous en déduisons la relation de contact : 2(𝑟+ + 𝑟−) = 𝑎√3 

 

Figure III.2 : Cristal de chlorure de césium : coupes selon plusieurs plans 
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Considérons un réseau de translation de type cs, cubique simple. La maille 

conventionnelle est un cube d’arête « a », le motif est double, constitué d’un ion chlorure 

de coordonnées (0, 0, 0) dans la base usuelle (𝑎1⃗⃗⃗⃗ , 𝑎2⃗⃗⃗⃗ , 𝑎3⃗⃗⃗⃗ ) et d’un ion césium de 

Coordonnées (½, ½, ½) [figure III.3]. Nous retrouvons la présence d’un unique motif 

composé dans la maille cubique qui est ici une maille primitive [57]. 

 

 

Figure III.3 : Cristal de chlorure de césium (CsCl) 

     III.3.b. Condition limite de stabilité de la structure CsCl : 

Dans la situation critique, les anions sont tangents le long de l’arête du cube. La 

condition limite supplémentaire s’écrit : 

2𝑟− = 𝑎                                                                                                                         (III. 1) 

Nous en déduisons la valeur critique du rapport x des rayons ioniques : 

xlim = √3 − 1 ≈ 0.73                                                                                                  (III. 2) 

La condition de stabilité du système, sans interpénétration des anions, avec tangence 

anion/cation est donc :  

X ≥ √3 − 1                                                                                                       (III. 3) 

Si le rapport devient plus petit que la valeur critique, il est nécessaire, pour que le 

contact anion/cation persiste, que les gros ions se rapprochent et s’interpénètrent. L’énergie 

du système augmente considérablement et la structure change. 

Pour CsCl le rapport x vaut 0,92 et les résultats expérimentaux sont compatibles avec 

le modèle. Il en est de même pour CsBr (x = 0,86) et pour CsI (x = 0,77). 
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III.4. Simulation Numérique : 

Dans ce travail, tous les calculs sont réalisés en utilisant le code WIEN2k qui reprend 

point pour point la méthode des Ondes Planes Augmentées Linéarisées + Orbitales locales 

à Potentiel Total (FP-L/APW+lo) dans le cadre de la Théorie de la Fonctionnelle de la 

Densité (DFT). Dans notre cas, le terme d'échange et corrélation est traité par 

l’Approximation du Gradient Généralisé paramétrisée par l’approximation Perdew-Burke-

Ernzerhof (GGA-PBE). 

Les calculs sont débutés par une première étape appelée « étape d’initialisation ». 

Elle est constituée d’une série de programmes qui génèrent les fichiers d’entrées pour 

calculer la densité électronique de départ. Cette densité est utile pour déterminer le potentiel, 

et donc elle permet la résolution de l’équation de Schrödinger. Les vecteurs propres et les 

valeurs propres ainsi obtenus sont réutilisés pour former une nouvelle densité et un nouveau 

potentiel et ainsi résoudre de nouveau l’équation de Schrödinger, c’est ce qu’on appelle un 

cycle. Ce dernier est répété jusqu’à ce que les résultats se stabilisent (c’est la convergence). 

C’est ce que nous allons avoir par la suite.  

III.5. Tests de convergence : 

Avant de commencer nos simulations, nous allons d’abord optimiser les paramètres 

numériques pour obtenir un bon compromis précision/temps de calcul. Pour cela, nous 

avons débuté cette étude par l’optimisation des paramètres relatifs au code WIEN2k, à 

savoir le paramètre RMT × Kmax(RMT est le rayon minimum des sphères muffin-tin et Kmax 

le vecteur d’onde de coupure dans l’espace réciproque) et le nombre de points K (maillage 

dans la zone de Brillouin). Cette optimisation est effectuée par l’étude de la variation ∆E 

pour deux volumes différents [58, 59]. En effet, nous avons calculé dans un premier temps 

la différence d’énergie totale pour deux volumes différents (0% et 5%), en faisant varier 

RMT × Kmax de 5 à 9 avec un pas de 0.5 et ceci pour une valeur fixe de K points égale 

à 1000. Par la suite, nous avons fixé le RMT × Kmax à la valeur optimale obtenue, (qui vaut 

8 dans ce cas) et nous avons fait varier le nombre de points K dans l’intervalle [250, 6000]. 

Les résultats de cette étude sont reportés sur les figures (III.4  et III .5)   

Au regard de ces deux figures, nous remarquons que les valeurs optimales obtenues 

pour le RMT × Kmaxet le nombre de points K sont égaux aux valeurs 8 et 5000 

respectivement. C’est avec ces deux valeurs que nous allons mener nos calculs 
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ultérieurement, c'est-à-dire l’étude structurale, électronique et magnétique. Dans ce qui suit, 

nous rappelons (pour plus de précision) les paramètres numériques de notre structure et qui 

sont nécessaire pour réaliser notre étude.  
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Figure III.4 : convergence de ∆E en fonction des RMT × Kmax. 
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Figure III.5 : Convergence de ∆E en fonction des nombres de point K. 
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III.6. Paramètres de calcul : 

Notre matériau RbN se cristallise dans différentes structures telles que NaCl 

(rocksalt), WC (Tungesten Carbide), Zincblende (ZB), NiAs et finalement la structure CsCl 

et dans laquelle le composé RbN est plus stable énergétiquement [60]. Dans cette dernière 

structure, les positions atomiques sont : un atome Rb situé dans la position (0, 0,0) et le 

second atome N est situé à la position (0.5, 0.5, 0.5). Le groupe de symétrie spatiale est 221 

Pm3m.     

 

 

Figure III.6 : structure cristalline du RbN 

Les rayons Muffin-Tin (RMT) suggérés par le code WIEN2k pour cette configuration 

sont 1.9 u. a et 1.6 u. a pour les atomes Rb et N respectivement. Concernant le paramètre de 

réseau « a », nous l’avons pris égale à 3.52 Å selon la référence [60]. Finalement, nous 

rappelons les configurations électroniques de nos éléments en question : 

Rb: 1s22s22p63s23p63d104s24p65s1 

N: 1s22s22p3 
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III.7. Propriétés structurales : 

Pour l’étude structurale, nous introduisons les paramètres numériques énumérés 

précédemment dans un fichier spéciale nommé case.struct où case est généralement le nom 

du composé étudié et nous entamons ensuite la première étape dans le code WIEN2k, à 

savoir l’étape d’initialisation. Lors de cette étape, le code vérifie si les paramètres que nous 

avons introduits ne causent pas un chevauchement entre les sphères Muffin-Tin, respectent 

la symétrie et vérifient l’énergie de séparation entre les états du cœur et les états de valence 

[61]. Une fois cette étape est achevée avec succès, c’est-à-dire qu’aucune erreur n’est 

signalée, on passe à l’étape d’optimisation de l’énergie en fonction du volume. Autrement-

dit, nous allons calculer l’énergie totale du système pour différents volumes et nous retenons 

à la fin de cette étude la valeur du volume (le paramètre de réseau « a ») correspondant au 

minimum d’énergie, valeur pour laquelle notre structure serait stable. Cette étude est 

réalisée dans deux cas de figures, à savoir le cas non magnétique puis le cas 

ferromagnétique. Sur les figures III.7 nous présentons les résultats de cette étude.  

 

Figure III.7 : L’énergie totale en fonction du volume du RbN pour la phase                                                    

non magnétique et la phase ferromagnétique. 
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Les valeurs des énergies totales et leurs volumes correspondants peuvent être ajustés 

selon plusieurs équations d’états et ceci dans le but d’obtenir une courbeE(V). Dans notre 

cas, nous avons choisi l’ajustement par l’équation d’état de Birch-Murnaghan [62,63] : 

E(V) = E0 +
9V0B0

16
{[(

V0

V
)

2

3
− 1]

3

B0
′ + [(

V0

V
)

2

3
− 1]

2

[6 − 4 (
V0

V
)

2

3
]

2

3

}                (III. 4) 

L’ajustement par cette équation nous permet de faire correspondre les constantes 

numériques d’ajustement à des valeurs qui ont une signification physique. Ces constantes 

sont :  

 V0 : le volume à l’équilibre statique. 

 E0 : l’énergie totale par unité de cellule. 

 B0le module de compressibilité à l’équilibre : 

    B0 = −V(
∂P

∂V
)
P=0

                                                            (III. 5) 

 B0
′ la première dérivée de (B0) par rapport à la pression : 

B0
′ = (

∂B

∂P
)
P=0

                                                              (III. 6)  

Le calcul du paramètre du réseau « a » à l’équilibre est calculé à partir du volume V0 à 

l’équilibre et qui correspond au minimum de la courbeE(V). Dans le cas d’une structure 

cubique, le paramètre « a » est donné par la formule : 

a = √V
3

                                              (III. 7) 

Le résumé des constantes physiques obtenus sont reportées dans le tableau ci après. 
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Tableau III.1 : Paramètre du réseaua0, l’énergie totale minimale E0                                                                 

et module de compressibilité B0sa dérivéeB0
′ . 

La figure III.7 Montrent l’étude structurale de notre matériau RbN dans la phase 

ferromagnétique (FM) et non magnétique (NM) c’est-à-dire sans tenir compte de l’effet de 

spin de l’électron. En examinant attentivement ces courbes, nous remarquons que notre 

matériau est plus stable dans la phase FM. C’est pour cette raison que notre étude va être 

poursuivie seulement dans la phase ferromagnétique avec le nouveau paramètre de réseau 

obtenu. 

III.8. Propriétés électroniques : 

L'étude structurale nous a fourni les paramètres structuraux de notre matériau RbN, 

mais à l’état d’équilibre. Nous allons alors utiliser ces nouveaux paramètres pour déterminer 

les propriétés électroniques telles que les structures de bandes et les densités d’états totales 

(TDOS) et partielles (PDOS). La connaissance de ces propriétés nous permet d’analyser et 

de comprendre la nature des liaisons que ce soit physique ou chimique entre les différents 

éléments constituants le matériau ainsi que les propriétés de transport électronique et le 

transfert de charge. Dans ce qui suit, nous présentons l’étude de la structure de bande suivie 

de celle de la densité d’états électronique totale et partielle.   

III.8.a. Structures de bandes : 

Généralement, on peut dire que la structure de bandes représente la solution 

graphique de l’équation de Schrödinger. Autrement dit, ces graphiques représentent les 

énergies possibles d’un électron en fonction du vecteur d'onde (seulement dans la première 

zone de Brillouin). En fonction de la nature du matériau, on peut, généralement, diviser la 

structure de bandes en trois régions : la bande de valence, la bande de conduction et le gap 

qui sépare les deux premières zones. De plus, puisque notre composé est plus stable dans la 

phase ferromagnétique, nous allons donc, illustrer l’étude de la structure de bandes pour les 

deux types de spin : les spin-up et les spin-down. Les résultats de cette étude sont illustrés 

sur la figure III.8 

RbN Ferromagnétique Non magnétique 

a0 (Å) 3.6396 3.5653 

E0 (Ry) -6072.2795 -6072.2249 

B0 (GPa) 19.5183 23.9588 

B0
′  4.6530 4.4437 
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Figure III.8 : Structure de bandes des spins up et des spins down du RbN. 

 

En examinent la figure III.8, les électrons de spin-up présentent un comportement 

semi-conducteur à gap direct (Γ − Γ) estimé à 4.88 eV, et les électrons de l’autre sens de 

spin présentent un comportement métallique. Donc on peut dire que notre est un demi-métal 

avec un gap demi-métallique estimé à 1.38 eV. 

III.8.b. La densité d’états (DOS) : 

Dans ce paragraphe, nous allons étudier la densité d’état totale (TDOS) du matériau 

RbN et les densités d’états partielles (PDOS) pour les différents éléments qui le composent. 

Les densités d’états projetées dans l’intervalle [-14, 14] eV sont représentées sur les 

figures (III.9, III.10, III.11), le niveau de Fermi est pris comme origine des énergies. 
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Figure III.9 : La densité d’état totale (TDOS) du RbN. 

 

Figure III.10 : La densité d’états partiels (PDOS) du Rb. 
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Figure III.11 : La densité d’états partiels (PDOS) de N. 

Sur la figure donnant la densité d’états totale (figure III.9) on remarque que les spins-

up présentent un caractère semi-conducteur et que les spins-down présentent un caractère 

métallique. 

P =
η↑(EF ) −η↓(EF)

η↑(EF)+η↓(EF)
                                 (III. 8) 

Le calcul de la polarisation P des spins en utilisant la relation (III. 8) donne une 

polarisation de 100% au niveau de Fermi, ce qui confirme bien le comportement demi-

métallique du matériau en question.  

III.9. Propriétés magnétiques : 

Le moment magnétique est l’une des propriétés les plus importantes pour l’étude 

des matériaux magnétique en générale et les matériaux demi-métalliques ferromagnétiques 

en particulier. Ainsi, nous avons effectué les calculs des moments magnétiques total du 

composé RbN et des moments magnétiques partiels des atomes Rb et N dans les sphères de 

muffin-tin et dans le site interstitiel. Les résultats de ces calculs sont représentés dans le 

tableau III .2.  
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Composé 
Le moment magnétique (μB) 

Rb N Interstitiel Total 

RbN 0.02179 1.345224 0.63336 2 

Tableau III.2 : Le moment magnétique total et partiels de composé RbN. 

L’examen de ces résultats montre que notre composé possède un moment 

magnétique total égal à2 μB, tel que  μB est le magnéton de Bohr. 

On remarque également que le moment magnétique total résulte d’une forte 

contribution de l’atome N. Ce résultat corrobore bien avec les résultats obtenus 

précédemment où la contribution vient principalement des états p de l’atome d’d'azote. 

III.10. Conclusion : 

Les résultats que nous obtenu dans ce chapitre sont réalisés grâce à la Théorie de la 

Fonctionnelle de la Densité et en utilisant la méthode FP-LAPW et de l’approximation 

GGA-PBE. Nous avons vu que notre matériau RbN est plus stable dans la phase 

ferromagnétique où il était possible de calculer ces paramètres structuraux : a0, E0, B0et B0
′  

en ajustant avec l’équation d’état de Birch-Murnaghan.     

 L’examen des courbes de la densité d’état montre que notre matériau est un demi-

métal où les porteurs de spin-down présentent un comportement métallique alors que les 

porteurs de spin-up ont un comportement semi-conducteur à grand gap direct estimé à 4.88 

eV et un gap demi-métallique de 1.38 eV. 

Le caractère demi-métallique de notre composé est confirmé par les calculs de la 

densité d'état et de la polarisation.    

Le calcul des moments magnétiques totaux et partiels confirme ces prédictions. On 

obtient une valeur de 2 μB pour le moment magnétique total du RbN. Les moments partiels 

confirment que l'azote ait la plus forte contribution avec ses orbitales « p ».       
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Conclusion général : 

Dans nos études nous avons vu que le magnétisme comme un phénomène nécessaire 

dans le développement de la spintronique. Nous avons également compris que ce dernier 

est intimement liée à la compréhension du magnétisme et que les matériaux HMF 

constituant un bon support de cette technologie. 

Il n y’a pas longtemps nous connaissons que les HMF contenait seulement des métaux de 

transitions et que ces derniers étaient les responsables du magnétisme dans ces matériaux. 

Dans la deuxième partie de notre travail, la présentation des méthodes de calcul 

permet le calcul des propriétés des matériaux. Où nous avons fait étudier l'équation de 

Schrödinger et les approximations utilisées pour la résoudre, la théorie de la fonctionnelle 

de densité (DFT) et ses approximations LDA et GGA. Comme nous avons étudié la méthode 

FP-LAPW, et nous avons donné des informations concernant le code Wien2k. 

Par la suite, nos calculs ont montré que notre matériau RbN dans la structure 

CsCl est plus stable énergétiquement dans la phase ferromagnétique. Le calcul des 

propriétés électroniques a montré que le RbN est un matériau HMF où ce 

comportement résulte effectivement des orbitales p de l’azote. Le calcul des 

propriétés magnétiques confirme bien ce résultat et le voit bien sur la valeur du 

moment magnétique de l’azote N relativement à celui de Rb. Ainsi nous pouvons 

dire que le composé binaire RbN est un bon candidat pour des futures applications 

dans le domaine de la spintronique. 
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