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Introduction Générale 

 

Les machines asynchrones ont pris une grande part dans le domaine 

d’entraînement à vitesse variable en raison de la bonne maîtrise de leurs problématiques 

de conception et d’alimentation. Cependant, actuellement un intérêt est de plus en plus 

accordé à la machine asynchrone à double alimentation (MADA) pour ses diverses 

applications à savoir comme génératrice pour les énergies éoliennes ou comme moteur 

pour certaines applications industrielles comme le cas du laminage, de la traction 

ferroviaire ou encore de la propulsion maritime. Cet intérêt est dû essentiellement à sa 

capacité de supporter des surcharges importantes et aux degrés de liberté qu'elle offre en 

raison de l'accessibilité facile à son rotor que son stator, donc il est possible d’alimenter 

la MADA par un convertisseur de puissance aussi bien du côté stator que du côté rotor. 

Cependant, le comportement dynamique de la machine est souvent très complexe, vu 

que sa modélisation aboutit à un système d'équations non linéaires, fortement couplé et 

multi variable. De plus, certaines de ses variables d’état, comme les flux ne sont pas 

facilement mesurables. Ces contraintes exigent des algorithmes de commande plus 

avancés pour contrôler en temps réel le couple et le flux de ces machines. Depuis 

plusieurs années, les recherches universitaires et industrielles ont été réalisées pour 

remédier au problème de commande de la machine asynchrone et d’élaborer des 

commandes performantes, robustes et efficaces, [Har-11], [Amo-16], [Tam-17], [Zmi-

17], [Cha-20]. 

La commande vectorielle à flux orienté a été développée pour contrôler le couple 

en régime transitoire, cette technique de commande permet d’avoir un comportement de 

la machine asynchrone similaire à celui de la machine à courant continu avec un 

découplage du couple et du flux. L’inconvénient majeur de celle-ci est qu’elle est très 

sensible aux perturbations et aux variations paramétriques. La commande directe de 

couple a été introduite par Takahachi et Noguchi (1986) et Depenbrock (1988) 

spécialement pour la machine asynchrone. Cette technique de commande apporte une 

solution aux problèmes posés par la commande vectorielle, l’objectif de la DTC est la 

commande directe du couple de la machine, par l’application de différents vecteurs de 

tension de l’onduleur alimentant la machine, elle nous permet d’avoir un découplage 

naturel entre le flux et le couple, de supprimer l’étage MLI, d’obtenir une très bonne 

réponse du couple, mais la non maîtrise de la fréquence de commutation et les fortes 
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ondulations du couple constituent les inconvénients majors de cette stratégie de 

commande, [Dje-21]. Plusieurs techniques peuvent être utilisées pour améliorer les 

performances de la DTC, à titre d’exemple : la DTC neuronale, la DTC floue, la DTC 

multiniveaux, DTC SVM …etc. Ici on s’intéresse à cette dernière qui sera l’objet du 

quatrième chapitre de ce mémoire.  

Le travail présenté dans ce mémoire a pour objectif d’améliorer les performances 

de la commande DTC classique appliquée à la MADA par l’application de la  

DTC_SVM . 

Au cours de notre travail, notre mémoire vient d'être composé de quatre chapitres: 

Dans le premier chapitre, nous présenterons une étude théorique sur la machine 

asynchrone à double alimentation concernant sa description et les différentes modes de 

fonctionnement, ses inconvénients et ses avantages.  

Le deuxième chapitre sera consacré à la présentation d’une modélisation détaillée 

de cette machine avec son système d’alimentation. Dans le troisième chapitre nous 

présenterons la commande directe du couple de la MADA. Cette commande sera 

établie, analysée  et simulée  en utilisant l'environnement Matlab-Simulink  

Dans le quatrième chapitre, on va opter à l’amélioration de la DTC classique par 

l’introduction d’un modulateur vectoriel (DTC_SVM), afin de réduire les oscillations 

du couple, et d’alimenter la machine avec une tension proche de la sinusoïde.  

Finalement, une conclusion générale synthétisera les points les plus marquants de 

ce mémoire et des perspectives théoriques dans les futurs travaux. 
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 I.1. Introduction 

        L’intérêt porté à la machine asynchrone doublement alimentée (MADA), ne cesse 

de croître pour diverses applications : en tant que génératrice pour les énergies 

renouvelables ou en tant que moteur pour certaines applications industrielles comme le 

laminage, la traction ferroviaire ou encore la propulsion maritime , [Dje-21].  

Dans ce chapitre nous allons présenter des généralités sur la machine à double 

alimentation où nous allons donné une présentation générale de cette machine plus son 

principe de fonctionnement ainsi que ses différentes méthodes de configurations, tout en 

citant les principaux avantages et inconvénients de la MADA et ses applications.  

I.2. Présentation de la machine asynchrone à double alimentation  

 La Machine asynchrone à double alimentation (MADA) est une machine 

asynchrone à rotor bobiné dont les enroulements statoriques et rotoriques sont reliés à 

deux sources électriques. La MADA se compose principalement de deux parties, le 

stator triphasé identique à celui des machines asynchrones classique, et le rotor tourne à 

l’intérieur de la cavité de la machine et est séparé du stator par un entrefer. En principe 

les circuits électriques du stator sont constitués de trois enroulements identiques couplés 

en étoile (ou en triangle) à la seule différence est que celui du rotor est relié aux bagues 

sur lesquelles glissent des balais. Cette machine peut fonctionner comme générateur ou 

moteur, [Amo-16]. 

 

Figure (I.01) : Représentation de la machine asynchrone à double alimentation. 

 

I.3. Principe de Fonctionnement de la MADA  

 Le principe de fonctionnement de la MADA repose sur la théorie du champ 

tournant. Le système de tensions triphasées de fréquence fs appliquées au stator d'un 

moteur ayant p pairs de pôles, génère dans le stator une force magnétomotrice Fs de 

vitesse de synchronisme 
p

f

p

ss
s

..2
  en (rad/s). Le rotor quant à lui est alimenté 
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par une source triphasée de fréquence fr et qui génère une force magnétomotrice Fr de 

vitesse 
p

f

p

rr
r

..2
  en (rad/s). 

La pulsation des courants induits ωr au rotor est donnée par : 

ωr = Ρ.Ωr = ωS - ωm 

Avec ωm est la pulsation électrique du rotor en (rad/s). 

I.4. Modes de fonctionnement de la MADA 

 La MADA peut fonctionner en moteur ou en générateur c'est comme la machine 

asynchrone classique, mais la grande différence réside dans le fait que pour la MADA, 

ce n’est plus la vitesse de rotation qui impose le mode de fonctionnement mais la 

commande des tensions rotoriques qui permet de gérer le champ magnétique à 

l’intérieur de la machine, offrant ainsi la possibilité de fonctionner en hyper ou hypo 

synchronisme aussi bien en mode moteur qu’en mode générateur. On peut distinguer 

alors quatre modes opérationnels caractéristiques de cette machine. 

I.4.1. Fonctionnement en mode moteur hypo-synchrone 

         Dans ce mode de fonctionnement le stator est connecté au réseau et la puissance 

de glissement transite par le rotor pour la réinjecter au réseau (Figure I.02). Cette 

puissance est dissipée en pertes Joule dans le cas des machines asynchrones à cage. Le 

champ tournant crée par les enroulements rotoriques est dans le même sens que le 

champ statorique, [Bou-16], [Tam-17].   

 

 

 

 

 

 

 

 

Ps : Puissance du stator, Pr : Puissance du rotor, Pm : Puissance mécanique. 

I.4.2. Fonctionnement en moteur hyper synchrone 

Dans ce mode de fonctionnement le stator est alimenté par le réseau et la 

puissance de glissement est également fournie par le réseau au rotor. Le champ tournant 

induit par les enroulements rotoriques est en opposition de phase avec celui du stator car 

Figure (I.02): Fonctionnement de la machine en moteur hypo synchrone 

Ps 

Pr 

Pm 

ω 

: Puissance  mécanique  
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la vitesse devient plus grande que la vitesse de synchronisme. La machine asynchrone à 

cage classique ne peut pas avoir ce fonctionnement, [Ard-10], [Bou-16], [Tam-17]. 

 

 

 

 

 

 

   

 

I.4.3. Fonctionnement en génératrice hypo synchrone  

 Dans ce mode de fonctionnement. la puissance mécanique est transmise à l’arbre 

de la machine, celui-ci la fournit au stator, lequel la transmet au réseau. D’autre part, la 

puissance de glissement, provenant du réseau, doit d’être transmise au rotor. Ainsi pour 

ce type de fonctionnement, une alimentation du circuit rotorique à fréquence variable 

permet de délivrer une fréquence fixe au stator même en cas de variation de la vitesse de 

rotation. Il est évident qu’une machine à cage ne peut avoir ce type de fonctionnement, 

car celui-ci n a pas d’accès permettant un apport de puissance au rotor, [Ard-10], [Bou-

16], [Tam-17]. 

 

 

 

 

 

 

 

 

I.4.4. Fonctionnement en génératrice hyper synchrone  

Dans ce mode de fonctionnement la totalité de la puissance mécanique fournie à la 

machine est transmise au réseau, comme le montre la figure (I.05). La puissance est 

alors fournie au réseau par le stator et la puissance de glissement est récupérée via le 

rotor pour être réinjectée au réseau. On a donc un fonctionnement générateur au dessus 

de la vitesse de synchronisme. La machine asynchrone à cage classique peut avoir ce 

Figure (I.03): Fonctionnement de la machine en moteur hyper synchrone 

Figure (I.04): Fonctionnement de la machine en génératrice hypo synchrone 

Ps 

Pr 

Pm 

ω 

: Puissance  mécanique  

Ps 

Pr 

ω 

Pm : Puissance  mécanique  
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mode de fonctionnement mais dans ce cas la puissance de glissement est dissipée en 

pertes Joule dans le rotor, [Bou-16], [Tam-17]. 

 

 

 

 

 

 

 

 On peut donc remarquer que la MADA a deux principaux avantages sur la machine 

à cage classique : la production de puissance électrique quelle que soit sa vitesse de 

rotation (hypo ou hyper synchronisme) et la récupération de la puissance de glissement. 

I.5. Différents types d’alimentation de la MADA  

 Grâce à sa double alimentation, la MADA offre plusieurs possibilités de 

configuration de l’association machine-convertisseur. Ces configurations dépendent 

essentiellement du domaine d’application de cette machine. D’après la littérature, nous 

pouvons distinguer les configurations suivantes : 

I.5.1. Alimentation  de la MADA par un seul convertisseur  

 Dans cette configuration, le stator de la MADA est relié au réseau, tandis que le 

rotor est alimenté à travers un système de conversion AC/AC qui comporte un 

redresseur, un filtre et un onduleur, [Cha-10]. 

 

 

 

 

 

 

 

 

  

 

 

 

Figure (I.05): Fonctionnement de la machine en génératrice hyper synchrone 

Ps 

Pr 
ω 

Pm : Puissance  mécanique  

Figure (I.06) : MADA alimentée par un seul convertisseur alimentant le rotor. 

Réseau 

MADA 

Pmec Puissance électrique fournie au rotor 

Puissance électrique fournie au stator 

Onduleur Redresseur 
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I.5.2. Alimentation  de la MADA par deux onduleurs alimentés en parallèle par un 

redresseur commun   

Cette structure consiste à alimenter la MADA par deux onduleurs de tension, l’un 

au rotor et l’autre au stator. Ces onduleurs sont associés à un seul redresseur. 

Généralement, cette configuration est utilisée dans le fonctionnement en moteur, pour 

les applications de traction électrique, [Vid-04], [Zel-16]. 

 

 

 

 

 

 

 

 

 

 

 

 

I.5.3. Alimentation  de la MADA par deux onduleurs alimentés par leurs propres 

redresseurs  

 Cette structure est évidemment la structure la plus générale du système. Les deux 

redresseurs ont une source d'alimentation commune qui est le réseau triphasé, [Vid-04] , 

[Zel-16].  

     

 

 

 

 

 

 

 

 

 

 

Figure (I.07) : Schéma de la MADA associée à deux onduleurs alimentés à travers  

un redresseur commun. 

 

Réseau 

MADA Pmec 

Puissance électrique fournie au rotor 

Puissance électrique fournie au stator 

      

Onduleur 2 

         

Redresseur 
             

Onduleur 2 

Réseau 

Figure (I.08) : Schéma de la MADA associée à deux convertisseurs séparés 
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Ces deux dernières configurations sont utilisées généralement dans le fonctionnement 

en moteur, pour les applications de traction électrique, [Vid-04].  

I.6.  Avantages et inconvénients de la MADA  

        Nous citons ci-après les principaux avantages et inconvénients de la machine 

asynchrone à double alimentation lors de son utilisation dans le domaine des vitesses 

variables.  

I.6.1. Avantages de la MADA  

Parmi ses nombreux avantages, nous citons, [Dri-05], [Elb-09], [Sal-07] :  

 - L’accessibilité au stator et au rotor offre l’opportunité d’avoir plusieurs degrés 

de liberté pour bien contrôler le transfert des puissances et le facteur de puissance avec 

toutes les possibilités de récupération ou l’injection d’énergie dans les enroulements de 

la machine.  

 - La capacité de pouvoir augmenter la plage de variation de la vitesse autour de 

la vitesse de synchronisme.  

 - Dans la MADA, le circuit rotorique peut être piloté par un convertisseur de 

fréquence de puissance relativement faible par rapport au stator. Ce convertisseur 

rotorique de haute commutation est utilisé pour réaliser de hautes performances 

dynamiques en terme de temps de réponse, de minimisation des harmoniques et 

d’amélioration de rendement.  

 - Son utilisation est préférée pour ses propriétés de réglage de vitesse par action 

sur des résistances placées dans le circuit rotorique, et encore sa possibilité de démarrer 

sans demander un courant important du réseau.  

 - Un fonctionnement en régime dégradé, si l’un des deux onduleurs tombe en 

panne, plus souple que la machine à simple alimentation.  

I.6.2. Inconvénients de la MADA  

Tout d’abord, la MADA est une machine asynchrone ; alors le premier 

inconvénient est que sa structure est non linéaire, ce qui implique la complexité de sa 

commande. En plus de ça, on peut citer les inconvénients suivants, [Vid-04], [Sal-07], 

[Elb-09] :  

 - Elle est plus volumineuse qu'une MAS à cage de puissance équivalente. 

L'aspect multi-convertisseurs, augmente le nombre de convertisseurs et par conséquent 

le prix.  
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 - Nous utilisons un nombre des convertisseurs (deux redresseurs et deux 

onduleurs ou un redresseur et deux onduleurs) plus importants que la machine à cage 

(un redresseur et un onduleur).  

 - Un autre inconvénient apparaît lors de l’étude de cette machine, ce dernier est 

la stabilité notamment en boucle ouverte. En effet, dans le cas de la machine asynchrone 

conventionnelle celle-ci est garantie par la relation fondamentale de l’autopilotage 

réalisant l’asservissement de la vitesse par la fréquence du stator. Par conséquent, les 

deux forces magnétomotrices du stator et du rotor deviennent synchronisées. Mais dans 

le cas de la machine asynchrone à double alimentation, la rotation des forces 

magnétomotrices devient fonction des fréquences imposées par les deux sources 

d’alimentation externes. De ce fait, une certaine synchronisation entre elles est exigée 

afin de garantir une stabilité à la machine.  

I.7. Domaines d’application de la MADA  

 Actuellement la machine asynchrone à double alimentation occupe une large place 

dans les applications industrielles, grâce à ces nombreux avantages. En effet, la MADA 

est très utilisée en mode générateur dans les applications d’énergie renouvelable 

notamment dans les systèmes éoliens. De plus, le fonctionnement en générateur 

présente la MADA comme une alternative sérieuse aux machines synchrones classiques 

dans de nombreux systèmes de production d'énergie décentralisée telles que, [Vid-04], 

[Elb-09] :  

 - Les centrales hydrauliques à débit et vitesse variable ;  

 - Les groupes électrogènes pour lesquels la réduction de vitesse pendant les 

périodes de faible consommation permet de réduire sensiblement la consommation de 

carburant.  

La MADA peut être utilisée aussi dans d’autres applications importantes 

nécessitant un fort couple de démarrage, telle que :  

 - l’application de levage, les ascenseurs, les monte-charges etc... .  

On note que les applications de la MADA en moteur sont relativement très 

limitées, parmi celles-ci on trouve principalement, la traction électrique et les systèmes 

de pompage.  

I.8. Conclusion  

       Dans ce chapitre, nous avons présenté la structure de la machine asynchrone à 

double alimentation envisagée dans l’industrie, puis son principe de fonctionnement en 

mode moteur, ainsi que les différents types de MADA qu’on peut rencontrer. Pour bien 



Chapitre I :                                                                                                              Généralités sur la MADA 

 10 

exploiter la machine à double alimentation dans l’étude le système de commande, la 

modélisation est nécessaire. 

Le prochain chapitre est consacré à la modélisation de la MADA et de son 

alimentation. 
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II.1. Introduction  

  Afin de réaliser une commande performante d’un système dynamique, nous 

devrons disposer d’un modèle mathématique qui représente d’une manière satisfaisante 

le comportement réel du système. Pour les machines électriques tournantes, la 

modélisation nécessite une parfaite connaissance de leurs structures électriques et  

mécaniques, [Dje-21].  

Ce chapitre a pour objectif d’établir la modélisation du moteur asynchrone à double 

alimentation associé à deux convertisseurs de tension. Une série de simulations réalisées 

à l’aide du logiciel MATLAB/SIMULINK sera envisagée, nous donnerons les résultats 

de simulation de la MADA directement par le réseau triphasé, puis par un onduleur de 

tension. 

II.2. Hypothèses simplificatrices pour la modélisation de la MADA  

 

Pour simplifier l’étude de la MADA idéalisée, en considère les hypothèses 

simplificatrices suivantes , [Cha-20]: 

 Les pertes ferromagnétiques dues à l'hystérésis et aux courants de Foucault sont 

négligeables, 

 La saturation du circuit magnétique est négligeable, 

 La symétrie de construction est parfaite ; 

 Les résistances des enroulements ne varient pas avec la température; 

 La f.m.m créée par chacune des phases des deux armatures est à répartition 

sinusoïdale. 

II.3. Modèle triphasé de la MADA 

II.3.1. Représentation de la machine dans l’espace électrique 

 La machine asynchrone à double alimentation est représentée à la figure (II.1) 

par ces six enroulements dans l’espace électrique, l’angle θ repère la position de la 

phase rotorique  par rapport celle de la phase statorique, [Che-08]. 
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Notons que   caractérise la position du rotor (tournant) par rapport au stator (fixe), d'où 

la vitesse angulaire de rotation : 

 

              
dt

d
                                                                       (II.1) 

 

 II.3.2. Equations électriques de la machine  

Les équations de tension des phases statoriques et rotoriques s’écrivent : 

- pour les tensions statoriques :  

 

      

scscssc

sbsbssb

sasassa

dt

d
iRv

dt

d
iRv

dt

d
iRv













        (II.2)  
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Figure (II.01): Représentation électrique des enroulements d'une machine asynchrone triphasée à 

double alimentation. 
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et  pour les tensions rotoriques :  

                                                        

rcrcrrc

rbrbrrb

rararra

dt

d
iRv

dt

d
iRv

dt

d
iRv













                                                        (II.3) 

Ce qui peut se résumer sous la forme matricielle suivante :   
                                       

                              ssss
dt

d
IRV                                                        (II.4) 

                                    rrrr
dt

d
IRV                                                         (II.5) 

avec : 

 Tscsbsas vvvV ,,    : Tensions instantanées des phases cba et  ,  statoriques. 

 Tscsbsas iiiI ,,       : Courants instantanés des phases cba et  ,  statoriques. 

 Tscsbsas  ,,    : Flux instantanés des phases cba et  ,  statoriques. 

 Trcrbrar vvvV ,,     : Tensions instantanées des phases cba et  ,  rotoriques. 

 Trcrbrar iiiI ,,        : Courants instantanés des phases cba et  ,  rotoriques. 

 Trcrbrar  ,,   : Flux instantanés des phases cba et  ,  rotoriques. 

rs RR et                        : Résistances d’une phase statorique et d’une phase   

  rotorique, respectivement. 

 

II.3.3 Equations magnétique 
 

         Quant aux flux magnétiques traversant chaque phase statorique et rotorique, ils 

son décrits par :  

    
       

       
s ss s sr r

r rs s rr r

L I M I

M I L I

   

  

                                                       (II.6) 

 Avec :   
  

              

 
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




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


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
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                                 

2 2
cos( ) cos( ) cos( )

3 3

2 2
cos( ) cos( ) cos( )

3 3

2 2
cos( ) cos( ) cos( )

3 3

sr srM m

 
  

 
  

 
  

 
  

 
   
 
 
  
  

                 (II.7) 

   

rrss ll et    : Inductances propres d’une phase statorique et d’une phase rotorique, 

respectivement. 

rrss mm et   

 

: Inductances mutuelles entre deux phases statoriques et entre deux phases 

rotoriques, respectivement. 

srm  : Valeur maximale  de l’inductance mutuelle entre phase statorique et phase  

rotorique. 

 En raisonnant sur les équations de tensions statoriques et rotoriques ainsi que sur 

l’expression des flux magnétiques qui traversent ces phases, on obtient les équations 

matricielles des tensions de phases : 

                  s s s ss s sr r

d d
V R I L I M I

dt dt
                                       (II.8) 

                 r r r rs s rr r

d d
V R I M I L I

dt dt
                                       (II.9) 

II.3.4. Le couple électromagnétique 

 

 L’équation du couple électromagnétique est donnée par l’expression suivante :                                    

     
T

em s sr r

d
C I M I

d

 
  

 
                                                 (II.10) 

 

On peut également exprimer le couple électromagnétique en fonction du couple 

résistant Cr opposé par la charge mécanique du moteur, du moment d’inertie de toutes 

les parties tournantes et du coefficient de frottement visqueux  f : 

. .em r

d
C J f C

dt


                                                       (II.11) 

Avec                                                 
p


   

Où 

Cem : représente le couple moteur. 

Cr   : représente le couple résistant. 
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J     : le moment d’inertie de l’ensemble des parties tournantes. 

f     : le coefficient de frottement. 

  On obtient ainsi la vitesse en appliquant la transformée de Laplace : 

                                                         
fJs

CC rem




                                                    (II.12) 

Où S représente la variable de Laplace. Cette équation montre que le contrôle de la 

vitesse passe par le contrôle du couple. 

Ces équations, (II.7), (II.8), (II.9) représentent deux inconvénients majeurs: 

1. Un nombre important de variables couplées entre elles, 

2. La dépendance des matrices  srM  et  rsM  de l’angle de rotation . 

 

Pour palier à ce problème, on cherche des transformations, des variables triphasés de la 

machine asynchrone, permettant de passer du repère triphasé de la machine réelle à un 

repère diphasé fixe ou tournant par rapport au stator ou au rotor.  

 

II.4. Modélisation diphasée de la MADA 

I .4.1. Transformation de Park  

Le modèle diphasé de la machine s'effectue par une transformation du repère 

triphasé en un repère diphasé, qui n'est en fait qu'un changement de base sur les 

grandeurs physiques (tensions, flux, et courants), il conduit à des relations 

indépendantes de l'angle θ et à la réduction d'ordre des équations de la machine. La 

transformation la plus connue par les électrotechniciens est celle de Park (1929)., [Che-

09]. 

Les deux figures (II.02) et (II.03)  montrent le principe de  la transformation de Park 

appliquée à la machine asynchrone 
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Pour simplifier les équations, les repères de Park des grandeurs statoriques et 

rotoriques doivent coïncider, ceci est possible grâce à la relation suivante [Che-08] : 

rs                                                                 (II.13) 
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Figure (II.02) : Repérage angulaire du système d’axes ),( qd  associé au stator de la 

machine. 
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Figure (II.03) : Repérage angulaire des systèmes d’axes ),( qd   associé au rotor de la machine. 
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On définit donc la matrice de transformation de Park par :  

                        
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P                 (II.14) 

Et la matrice de transformation inverse par : 

                            
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














SinCos
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P                 (II.15) 

Cette transformation permet en général, le passage du système triphasé a,b,c à un 

système diphasé d ,q quelques soient les grandeurs électriques ou électromagnétiques 

(flux, courant et tension).   

Le changement de variables relatifs aux courants, aux tensions et aux flux est défini 

par : 

                                                         
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

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                                     (II.16)             

Avec :                                              ,, IVX   

La transformation inverse est obtenue par : 

                                                        
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P
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1
                                      (II.17) 

Pour un système triphasé équilibré, on a : 

                                                            0b  ca XXX  

Cela implique que la composante d’indice « o » (composante homopolaire) est nulle. 

 

 

 

 

 



Chapitre II :                                                                      Modélisation de la MADA et de son Alimentation 

 18 

II.4.2. Equations électriques dans le repère de Park 

Les équations statoriques : 
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d
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d
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                                           (II.18) 

 

       Les équations rotoriques: 
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                                            (II.19) 

 

II.4.3. Equations magnétiques 

 au stator 
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                                                      (II.20) 

 au rotor  

                                                          

rd r rd sd

rq r rq sq

ro ro ro

L i M i

L i M i

L i
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
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
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                                                     (II.21) 

Les expressions des courants en fonctions des flux sont comme suit : 
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                                         (II.22) 
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II.4.4. Le couple électromagnétique 

La forme générale du couple électromagnétique d’une machine asynchrone 

triphasée modélisée dans le repère de Park est donnée par la relation suivante : 

)( sdrqsqrd

r

m
em ii

L

L
pC                                                  (II.23) 

II.4.5. Choix de référentiel de Park  

Suivant la constitution et le principe de fonctionnement de la MADA, On peut 

trouver trois choix utiles pour le référentiel des deux axes, [Che-08] : 

1. Référentiel fixe au stator  0s , (référentiel stationnaire 0dtd s ). Ce 

référentiel est très souvent utilisé dans l’étude des observateurs. 

2. Référentiel fixe au rotor  0r , (référentiel tournant avec  .pdtd s  ). Ce 

choix est très utilisé dans l’étude des régimes transitoires des machines asynchrones. 

3. Référentiel fixe au champ tournant statorique (référentiel tournant à la vitesse de 

pulsation statorique ss dtd  / ,): axes désigné par ),( qd . Ce référentiel est 

souvent utilisé dans l’étude et la synthèse des lois de commande. 

Ce référentiel est solidaire au champ tournant statorique c'est-à-dire qu’il tourne à la 

vitesse s , ce qui se traduit par : 

                                                   rss
s

dt

d
et

dt

d






                           (II.24) 

 

II.5. Modèle d’état de la MADA  

II.5.1. Dans le repère de Park   

  La représentation d’état consiste à exprimer le modèle de la machine sous la 

forme : 

BUAX
td

Xd
    

 

Avec        X : vecteur d’état (les quatre courants et la vitesse) 

                U : vecteur d’entrée (les quatre tensions et le couple de charge) 

Ce vecteur d’état nous amène à la représentation suivante, [Sal-07]: 
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(II.25) 

Avec :  
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  : Coefficient de dispersion, 

II.5.2. Dans un référentiel lié au stator   

 Dans cette partie, nous écrivons le modèle de la MADA dans le référentiel 

biphasé (α,β) sous forme d'un système d'équation d'état  :          
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Avec :                                                                                                                        (II.26) 

 

 X : Vecteur d'état du système :  Trrss iiii  ,,, ;  A : Matrice d'état du système. 

U : Vecteur de commande :  Trrss vvvv  ,,,  ;    B : Matrice de commande.      
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 Dans la suite de notre travail nous allons opter pour ce référentiel.  

II.6. Modélisation de l’alimentation de la MADA  

II.6.1. La structure de la chaîne d’alimentation choisie 

 

La chaîne de conversion d’énergie adoptée pour l’alimentation de la MADA est 

constituée de deux convertisseurs, un de chaque côté (stator et rotor), figure II.4. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 L’onduleur triphasé à deux niveaux de tensions est constitué d’une source de tension 

continue et de six interrupteurs montés en pont. La tension continue est généralement 

obtenue par un redresseur triphasé à diodes. L’onduleur est très utilisé en MLI pour 

l’alimentation des récepteurs triphasés équilibrés à tension et fréquence variables.  

Pour obtenir une tension alternative à partir d’une tension continue, il faut découper la 

tension d’entrée et l’appliquer au récepteur dans les deux sens. L’onduleur de tension 

alimenté par une source de tension parfaite impose à sa sortie, grâce au jeu d’ouverture 

et de fermeture des interrupteurs, une tension alternative formée d’une succession de 

créneaux rectangulaires à deux niveaux. La fréquence de fonctionnement est fixée par la 

commande des interrupteurs, [Che-14].    

Le montage onduleur est constitué de six interrupteurs bidirectionnels. Les couples 

d’interrupteurs de chaque bras sont commandés d’une manière complémentaire, pour 

assurer la continuité des courants dans les phases statoriques de la machine, et pour 

éviter de court-circuiter la source.  

 

Figure (II.04) : Schéma synoptique d’une MADA et de son alimentation. 

Commande de 

l’onduleur 
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l’onduleur 
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Chaque interrupteur est constitué d’un transistor (T) et d’une diode (D) montés en tête-

bêche. 
 

 

 

 

 

 

 

Représentation d’un interrupteur 

Pour simplifier l’étude et la complexité de la structure de l’onduleur, on supposera 

que, [Che-14]:   

- La commutation des interrupteurs est instantanée. 

- La chute de tension aux bornes des interrupteurs est négligeable. 

- La charge triphasée, est équilibrée, couplée en étoile. 

Sachant que dans un régime équilibré 0 cnbnan vvv , nous pouvons écrire, 

figure II.5 : 
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                                                          (II.27) 

En faisant la somme des équations du système (II.27), on obtient : 

                         0v3vvvvvv oncoboaocnbnan                                       (II.28) 

Figure (II.05) : Onduleur de tension pour l'alimentation de la MADA. 
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d’où :               

                         oncoboao v3vvv                                                                      (II.29) 

Donc :              

         )vvv(31v coboaoon                                                               (II.30) 

En substituant l’équation (II.30) dans le système (II.27), il vient alors : 
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                                                    (II.31)   

Selon la condition des interrupteurs statiques ( kS ) de l’onduleur  ( kS  est égale à 1 si 

l’interrupteur est fermé et 0 sinon,  avec k = a,b,c),  

                                                0nonSi1  kk SS                                         (II.32)    

Les tensions de branches kov  peuvent être exprimées en fonction des interrupteurs 

« kS »  par :                                                                                                                               

2E.)1S2(v kko                                                             (II.33) 

    Après simplification, le modèle mathématique de l’onduleur à deux niveaux de 

tensions  est donné par l’équation II.34  
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II.6.2.  Commande par modulation de largeur d’impulsion   

  La M.L.I sinus-triangle est réalisée par comparaison d’une onde modulante basse 

fréquence (tension de référence) à une onde porteuse haute fréquence de forme 

triangulaire. Les instants de commutation sont déterminés par les points d’intersection 

entre la porteuse et la modulante. La fréquence de commutation des interrupteurs est 

fixée par la porteuse, [Che-14].  

Le schéma de principe de cette technique est donné par la figure II.6. 
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                       Figure (II.06): principe de la technique MLI Sinus-Triangle 

Les tensions de références sinusoïdales sont exprimées par : 
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(II-35) 

L’équation de la porteuse triangulaire est exprimée par : 
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(II-36) 

La commande MLI sinus triangle utilise la comparaison avec la porteuse des trois 

composantes de la tension de référence afin de calculer les états aS , bS  et cS  des 

interrupteurs de l’onduleur. Ceux ci sont donnés par l’équation II.37 suivante : 
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abc                                         (II.37) 

Cette technique est caractérisée par les deux paramètres suivants :  

1- L’indice de modulation « m » égal au rapport de la fréquence de modulation (fp) 

sur la fréquence de référence (fr), (m =
p

r

f

f
).  

2- Le taux de modulation r égal au rapport de l’amplitude de la tension de référence 

(Vr) à la valeur crête de l’onde de modulation (Vp), 
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Figure (II.07) : Description de la commande M.L.I. sinus – triangle 

 

II.7. Résultats de simulation  
 

Toutes les simulations présentées dans ce projet sont réalisées sur un moteur asynchrone à 

double alimentation de 1.5KW, où les enroulements statoriques et rotoriques sont alimentés à 

travers deux onduleurs de tension. Les paramètres de ce moteur 

sont mentionnés dans l’annexe. 

L’étude  des performances  de la  machine  à vide a été faite pour  deux cas :  

a- alimentation  directement par un réseau triphasé, 

b- alimentation par deux onduleurs de tensions à MLI Sinus-triangle. 

Pour les deux cas le stator est connecté a l’alimentation et le rotor est court-circuité 

jusqu’à 1.5t s , ce rotor est alimenté par une tension et une fréquence réduites (de 

l'ordre de 10%) par rapport aux grandeurs statoriques (raisons de stabilité), [Dri-05], 

[Fen-13]. 

D'après les résultats de simulation de la figure (II.08), nous remarquons que la 

machine asynchrone à double alimentation se distingue par un caractère très instable en 

boucle ouverte. En effet, des perturbations trop exagérées sont apparues sur les 

différentes grandeurs de la machine depuis l'alimentation du rotor. Ces dernières sont 

dues à l'absence d'un contrôle strict de la position relative entre les deux forces 

magnétomotrices développées par les deux armatures de la machine. 
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        La Figure (II.09), représente les réponses de simulation de la MADA avec une 

alimentation par un onduleur. Ces résultats montrent l'influence de la MLI sur toutes les 

grandeurs de la machine. Afin de régler le problème de l'instabilité, le recours aux 

commandes bouclées devient indispensable. 
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Figure (II.08) : Simulation de la MADA en 

cas d'une alimentation  directement par un 

réseau triphasé 

Figure (II.09) : Simulation de la MADA en 

cas d'une alimentation par deux onduleurs de 

tensions à MLI Sinus-triangle 

 

II.8. Conclusion    

Dans ce chapitre, nous avons étudié la modélisation de la machine asynchrone 

triphasée à double alimentation. Cette modélisation nous a permis d'établir un modèle 

mathématique qui représente la machine, dont la complexité a été réduite moyennant un 

certain nombre d'hypothèses simplificatrices. Ainsi, à travers l’utilisation de la 

transformation de Park, Concordia et le système d'équation d'état. 

La deuxième partie de ce chapitre a été consacré pour le traitement de 

l’alimentation de la machine, en premier lieu, nous avons étudié théoriquement les 

onduleurs de tension ensuite nous avons établi un modèle Simulink d’un onduleur de 

tension. A la fin de ce chapitre des séries des simulations ont été faites et des résultats 

ont été discutés. 

Dans le chapitre suivant, nous nous s’intéresserons a l’application de la commande 

DTC à la machine asynchrone a double alimentation. 
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Chapitre III 

 

Amélioration de la Commande DTC par 

Utilisation de la Technique MLI Vectorielle 
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Conclusion générale 
 

Le travail réalisé dans le cadre de ce mémoire a permis d’étudier la structures de 

commande DTC-SVM qui permette d’améliorer les performances de la DTC classique. 

Dans un premier lieu, on a établit le modèle d’état de la machine asynchrone dans le 

repère (α, β) et le modèle de l’onduleur qui ont été validé par des simulations 

numériques. Malgré les hypothèses simplificatrices introduites et les transformations 

triphasés- biphasées utilisées, le modèle de la MADA est complexe (couplé, non 

linéaire et multi variable). La difficulté majeure, rencontrée dans cet actionneur, réside 

dans le fait que le couple électromagnétique et le flux sont des variables fortement 

couplées et c’est le rôle de la commande qui assure le découplage entre ces deux 

variables. Dans un second lieu, On a abordé l’étude de la commande directe du couple 

(DTC), celle-ci est présentée comme étant une alternative à la commande par 

orientation du flux rotorique, cette dernière assure le découplage entre le flux et le 

couple, mais elle présente l’inconvénient d’être relativement sensible aux variations des 

paramètres de la machine et aux perturbations. La commande DTC est caractérisée par 

sa simplicité, elle permet de calculer les grandeurs de contrôle qui sont le flux statorique 

et le couple électromagnétique à partir des mesures des courants et tensions statoriques. 

Son algorithme de calcul est simple puisqu’il est lié à un modèle machine où le seul 

paramètre intervenant est la résistance statorique. Cependant, cette commande a aussi 

des inconvénients importants ,à savoir, la fréquence de commutation est fortement 

variable, D’autre part, l’amplitude des ondulations du flux et du couple surtout, est 

plusieurs fois supérieure à la largeur de la bande d'hystérésis des régulateurs.  

Pour résoudre les problèmes des ondulations du couple et du flux , ainsi que la 

fréquence de commutation variable, on a introduit la technique de modulation 

vectorielle. cette méthode proposée conserve l'idée de base de la méthode DTC, pour 

cela, la technique d'orientation de flux statorique est utilisée. Ainsi, les tensions de 

commande peuvent etre générées par des régulateurs PI et imposées par la MLI 

vectorielle   

Les résultats de simulation obtenue pour l’arrangement de DTC avec la MLI 

vectorielle illustrent une réduction considérable dans l'ondulation de couple, ondulation 

de flux, et les pics de courant statique au démarrage par rapport aux résultats obtenus 

dans la DTC classique. Ce qui montre l'efficacité de la méthode proposée.  
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Finalement et comme perspectives de ce présent travail, on propose : 

- Reprendre l’étude présentée en changeant les onduleurs à deux nivaux par des 

onduleurs multi-nivaux ou d’autres convertisseurs de puissance tels que: les 

convertisseurs matriciels et les convertisseurs multicellulaires pour améliorer de 

plus les performances  du courant et de la tension. 

- Commande sans capteurs par l’utilisation d’observateurs à mode glissant où autres 

observateurs dans le cadre de la commande directe de couple. 
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Annexe 

 
 

1- Paramètres de la MADA utilisée dans la simulation 

 

Paramètre Grandeur (Unité) Valeur 

 
    Grandeurs mécaniques 

Puissance mécanique Pm (KW) 1.5 

Vitesse de rotation  N (Tr/mn) 1500 

Nombre de paires de pôles p 2 

Inertie J (Kg.m2) 0.01 

Coefficient de frottements 

visqueux  à vide 

f0 (N.m.s/rd) 0.0027 

 

   Grandeurs électriques 

Couplage stator  étoile 

Couplage rotor  étoile 

Fréquence statorique nominale fsn (Hz) 50 

Fréquence rotorique nominale Frn (Hz) 50 

Tension simple stator nominale Vsn (V) 220 

Tension simple rotor nominale Vrn (V) 130 

Courant de ligne stator nominal Isn (A) 4.3 

Courant de ligne rotor nominal Irn (A) 4.5 

Résistance d’enroulement du stator Rs (Ω) 1.75 

Résistance d’enroulement du rotor Rr (Ω) 1.68 

Inductance cyclique du stator Ls (mH) 295 

Inductance cyclique du rotor Lr (mH) 104 

Mutuelle inductance cyclique M (mH) 165 

 



 

 

 

 ملخص

 

لضمان تحكم قوي ضد عوامل عدم اليقين والاضطررااا  المتتفةط   ا العمل كم المباشر في عزم الدوران في هذتم اقتراح التح

يعتمد هذا التحكم عفى منظما  التتفةي  البسير  وجداول التبديل ، ولكنه يقدم تموجا  عالي  في التدفق وعزم الطدوران تطي ي 

ميكانيكي  تي ي إلى تدهور أ اء المحرك  لتحسين أ اء التحكم المباشر الكلاسيكي ، ولا سيما  إلى ضوضاء صوتي  واهتزازا 

التحكم في تر   التبديل وتقفيل تموجا  العزم والتدفق ، تم أيضًا تروير التحكم المباشر عفى أساس تعطديل المتهطه  يطتم إجطراء 

 ح  الأساليب المرورة لفتحقق من ص Matlab / Simulinkعمفيا  المحاكاة في ايئ  

 ذي المستويين محولا  الههد  ,التحكم المباشر لعزم  وران  : الكلمات المفتاحية

 

                      

Résumé 

Le contrôle direct du couple (DTC) est proposé dans ce travail pour assurer un contrôle 

robuste contre les différentes incertitudes et perturbations. Cette commande se base sur des 

simples régulateurs à hystérésis et des tables de commutation, mais présente des ondulations 

élevées au niveau des flux et du couple qui conduisent à un bruit acoustique et des vibrations 

mécaniques dégradant les performances du moteur. Pour améliorer les performances de la DTC 

classique, notamment la maîtrise de la fréquence de commutation et la minimisation des 

ondulations du couple et des flux, la commande DTC basée sur la modulation vectorielle (SVM) 

est également développée. Des simulations dans l’environnement Matlab/Simulink sont 

effectuées pour valider les approches développées. 

Mots Clés — Machine Asynchrone à double alimentation (MADA), Commande Direct de 

couple, Onduleur à deux niveaux, MLI Vectorielle (SVM), 

 

 

Abstract 

Direct torque control (DTC) is proposed in this work to ensure robust control against 

various uncertainties and disturbances. This control is based on simple hysteresis regulators and 

switching tables, but presents high flux and torque ripples which lead to acoustic noise and 

mechanical vibrations degrading motor performance. To improve the performance of the classic 

DTC, in particular the control of the switching frequency and the minimization of the torque 

and flux ripples, the DTC control based on the vector modulation (SVM) is also developed. 

Simulations in the Matlab/Simulink environment are carried out to validate the approaches 

developed. 

Keywords: doubly fed induction motor(DFIM), direct torque control, two level voltage invert, 

SVM 
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