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Introduction

L’inversibilité est 'une des disciplines les plus répandues en Mathématique, beau-
coup de problémes sont interprétés par une équation de type Ax = y, o A est une
transformation linéaire donnée, qui est dans notre situation une matrice ou un opé-
rateur linéaire, comme l'analyse numérique, 'optimisation, la théorie de controle,

théorie de codage, la statistique et les modeles linéaires .

Il est bien connu qu’une matrice sur un corps a un inverse, si elle est carrée
de déterminant non nul, on peut généraliser la notion d’inversibilité méme pour les
matrices non inversibles par plusieurs méthodes ; permis ces derniéres il y a le pseudo-

inverse de Moore-Penrose.

Cette généralisation de 'inverse est introduite depuis 1903 par Eritk ITvar Fred-
holm qui a donnée le concept de pseudo-inverse pour un opérateur intégral , puis
en 1920 Eliakim Hastings Moore décrit pour une matrice a coefficients réels ou
complexes (pas nécessairement carrée), ou pour une application linéaire entre espaces
euclidiens ou hermitiens, il existe un unique pseudo-inverse de Moore-Penrose sa-
tisfaisant certaines conditions supplémentaires, et redécouvert indépendamment par

Roger Penrose en 1955.
Ce mémoire est constitué de trois chapitres :

Le premier chapitre est consacré a 1’étude des propriétés de l'inverse de

Moore-Penrose.

Dans la premiére section nous rappelons quelques généralités sur les matrices,
dans la seconde section on donne quelques conséquences de la décomposition d’une

matrice et nous avons ajouté une programmation pour chaque décomposition, dans
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la troisiéme section on va étudier les {i, 7, ..., k}- inverses généralisées des matrices,
et aussi les types les plus célébres de 'inverse généralisée et les relations entre ces

types.

Précisément les types suivants de pseudo-inverse comme :

e L’inverse de Moore-Penrose (A) dans le cas des matrices carées. Ce type
d’inverse vérifie les quatre équations de Penrose AATA = A (1), ATAAT =
At (2),
(AAT)* = AAT (3),(ATA)* = ATA  (4).

e L’inverse du Groupe (A*) ou {1,2,5}- inverse( ot AA* = A*A (5)) il existe

seulement pour les matrices d’indice k =1 ou k = 0.

Et dans la quatriéme section on étudie l'inverse de Moore-Penrose(A') dans
le cas des matrices carrées non inversibles, mais généralisable a toute algébre de

matrices & valeurs dans un corps. Ce type d’inverse vérifie les quatre équations de
Penrose AATA=A (1), ATAAT = AT (2), (AAT)* = AAT (3)et (ATA)* = ATA (4)

Dans le deuxiéme chapitre on aborde des notions de base nécessaires pour
notre sujet. On donne quelques rappels de les opérateurs linéaires bornés sur 1’espace
de Hilbert, ainsi on a prouvé des propositions concernant la multiplication, 1’addi-
tion et la soustraction des projections orthogonales, puis une méthode pour extraire
une projection orthogonale a partir d’'une projection de méme image, ce concept
prendra également une partie importante de I'intérét du troisiéme chapitre pour dé-
finir I'inverse de Moore-Penrose ; et aprés on est concerné par les algorithmes de
Moore-Penrose pour les opérateurs bornés puis les opérateurs fermés & domaine

dense.

Le derniér chapitre représente I'objectif générale des notions de I'inverse de
Moore-Penrose des opérateurs linéaire dans ’espace de Hilbert. La premiére sec-
tion on donne un rappel sur la théorie spectrale des opérateurs linéaires. La deuxiéme
section est une bréve introduction a l'inversion généralisée des opérateurs linéaires
ol on a commencé par la définition de T'seng. La troisiéme et la quatriéme section
concernent respectivement des opérateurs bornés et des opérateurs fermés & domaine

dense sur un espace de Hilbert. Dans la derniére section nous approximons l'inverse
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de Moore-Penrose TT de T par son {2}—inverse. Nous avons aussi illustré cette

méthode avec un exemple.
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Chapitre 1

Programmes (IMP) pour les matrices

Ce chapiitre contient troix sections, dans la premiére section "Rappels sur les
matrices" nous rappelons les concepts de base d’algébre linéaire nécessaire relatives
aux matrices.

La deuxiéme section "Décomposition d’une matrice " qui est indispensable pour étu-
dier I'inverse de moore-penrose avec la programmation de chaque décomposition,

dans la troisiéme section on va étudier {1, j, ..., k}- inverses généralisées des matrices

et la derniére section on étudie I'inverse de Moore-Penrose (A')

1.1 Rappels

Définition 1.1.1. Soit A une matrice de M, ,(K), on appelle matrice Adjointe de
A, notée A*, la matrice définie par :

A=At s K=R

A = (A} si K=C

V(i,j) € {1,....,n} x {1,...,m}

une matrice A est symétrique si :

A=A

Elle est dite hermitienne ou auto-adjoint si : A* = A
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1.1.1 Rang et noyau d’une matrice

Etant donnée une matrice A € C™ ", I'image par A d'un vecteur z € C" est le vec-

teur Az = > " | z;a; € C™ ou les a; sont les colonne de A. L'image de A est définie par

]mA:{Ax:xGC"}:{zn:xe(C”}

i=1

c’est un sous-espace vectoriel de C™ engendré par les vecteurs-colonne de A.
sa dimension est le rang de A. Le rang de A est donc le nombre maximum de
vecteurs-colonne indépendants de A.

Une caractérisation utile du rang est la suivante : rang A = r si et seulement s’il
existe dans A une sous-matrice carrée r X r de déterminant non nul et si toute
sous-matrice carrée s X s avec s > r a un déterminant égal a 0.

cette caractérisation norme que

rang = rangA' = rangA*

Le noyau de A est le sous-espace vectoriel

kerA=xe€C': Az =0

Le rang et la dimension du noyau de A sont reliés par la formule célébre :

rangA +dim KerA=n

1.1.2 Matrice inversible

Définition 1.1.2. Une matrice carré est inversible s’il existe une matrice B telle

que : AB = BA = I, o1 I, est la matrice inverse de A notée A™*

Proposition 1.1.1. Soient A, B dans My :

— si A et B sont inversible, alors AB inversible et (AB)™' = B~1A™!
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— si A est inversible, alors At est inversible et (AY)™1 = (A71)t = A~!

Preuve 1.1.1. — (AB)(B™'A™') = A(BB YA ' = ATA™! = I Donc AB est inver-
sible d’inverse B~1A™!

C(AY(ATY = (A4 = T

1.1.3 Matrice unitaire et matrice orthogonale

Une matrice carré est unitaire si et seulement si :U~! = U*
Une matrice A de C™*" est dite orthogonale si elle vérifiée I'une des propriétés équi-

valents suivantes :
1. A A=1,
2. AA* =1,
3. A est inversible et A7'A =1

1.2 Décomposition d’une matrice

1.2.1 Deécomposition QR

En algébre linéaire, la décomposition QR (appelée aussi, décomposition QU)

d’une matrice A est une décomposition de la forme

A=QR

*

ol () est une matrice orthogonale (QQ* = I), et R est une matrice triangulaire
supérieure.

il existe plusieurs méthodes pour réaliser cette décomposition :

- La méthode de Householder ou () est obtenue par produits successifs de matrices

orthogonales élémentaires.

- la méthode de Givens ou () est obtennue par produits successifs de matrices de

retation plane.

- La méthode de Shmidt

Chacune d’entre elle a ses avantages et ses, inconvénients. ( La décomposition
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@R n’étant pas unique, les différentes méthodes produiront des résultats diffé-

rents).

Méthode de Schmidt :

On considére le procédé de gram-shmidt appliqué aux colonne de la matrice
A = |ay,...,a,], muni du produit scalaire < V.W >= V*V ou < V¥ W >= V*WV.
Pour le cas complexe, I’algorithme présenté ci-dessous convient a une matrice de rang
n, pour des matrices de rang inférieur il est a adapter a chaque fois que le vecteur u;,
obtenu est nul, on définit la projection :

[lea= e

puis les vecteurs :

Uy = aq, €1 = Tl
up=az—[l, a2 e=
k—1
— _ . uk
Uk = Zl Hejor e = qug
]:

on réarrange ensuite les équation de sorte que les a; soient a gauche, en utilisant le

fait que les e; sont des vecteurs unitaire :

a; =< e;,a; > e

Ay =< €1,a9 > e1+ < 9,0y > €9

as =< e1,as > e+ < e9,a3 > e+ < e3,a3 > €3

k

ap = E < é€j,ar > €
J=1

ou < e;,a; >=| u; || ceci s’écrit matriciellement :
A=QR
avec :

Q = [617 '-7€n]
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et
<ep,ar > <epay> <epas>
0 < eg, Gy > < e9,03 >
h= 0 0 < es,as >

1
Exemple 1.2.1. A= |1
0

_ o =
—

NoASARY =,
U _ 1 1 -1 . 1 -1 9
=== %%
us = ag— < ag,e; > e1— < ag,es > ey = (0,1,1) \/Li(\/Li’\/L?O) - %(%7\7—%7\%) _
(55 5:3)
us /-1 1 1
=11 = (% v )
1 1 =1 P
V2 V6 V3 > %5 7
J— 1 -1 1 _ y 4
0 % ¥ 0o 0 =<
V6 V3 Z

Le programme en MATLAB : [Q,R]=q¢r([1 1 0;1 0 1;0 1 1]
>A=[1 1 0;1 0 1;0 1 1]

T o S
— = O

>> [Q, R] = qr(A)
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—0.7071 0.4082 —0.5774
Q=1 —0.7071 —0.4082 0.5774
0 0.8165  0.5774

—1.4142 —-0.7071 —-0.7071
R = 0 1.2247  0.4082
0 0 1.1547

Programme de Schmidt sous Matlab :

1 function[Q,Rl=mod gram shmidc (&)

2 = [, n]==ize (&) ;

2= =zeros(m,n) ;

4 - Qilim,1)=A(1l:m,1);

== E=zeros(n)

& — E(1,1y=1;

T - for k=1:n Rik,k)=norm (& (l:m, k) )

g - Qil:m, k)=R(l:m k)/Rik, K):

o0 = for j=k+1:n Rik,3)=0(1l:m, k) "*&(l:m,j) -
I = B(lim,3)=R(l:m,j)-Q(l:m,k)*R(k,J):
11 = end
12 — end
13 — disp(Q):

14 - di=p (R):
15— Eﬂdl

=
[=1]
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1.2.2 Décomposition en valeurs singuliéres d’'une matrice

En mathématiques, le procédé d’algebre linéaire de décomposition en valeurs
singulieres ( ou SVD, de l'anglais singular value décomposition)d’une matrice est
un outil important de factorisation des matrices rectangulaires réelles ou complexes.
La décomposition a été prouvé en 1873-1874 par E.Beltarmi et C.Jordan, 1889
J.J.Sylvester a prouvé cette décomposition pour les matrices carrées réelles, et en
1915 la SVD a été prouvé pour les matrices complexes carrées par Autonne, valeurs

singuliere des opérateurs intégrales ont étudié par Schimdt et Weyl

Définition 1.2.1. Soit A € M,,«n(R), la décomposition en valeurs singuliére de A

s’écrit de la facon suivante :

A=UXV"

avec : U et V deux matrices orthogonales de taille m X m et n X n respectivement et
Y3 une matrice diagonale de taille m x n contenant les valeurs singuliére de A notée

01,02, ...,0p et p = min(m,n)

Théoréme 1.2.1. les valeurs singuliéres d’une matrice A sont les racines carrées des

valeurs propres non nulles de AA* et A*A

Preuve 1.2.1.

A*A = (USV)(USV*) = VE U UV = VE' BV

La matrice A*A est semblable a ¥*Y, ce qui implique qu’elles ont les méme valeurs

propres, les valeurs propres de ¥*Y sont 02,03, ..., ag.

Théoréme 1.2.2. A =UXV*

I A lla= o I Allr= /2 ot

Preuve 1.2.2. On a U etV sont orthogonale, nous avons :

A l=[ UXV™ [la=]] 2 2

Maintenant

| S 3= max | S 3= maw(o3a} + ... + 0%2) < o%a
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et le maximum est vérifié pour x = ey alors
| A fl2= o1

Pour la norme de Frobenuis, nous avons

comme la trace d’une matrice est la somme de ses valeurs propres

L’existence et 1’unicité

Théoréme 1.2.3. [5] Soit A € R™™ une matrice de rang r, il existe deuz matrices
orthogonales U € R™ ™ (U*U = UU* = I,,) et V € RV (V*V = VV* = 1) telle

que :

S0
A=UxVY, 2:(01 0) (1.1)

ou X € R™" ¥ = diag(oy, 09, ..., 0,),€t

oL >03>...20,>0

composante par composante, l’identité matriciel (1.1) devient :

Avj =oju; 5 A'u; = ojv; pour j=1,...n

A'u; =0 pour j=1,...m

Si Uon note U = (u1, Uz, ..., Up,), V = (1,02, ...,0,) Les colonnes des matrices U et
V, les vecteurs u; et v; sont respectivement,les vecteurs singulieres droits et gauches

associ€ a les valeurs singulieres o;

Preuve 1.2.3. La preuve se fait par récurrence sur n.

par définition de ce qu’est une norme matricielle subordonnée, il existe un vecteur
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vy € R™ tel que

[villo=1 ;5 | Avy [o=]| A ||=aer o

ol o est strictement positif (si o = 0, alors A = 0, et il n’y a rien & démontrer).
Posons u; = 1/oAv; € R™

Complétons le wecteurs Vi en wune base orthogonale de R™, et notons
V = (v, V1) € R™™ la matrice formée par les vecteurs de base.

Faisons de meme pour Uy et R™, notant U = (uy,Uy) € R™*™

Remarquons que les matrices U et V' sont orthogonales par construction.

D’apreés notre choix de Uy, UfAvy, = oULU; = 0, et donc le produit U'AV a la

structure par bloc suivante :

t
Ay =Utav =7 Y
0 B

avec wt = ut AV et B = UtAV;, € Rim=Dx(-1)

comme U et V' sont orthogonales, || Ay ||2=|| A ||o= 0. Mais la double inégalité

o)L

montre que || Ay ||> (0% + w'w)2.0n doit donc avoire w = 0. On peut alors terminer

> o + whw

2

| Ay [l2> (02 + whw)z >

la démonstration en appliquant ’hypothese de récurrence a B.

5 5
Exemple 1.2.2. A = < . 7)

A*A:5_1 55:2618
5 7 -1 7 18 74

26 — A 18

det(A*A — \I) = det
18 74—\

) = A2 = 100X — 1600 = (A — 20)(\ — 80)

les valeurs propres sont :A; = 20, Ay = 80 = 0y = 4v/5, 05 = 2v/5
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calcul de U etV

6 18 =3
A*A =201 = vy = | V0
18 54 %

v — ( 5 5) (‘—f’o ﬁ) _ (—\/10 2\/1()) _ (;—; %) <2¢5 0 )
1 3 1 1
-1 7))\ & 75 V10 24/10 %5 7 0 45

L1
-1 1
-1 7)\% & 0 4V5
Le programme en MATLAB :[U,S,V|=svd([5 5;—-1 7))
>>A=[5 5-1 7]

|
o | L
==

>> [U,S,V] = svd(A)

(07071 07071
0.7071 —0.7071
8.9443 0

S =

< 0 4.4721)

v 0.3162  0.9487
0.9487 —0.3162
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Programme SVD sous Matalb :

[SERES B =

uw

10
11
12
12
14
15
16
17
18
13
20
21
22
23
24
23
26

function[U, 3, V]=badsvd (&)
W=L*L';
[T, S]=eig(W):
max=0;
for i=li=size (W,1) Z%E=scoxrt
for j=i:size(W,1)
if{5(j,]j) >max)
max=5(j,3):
temp index=3;
end
end
max=0;
temp=>5 (temp index, temp index):
S({temp index,temp index)=5(1,1);
S{i,i)=temp;
temp=U(:,temp index);
U(:,temp_index)=U(:,1):
TU{:,i)=temp;
end
W=R"*L;
[V,=s]=eig (W)
max=0;
for i=l:size (W,1l) %%sort
for j=i:size (W,1)
if(=(3,3) >max)
max=s (j,J);

Command Window

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

max=s(3,3)7
temp index=3;
end
end
max=0;
temp==s (temp index, temp index):;
sitemp index,temp index)=s(1,1);
z(i,i)=temp;
temp=V(:,temp index):
Vi cemp_index)=V(:,1i):
Vi:,i)=cenp;
end
s=3grt(=s):
di=sp(U):
disp (V)
disp(5):
end

Command Window
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1.2.3 Décomposition LU

La décomposition LU est une méthode de décomposition d’'une matrice comme
produit d’une matrice triangulaire inférieur L par une matrice triangulaire U. Cette
décomposition est utilisée en analyse numérique pour résoudre des systémes d’équa-

tion linéaire

Définition 1.2.2. Soit A une matrice carrée. On dit que A admet une décomposition
LU sl existe une matrice tiangulaire inférieur formée de 1 sur la diagonale, noté L,
et une matrice triangulaire supérieur, noté U, qui vérifiant [’égalité : A = LU

1l n’est pas toujours vrai qu’une matrice A admette une décomposition LU. Cependant
dans certains cas, en permutant des lignes de A, la décomposition devient possible,
on obtient alors une décomposition de la forme A = PLU

ot P est une matrice permutation bien que les décomposition LU et PLU conduisent
a des formules distinctes, généralement quand on parle de la décomposition LU, on

fait référence a l'une ou lautre de ces décomposition

Existence,Unicité

Pour tout matrice carrée, on a existence d’une décomposition PLU. Pour une matrice
inversible, la décomposition LU existe si et seulement si : toutes les sous-matrices
principales d’ordre 1 & n— 1 sont inversibles. [pur une matrice carrée de rang r < n, il
y a des conditions suffisantes analogues| si toutes les sous-matrice principales d’ordre

1 a nsont inversibles, elle est méme unique

2 1 -1
Exemple 1.2.3. A = 4 6 1
-2 11 8
Ly =Ly — 2L,
Ly=Ls+ Ly
N
2 —1
0 4 3
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2 1 -1 1 00 2 1 -1
4 6 1 =] 2 10 0 4 3
-2 11 8 -1 01 012 7
Ly =Lz — 3L,
2 1 —1
-1 0 4 3
00 —2
2 1 -1 1 0 1 —1
4 6 1 =] 2 10 0 3 | =LU
-2 11 8 -1 3 1 —2

Programme en Matlab [L,U,p]=1ul2 1 —-1;4 6 1;,-2 11 §]
>>A=[2 1 —1;4 6 1;,-2 11 §]

2 1 -1
A= 4 6 1
-2 11 8
>> [L, U] = lu(A)
1.0000 0 0
L =1 —0.5000 1.0000 0

0.5000 —0.1429 1.0000

4.0000 6.0000  1.0000

U= 0 14.0000 8.5000
0 0 —0.2857

010

p= 0 0 1

1 00
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Programme de LU sous Mtlab :

1 function[C]=Lu_decomposition (C)
2 — [m, n)l==ize (C);

3 Fupper Matrix

4 - ==0:

El= for j=l:n

& — for i==+1:m-1

T - t=C(i+1,3)/C{3,3):
8- Cii+l, :)=C{i+1l, :)-tc*C({d,:):
9 - b(i+l)=b{i+l)-t*b(]j) -
10 - F(i+l, :)=t;

11 = end

12 - s=3+1;

13 — end

14 — u=C IFIupper Matrix

15 - L=£:

16 — L{:,n)=zeros({n,1l);

17 - for i=1:n

1z - L{i,i)=1:

o= end

20 — L %Lower Matix

21

Command Window

1.2.4 Décomposition de Cholesky

La décomposition de cholesky est une décomposition d'un hermitienne, une ma-
trice définie positive dans le produit d’une matrice triangulaire inférieure et son trans-

posé conjugué. Il a été découvert par André-Louis Cholesky pour matrice réelles

Théoréme 1.2.4. Soit A € C™" une matrice définie positive. Il existe une unique

matrice L € C™" triangulaire inférieure telle que l; > 0 pour tout i et A = LL*

Preuve 1.2.4. supposons que LL* = MM?*, que l; > 0 et que my; > 0 pour tout
i. On a M~'L = M*L™™ qui est a la fois triangulaire inférieure (4 gauche) et
triangulaire (4 droite). C’est donc une matrice diagonale. Les entrées diagonales
valent mi_illn- = miili_il et donc sont égales a 1 par la condition de positivité. Ainssi
ML = M*L~* =1, c’est-a-dire L = M

L’existence de cette décomposition se prouve par récurrence sur n. Pour n = 1 on
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prend L = (y/a11). Supposons que la décomposition de Cholesky existe pour toute

matrice définie positive n — 1 x n — 1. Ecrivons

A1n
An,1 a .
A= avec a = :
a*  apy

Qp—1n

Notons A,,—1 = L,_1L}_, la décomposition de Cholesky de A,—1.0n a

ut o« 0 g
en prenant L,_1u = a et u*u+ aff = a,,. On obtiendra la décomposition de Cholesky

deA si l'on peut prendre o = 5 > 0 ce qui sera possible si aff > 0. L’égalité ci-dessus

prouve que

detA = detL, o detL) [

Comme, par hypothese, de A >0 et de L,y > 0 on a bien aff > 03

Algorithme de calcule
Ecrivons A = (ai,j) et L = (ljJ')
de l'igalité A = L*L, on déduit que
n

aij = > lijljx

k=1
puisque L est triangulaire inférieur. Pour ¢ = 1, on détermine la premiére colonne de
L en commencant par la coefficient diagonale :
J=1,a11 = liilyy, d’ot 1y = \Jan
j = 2, a1 = 111121,d’0ﬁ l21 = %
si on a déterminé les i-éme colonne del, on peut déterminer la i-éme en commencant

la aussi par le coefficient diagonale :

Jo=tay; = liglin + liglay + .. + ligli; dot Ly = Ja; —lLig— ... —ligliy, — 1 =

1—1

2

aii— Y 1%
k=1
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. . A iip1—bialivia— o —lii—1lipii—1
] =1+ 17am+1 = li,lll+1,1 —+ ...+ li,ili+1 d’ott li+1,i = el lhid Gizlritli =

i

i—1
aii—  likljk
E=1

lii

6 5 55
Exemple 1.2.4. A= | 15 55 225

25 225 979

li; = a; = V6 = 2.4495

__ a2 _ 15
o = % = 10 = 6.1237

lyo = /a2 — 13, = /55 — (6.1237)2 = /55 — 37.5 = 4.1833

as1 __ 55
I3 = B =ohm = 22.4537

azo—lgy xlo; _ 225—(22.4537)x(6.1237) _ 225—137.5 = 20.9165

ls2 = Ioo = 4.1833 4.1833

lss = \ass — 12, — 13, = /979 — (22.4537)% — (20.9165)2 = /979 — 941.6667 —
6.1101

2.4495 0 0 2.4495 6.1237 22.4537
L = 6.1237  4.1833 0 L* 0 4.1833 20.9165
22.4537 20.9165 6.1101 0 0 6.1101

Programme en Matlab
>>A=1[6 5 5515 55 225/55 225 979

6 5 55
A= 15 55 225
55 225 979
>> [L] = chol(A, lower’)
2.4495 0 0
L= 6.1237  4.1833 0

22.4537 20.9165 6.1101
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>> [/

2.4495 6.1237 22.4537
L'= 0 4.1833 20.9165
0 0 6.1101

Le programme de cholesky sous Matlab :

1 function L =my chol (&)

2 - n = zize(RA,1): © = zeros(n):

3 - L = O;

4 — for k= 1:n

5 - if k=1

6 — Lik,k) = sgrc(iik,k)):

T - Lik+l:n,k) = A(k+l:n,k)/Lik,k):
B = else

9 - v =L{k,1:k-1)"'; %L k1"

1n — Lik,k) = sgrc(&(k, k)-v"*v);

11 - L{k+l:in,k) = (BA{k+l:n,k)-Lik+lin,l:k-1)*v)/Lik,k):
12 - end

13 = end

14

Command Window

1.3 {i,j,....k}-Inverses généralisées

Dans cette section on va étudier I'inverse de Moore-Penrose des matrices et leur
propriété (car est un inverse généralisé le plus célébre). Puis les {i,j,..., k} inverse
et on etudier des méthodes pour calculer I'inverse de Moore-Penrose d’'une matrice

A.

1.4 Inverse de moore-penrose

Les Equations de Penrose

En 1955 Penrose a montré que, pour toute matrice finie A (carré ou rectangulaire)

des éléments réels ou complexes, il y a une unique matrice X vérifiant les quatre
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équations ( appelées les équations de Penrose )

AXA = A (1)
)

XAX = X (2
(AX)* = AX  (3)
(XA = XA (4

ou A* désigne la transposée ( cas réel ) ou I'adjointe ( cas complexe ) de A. Cet inverse

est appelé I'inverse de Moore-Penrose, et on le note par Af.

Si A est inversible, il est claire que X = A~! trivialement vérifie les quatre équations.
Puisque l'inverse de Moore-Penrose est unique il suit que l'inverse de Moore-
Penrose d'une matrice inversible est le méme comme 'inverse ordinaire.

Dans ce chapitre nous nous intéressons a plusieurs inverses généralisés qui satisfont
quelques équations de Penrose. C"*" [R™*"] dénote la classe des matrices m X n

complexes [réelles].

Définition 1.4.1. Pour toute A € C™*", soit A{i,j,...,k} Uensemble des matrices
X € C™™ qui satisfont les équations (1), (j), ..., (k) parmi les équations
(1) — (4). Une matrice X € A{i,j,...,k} est appelée un {i, j, ..., k}—inverse de A, et

est notée par AUk

Exemple 1.4.1. Si A{1,2,3,4} est non vide, alors il est constitue d’un seul élément.

Preuve. Soit XY € A{1,2,3,4}. Alors

X = X(AX)" = XX*A* = X(AX)*(AY)*
= XAY = (XA (YA)'Y = A'Y*Y
= (YA'Y =Y

Théoréme 1.4.1. [0] Si A, B € C"™*". tels que AB* =0 et B*A =0, alors :
(A+B) = At + Bt

Théoréme 1.4.2. Si A= BC ou A C"", Be C™",C € C"™", et
r =rang(A) = rang(B) = rang(C), alors AT = C*(CC*)"}(B*B)~1B*.
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Preuve. Remarquons que B*B et C'C* sont des matrices dans C"™*" de rang égale a
r. Soit X = C*(CC*)~}(B*B)~'B*. On va montrer que X vérifie les quatre équations
de Penrose. On a

AX = BCC*(CC*)"Y(B*B)™'B*, donc (AX)* = AX. En outre
XA=C*(CC*)"Y(B*B)"'B*BC = C(CC*)~'C, donc (X A)* = X A. Par conséquent
les équations (3) et (4) de Penrose sont vérifiées.

pour vérifier les équations (1) et (2) nous utilisons XA = C*(CC*)~*C pour obtenir
A(XA) = BC(C*(CC*)"'C) = BC = A.

Et (XA)X = Cc*(CccH~tcc(cc*)"Y(B*B)"'B* = C*(CC*)"Y(B*B)"'B* = X.
Par conséquent X = Af.

O

11 2

Exemple 1.4.2. Soit A =
2 2 4

] , r=rang(A) =1, A= BC ou B € C**! et
C € CY*3. En fait,

A:

;][1 2]

Alors B*B = [5], CC* = [6]. Par conséquent

1.5 Comparaison entre des décomposition

Dans cette section on va faire une comparaison entre les 4 programme étudié
ultérieurement, cette comparaison est consacré sur la rapidité de l’exécution, on
utilise le méme PC et la méme matrice et les méme conditions, pour calculé le temps
de l'exécution sur le programme Matlab il y & la commande (tic toc) et pour prendre
une valeur presque stable on calcule la moyenne arithmétique de plusieurs tentative
(10000 fois ) par ce que chaque fois on trouve une valeur différente par rapport les

autres
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Programme de QR

i|= w=0

2 - for k=1:10000

sl = tic

4 - =1 -2 40810 -5 72011 30 51 4 594 3110 3 -6 4 79 -210 11 -2 1;

3 056 711 12 30 2 -4 50 3 14 12 16;53 4 -2 6 1 4 6 8 8 10 1le 1% 20 11 4:
[ 6 2120 3 89 74 2 1012 13 8 7;1 2 3 859 76 4 10 12 13 11 16 15 2;

7 8 9 12 14 12 30 1 7 9 8 55 66 12 13 12;0 2 5 7 18 16 14 2 13 10 1 -1 -2 -3 5;
g 5201046 78 9 30 2 15 40 0 -1 -6;2 4 & 55 20 52 7T 8 9 14 22 10 33 2 1:;
9 1077856421 31320014201 0 -4 -5 -6 5 3 2 7 15 12 13 10 12]
10 = [m,n)l==2ize (&) ;

11— g=zeros (m,n);

12 - Qil:im,1)=A(l:m,1);

13 - B=zeros (n):

14 - Ri{l,1)=1:

15 = for k=1:n R(k,k)=norm(&(l:m,k)):Q(l:m, k)= (1l:m, k)/R(k, k):

1l — for j=k+1l:n Rik,j)=Q(l:m, k) "*&(l:m,j);

17 = Alim 3)=A(lim J)-Q(1:m k)=E(k,J)-

1z - e

1% - end

20 — disp(Q) :;v=inv (B*R") ;D=inv (Q'*Q) ;X=R"'* (v) * (D) *"

21 — Toc

22 — w=wW+toc

23 — end

24 - p=w,/10000

25 — disp (p)

26 — dis=p (¥)

Command Window

0.0105
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programme de SVD

L= w=0

2 - for k=1:10000

3 - tic

4 - A=[1 -2 40810 -5 7 20 11 30 51 4 5;4 3110 3 -64 79 -2 10 11 -2 1;

5 0% &6 711 12 30 2 -4 50 3 14 12 1675 4 -2 6 1 4 & 8 9 10 16 15 20/ 11 4;
& 6 21 20 32 8 5 742 1012 13 8 7;1 2 38 97 6 4 10 12 13 11 1e 15 2;

7 8 9% 12 14 12 30 1 7T 9 8 5% 66 12 13 12;0 2 5> 7 18 16 14 2 13 10 1 -1 -2 -3 5:
g 520104 6 T8 9 30 2 15 40 0 -1 -6;2 4 6 55 20 52 7 8 5 14 22 10 33 2 1;
9 1077856421 31320014:;201 0 -4 -5 -65 3 2 7 15 12 13 10 12]
10 - B=pinw (&)

11

12 — toc

13 - w=wttoc

14 - end

15 - p=w,/10000

Command Window

0.001e
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Programme de LU

i|= w=0

A= for k=1:10000

3 - tic

4 - B=[1 -2 40810 -5 7 20 11 30 51 4 94 3110 3 -6 4 79 -2 1011 -2 1;:

5 058 7 1112 30 2 -4 50 3 14 12 16;5 4 -2 6 1 4 6 8 9 10 1l& 15 20 11 4;
3 6212038974210 12 13 8 7;1 2 3 85 7 6 4 10 12 13 11 16 15 2:

7 g 9 12 14 12 30 1 7 9 8 55 606 12 13 12;0 2 5 7 18 16 14 2 13 10 1 -1 -2 -3 o
g ;5 20 10 4 6 7T 8 9 30 2 15 40 0 -1 -6;2 4 € 55 20 52 7 8 9 14 22 10 33 2 1;
9 10778564 2131320014;20 1 0 -4 -5 -65 3 2 7 15 12 13 10 12]
1= n = zize(h, 1); I = eye(n); L = I; T = &;

11— for k=1:n-1

12 — Lik+l:n,k) = U(k+l:n, k)/U(k,k); Tmultipliers

13 = for j = k+1l:n

14 - Tij,k:n) = T, k:n)-Lij,k)*U(k,k:n); Frows

15| = end

16 — end

17 — L

18 - o

19 - | w=inv (U*U') ;jk=inv (L' *L) ;

20 — X=0"*w*k*L"

21 - coc

22 — wW=wW+toc

23 — end

24 - p=w,/10000

25 — disp (p)

26 — disp (X)

Command Window

1.0e-05 *
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Programme de Cholesky

1 w=0

2 for k=1:10000

3 tic

4 [1-2408 10 -57 2011 30 51 4 9;4 3110 3 -6 47 9 -2 1011 -2 1;

H1 056 711 12 30 2 -4 5 0 3 14 12 1le;2 4 -2 61 4 &6 8 9 10 16 15 20 11 4;

& 6 21 20 3 85 7421012 13 8 7;1 2 389 764 10 12 13 11 16 15 2;

7 8 912 14 12 30 1 7 9 8 55 66 12 13 12;0 2 5 7 18 16 14 2 13 10 1 -1 -2 -3 5

i 5 20 10 4 678 9% 30 2 15 40 0 -1 -6;2 4 &6 55 20 52 7 8 9 14 22 10 33 2 1;

9 1077856421313 20014;201 0 -4 -5 -6 53 2 7 15 12 13 10 12]

10 [m,n] = size (&) ; transpose=false ;

11 ifm<n

12 transpose=true ;C = A*A' ;n = m;

13 elze

14 C = L'=L;

15 end

16 dC = diag(C); tol = min(dC(dC > 0))*1le-9 ;L = zeros(size(C)) ;xr = 0 ;

17 for k=1 : n

18 r=1r + 1 ;Lik : n,r) = Clk : n, kK)-Li{k : n,1 : (r -1))*L{k,1 : (r=-1))':

19 if Lik,r) > tol

20 Lik,r) = sgqrc(Lik,x)):

21 if k<nmn

22 Li{fk + 1) : n,r) = Litk + 1y : n,r)==L{k,r):

23 end

24 elze

25 r = r-1; end

26 end

Command Window

27
28
29
30
21
32
33
34
35
36
37

L=5L{:, 1 : r):M = inv(L'*L);
if transpose

Y = A'*L*M *M *L';
else

Y = L *M*M~*L*a';
end

]

w=wWitoco

end

P=w/10000

diszpip)

Command Window

Command Window

0.0014
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Conclusuion

D’aprés la comparaison, nous concluons que la décomposiotion LU est le plus

rapide



Chapitre 2

Opérateurs linéaires

Notion de projection

e (A) Tout au long de ce mémoire nous considérons les espaces de Hilbert, notés
H, H., Hs, ete. Le produit scalaire et la norme induite sont notés respectivement par
<,> et ||.|]. L(H1,H2) désigne 'espace des opérateurs linéaires de H; dans H,. Si
T : Hy — Ho est un opérateur linéaire, le domaine, noyau et 1'image de 7' sont notés
respectivement D(T), N(T), et R(T).

e (B) Le graphe de T est définie par G(T) = {(x,Tx) : x € D(T)} C Hy X Ha.
Si G(T) est fermé, alors T est appelé un opérateur fermé. L’ensemble de tous les
opérateurs linéaires fermés est noté C(H, Ha).

L’ensemble des opérateurs linéaires bornés est notée B(Hi, Hs). Si Hy = He = H,
alors B(H1, Hs) et C(H1, Hz) sont désignés par B(H) et C(H) respectivement.

e (C) Si S et T sont deux opérateurs linéaires tels que D(T) C D(S) et Tx = Sx
pour tout x € D(T), alors T' est appelé une restriction de S et S est appelé une
extension de 7. On note T' C S.

e (D) Soit T € L(H1,H2). Si D(T) = H,q, alors T est appelé densément défini. Le
sous-espace C(T) = D(T) N N(T)* est appelé le carrier de T,

1
si T € C(Hi,Ha), alors D(T) = N(T) @ C(T), la somme directe orthogonale de
N(T) et C(T)
e (E) Pour tout 7' € L(#H;,H2) & domaine dense, on a :

N(T) = R(T*)*, N(T")=R(T)~
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ou T™ 'adjoint de I'opérateur T satisfait
< T'y,x >=<y,Tx > pour tout x € D(T)

En particulier, T respectivement T a une image dense si et seulement si T™ respec-
tivement 7" est injectif.

e (F) Un opérateur fermé partout défini est borné, ¢’est une conséquence de théoréme
du graphe fermé. Inversement, on peut écrire B(H1, Hs) C C(H1, Ha).

¢ (G) On note :

Hio=Hi X Ho={(x,¥) € H1 X Ha : x € H1,y € Ho}
‘H, 2 est un espace de Hilbert pour le produit scalaire
< (x1,¥1), (X2, ¥2) >=<X1,X2 >3, + < V1, V2 >,
Soit J; : H; — Hi2, ¢ = 1,2 définie par
Jix = (x,0) pour tout x € H;

Joy = (0,y) pour tout y € H,

et
HI,O = J1H1 = 7‘[1 X {0}

/Hog = JQHQ = {O} X HQ

Proposition 2.0.1. Soient T, S € C(H). Alors si R(T) + N(S) est fermé et si
R(T)NN(S) ={0}, R(T) est fermé.

Proposition 2.0.2. [/] Soit T € C(H1, Hs) un opérateur densément définit. Alors :
(1) N(T) = R(T")*

(2) N(T*) = R(T)*

(3) N(T"T) = N(T)

(4) R(T*T) = R(T*).

sy

Proposition 2.0.3. Soit T € C(Hi,Hs) un opérateur densément définit. Alors :
(1) U+T*T) e BHi), I+TT*) ' € B(Ha).

2) U+TTH T CTI+TT) et |T(I+TT) <1

(3) (I+T*T)'T*CT*(I+TT*) et |T(I+TT*) Y <1
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2.1 Espace de Hilbert

Définition 2.1.1. Soit H wun espace wvectoriel réel, resp(complexe). On appelle
produit scalaire sur H tout forme bilinéaire symétrique, resp(hermitien), qui est
définie positive.

On notera < x.y > le produit scalaire des vecteurs x,y € H

cela signifie que 'application :

<.,.>HxH-—K=R ou C

(.7), y) — <,y >
vérifie :

1. pour tout y € H, l'application x € H —< x,y >€ K est une forme linéaire

2. pour tous x,y € H. On a
<y,x >=<x,y > st l’espace est réel

<y,x >=<T,y > st l’espace est complexe

3. pour tout x € H, on a < x,x >> 0 si et seulement si x =0

Remarque : Notons que dans le cas complexe, on a donc, pour z,y € H et A € C

<z \y>S=A<z,Y>

Définition 2.1.2. Si [’espace vectoriel H est muni d’un produit scalaire, on dit que

c’est un espace préhilbartien

Exemple 2.1.1. si (S,m) est un espace mesuré, on muni H = L*(m) d’un produit
scalaire (que l'on qualifiera de naturel) en posant, pour f,g € L*(m) :

< f,g>= fs fgdm dans le cas réel

< f,g>= fs fgdm dans le cas compleze

En particulier, Sur ly, On a le produit scalaire naturel défini par :

o0
<X,y >= . Tpy, - dans le cas réel
n=1

[e.e]
<X,y >= > T, :dans le cas complexe
n=1

pour x = (xp)n = L,y = (Yn)n = 1 € Lo
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Proposition 2.1.1. (Inégalité de Cauchy-Shwarz). Soit H un espace vectoriel(réel

ou complexe) muni du produit scalaire< .,. >. Alors pour tous x,y € H

<z y><[z|lyl

Preuve 2.1.1. Sif| z ||= 0 c’est que x = 0 et l'inégalité est immédiate. Sinon,

| z ||> 0 et pour tout t € R nous avons

0<| te+y [IP=] = | * +2Re <2,y > t+ | y |”

Le discriminant de ce polynéome quadrative doit étre <0 :

0> (2Re<z,y>)P—4|z | y]?

d’ou

([l y |2] Re < 2,y >|

De plus il existe « € C de module 1 tel que < x,y >= a |< x,y >|, d’ou
a<mzy>=|<zy>|
et |z |y =l ay |> Re < z,ay > Re(@ < 2,y >) = Re |< z,y >|.

Définition 2.1.3. un espace de Hilbert est un espace vectoriel H(réel ou complexe)

. . . . 1
munt d’un produit scalaire et qui est complet pour la norme < x,x >2

Exemple 2.1.2. L’espace vectoriel R"™, muni du produit scalaire euclidien usuel, est

un espace de Hilbert

Exemple 2.1.3. L’espace L*(Q) muni du produit scalaire suivant :
<u,v >= / u(z)v(x)de
0

est un espace de Hilbert
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Théoréme 2.1.1. (Théoréme des projections) Soit K C H un convexe fermé non

vide. Alors pour tout f € H, il existe u € K unique tel que :

— u| = mi — 2.1
f —ul=min|f — v 2.1)
De plus u est caractérisé par la propriété :
ue kK

(f —u,0—u) <0 (2.2)

on note u = P f = projection de f sur K

Preuve 2.1.2. a)Ezxistence Nous indiquons deux démonstrations

1. La fonction ®(v) = (f —v) est convexe, continue et ‘ l‘im ®(v) = +o0, Donc ¢
v|[—00

atteint son minimun sur K puisque H est réflexif.

2. La deuzieme démonstration ne fait pas appel a la théoréme des espaces réflezifs.

Soit (vy,) une suite minimisante pour 2.1.1 i.e v, € K et

dn:|f—vn]—>d:vlgif<|f—v]

Montrons que (v,,) est de cauchy. Application lidentité du parallélogramme avec

a=f—uvy,b=f—uv, il vient

Dt e (&)

Up + U ‘2 |
2

PR

or ttm ¢ K et donc | f — 2t |>d

par conséquent :

| I m 2 (@2 ) — dPet L Jup — vp| = 0
2 2 m,n— 00

donc v, —u € K et l'onad=|f—ul

b)Equivalence de 2.1.1 et 2.3
Soit uw € K vérifiant (2) et soit w € K on a :
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v=(1—-thu+twe K pourt €]0,1] et donc

|f = ul <|f = (1= Du+tw]]| = |(f = u) = t(w = )

par suit :

=l <1 = uf? = 26(f — w0 — w) + [w — uf?

e 2(f —u,w—u) < tjw —ul*. quand t — 0
on obtient(3)

Inversement, soit u vérifiant 2.3. Alors on a :

lu—fP=lv—fP=2(f —wv—u)—|u—v* <OV €K

d’ot(2)
C)Unicité :

Sotent ujetus vérifiant 2.3 on a :

(f —up,v—u1) <0 Yo e K (2.3)
(f —ug,v—u <0 VveK (2.4)

Reportant v = uy dans 2.3 et v = u; dans2./ , on obtient apreés addition, |u; —us|® < 0

2.2 Opérateurs linéaires

2.2.1 Opérateur linéaire dans les espace de Hilbert
Définition 2.2.1. Une application T définie d’un espace de Hilbert Hy, dans Hy est
dit "opérateur linéaire” si T satisfait les deux propriétés suivantes :

1. Ve,y € H,T(z+y) =T(x) +T(y).

2. Vo € Hy,Va € Hy,T(ax) = aT(x).

L opérateur identité I est défini parlx = x pour tout v € H.
L opérateur nul 0 est défini par Oz = 0,pour tout x € H.
Le noyau de T notée N(T') et image de T, notée R(T) sont définis par :
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soit'T': H — Hy,y € Hy;dx € Hy :y =Tx.
N(t)={r € H;,Txr=0} e R(T)={Tx,x€ H}.

Définition 2.2.2. Soit H un espace de Hilbert et soit T : H — H wun opérateur

linéaire, on dit que T' est borné si et seulement si :

3C > 0,|| T2 |< C ||« ||,V € H

Théoréme 2.2.1. (Représentation de Riesz) Soit H un espace de Hilbert, et f est
une forme linéaire continue sur H.

1l existe un vecteur a € H et un seul, tel que :
Ve € H, f(z) =< a,z >

2.2.2 Adjoint d’un opérateur

Proposition 2.2.1. Soit H un espace de Hilbert.Pour tout T € L(H) il existe un

autre opérateur, noté T*, et appelé L’adjoint de T, tel que :

<Tzx,y>=<uz,Ty > Vr,y e H

De plus || T* [|=|| T |
Preuve 2.2.1. Soit y € H, L’application :

boT:H — H

r — <Tx,y>

est une forme linéaire continue sur H, il existe donc, par le théoreme de Fréchet-Riez,

un unique élément de H que [’on notera Ty, tel que :

<z, Ty >=<Tzx,y > Vee H

A cause l'unicité ,[’application

T°:ye H—T'ye H
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est clairement linéaire :si yi,ys € Hetay,as € K

On a pour tout x € H :

<z, T*(ay1 + agys) >=< Tz, a1y; + asys >

=a <Tx,yp > +az <Tz,ys >

=a; <z, Ty > +a; < x, T ys >

=< z,a1T*y1 + axT*yy > Donc T*(ar1y; + asy2) = a1 T*y1 + a2 T*ys

D’autre part, linégalité de Cauchy-Schwarze donne :

[ (@oT)(x) [=|< T,y >I<|[ T 1y [<IT = 1l

Donc || T*y ||=|| @ o T ||[<|| T ||| v ||-Cela prouve que Uapplication linéaire T* est
continue et que | T* || Z|| T ||

Pour voir que | T ||<|| T* ||, remarquons que T* a lui-méme au adjoint T**, et que
VonaT™ =T

<y, T"x >=<T'y,x >=<y,Tx >
Pour tous x,y € H, cela implique que T**x = Tx pour tout x € H, Alors || T ||=||
< T |

Exemple 2.2.1. Soit S, l'opérateur linéaire (translation ou Shift a droite) défini sur
l5(R) tel que :

SdZEQGR) — EQ(R)

r=(x1,29,...) —> Sqg=1(0,21,29,...)
Alors

< Sgryy > = < (0,21,29,...), (Y1, Y2, ...) >

= Oxyl—l—xlxyg—l—xgxyg...

—+o0
= E TilYi+1
i=1

= < ([El,l‘g, ), (yg,yg,...) >

= <z Ay >
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Donc

Sil2(R) — £(R)
y = (V2,3 )

2.2.3 Opérateurs fermés

Définition 2.2.3. Soient X,Y deux espace vectoriels normés, T un opérateur linéaire
de D(T) C XdansY : D(T) — Yest fermé si et seulement si :

x, € D(T) xo € D(T)
T, — To = et

Tx, — Yo Txo = yo

Remarque 2.2.1. T est fermé si et seulement si G(T) est fermé
(tq G ={(z,y)/r e X,yeY ety =Tz}).

Proposition 2.2.2. tout opérateur linéaire borné T : X — Y est fermé

Preuve 2.2.2. Supposons que (x,) € D(T) telle que x, — x dans X avec Tx — y
dans Y, comme T est borné , donc D(T) = X, Alors d’apres la continuité de T il est

claire que x € D(T) et Tz =y

2.3 Opérateurs Projections Orthogonales

Les opérateurs projection dans les espace de Hilbert et de banach sont largement
utilisés dans différents domaines des mathématiques comme ’analyse fonctionnelle
et numérique, théorie de 'optimisation et de contrdle optimal, la programmation non
linéaire et stochastique et la théorie des jeux. On utilise 'opérateur de projection

dans le chapitre 3 pour définir 'inverse généralisé et 'inverse de Moore-Penros

Opérateur de projection

Une projection sur un sous-espace quelconque F' de H est un opérateur linéaire
borné

P de H dans F tel que P? = P. Soient F' un sous-espace vectoriel de H et G un
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supplémentaire de F' dans H.

N’importe quel vecteur x de H peut s’écrire d’une fagon unique comme somme d’un
vecteur de F' et d’'un vecteur de G x =x'+x", (¥,x") € F' x G.

La projection sur F parallélement & G est alors 'application P qui associe & tout x
de H

le vecteur x" de F' tel que R(P) = F et N(P) =G.

La projection sur G parallélement & F' est 'application ) = Idy — P, appelé aussi
projecteur associé a P.

L’image de @) n’est autre que le noyau de P, 'image de P est le noyau de Q).

Dans ce qui suit, nous supposerons que H est décomposé en la somme directe :
H=H 1 OHD - D H,.

Proposition 2.3.1. La famille (P;) des projections associées a la décomposition pré-
cédente vérifie les assertions suivantes :

1) S, P = Tds

2) P? = P, pour tout i;

3) P,oP; =0 pour tout (4,j) tel que i # j.

Définition 2.3.1. Une projection orthogonale sur un espace de Hilbert H est une
application linéaire P : H — H qui satisfait :

o P2=1P;

o < Px,y >=<x, Py > pour tout z,y € H (c.a.d P = P*).

Une projection orthogonale est nécessairement bornée.

Exemple 2.3.1. L’espace L*(R) est la somme directe orthogonale de I'espace M des
fonctions paires et N ’espace des fonctions impaires. Les projections orthogonales P

et Q de H sur M et N, respectivement, sont donnés par :

preg =TI i

On note que I — P = Q).

Définition 2.3.2. Soit G un sous-espace fermé de ’espace de Hilbert H et soit

1
H=GDF
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Alors tout vecteur h € ‘H est représentable uniquement sous la forme
h=g+f

outgeGetfeF et<g,f>=0.Levecteur g est appelé la projection orthogonale
de h sur G. L’opérateur qui a tout h € H associe g € G est appelé l'opérateur de

projection orthogonale sur G. Il est noté par Pg ou parfois par P :

g = Ph = Pgh.
L’opérateur de projection orthogonale est évidemment linéaire, il est borné et sa norme

égale a un. En effet, d’aprés [’équation

IR [1* = llgl* + 11 £11”

on a

lgll < IRl (2.5)

et alors
Pl <1

Mais si h € G, alors g = h, donc il y a une égalité dans (2.5).

Par conséquent ||P|| = 1.

Théoréme 2.3.1. St P est un opérateur définie sur H tel que, pour hi,hy € H
arbitraire
1) < P?hy, hy >=< Phy, hy >

2) < Phl,hg >=< hl,PhQ >

alors 1l existe un sous-espace fermé G C H tel que P est l'opérateur projection ortho-

gonale sur G.

Preuve 2.3.1. L’opérateur P est borné.
|Ph||> =< Ph, Ph >=< P*h,h >=< Ph,h >

et
IPh|[* < [|PR[||R]]

alors que
IPh| < [|A]]
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Donc, lopérateur P est borné et ||P|| < 1. Notons G [’ensemble des vecteurs g € H

tels que :
Pg=g.

Clairement, G est un sous-espace vectoriel de H. On devra prouver que G est fermé

dans H. Soit g, € G (n=1,2,3,...) et g, — g dans H. Alors

gn:Pgn

et
Pg—gn=Pg—Pgy=P(g— gn).
Puisque ||Pg — gn|l < |lg — gul|, on en déduit que lim g, = Pg = g done, g € G,
n—0o0

ce qui implique que G est fermé. Vérifions que P = Pg, ou Pg est opérateur de
projection orthogonale sur G. Pour tout h € H, le vecteur Ph appartient a G puisque
P(Ph) = Ph, le sous-espace G contient aussi Pgh.

Par conséquent, il est suffisant de prouver que

< Ph— Pgh,¢ >=0, V¢’ € G

ou alors

< Ph,g >=< Pgh,¢' >, V¢ € G

En utilisant les propriétés 1) et 2) on a :
< Ph,¢ >=< h,Pg >=<h,q >

< Pgh,q >=< h,Pgg >=<h,q >

En particulier, (I — P) est la projection orthogonale sur H © G ou I est l'identité de
H dans H.

Théoréme 2.3.2. ( Théoréme de la Projection ) Soit H un espace de Hilbert et F
un sous espace fermé de H, alors.

i) pour tout x € H existe y unique dans F.

ii) Le vecteur y est l'unique qui vérifie (x —y) € F+ c’est-a-dire

<x-—y,z>=0, Vz € F. y est la projection orthogonale de x sur F.
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2.3.1 Opérations concernant les projections orthogonales

Dans cette section on doit prouver des propositions concernant la multiplication,

I’addition et la soustraction des opérateurs de projections orthogonales.

Théoréme 2.3.3. Soient Gy et Gy deux sous-espaces fermés de [’espace de Hilbert
H,
le produit de deux opérateurs de projections orthogonales Pg, et Pg, est aussi un

opérateur projection orthogonale si et seulement si Pg, et P, commutent, c.a.d, st
P, Pg, = P, P,

dans ce cas

Pq, Pa, = P

o

G =G NGy
Preuve 2.3.2. Si Pg, Pg, est une projection orthogonale, Alors
Pe,Pa, = (Pg, Pa,)" = P4, Ph, = Pa,Pa,.
Inversement, fixons h € H arbitrairement et soit
g = Pg,Pg,h = Pg,Pg,h

par la premiére représentation g € G et par la deuxiéme, g € G, donc g € G1 N Gs.
St h € Gy NGy, alors Pg, Pg,h = h. Notons

P¢, Pg, = Pg,Ps, =P
alors

P* = (P, Pg,)
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et pour tout hy, ho € H, on a :

< Phy,hy > = < Pg,Pg,hi,hs >
= < Pg,h1, Pg,ha >
= < hy,Pg,Pg,ha >
= < hy, Pg,Pg,hs > .
= < hy, Phy >

Ces équations montrent que l'opérateur P = Pg, P, satisfait les conditions du théo-

reme 2.3.1, donc, il est un opérateur projection orthogonale sur G = G, N Gs.

Corollaire 2.3.1. Deux sous-espaces fermés Gy et Go de H sont orthogonaux si et
seulement si
Pg,Pe, =0

Théoréme 2.3.4. La somme finie d’opérateurs de projections orthogonales
Po, +Pg,+...+ Ps, =Q (n<o0)
est un opérateur projection orthogonale si et seulement si
P, Ps, =0 (i#k)

c.a.d, si et seulement si les espaces G;  (j =1,2,...,n) sont deux a deux orthogonauz

dans ce cas
Q= Fq
ol

G=G18G®..dG,

Preuve 2.3.3. Si les espaces G; sont deux a deuz orthogonauz, alors Q* = Q, e,
donc, la suffisance de la condition est évidente. Il reste seulement de prouver la né-

cessité de la condition. Soit Q) est un opérateur projection orthogonale, alors

IFI°> <@Qf. f>=) < Po,f.f>><Poff>+<Palff>.

j=1
Pour tout paire d’indices distingués i et k. D’apres cette relation il suit que

1P, fII* + [1Pe fI* < (1FII”
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Utilisons cette inégalité avec

= Fg,h
alors
1Pe; Pay h||* + | Pa, blI* < || Pay 2l
et
| Pe,Pe,h|* =0
Pour h € H. Donc,
Pe,Ps, =0

Alors les espaces G; et Gy, sont deuz a deux orthogonaux.

Théoréme 2.3.5. La différence de deux opérateurs projections orthogonales,
Pg, — Pg, (2.6)

est un opérateur projection orthogonale si et seulement si Gy C G1. Dans ce cas

Pg, — Pg, est lopérateur de projection orthogonale sur G & Gbs.

Preuve 2.3.4. Posons
Q:I_(PG1_PG2)

Q est un opérateur projection orthogonale si Pg, — P, est une projection orthogonale.

Donc
Q= —-Pg)+ Pa,
1l suit du théoréme 2.3.3 que
(I — Pg,)Pg, =0

ou bien
Pa, = P, Po, (2.7)
si g € G alors
9= Fe,9=Fg Ps,9=Fc,g
Donc g € Gy. Puisque tout élément g € Gy appartient a Gy, on a Gy C Gy. La
condition (2.7) est nécessaire et suffisante pour que la différence (2.6) est un opéra-

teur projection orthogonale. Il reste seulement de caractériser l’espace G sur lequel

lopérateur (2.6) projecté. L’opérateur () projette orthogonalement sur

He G e Gy
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Donc, Uopérateur (2.6) projette sur
Ho{[He G & Gy} (2.8)

c.a.d, sur le sous-espace des vecteurs orthogonaux a Gy et H © Gj.
Puisque ce sous-espace est forme de tous les vecteurs de G lesquels sont orthogonaux

a G, il est le sous-espace
G106 Gy (2.9)

2.3.2 Suite Monotone des Opérateurs Projections orthogo-

nales

On prouve que la relation Gy C G est équivalente a 'inégalité

|1 Pe. fIl < [|Pe f (2.10)

pour tout f € H. L’inégalité (2.10) est évidemment équivalente a
< PG2f7f ><< PG1f7f >

ou
<<PG2_PG1>f7f>§O

pour tout f € H. Les deux derniéres inégalités sont généralement exprimées par
Pe, < Pg,

Ainsi, nous souhaitons prouver que la relation Gy C G est équivalente a la relation
Ps, < Pg,, cela nous autorisera a introduire les suites monotones d’opérateurs

projections orthogonale.

Soit G C G1. Alors
Pq, = Po,Pa,
Par conséquent, pour tout f € H,

Po,f = Pa,Pa, f

et
| P, fII < | Pa, £l (2.11)
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Inversement, supposant (2.11)est vrai pour tout f € H. Considérons
f=-Pg)h
ol h est un élément arbitraire de H. D’aprés (2.11) et
Pe, (I — Pg,)h =0

on obtient
Pg,(I — Pg,)h=0

Puisque cette équation est valable pour tout h € H, on a
Pg, = Pg, Pg,
Alors que Gy C Gy.

Théoréme 2.3.6. Soient (Gy),(k = 1,2,3,--+) des sous-espaces fermés de H Si
(Pe,)

(k = 1,2,3,...) est une suite infinie d’opérateurs projections orthogonales et si
Pg, < Pg, .,

(k=1,2,3,---), alors, quand k — 0o, (Pg,)r converges fortement vers P un opéra-

teur de projection orthogonale dans H.

Preuve 2.3.5. Pour m < n la différence Pg, — Pg, est un opérateur projection

m

orthogonale. Par conséquent, pour tout f € H

1Pa,f — Pe,. fI? = W(Pa, — Pa,)f?
= < (Pg, —Pg,)f. [>
= ||Pa, fII? = I Pa,, fII? (al)

Puisque, pour f fize, |Pg, f||* croitre avec k mais il est borné par || f||?, il a une limite
finie. Donc, le membre droite de (al) tend vers a zéro et la suite (Pg, f)02, est de

Cauchy dans H au sens fort. Puisque H est complet, il existe une limite forte

£* = lim Pg, f

n—oo

On définie l'opérateur P par
fr=Prf
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f € H. Lopérateur P est évidemment linéaire. D’autre part,
< Pe,f,Pe,.9g >=< P, f.9g >=< f,Pg,.9 >
un passage a la limite donne
< Pf,Pg>=<Pf,g>=<f,Pg>

Par conséquent,
P=p=p

alors que P est un opérateur projection orthogonale.

2.4 Projection Orthogonale extraite d’une Projec-
tion

Soit H un espace de Hilbert et soit P € B(H) une projection (P? = P). Nous

cherchons la projection orthogonale () qui a la méme image que P, c.a.d Q? = Q,

Q*=Q, PQ=Qet QP = P.
Premiére méthode :

Onprend: D = PP*+(I—P*)(I—P) = I[+(P*—P)(P—P*) > I d'ou D est inversible.

Ensuite :

(I - D)PP* = (P — P*)(PP"— P*PP*)= (I — PP")PP*
Et

PP*(I — D)= (PP*P—-PP*)(P—-P")=(I—PP")PP"

Alors :

DPP* = PP*D = (PP*)?
SiQ=PP*D 'alors Q* = PP*D'PP*D™! = (PP*)?D2=PP*D' =Q
et Q* = (@ alors () est une projection orthogonale.

Finalement

PQ=PPP*D'=PP'D'=Q
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et
(QP — P)(P*Q — P*) = QPP*QQ—QPP*— PP*Q + PP*
= QPP"—-QPP"— PP+ PP
= 0
tel que QP = P

Nous devons maintenant calculer [I — (P — P*)?]~1. Nous allons utiliser une série de
Neumann, de sorte que :
Q= Z(P — P*)*PP*_ 4 condition que la série converge.

k>0
Mais (P — P*)¥PP* = (I — D)YPP* = (I — PP*)PP* donc Q =
Zkzo(j — PP*)k PP~ en fait, pour tout a € R*, on a aussi.

Q= Z(I — aPP*)*aPP* a condition que la série converge.
k>0

[ Pull
[l

Soit ¢(P) = inf, | n(p) appelée la conorme ( appelé aussi le module minimum
réduit ) de P.

il est facile de voire que la conorme d’une projection est toujours > 1 et que :

—la||P||* = 1)*aPP* < (I — aPP*)*aPP* < [1 — ac*(P))*aPP*

I’estimation la plus forte de la norme de la série est donnée par I’équation

a|P||? =1 =1 —ac*(P) c.a.d. quand a = . Dans ce cas, et plus générale-

2
[1Pl[Z+¢*(P)

ment si 0 < a < ﬁ, la série donc convergent.

Proposition 2.4.1. Soit P € B(H) une projection. Soit la suite défini par :
Qo=P; Quui=(I—aPP)Q,+aPP* (2.12)

N 2
0U & = TPP+2(P)

Alors la suite (Q,,) converge uniformément vers Q dans B(H). Plus précisément :

1Q — @ull <

P[P = (P _ (HP!P - 1) (2.13)

HPI? +c2 (Pt = \ [P +1

En outre QQ =Q* PQ=Q et QP = P.
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Preuve. Il est facile de montrer que

Pl —(P)7"

[ —appypR| < | IEE =PI p

(I —aPP*)*PR| < {HPHZ 2P |PR|| pour tout R € B(H)

Alors, du fait que Q,, = Z(I — aPP"*aPP* et Q — Q,, = Z (I —aPP*)*aPP*
k=0 k=n+1

Nous voyons que @ = lim @, existe et que (2.13) est satisfaite. Un calcul simple
n—oo

montre que Q? = Q et puisque Q, est symétrique alors @ est symétrique, aussi
PQ, = @, alors que PQ = Q.

Finalement, en prenant les limites dans (2.12), nous voyons que PP*Q) = PP* et
donc que ||QP — P||> = ||(I — Q)PP*(I — Q)]| = 0 alors QP = P.

Remarque 2.4.1. En général (Q,, n’est pas une projection et si l’on remplace dans
(2.12) P par un opérateur borné T avec une image fermée, alors Q est la projection

orthogonale sur [image de T'.

Deuxiéme méthode :

Nous devons d’abord rappeler quelques résultats sur les projections.
Proposition 2.4.2. Soient P € B(H), Q € B(H) deuz projections. Alors :
nelN', (I-P—-Q)" =[I-P)I-Q)"+(QP) (2.14)
Preuve. Par récurrence sur n. Pour n = 1 il est facile de vérifier que
(I-P-Q7=(-P)I-Q)+QP (2.15)

Supposons que (2.14) est vrai pour n. Alors :

(I-P-QpP"Y = (I-P-Q)™I—-P-Q)
= ([T =P)I-Q)"+(QP)"[(I - P)I-Q)+QP]
= [(I-P)(I-Q]"" +(QP)""

La proposition est démontrée.
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Proposition 2.4.3. Soit P € B(H) une projection. Alors :
=P =P[=|I+P-P=]|l-P+P

Preuve. 1l est facile de vérifier que :

(I—-P—P)Y=I-P+P)YI—-P+P)=(—-P+P)I[—P+ P

Donc, puisque I — P — P* est symétrique, on a :

|1 =P =P = |(I-P~-P)
= |[({—-P+P")I—-P+ P
= =P+ P
Et par conséquent,
[I—P—=P = [I-P+P
= |[I - P+ P

Proposition 2.4.4. Soit P € B(H) une projection. Alors :
max{[|P|, |1 = P|[} = [ = P — P
Preuve. Montrons d’abord que :
max{|[|P|, [/ — P|[} < I = P — P

Eneffet : 2(l — P)=1—- P — P*+ 1 — P+ P* alors
M =P <|I=P=P+|I-P+P.

En utilisant la Proposition 2.4.3 on trouve :
Il = Pl <l —-P—P

Nous avons aussi :2P = [ + P — P* — (I — P — P*) alors
2|P|| < |[I — P — P*||+ |[I — P+ P*||, on obtient :

IPI < |lI = P— P

(2.16)

(2.17)

(2.18)
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Alors d’apres (2.17) et de (2.18) nous obtenons (2.16).

Inversement, en utilisant (2.14) avec Q = P*, on obtient :
VeEN* (I —P—P)*"=[I-P)I— P+ (PP)"

Puisque (I — P — P*), (I — P)(I — P*) et P*P sont des opérateurs hermitiens, on
obtient :

[ =P =P = [(I-P—P)"|
< [T = P)I = PO + [I(P*P)"]
< [ =P) =P)|" +[|P*P["

D’ou :
Vn € N*, |[I = P — P*|I* < || — PII* + ||P|*" < 2[max{[|(T — P)|,[|P[}*"

alors que
II = P — P*|| < max{|| P[], || — P|[} (2.19)

Et la preuve de la proposition résulte de (2.14) et (2.19).

Proposition 2.4.5. Soient P € B(H), Q € B(H) deuz projections. Alors :
YneN, [(1- P)(I— Q" = [T~ P)I— Q)"+ (I~ PYQP)Y(I Q) (220)

Preuve. Par récurrence sur n.

Sin =1, puisque (I — P —Q)?> = (I — P)(I — Q) + QP on constate que :

(I =P)I-Q) = [[-P-Q+PQP
(I-P-QP+(I-P-Q)PQ+PQUI~P-Q)+(PQ)
= (I-P)I-Q)+QP—QPQ~PQP+(PQ)’

(I -P)I-Q)+({-P)QPI-Q)

Supposons maintenant que (2.20) a été établi pour n > 1.

En utilisant ’hypothése de récurrence on constate que :

(I =P)YI-Q)]""* = [I-P)I-Q)""(I-P)I-Q)
= [0 =PI =Q)"+ I - P)NQP)"(I - Q) - P)(I -Q)
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alors que :
[(I=P)I-Q)""* = [I-P)IT-Q)"'+(I~P)QP)"(I-Q)I-P)(I-Q) (2:21)

Mais : P(I - Q)(I = P)(I - Q) = —PQ(I — P)(I - Q) = PQP(I - Q)
Dot : (I = PY(QP)"(I = Q) = P)(I = Q) = (I = P)(QP)"(I = Q).
Faisant usage de cette identité dans (2.21), nous obtenons :

(1 =P)I =" =[(I = P)I = Q""" + (I = P)(QP)"" (I - Q)

Et la proposition est prouvée.

Proposition 2.4.6. Soit P € B(H) une projection, P # 0, P # I Alors :
IP|=|I-P|=|[-P—-P=|I+P—P|=|I-P+ P

Preuve. En utilisant la Proposition 2.4.3 et la Proposition 2.4.4, il suffit de montrer
que [|P|| =1 - P

Supposons d’abord que || — PJ|| > 1. Prenant () = P* dans (2.20) on obtient :

Vn € N*, [(I - P)(I — P9)]"™' =[(I — P)(I — P*)]"+ (I — P)(P*P)"(I — P¥)
Alors :

¥n € N, 1= P < I —P|™ +|II - P|[|(PP*)"[[[lT — P

< |[I—=P|* +||I = P|*|P|*"
2n _ 2
Par conséquent : Vn € IN*, || — P|>* < W-

Dot :|I — P|>1= |I—P| <|P|

De la symétrie entre P et I — P Nous obtenons :
1Pl >1= [P <|I-P

Done ||P| > 1= |[I = P[> [[P| > 1= [[P| > |l = P]|=[|P|| = [[I - P|
La seule autre possibilité est de ||P|| = || — P|| =1 O

Proposition 2.4.7. Soit P € B(H) une projection. Alors :

1P —P||* = || P|I* -1 (2.22)
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Preuve. il est facile de constate que (P — P*)(P* — P) = (I — P — P*)?> — I.
Puisque |P — P*||* = ||[(P — P*)(P* — P)||.

Donc, nous obtenons : || P — P*||?> = |[[ — P— P*||*—1 et la proposition est démontrée.
O

Proposition 2.4.8. Soient P, QQ € B(H) deuz projections telles que
PQ=Q, QP = P. Alors :

1Q = Pl < |Q" — Q[ + [|1P — Pl (2.23)

Preuve. (Q*—P*)(Q—P) = (Q"-Q)(Q—P)+(Q—-P)(Q—P)+(P-P*)(Q—-P)
et (Q—P)Q-P)=Q—-Q—P+P=0.

Donc :
QP> = [(Q —P)Q-P)

Q" = Q)@ = P)| +[[(P = P)(@Q— P)|
< [P=elle” =@l + I[P -@Qllr—Fr

IN

et la proposition est démontrée.
O

Corollaire 2.4.1. Soient P, Q € B(H) deuz projections telles que PQ = Q et
QP = Q et Q est orthogonale. Alors :

1P =@l =P —F (2.24)

Preuve.(/ — P*)(I - P)=(Q —P")(Q—-P)+ (I — Q)
Donc :

I1= P = |(I-P)(I-P)
(Q@—P)Q@—P)+ ][I0
< Q- P|*+1

IN

Et par conséquent |P||? = ||[I — P|]* < ||Q — P||* + 1.
(2.22) implique que ||P* — P|*> < ||Q — PJ*.

Et résultat suit maintenant en utilisant (2.23).
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Nous sommes maintenant en position d’écrire un algorithme.

Sia € RT, posons :
S=P+aPP*(I—P)=P[l —a(l— P*)(I—P)] (2.25)
Alors S est une projection et SP = P, PS = S.
En outre, si R = i(S* — S) et K =i(P*— P),on a:
R=K(—a—aK? (2.26)

Aussi I —a||P|P=T—a(1+ |K|*) <I—a—aK?>

Donc si 0 < a < ﬁ on constate que |R|| = C(a)||K|| avec C(a) < 1.

La recherche de la valeur a qui minimise C'(a) conduit & la condition :

2(;55@ \/Tga = IKI(1 = a1+ [ K]*))

. : 1 _ 4
Qui a les deux solutions doubles a = R et a = TR
_ 2K _ _lK|?
Avec les valeurs correspondantes C'(a) = ST ©t C(a) = SR
4 4

Alors que le meilleur choix est a = SR = 3PP

O
Nous pouvons maintenant énoncer notre résultat principal :
Proposition 2.4.9. Soit P € B(H) une projection. Définir de fagon récurente :
=P; Qni1 = Qn n 2.27
QO Q +1 Q 3||Qn||2 + 1 ( )
Alors :
3n
1+ (L2l
1@n]” +3 @le
Qnaill = 1Qn]|mm—— : [|Qn]| = = 2.28
1Qniall = || H3||Qn||2+ 7 1@l o <P|1>3 (2.28)
I1PI+1

et la suite des projections (Q,) converge uniformément vers QQ dans B(H), avec Q =
Q*, PQ =Q et QP = P. Plus précisément :

(2.29)

NNEE
1Q — Qull = (i)

371
(1Pl
1 <WMJ
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2

Preuve. On prend : R,, =i(Q} — @Q,,). Alors : R,,;1 =R RnlP—ARE 4] o1 que

"3 RallP+4
IRall® Rl BIRal? —ARE 2Ry — [[Ral)* (IRl + Ran)
ST o . 4 Rn—O—l - Rn - Z 0
3| Rnl? + 4 3| Rn? + 4 3| Rnl? + 4 3| Ronl|* 44
et
Rn 3 n 3 n 2_4 2 2 n n 2 n|l — n
IRl VR = IRnl® o SlIRnl® = 4Ry, _ (2R + [[Ral)"([1Rnll = Rn)
3| Rnll? +4 3Rl + 4 3| Rnl]* 44 I Rnll* +4
on constate que 0 € o(||R,|| + Rn) Uo([|Rn]| — Rn), ott o(||Ry|| + Ry) est le spectre
. 3
ponctuel de (||R.|| + Rn), puisque ||R,|| = sup,c,(x,) | p | alors 0 € 0(3“%1’“%4 —
R )Ua(M + R,41) et par conséquent
n+1 3[Rn[2+4 n+1 p q
IRall®
Rotill = =5 2.30
Puisque ||@,]|* =1+ | R,]|?, il s’ensuit que :
1@t = UG =1y e lGall +3)7
(3ll@nl]? +1)2 (3[|@nl? +1)2
ce qui établit la premiére égalité de (2.28) qui est équivalente a
=1 G =1)\?
ce qui donne par itération
371/
gl =1 _ (IP1-1)
1@ull +1 \[IP[[+1
on obtient rapidement la deuxiéme égalité de (2.28). Donc lim ||@Q,| = 1 et Par
n—oo

conséquent lim || R,| = 0.
n—oo
d’apres (2.23) on constate que si m, n € N, on a ||Qm — Qull < [| Rl + [| Rl ce qui
montre que (@) est une suite de Cauchy et alors que @ = lim @, existe et satisfait
n—oo

a la condition de la proposition.
Finalement, (2.29) résulte de (2.24) et (2.28) et la proposition est prouvée.
O

Remarque 2.4.2. La suite (Q),,) est une suite de projections qui a la méme image

que P et converge uniformément vers Q) lorsque n — +400.
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2.5 Algorithme de calcul I'inverse de Moore-Penrose
d’un opérateur linéaire

1) Soit P € B(H) une projection et soit @ la projection orthogonale qui a la méme
image que P. Pour ¢t € [0,1] et n € IN, on pose :

8(1 —2")Q5 (I — Q)
3[1@nl> +1

Alors Q(27") = @, comme défini dans la Proposition 2.4.1 Vt € [0,1], Q(t) est une
projection avec la méme image que P et l'application @ : [0, 1] — B(#) est continue

avec PQ(t) = Q(t); Q(t)P = P.

La preuve est une simple vérification. toute déformation continue de P en () peut

Q) =Q; Q) =Qy [I+ si 2=t < p < o7

étre définie mais celle-ci a la propriété que si t # 0, Q(t) est un polynéme en P et
P*.

2) Si deux projections orthogonales sont dans la méme composante connexe, alors
elles peuvent étre reliés par des projections orthogonales.

En effet, soit P, Q € B(#H) deux projections orthogonales et soit ¢ +— P(t) une
application continue de [0, 1] dans I’ensemble des projections de B(H) tel que P(0) =
Q et P(1) = P. Soit

31Qn®) + 1+ 4Qn (1) (I — Qu(?))
3ll@n(®)]* +1

Qo(t) = P(t); Que1(t) = Qult)

Alors il est facile de montrer par récurrence que @, (t) est continue en t et que (Q, (%))
converge uniformément vers une application continue de [0, 1] dans I’ensemble des

projections orthogonales de B(H) qui a les propriétés requises.

3) Soit P € B(H) une projection et soit () la projection orthogonale qui a la méme
image que P. Alors si P est essentiellement normal ( c.a.d. PP* — P*P est compact),
P — () est compact.

Preuve. il est facile de vérifier que

(PP* — P*P)* = (P — P*)(P* — P)[I + (P — P*)(P* — P)]
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Puisque I + (P — P*)(P* — P) > I est inversible.

Alors si P est essentiellement normal (P — P*)(P* — P) est compact et par consé-

quence P — P* est aussi compact puisque i(P — P*) est hermitien.

Maintenant, considérons la suite (Q),,) définie dans la Proposition 2.4.9. Il est facile
de montrer que si @, est essentiellement normal @, 4, est aussi puisque Q11 — Q7
est un multiple de Q,, — Q.

n

Donc P—-Q = E @, — Q11 est un opérateur compact ( la série converge uniformé-
n>0

ment d’aprés (2.31)).

O
Premiére méthode :
Proposition 2.5.1. Soit T' un opérateur linéaire borné a image fermée. Soit
n+1
By=dal*; Byy1=(I—al"T)B,+adl*= Y (I—al*T)"al* (2.32)
k=0

A 2
ow 4= e

Alors la suite (B,) converge uniformément dans B(H) wvers Uopérateur C' qui est
[inverse de Moore-Penrose de T'.

Plus précisément :

[HT||2 — CQ<T>]n+1 H ||
HTN? + (1))

IC = B,|| < (2.33)

ou ¢(T) = infy i ner appelée la conorme ( appelé aussi le module minimum

réduit ) de T.

Preuve. Nous procédons exactement comme la preuve de la Proposition 2.4.1.

|71 = ¢*(T)

I — aT*T)*T*R|| <
o= T TRl < |y

k
} |T*R|| pour tout R € B(H) (2.34)
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n
Alors du fait que B, = Y (I — aT*T)*al™* et
k=0
00
C—-B,= 3 (I —aT*T)*a T* nous constatons que C' = lim B, existe et
n—oo
k=n+1

que (2.33) est satisfaite.
De la Proposition 2.4.1, il s’ensuit que (T'B,,) et (B, T") convergent vers des projections

orthogonales et que T'B,, T converge vers T et CTC = C alors que C = IMP(T) = T".

O
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Chapitre 3

Inverse de Moore-Penrse des

opérateurs linéaires

Dans ce chapitre notre objectif est ’étudier l'inverse généralisé de Moore-
Penrose des opérateurs linéaires dans les espace de Hilbert. La premiére section
on va étudier des notions de théorie spectrale des opérateurs linéaires. La deuxiéme
section est une bréve introduction a l'inversion généralisée des opérateurs linéaire ot

on a commencé par la définition de Tseng endex

3.1 Théorie spectrale des opérateurs linéaires

3.1.1 Inverse d’un opérateur

Définition 3.1.1. Soit T un opérateur linéaire de H, dans Hs.

L'opérateur S : Ho — Hy est dit opérateur inverse a droite de T si T'S = I,.
Loopérateur S : Ho — Hy est dit opérateur inverse a gauche de T' si ST = Iy, .
Enfin on dit que S est inverse de T s’il est inverse a droite et a gauche.

Si T € B(H), espace de Hilbert alors T~ est continue (donc T est inversible). On

écrit S =T et dit l'opérateur inverse de T.
Exemple 3.1.1. Soit l'opérateur différentiel
A CHOo; 1) — C[0;1]

froAf=F
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["opérateur intégrale

B: C[0;1] — C*[0;1]
f s Bf(x) = /0 " ft

On a ABf(x) = %/ ft)dt = f(x) donc AB =1 et A est un inverse a
0

gauche de B.

D’autre part, on a
BAf) = [ fat= ()~ £0)
0
Ainsi, st f(0) #£0, BA# I et A n est pas inverse adroite de B, mais si
f(O) =0 alors A est un inverse de B (a droite et a gauche).

Proposition 3.1.1. Soit A € L(X;Y)t.qX etY sont deur espaces vectoriels

normés; si A™1 existe alors A™' est linéaire.
Preuve 3.1.1. Vx, y € Xetpy, A e R
AT AT + py) = B(AAz + pAy) (3)

on a ausst

ATTAQT 4+ py) = A+ py
— \BAz + uBAy

ATYAz + py) = AB(Az) + uB(Ax) (4)

daprés3 et 4 B(AAx + pAy) = A\B(Az) + pB(Ay)

On pose Ax = x' et Ay =y on trouve
B(\x' + py') = A\Bx' + uBy/

donc B est linéaire.

3.1.2 Spectre des opérateurs bornés

Soit H un espace de Hilbert, B(#H) '’ensemble des opérateurs linéaires bornés de H

dans lui méme, muni de la norme ||A|| = sup ||Az|%.
=<1

L’espace L£(H) est une algébre de Banach unifére ( posséde un élément e tel que
lefl = 1).
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Définition 3.1.2. (Spectre).

Soit T € B(H), on appelle spectre de T et on note o(T) le complémentaire dans C de
p(T) (L’ensemble résolvant de T'). Le spectre de T est donc ’ensemble des A € C tels
que T'— X n’est pas inversible dans H. Alors en peut trouver trois types de spectres

distincts.

1) Le spectre ponctuel de T', noté o,(1T") est l'ensemble des valeurs propres de T, il
est défini comme suit : 0,(T) ={\ € C/ N(T — \I) # {0}}, c.a.d. T — \I n’est pas
ingectif alors o,(T) ={A\ € C/ Tz =z z € H, = # 0}.

2) Le spectre continu de T, noté o.(T) est ’ensemble des A € C tels que T'— \I

est injectif, non surjectif, mais son image est dense dans H, c.a.d.

N(T = AI)={0}, R(T—X)#H, R(T—N)="%.

3) Le spectre résiduel de T, noté o,(T) est l’ensemble des A\ € C tels que T — NI

est injectif, non surjectif, mais son image n’est pas dense dans H, c.a.d
N(T — M) = {0}, (R(T = I))* # {0}.

Le spectre de T est o(T) = 0,(T)U o (T)Uo,.(T)

3.2 Introduction a des inverses généralisés des opé-

rateurs linéaires

Une définition naturelle d’inverses généralisés dans L£(H;,Hz) est la suivante da a

Tseng|]

Définition 3.2.1. Soit T € L(H1,Hs). Alors un opérateur T9 € L(Ha, H1) est un

inverse généralisé de Tseng (i.g. en abrégé) de T si
R(T) c D(T7) (3.1)

R(T?) ¢ D(T) (3.2)

T9Tx = Prggx  pour tout x € D(T) (3.3)
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TT% = Pray  pour tout y € D(17) (3.4)

Cette définition est symétrique en 7" et 79, donc 7" est un i.g de 7.
Un opérateur T € L(H;,H2) peut avoir un i.g unique, ou plusieurs i.g ou il peut
n’en avoir aucun. Nous allons montrer dans le théoreme 3.2.1 que 7" a un i.g. si et

seulement si son domaine est décomposable par rapport a son noyau,

D(T) = N(T) @ (D(T) " N(T)*) = N(T) & C(T) (3.5)

d’aprés le lemme 3.2.1, cette condition est satisfaite si N(7') est fermé. Donc il est
valable pour tous les opérateurs fermés, et en particulier pour les opérateurs bornés.
Si T a des i.g’s, alors il a un i.g maximum. Pour les opérateurs bornés d’image
fermée, 1'i.g maximum coincide avec 'inverse de Moore-Penrose, et sera de méme

noté par 1.

Lemme 3.2.1. [/] Soit H un espace de Hilbert. L, M deux sous-espaces de H tels
que M C L. Alors

L=M® (LNnM?)

s1 seulement si

Pyx € M pour tout x € L

Théoréme 3.2.1. Soit T € L(H1,Hz). Alors T a un i.g. si et seulement si

dans ce cas, pour tout sous-espace L € R(T)*, il y a un i.g T} de T, avec

D(TY) = R(T) & L (3.6)

et
N({T{)=1L (3.7)

Preuve 3.2.1. SiT a un i.g, alors (3.5) résulte des lemmes 7?7 et ??7. Réciproqguement,

supposons que (3.5) est vérifiée. Alors

R(T) = T(D(T)) = T(C(T)) = R(Ty) (3.8)
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ou Ty = Tjc(r)) est la restriction de T a C(T). L’inverse TO_1 existe, et satisfait

et, d’aprés (3.8)

Pour tout sous-espace L C R(T)*, considérons lextension TY de T, ' avec domaine

D(TY) = R(T) & L

et de noyau
N(T}) =L

De sa définition, il s’ensuit que T5 satisfait

D(T?) > R(T)

et
R(T) = R(Ty ) = C(T) € D(T) 3.9
Pour tout x € D(T)
TiTx = T{TPsgx, d’apres (3.5)
= TO_ITOPC(T)X, d’apres le Lemme 3.2.1

= PR(TLQ)X, d'apres (3.9).
Finalment, touty € D(TY) s’écrit, d’apres (3.6), comme
y=vi+tyz nne€RT), y2€L, yi Ly
et donc

TT?y = TTiy,, dapres (3.7)
= TV, 'y
= yl

R(D)Y

Par conséquent, T? est un i.g. de T.
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Théoréme 3.2.2. Soit T € L(H,Hs) a desi.g.’s est soit L un sous espace de R(T)*.

Alors les conditions

D(TY) = R(T) & L (3.6)

N(TS) =L (3.7)

déterminent un unique i.g, qui est donc égale 6 Ty construit dans la preuve du théo-

reme précedent.

Preuve 3.2.2. Soit TY9 est un i.g de T vérifiant (3.6) et (3.7), et soity € D(T9) ou

y=vi+ve y1€RT), y2€L
Alors

T9y = Ty, d'apres (3.7)
= T9Txq, pour x; € D(T)
= Praayxi, d'apres (3.3)
= Pgayxa, d'apres (77)

Nous affirmons que ceci détermine TY9 de facon unique. Car, supposons qu’il y a un

Xg € D(T) avec y; = Txa, alors :

Tgy = PTT)XQ

par conséquent

PC(T)Xl — PC(T)X2 = P@(Xl — XQ)

= 0 puisque (x; —x9) € N(T)

3.3 Inverse de Moore-Penrose d’un opérateur li-

néaire borné

Définition 3.3.1. Soit T un opérateur linéaire borné défini sur un espace de Hilbert
H. On dit que X € B(H) est un inverse généralisée de T ( désigné par X (INV)T )
St les conditions suivantes sont vérifié :

1)Vxe H, TXTx=Tx



3.3 Inverse de Moore-Penrose d’un opérateur linéaire borné

71

2)Vy € H, XTXy=Xy

1l est alors facile de constater que T'X et XT sont des projections dans H. Remarquons

aussi que X n’est pas en général unique et que si T est inversib le alors T~ = X.

Définition 3.3.2. Soit T un opérateur linéaire borné défini sur un espace de Hil-
bert H. On dit que T est un inverse de Moore-Penrose de T ( désigné par
TH=IMP(T) ) si TT(INV)T et TTV et T'T sont des projections orthogonales.

Il est facile de montrer que TT est unique.

Si R(T) est fermé alors TT existe méme si T est fermé a domaine dence.

Soit TT un opérateur linéaire borné & image fermée, défini sur un espace de Hilbert

H.

Théoréme 3.3.1. ( Petryshyn [7] ) Si T € B(H1,Hz) et R(T) est fermé, alors TT
est caractérisé comme 'unique solution X des systemes équivalents suivants :

a) TXT =T, XTX =X, (TX)*=TX, (XT)*=XT,

) TX = Paery . N(X*) = N(T)

) TX = Ppry, XT = Pgir+y , XTX =X,

d XTT*=T*, XX*'T*=X,

e) XTx=x pour tout x € R(T*) ,

Xy =0 pour tout y € N(T%) ,

(f) XT = Prr+) ,N(X) = N(T7) ,

(9) TX = Pgry , XT = Pg(x).

Preuve 3.3.1. Nous prouvons le Théoreme en montrant que (a) = (b) = (¢) =
(d) = (e) = (f) = (9) = (a)

(a)= (b) :1l résulte de (a) que TX et XT sont des projection orthogonales en Hoet Hy
respectivement, par conséquent pour prouve que TX = R(A), nous n’avons besoin que
pour monter que R(TX) = R(T).

supposons que y € R(T), il existe alors un X unique dans R(T*) tel que y = TX
par conséquent TXy = TXTx = Tz = y montant que R(T) C R(TX), supposons
maintenant que y € R(TX). Alors, puisque TX est un projection TXy = y, i.e,
R(TX) C R(T) par conséquent R(TX) = R(T), pour montrer que N(X*) = N(T)
notez que si x € N(X*) puis, 0 = T*X*x = XTx et donc 0 = TXTx i.e N(X*) C
N(T) sur d’autre parte, si x € N(T), alors 0 = XTx =T*X*x = X*T*" X* v = X'z,
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i.e N(T) C N(X*) ainssi N(X*) = NT.

(b)= (c) : 1l résulte TX = Ppiry que TXT =T et que XT est une projection en
H. De plus XTX = X en effet, puisque R(TX) = R(T), il s’ensuite que siy € R(T)
puis y = TXy = X*TXy impliquant que R(T) C R(X*) sur le d’autre parte, si
y € R(X™) alors puisque N(X*) = N(T) il existe un unique X dans R(T*) tel que
y = X"z =Tz pour certains z dand H et par conséquent y =T Xz d’od l’on dérive
Uégalité R(T) = R(X™) pour tout x dans H nous avons X*T*X*x = TX X*r = X*z
ie X*'T*X* = X® ou XTX = X enfin XT = Pg(r+) pour voir ¢a, notons d’abord
que N(T) = N(XT) pour N(T) C N(XT) est evident alors que si x € N(XT)
puis XTx =0 et TXTx = 0 ce qui montre que N(XT) C N(T) notre preuve sera
complete que une fois que nous montrons que R(XT) = R(T*) pour ce faire, nous
montons d’abord que R(X) = R(XT) en fait si x € R(X), alors il existe y tel que
x = Xy et par conséquent XTx = XTXy = Xy = x c’est a dire R(X) C R(XT) si
maintenant x € R(XT) alors il existe y tel que v = XTy et par conséquent x € R(X)
aussi R(X) = R(XT) puisqueR(X) est fermé et N(X*) = N(T).

(c)= (d) :XT = Pgir+ itmplique que XTT* = T* tandis que les égalité X*T* = TX
et XTX = X impliquant X X*T* = X.

(d) = (e) : Clairement XTX* = T* implique que XTx = = pour tout x dans R(T*)
tandis que X X*T* = X montre que Xy = 0 pour tous dans N(T™).

(e) = (f) : pour tout x dans H considérons la décomposition orthogonale x = 1+ x5
avec x1 dans R(T*) et xo dans N(T) alors XTx = XTxy = x1 ce qui montre que XT
est une projection de Hy sur R(T*). Montre que XT = Pgir+) nous devons encore
montrer que N(XT) = N(T) il ca de soi que N(T) C N(XT) de plus, puisque
XTx = xy implique que TXTx = Txy = Tx alors XTx = 0 et par conséquent
0 =TXTx = Tx par conséquent N(XT) = N(T') et donc XT = Pgir~ le fait que
N(X) = N(T*) est evident

(f) = (g) : Il est facile de voir que TXT =T et que TX est une projection en Ho
de plus TX = Pgery en fait si y € R(T) alors il existe un unique dans R(T*) tel que
y = Tx par conséquent TXy = TXTx = Tz = y impliquant que R(T) C R(TX)
inversement siy € R(TX) alors puisque TX est une projection TXy =y et doncy €
R(T) ainsi R(T) = R(TX) en outre N(T'X) = N(T*) en fait puisque N(X) = N(T*)
nous voyons que poury dans N(T*) nous avons 0 = Xy =T Xy i.e N(T*) C N(TX)
inversement pour y dans N(T X) nous avons TXy =0 ou XT Xy = Xy = 0 puisque,
comme on le verra ci-dessous XTX = X par conséquent N(TX) = N(T*) pour voir
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que XTX = X, note d’abord que R(XT) = R(T*) implique ’égalité R(T*) = R en
effet, si x € R(T*) puisque v = XTz pour certains z dans Hy, et par conséquent
x € R(X) inversement, si x € R(X) alors puisque N(X) = N(T*) il existe un y
unique dans R(T) tel que x = Xy = XTz = T*X*z pour certaines z dans Hy donc
R(X) C R(T*) et par conséquentR(x) = R(T*). Maintenant puisque R(T*) = R(X)
et R(XT) = R(T*) il s’ensuite que pour tout y dans Hs, XT Xy = Xy notez que
nous avons non seulement prouvé que T'X = Ppiry mais aussi que XT = Pp(x).

(9) = (a) : cela découle du fait que TX et XT, étant orthogonauz projections, sont
hermitiennes et que puis R(TX) = R(T) et R(XT) = R(X) il s’ensuit que TXT =T
et XTX = X qui est (a) ceci complete la preuve du théoréme.

3.4 Inverse de Moore-Penrose d’un opérateur li-

néaire fermé a domaine dense

Définition 3.4.1. Soit T' € C(H1, Hso) et densément définit. Alors il existe un unique
opérateur densément définit TT € C(Ha, H1) de domaine

D(TT) = R(T) GB R(T)* et est les propriétés suivantes ;

(
(1) TT'y = Py, pour tout y € D(TT).
(2) T'Tx = Py(ry:x , pour tout x € D(T).
(3) N(T") = R(T).

Cet opérateur T est appelé linverse de Moore-Penrose de T.

Pour tout y € D(T), soit
L(y) ={xe D(T) : |[Tz—y| <|Tu—y|| Vue D)}

ici tout uw € L(y) est appelée une solution des moindres carrés de l’équation de
Vopérateur Tx =y. Le vecteur x =TTy € L(y) et vérifie, | TTy|| < ||x|| ¥V v € L(y) et

est appelée la solution des moindres carrés de la norme minimale.

Remarque 3.4.1. Soit T € L(H1,Hz) vérifiant (3.5). L’i.g mazimum de T, noté
T, est li.g. de T de domaine

D(T') = R(T) & R(T)" (3.10)
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et de noyau

N(T") = R(T)* (3.11)

D’aprés le Théoréme 3.2.1, Ui.g. TT ainsi défini est unique. Il est mazimum et tout
autre i.g. de T est une restriction de T7.

En outre, TT de domaine dense, d’aprés (3.10), et de noyau fermé, d’apres (3.11).
Choisir L comme un sous-espace dense de R(T)* montre que un opérateur T peut
avoir une infinité d’i.g’s a domaine denses T7. De plus, T peut avoir un nombre

infini d’i.g’s T§ avec un noyau fermé, chacun obtenu en choisissant L comme un
sous-espace fermé de R(T)*:. Cependant, T' est I'unique i.g ¢ domaine dense. avec
un noyau fermé en vertu du Théoreme 3.4.1.

Les opérateurs fermés a domaine dense, les i.g’s maximums sont définits par la mé-
thode de construction suivante du o Hestenes [/].

Soit T € C(H1,Ha) a domaine dense. Puisque N(T') est fermé, il s’ensuit, de Lemme
3.2.1, que

D(T)=N(T)® C(T) (3.5)
et donc
GT)=N&C (3.12)
En utilisant (C), (G), et (D) dans la premiére section du chapitre 1. Alors

N =JN(T)=G(T)NHip (3.13)

C={(x,Tx): x€C(T)} (3.14)

De méme, puisque T* est fermé, il découle de (B) de la premiére section du chapitre

1, que
1
GT)Yr =N C* (3.15)

ol

N* = LbN(T*) = G(T)* NHos (3.16)

C*={(-T"y,y): yeC(T")} (3.17)
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Maintenant
1L
Hio = G(T)® G(T):, puisque T est fermé
L1 1
= (NeC)a (N e C), dapres (3.12) et (3.15)
1 L 1
= (C®N)®(C*® N)
1
= G Gr
ot
L
G'=C & N*
1
Gr=C*® N
Puisque

GT'NHio=(0,0)

il s’ensuit que GT est le graphe inverse G=1(TT) = {(T'y,y) : y € D(T")} de l'opéra-
teur TT € C(Ha, Hi1), de domaine

1
Jy P, G" = T(C(T)) ® N(T)
I
= R(T)® R(T)*:, dapres (3.8) et (E) de la premicre section dans le chapitre 1
et de noyau
JyIN* = N(T*) = R(T)*+
tel que
i
T'Tx = Peamx ., pour tout x € N(T') & C(T)
et
I
TT'y = Pray , pour tout y € R(T) & R(T)*
Donc TV est l'i.g mazimums d’aprés la Remarque 3.4.1.
De méme, G™ est le graphe de Uopérateur —T*" € C(H1,Ha), qui est Ii.g mazimum

de =T*.

Cette construction met en évidence les propriétés de 1’i.g maximum.

Théoréme 3.4.1. Soit T € L(H1,Hs) ayant des i.g.’s. Alors TT est l'unique i.g a

domaine dense et de noyau N(TT) fermé.



76

CHAPITRE 3. INVERSE DE MOORE-PENRSE DES OPERATEURS
LINEAIRES

Preuve. Soit 779 un i.g & domaine dense de T' et de noyau fermé. Alors :

D(T9) = N(T9) & C(19), d’apres Téoreme (3.2.1)
— N(T*® R(T)),  dapres (77)
qui, avec les hypotheéses D(T9) = H, et N(T9) = N(T9), donc
N(T%) = R(T)*

T9 a le méme domaine et le méme noyau que 7', par conséquent 79 = T, d’aprés le
Théoréme 3.2.2.

Théoréme 3.4.2. ( Hestenes [/]). Soit T € C(Hi, Hz2) G domaine dense. Alors
(a) Tt € C(HQ,Hl),

() D(T") = R(T) & N(I") , N(T') = N(T").
(e) R(TY)=C(T),

(d) T'Tx = Przmx  pour tout x € D(T)

(e) TTly = Preayy  pour tout x € D(T") ,

(f) =1,

(9) T =1",

(h) N(T*T) = N(T),

() (T*T) =T'T* | et N(T*T) = N(T) ,
() (TT*)' =TTt | et N(TT*) = N(T*).

Définition 3.4.2. Soit T € L(H1, Hz) et soit T, la restriction de T définie sur

D(T,) = N(T) & C(T) , N(T;) = N(T)

L'existence de T est justifié puisque T, vérifie (3.5). Les propriétés suivantes de T\

sont vérifiées.

Théoréme 3.4.3. ( Erdélyi [7]) Soit T' € L(H1,H2) et soit sa restriction T, définie
précédemment. Alors
(a) TP =TT siT' existe,
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) D(TH) = T(C(T)) & T(C(T))* , et en général, R(T) ¢ D(TT) |
¢) R(T))=C(T), R(TY)=N(T)*,

r

t _
d) T/Tx =Py

e) TT}y = Pygyy powr tout y € D(T})

x pour tout x € D(T,) ,

(f) DT = N(T) & C(T) ,
(9) RUT)) =T(C(T)) .

(h) N(TH) = N(T) ,

( C (THI si (3.5) est vérifié |
() T =
(k) TI* C

r

T c (Tt
T = (T siet seulement si N(T) est fermé ,

(T*)I siT est & domaine dense et fermable.

3.5 Approximation de l'inverse de Moore-Penrose

Dans cette section on calcul une approximation de I'inverse de Moore-Penrose
TT de T par son {2}—inverse. Nous avons aussi illustrer cette méthode avec un
exemple, nous prouvons tout d’abord un lemme qui est utile pour prouver le théoréme

principal.

Lemme 3.5.1. Soit T € C(H1,H2) densément définit. Soit'Y,, C R(T) tel que

(a) Y, C Y,y pourtout n € N

(b) dimY, =n

(c) UptiY, = R(T)

Soit Z, = (I + TT*)"Y, et X, = T*Z, = T*(I + TT*)"'Y,. Alors

1) X,€CX,C--CX,CX,,1C---CR(T*)=N(T)*, dimX,, = n et

(1)
(2) U2, Z, = R(T)
(3)
(4)

3
4

Preuve. D’aprés la définition de X, X,, € C(T) € N(T)* = R(T*) pour tout
n et X, C X,y. Puisque lopérateur T*(I + TT*)7! |7 est injectif alors
dim X,, = n =dimY,,.
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Pour une preuve de (2), nous utilisons 'observation suivante :

(I +TT*)"'(R(T)) = R(T)
On peut prouver facilement que (I +TT*)"Y(N(TT*)) = N(TT*). D’aprés le Théo-

1 1
réme de projection 2.3.2, Hy = N(TT*) & N(TT*)*. Alors Hy = N(TT*) & R(TT*).
Mais

(I +TT*) " (Hy) = D(TT*) = N(TT) & C(TT¥)
Donc

(I +TT) ' (He) = (I +TT") {(N(IT") & RIT))
— NTT" & (I +TT") ' (RTT)

De celaon a (I +TT*) Y (R(TT*)) = C(TT*) et que C(TT*) = N(TT*). Nous avons

(I + TT*)"Y(R(TT")) = R(TT").

Par conséquent, (I +T7*)"1(R(T)) = R(T), d’apres la Proposition 2.0.2. Ainsi

R(T) = +TT)Y(R(T)) = (I+TT*) (UL,

= U, (I +TT+)"tY,
_ =7,
Cela prouve (2).
Il est clair que U2, X,, C R(T*) = N(T)*.
Supposons U, X,, € N(T)t. Alors il existe un 0 # 7y € N(T)* tel que zy €
(U, X,,)*. Alors

< 70, T*(I + TT*) 'y >= 0 pour tout y € R(T)

Puisque T*(I + TT*)~! est borné ceci est valable pour touts les y € R(T).
Nous affirmons que cela est vrai pour tous les y € Hy. Soit v € Ho, alors y = u + v

tel que u € R(T) et v € R(T)* = N(T*) C D(T*). Ainsi d’aprés la Proposition 2.0.3,
T(I + TT*) ' = (I + T*T)~'T*v = 0. Ainsi

<70, T*(I + TT*) 'y >=< 20, T*(I + TT*) ' >= 0
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Cela prouve notre affirmation.

Ensuite, puisque C(T') = N(T')*, il existe une suite (z,) C C(T) tel que

Zn, — Zo. Donc pour tous y € Ha,

0=<z,T"(I+TT") "y > = lim <z, T +TT") "y >
= lim < Tz, (I +TT°) "y >
T >
-l S TUATT s

Cela montre que T'(I 4+ T*T) 'z, — 0 ( faiblement ), mais puisque 7(I + T*T)~!
est borné, on a T(I + T*T) 'z = 0. Donc T(I + T*T) 'zy € N(T). Soit
y = (I +T*T) 2. Alors Ty = 0. Ainsi zg = (I + T*T)y = y € N(T). Donc
7o € N(T)N N(T)*+ = {0}. Ainsi zy = 0, une contradiction a notre hypothese. Cela
prouve (3).

En utilisant une preuve similaire on obtient (4).

Remarque 3.5.1. On peut noter que le Lemme 3.5.1 montre que si R(T) est sépa-

rable, alors R(T*) est séparable.

Théoréme 3.5.1. Soit T' € C(H1, Ha) un opérateur densément définit a image sépa-
rable R(T'). Alors, pour tout n € IN, il existe un {2}—inverse borné T de T de rang
n tel que

D(TH ={y €M, : lim TPy existe}
n—a~oo
et Tty = lim T®y pour tout y € D(T7).
n——oo

Remarque 3.5.2. On a vu dans le chapitre 2 que le {2}—inverse d’une matrice,
peut étre exprimer de méme pour un opérateur. Soit T € C(Hq, Hs). S’il existe un
opérateur linéaire T® € L(Hy, H1) tel que TOTT? = T alors T est appelé
{2} —inverse de T.

Preuve du Théoréme 3.5.1. Supposons que R(7T) est de dimension infinie.

Puisque R(T') est séparable, nous pouvons trouver une suite de sous-espaces Y, de

R(T) ayant les propriétés suivantes :
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(1) Y, C Y, et dimY,, =n pour tout n € IN.
(2) UX,Y, = R(T).

( Par exemple, si {¢1, ¢o,...,} est un ensemble orthonormé qui s’étend sur R(T),
alors Y,, = span({¢1, ¢2, ..., dn}))-

Soit Z, et X, comme dans le Lemme 3.5.1. Alors Z,, C Z,,1 et dimZ, = n,
X, € X,y et dim X, = n.

Soit P, : Ho — Ho et Q,, : H1 — H; deux suites de projections orthogonales avec
R(P,) = Z, et R(Q,) = X,. Soit T,, = P,T. Ici, D(T,,) = D(T) et T,x — T'x pour
tout x € D(T).

Ensuite, nous affirmons que R(7},) = R(FP,) = Z,. Il est clair que R(T},) C
Z,. Pour montrer I'inclusion inverse, il suffit de montrer N(7)¥) C N(FP,).
Maintenant, soit z € N(T}). Alors T*P,z = 0. Ainsi P,z € N(T*) = R(T)*.
Mais, P,z € ﬁ Ainsi P,z = 0. Donc z € N(P,). Notez que T = T*P, =
T* |, =T | z,-

Alors R(T?) = T*Z, = X, = N(T,)*. Clest N(T},) = X*. R(T,)* = N(T7) = Z,
et R(T,) = Z,. Alors T, |x,: X,, — Z, est un opérateur bijectif. par conséquent
dim X,, = dim Z,, = n.

R<Pn> -

Construction de {2}—inverses :

On définit T,SZ) : Ho — Hq par

TRy — (Tolx,) 'y, siy € Zy;
! 0 ’ si y € Zé‘

Iei T\ = T! et T est borné puisque R(T;,) est fermeé. 7% est aussi un {2} —inverse

de T,,. Ici N(T\?) = Z+ et R(T”) = X,,.

. 2 . . .
Ensuite, nous affirmons que 7, ) est aussi un {2} —inverse de T'. Pour cela nous uti-

lisons 1’observation suivante : T,(LQ)y = T,(Lz)Pny, pour tous les y € Hy. Soit v € Ho.
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Alors y = u + v pour certains u € Z,, et v € Z-.
D’ou
Ty =TPD(u+v) = TPu (TP () =0, puisquev e Zr)

= T@Ppy
puisque 7.2 est un {2}—inverse de T,

TOTT®y = TP P, 17TPy = TOT, TPy

On peut maintenant prouver que

D(TY ={y € Hy : lim TPy existe}

n—oo
Soit y € D(TT). Alors TTy € C(T).
Puisque Q,,x — x pour tout x € C(T) C N(T)* = R(T*), il est clair que Q,, Ty —
T'y. Ensuite, nous montrons que @, Tty = T,(LQ)y, pour tous les y € D(TT). Des faits
Q. Ty € X,,, (Q,— )Ty € N(T},) et le Théoréme 2.3.6,
Qu Ty =TPT,Q.T'y = THT,Q, Ty + T Py — T\? Py

= TNT,Q,T'y — Py) + TP P,y

= TPNT.QuT'y — P, TT'y) + T\® Py

= TP(1,Qn — PT)T'y + TP Py

= TOT(Qu— DTy + TP Py

= T1§2)Pny

= TT(LQ)y.
Puisque Q, 7Y — T'y pour tout y € D(TT), et d’aprés la preuve précédente

lim Tf)y exite et égale a Ty,
n—aoo
Cela montre que D(TT) C {y € Hy: lim TPy existe}.
n—-aoo
Ensuite, nous prouvons que si y € H, telle que lim Tff)y existe, alors y € D(TT).
n—aoo

Soit xg = lim T, ,(LQ)y. On peut facilement vérifier que T'7T; 12 est une projection avec
n—-~oo

R(TTqEQ)) =TX, et N(TT,EQ)) = (TX,)*. Comme d’aprés le Lemme 3.5.1, il s’ensuit
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(2)
que UX | TX,, = R(T), notons que 7T,y —> Premy.
Comme T est fermé, xo € D(T') et Txo = Prepyy-
puisque xg € C(T) = R(T"), il existe u € D(T7) tel que xg = TTu.
Maintenant, Prayy = Txo = TT u = Prpyu. Alors y —u € R(T)* = N(TT). Cest

y=y —u+u€ D(TT). Par conséquent xq = T7u = T'y. Ceci termine la preuve.
O

Théoréme 3.5.2. [5] Soit T € C(H1,Ha) un opérateur densément définit. Alors les
assertions suivantes sont équivalentes :

(1) R(T) est fermé.

(2)

(3) D(T") = Ha.
(4)

TTest borné.

0 n’est pas un point d’accumulation de o(T*T).

Si, en plus R(T) est séparable et T2 est comme dans le Théoreme 3.5.1, alors

chacun des assertions ci-dessus est équivalente a ;

(5) lim T,Ez)y existe pour tout y € Ha.
n—-ao0

(6) T est uniformément borné.

Théoréme 3.5.3. [5] Soit T € C(H1, Ha) un opérateur densément définit. S’il existe

une suite de projections orthogonales décroissantes P, sur Hs vers un sous-espace de

R(T) avec la propriété P,y — Pray pour tout 'y € Hy et R(P,T) est fermé, alors

pour chaque n, il existe un T tel que
D(TY) ={y € Hy : lim TPy existe}
n—-=oo

et
T’y = lim TPy, pour tout y € D(T")
n—-ao0

On peut prouver ce Théoréme par une preuve similaire du Théoréme 3.5.1.

Exemple 3.5.1. Soit T : (> — (? avec

D(T) = {(z1, 2, +) € 12 (0,22,0, 41y, --) € (*}
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Définit par
T(xy,x9,--) = (0,229,0,4xy,- - ) pour touts (xy,zs,---) € D(T).

On peut montrer que T =T* et R(T) est fermé. Soit {e,}>2, est la base orthogonale

pour 2. Ici R(T) = span(eq, ey, -+ ,€on, -+ ). Soit Y, = span{ea, eq, -+ ,e2,}. Alors
Y, C Y1, dim(Y,) =n et U,Y, = R(T).
Puisque T = T*, nous avons I +TT* =1 + T?.

Pour tout x = (x1, 2, ) € D(T?),
(I + T2>$ = (xla 5$2,.’E3, 171‘4, T, T2p-1, (1 + 4n2)x2n7 ce )

Pour tout y = (y1,ya,- -+ ) € (2,
(_[ + Tz)*ly — (y17 3{5—2’ Y3, %yzl’ e Yop—1, lfﬁ’ e )’ Y= (yl’ Ygy + v ’) c 52'
En particulier, (I +T?) Y esn) = ~225. D'owt Z, = (I + T?)"'Y,, = Y,.

1+4n2 -
Ausst X,, = T"Z, = Y,. Alors X,, = Y, = Z,. Ainsi P, = @Q,. C’est P,x =
Ty + Ty + -+ + Topeon pour tout © = (T1, 29, Ty, -+ ,) € 2. T,, = P, T. pour

T,x = 2w9es + 4x4€64 + - - - + 2n2T9,E0,. Ainsi

T(2)(y)={ Feo+ eat o Greon siyeYy;
" 0, siyeYr

Donc d’apres le Théoreme 3.5.1 , D(TT) = {y € ¢* : lim T existe} = ¢* et
n—m=o0

1 1
TTy = lim TT(Lz)y = (07 Y2, 07 “Ya, ) pour tout Y= (yh Y2, ) S 62
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Conclusion

On peut généraliser la notion d’inversibilité d’une matrice ou d’un opérateur
linéaire non inversible par plusieurs méthodes permis ces méthodes on a vu l'inverse
de Moore-Penrose pour les matrices avant de voir le cas des opérateurs linéaires

et d’étudier leur propriétés.

Perspectives

Dans ce mémoire le calcul de I'inverse de Moore-Penrose restreint aux
opérateurs bornés et les opérateurs fermés densément définit, peut étre
il y a une extension pour les opérateurs fermables (Opérateurs presque

formable).
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