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Introduction

L’inversibilité est l’une des disciplines les plus répandues en Mathématique, beau-
coup de problèmes sont interprétés par une équation de type Ax = y, où A est une
transformation linéaire donnée, qui est dans notre situation une matrice ou un opé-
rateur linéaire, comme l’analyse numérique, l’optimisation, la théorie de contrôle,
théorie de codage, la statistique et les modèles linéaires .

Il est bien connu qu’une matrice sur un corps a un inverse, si elle est carrée
de déterminant non nul, on peut généraliser la notion d’inversibilité même pour les
matrices non inversibles par plusieurs méthodes ; permis ces dernières il y a le pseudo-
inverse de Moore-Penrose.

Cette généralisation de l’inverse est introduite depuis 1903 par Erik Ivar Fred-

holm qui a donnée le concept de pseudo-inverse pour un opérateur intégral , puis
en 1920 Eliakim Hastings Moore décrit pour une matrice à coefficients réels ou
complexes (pas nécessairement carrée), ou pour une application linéaire entre espaces
euclidiens ou hermitiens, il existe un unique pseudo-inverse de Moore-Penrose sa-
tisfaisant certaines conditions supplémentaires, et redécouvert indépendamment par
Roger Penrose en 1955.

Ce mémoire est constitué de trois chapitres :

Le premier chapitre est consacré à l’étude des propriétés de l’inverse de
Moore-Penrose.

Dans la première section nous rappelons quelques généralités sur les matrices,
dans la seconde section on donne quelques conséquences de la décomposition d’une
matrice et nous avons ajouté une programmation pour chaque décomposition, dans
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la troisième section on va étudier les {i, j, . . . , k}- inverses généralisées des matrices,
et aussi les types les plus célèbres de l’inverse généralisée et les relations entre ces
types.
Précisément les types suivants de pseudo-inverse comme :

• L’inverse de Moore-Penrose (A†) dans le cas des matrices carées. Ce type

d’inverse vérifie les quatre équations de Penrose AA†A = A (1), A†AA† =

A† (2),

(AA†)∗ = AA† (3), (A†A)∗ = A†A (4).

• L’inverse du Groupe (A]) ou {1, 2, 5}- inverse( où AA] = A]A (5)) il existe
seulement pour les matrices d’indice k = 1 ou k = 0.

Et dans la quatrième section on étudie l’inverse de Moore-Penrose(A†) dans
le cas des matrices carrées non inversibles, mais généralisable à toute algèbre de
matrices à valeurs dans un corps. Ce type d’inverse vérifie les quatre équations de
Penrose AA†A = A (1), A†AA† = A† (2), (AA†)∗ = AA† (3) et (A†A)∗ = A†A (4)

Dans le deuxième chapitre on aborde des notions de base nécessaires pour
notre sujet. On donne quelques rappels de les opérateurs linéaires bornés sur l’espace
de Hilbert, ainsi on a prouvé des propositions concernant la multiplication, l’addi-
tion et la soustraction des projections orthogonales, puis une méthode pour extraire
une projection orthogonale à partir d’une projection de même image, ce concept
prendra également une partie importante de l’intérêt du troisième chapitre pour dé-
finir l’inverse de Moore-Penrose ; et après on est concerné par les algorithmes de
Moore-Penrose pour les opérateurs bornés puis les opérateurs fermés à domaine
dense.

Le dernièr chapitre représente l’objectif générale des notions de l’inverse de
Moore-Penrose des opérateurs linéaire dans l’espace de Hilbert. La première sec-
tion on donne un rappel sur la théorie spectrale des opérateurs linéaires. La deuxième
section est une brève introduction à l’inversion généralisée des opérateurs linéaires
où on a commencé par la définition de Tseng. La troisième et la quatrième section
concernent respectivement des opérateurs bornés et des opérateurs fermés à domaine
dense sur un espace de Hilbert. Dans la dernière section nous approximons l’inverse
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de Moore-Penrose T † de T par son {2}−inverse. Nous avons aussi illustré cette
méthode avec un exemple.
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Chapitre 1

Programmes (IMP) pour les matrices

Ce chapiitre contient troix sections, dans la première section "Rappels sur les
matrices" nous rappelons les concepts de base d’algèbre linéaire nécessaire relatives
aux matrices.
La deuxième section "Décomposition d’une matrice " qui est indispensable pour étu-
dier l’inverse de moore-penrose avec la programmation de chaque décomposition,
dans la troisième section on va étudier {i, j, . . . , k}- inverses généralisées des matrices

et la dernière section on étudie l’inverse de Moore-Penrose (A†)

1.1 Rappels

Définition 1.1.1. Soit A une matrice de Mn,m(K), on appelle matrice Adjointe de
A, notée A∗, la matrice définie par :{
A∗ = At si K = R
A∗ = (A)t si K = C

∀(i, j) ∈ {1, ..., n} × {1, ...,m}

une matrice A est symétrique si :

At = A

Elle est dite hermitienne ou auto-adjoint si : A∗ = A
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1.1.1 Rang et noyau d’une matrice

Étant donnée une matrice A ∈ Cm×n, l’image par A d’un vecteur x ∈ Cn est le vec-
teur Ax =

∑n
i=1 xiai ∈ Cm ou les ai sont les colonne de A. L’image de A est définie par

ImA = {Ax : x ∈ Cn} =

{
n∑
i=1

x ∈ Cn

}

c’est un sous-espace vectoriel de Cm engendré par les vecteurs-colonne de A.
sa dimension est le rang de A. Le rang de A est donc le nombre maximum de
vecteurs-colonne indépendants de A.
Une caractérisation utile du rang est la suivante : rang A = r si et seulement s’il
existe dans A une sous-matrice carrée r × r de déterminant non nul et si toute
sous-matrice carrée s× s avec s > r a un déterminant égal à 0.
cette caractérisation norme que

rang = rangAt = rangA∗

Le noyau de A est le sous-espace vectoriel

kerA = x ∈ Cn : Ax = 0

Le rang et la dimension du noyau de A sont reliés par la formule célèbre :

rangA+ dim KerA = n

1.1.2 Matrice inversible

Définition 1.1.2. Une matrice carré est inversible s’il existe une matrice B telle
que : AB = BA = In oû In est la matrice inverse de A notée A−1

Proposition 1.1.1. Soient A,B dans MR :

– si A et B sont inversible, alors AB inversible et (AB)−1 = B−1A−1
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– si A est inversible, alors At est inversible et (At)−1 = (A−1)t = A−t

Preuve 1.1.1. – (AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = I Donc AB est inver-
sible d’inverse B−1A−1

– (At)(A−1)t = (A−1A)t = I

1.1.3 Matrice unitaire et matrice orthogonale

Une matrice carré est unitaire si et seulement si :U−1 = U∗

Une matrice A de Cn×n, est dite orthogonale si elle vérifiée l’une des propriétés équi-
valents suivantes :

1. A∗A = In

2. AA∗ = In

3. A est inversible et A−1A = I

1.2 Décomposition d’une matrice

1.2.1 Décomposition QR

En algébre linéaire, la décomposition QR (appelée aussi, décomposition QU)
d’une matrice A est une décomposition de la forme

A = QR

oû Q est une matrice orthogonale (QQ∗ = I), et R est une matrice triangulaire
supérieure.
il existe plusieurs méthodes pour réaliser cette décomposition :

- La méthode de Householder où Q est obtenue par produits successifs de matrices
orthogonales élémentaires.

- la méthode de Givens où Q est obtennue par produits successifs de matrices de
retation plane.

- La méthode de Shmidt

Chacune d’entre elle a ses avantages et ses, inconvénients. ( La décomposition
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QR n’étant pas unique, les différentes méthodes produiront des résultats diffé-
rents).

Méthode de Schmidt :
On considère le procédé de gram-shmidt appliqué aux colonne de la matrice
A = [a1, ..., an], muni du produit scalaire < V.W >= V ∗V ou < V ∗,W >= V ∗W .
Pour le cas complexe, l’algorithme présenté ci-dessous convient à une matrice de rang
n, pour des matrices de rang inférieur il est à adapter à chaque fois que le vecteur ui,
obtenu est nul, on définit la projection :∏

e a = <e,a>
<e,e>

e

puis les vecteurs :
u1 = a1, e1 = u1

‖u1‖

u2 = a2 −
∏

e1
a2 e2 = u2

‖u2‖

uk = ak −
k−1∑
j=1

∏
ej
ak ek = uk

‖uk‖

on réarrange ensuite les équation de sorte que les ai soient à gauche, en utilisant le
fait que les ei sont des vecteurs unitaire :

a1 =< e1, a1 > e1

a2 =< e1, a2 > e1+ < e2, a2 > e2

a3 =< e1, a3 > e1+ < e2, a3 > e2+ < e3, a3 > e3

ak =
k∑
j=1

< ej, ak > ej

ou < ei, ai >=‖ ui ‖ ceci s’écrit matriciellement :
A = QR

avec :
Q = [e1, .., en]
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et

R =


< e1, a1 > < e1, a2 > < e1, a3 > ...

0 < e2, a2 > < e2, a3 > ...

0 0 < e3, a3 > ...
...

... ...
. . .



Exemple 1.2.1. A =


1 1 0

1 0 1

0 1 1


a1 = (1, 1, 0)T

a2 = (1, 0, 1)T

a3 = (0, 1, 1)T

u1 = a1 = (1, 1, 0)

e1 = u1

‖u1‖ = 1√
2
(1, 1, 0) = ( 1√

2
, 1√

2
, 0)

u2 = a2− < a1, e1 > e2 = (1, 0, 1)− 1√
2
( 1√

2
, 1√

2
, 0) = (1

2
, −1

2
, 1)

e2 = u2

‖u2‖ = 1√
3
2

(1
2
, −1

2
, 1) = ( 1√

6
, −1√

6
, 2√

6
)

u3 = a3− < a3, e1 > e1− < a3, e2 > e2 = (0, 1, 1)− 1√
2
( 1√

2
, 1√

2
, 0)− 1√

6
( 1√

6
, −1√

6
, 2√

6
) =

(−2
3
, 2

3
, 2

3
)

e3 = u3

‖u1‖ = (−1√
3
, 1√

3
, 1√

3
)

Q =


1√
2

1√
6
−1√

3
1√
2
−1√

6
1√
3

0 2√
6

1√
3

 R =


2√
2

1√
2

1√
2

0 3√
6

1√
6

0 0 2√
3



Le programme en MATLAB : [Q,R] = qr([1 1 0; 1 0 1; 0 1 1])

>> A = [1 1 0; 1 0 1; 0 1 1]

A =


1 1 0

1 0 1

0 1 1



>> [Q,R] = qr(A)
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Q =


−0.7071 0.4082 −0.5774

−0.7071 −0.4082 0.5774

0 0.8165 0.5774



R =


−1.4142 −0.7071 −0.7071

0 1.2247 0.4082

0 0 1.1547



Programme de Schmidt sous Matlab :
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1.2.2 Décomposition en valeurs singulières d’une matrice

En mathématiques, le procédé d’algèbre linéaire de décomposition en valeurs
singulières ( ou SVD, de l’anglais singular value décomposition)d’une matrice est
un outil important de factorisation des matrices rectangulaires réelles ou complexes.
La décomposition a été prouvé en 1873-1874 par E.Beltarmi et C.Jordan, 1889
J.J.Sylvester a prouvé cette décomposition pour les matrices carrées réelles, et en
1915 la SVD a été prouvé pour les matrices complexes carrées par Autonne, valeurs
singulière des opérateurs intégrales ont étudié par Schimdt et Weyl

Définition 1.2.1. Soit A ∈ Mm×n(R), la décomposition en valeurs singulière de A
s’écrit de la façon suivante :

A = UΣV ∗

avec : U et V deux matrices orthogonales de taille m×m et n× n respectivement et
Σ une matrice diagonale de taille m × n contenant les valeurs singulière de A notée
σ1, σ2, ..., σp et p = min(m,n)

Théorème 1.2.1. les valeurs singulières d’une matrice A sont les racines carrées des
valeurs propres non nulles de AA∗ et A∗A

Preuve 1.2.1.

A∗A = (UΣV ∗)∗(UΣV ∗) = V Σ∗U∗UΣV ∗ = V Σ∗ΣV ∗

La matrice A∗A est semblable a Σ∗Σ, ce qui implique qu’elles ont les même valeurs
propres, les valeurs propres de Σ∗Σ sont σ2

1, σ
2
2, ..., σ

2
p.

Théorème 1.2.2. A = UΣV ∗

‖ A ‖2= σ1 ‖ A ‖F=

√
n∑
i=1

σ2
i

Preuve 1.2.2. On a U et V sont orthogonale, nous avons :

‖ A ‖2=‖ UΣV ∗ ‖2=‖ Σ ‖2

Maintenant

‖ Σ ‖2
2= max ‖ Σx ‖2

2= max(σ2
1x

2
1 + ...+ σ2

nx
2
n) ≤ σ2

1(x2
1 + ...+ x2

n) = σ2
1
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et le maximum est vérifié pour x = e1 alors
‖ A ‖2= σ1

Pour la norme de Frobenuis, nous avons

‖ A ‖F=

√√√√ n∑
i,j

x2
ij =

√
tr(A∗A) =

√√√√ n∑
i=1

σ2
i

comme la trace d’une matrice est la somme de ses valeurs propres

L’existence et l’unicité

Théorème 1.2.3. [3] Soit A ∈ Rm×n une matrice de rang r, il existe deux matrices
orthogonales U ∈ Rm×m, (U∗U = UU∗ = Im) et V ∈ Rn×n, (V ∗V = V V ∗ = In) telle
que :

A = UΣV t, Σ =

(
Σ1 0

0 0

)
(1.1)

ou Σ ∈ Rm×n,Σ1 = diag(σ1, σ2, ..., σr),et

σ1 ≥ σ2 ≥ ... ≥ σr > 0

composante par composante, l’identité matriciel (1.1) devient :

Avj = σjuj ; A∗uj = σjvj pour j = 1, ..., n

A∗uj = 0 pour j = 1, ...,m

Si l’on note U = (u1, u2, ..., um), V = (v1, v2, ..., vn) Les colonnes des matrices U et
V , les vecteurs uj et vj sont respectivement,les vecteurs singulières droits et gauches
associé à les valeurs singulières σj

Preuve 1.2.3. La preuve se fait par récurrence sur n.
par définition de ce qu’est une norme matricielle subordonnée, il existe un vecteur
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v1 ∈ Rn tel que

‖ v1 ‖2= 1 ; ‖ Av1 ‖2=‖ A ‖=déf σ

oû σ est strictement positif (si σ = 0, alors A = 0, et il n’y a rien à démontrer).
Posons u1 = 1/σAv1 ∈ Rm

Complétons le vecteurs V1 en une base orthogonale de Rn, et notons
V = (v1, V1) ∈ Rn×n la matrice formée par les vecteurs de base.
Faisons de meme pour U1 et Rm, notant U = (u1, U1) ∈ Rm×m

Remarquons que les matrices U et V sont orthogonales par construction.
D’après notre choix de U1, U

t
1Av1 = σU t

1U1 = 0, et donc le produit U tAV a la
structure par bloc suivante :

A1déf = U tAV =

(
σ wt

0 B

)

avec wt = ut1AV
1 et B = U t

1AV1 ∈ R(m−1)×(n−1)

comme U et V sont orthogonales, ‖ A1 ‖2=‖ A ‖2= σ. Mais la double inégalité

‖ A1 ‖2≥ (σ2 + wtw)
1
2 ≥

∥∥∥∥∥A1

(
σ

w

)∥∥∥∥∥
2

=

∥∥∥∥∥
(
σ2 + wtw

Bw

)∥∥∥∥∥
2

≥ σ2 + wtw

montre que ‖ A1 ‖≥ (σ2 +wtw)
1
2 .On doit donc avoire w = 0. On peut alors terminer

la démonstration en appliquant l’hypothèse de récurrence à B.

Exemple 1.2.2. A =

(
5 5

−1 7

)

A∗A =

(
5 −1

5 7

) (
5 5

−1 7

)
=

(
26 18

18 74

)

det(A∗A− λI) = det

(
26− λ 18

18 74− λ

)
= λ2 − 100λ− 1600 = (λ− 20)(λ− 80)

les valeurs propres sont :λ1 = 20, λ2 = 80⇒ σ1 = 4
√

5, σ2 = 2
√

5



20 CHAPITRE 1. PROGRAMMES (IMP) POUR LES MATRICES

calcul de U et V

A∗A = 20I =

(
6 18

18 54

)
v1 =

(
−3√
10
1√
10

)

A∗A− 80I =

(
−54 18

18 −6

)
v2 =

(
1√
10
3√
10

)

V =

(
−3√

10
1√
10

1√
10

3√
10

)
Σ =

(
2
√

5 0

0 4
√

5

)

AV =

(
5 5

−1 7

)(
−2√

10
1√
10

1√
10

3√
10

)
=

(
−
√

10 2
√

10
√

10 2
√

10

)
=

(
−1√

2
1√
2

1√
2

1√
2

)(
2
√

5 0

0 4
√

5

)

alors U =

(
1√
2

1√
2

−1√
2

1√
2

)

A = UΣV ∗ =

(
5 5

−1 7

)(
1√
2

1√
2

−1√
2

1√
2

)(
2
√

5 0

0 4
√

5

)(
−3√

10
1√
10

1√
10

3√
10

)

Le programme en MATLAB :[U,S,V]=svd([5 5;−1 7])

>> A = [5 5;−1 7]

A =

(
5 5

−1 7

)

>> [U, S, V ] = svd(A)

U =

(
0.7071 0.7071

0.7071 −0.7071

)

S =

(
8.9443 0

0 4.4721

)

V =

(
0.3162 0.9487

0.9487 −0.3162

)



1.2 Décomposition d’une matrice 21

Programme SVD sous Matalb :
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1.2.3 Décomposition LU

La décomposition LU est une méthode de décomposition d’une matrice comme
produit d’une matrice triangulaire inférieur L par une matrice triangulaire U . Cette
décomposition est utilisée en analyse numérique pour résoudre des systèmes d’équa-
tion linéaire

Définition 1.2.2. Soit A une matrice carrée. On dit que A admet une décomposition
LU s’il existe une matrice tiangulaire inférieur formée de 1 sur la diagonale, noté L,
et une matrice triangulaire supérieur, noté U , qui vérifiant l’égalité : A = LU

Il n’est pas toujours vrai qu’une matrice A admette une décomposition LU . Cependant
dans certains cas, en permutant des lignes de A, la décomposition devient possible,
on obtient alors une décomposition de la forme A = PLU

où P est une matrice permutation bien que les décomposition LU et PLU conduisent
à des formules distinctes, généralement quand on parle de la décomposition LU , on
fait référence à l’une ou l’autre de ces décomposition

Existence,Unicité

Pour tout matrice carrée, on a existence d’une décomposition PLU . Pour une matrice
inversible, la décomposition LU existe si et seulement si : toutes les sous-matrices
principales d’ordre 1 à n−1 sont inversibles. [pur une matrice carrée de rang r < n, il
y a des conditions suffisantes analogues] si toutes les sous-matrice principales d’ordre
1 à nsont inversibles, elle est même unique

Exemple 1.2.3. A =


2 1 −1

4 6 1

−2 11 8


L
′
2 = L2 − 2L1

L
′
3 = L3 + L1

→ 
2 1 −1

0 4 3

0 12 7


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
2 1 −1

4 6 1

−2 11 8

 =


1 0 0

2 1 0

−1 0 1




2 1 −1

0 4 3

0 12 7


L
′
3 = L3 − 3L2

→


2 1 −1

0 4 3

0 0 −2




2 1 −1

4 6 1

−2 11 8

 =


1 0 0

2 1 0

−1 3 1




2 1 −1

0 4 3

0 0 −2

 = LU

Programme en Matlab [L,U, p] = lu[2 1 − 1; 4 6 1;−2 11 8]

>> A = [2 1 − 1; 4 6 1;−2 11 8]

A =


2 1 −1

4 6 1

−2 11 8


>> [L,U ] = lu(A)

L =


1.0000 0 0

−0.5000 1.0000 0

0.5000 −0.1429 1.0000



U =


4.0000 6.0000 1.0000

0 14.0000 8.5000

0 0 −0.2857



p =


0 1 0

0 0 1

1 0 0


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Programme de LU sous Mtlab :

1.2.4 Décomposition de Cholesky

La décomposition de cholesky est une décomposition d’un hermitienne, une ma-
trice définie positive dans le produit d’une matrice triangulaire inférieure et son trans-
posé conjugué. Il à été découvert par André-Louis Cholesky pour matrice réelles

Théorème 1.2.4. Soit A ∈ Cn×n une matrice définie positive. Il existe une unique
matrice L ∈ Cn×n triangulaire inférieure telle que lii > 0 pour tout i et A = LL∗

Preuve 1.2.4. supposons que LL∗ = MM∗, que lii > 0 et que mii > 0 pour tout
i. On a M−1L = M∗L−∗ qui est à la fois triangulaire inférieure (à gauche) et
triangulaire (à droite). C’est donc une matrice diagonale. Les entrées diagonales

valent m−1
ii lii = miil

−1
ii et donc sont égales à 1 par la condition de positivité. Ainssi

M−1L = M∗L−∗ = In c’est-à-dire L = M

L’existence de cette décomposition se prouve par récurrence sur n. Pour n = 1 on
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prend L = (
√
a11). Supposons que la décomposition de Cholesky existe pour toute

matrice définie positive n− 1× n− 1. Écrivons

A =

(
An−1 a

a∗ ann

)
avec a =


a1n

...
an−1n


Notons An−1 = Ln−1L

∗
n−1 la décomposition de Cholesky de An−1.On a

A =

(
Ln−1 0

u∗ α

)(
L∗n−1 u

0 β

)

en prenant Ln−1u = a et u∗u+αβ = ann. On obtiendra la décomposition de Cholesky
deA si l’on peut prendre α = β > 0 ce qui sera possible si αβ > 0. L’égalité ci-dessus
prouve que

detA = detLn−1α detL∗n−1β

Comme, par hypothèse, de A > 0 et de Ln−1 > 0 on a bien αβ > 0β

Algorithme de calcule

Ecrivons A = (ai,j) et L = (lj,j)

de l’igalité A = L∗L, on déduit que

ai,j =
n∑
k=1

li,jlj,k

puisque L est triangulaire inférieur. Pour i = 1, on détermine la première colonne de
L en commençant par la coefficient diagonale :
j = 1, a11 = l11l11, d’oû l11 =

√
a11

j = 2, a12 = l11l21,d’oû l21 = a12

l11

si on a déterminé les i-ême colonne deL, on peut déterminer la i-ême en commençant
la aussi par le coefficient diagonale :

j = i, ai,i = li,1li,1 + li,2l2,i + ... + li,ili,i d’oû li,i =
√
ai,i − li,1 − ...− li,ili,i − 1 =√

ai,i −
i−1∑
k=1

l2ik
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j = i + 1, ai,i+1 = li,1ll+1,1 + ... + li,ili+1 d’oû li+1,i =
ai,i+1−li,1li+1,1−...−li,i−1li+1,i−1

li,i
=

ai,i−
i−1∑
k=1

li,klj,k

li,i

Exemple 1.2.4. A =


6 5 55

15 55 225

55 225 979


l11 =

√
a11 =

√
6 = 2.4495

l21 = a21

l11
= 15

2.4495
= 6.1237

l22 =
√
a22 − l221 =

√
55− (6.1237)2 =

√
55− 37.5 = 4.1833

l31 = a31

l11
= 55

2.4495
= 22.4537

l32 = a32−l31×l21

l22
= 225−(22.4537)×(6.1237)

4.1833
= 225−137.5

4.1833
= 20.9165

l33 =
√
a33 − l231 − l232 =

√
979− (22.4537)2 − (20.9165)2 =

√
979− 941.6667 =

6.1101

L =


2.4495 0 0

6.1237 4.1833 0

22.4537 20.9165 6.1101

 L∗ =


2.4495 6.1237 22.4537

0 4.1833 20.9165

0 0 6.1101


Programme en Matlab

>> A = [6 5 55; 15 55 225; 55 225 979]

A =


6 5 55

15 55 225

55 225 979



>> [L] = chol(A,′ lower′)

L =


2.4495 0 0

6.1237 4.1833 0

22.4537 20.9165 6.1101


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>> L′

L′ =


2.4495 6.1237 22.4537

0 4.1833 20.9165

0 0 6.1101


Le programme de cholesky sous Matlab :

1.3 {i,j,. . . ,k}-Inverses généralisées

Dans cette section on va étudier l’inverse de Moore-Penrose des matrices et leur
propriété (car est un inverse généralisé le plus célèbre). Puis les {i, j, . . . , k} inverse
et on etudier des méthodes pour calculer l’inverse de Moore-Penrose d’une matrice
A.

1.4 Inverse de moore-penrose

Les Equations de Penrose

En 1955 Penrose a montré que, pour toute matrice finie A (carré ou rectangulaire)
des éléments réels ou complexes, il y a une unique matrice X vérifiant les quatre
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équations ( appelées les équations de Penrose )

AXA = A (1)

XAX = X (2)

(AX)∗ = AX (3)

(XA)∗ = XA (4)

où A∗ désigne la transposée ( cas réel ) ou l’adjointe ( cas complexe ) de A. Cet inverse

est appelé l’inverse de Moore-Penrose , et on le note par A†.
Si A est inversible, il est claire que X = A−1 trivialement vérifie les quatre équations.
Puisque l’inverse de Moore-Penrose est unique il suit que l’inverse de Moore-

Penrose d’une matrice inversible est le même comme l’inverse ordinaire.
Dans ce chapitre nous nous intéressons a plusieurs inverses généralisés qui satisfont
quelques équations de Penrose . Cm×n [Rm×n] dénote la classe des matrices m × n
complexes [réelles].

Définition 1.4.1. Pour toute A ∈ Cm×n, soit A{i, j, ..., k} l’ensemble des matrices
X ∈ Cn×m qui satisfont les équations (i), (j), ..., (k) parmi les équations
(1)− (4). Une matrice X ∈ A{i, j, ..., k} est appelée un {i, j, ..., k}−inverse de A, et

est notée par A(i,j,...,k).

Exemple 1.4.1. Si A{1, 2, 3, 4} est non vide, alors il est constitue d’un seul élément.

Preuve. Soit X, Y ∈ A{1, 2, 3, 4}. Alors

X = X(AX)∗ = XX∗A∗ = X(AX)∗(AY )∗

= XAY = (XA)∗(Y A)∗Y = A∗Y ∗Y

= (Y A)∗Y = Y

2

Théorème 1.4.1. [6] Si A,B ∈ Cm×n. tels que AB∗ = 0 et B∗A = 0, alors :

(A+B)† = A† +B†

Théorème 1.4.2. Si A = BC où A ∈ Cm×n, B ∈ Cm×r, C ∈ Cr×n, et
r = rang(A) = rang(B) = rang(C), alors A† = C∗(CC∗)−1(B∗B)−1B∗.
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Preuve. Remarquons que B∗B et CC∗ sont des matrices dans Cr×r de rang égale à
r. Soit X = C∗(CC∗)−1(B∗B)−1B∗. On va montrer que X vérifie les quatre équations
de Penrose . On a
AX = BCC∗(CC∗)−1(B∗B)−1B∗, donc (AX)∗ = AX. En outre
XA = C∗(CC∗)−1(B∗B)−1B∗BC = C(CC∗)−1C, donc (XA)∗ = XA. Par conséquent
les équations (3) et (4) de Penrose sont vérifiées.
pour vérifier les équations (1) et (2) nous utilisons XA = C∗(CC∗)−1C pour obtenir
A(XA) = BC(C∗(CC∗)−1C) = BC = A.
Et (XA)X = C∗(CC∗)−1CC∗(CC∗)−1(B∗B)−1B∗ = C∗(CC∗)−1(B∗B)−1B∗ = X.

Par conséquent X = A†.

2

Exemple 1.4.2. Soit A =

[
1 1 2

2 2 4

]
, r = rang(A) = 1, A = BC ou B ∈ C2×1 et

C ∈ C1×3. En fait,

A =

[
1

2

] [
1 1 2

]
.

Alors B∗B = [5], CC∗ = [6]. Par conséquent

A† =


1

1

2

 · 1

6
· 1

5
·
[

1 2
]

=
1

30
·


1 2

1 2

2 4



1.5 Comparaison entre des décomposition

Dans cette section on va faire une comparaison entre les 4 programme étudié
ultérieurement, cette comparaison est consacré sur la rapidité de l’exécution, on
utilise le même PC et la même matrice et les même conditions, pour calculé le temps
de l’exécution sur le programme Matlab il y à la commande (tic toc) et pour prendre
une valeur presque stable on calcule la moyenne arithmétique de plusieurs tentative
(10000 fois ) par ce que chaque fois on trouve une valeur différente par rapport les
autres
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Programme de QR
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programme de SVD
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Programme de LU
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Programme de Cholesky
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Conclusuion

D’aprés la comparaison, nous concluons que la décomposiotion LU est le plus
rapide



Chapitre 2

Opérateurs linéaires

Notion de projection

• (A) Tout au long de ce mémoire nous considérons les espaces de Hilbert, notés
H,H1,H2, etc. Le produit scalaire et la norme induite sont notés respectivement par
<,> et ‖.‖. L(H1,H2) désigne l’espace des opérateurs linéaires de H1 dans H2. Si
T : H1 → H2 est un opérateur linéaire, le domaine, noyau et l’image de T sont notés
respectivement D(T ), N(T ), et R(T ).

• (B) Le graphe de T est définie par G(T ) = {(x, Tx) : x ∈ D(T )} ⊆ H1 × H2.
Si G(T ) est fermé, alors T est appelé un opérateur fermé. L’ensemble de tous les
opérateurs linéaires fermés est noté C(H1,H2).
L’ensemble des opérateurs linéaires bornés est notée B(H1,H2). Si H1 = H2 = H,
alors B(H1,H2) et C(H1,H2) sont désignés par B(H) et C(H) respectivement.

• (C) Si S et T sont deux opérateurs linéaires tels que D(T ) ⊆ D(S) et Tx = Sx

pour tout x ∈ D(T ), alors T est appelé une restriction de S et S est appelé une
extension de T . On note T ⊆ S.

• (D) Soit T ∈ L(H1,H2). Si D(T ) = H1, alors T est appelé densément défini. Le

sous-espace C(T ) = D(T ) ∩N(T )⊥ est appelé le carrier de T ,

si T ∈ C(H1,H2), alors D(T ) = N(T )
⊥
⊕ C(T ), la somme directe orthogonale de

N(T ) et C(T )

• (E) Pour tout T ∈ L(H1,H2) à domaine dense, on a :

N(T ) = R(T ∗)⊥, N(T ∗) = R(T )⊥
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où T ∗ l’adjoint de l’opérateur T satisfait

< T ∗y, x >=< y, Tx > pour tout x ∈ D(T )

En particulier, T respectivement T ∗ a une image dense si et seulement si T ∗ respec-
tivement T est injectif.

• (F) Un opérateur fermé partout défini est borné, c’est une conséquence de théorème
du graphe fermé. Inversement, on peut écrire B(H1,H2) ⊂ C(H1,H2).

• (G) On note :

H1,2 = H1 ×H2 = {(x, y) ∈ H1 ×H2 : x ∈ H1, y ∈ H2}

H1,2 est un espace de Hilbert pour le produit scalaire

< (x1, y1), (x2, y2) >=< x1, x2 >H1 + < y1, y2 >H2

Soit Ji : Hi −→ H1,2, i = 1, 2 définie par

J1x = (x, 0) pour tout x ∈ H1

J2y = (0, y) pour tout y ∈ H2

et
H1,0 = J1H1 = H1 × {0}

H0,2 = J2H2 = {0} ×H2

Proposition 2.0.1. Soient T, S ∈ C(H). Alors si R(T ) + N(S) est fermé et si
R(T ) ∩N(S) = {0}, R(T ) est fermé.

Proposition 2.0.2. [1] Soit T ∈ C(H1,H2) un opérateur densément définit. Alors :

(1) N(T ) = R(T ∗)⊥

(2) N(T ∗) = R(T )⊥

(3) N(T ∗T ) = N(T )

(4) R(T ∗T ) = R(T ∗).

Proposition 2.0.3. Soit T ∈ C(H1,H2) un opérateur densément définit. Alors :
(1) (I + T ∗T )−1 ∈ B(H1), (I + TT ∗)−1 ∈ B(H2).

(2) (I + TT ∗)−1T ⊆ T (I + T ∗T )−1 et ‖T (I + T ∗T )−1‖ ≤ 1

(3) (I + T ∗T )−1T ∗ ⊆ T ∗(I + TT ∗)−1 et ‖T ∗(I + TT ∗)−1‖ ≤ 1.
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2.1 Espace de Hilbert

Définition 2.1.1. Soit H un espace vectoriel réel, resp(complexe). On appelle
produit scalaire sur H tout forme bilinéaire symétrique, resp(hermitien), qui est
définie positive.
On notera < x.y > le produit scalaire des vecteurs x, y ∈ H
cela signifie que l’application :

< ., . >: H ×H −→ K = R ou C

(x, y) −→< x, y >

vérifie :

1. pour tout y ∈ H, l’application x ∈ H −→< x, y >∈ K est une forme linéaire

2. pour tous x, y ∈ H. On a
< y, x >=< x, y > si l’espace est réel
< y, x >=< x, y > si l’espace est complexe

3. pour tout x ∈ H, on a < x, x >> 0 si et seulement si x = 0

Remarque : Notons que dans le cas complexe, on a donc, pour x, y ∈ H et λ ∈ C

< x, λy >= λ < x, y >

Définition 2.1.2. Si l’espace vectoriel H est muni d’un produit scalaire, on dit que
c’est un espace préhilbartien

Exemple 2.1.1. si (S,m) est un espace mesuré, on muni H = L2(m) d’un produit
scalaire (que l’on qualifiera de naturel) en posant, pour f, g ∈ L2(m) :

< f, g >=
∫
s
fgdm dans le cas réel

< f, g >=
∫
s
fgdm dans le cas complexe

En particulier, Sur l2, On a le produit scalaire naturel défini par :

< x, y >=
∞∑
n=1

xnyn : dans le cas réel

< x, y >=
∞∑
n=1

xnyn :dans le cas complexe

pour x = (xn)n > 1, y = (yn)n > 1 ∈ l2
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Proposition 2.1.1. (Inégalité de Cauchy-Shwarz). Soit H un espace vectoriel(réel
ou complexe) muni du produit scalaire< ., . >. Alors pour tous x, y ∈ H

|< x, y >|≤‖ x ‖‖ y ‖

Preuve 2.1.1. Si‖ x ‖= 0 c’est que x = 0 et l’inégalité est immédiate. Sinon,
‖ x ‖> 0 et pour tout t ∈ R nous avons

0 ≤‖ tx+ y ‖2=‖ x ‖2 t2 + 2Re < x, y > t+ ‖ y ‖2

Le discriminant de ce polynôme quadratiue doit être ≤ 0 :

0 ≥ (2Re < x, y >)2 − 4 ‖ x ‖2‖ y ‖2

d’ou

‖ x ‖‖ y ‖≥| Re < x, y >|

.
De plus il existe α ∈ C de module 1 tel que < x, y >= α |< x, y >|, d’où
α < x, y >=|< x, y >|
et ‖ x ‖‖ y ‖=‖ x ‖‖ αy ‖≥ Re < x, αy > Re(α < x, y >) = Re |< x, y >|.

Définition 2.1.3. un espace de Hilbert est un espace vectoriel H(réel ou complexe)

muni d’un produit scalaire et qui est complet pour la norme < x, x >
1
2

Exemple 2.1.2. L’espace vectoriel Rn, muni du produit scalaire euclidien usuel, est
un espace de Hilbert

Exemple 2.1.3. L’espace L2(Ω) muni du produit scalaire suivant :

< u, v >=

∫
Ω

u(x)v(x)dx

est un espace de Hilbert
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Théorème 2.1.1. (Théorème des projections) Soit K ⊂ H un convexe fermé non
vide. Alors pour tout f ∈ H, il existe u ∈ K unique tel que :

|f − u| = min
v∈K
|f − v| (2.1)

De plus u est caractérisé par la propriété :

u ∈ K

(f − u, v − u) 6 0 (2.2)

on note u = PKf = projection de f sur K

Preuve 2.1.2. a)Existence Nous indiquons deux démonstrations

1. La fonction Φ(v) = (f − v) est convexe, continue et lim
|v|→∞

Φ(v) = +∞, Donc Φ

atteint son minimun sur K puisque H est réflexif.

2. La deuxième démonstration ne fait pas appel à la théorème des espaces réflexifs.
Soit (vn) une suite minimisante pour 2.1.1 i.e vn ∈ K et

dn = |f − vn| → d = inf
v∈K
|f − v|

Montrons que (vn) est de cauchy. Application l’identité du parallélogramme avec

a = f − vn, b = f − vm il vient

| f − vn + vm
2

|2 + | vn − vm
2

|2=
1

2
(d2
nd

2
m)

or vn+vm
2
∈ K et donc | f − vn+vm

2
|> d

par conséquent :

| vn − vm
2

|26 1

2
(d2
n + d2

m)− d2et lim
m,n→∞

|vn − vm| = 0

donc :vn 7→ u ∈ K et l’on a d = |f − u|

b)Équivalence de 2.1.1 et 2.3

Soit u ∈ K vérifiant (2) et soit w ∈ K on a :
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v = (1− t)u+ tw ∈ K pour t ∈]0, 1[ et donc

|f − u| 6 |f − [(1− t)u+ tw]| = |(f − u)− t(w − u)|

par suit :

|f − u|2 6 |f − u|2 − 2t(f − u,w − u) + t2|w − u|2

i.e 2(f − u,w − u) 6 t|w − u|2. quand t→ 0

on obtient(3)
Inversement, soit u vérifiant 2.3. Alors on a :

|u− f |2 − |v − f |2 = 2(f − u, v − u)− |u− v|2 6 0∀v ∈ K

d’oû(2)
C)Unicité :
Soient u1etu2 vérifiant 2.3 on a :

(f − u1, v − u1) 6 0 ∀v ∈ K (2.3)

(f − u2, v − u2 6 0 ∀v ∈ K (2.4)

Reportant v = u2 dans 2.3 et v = u1 dans2.4 , on obtient après addition, |u1−u2|2 6 0

2.2 Opérateurs linéaires

2.2.1 Opérateur linéaire dans les espace de Hilbert

Définition 2.2.1. Une application T définie d’un espace de Hilbert H1, dans H2 est
dit "opérateur linéaire" si T satisfait les deux propriétés suivantes :

1. ∀x, y ∈ H1, T (x+ y) = T (x) + T (y).

2. ∀x ∈ H1,∀α ∈ H2, T (αx) = αT (x).

L’opérateur identité I est défini parIx = x pour tout x ∈ H.
L’opérateur nul 0 est défini par 0x = 0,pour tout x ∈ H.
Le noyau de T notée N(T ) et image de T , notée R(T ) sont définis par :
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soit T : H1 → H2, y ∈ H2;∃x ∈ H1 : y = Tx.
N(t) = {x ∈ H1, Tx = 0} et R(T ) = {Tx, x ∈ H1}.

Définition 2.2.2. Soit H un espace de Hilbert et soit T : H −→ H un opérateur
linéaire, on dit que T est borné si et seulement si :

∃C > 0, ‖ Tx ‖6 C ‖ x ‖,∀x ∈ H

Théorème 2.2.1. (Représentation de Riesz) Soit H un espace de Hilbert, et f est
une forme linéaire continue sur H.
Il existe un vecteur a ∈ H et un seul, tel que :

∀x ∈ H, f(x) =< a, x >

2.2.2 Adjoint d’un opérateur

Proposition 2.2.1. Soit H un espace de Hilbert.Pour tout T ∈ L(H) il existe un
autre opérateur, noté T ∗, et appelé L’adjoint de T , tel que :

< Tx, y >=< x, T ∗y > ∀x, y ∈ H

De plus ‖ T ∗ ‖=‖ T ‖

Preuve 2.2.1. Soit y ∈ H, L’application :

Φ ◦ T : H −→ H

x −→ < Tx, y >

est une forme linéaire continue sur H, il existe donc, par le théorème de Fréchet-Riez,
un unique élément de H que l’on notera T ∗y, tel que :

< x, T ∗y >=< Tx, y > ∀x ∈ H

A cause l’unicité ,l’application

T ∗ : y ∈ H −→ T ∗y ∈ H
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est clairement linéaire :si y1, y2 ∈ Heta1, a2 ∈ K
On a pour tout x ∈ H :
< x, T ∗ (a1y1 + a2y2) >=< Tx, a1y1 + a2y2 >

= a1 < Tx, y1 > +a2 < Tx, y2 >

= a1 < x, T ∗y1 > +a2 < x, T ∗y2 >

=< x, a1T
∗y1 + a2T

∗y2 > Donc T ∗(a1y1 + a2y2) = a1T
∗y1 + a2T

∗y2

D’autre part, l’inégalité de Cauchy-Schwarze donne :

| (Φ ◦ T )(x) |=|< Tx, y >|6‖ Tx ‖‖ y ‖6‖ T ‖‖ x ‖‖ y ‖

Donc ‖ T ∗y ‖=‖ Φ ◦ T ‖6‖ T ‖‖ y ‖.Cela prouve que l’application linéaire T ∗ est
continue et que ‖ T ∗ ‖>‖ T ‖
Pour voir que ‖ T ‖6‖ T ∗ ‖, remarquons que T ∗ a lui-même au adjoint T ∗∗, et que
l’on a T ∗∗ = T

< y, T ∗∗x >=< T ∗y, x >=< y, Tx >

Pour tous x, y ∈ H, cela implique que T ∗∗x = Tx pour tout x ∈ H, Alors ‖ T ‖=‖
T ∗∗ ‖6‖ T ∗ ‖

Exemple 2.2.1. Soit Sd l’opérateur linéaire (translation ou Shift à droite) défini sur
`2(R) tel que :

Sd : `2(R) −→ `2(R)

x = (x1, x2, ...) −→ Sd = (0, x1, x2, ...)

Alors

< Sdx, y > = < (0, x1, x2, ...), (y1, y2, ...) >

= 0× y1 + x1 × y2 + x2 × y3...

=
+∞∑
i=1

xiyi+1

= < (x1, x2, ...), (y2, y3, ...) >

= < x,A∗y >
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Donc

S∗d`2(R) −→ `2(R)

y = (y2, y3, ...)

2.2.3 Opérateurs fermés

Définition 2.2.3. Soient X, Y deux espace vectoriels normés, T un opérateur linéaire
de D(T ) ⊂ Xdans Y : D(T )→ Y est fermé si et seulement si :


xn ∈ D(T )

xn → x0

Txn → y0

⇒


x0 ∈ D(T )

et

Tx0 = y0

Remarque 2.2.1. T est fermé si et seulement si G(T ) est fermé
( t.q G(T ) = {(x, y)/x ∈ X, y ∈ Y et y = Tx}).

Proposition 2.2.2. tout opérateur linéaire borné T : X → Y est fermé

Preuve 2.2.2. Supposons que (xn) ∈ D(T ) telle que xn → x dans X avec Tx → y

dans Y , comme T est borné , donc D(T ) = X, Alors d’après la continuité de T il est
claire que x ∈ D(T ) et Tx = y

2.3 Opérateurs Projections Orthogonales

Les opérateurs projection dans les espace de Hilbert et de banach sont largement
utilisés dans différents domaines des mathématiques comme l’analyse fonctionnelle
et numérique, théorie de l’optimisation et de contrôle optimal, la programmation non
linéaire et stochastique et la théorie des jeux. On utilise l’opérateur de projection
dans le chapitre 3 pour définir l’inverse généralisé et l’inverse de Moore-Penros

Opérateur de projection

Une projection sur un sous-espace quelconque F de H est un opérateur linéaire
borné
P de H dans F tel que P 2 = P. Soient F un sous-espace vectoriel de H et G un
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supplémentaire de F dans H.
N’importe quel vecteur x de H peut s’écrire d’une façon unique comme somme d’un
vecteur de F et d’un vecteur de G x = x′ + x′′, (x′, x′′) ∈ F ×G.
La projection sur F parallèlement à G est alors l’application P qui associe à tout x

de H
le vecteur x′ de F tel que R(P ) = F et N(P ) = G.
La projection sur G parallèlement à F est l’application Q = IdH − P , appelé aussi
projecteur associé à P .
L’image de Q n’est autre que le noyau de P , l’image de P est le noyau de Q.

Dans ce qui suit, nous supposerons que H est décomposé en la somme directe :

H = H1 ⊕H2 ⊕ · · · ⊕ Hn.

Proposition 2.3.1. La famille (Pi) des projections associées à la décomposition pré-
cédente vérifie les assertions suivantes :
1)
∑n

i=1 Pi = IdH;

2) P 2
i = Pi pour tout i;

3) Pi ◦ Pj = 0 pour tout (i, j) tel que i 6= j.

Définition 2.3.1. Une projection orthogonale sur un espace de Hilbert H est une
application linéaire P : H −→ H qui satisfait :
• P 2 = P ;
• < Px, y >=< x, Py > pour tout x, y ∈ H (c.à.d P = P ∗).
Une projection orthogonale est nécessairement bornée.

Exemple 2.3.1. L’espace L2(R) est la somme directe orthogonale de l’espaceM des
fonctions paires et N l’espace des fonctions impaires. Les projections orthogonales P
et Q de H surM et N , respectivement, sont donnés par :

Pf(x) =
f(x) + f(−x)

2
; Qf(x) =

f(x)− f(−x)

2

On note que I − P = Q.

Définition 2.3.2. Soit G un sous-espace fermé de l’espace de Hilbert H et soit

H = G
⊥
⊕ F
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Alors tout vecteur h ∈ H est représentable uniquement sous la forme

h = g + f

où g ∈ G et f ∈ F et < g, f >= 0. Le vecteur g est appelé la projection orthogonale
de h sur G. L’opérateur qui à tout h ∈ H associe g ∈ G est appelé l’opérateur de
projection orthogonale sur G. Il est noté par PG ou parfois par P :

g = Ph = PGh.

L’opérateur de projection orthogonale est évidemment linéaire, il est borné et sa norme
égale à un. En effet, d’après l’équation

‖h‖2 = ‖g‖2 + ‖f‖2

on a
‖g‖ ≤ ‖h‖ (2.5)

et alors
‖P‖ ≤ 1

Mais si h ∈ G, alors g = h, donc il y a une égalité dans (2.5).
Par conséquent ‖P‖ = 1.

Théorème 2.3.1. Si P est un opérateur définie sur H tel que, pour h1, h2 ∈ H
arbitraire

1) < P 2h1, h2 >=< Ph1, h2 >

2) < Ph1, h2 >=< h1, Ph2 >

alors il existe un sous-espace fermé G ⊂ H tel que P est l’opérateur projection ortho-
gonale sur G.

Preuve 2.3.1. L’opérateur P est borné.

‖Ph‖2 =< Ph, Ph >=< P 2h, h >=< Ph, h >

et
‖Ph‖2 ≤ ‖Ph‖‖h‖

alors que
‖Ph‖ ≤ ‖h‖
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Donc, l’opérateur P est borné et ‖P‖ ≤ 1. Notons G l’ensemble des vecteurs g ∈ H
tels que :

Pg = g.

Clairement, G est un sous-espace vectoriel de H. On devra prouver que G est fermé
dans H. Soit gn ∈ G (n = 1, 2, 3, ...) et gn → g dans H. Alors

gn = Pgn

et

Pg − gn = Pg − Pgn = P (g − gn).

Puisque ‖Pg − gn‖ ≤ ‖g − gn‖, on en déduit que lim
n→∞

gn = Pg = g donc, g ∈ G,

ce qui implique que G est fermé. Vérifions que P = PG, où PG est l’opérateur de
projection orthogonale sur G. Pour tout h ∈ H, le vecteur Ph appartient à G puisque
P (Ph) = Ph, le sous-espace G contient aussi PGh.
Par conséquent, il est suffisant de prouver que

< Ph− PGh, g′ >= 0, ∀g′ ∈ G

ou alors

< Ph, g′ >=< PGh, g
′ >, ∀g′ ∈ G

En utilisant les propriétés 1) et 2) on a :

< Ph, g′ >=< h, Pg′ >=< h, g′ >

< PGh, g
′ >=< h, PGg

′ >=< h, g′ >

En particulier, (I − P ) est la projection orthogonale sur H	G où I est l’identité de
H dans H.

Théorème 2.3.2. ( Théorème de la Projection ) Soit H un espace de Hilbert et F
un sous espace fermé de H, alors.
i) pour tout x ∈ H existe y unique dans F .

ii) Le vecteur y est l’unique qui vérifie (x− y) ∈ F⊥ c’est-à-dire
< x− y, z >= 0, ∀z ∈ F. y est la projection orthogonale de x sur F .



2.3 Opérateurs Projections Orthogonales 47

2.3.1 Opérations concernant les projections orthogonales

Dans cette section on doit prouver des propositions concernant la multiplication,
l’addition et la soustraction des opérateurs de projections orthogonales.

Théorème 2.3.3. Soient G1 et G2 deux sous-espaces fermés de l’espace de Hilbert
H,
le produit de deux opérateurs de projections orthogonales PG1 et PG2 est aussi un
opérateur projection orthogonale si et seulement si PG1 et PG2 commutent, c.à.d, si

PG1PG2 = PG2PG1

dans ce cas

PG1PG2 = PG

où

G = G1 ∩G2

Preuve 2.3.2. Si PG1PG2 est une projection orthogonale, Alors

PG1PG2 = (PG1PG2)∗ = P ∗G2
P ∗G1

= PG2PG1 .

Inversement, fixons h ∈ H arbitrairement et soit

g = PG1PG2h = PG2PG1h

par la première représentation g ∈ G1 et par la deuxième, g ∈ G2, donc g ∈ G1 ∩G2.
Si h ∈ G1 ∩G2, alors PG1PG2h = h. Notons

PG1PG2 = PG2PG1 = P

alors

P 2 = (PG1PG2)2

= PG1PG2PG1PG2

= PG1PG1PG2PG2

= PG1PG2

= P
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et pour tout h1, h2 ∈ H, on a :

< Ph1, h2 > = < PG1PG2h1, h2 >

= < PG2h1, PG1h2 >

= < h1, PG2PG1h2 >

= < h1, PG1PG2h2 > .

= < h1, Ph2 >

Ces équations montrent que l’opérateur P = PG1PG2 satisfait les conditions du théo-
rème 2.3.1, donc, il est un opérateur projection orthogonale sur G = G1 ∩G2.

Corollaire 2.3.1. Deux sous-espaces fermés G1 et G2 de H sont orthogonaux si et
seulement si

PG1PG2 = 0

Théorème 2.3.4. La somme finie d’opérateurs de projections orthogonales

PG1 + PG2 + ...+ PGn = Q (n <∞)

est un opérateur projection orthogonale si et seulement si

PGi
PGk

= 0 (i 6= k)

c.à.d, si et seulement si les espaces Gj (j = 1, 2, ..., n) sont deux à deux orthogonaux
dans ce cas

Q = PG

où
G = G1 ⊕G2 ⊕ ...⊕Gn

Preuve 2.3.3. Si les espaces Gj sont deux à deux orthogonaux, alors Q2 = Q, et,
donc, la suffisance de la condition est évidente. Il reste seulement de prouver la né-
cessité de la condition. Soit Q est un opérateur projection orthogonale, alors

‖f‖2 ≥ < Qf, f >=
n∑
j=1

< PGj
f, f > ≥ < PGi

f, f > + < PGk
f, f > .

Pour tout paire d’indices distingués i et k. D’après cette relation il suit que

‖PGi
f‖2 + ‖PGk

f‖2 ≤ ‖f‖2
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Utilisons cette inégalité avec
f = PGk

h

alors
‖PGi

PGk
h‖2 + ‖PGk

h‖2 ≤ ‖PGk
h‖2

et
‖PGi

PGk
h‖2 = 0

Pour h ∈ H. Donc,
PGi

PGk
= 0

Alors les espaces Gi et Gk sont deux à deux orthogonaux.

Théorème 2.3.5. La différence de deux opérateurs projections orthogonales,

PG1 − PG2 (2.6)

est un opérateur projection orthogonale si et seulement si G2 ⊂ G1. Dans ce cas
PG1 − PG2 est l’opérateur de projection orthogonale sur G1 	G2.

Preuve 2.3.4. Posons
Q = I − (PG1 − PG2)

Q est un opérateur projection orthogonale si PG1−PG2 est une projection orthogonale.

Donc
Q = (I − PG1) + PG2

Il suit du théorème 2.3.3 que
(I − PG1)PG2 = 0

ou bien
PG2 = PG1PG2 (2.7)

si g ∈ G2 alors
g = PG2g = PG1PG2g = PG1g

Donc g ∈ G1. Puisque tout élément g ∈ G2 appartient à G1, on a G2 ⊂ G1. La
condition (2.7) est nécessaire et suffisante pour que la différence (2.6) est un opéra-
teur projection orthogonale. Il reste seulement de caractériser l’espace G sur lequel
l’opérateur (2.6) projecté. L’opérateur Q projette orthogonalement sur

[H	G1]⊕G2
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Donc, l’opérateur (2.6) projette sur

H	 {[H	G1]⊕G2} (2.8)

c.à.d, sur le sous-espace des vecteurs orthogonaux à G2 et H	G1.
Puisque ce sous-espace est forme de tous les vecteurs de G1 lesquels sont orthogonaux
à G2, il est le sous-espace

G1 	G2 (2.9)

2.3.2 Suite Monotone des Opérateurs Projections orthogo-

nales

On prouve que la relation G2 ⊂ G1 est équivalente à l’inégalité

‖PG2f‖ ≤ ‖PG1f‖ (2.10)

pour tout f ∈ H. L’inégalité (2.10) est évidemment équivalente à

< PG2f, f >≤< PG1f, f >

ou
< (PG2 − PG1)f, f >≤ 0

pour tout f ∈ H. Les deux dernières inégalités sont généralement exprimées par

PG2 ≤ PG1

Ainsi, nous souhaitons prouver que la relation G2 ⊂ G1 est équivalente à la relation
PG2 ≤ PG1 , cela nous autorisera à introduire les suites monotones d’opérateurs
projections orthogonale.

Soit G2 ⊂ G1. Alors
PG2 = PG2PG1

Par conséquent, pour tout f ∈ H,

PG2f = PG2PG1f

et
‖PG2f‖ ≤ ‖PG1f‖ (2.11)



2.3 Opérateurs Projections Orthogonales 51

Inversement, supposant (2.11)est vrai pour tout f ∈ H. Considérons

f = (I − PG1)h

où h est un élément arbitraire de H. D’après (2.11) et

PG1(I − PG1)h = 0

on obtient
PG2(I − PG1)h = 0

Puisque cette équation est valable pour tout h ∈ H, on a

PG2 = PG2PG1

Alors que G2 ⊂ G1.

Théorème 2.3.6. Soient (Gk), (k = 1, 2, 3, · · · ) des sous-espaces fermés de H Si
(PGk

)

(k = 1, 2, 3, ...) est une suite infinie d’opérateurs projections orthogonales et si
PGk
≤ PGk+1

(k = 1, 2, 3, · · · ), alors, quand k → ∞, (PGk
)k converges fortement vers P un opéra-

teur de projection orthogonale dans H.

Preuve 2.3.5. Pour m < n la différence PGn − PGm est un opérateur projection
orthogonale. Par conséquent, pour tout f ∈ H

‖PGnf − PGmf‖2 = ‖(PGn − PGm)f‖2

= < (PGn − PGm)f, f >

= ‖PGnf‖2 − ‖PGmf‖2 (a1)

Puisque, pour f fixe, ‖PGk
f‖2 croitre avec k mais il est borné par ‖f‖2, il a une limite

finie. Donc, le membre droite de (a1) tend vers à zéro et la suite (PGnf)∞n=1 est de
Cauchy dans H au sens fort. Puisque H est complet, il existe une limite forte

f ∗ = lim
n→∞

PGnf

On définie l’opérateur P par
f ∗ = Pf
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f ∈ H. L’opérateur P est évidemment linéaire. D’autre part,

< PGk
f, PGk

g >=< PGk
f, g >=< f, PGk

g >

un passage à la limite donne

< Pf, Pg >=< Pf, g >=< f, Pg >

Par conséquent,

P = P ∗ = P 2

alors que P est un opérateur projection orthogonale.

2.4 Projection Orthogonale extraite d’une Projec-

tion

Soit H un espace de Hilbert et soit P ∈ B(H) une projection (P 2 = P ). Nous
cherchons la projection orthogonale Q qui a la même image que P , c.à.d Q2 = Q,

Q∗ = Q, PQ = Q et QP = P.

Première méthode :

On prend :D = PP ∗+(I−P ∗)(I−P ) = I+(P ∗−P )(P−P ∗) ≥ I d′oùD est inversible.
Ensuite :

(I −D)PP ∗ = (P − P ∗)(PP ∗ − P ∗PP ∗) = (I − PP ∗)PP ∗

Et

PP ∗(I −D) = (PP ∗P − PP ∗)(P − P ∗) = (I − PP ∗)PP ∗

Alors :

DPP ∗ = PP ∗D = (PP ∗)2

Si Q = PP ∗D−1 alors Q2 = PP ∗D−1PP ∗D−1 = (PP ∗)2D−2 = PP ∗D−1 = Q

et Q∗ = Q alors Q est une projection orthogonale.
Finalement

PQ = PPP ∗D−1 = PP ∗D−1 = Q
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et

(QP − P )(P ∗Q− P ∗) = QPP ∗Q−QPP ∗ − PP ∗Q+ PP ∗

= QPP ∗ −QPP ∗ − PP ∗ + PP ∗

= 0

tel que QP = P

Nous devons maintenant calculer [I − (P − P ∗)2]−1. Nous allons utiliser une série de
Neumann , de sorte que :

Q =
∑
k≥0

(P − P ∗)2kPP ∗, à condition que la série converge.

Mais (P − P ∗)2jPP ∗ = (I − D)jPP ∗ = (I − PP ∗)jPP ∗, donc Q =∑
k≥0(I − PP ∗)kPP ∗, en fait, pour tout a ∈ R+, on a aussi.

Q =
∑
k≥0

(I − aPP ∗)kaPP ∗ à condition que la série converge.

Soit c(P ) = infu⊥N(P )
‖Pu‖
‖u‖ appelée la conorme ( appelé aussi le module minimum

réduit ) de P.
il est facile de voire que la conorme d’une projection est toujours ≥ 1 et que :

−[a‖P‖2 − 1]kaPP ∗ ≤ (I − aPP ∗)kaPP ∗ ≤ [1− ac2(P )]kaPP ∗

l’estimation la plus forte de la norme de la série est donnée par l’équation
a‖P‖2 − 1 = 1 − ac2(P ) c.à.d. quand a = 2

‖P‖2+c2(P )
. Dans ce cas, et plus générale-

ment si 0 < a < 2
‖P‖2 , la série donc convergent.

Proposition 2.4.1. Soit P ∈ B(H) une projection. Soit la suite défini par :

Q0 = P ; Qn+1 = (I − aPP ∗)Qn + aPP ∗ (2.12)

où a = 2
‖P‖2+c2(P )

.

Alors la suite (Qn) converge uniformément vers Q dans B(H). Plus précisément :

‖Q−Qn‖ ≤
[‖P‖2 − c2(P )]n+1

[‖P‖2 + c2(P )]n+1
≤
(
‖P‖2 − 1

‖P‖2 + 1

)n+1

(2.13)

En outre Q = Q∗, PQ = Q et QP = P.
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Preuve. Il est facile de montrer que

‖(I − aPP ∗)kPR‖ ≤
[
‖P‖2 − c2(P )

‖P‖2 + c2(P )

]k
‖PR‖ pour tout R ∈ B(H)

Alors, du fait que Qn =
n∑
k=0

(I − aPP ∗)kaPP ∗ et Q − Qn =
∞∑

k=n+1

(I − aPP ∗)kaPP ∗

Nous voyons que Q = lim
n→∞

Qn existe et que (2.13) est satisfaite. Un calcul simple

montre que Q2 = Q et puisque Qn est symétrique alors Q est symétrique, aussi
PQn = Qn alors que PQ = Q.

Finalement, en prenant les limites dans (2.12), nous voyons que PP ∗Q = PP ∗ et
donc que ‖QP − P‖2 = ‖(I −Q)PP ∗(I −Q)‖ = 0 alors QP = P.

Remarque 2.4.1. En général Qn n’est pas une projection et si l’on remplace dans
(2.12) P par un opérateur borné T avec une image fermée, alors Q est la projection
orthogonale sur l’image de T .

Deuxième méthode :

Nous devons d’abord rappeler quelques résultats sur les projections.

Proposition 2.4.2. Soient P ∈ B(H), Q ∈ B(H) deux projections. Alors :

∀n ∈ N∗, (I − P −Q)2n = [(I − P )(I −Q)]n + (QP )n (2.14)

Preuve. Par récurrence sur n. Pour n = 1 il est facile de vérifier que

(I − P −Q)2 = (I − P )(I −Q) +QP (2.15)

Supposons que (2.14) est vrai pour n. Alors :

(I − P −Q)2(n+1) = (I − P −Q)2n(I − P −Q)2

= [[(I − P )(I −Q)]n + (QP )n][(I − P )(I −Q) +QP ]

= [(I − P )(I −Q)]n+1 + (QP )n+1

La proposition est démontrée.

2
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Proposition 2.4.3. Soit P ∈ B(H) une projection. Alors :

‖I − P − P ∗‖ = ‖I + P − P ∗‖ = ‖I − P + P ∗‖

Preuve. Il est facile de vérifier que :

(I − P − P ∗)2 = (I − P + P ∗)(I − P ∗ + P ) = (I − P + P ∗)(I − P + P ∗)∗

Donc, puisque I − P − P ∗ est symétrique, on a :

‖I − P − P ∗‖2 = ‖(I − P − P ∗)2‖

= ‖(I − P + P ∗)(I − P + P ∗)∗‖

= ‖I − P + P ∗‖2

Et par conséquent,

‖I − P − P ∗‖ = ‖I − P + P ∗‖

= ‖I − P ∗ + P‖

2

Proposition 2.4.4. Soit P ∈ B(H) une projection. Alors :

max{‖P‖, ‖I − P‖} = ‖I − P − P ∗‖

Preuve. Montrons d’abord que :

max{‖P‖, ‖I − P‖} ≤ ‖I − P − P ∗‖ (2.16)

En effet : 2(I − P ) = I − P − P ∗ + I − P + P ∗ alors
2‖I − P‖ ≤ ‖I − P − P ∗‖+ ‖I − P + P ∗‖.
En utilisant la Proposition 2.4.3 on trouve :

‖I − P‖ ≤ ‖I − P − P ∗‖ (2.17)

Nous avons aussi :2P = I + P − P ∗ − (I − P − P ∗) alors
2‖P‖ ≤ ‖I − P − P ∗‖+ ‖I − P + P ∗‖, on obtient :

‖P‖ ≤ ‖I − P − P ∗‖ (2.18)
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Alors d’après (2.17) et de (2.18) nous obtenons (2.16).
Inversement, en utilisant (2.14) avec Q = P ∗, on obtient :

∀ ∈ N∗, (I − P − P ∗)2n = [(I − P )(I − P ∗)]n + (P ∗P )n

Puisque (I − P − P ∗), (I − P )(I − P ∗) et P ∗P sont des opérateurs hermitiens, on
obtient :

‖I − P − P ∗‖2n = ‖(I − P − P ∗)2n‖

≤ ‖[(I − P )(I − P ∗)]n‖+ ‖(P ∗P )n‖

≤ ‖(I − P )(I − P ∗)‖n + ‖P ∗P‖n

D’où :

∀n ∈ N∗, ‖I − P − P ∗‖2n ≤ ‖I − P‖2n + ‖P‖2n ≤ 2[max{‖(I − P )‖, ‖P‖}]2n

alors que
‖I − P − P ∗‖ ≤ max{‖P‖, ‖I − P‖} (2.19)

Et la preuve de la proposition résulte de (2.14) et (2.19).

2

Proposition 2.4.5. Soient P ∈ B(H), Q ∈ B(H) deux projections. Alors :

∀ n ∈ N∗, [(I − P )(I −Q)]n+1 = [(I − P )(I −Q)]n + (I − P )(QP )n(I −Q) (2.20)

Preuve. Par récurrence sur n.
Si n = 1, puisque (I − P −Q)2 = (I − P )(I −Q) +QP on constate que :

[(I − P )(I −Q)]2 = [I − P −Q+ PQ]2

= (I − P −Q)2 + (I − P −Q)PQ+ PQ(I − P −Q) + (PQ)2

= (I − P )(I −Q) +QP −QPQ− PQP + (PQ)2

= (I − P )(I −Q) + (I − P )QP (I −Q)

Supposons maintenant que (2.20) a été établi pour n ≥ 1.
En utilisant l’hypothèse de récurrence on constate que :

[(I − P )(I −Q)]n+2 = [(I − P )(I −Q)]n+1(I − P )(I −Q)

= [[(I − P )(I −Q)]n + (I − P )(QP )n(I −Q)](I − P )(I −Q)
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alors que :

[(I−P )(I−Q)]n+2 = [(I−P )(I−Q)]n+1 +(I−P )(QP )n(I−Q)(I−P )(I−Q) (2.21)

Mais : P (I −Q)(I − P )(I −Q) = −PQ(I − P )(I −Q) = PQP (I −Q)

D’où : (I − P )(QP )n(I −Q)(I − P )(I −Q) = (I − P )(QP )n+1(I −Q).

Faisant usage de cette identité dans (2.21), nous obtenons :

[(I − P )(I −Q)]n+2 = [(I − P )(I −Q)]n+1 + (I − P )(QP )n+1(I −Q)

Et la proposition est prouvée.

2

Proposition 2.4.6. Soit P ∈ B(H) une projection, P 6= 0, P 6= I Alors :

‖P‖ = ‖I − P‖ = ‖I − P − P ∗‖ = ‖I + P − P ∗‖ = ‖I − P + P ∗‖

Preuve. En utilisant la Proposition 2.4.3 et la Proposition 2.4.4, il suffit de montrer
que ‖P‖ = ‖I − P‖
Supposons d’abord que ‖I − P‖ > 1. Prenant Q = P ∗ dans (2.20) on obtient :
∀n ∈ N∗, [(I − P )(I − P ∗)]n+1 = [(I − P )(I − P ∗)]n + (I − P )(P ∗P )n(I − P ∗)
Alors :

∀n ∈ N∗, ‖I − P‖2n+2 ≤ ‖I − P‖2n + ‖I − P‖‖(PP ∗)n‖‖I − P ∗‖

≤ ‖I − P‖2n + ‖I − P‖2‖P‖2n

Par conséquent : ∀n ∈ N∗, ‖I − P‖2n ≤ ‖P‖2n‖I−P‖2
‖I−P‖2−1

.

D’où :‖I − P‖ > 1⇒ ‖I − P‖ ≤ ‖P‖.
De la symétrie entre P et I − P Nous obtenons :

‖P‖ > 1⇒ ‖P‖ ≤ ‖I − P‖

Donc ‖P‖ > 1⇒ ‖I − P‖ ≥ ‖P‖ > 1⇒ ‖P‖ ≥ ‖I − P‖ ⇒ ‖P‖ = ‖I − P‖
La seule autre possibilité est de ‖P‖ = ‖I−P‖ = 1 2

Proposition 2.4.7. Soit P ∈ B(H) une projection. Alors :

‖P − P ∗‖2 = ‖P‖2 − 1 (2.22)
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Preuve. il est facile de constate que (P − P ∗)(P ∗ − P ) = (I − P − P ∗)2 − I.
Puisque ‖P − P ∗‖2 = ‖(P − P ∗)(P ∗ − P )‖.
Donc, nous obtenons : ‖P −P ∗‖2 = ‖I−P −P ∗‖2−1 et la proposition est démontrée.

2

Proposition 2.4.8. Soient P, Q ∈ B(H) deux projections telles que
PQ = Q, QP = P. Alors :

‖Q− P‖ ≤ ‖Q∗ −Q‖+ ‖P − P ∗‖ (2.23)

Preuve. (Q∗−P ∗)(Q−P ) = (Q∗−Q)(Q−P ) + (Q−P )(Q−P ) + (P −P ∗)(Q−P )

et (Q− P )(Q− P ) = Q−Q− P + P = 0.

Donc :

‖Q− P‖2 = ‖(Q∗ − P ∗)(Q− P )‖

≤ ‖(Q∗ −Q)(Q− P )‖+ ‖(P − P ∗)(Q− P )‖

≤ ‖P −Q‖‖Q∗ −Q‖+ ‖P −Q‖‖P − P ∗‖

et la proposition est démontrée.

2

Corollaire 2.4.1. Soient P, Q ∈ B(H) deux projections telles que PQ = Q et
QP = Q et Q est orthogonale. Alors :

‖P −Q‖ = ‖P − P ∗‖ (2.24)

Preuve.(I − P ∗)(I − P ) = (Q− P ∗)(Q− P ) + (I −Q)

Donc :

‖I − P‖2 = ‖(I − P ∗)(I − P )‖

≤ ‖(Q− P ∗)(Q− P )‖+ ‖I −Q‖

≤ ‖Q− P‖2 + 1

Et par conséquent ‖P‖2 = ‖I − P‖2 ≤ ‖Q− P‖2 + 1.

(2.22) implique que ‖P ∗ − P‖2 ≤ ‖Q− P‖2.

Et résultat suit maintenant en utilisant (2.23).

2
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Nous sommes maintenant en position d’écrire un algorithme.
Si a ∈ R+, posons :

S = P + aPP ∗(I − P ) = P [I − a(I − P ∗)(I − P )] (2.25)

Alors S est une projection et SP = P, PS = S.
En outre, si R = i(S∗ − S) et K = i(P ∗ − P ), on a :

R = K(I − a− aK2) (2.26)

Aussi I − a‖P‖2 = I − a(1 + ‖K‖2) ≤ I − a− aK2.

Donc si 0 < a < 2
‖P‖2 on constate que ‖R‖ = C(a)‖K‖ avec C(a) < 1.

La recherche de la valeur a qui minimise C(a) conduit à la condition :

2(1− a)

3
√
a

√
1− a

3
= ‖K‖(1− a(1 + ‖K‖2))

Qui a les deux solutions doubles a = 1
3‖K‖2+1

et a = 4
3‖K‖2+4

.

Avec les valeurs correspondantes C(a) = 2‖K‖2
3‖K‖2+1

et C(a) = ‖K‖2
3‖K‖2+4

.

Alors que le meilleur choix est a = 4
3‖K‖2+4

= 4
3‖P‖2+1

.

2

Nous pouvons maintenant énoncer notre résultat principal :

Proposition 2.4.9. Soit P ∈ B(H) une projection. Définir de façon récurente :

Q0 = P ; Qn+1 = Qn
3‖Qn‖2 + 1 + 4Q∗n(I −Qn)

3‖Qn‖2 + 1
(2.27)

Alors :

‖Qn+1‖ = ‖Qn‖
‖Qn‖2 + 3

3‖Qn‖2 + 1
; ‖Qn‖ =

1 +
(
‖P‖−1
‖P‖+1

)3n

1−
(
‖P‖−1
‖P‖+1

)3n (2.28)

et la suite des projections (Qn) converge uniformément vers Q dans B(H), avec Q =

Q∗, PQ = Q et QP = P. Plus précisément :

‖Q−Qn‖ =
2
(√

‖P‖−1
‖P‖−1

)3n

1−
(
‖P‖−1
‖P‖+1

)3n (2.29)
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Preuve. On prend : Rn = i(Q∗n −Qn). Alors : Rn+1 = Rn
3‖Rn‖2−4R2

n

3‖Rn‖2+4
alors que

‖Rn‖3

3‖Rn‖2 + 4
−Rn+1 =

‖Rn‖3

3‖Rn‖2 + 4
−Rn

3‖Rn‖2 − 4R2
n

3‖Rn‖2 + 4
=

(2Rn − ‖Rn‖)2(‖Rn‖+Rn)

3‖Rn‖2 + 4
≥ 0

et

‖Rn‖3

3‖Rn‖2 + 4
+Rn+1 =

‖Rn‖3

3‖Rn‖2 + 4
+Rn

3‖Rn‖2 − 4R2
n

3‖Rn‖2 + 4
=

(2Rn + ‖Rn‖)2(‖Rn‖ −Rn)

3‖Rn‖2 + 4
≥ 0

on constate que 0 ∈ σ(‖Rn‖+Rn) ∪ σ(‖Rn‖ −Rn), où σ(‖Rn‖+Rn) est le spectre

ponctuel de (‖Rn‖ + Rn), puisque ‖Rn‖ = supρ∈σ(Rn) | ρ | alors 0 ∈ σ( ‖Rn‖3
3‖Rn‖2+4

−

Rn+1) ∪ σ( ‖Rn‖3
3‖Rn‖2+4

+Rn+1) et par conséquent

‖Rn+1‖ =
‖Rn‖3

3‖Rn‖2 + 4
(2.30)

Puisque ‖Qn‖2 = 1 + ‖Rn‖2, il s’ensuit que :

‖Qn+1‖2 =
(‖Qn‖2 − 1)3

(3‖Qn‖2 + 1)2
+ 1 = ‖Qn‖2 (‖Qn‖2 + 3)2

(3‖Qn‖2 + 1)2

ce qui établit la première égalité de (2.28) qui est équivalente à

‖Qn+1‖ − 1

‖Qn+1‖+ 1
=

(
‖Qn‖ − 1

‖Qn‖+ 1

)3

(2.31)

ce qui donne par itération

‖Qn‖ − 1

‖Qn‖+ 1
=

(
‖P‖ − 1

‖P‖+ 1

)3n

on obtient rapidement la deuxième égalité de (2.28). Donc lim
n→∞

‖Qn‖ = 1 et Par

conséquent lim
n→∞

‖Rn‖ = 0.

d’après (2.23) on constate que si m, n ∈ N, on a ‖Qm −Qn‖ ≤ ‖Rm‖+ ‖Rn‖ ce qui
montre que (Qn) est une suite de Cauchy et alors que Q = lim

n→∞
Qn existe et satisfait

à la condition de la proposition.
Finalement, (2.29) résulte de (2.24) et (2.28) et la proposition est prouvée.

2

Remarque 2.4.2. La suite (Qn) est une suite de projections qui a la même image
que P et converge uniformément vers Q lorsque n −→ +∞.
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2.5 Algorithme de calcul l’inverse de Moore-Penrose

d’un opérateur linéaire

1) Soit P ∈ B(H) une projection et soit Q la projection orthogonale qui a la même
image que P . Pour t ∈ [0, 1] et n ∈ N, on pose :

Q(0) = Q; Q(t) = Qn

[
I +

8(1− 2nt)Q∗n(I −Qn)

3‖Qn‖2 + 1

]
si 2−(n+1) ≤ t ≤ 2−n

Alors Q(2−n) = Qn, comme défini dans la Proposition 2.4.1 ∀t ∈ [0, 1], Q(t) est une
projection avec la même image que P et l’application Q : [0, 1]→ B(H) est continue
avec PQ(t) = Q(t) ; Q(t)P = P.

La preuve est une simple vérification. toute déformation continue de P en Q peut
être définie mais celle-ci a la propriété que si t 6= 0, Q(t) est un polynôme en P et
P ∗.

2) Si deux projections orthogonales sont dans la même composante connexe, alors
elles peuvent être reliés par des projections orthogonales.
En effet, soit P, Q ∈ B(H) deux projections orthogonales et soit t 7→ P (t) une
application continue de [0, 1] dans l’ensemble des projections de B(H) tel que P (0) =

Q et P (1) = P. Soit

Q0(t) = P (t); Qn+1(t) = Qn(t)
3‖Qn(t)‖2 + 1 + 4Qn(t)∗(I −Qn(t))

3‖Qn(t)‖2 + 1

Alors il est facile de montrer par récurrence que Qn(t) est continue en t et que (Qn(t))

converge uniformément vers une application continue de [0, 1] dans l’ensemble des
projections orthogonales de B(H) qui a les propriétés requises.

3) Soit P ∈ B(H) une projection et soit Q la projection orthogonale qui a la même
image que P . Alors si P est essentiellement normal ( c.à.d. PP ∗−P ∗P est compact),
P −Q est compact.

Preuve. il est facile de vérifier que

(PP ∗ − P ∗P )2 = (P − P ∗)(P ∗ − P )[I + (P − P ∗)(P ∗ − P )]
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Puisque I + (P − P ∗)(P ∗ − P ) ≥ I est inversible.

Alors si P est essentiellement normal (P − P ∗)(P ∗ − P ) est compact et par consé-
quence P − P ∗ est aussi compact puisque i(P − P ∗) est hermitien.

Maintenant, considérons la suite (Qn) définie dans la Proposition 2.4.9. Il est facile
de montrer que si Qn est essentiellement normal Qn+1 est aussi puisque Qn+1−Q∗n+1

est un multiple de Qn −Q∗n.

Donc P −Q =
∑
n≥0

Qn−Qn+1 est un opérateur compact ( la série converge uniformé-

ment d’après (2.31)).

2

Première méthode :

Proposition 2.5.1. Soit T un opérateur linéaire borné a image fermée. Soit

B0 = aT ∗ ; Bn+1 = (I − aT ∗T )Bn + aT ∗ =

n+ 1∑
k = 0

(I − aT ∗T )kaT ∗ (2.32)

où a = 2
‖T‖2+c2(T )

.

Alors la suite (Bn) converge uniformément dans B(H) vers l’opérateur C qui est
l’inverse de Moore-Penrose de T .
Plus précisément :

‖C −Bn‖ ≤
[‖T‖2 − c2(T )]n+1

[‖T‖2 + c2(T )]n+1
‖C‖ (2.33)

où c(T ) = infu⊥N(T )
‖Tu‖
‖u‖ appelée la conorme ( appelé aussi le module minimum

réduit ) de T.

Preuve. Nous procédons exactement comme la preuve de la Proposition 2.4.1.

‖(I − aT ∗T )kT ∗R‖ ≤
[
‖T‖2 − c2(T )

‖T‖2 + c2(T )

]k
‖T ∗R‖ pour tout R ∈ B(H) (2.34)
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Alors du fait que Bn =

n∑
k = 0

(I − aT ∗T )kaT ∗ et

C − Bn =

∞∑
k = n+ 1

(I − a T ∗T )ka T ∗ nous constatons que C = lim
n→∞

Bn existe et

que (2.33) est satisfaite.
De la Proposition 2.4.1, il s’ensuit que (TBn) et (BnT ) convergent vers des projections

orthogonales et que TBnT converge vers T et CTC = C alors que C = IMP (T ) = T †.

2
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Chapitre 3

Inverse de Moore-Penrse des

opérateurs linéaires

Dans ce chapitre notre objectif est l’étudier l’inverse généralisé de Moore-

Penrose des opérateurs linéaires dans les espace de Hilbert. La première section
on va étudier des notions de théorie spectrale des opérateurs linéaires. La deuxième
section est une brève introduction à l’inversion généralisée des opérateurs linéaire oû
on a commencé par la définition de Tseng endex

3.1 Théorie spectrale des opérateurs linéaires

3.1.1 Inverse d’un opérateur

Définition 3.1.1. Soit T un opérateur linéaire de H1 dans H2.
L’opérateur S : H2 → H1 est dit opérateur inverse à droite de T si TS = IH2.
L’opérateur S : H2 → H1 est dit opérateur inverse à gauche de T si ST = IH1.
Enfin on dit que S est inverse de T s’il est inverse à droite et à gauche.
Si T ∈ B(H), espace de Hilbert alors T−1 est continue (donc T est inversible). On
écrit S = T−1 et dit l’opérateur inverse de T .

Exemple 3.1.1. Soit l’opérateur différentiel

A : C1[0; 1]→ C[0; 1]

f 7→ Af =
d

dx
f
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l’opérateur intégrale
B : C[0; 1]→ C1[0; 1]

f 7→ Bf(x) =

∫ x

0

f(t)dt

On a ABf(x) =
d

dx

∫ x

0

f(t)dt = f(x) donc AB = I et A est un inverse à

gauche de B.
D’autre part, on a

BAf(x) =

∫ x

0

f
′
dt = f(x)− f(0)

Ainsi, si f(0) 6= 0, BA 6= I et A n est pas inverse àdroite de B, mais si
f(O) = 0 alors A est un inverse de B (à droite et à gauche).

Proposition 3.1.1. Soit A ∈ L(X;Y )t.qX et Y sont deux espaces vectoriels
normés ; si A−1 existe alors A−1 est linéaire.

Preuve 3.1.1. ∀x, y ∈ Xetµ, λ ∈ R

A−1A(λx+ µy) = B(λAx+ µAy) (3)

on a aussi
A−1A(λx+ µy) = λx+ µy

= λBAx+ µBAy

A−1A(λx+ µy) = λB(Ax) + µB(Ax) (4)

d)aprés3 et 4 B(λAx+ µAy) = λB(Ax) + µB(Ay)

On pose Ax = x′ et Ay = y′ on trouve

B(λx′ + µy′) = λBx′ + µBy′

donc B est linéaire.

3.1.2 Spectre des opérateurs bornés

Soit H un espace de Hilbert, B(H) l’ensemble des opérateurs linéaires bornés de H
dans lui même, muni de la norme ‖A‖ = sup

‖x‖≤1

‖Ax‖H.

L’espace L(H) est une algèbre de Banach unifère ( possède un élément e tel que
‖e‖ = 1).
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Définition 3.1.2. (Spectre).
Soit T ∈ B(H), on appelle spectre de T et on note σ(T ) le complémentaire dans C de
ρ(T ) (L’ensemble résolvant de T ). Le spectre de T est donc l’ensemble des λ ∈ C tels
que T − λI n’est pas inversible dans H. Alors en peut trouver trois types de spectres
distincts.

1) Le spectre ponctuel de T , noté σp(T ) est l’ensemble des valeurs propres de T , il
est défini comme suit : σp(T ) = {λ ∈ C/ N(T − λI) 6= {0}}, c.à.d. T − λI n’est pas
injectif alors σp(T ) = {λ ∈ C/ Tx = λx x ∈ H, x 6= 0}.

2) Le spectre continu de T , noté σc(T ) est l’ensemble des λ ∈ C tels que T − λI
est injectif, non surjectif, mais son image est dense dans H, c.à.d.

N(T − λI) = {0}, R(T − λI) 6= H, R(T − λI) = H.

3) Le spectre résiduel de T , noté σr(T ) est l’ensemble des λ ∈ C tels que T − λI
est injectif, non surjectif, mais son image n’est pas dense dans H, c.à.d

N(T − λI) = {0}, (R(T − λI))⊥ 6= {0}.

Le spectre de T est σ(T ) = σp(T ) ∪ σc(T ) ∪ σr(T )

3.2 Introduction à des inverses généralisés des opé-

rateurs linéaires

Une définition naturelle d’inverses généralisés dans L(H1,H2) est la suivante dû a
Tseng [8]

Définition 3.2.1. Soit T ∈ L(H1,H2). Alors un opérateur T g ∈ L(H2,H1) est un
inverse généralisé de Tseng (i.g. en abrégé) de T si

R(T ) ⊂ D(T g) (3.1)

R(T g) ⊂ D(T ) (3.2)

T gTx = PR(T g)x pour tout x ∈ D(T ) (3.3)
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TT gy = PR(T )y pour tout y ∈ D(T g) (3.4)

Cette définition est symétrique en T et T g, donc T est un i.g de T g.
Un opérateur T ∈ L(H1,H2) peut avoir un i.g unique, ou plusieurs i.g ou il peut
n’en avoir aucun. Nous allons montrer dans le théorème 3.2.1 que T a un i.g. si et
seulement si son domaine est décomposable par rapport à son noyau,

D(T ) = N(T )
⊥
⊕ (D(T ) ∩N(T )⊥) = N(T )

⊥
⊕ C(T ) (3.5)

d’après le lemme 3.2.1, cette condition est satisfaite si N(T ) est fermé. Donc il est
valable pour tous les opérateurs fermés, et en particulier pour les opérateurs bornés.
Si T a des i.g’s, alors il a un i.g maximum. Pour les opérateurs bornés d’image
fermée, l’i.g maximum coïncide avec l’inverse de Moore-Penrose , et sera de même
noté par T †.

Lemme 3.2.1. [1] Soit H un espace de Hilbert. L, M deux sous-espaces de H tels
que M ⊂ L. Alors

L = M ⊕ (L ∩M⊥)

si seulement si

PMx ∈M pour tout x ∈ L

Théorème 3.2.1. Soit T ∈ L(H1,H2). Alors T a un i.g. si et seulement si

D(T ) = N(T )
⊥
⊕ C(T ) (3.5)

dans ce cas, pour tout sous-espace L ∈ R(T )⊥, il y a un i.g T gL de T , avec

D(T gL) = R(T )
⊥
⊕ L (3.6)

et

N(T gL) = L (3.7)

Preuve 3.2.1. Si T a un i.g, alors (3.5) résulte des lemmes ?? et ??. Réciproquement,
supposons que (3.5) est vérifiée. Alors

R(T ) = T (D(T )) = T (C(T )) = R(T0) (3.8)
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où T0 = T[C(T )] est la restriction de T à C(T ). L’inverse T−1
0 existe, et satisfait

R(T−1
0 ) = C(T )

et, d’après (3.8)

D(T−1
0 ) = R(T )

Pour tout sous-espace L ⊂ R(T )⊥, considérons l’extension T gL de T−1
0 avec domaine

D(T gL) = R(T )
⊥
⊕ L

et de noyau
N(T gL) = L

De sa définition, il s’ensuit que T gL satisfait

D(T gL) ⊃ R(T )

et
R(T gL) = R(T−1

0 ) = C(T ) ⊂ D(T ) (3.9)

Pour tout x ∈ D(T )

T gLTx = T gLTPC(T )x, d′après (3.5)

= T−1
0 T0PC(T )x, d′après le Lemme 3.2.1

= P
R(T g

L)
x, d′après (3.9).

Finalment, tout y ∈ D(T gL) s’écrit, d’après (3.6), comme

y = y1 + y2, y1 ∈ R(T ), y2 ∈ L, y1 ⊥ y2

et donc

TT gLy = TT gLy1, d′après (3.7)

= T0T
−1
0 y1

= y1

= PR(T )y.

Par conséquent, T gL est un i.g. de T .
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Théorème 3.2.2. Soit T ∈ L(H1,H2) a des i.g.’s est soit L un sous espace de R(T )⊥.
Alors les conditions

D(T gL) = R(T )
⊥
⊕ L (3.6)

N(T gL) = L (3.7)

déterminent un unique i.g, qui est donc égale à T gL construit dans la preuve du théo-
rème précedent.

Preuve 3.2.2. Soit T g est un i.g de T vérifiant (3.6) et (3.7), et soit y ∈ D(T g) où
y = y1 + y2, y1 ∈ R(T ), y2 ∈ L
Alors

T gy = T gy1, d′après (3.7)

= T gTx1, pour x1 ∈ D(T )

= PR(T g)x1, d′après (3.3)

= PC(T )x1, d′après (??)

Nous affirmons que ceci détermine T g de façon unique. Car, supposons qu’il y a un
x2 ∈ D(T ) avec y1 = Tx2, alors :

T gy = PC(T )x2

par conséquent

PC(T )x1 − PC(T )x2 = PC(T )(x1 − x2)

= 0 puisque (x1 − x2) ∈ N(T )

3.3 Inverse de Moore-Penrose d’un opérateur li-

néaire borné

Définition 3.3.1. Soit T un opérateur linéaire borné défini sur un espace de Hilbert
H. On dit que X ∈ B(H) est un inverse généralisée de T ( désigné par X(INV )T )

Si les conditions suivantes sont vérifié :
1) ∀x ∈ H, TXTx = Tx
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2) ∀y ∈ H, XTXy = Xy

Il est alors facile de constater que TX et XT sont des projections dansH. Remarquons
aussi que X n’est pas en général unique et que si T est inversib le alors T−1 = X.

Définition 3.3.2. Soit T un opérateur linéaire borné défini sur un espace de Hil-
bert H. On dit que T † est un inverse de Moore-Penrose de T ( désigné par

T † = IMP (T ) ) si T †(INV )T et TT † et T †T sont des projections orthogonales.

Il est facile de montrer que T † est unique.
Si R(T ) est fermé alors T † existe même si T est fermé à domaine dence.

Soit T † un opérateur linéaire borné à image fermée, défini sur un espace de Hilbert
H.

Théorème 3.3.1. ( Petryshyn [7] ) Si T ∈ B(H1,H2) et R(T ) est fermé, alors T †

est caractérisé comme l’unique solution X des systèmes équivalents suivants :
(a) TXT = T, XTX = X, (TX)∗ = TX, (XT )∗ = XT ,

(b) TX = PR(T ) , N(X∗) = N(T ) ,

(c) TX = PR(T ) , XT = PR(T ∗) , XTX = X ,

(d) XTT ∗ = T ∗ , XX∗T ∗ = X ,

(e) XTx = x pour tout x ∈ R(T ∗) ,

Xy = 0 pour tout y ∈ N(T ∗) ,

(f) XT = PR(T ∗) , N(X) = N(T ∗) ,

(g) TX = PR(T ) , XT = PR(X).

Preuve 3.3.1. Nous prouvons le Théorème en montrant que (a) ⇒ (b) ⇒ (c) ⇒
(d)⇒ (e)⇒ (f)⇒ (g)⇒ (a)

(a)⇒ (b) :Il résulte de (a) que TX et XT sont des projection orthogonales en H2etH1

respectivement, par conséquent pour prouve que TX = R(A), nous n’avons besoin que
pour monter que R(TX) = R(T ).
supposons que y ∈ R(T ), il existe alors un X unique dans R(T ∗) tel que y = TX

par conséquent TXy = TXTx = Tx = y montant que R(T ) ⊆ R(TX), supposons
maintenant que y ∈ R(TX). Alors, puisque TX est un projection TXy = y, i.e,
R(TX) ⊆ R(T ) par conséquent R(TX) = R(T ), pour montrer que N(X∗) = N(T )

notez que si x ∈ N(X∗) puis, 0 = T ∗X∗x = XTx et donc 0 = TXTx i.e N(X∗) ⊆
N(T ) sur d’autre parte, si x ∈ N(T ), alors 0 = XTx = T ∗X∗x = X∗T ∗X∗x = X∗x,



72
CHAPITRE 3. INVERSE DE MOORE-PENRSE DES OPÉRATEURS

LINÉAIRES

i.e N(T ) ⊆ N(X∗) ainssi N(X∗) = NT .
(b)⇒ (c) : Il résulte TX = PR(T ) que TXT = T et que XT est une projection en

H. De plus XTX = X en effet, puisque R(TX) = R(T ), il s’ensuite que si y ∈ R(T )

puis y = TXy = X∗TXy impliquant que R(T ) ⊆ R(X∗) sur le d’autre parte, si
y ∈ R(X∗) alors puisque N(X∗) = N(T ) il existe un unique X dans R(T ∗) tel que
y = X∗x = T ∗z pour certains z dand H et par conséquent y = TXz d’oû l’on dérive
l’égalité R(T ) = R(X∗) pour tout x dans H nous avons X∗T ∗X∗x = TXX∗x = X∗x

i.e X∗T ∗X∗ = Xx ou XTX = X enfin XT = PR(T ∗) pour voir ça, notons d’abord

que N(T ) = N(XT ) pour N(T ) ⊂ N(XT ) est evident alors que si x ∈ N(XT )

puis XTx = 0 et TXTx = 0 ce qui montre que N(XT ) ⊆ N(T ) notre preuve sera
complète que une fois que nous montrons que R(XT ) = R(T ∗) pour ce faire, nous
montons d’abord que R(X) = R(XT ) en fait si x ∈ R(X), alors il existe y tel que
x = Xy et par conséquent XTx = XTXy = Xy = x c’est à dire R(X) ⊆ R(XT ) si
maintenant x ∈ R(XT ) alors il existe y tel que x = XTy et par conséquent x ∈ R(X)

aussi R(X) = R(XT ) puisqueR(X) est fermé et N(X∗) = N(T ).
(c)⇒ (d) :XT = PR(T ∗) implique que XTT ∗ = T ∗ tandis que les égalité X∗T ∗ = TX

et XTX = X impliquant XX∗T ∗ = X.
(d) ⇒ (e) : Clairement XTX∗ = T ∗ implique que XTx = x pour tout x dans R(T ∗)

tandis que XX∗T ∗ = X montre que Xy = 0 pour tous dans N(T ∗).
(e)⇒ (f) : pour tout x dans H considérons la décomposition orthogonale x = x1 +x2

avec x1 dans R(T ∗) et x2 dans N(T ) alors XTx = XTx1 = x1 ce qui montre que XT
est une projection de H1 sur R(T ∗). Montre que XT = PR(T ∗) nous devons encore

montrer que N(XT ) = N(T ) il ca de soi que N(T ) ⊆ N(XT ) de plus, puisque
XTx = x1 implique que TXTx = Tx1 = Tx alors XTx = 0 et par conséquent
0 
 TXTx = Tx par conséquent N(XT ) = N(T ) et donc XT = PR(T ∗) le fait que

N(X) = N(T ∗) est evident
(f) ⇒ (g) : Il est facile de voir que TXT = T et que TX est une projection en H2

de plus TX = PR(T ) en fait si y ∈ R(T ) alors il existe un unique dans R(T ∗) tel que

y = Tx par conséquent TXy = TXTx = Tx = y impliquant que R(T ) ⊆ R(TX)

inversement si y ∈ R(TX) alors puisque TX est une projection TXy = y et donc y ∈
R(T ) ainsi R(T ) = R(TX) en outre N(TX) = N(T ∗) en fait puisque N(X) = N(T ∗)

nous voyons que pour y dans N(T ∗) nous avons 0 = Xy = TXy i.e N(T ∗) ⊆ N(TX)

inversement pour y dans N(TX) nous avons TXy = 0 ou XTXy = Xy = 0 puisque,
comme on le verra ci-dessous XTX = X par conséquent N(TX) = N(T ∗) pour voir
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que XTX = X, note d’abord que R(XT ) = R(T ∗) implique l’égalité R(T ∗) = R en
effet, si x ∈ R(T ∗) puisque x = XTz pour certains z dans H1, et par conséquent
x ∈ R(X) inversement, si x ∈ R(X) alors puisque N(X) = N(T ∗) il existe un y

unique dans R(T ) tel que x = Xy = XTz = T ∗X∗z pour certaines z dans H1 donc
R(X) ⊆ R(T ∗) et par conséquentR(x) = R(T ∗). Maintenant puisque R(T ∗) = R(X)

et R(XT ) = R(T ∗) il s’ensuite que pour tout y dans H2, XTXy = Xy notez que
nous avons non seulement prouvé que TX = PR(T ) mais aussi que XT = PR(X).

(g) ⇒ (a) : cela découle du fait que TX et XT , étant orthogonaux projections, sont
hermitiennes et que puis R(TX) = R(T ) et R(XT ) = R(X) il s’ensuit que TXT = T

et XTX = X qui est (a) ceci complète la preuve du théorème.

3.4 Inverse de Moore-Penrose d’un opérateur li-

néaire fermé à domaine dense

Définition 3.4.1. Soit T ∈ C(H1,H2) et densément définit. Alors il existe un unique

opérateur densément définit T † ∈ C(H2,H1) de domaine

D(T †) = R(T )
⊥
⊕ R(T )⊥ et est les propriétés suivantes ;

(1) TT †y = PR(T )y , pour tout y ∈ D(T †).

(2) T †Tx = PN(T )⊥x , pour tout x ∈ D(T ).

(3) N(T †) = R(T )⊥.

Cet opérateur T † est appelé l’inverse de Moore-Penrose de T .

Pour tout y ∈ D(T †), soit

L(y) = {x ∈ D(T ) : ‖Tx− y‖ ≤ ‖Tu− y‖ ∀ u ∈ D(T )}.

ici tout u ∈ L(y) est appelée une solution des moindres carrés de l’équation de

l’opérateur Tx = y. Le vecteur x = T †y ∈ L(y) et vérifie, ‖T †y‖ ≤ ‖x‖ ∀ u ∈ L(y) et
est appelée la solution des moindres carrés de la norme minimale.

Remarque 3.4.1. Soit T ∈ L(H1,H2) vérifiant (3.5). L’i.g maximum de T , noté

T †, est l’i.g. de T de domaine

D(T †) = R(T )
⊥
⊕ R(T )⊥ (3.10)
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et de noyau

N(T †) = R(T )⊥ (3.11)

D’après le Théorème 3.2.1, l’i.g. T † ainsi défini est unique. Il est maximum et tout
autre i.g. de T est une restriction de T †.

En outre, T † de domaine dense, d’après (3.10), et de noyau fermé, d’après (3.11).

Choisir L comme un sous-espace dense de R(T )⊥ montre que un opérateur T peut
avoir une infinité d’i.g’s à domaine denses T gL. De plus, T peut avoir un nombre
infini d’i.g’s T gL avec un noyau fermé, chacun obtenu en choisissant L comme un

sous-espace fermé de R(T )⊥. Cependant, T † est l’unique i.g à domaine dense. avec
un noyau fermé en vertu du Théorème 3.4.1.

Les opérateurs fermés à domaine dense, les i.g’s maximums sont définits par la mé-
thode de construction suivante dû à Hestenes [4].

Soit T ∈ C(H1,H2) à domaine dense. Puisque N(T ) est fermé, il s’ensuit, de Lemme
3.2.1, que

D(T ) = N(T )
⊥
⊕ C(T ) (3.5)

et donc

G(T ) = N
⊥
⊕ C (3.12)

En utilisant (C), (G), et (D) dans la première section du chapitre 1. Alors

N = J1N(T ) = G(T ) ∩H1,0 (3.13)

C = {(x, Tx) : x ∈ C(T )} (3.14)

De même, puisque T ∗ est fermé, il découle de (B) de la première section du chapitre
1, que

G(T )⊥ = N∗
⊥
⊕ C∗ (3.15)

où

N∗ = J2N(T ∗) = G(T )⊥ ∩H0,2 (3.16)

C∗ = {(−T ∗y, y) : y ∈ C(T ∗)} (3.17)



3.4 Inverse de Moore-Penrose d’un opérateur linéaire fermé à domaine dense75

Maintenant

H1,2 = G(T )
⊥
⊕ G(T )⊥ , puisque T est fermé

= (N
⊥
⊕ C)

⊥
⊕ (N∗

⊥
⊕ C∗) , d′après (3.12) et (3.15)

= (C
⊥
⊕ N∗)

⊥
⊕ (C∗

⊥
⊕ N)

= G†
⊥
⊕ G†∗

où

G† = C
⊥
⊕ N∗

G†∗ = C∗
⊥
⊕ N

Puisque

G† ∩H1,0 = (0, 0)

il s’ensuit que G† est le graphe inverse G−1(T †) = {(T †y, y) : y ∈ D(T †)} de l’opéra-

teur T † ∈ C(H2,H1), de domaine

J−1
2 PH0,2G

† = T (C(T ))
⊥
⊕ N(T ∗)

= R(T )
⊥
⊕ R(T )⊥ , d′après (3.8) et (E) de la première section dans le chapitre 1

et de noyau

J−1
2 N∗ = N(T ∗) = R(T )⊥

tel que

T †Tx = PC(T )x , pour tout x ∈ N(T )
⊥
⊕ C(T )

et

TT †y = PR(T )y , pour tout y ∈ R(T )
⊥
⊕ R(T )⊥

Donc T † est l’i.g maximums d’après la Remarque 3.4.1.
De même, G†∗ est le graphe de l’opérateur −T ∗† ∈ C(H1,H2), qui est l’i.g maximum
de −T ∗.
Cette construction met en évidence les propriétés de l’i.g maximum.

Théorème 3.4.1. Soit T ∈ L(H1,H2) ayant des i.g.’s. Alors T † est l’unique i.g à

domaine dense et de noyau N(T †) fermé.
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Preuve. Soit T g un i.g à domaine dense de T et de noyau fermé. Alors :

D(T g) = N(T g)
⊥
⊕ C(T g), d′après Téorème (3.2.1)

= N(T g
⊥
⊕ R(T )), d′après (??)

qui, avec les hypothèses D(T g) = H2 et N(T g) = N(T g), donc

N(T g) = R(T )⊥

T g a le même domaine et le même noyau que T †, par conséquent T g = T †, d’après le
Théorème 3.2.2.

2

Théorème 3.4.2. ( Hestenes [4]). Soit T ∈ C(H1,H2) à domaine dense. Alors

(a) T † ∈ C(H2,H1),

(b) D(T †) = R(T )
⊥
⊕ N(T ∗) , N(T †) = N(T ∗) ,

(c) R(T †) = C(T ) ,

(d) T †Tx = P
R(T †)

x pour tout x ∈ D(T ) ,

(e) TT †y = PR(T )y pour tout x ∈ D(T †) ,

(f) T †† = T ,

(g) T ∗† = T †∗ ,

(h) N(T ∗†) = N(T ),

(i) (T ∗T )∗ = T †T ∗† , et N(T ∗T ) = N(T ) ,

(j) (TT ∗)† = T ∗†T † , et N(TT ∗) = N(T ∗).

Définition 3.4.2. Soit T ∈ L(H1,H2) et soit Tr la restriction de T définie sur

D(Tr) = N(T )
⊥
⊕ C(T ) , N(Tr) = N(T )

L’existence de T †r est justifié puisque Tr vérifie (3.5). Les propriétés suivantes de T †r
sont vérifiées.

Théorème 3.4.3. ( Erdélyi [2]) Soit T ∈ L(H1,H2) et soit sa restriction Tr définie
précédemment. Alors
(a) T †r = T † si T † existe,
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(b) D(T †r ) = T (C(T ))
⊥
⊕ T (C(T ))⊥ , et en général, R(T ) 6⊂ D(T †r ) ,

(c) R(T †r ) = C(T ) , R(T †r ) = N(T )⊥ ,

(d) T †r Tx = P
R(T †r )

x pour tout x ∈ D(Tr) ,

(e) TT⊥r y = PR(T )y pour tout y ∈ D(T †r ) ,

(f) D((T †r )†r) = N(T )
⊥
⊕ C(T ) ,

(g) R((T †r )†r) = T (C(T )) ,

(h) N((T †r )†r) = N(T ) ,

(i) T ⊂ (T †r )†r si (3.5) est vérifié ,

(j) T = (T †r )†r si et seulement si N(T ) est fermé ,

(k) T †∗r ⊂ (T ∗)†r si T est à domaine dense et fermable.

3.5 Approximation de l’inverse de Moore-Penrose

Dans cette section on calcul une approximation de l’inverse de Moore-Penrose

T † de T par son {2}−inverse. Nous avons aussi illustrer cette méthode avec un
exemple, nous prouvons tout d’abord un lemme qui est utile pour prouver le théorème
principal.

Lemme 3.5.1. Soit T ∈ C(H1,H2) densément définit. Soit Yn ⊆ R(T ) tel que

(a) Yn ⊆ Yn+1 pour tout n ∈ N
(b) dimYn = n

(c) ∪∞n=1Yn = R(T )

Soit Zn = (I + TT ∗)−1Yn et Xn = T ∗Zn = T ∗(I + TT ∗)−1Yn. Alors

(1) X1 ⊆ X2 ⊆ · · · ⊆ Xn ⊆ Xn+1 ⊆ · · · ⊆ R(T ∗) = N(T )⊥, dimXn = n et

(2) ∪∞n=1Zn = R(T )

(3) ∪∞n=1Xn = R(T ∗)

(4) ∪∞n=1TXn = R(T ).

Preuve. D’après la définition de Xn, Xn ⊆ C(T ) ⊆ N(T )⊥ = R(T ∗) pour tout
n et Xn ⊆ Xn+1. Puisque l’opérateur T ∗(I + TT ∗)−1 |R(T ) est injectif alors

dimXn = n = dimYn.
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Pour une preuve de (2), nous utilisons l’observation suivante :

(I + TT ∗)−1(R(T )) = R(T )

On peut prouver facilement que (I + TT ∗)−1(N(TT ∗)) = N(TT ∗). D’après le Théo-

rème de projection 2.3.2, H2 = N(TT ∗)
⊥
⊕ N(TT ∗)⊥. Alors H2 = N(TT ∗)

⊥
⊕ R(TT ∗).

Mais

(I + TT ∗)−1(H2) = D(TT ∗) = N(TT ∗)
⊥
⊕ C(TT ∗)

Donc

(I + TT ∗)−1(H2) = (I + TT ∗)−1(N(TT ∗)
⊥
⊕ R(TT ∗))

= N(TT ∗)
⊥
⊕ ((I + TT ∗)−1(R(TT ∗))

De cela on a (I +TT ∗)−1(R(TT ∗)) = C(TT ∗) et que C(TT ∗) = N(TT ∗). Nous avons

(I + TT ∗)−1(R(TT ∗)) = R(TT ∗).

Par conséquent, (I + TT ∗)−1(R(T )) = R(T ), d’après la Proposition 2.0.2. Ainsi

R(T ) = (I + TT ∗)−1(R(T )) = (I + TT ∗)−1(∪∞n=1Yn)

= ∪∞n=1(I + TT ∗)−1Yn

= ∪∞n=1Zn.

Cela prouve (2).

Il est clair que ∪∞n=1Xn ⊆ R(T ∗) = N(T )⊥.

Supposons ∪∞n=1Xn ( N(T )⊥. Alors il existe un 0 6= z0 ∈ N(T )⊥ tel que z0 ∈
(∪∞n=1Xn)⊥. Alors

< z0, T
∗(I + TT ∗)−1y >= 0 pour tout y ∈ R(T )

Puisque T ∗(I + TT ∗)−1 est borné ceci est valable pour touts les y ∈ R(T ).
Nous affirmons que cela est vrai pour tous les y ∈ H2. Soit y ∈ H2, alors y = u + v

tel que u ∈ R(T ) et v ∈ R(T )⊥ = N(T ∗) ⊆ D(T ∗). Ainsi d’après la Proposition 2.0.3,
T ∗(I + TT ∗)−1v = (I + T ∗T )−1T ∗v = 0. Ainsi

< z0, T
∗(I + TT ∗)−1y >=< z0, T

∗(I + TT ∗)−1u >= 0
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Cela prouve notre affirmation.

Ensuite, puisque C(T ) = N(T )⊥, il existe une suite (zn) ⊆ C(T ) tel que
zn → z0. Donc pour tous y ∈ H2,

0 =< z0, T
∗(I + TT ∗)−1y > = lim

n→∞
< zn, T

∗(I + TT ∗)−1y >

= lim
n→∞

< T zn, (I + TT ∗)−1y >

= lim
n→∞

< (I + TT ∗)−1T zn, y >

= lim
n→∞

< T (I + T ∗T )−1zn, y > .

Cela montre que T (I + T ∗T )−1zn
w−→ 0 ( faiblement ), mais puisque T (I + T ∗T )−1

est borné, on a T (I + T ∗T )−1z0 = 0. Donc T (I + T ∗T )−1z0 ∈ N(T ). Soit
y = (I + T ∗T )−1z0. Alors Ty = 0. Ainsi z0 = (I + T ∗T )y = y ∈ N(T ). Donc

z0 ∈ N(T ) ∩ N(T )⊥ = {0}. Ainsi z0 = 0, une contradiction à notre hypothèse. Cela
prouve (3).

En utilisant une preuve similaire on obtient (4).

Remarque 3.5.1. On peut noter que le Lemme 3.5.1 montre que si R(T ) est sépa-
rable, alors R(T ∗) est séparable.

Théorème 3.5.1. Soit T ∈ C(H1,H2) un opérateur densément définit à image sépa-

rable R(T ). Alors, pour tout n ∈ N, il existe un {2}−inverse borné T (2)
n de T de rang

n tel que

D(T †) = {y ∈ H2 : lim
n−→∞

T (2)
n y existe}

et T †y = lim
n−→∞

T (2)
n y pour tout y ∈ D(T †).

Remarque 3.5.2. On a vu dans le chapitre 2 que le {2}−inverse d’une matrice,
peut être exprimer de même pour un opérateur. Soit T ∈ C(H1,H2). S’il existe un

opérateur linéaire T (2) ∈ L(H2,H1) tel que T (2)TT (2) = T (2), alors T (2) est appelé
{2}−inverse de T .

Preuve du Théorème 3.5.1. Supposons que R(T ) est de dimension infinie.
Puisque R(T ) est séparable, nous pouvons trouver une suite de sous-espaces Yn de

R(T ) ayant les propriétés suivantes :
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(1) Yn ⊆ Yn+1 et dimYn = n pour tout n ∈ N.

(2) ∪∞n=1Yn = R(T ).

( Par exemple, si {φ1, φ2, ..., } est un ensemble orthonormé qui s’étend sur R(T ),
alors Yn = span({φ1, φ2, ..., φn})).

Soit Zn et Xn comme dans le Lemme 3.5.1. Alors Zn ⊆ Zn+1 et dimZn = n,
Xn ⊆ Xn+1 et dimXn = n.

Soit Pn : H2 −→ H2 et Qn : H1 −→ H1 deux suites de projections orthogonales avec
R(Pn) = Zn et R(Qn) = Xn. Soit Tn = PnT . Ici, D(Tn) = D(T ) et Tnx −→ Tx pour
tout x ∈ D(T ).
Ensuite, nous affirmons que R(Tn) = R(Pn) = Zn. Il est clair que R(Tn) ⊆ R(Pn) =

Zn. Pour montrer l’inclusion inverse, il suffit de montrer N(T ∗n) ⊆ N(Pn).

Maintenant, soit z ∈ N(T ∗n). Alors T ∗Pnz = 0. Ainsi Pnz ∈ N(T ∗) = R(T )⊥.

Mais, Pnz ∈ R(T ). Ainsi Pnz = 0. Donc z ∈ N(Pn). Notez que T ∗n = T ∗Pn =

T ∗ |R(Pn)
= T ∗ |Zn .

Alors R(T ∗n) = T ∗Zn = Xn = N(Tn)⊥. C’est N(Tn) = X⊥n . R(Tn)⊥ = N(T ∗n) = Z⊥n ,
et R(Tn) = Zn. Alors Tn |Xn : Xn −→ Zn est un opérateur bijectif. par conséquent
dimXn = dimZn = n.

2

Construction de {2}−inverses :

On définit T (2)
n : H2 −→ H1 par

T (2)
n y =

{
(Tn |Xn)−1y , si y ∈ Zn ;
0 , si y ∈ Z⊥n .

Ici T (2)
n = T †n et T †n est borné puisque R(Tn) est fermé. T (2)

n est aussi un {2}−inverse

de Tn. Ici N(T
(2)
n ) = Z⊥n et R(T

(2)
n ) = Xn.

Ensuite, nous affirmons que T (2)
n est aussi un {2}−inverse de T . Pour cela nous uti-

lisons l’observation suivante : T (2)
n y = T

(2)
n Pny, pour tous les y ∈ H2. Soit y ∈ H2.
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Alors y = u+ v pour certains u ∈ Zn et v ∈ Z⊥n .
D’où

T (2)
n y = T (2)

n (u+ v) = T (2)
n u (T (2)

n (v) = 0, puisque v ∈ Z⊥n )

= T (2)
n Pny

puisque T (2)
n est un {2}−inverse de Tn,

T (2)
n TT (2)

n y = T (2)
n PnTT

(2)
n y = T (2)

n TnT
(2)
n y

= T (2)
n y

On peut maintenant prouver que

D(T †) = {y ∈ H2 : lim
n−→∞

T (2)
n y existe}

Soit y ∈ D(T †). Alors T †y ∈ C(T ).

Puisque Qnx −→ x pour tout x ∈ C(T ) ⊆ N(T )⊥ = R(T ∗), il est clair que QnT
†y −→

T †y. Ensuite, nous montrons que QnT
†y = T

(2)
n y, pour tous les y ∈ D(T †). Des faits

QnT
†y ∈ Xn, (Qn − I)T †y ∈ N(Tn) et le Théorème 2.3.6,

QnT
†y = T (2)

n TnQnT
†y = T (2)

n TnQnT
†y + T (2)

n Pny − T (2)
n Pny

= T (2)
n (TnQnT

†y − Pny) + T (2)
n Pny

= T (2)
n (TnQnT

†y − PnTT †y) + T (2)
n Pny

= T (2)
n (TnQn − PnT )T †y + T (2)

n Pny

= T (2)
n Tn(Qn − I)T †y + T (2)

n Pny

= T (2)
n Pny

= T (2)
n y.

Puisque QnT
†Y −→ T †y pour tout y ∈ D(T †), et d’après la preuve précédente

lim
n−→∞

T (2)
n y exite et égale à T †y.

Cela montre que D(T †) ⊆ {y ∈ H2 : lim
n−→∞

T (2)
n y existe}.

Ensuite, nous prouvons que si y ∈ H2 telle que lim
n−→∞

T (2)
n y existe, alors y ∈ D(T †).

Soit x0 = lim
n−→∞

T (2)
n y. On peut facilement vérifier que TT (2)

n est une projection avec

R(TT
(2)
n ) = TXn et N(TT

(2)
n ) = (TXn)⊥. Comme d’après le Lemme 3.5.1, il s’ensuit
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que ∪∞n=1TXn = R(T ), notons que TT (2)
n y −→ PR(T )y.

Comme T est fermé, x0 ∈ D(T ) et Tx0 = PR(T )y.

puisque x0 ∈ C(T ) = R(T †), il existe u ∈ D(T †) tel que x0 = T †u.

Maintenant, PR(T )y = Tx0 = TT †u = PR(T )u. Alors y − u ∈ R(T )⊥ = N(T †). C’est

y = y − u+ u ∈ D(T †). Par conséquent x0 = T †u = T †y. Ceci termine la preuve.

2

Théorème 3.5.2. [5] Soit T ∈ C(H1,H2) un opérateur densément définit. Alors les
assertions suivantes sont équivalentes :
(1) R(T ) est fermé.

(2) T †est borné.

(3) D(T †) = H2.

(4) 0 n’est pas un point d’accumulation de σ(T ∗T ).

Si, en plus R(T ) est séparable et T (2)
n est comme dans le Théorème 3.5.1, alors

chacun des assertions ci-dessus est équivalente à ;

(5) lim
n−→∞

T (2)
n y existe pour tout y ∈ H2.

(6) T
(2)
n est uniformément borné.

Théorème 3.5.3. [5] Soit T ∈ C(H1,H2) un opérateur densément définit. S’il existe
une suite de projections orthogonales décroissantes Pn sur H2 vers un sous-espace de

R(T ) avec la propriété Pny −→ PR(T )y pour tout y ∈ H2 et R(PnT ) est fermé, alors

pour chaque n, il existe un T (2)
n tel que

D(T †) = {y ∈ H2 : lim
n−→∞

T (2)
n y existe}

et

T †y = lim
n−→∞

T (2)
n y, pour tout y ∈ D(T †)

On peut prouver ce Théorème par une preuve similaire du Théorème 3.5.1.

Exemple 3.5.1. Soit T : `2 −→ `2 avec

D(T ) = {(x1, x2, · · · ) ∈ `2 : (0, 2x2, 0, 4x4, · · · ) ∈ `2}
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Définit par

T (x1, x2, · · · ) = (0, 2x2, 0, 4x4, · · · ) pour touts (x1, x2, · · · ) ∈ D(T ).

On peut montrer que T = T ∗ et R(T ) est fermé. Soit {en}∞n=1 est la base orthogonale

pour `2. Ici R(T ) = span(e2, e4, · · · , e2n, · · · ). Soit Yn = span{e2, e4, · · · , e2n}. Alors

Yn ⊆ Yn+1, dim(Yn) = n et ∪∞n=1Yn = R(T ).
Puisque T = T ∗, nous avons I + TT ∗ = I + T 2.
Pour tout x = (x1, x2, · · · ) ∈ D(T 2),

(I + T 2)x = (x1, 5x2, x3, 17x4, · · · , x2n−1, (1 + 4n2)x2n, · · · )

Pour tout y = (y1, y2, · · · ) ∈ `2,

(I + T 2)−1y = (y1,
y2

5
, y3,

4
17
y4, · · · , y2n−1,

y2n

1+4n2 , · · · ), y = (y1, y2, · · · , ) ∈ `2.

En particulier, (I + T 2)−1(e2n) = e2n
1+4n2 . D’où Zn = (I + T 2)−1Yn = Yn.

Aussi Xn = T ∗Zn = Yn. Alors Xn = Yn = Zn. Ainsi Pn = Qn. C’est Pnx =

x2e2 + x4e4 + · · · + x2ne2n pour tout x = (x1, x2, · · · , xn, · · · , ) ∈ `2. Tn = PnT . pour
Tnx = 2x2e2 + 4x4e4 + · · ·+ 2nx2ne2n. Ainsi

T (2)
n (y) =

{
y2

2
e2 + y4

4
e4 + · · ·+ y2n

2n
e2n si y ∈ Yn ;

0, si y ∈ Y ⊥n .

Donc d’après le Théorème 3.5.1 , D(T †) = {y ∈ `2 : lim
n−→∞

T (2)
n existe} = `2 et

T †y = lim
n−→∞

T (2)
n y = (0,

1

2
y2, 0,

1

4
y4, · · · ) pour tout y = (y1, y2, · · · ) ∈ `2

.
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Conclusion

On peut généraliser la notion d’inversibilité d’une matrice ou d’un opérateur
linéaire non inversible par plusieurs méthodes permis ces méthodes on a vu l’inverse
de Moore-Penrose pour les matrices avant de voir le cas des opérateurs linéaires
et d’étudier leur propriétés.

Perspectives

Dans ce mémoire le calcul de l’inverse de Moore-Penrose restreint aux

opérateurs bornés et les opérateurs fermés densément définit, peut être

il y a une extension pour les opérateurs fermables (Opérateurs presque

formable).
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