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Introduction

Les théorèmes du point fixe sont les outils mathématiques de base en montrant l’exis-
tence des solutions dans divers genres d’équations. La théorie du point fixe est un coeur de
l’analyse non-linéaire puis qu’elle fournit des outils nécessaires pour avoir des théorèmes
d’existence dans beaucoup de problèmes non-linéaire différent. Elle utilise ses outils de
l’analyse et de la topologie et pour cette raison nous avons la classification "point fixe et
théorie métrique" et "point fixe et théorie topologique".

Le développement de la théorie du point fixe, qui est la branche cardinale de l’analyse
non-linéaire a donné un grand effets sur l’avancement de l’analyse non-linéaire. l’analyse
non-linéaire comme une branche autonome des mathématiques a été élaboré dans les an-
nées 1950 par des mathématiciens, comme Brouwer, comme une combinaison de l’analyse
fonctionnelle et l’analyse variationnelle.

Cependant, les premiers résultats avaient déjà été obtenus dans les années 1920, les ré-
sultats non-linéaire sont applicables à un large éventail domaines. Plusieurs problèmes en
physique, chimie, biologie, économie conduisent à des modèles non-linéaire. Les équations
différentielles non-linéaire et intégrales, les inégalité variationnelles et plus de problèmes
d’optimisation générale sont quelques un des sujets importants dans l’analyse non-linéaire.
La théorie du point fixe et d’une importance capitale dans l’étude de l’existence de solu-
tion, et de nombreux théorèmes d’existence sont obtenus a partir des théorèmes de Banach
et Schauder en transformant le problème d’existence en un problème de point fixe.

En analyse, un théorème de point fixe est un résultat qui affirme, qu’une fonction f
possède au moins un point fixe, avec quelques conditions sur f . Un point fixe d’une fonc-
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tion f qui est définie dans un espace métrique X vers lui même, est un élément x ∈ X
qui vérifie f(x) = x. Ces théorèmes présentes un outil très utile en mathématique, prin-
cipalement dans le domaine de résolution des équation différentielles.

L’analyse fractionnaire est une branche de l’analyse mathématique qui étudier la pos-
sibilité de définir des puissances non entières des opérateurs de dérivation et d’intégration.
Par exemple, on peut se demander comment interpréter convenablement la racine carrée.

√
D = D

1
2

l’opérateur de dérivation, c’est-à-dire une expression d’un certain opérateur qui lorsqu’elle
est appliquée deux fois à une fonction, aura le même effet que la dérivation, plus générale-
ment, on peut examiner le problème de définir Dα. Pour des valeurs réelles de α, de telle
sorte que lorsque α prend une valeur entière n, on récupère la dérivation n-ième usuelle
pour n > 0 ou l’intégration itérée |n| fois pour n < 0. Le terme "Fractionnaire" est utilisé
de fa impropre : α n’est pas nécessairement un nombre rationnel, et l’on devrait donc
plutôt parler de dérivation non entière. Cependant le terme "Analyse fractionnaire" est
devenu traditionnel.
Les dérivées fractionnaires sont utilisées par exemple dans certains domaines de la phy-
sique faisant intervenir des phénomènes de diffusion comme lèlèctromanètisme,...
L’équation différentielles fractionnaires également connu sous le nom d’équations différen-
tielles extraordinaire, sont une généralisation des équation différentielles à travers l’appli-
cation du calcul fractionné.

En 1955, et pour la première fois, Krasnoselskii a établir son théorème du point fixe
qui affirme que dans un convexe compact toute application qui se met sous la forme d’une
somme de deux applications dont l’une est contractante et l’autre compacte admet un
point fixe. Ce théorème est très efficace dans la résolution des équations différentielles
non linéaire, il apporte des réponses aux problèmes d’existence et d’unicité.
Krasnoselskii a prouvé un théorème de point fixe motivé par une observation que la dans
version d’un opérateur différentiel perturbé peut donner la somme des opérateurs de com-
pactage et de contraction. Son théorème combine à la fois le principe de contraction de
Banach et le théorème du point fixe de Schauder, et est utile pour établir théorèmes
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d’existence pour les équations d’opérateurs perturbées.
Le théorème traditionnel du point fixe de Krasnoselskii dans les espaces de Banach ne
reproduit pas les formes riches et variées des équations d’opérateurs dans les espaces abs-
traits qui ne sont pas une structure linéaire. Par conséquent, ses applications aux équations
intégrales et aux équations différentielles ont rencontré de nombreux obstacles.
Le théorème de point fixe actuel de Krasnoselskii dans les espaces semi-linéaires généra-
lisés de Banach surmonte cette carence et ouvre à des recherches rentables telles que les
systèmes différentielles avec incertitude.

Ce mémoire décompose en trois chapitres de la manière suivante :

Dans le premier chapitre, nous commençons par présenter quelques fonctions spé-
ciales utiles dans le calcul fractionnaire ainsi que quelques propriétés fondamentales, ce
chapitre est consacré pour un rappel général sur le calcul fractionnaire et plus précisément
les définitions des dérivées et des intégrales fractionnaires aux sens de Riemann-Liouville
et de Caputo ainsi que la relation entre l’approche de Riemann-Liouville et celle de Caputo.

Dans le seconde chapitre, On introduit quelques définitions concernant les cônes
et des notations de la fonction de Green et leurs propriétés qu’on va utiliser à travers ce
mémoire. Et j’énonce et montre le théorème de Krasnoselskii ainsi que quelques théorèmes
de point fixe telles que le théorème de point fixe de Banach, Brouwer, Schauder.

Dans le troisième chapitre, On va appliqués le théorème de Krasnoselskii pour éta-
blir l’existence et d’unicité des solutions et nous prenons des exemples pour mieux com-
prendre.



Chapitre 1

Définitions et notions de bases

1.1 Introduction

Dans ce chapitre nous présentons certaines théories de base qui concernent des fonc-
tions spéciales qui sont utilisées dans les autres chapitres. Nous donnons ici les définitions
des fonctions Gamma, Bêta, et la fonction d’erreur . Ces fonctions jouent un rôle impor-
tant dans la théorie de différentiation d’ordre fractionnaire.

Nous présentons aussi différentes approche de généralisation de la notion de différen-
tiation et intégration. Le choix étant réduit aux définitions qui sont liée aux applications.

1.2 Fonctions utiles

1.2.1 La fonction Gamma

La fonction Gamma d’Euler est une fonction qui prolonge naturellement la factorielle
aux nombres réels et même aux nombres complexes. Pour z ∈ C/{0,−1,−2, . . .} tel que
Re(z) > 0.

Définition 1.2.1 :[9]
La fonction Gamma est généralement définie par l’intégrale suivante :

Γ(z) =

∫ +∞

0

tz−1exp(−t)dt (1.1)
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quand la partie réelle de z est strictement positive (Re(z) > 0), cette intégrale est conver-
gente.

Proposition 1.2.1 :[9]

Pour tout x ∈ R+
∗ , t > 0, n ∈ N, on a :

1. Γ(x+ 1) = xΓ(x)

2. Γ(0) =∞

3. Γ(n+ 1) = n!, n ∈ N

4. Γ(n+ 1
2
) = (2n)!

√
π

4nn!

5. Γ(x) = lim
n→+∞

n!nx

x(x+1)...(x+n)

Exemples 1.2.1 :

1.

Γ(1) =

∫ +∞

0

exp(−t)dt = 1

2.

Γ(
1

2
) =

∫ +∞

0

t−
1
2 exp(−t)dt

Posons t = x2, alors dt = 2xdx, Donc :

Γ(
1

2
) = 2

∫ +∞

0

exp(−x2)dx

Pour calculer cette intégrale posons :

A =

∫ +∞

0

exp(−x2)dx

Prenons :

A2 =

∫ +∞

0

exp(−y2)dy

∫ +∞

0

exp(−x2)dx =

∫ +∞

0

∫ +∞

0

exp− (x2 + y2)dxdy
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Le calcul est plus simple à réaliser qu’on effectue les coordonnées polaires :

A2 =

∫ π
2

0

∫ +∞

0

rexp(−r2)drdθ =
π

4

A =

√
π

2

Alors

Γ(
1

2
) =
√
π

1.2.2 La fonction Bêta

La fonction Bêta est appellée intégrale d’Euler du premier type.
Définition 1.2.2 :[9]
La fonction Bêta est définie par :

B(z, w) =

∫ 1

0

tz−1(1− t)w−1dt, (Re(z) > 0;Re(w) > 0) (1.2)

Proposition 1.2.2 :[9]
les fonctions Gamma et Bêta sont reliées par la relation suivante :

B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
, (z, w ∈ C; (Re(z);Re(w)) > 0) (1.3)

Propriété 1.2.1 :[9]

soient a, b ∈ C, (Re(a), Re(b)) > 0

1. B(a, b) = B(b, a)

2. B(a, 1) = 1
a

3. B(a, b+ 1) = B(a+ 1, b)

4. Si n = b+ 1 est un entier, cela donne une relation de récurrence.

B(a, b) =
n− 1

a
B(a+ 1, b)
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5. Si a = m et b = n, on obtient

B(m,n) =
(m− 1)(n− 1)!

(m+ n− 1)!

Exemples 1.2.2 :

1.

B

(
1

2
,
1

2

)
=

Γ(1
2
)Γ(1

2
)

Γ(1)

=

√
π
√
π

1

= π

2.

B(2, 3) =

∫ 1

0

t(1− t)2dt

=

∫ 1

0

(t− 2t+ t3)dt

=
1

12

1.2.3 La fonction d’erreur

La fonction d’erreur appellée aussi la fonction d’erreur de Gauss, utilisée en analyse
et fait partie des fonctions spéciales.
Définition 1.2.3 :[9]
La fonction d’erreur est noté par Erf , elle est définie par :

Erf(x) =
2√
π

∫ x

0

exp(−t2)dt (1.4)
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Propriété 1.2.2 : [9]

1. Erf(0) = 0

2. Erf(∞) = 1

3. Erf(−x) = −Erf(x)

1.3 Analyse et calcul fractionnaire

1.3.1 Intégrale fractionnaire au sens de Riemann-Liouville

Cette section sera consacrée aux définitions élémentaires pour les intégrales fraction-
naires de Riemann-Liouville.
La notion d’intégrale fractionnaire d’ordre α ∈ C (Re(α) > 0), selon l’approche de

Riemann-Liouville, généralise la célèbre formule (attribuée à Cauchy ) d’intégrale répété
n-fois :

(Ina f)(x) =

∫ x

a

dt1

∫ t1

a

dt2.....

∫ tn−1

a

f(tn)dtn

=
1

(n− 1)!

∫ x

a

(x− t)n−1f(t)dt (n ∈ N∗)

Définition 1.3.1 [8]

Soit f ∈ L1([a, b]). l’intégrale fractionnaire de Riemann-liouville de la fonction f d’ordre

α ∈ C(Re(α) > 0), notée I(α)
a f et définie par la formule suivante :

(I(α)
a f)(x) =

1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt x > a (1.5)

où α est un nombre non entier et Γ(α) est la fonction Gamma d’Euler.

Théorème 1.3.1 [8]

Si f ∈ L1([a, b]), alors Iαa f existe pour presque tout x ∈ [a, b] et de plus Iαa f ∈ L1([a, b])
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Démonstration. En introduisant la définition (1.3.1) puis en utilisant le théorème de
Fubini, on trouve :∫ b

a

|(Iαa f)(x)|dx ≤ 1

Γ(α)

∫ b

a

∫ x

a

(x− t)α−1|f(t)|dtdx

≤ 1

Γ(α)

∫ b

a

|f(t)|
∫ b

t

(x− t)α−1dxdt

≤ 1

Γ(α + 1)

∫ b

a

|f(t)|(b− t)αdt

≤ (b− a)α

Γ(α + 1)

∫ b

a

|f(t)|dt

Puisque f ∈ L1([a, b]), la derniére quantité est fini, ce qui établit le résultat.

Exemples 1.3.1 Soient α > 0, β > −1 et f(x) = (x− a)β, alors :

(Iαa f)(x) =
1

Γ(α)

∫ x

a

(x− t)α−1(t− a)βdt (1.6)

En effectuant le changement de variable

t = a+ (x− a)y (0 ≤ y ≤ 1)

alors (1.6) devient

(Iαa f)(x) =
1

Γ(α)

∫ x

a

(x− t)α−1(t− a)βdt

=
1

Γ(α)

∫ 1

0

(x− a− (x− a)y)α−1[x+ (x− a)y − x]β(x− a)dy

=
1

Γ(α)

∫ 1

0

[(x− a)(1− y)]α−1(x− a)β+1yβdy

=
(x− a)β+α

Γ(α)

∫ 1

0

(1− y)α−1yβdy

=
(x− a)β+α

Γ(α)

∫ 1

0

(1− y)α−1y(β+1)−1dy
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En tenant compte de la fonction Bêta (1.2) puis de la relation (1.3) on arrive à :

(Iαa f)(x) =
(x− a)α+β

Γ(α)
B(α, β + 1)

=
(x− a)α+β

Γ(α)

Γ(α)Γ(β + 1)

Γ(α + β + 1)

=
Γ(1 + β)

Γ(α + β + 1)
(x− a)α+β

Ainsi on obtient

(Iαa (t− a)β)(x) =
Γ(β + 1)

Γ(α + β + 1)
(x− a)α+β (1.7)

Exemples 1.3.2 Soit f(x) = xβ avec β ≥ −1 On a

(Iα0 f)(x) = Iαf(x) =
1

Γ(α)

∫ x

a

tβ(x− t)α−1dt (1.8)

En posant t = xu,(1.8) devient :

Iαf(x) =
1

Γ(α)

∫ 1

0

(xu)β(1− u)α−1xdu

En utilisant la fonction Bêta (1.2) puis de la relation (1.3) on arrive à :

Iαf(x) =
xβ+a

Γ(α)

∫ 1

0

uβ(1− u)α−1du

=
xβ+a

Γ(α)
B(β + 1, α)

=
Γ(β + 1)

Γ(α + β + 1)
xα+β

Proposition 1.3.1 [8]

Soient α, β ∈ C tels que R(α), R(β) > 0, pour toute fonction

f ∈ L1([a, b]), on a :

Iαa (Iβa f) = I(α+β)
a f = Iβa (Iαa f)
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pour presque tout x ∈ [a, b]. Si de plus f ∈ C([a, b]), alors cette identité est vraie pour tout

x ∈ [a, b].

Démonstration.Supposons d’abord que f ∈ L1([a, b]), on a :

[Iαa (Iβa f)](x) =
1

Γ(α)

∫ x

a

(x− s)α−1(Iβa f)(s)ds

=
1

Γ(β)

1

Γ(α)

∫ x

a

(x− s)α−1

∫ s

a

(s− t)β−1f(t)dtds

En vertu du théorème (1.3.1), les intégrale figurant dans l’égalité précédente existent pour

presque tout x ∈ [a, b], et le théorème de Fubini permet donc d’écrire :

[Iαa (Iβa )f ](x) =
1

Γ(α)Γ(β)

∫ x

a

f(t)[

∫ x

t

(x− s)α−1(s− t)β−1ds]dt

En effectuant le changement de variable :

s = t+ (x− t)y (0 ≤ y ≤ 1)

on obtient

[Iαa (Iβa )f ](x) =
1

Γ(α)Γ(β)

∫ x

a

f(t)(x− t)α+β−1

∫ 1

0

(1− y)α−1yβ−1dydt

Enfin, en tenant de la relation (1.3) on obtient :

[Iαa (Iβa )f ](x) =
1

Γ(α + β)Γ(β)

∫ x

a

f(t)(x−t)α+β−1dt = (Iα+β
a f)(x−t)α+β−1dt = (Iα+β

a f)(x)

Supposons maintenant que f ∈ C([a, b]), alors ( d’après les théorèmes sur les intégrales

dépendant de paramètres )Iβa f ∈ C([a, b]), et par suite

Iα+β
a , Iαa I

β
a f ∈ C([a, b])

Ainsi, d’après ce qui précède, les deux fonctions continues Iα+β
a , Iαa I

β
a f coincident

presque partout sur [a, b], elles doivent donc coincider partout sur [a, b].
Le théorème suivant fournit un résultat concernant l’inversion de la limite et de l’intégrale
fractionnaire.
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Théorème 1.3.2 [8]

Soient α > 0, et (fk)
+∞
k=1 est une suite de fonctions continues et simplement convergentes

sur [a, b]. Alors on peut invertir l’intale fractionnaire au sens de Riemann-Liouville et le
signe limite comme suit :

[Iαa ( lim
k→+∞

fk)](x) = lim
k→+∞

(Iαa fk)(x)

Démonstration. Voir [8]

1.3.2 Dérivée fractionnaire au sens de Riemann-Liouville

Il existe plusieures définitions de dérivées fractionnaires, Dans cette partie on va pré-
senter la dérivée de Riemann-liouville, qu’est la plus utilisée.

Définition 1.3.2 [8]

Soit f ∈ L1([a, b]) une fonction intégrable sur [a, b], la dérivée fractionnaire au sens de

Riemann-Liouville de la fonction f d’ordre α ∈ C(R(α) > 0) notée Dα
a f est définie par :

(Dα
a f)(x) =

1

Γ(n− α)

(
d

dx

)n ∫ x

a

(x− t)n−α−1f(t)dt (1.9)

Où n− 1 < [R(α)] < n et x > a.
En particulier, pour α = m ∈ N, on a

(Dα
a f)(x) =

1

Γ(1)

(
d

dx

)∫ x

a

f(t)dt (1.10)

(Dα
a f)(x) =

1

Γ(1)

(
dm+1

dxm+1

)∫ x

a

f(t)dt =
dm

dxm
f(x) (1.11)

Par suite la dérivée fractionnaire au sens de Riemann-Liouville coincide avec la dérivée
classique pour α ∈ N.

Remarque 1.3.1

(Dα
a f)(x) =

(
d

dx

)n
(In−αn f)(x)

tel que : n = [R(α)] + 1, x > a .
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Exemples 1.3.3

1. Soit f(x) = (x− a)β avec β > −1.

Pour α ≥ 0 tel que n− 1 ≤ α ≤ n, on a d’après la remarque (1.3.1) puis l’exemple

(1.3.3) :

Dα
a f(x) = DnIn−αf(x) =

Γ(β + 1)

Γ(β + n− α + 1)
Dn(x− a)n−α+β

Alors, pour (α− β) ∈ {1, 2, ...., n} on a :

Dα
a f(x) = Dα

a (x− a)α−j = 0 j ∈ {1, 2, ...., n}

Par ailleurs si (α− β) /∈ {1, 2, ...., n} on trouve

Dα
a f(x) =

Γ(β + 1)

Γ(β − α + 1)
Dn(x− a)β−α

2. En particulier, si β = 0 et α > 0, la dérivée fractionnaire de Riemann-Liouville
d’une fonction constante f(x) = C est non nulle, sa valeur est :

Dα
aC =

C(x− a)−α

Γ(1− α)

La proposition suivante établie une condition suffisante d’existence de la dérivée fraction-
naire.

Proposition 1.3.2 [8]

Soient α ≥ 0 et n = [α] + 1. Si f ∈ ACn([a, b]), alors la dérivée fractionnaire Dα
a f existe

presque partout sur[a, b] et de plus, elle est donnée par

Dα
a f(x) =

n−1∑
j=0

f (j)(a)

Γ(j − α + 1)
(x− a)j−α +

1

Γ(n− α)

∫ x

a

(x− t)n−α−1f (n)(t)dt
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1.3.3 Propriétés de la dérivation fractionnaire au sens de
Riemann-Liouville

Par analogie avec la dérivation usuelle, et comme conséquence directe de la relation
(1.5) , l’opérateur de dérivation fractionnaire au sens de Riemann-Liouville est linéaire.

Théorème 1.3.3 [8]
Soient f et g deux fonctions dont les dérivées fractionnaires de Riemann-Liouville d’ordre
α existent. Alors pour λ, µ ∈ R, Dα

a (λf + µg) existe et on a :

Dα
a (λf + µg)(x) = λ(Dα

a f)(x) + µ(Dα
a g)(x)

Lemme 1.3.1 [8]

Soit α ∈]n− 1, n[ et f une fonction vérifiant Dα
a = 0 alors :

f(x) =
n−1∑
j=0

cj
Γ(j + 1)

Γ(j + 1 + α− n)
(x− a)j+α−n

Démonstration. Soit
(Dα

a f)(x) = 0

En tenant compte de la remarque (1.3.1) on a :

(
d

dx

)m
[Im−αa f ](x) = 0

et par suite

[Im−αa f ](x) =
m−1∑
j=0

cj(x− a)j

Maintenant, l’application de l’opérateur Iαa équation précédente donne

(Ima f)(x) =
m−1∑
j=0

cjI
α
a ((x− a)j)
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En utilisant la relation (1.7) on obtient ainsi

(Ima f)(x) =
m−1∑
j=0

cj
Γ(j + 1)

Γ(j + 1 + α)
(x− a)j+α

Enfin, la dérivation classique et l’utilisation de la formule(
d

dx

)m
.(x− a)α =

Γ(α + 1)

Γ(α−m+ 1)
.(x− a)α−m

établit le résultat désiré.

L’opérateur de dérivation au sens de Riemann-Liouville possède les propriètès rèsumèes
dans la proposition suivante.

Proposition 1.3.3 [8]
Soient α, β > 0 tels que n− 1 ≤ α ≤ n,m− 1 ≤ β < m.

1. Pour f ∈ L1([a, b]), légalité :

Dα
a (Iαa f(t)) = f(t)

est vrai pour presque tout x ∈ [a, b].

2. Si α > β > 0, alors pour f ∈ L1([a, b]), la relation :

Dβ
a (Dα

a f)(x) = (Iα−βf)(x)

est vrai presque partout sur [a, b].

3. Si β ≥ α > 0 et la dérivée fractionnaire Dβ−α
a f existe, alors on a :

Dβ
α(Iαf)(x) = (Dβ−α

a )(x)

4. Si f ∈ L1([a, b]) et In−αf ∈ ACm([a, b]) avec n = [R(α) + 1], alors :

[Iαa (Dα
a f)](x) = f(x)−

n−1∑
j=0

(x− a)j−n+α

Γ(j − n+ α + 1)
lim
x→a+

[(
d

dx

)j
In−αa f

]
(x)
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1.3.4 La dérivation fractionnaire au sens de Caputo

Bien que la dérivation fractionnaire au sens de Riemann-Liouville a jouée un rôle
important dans le développement du calcul fractionnaire, plusieurs auteurs y compris Ca-
puto (1967-1969) ont rendu compte que cette définition doit être révisé, car les problèmes
appliqués en viscoélasticité, mécanique des solides et en rhéologie, exigent des conditions
initiales physiquement interprétables par des dérivées classiques, ce qui n’est pas le cas
dans la modélisation par l’approche de Riemann-Liouville qui exige la connaissance des
conditions initiales des dérivées fractionnaires.

Définition 1.3.3 [8]

Soient α ∈ C avec R(α) > 0 et n ∈ N∗ tel que n− 1 ≤ R(α) < n et f ∈ Cn([a, b]).
La dérivée fractionnaire d’ordre α au sens de Caputo de la fonction f notée cDα

a f est
définie par :

cDα
a f(x) = I(n−α)D(n)f(x)

=
1

Γ(n− α)

∫ x

a

f (n)(t)(x− t)n−α−1dt

Remarque 1.3.2 La dérivée fractionnaire au sens de Riemann-Liouville d’ordre
α ∈]m − 1,m[ s’obtient par une application de l’opérateur d’intégration fractionnaire
d’ordre m − α suivit d’une dérivation classique d’ordre m, alors que La dérivée frac-
tionnaire au sens de Caputo est le résultat de la permutation de ces deux opérations.

Exemples 1.3.4 Pour f(x) = (x− a)β avec β ≥ 0 on a

cDα
a f(x) =

 0 si β ∈ {0, 1, 2, ....,m− 1}
Γ(β+1)

Γ(β+1−α)
(x− α)β−α si β > n− 1

(1.12)

En particulier, si f est constante sur [a, b] , alors :

cDα
a f = 0
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1.3.5 Relation entre l’approche de Riemann-Liouville et celle de
Caputo

Le théorème suivants établit le lien entre la dérivée fractionnaire au sens de caputo et
celle au sens de Riemann-Liouville.
Théorème 1.3.4 [8]

Soient α ≥ 0, n = [α] + 1. Si f possède (n− 1) dérivée en a et si Dα
a f existe, alors :

(cDα
a f)(x) = Dα

a

[
f(x)−

n−1∑
k=0

fk(a)

k!
(x− a)k

]

presque partout sur [a, b].

Remarque 1.3.3 Le résultat du théorème (1.3.4) signifie que la dérivation au sens de
Caputo d’une fonction f est une dérivation fractionnaire du reste dans le développement
de Taylor de f .



Chapitre 2

Le théorème du point fixe de
Krasnoselskii

On commence par donner des définitions, Ainsi que quelques résultats connus qui nous
seront utiles dans la suite de notre travail.

2.1 Le cône

Définition 2.1.1 [7]
Soit E un espace de Banach réel, un sous ensemble convexe P de E est dit un Cône s’il
satisfait :

1. x ∈ P et λ > 0⇒ λx ∈ P

2. x ∈ P et −x ∈ P ⇒ x = θ où θ est l’élément nul de E

Définition 2.1.2 [7](Définition d’un Cône solide)

Soit P̊ l’intérieur du Cône P , Alors P est dit Cône solide si son intérieur est non vide.

Définition 2.1.3 [7](Définition d’un Cône normal)
P est un Cône normal s’il existe une constante N telle que :
Pour tout x, y ∈ P

θ 6 x 6 y ⇒ ‖x‖ 6 N‖y‖

N est constante de normalité de P .

22
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Autres définitions

1. On dit que E est partiellement ordonné par le Cône P si :

x 6 y ⇔ y − x ∈ P

2. Si a, b ∈ E, l’ensemble [a, b] = x ∈ E/a 6 x 6 b est dit intervalle ordonné entre a
et b.

3. On dit qu’un opérateur A : E → E est croissant(décroissant) si :

x 6 y ⇒ Ax 6 Ay (Ax > Ay)

2.2 Fonction de Green

2.2.1 Construction de la fonction de Green :

Les fonctions de Green sont un dispositif utilisé pour résoudre des équations diffé-
rentielles ordinaires et partielles. En particulier, quand leurs résolutions ne peuvent être
évidentes par d’autre méthodes.
La forme générale : Soit l’équation différentielle d’ordre m

L(y) = p0(x)y(m) + p1(x)y(m−1) + . . .+ pm−1(x)y
′
+ pm(x)y = 0 (2.1)

Où les fonctions p0(x), p1(x), . . . , pm(x) sont continues sur [a, b], p0(x) 6= 0, sur [a, b] avec
les conditions aux limites

Vk(y) = αy(a) +α(1)y
′
(a) + . . .+α(m−1)y(m−1)(a) +βy(b) +β(1)y

′
(b) +β(m−1)y(m−1)(b) = 0

(2.2)

Avec k = 1, 2, . . . ,m et les formes linéaires V1, . . . , Vm−1, en fonction de y(a), y
′
(a), . . . , y(m−1)(a),

y(b), y
′
(b), . . . , y(m−1)(b) étant linéairement indépendantes. Supposons que le problème aux

limites homogène (2.1)− (2.2) admet la seule solution triviale y(x) ≡ 0

Définition 2.2.1 On appelle fonction de Green (ou fonction d’influence) du problème

aux limites (2.1)− (2.2) la fonction G(x, y) construite pour tout y, a < y < b.
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Définition 2.2.2 [14](Fonction de Green en une dimension)

Soit q :]a, b[→ R une fonction bornèe et on considère le problème de l’équation différentielle
et les conditions aux limites homogs :

(− d2

dx2
+ q(x))f(x) = h(x), 0 ≤ x ≤ 1

α1f(a) + β1f(a) = 0

α2f(b) + β2f(b) = 0

(2.3)

où h est une fonction donnée et αj, βj(j = 1, 2) sont des constantes données.

La méthode de la fonction de Green, consiste à résoudre, pour chaque y ∈]a, b[ fixé.[
−d2

dx2
+ q(x)

]
G(x, y) = δ(x− y) (2.4)

L’équation (2.4) doit être au sens des distributions.
La fonction de Green satisfait les mêmes conditions aux limites en x = a et x = b .
On obtient, la solution f de (2.3) par :

f(x) =

∫ b

a

G(x, y)h(x)dx (2.5)

Proposition 2.2.1 [14]

Si f est une solution de (2.3), alors f peut être représentée sous la forme (2.5).

Remarque 2.2.1 La fonction de Green est symétrique i.e :

G(x, y) = G(y, x)

Théorème 2.2.1 [14]
La fonction de Green possède les proprietés suivantes :

1.
[
− d2

dx2
+ q(x)

]
G(x, y) = 0 sur (a, y) et sur (b, y).

2. G satisfait les conditions aux limites.

3. G est continue en x = y.
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2.2.2 Les propriétés de la fonction de Green

Cette fonction jouit des quatre propriétés suivantes :

1. G(x, y) est continue et possède des dérivées continues par rapport à x jusqu’à

l’ordre (m− 2) inclu pour a ≤ x ≤ b .

2. Sa (m−1)− ime dèrivée par rapport à x présente au point x = y une discontinuité

de première espèce, le saut ayant la valeur 1
p0(x)

, ie

∂m−1G

∂xm−1
(y+, y)− ∂m−1G

∂xm−1
(y−, y) =

1

p0(y)

3. Dans chacun des intervalles [a, y) et (y, b] la fonction G(x, y) considérée comme

une fonction de x est solution de l’équation (2.1)

L(G) = 0 (2.6)

4. G(x, y) vérifie les conditions aux limites (2.2) :

Vk(G) = 0, k = 0, 1, 2, . . . ,m

2.2.3 Positivité de la fonction de Green :

Théorème 2.2.2 [14]
La fonction de Green associée au problème :

−(p(x)u′)′ + q(x)u = h(x) x ∈ [0, T ]

u(0) = u(T ) u(1)(0) = u(1)(T )

est strictement positive, pour x, y dans [0, T ], c’est à dire :

G(x, y) > 0, ∀(x, y) ∈ [0, T ]2 (2.7)

Théorème 2.2.3 Si le problème aux limites (2.1) − (2.2), n’a pas de solution autre que

la solution triviale y(x) ≡ 0, l’opérateur L a une fonction de Green G(x, y) et une seule.
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Exemples 2.2.1 Soit la fonction de Green pour le système suivant :

{
d2

dt2
y(t)− 3 d

dt
y(t) + 2y(t) = f(t) ;

y(0) = d
dt
y(0) = 0 0 ≤ t ≤ s ≤ 1.

(2.8)

On remplace par :

d2

dt2
g(t, τ)− 3

d

dt
g(t, τ) + 2g(t, τ) = δ(t− τ)

Pour g(0, τ) = d
dt
g(0, τ) = 0 On applique la transformée de Laplace, et on obtient :

L
(
d2

dt2
g(t, τ)

)
(s) + 3L

(
d

dt
g(t, τ)

)
(s) + 2L(g(t, τ))(s) = L(δ(t− τ))(s)

s2G(t, τ)− sg(0, τ)− d

dt
g(0, τ)− 3[sG(t, τ)− g(0, τ)] + 2G(t, τ) =

1

s

oú

δ(t− τ) =

{
1, t > τ

0, t < τ

alors :

L(δ(t− τ))(s) =
1

s

Donc :

G(t, τ) =
1
s

s2 − 3s+ 2

La transformée de la fonction pour le problème tel que τ = 0, alors la fonction de Green
est :

g(t, τ) =

[
1

2
e2(t−τ) − et−τ +

1

2

]
H(t− τ), t ≥ τ
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où H est la fonction de heaviside.
Alors, la solution du problème (2.8) écrit comme suit :

y(t) =

∫ b

a

g(t, τ)f(t)dt

=

∫ b

a

[
1

2
e2(t−τ) − et−τ +

1

2

]
H(t− τ)f(t)dt

2.3 Quelques théorèmes de point fixe

Définition 2.3.1 Soient (X, d) un espace métrique, une application f est définie par

f : X → X, on dit que x ∈ X est un point fixe de f si f(x) = x.

2.3.1 Théorème de point fixe de Banach

Vers 1922, Banach reconnu le rôle fondamental de la complétude métrique, il énonce le
théorème suivant :
Théorème 2.3.1 [11](Théorème de Banach(1922))

soit (E, d) un espace métrique complet non vide et soit f : E → E une application

α− contraction c’est-à-dire il existe 0 < α < 1 tel que d(f(x), f(y)) 6 αd(x, y), pour tout
x, y ∈ E.
Alors f possède un unique point fixe.

Démonstration.

1. L’unicité :
On pose que x, y ∈ E deux points fixes de f alors f(x) = x, f(y) = y

d(x, y) = d(f(x), f(y)) ≤ αd(x, y)

comme 0 < α < 1 donc : d(x, y) = 0⇒ x = y

2. L’existance :
On choisit un point x0 ∈ E quelconque et on définit la suite xn = f(xn+1) , on
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montre par récurrence que d(xn, xn+1) ≤ αnd(x0, x1) pour n ∈ N et on montre que

la suite (xn)n est de Cauchy :

d(xn, xn+p) ≤
p−1∑
n=0

d(xn+k, xn+k+1)

≤
p−1∑
n=0

αn+kd(x0, x1)

≤ αn
p−1∑
n=0

αkd(x0, x1)

≤ αn
1− αp

1− α
d(x0, x1)

≤ αn

1− α
d(x0, x1)

et donc d(xn, xn+p)→ 0 lorsque n→ +∞, ceci exprime le fais que (xn)n est une suite de
Cauchy dans E , et comme E est un espace complet , il existe x ∈ E tel que xn → x .
Par continuité, xn+1 = f(xn)→ f(x) ,d’où f(x) = x .

La signification du théorème de point fixe de Banach

L’application de ce théorème nous donne des résultats qui sont d’une importance fonda-
mentale dans l’analyse non linéaire.
citons quelque uns :

1. Existence de la solution.

2. Unicité de la solution.

3. Stabilité de la solution sous une petite perturbation de l’équation.

4. Existence de la convergence des méthodes d’approximation.

5. Stabilité des méthodes d’approximation.
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2.3.2 Théorème de point fixe de Brouwer

Le théorème du point fixe de Brouwer est un résultat de topologie algébrique. Il fait partie
de grande famille des théorèmes du point fixe, il existe plusieurs formes du théorème selon
le contexte d’utilisation.
Théorème 2.3.2 [11](Théorème de Brouwer (1910))
Il existe plusieurs forme du thèorème, selon le contexte d’utilisation.
La plus simple est parfois donnée sous la forme suivante :
Dans le plan : Toute application T continue d’un disque fermé dans lui-même admet
au moins un point fixe.
Il est possible de généraliser à toute dimension finie.
Dans un espace euclidien :Toute application continue d’une boule fermée d’un espace
euclidien dans elle-même admet un point fixe.
De mani ivalente :
convexe compact :Toute application continue T d’un convexe K d’un espace euclidien
à valeur dans K admet un point fixe.

2.3.3 Théorème de point fixe de Schauder

Le théorème de point fixe de schauder est une généralisation de théorème de Brouwer, il
s’énonce ainsi :
Théorème 2.3.3 [11](Théorème de schauder (1930) )
Soit C un sous ensemble fermé et convexe d’un espace de Banach E et f : C → C une
application continue telle que f(c) est relativement compact. Alors f possède un point fixe.
Plus généralement, si C est un compact convexe alors toute fonction continue de C sur
C possède un point fixe.

Démonstration.

On note K l’adhérence de f(C) i.e. K = f(C) qui est par hypothése un compact.

K ⊂ C car C est un fermé (si C est compact alors K = f(C) car f(C) est compact).

Pour chaque n, soit Fn un 1
n
−réseau de K i.e Fn = {x1, x2, ..., xk} ⊂ K telque

K =
⋃k
i=1B(xi,

1
n
) et soit Pn : K → conv(Fn) une projection de Schauder , comme C

est convexe et Fn une partie de C alors conv(Fn) ⊂ C est un sous ensemble convexe et
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compact. Ont définit fn : conv(Fn) → conv(Fn), fn = Pn ◦ f|conv(Fn). Par le théorème de

Brouwer (fn)n∈N possède au moins un point fixe yn i.e fn(yn) = yn . Or (f(yn))n∈N ⊂ K

qui est compact et donc la suite (f(yn))n∈N possède une sous suite convergente nous
noterons de la même manière. On pose

y = lim
n→∞

f(yn) (2.9)

et on a y = lim
n→∞

f(yn) ∈ C car (f(yn))n∈N ⊂ K ⊂ C fermé d’où contient les limites de

tous ses suites convergentes.
Montrons f(y) = y. En effet :

‖fn(yn)− f(yn)‖ = ‖Pn(f(yn))− f(yn)‖ < 1

n

d’où :

y = lim
n→∞

f(yn)

= lim
n→∞

fn(yn)

= lim
n→∞

yn

Alors : lim
n→∞

yn = y D’aprés l’égalité (2.9) et par la continuité de f , on obtient : f(y) = y

. Par conséquent f admet un point fixe.

Théorème 2.3.4 [14](Théorème Ascoli-arzelà) Soient (X, dX) un espace métrique com-

pact et (Y, dY ) un espace métrique . on se donne un ensemble F de C0(X, Y ) tel que :

(i) ∀x ∈ X, {f(x), f ∈ F} est compact dans Y

(ii) la famille F est equicontinue, ie :∀ε > 0,∃δ > 0 tel que, ∀x, x′ ∈ x , f ∈ F , on a

, dX(x, x′) < δ ⇒ dY (f(x), f(x′)) ≤ ε

Alors, F̄ est compact dans C0(X, Y )
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2.4 Théorèmes du point fixe de type Krasnoselskii

Introduction :

En 1958, Krasnoselskii a observé que dans un bon nombre de problèmes, l’intégration
d’un opérateur différentiel perturbé donne naissance à une somme de deux applications,
une contraction et une application compacte.Il déclare alors :
Principe. L’intégrale d’un opérateur différentiel peut produire une somme de
deux application, une contraction et un opérateur compact.
Pour mieux comprendre cette observation de Krasnoselskii, on considère l’equation diffé-
rentielle perturbé suivante :

x′(t) = −a(t)x(t)− g(t, x(t)) (2.10)

où a(t + T ) = a(t) et g(t + T, x) = g(t, x) pour un certain T > 0. On peut transformer
cette équation sous une autre forme en écrivant :

x′(t)exp

(∫ t

0

a(s)ds

)
= −a(t)x(t)exp

(∫ t

0

a(s)ds

)
− g(t, x)exp

(∫ t

0

a(s)ds

)

Par conséquent :

(
x(t)exp

∫ t

0

a(s)ds

)′
= −g(t, x(t))exp

(∫ t

0

a(s)ds

)

Une intégration t− T à t donne :

∫ t

t−T

(
x(u)exp

∫ u

0

a(s)ds

)′
du = −

∫ t

t−T
g(u, x(u))

(
exp

∫ u

0

a(s)ds

)
du

Ainsi

x(t)exp

(∫ t

0

a(s)ds

)
− x(t− T )exp

∫ t−T

0

a(s)ds = −
∫ t

t−T
g(u, x(u))

(
exp

∫ u

0

a(s)ds

)
du

(2.11)
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Alors :

x(t) = x(t−T )exp
∫ t−T

0
a(s)dsexp

(
−
∫ t

0
a(s)ds

)
−
∫ t
t−T g(u, x(u))

(
exp

∫ u
0
a(s)ds

)
duexp

(
−
∫ t

0
a(s)ds

)
d’où

x(t) = x(t− T )exp

(
−
∫ t

t−T
a(s)ds

)
−
∫ t

t−T
g(u, x(u))exp

(
−
∫ t

u

a(s)ds

)
(2.12)

Si on suppose que exp
(
−
∫ t
t−T a(s)ds

)
= α < 1, et si (E, ‖ . ‖) est l’espace de banach de

fonction φ : R→ R continues et T -périodique alors l’equation (2.12) peut se mettre sous
forme :

φ(t) = (Bφ)(t) + (Aφ)(t)

Avec B est une contraction de constante α < 1 et A est une application compacte. Cet
exemple montre bien la naissance de l’application Pφ = Bφ + Aφ qui s’identifie à une
somme d’une contraction est une application compacte. La recherche d’une solution pour
(2.12) exige donc un théorème adéquat qui s’applique à cette opérateur hybride P et qui
peut conclure l’existence d’un point fixe qui sera à son tour, solution de l’equation initiale
(2.10) Krasnoselskii trouva la solution en combinant les deux théorèmes de Banach et
celui de Schauder en un seul théorème hybride mais puissant qui porte son nom, En clair
il établit le résultat suivant :

Théorème 2.4.1 [11](Théorème de Krasnoselskii (1955)) :

Soit (E, ‖ . ‖) un espace de Banach et soit M une partie non vide, convexe et fermée de
E, On suppose que :
A,B : M → E sont deux applications satisfaisant :

(i) Ax+By ∈M, ∀x, y ∈M

(ii) A est continue et AM est contenu dans un ensemble compact.

(iii) B est une contraction de constante α < 1 Alors, ∃x∗ ∈M,Ax∗ +Bx∗ = x∗

Le lemme suivant est fondamental pour la démonstration de ce théorème.

Lemme 2.4.1 [11]

Soient (E, ‖.‖) est un espace vectoriel normé, et C un sous ensemble non vide de E . Soit
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g : C → E une contraction . Alors (I − g) : C → (I − g)(C) est un homéomorphisme, où
I désigne l’identité.

Démonstration :Lapplication I − g est continue. En effet, ∀x, y ∈ E , on a

‖(I − g)(x)− (I − g)(y)‖ ≤ ‖x− y‖+ ‖g(x)− g(y)‖

≤ ‖x− y‖+ k‖x− y‖

≤ (1 + k)‖x− y‖

De plus,

‖(I − g)(x)− (I − g)(y)‖ = ‖(x− y)− (g(x)− g(y))‖

≥ ‖x− y‖ − ‖g(x)− g(y)‖

≥ ‖x− y‖ − k‖x− y‖

≥ (1− k)‖x− y‖, (0 < k < 1).

Ceci montre que (I − g)−1 existe et continue.

Démonstration :(démonstration du théorème de Krasnoselskii)
Soit y ∈ C fixé, d’aprés le théorème du point fixe de Banach, l’application Φ : C → C

définie par :
Φ(x) = g(x) + f(y)

admet au moins un point fixe dans C.
L’application :

h : C → C

x → h(x) = (I − g)−1 ◦ f(x)

est continue, compacte et envoie C dans lui même. En effet,
h est une composition d’une application continue et compacte avec une application conti-

nue (I − g)−1 est continue d’aprés le lemme précédent), donc compacte.
Par le théorème du point fixe de Schauder, h admet un point fixe dans C.

Remarque 2.4.1 Si A = 0 alors ce théorème coîncide avec le principe de l’application
contractante de Banach et si B = 0 il coîncide avec le théorème de Schauder .
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Remarque 2.4.2 En 1998, Burton constate que le théorème du point fixe de Krasnosels-
kii reste valable si on remplace le première condition par :

∀y ∈ C (x = f(y) + g(x)⇒ x ∈ C)

Théorème 2.4.2 Soient E un espace de Banach, C ⊂ E un fermé, borné et convexe.
Supposons que :

1. L’application f : C → E , est compacte et continue.

2. L’application g : C → E , est une contraction non linéaire.

3. ∀x, y ∈ C , f(x) + g(y) ∈ C . Alors, f + g admet un point fixe dans C.

Démonstration.Voir [11]

2.5 Théorie de l’indice du point fixe

Un des outils les plus importants de l’analyse fonctionnelle, non linéaire est le degré
topologique de Leray-Schauder pour le champs des vecteurs compacts, définis sur la ferme-
ture des sous-ensemble ouverts bornés dans les espaces de Banach. Cependant, en relation
avec les applications non linéaire dans les espace de Banach ordonnés, il est naturel de
considérer aussi les applications qui sont définies sur les sous-ensemble ouverts d’un cône
positif (ces sous-ensemble sont ouverts par rapport à la topologie induite de l’espace tout

entier).

Si le cône positif n’a pas de points intérieur (la plupart des cône de dimension infinie

intéréssant-du point de vue des applications ont ce défaut), le degré de Leray-Schauder
n’est pas immédiatement applicable.

Il est possible de définir " Lindice du point fixe" pour les applications compactes,
définies dans le cône positif . Cet indice du point fixe est une extension de la notion du
degré de Leray-Schauder.

dans ce suit, on donne les propriétés, les plus importantes de cet indice, on indique
en particulier que l’indice du point fixe peut être dérivé du degré bien connu de Leray-
schauder.
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Définition 2.5.1 Soit E un espace de Banach. On dit que A ⊂ E est un rétracte de E
s’il existe une application continue r : E → A telle que r(x) = x,∀x ∈ A.

Définition 2.5.2 Toute partie convexe fermée de E est un rétracte de E, en particulier
tout Cône P ⊂ E est un rétracte de E.

2.5.1 Axiomes de l’indice du point fixe

Théorème 2.5.1 (Définition axiomatique)[17]

Soit A un rétracte de l’espace de Banach E. Pour chaque sous-ensemble ouvert Ω de A et

chaque application f : Ω→ A compacte sans point fixe sur ∂Ω, il existe un nombre entier
i(f,Ω, A) satisfaisant les conditions suivantes :

(i) Normalisation. i(f,Ω, A) = 1 si f(x) = y0 = cte ∈ Ω,∀x ∈ Ω.

(ii) Additivité. Pour toute paire de sous-ensemble ouverts disjoints Ω1,Ω2 de Ω tel

que f n’admet pas de point fixe sur Ω \ (Ω1 ∪ Ω2), on a

i(f,Ω, A) = i(f,Ω1, A) + i(f,Ω2, A)

Où
i(f,Ωk, A) = i(f\Ωk

,Ωk, A), k = 1, 2.

(iii) Invariance homotopie. L’indice i(h(x, t),Ω, A) est indépendant du paramètre

t, 0 ≤ t ≤ 1 où h : Ω× [0, 1]→ A est une application compacte et h(x, t) 6= x pour
tout x ∈ ∂Ω et 0 ≤ t ≤ 1.
Plus généralement, on peut remplacer l’intervalle [0, 1] par un intervalle fermé de
R.

(iv) Permanence. Si ∆ est une réctractée de A et f(Ω) ⊂ ∆, alors

i(f,Ω, A) = i(f,Ω ∩∆,∆)

Où
i(f,Ω ∩∆,∆) = i(f\Ω∩∆,Ω,∆)

.
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2.6 Théorèmes du point fixe dans les cônes

Théorème 2.6.1 [17]

Soient P ⊂ E un cône et soit Ωr = {u ∈ P : ‖u‖ ≤ r}. Supposons que T : Ωr → P est un
opérateur complètement continu satisfaisant Tu 6= u,∀u ∈ ∂Ωr. Alors :

(a) Si ‖Tu‖ ≤ ‖u‖,∀u ∈ ∂Ωr, alors l’indice de point fixe i(T,Ωr, P ) = 1

(b) Si ‖Tu‖ ≥ ‖u‖, ∀u ∈ ∂Ωr, alors l’indice de point fixe i(T,Ωr, P ) = 0

Définition 2.6.1 (opérateurs monotones)[7]

Un opérateur A : D → E est dit croissant si x1 6 x2, (x1, x2 ∈ D) implique Ax1 6 Ax2,
et strictement croissant si x1 < x2 implique Ax1 < Ax2. De même est dit décroissant si
x1 6 x2 implique Ax1 > Ax2, et strictement décroissant si x1 < x2 implique Ax1 > Ax2.

Définition 2.6.2 (L’opérateur concave)[7]

Soit l’opérateur A : P → P et e > θ. Supposons que pour tout x > θ, il existe α = α(x) > 0

et β = β(x) > 0 tel que :

αe 6 Ax 6 βe (2.13)

Et pour tout x ∈ P satisfaisant α1e 6 x 6 β1e (α1 = α1(x) > 0, β1 = β1(x) > 0) et tout

0 < t < 1, il existe η = η(x, t) > 0 tel que :

A(tx) > (1 + η)tAx (2.14)

Ensuite, est appelé un opérateur e-concave.

Théorème 2.6.2 [7]

Si l’opérateur A : P → P est coissant et e-concave, il a alors au plus un point fixe positif

Démonstration. Suppons que x1 > θ et x2 > θ sont deux points fixes positifs de A.
Ensuite par (2.13), nous voyons :

x1 = Ax1 > α1e =
α1

β2

β2e >
α1

β2

Ax2 =
α1

β2

x2
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Oú α1 et β2 sont des constantes positives. On a t0 = sup{t > 0/x1 > tx2}, nous voyons
que 0 < t0 < +∞.
Aussi maintenant, nous pouvons t0 > 1, en fait si 0 < t0 < 1 alors par (2.14), il n’existe
pas η0 > 0 tel que :

x1 = Ax1 > A(t0x0) > (1 + η0)t0Ax2 = (1 + η0)t0x2

Ce qui contredit la définition de t0, d’o t0 > 1 et ainsi x2 > x1.
De même manière, nous pouvons prouver x2 > x1 ainsi x2 = x1

Théorème 2.6.3 [7]

Soit l’opérateur A : P → P est croissant et e-concave, supposons que A a un point fixe
soit positif x∗ ≥ θ et que le Cône P soit normal. Il existe alors R > r > 0 tel que :

1. Ax 
 x ∀x ∈ P, 0 < ‖x‖ < r

2. Ax 
 x ∀x ∈ P, ‖x‖ > R

Définition 2.6.3 (L’opérateur convexe)[7]

Soit l’opérateur A : P → P et e > θ. Supposons que pour tout x > θ, il existe α = α(x) > 0

et β = β(x) > 0 tel que :
αe 6 Ax 6 βe

Et pour tout x ∈ P satisfaisant α1e 6 x 6 β1e (α1 = α1(x) > 0, β1 = β1(x) > 0) et tout

0 < t < 1, il existe η = η(x, t) > 0 tel que :

A(tx) 6 (1− η)tAx

Ensuite, est appelé un opérateur e-convexe.

Théorème 2.6.4 [7]

Si l’opérateur A : P → P est e-convexe et e-croissant, alors A il ne peut pas avoir deux
points fixes positifs comparables.

Démonstration. Supposons que A ait deux points fixes x1 > θ et x2 > θ, qui sont
comparables, par exemple x1 > x2. Puisque A est e-croissant, il existe α > 0 tel que :

x2 − x1 = Ax2 − Ax1 > αe
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Par (2.13), nous avons
α2e 6 x2 = Ax2 6 β2e

O α2 > 0, β2 > 0 et donc

x1 6 (1− α

β2

)x2

Maintenant, on a t0 = inf{t > 0/x1 6 tx2}, nous voyons que :

0 < t0 6 1− α

β2

< 1, x1 6 t0x2

Ainsi par e-convexité de A, il existe un η > 0 tel que :

x1 = Ax1 6 A(t0x2) 6 (1− η)t0Ax2 = (1− η)t0x2

Ce qui contredit la définition de t0.
Remarquez, selon les hypothèse du théorème (2.6.4), peut avoir de nombreux points fixes
positifs bien sûr, ils ne sont pas comparables les uns aux autres.

2.6.1 Théorèmes Points fixes d’expansion et de la compression
des Cônes

Dans ce qui suit, soit P un Cône de l’espace réel de Banach E. Par conséquent P est
un retrait de E et P est également un ensemble fermé convexe étoilé. Soit Ω un ensemble
ouvert borné de E, alors P ∩ Ω est un ensemble ouvert borné de P et

∂(P ∩ Ω) = P ∩ ∂Ω, P ∩ Ω = P ∩ Ω

Lemme 2.6.1 Soit θ ∈ Ω et A : P ∩ Ω→ P . Supposons que :

Ax 6= µx, ∀x ∈ P ∩ ∂Ω, µ > 1

Alors :
i(A,P ∩ Ω, P ) = 1

Lemme 2.6.2 Soit A : P ∩ Ω→ P être complètement continue. Supposons que :
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1. inf
x∈P∩∂Ω

‖Ax‖ > 0

2. Ax 6= µx, ∀x ∈ P ∩ ∂Ω, 0 < µ 6 1

Alors :
i(A,P ∩ Ω, P ) = 0

est vérifier.

Corollaire 2.6.1 Soit A : P ∩ Ω→ P être complètement continue. S’il existe un u0 > θ

tel que :
x− Ax 6= tu0, ∀x ∈ P ∩ ∂Ω, t > 0

Alors i(A,P ∩ Ω, P ) = 0 est valable.

Théorème 2.6.5 (Théorème à point fixe de l’expansion et de la compression des Cônes)

Soit Ω1 et Ω2 deux ensembles ouverts bornés dans E tels que θ ∈ Ω1 et Ω1 ⊂ Ω2. Soit

l’opérateur A : P ∩ (Ω2/Ω1) → P , soit complètement continu. Supposons que l’une des
deux coditions :

(C1) Ax � x, ∀x ∈ P ∩ ∂Ω1 et Ax 
 x, ∀x ∈ P ∩ ∂Ω2

(C2) Ax 
 x, ∀x ∈ P ∩ ∂Ω1 et Ax � tx, ∀x ∈ P ∩ ∂Ω2

Satisfait, alors A a au moins un point fixe dans P ∩ (Ω2/Ω1)

Démonstration.Par le théorème d’extension, A a une extension complètement conti-

nue(également désignée par A) de P ∩ Ω2 en P .

Premièrement, nous supposons que (C1) est satisfait c’est-à-dire c’est le cas de l’extension
du Cône, il est facile de voir que :

Ax 6= µx, ∀x ∈ P ∩ ∂Ω1, µ > 1 (2.15)

Autrement, il existe x0 ∈ P ∩∂Ω1 et µ0 > 1 tels que Ax0 = µ0x0 > x0, dans contraduction
avec (C1), maintenant à partir de (2.15) et du lemme(2.6.1) nous obtenons :

i(A,P ∩ Ω1, P ) = 1 (2.16)
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Par contre, en choisissant un arbitraire µ0 > θ, nous avons

x− Ax 6= tµ0, ∀x ∈ P ∩ ∂Ω2, t > 0 (2.17)

En fait, s’il existe x1 ∈ P ∩ ∂Ω2 tels que x1 − Ax1 = t1µ0 > θ, alors x1 > Ax1 en
contraduction avec (C1), par consent par (2.17) et corrollaire(2.6.1), nous avons :

i(A,P ∩ Ω2, P ) = 0 (2.18)

Il découle donc (2.16),(2.18) et du propriété d’additivité de l’indice à point fixe que :

i(A,P ∩ (Ω2/Ω1, P ) = i(A,P ∩ Ω2, P )− i(A,P ∩ Ω1, P ) = −1 6= 0 (2.19)

Par conséquent, par la propriété solution d’indice de point fixe A a au moins un point fixe

dans Ω2/Ω1

De même, l’orsque (C2) est satisfait au lieu de (2.16), (2.18) et (2.19) nous avons :

i(A,P ∩ Ω1, P ) = 0, i(A,P ∩ Ω2, P ) = 1 et i(A,P ∩ (Ω2/Ω1, P ) = 1

par conséquent, nous pouvons également affirmer que A a au moins un point fixe dans

Ω2/Ω1.

Théorème 2.6.6 (Théorème à point fixe de l’expansion et de la compression des Cônes

de type normalisé)

Soit Ω1 et Ω2 deux ensembles ouverts bornés dans E tels que θ ∈ Ω1 et Ω1 ⊂ Ω2. Soit

l’opérateur A : P ∩ (Ω2/Ω1) → P , soit complètement continu. Supposons que l’une des
deux coditions :

(C3) ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω1 et ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω2

(C4) ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω1 et ‖Ax‖ ≤ ‖x‖ ∀x ∈ P ∩ ∂Ω2

sont Satisfait, alors A a au moins un point fixe dans P ∩ (Ω2/Ω1)

Démonstration. : Il suffit de prouver ce théorème sous la condition (C3), car la preuve

est similaire lorsque (C4) est satisfait. Par le théorème d’extension A peut être étendu à
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opérateur complètement continu de P ∩ Ω2 en P . Nous pouvons supposer que A n’a pas
de points fixes sur P ∩∂Ω1 et P ∩∂Ω2. Il est facile de voir que (2.15) est valable car sinon,

il existe x0 ∈ P ∩ ∂Ω1 et µ0 > 1 tel que Ax0 = µ0x0 et donc ‖Ax0‖ = µ0‖x0‖ > ‖x0‖ en
contraduction avec (C3). Ainsi par (2.15) et lemme(2.6.1),(2.16) est vrai.
D’autre part, il est également facile de vérifier.

Ax 6= µx, ∀x ∈ P ∩ ∂Ω2, 0 < µ 6 1 (2.20)

En fait, s’il ya x1 ∩ P ∈ ∂Ω2 et 0 < µ1 < 1 tel que Ax1 = µ1x1 alors ‖Ax1‖ = µ1‖x1‖ <
‖x1‖, en contradiction avec (C3), de plus par (C3) nous avons :

inf
x∈P∩∂Ω2

‖Ax‖ > inf
x∈P∩∂Ω2

‖x‖ > 0 (2.21)

Il résulte de (2.20),(2.21) et lemme(2.6.2) que (2.18) et vrai. Comme précédemment (2.16)

et (2.18) impliquent (2.19) et donc A a au moins un point fixe dans Ω2/Ω1.

Théorème 2.6.7 Supposons que l’opérateur A : P → P soit complètement continu et
Aθ = θ. Supposons que l’une des deux condition :

(C5) lim
x∈P,‖x‖→0

‖Ax‖
‖x‖

= 0, lim
x∈P,‖x‖→+∞

‖Ax‖
‖x‖

= +∞

(C6) lim
x∈P,‖x‖→0

‖Ax‖
‖x‖

= +∞, lim
x∈P,‖x‖→+∞

‖Ax‖
‖x‖

= 0

est satisfaite, les deux conclusion suivantes sont donc valables :

a) Chaque µ > 0 est un valeur propre de A, qui correspond à un vecteur propre positif,
c’est-à-dire qu’il existe xµ > θ tel que Axµ = µxµ.

b) lim
µ→+∞

‖xµ‖ = +∞ sous (C5) et lim
µ→+∞

‖xµ‖ = 0 sous (C6)

Démonstration. :Il suffit de prouver ce th sous la condition (C5), puisque la dnstra-

tion est similaire lorsque (C6) est satisfaite. Pour µ > 0 donnn vertu de (C5), il existe
R > r > 0 tel que :

1. ‖ 1
µ
Ax‖ < ‖x‖, ∀x ∈ P, ‖x‖ = r.
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2. ‖ 1
µ
Ax‖ > ‖x‖, ∀x ∈ P, ‖x‖ = R.

D’oú la condition (C6) du th (2.6.6) est satisfaite pour l’opérateur 1/µ A

et Ω1 = {x ∈ E | ‖x‖ < r}, Ω2 = {x ∈ E | ‖x‖ < R}. Il dule donc du th (2.6.6) que

l’opérateur 1/µ A a un point fixe xµ en Ω2\Ω1, ce qui prouve la conclusion a).

Pour prouver ‖xµ‖ → +∞ tel que µ→ +∞ i.e conclusion b).
Supposons que ce n’est pas vrai. Alors il existe un nombre c > 0 et une suite µn → +∞
tel que :

‖xµn‖ ≤ c (n = 1, 2, 3, . . .)

De plus, la suite {‖xµn‖} contient une sous-suite qui converge vers un nombre T

(0 ≤ T ≤ c). Par souci de simplicitupposons que {‖xµn‖} converge lui-m vers T.

Si T > 0, alors ‖xµn‖ > T/2 pour n suffisamment grand (disons n > N), et donc

µn =
‖Axµn‖
‖xµn‖

≤ 2M

T
(n > N)

Où M = sup
‖x‖≤c

‖Ax‖, ce qui contredit µn → +∞.

Si T = 0, alors de (C5) nous avons :

µn =
‖Axµn‖
‖xµn‖

→ 0 (n→∞)

en contradiction avec µn → +∞, par consent ‖xµ‖ → +∞, tel que µ→ +∞ et notre
preuve est complète.

Nous rappelons ici deux versions du théorème de point fixe de Krasnoselskii dans un
cône.

1. Version Scalaire :

Théorème 2.6.8 [7]

Soient (E, ‖.‖) un espace normé, K ⊂ E un cône, 0 < r < R deux nombre réels et

Kr,R = {u ∈ K : r ≤ u ≤ R}. Soit T : Kr,R → K une application compacte telle

que l’une des conditions suivantes soit vérifiée
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(a) ‖Tu‖ ≤ ‖u‖ si ‖u‖ = r et ‖Tu‖ ≥ ‖u‖ si ‖u‖ = R ;

(b) ‖Tu‖ ≥ ‖u‖ si ‖u‖ = r et ‖Tu‖ ≤ ‖u‖ si ‖u‖ = R

Alors T possède un point fixe u dans Kr,R.

Théorème 2.6.9 [7]

Soient (E, ‖.‖) un espace normé, K ⊂ E un cône, 0 < r < R deux nombre réels et

Kr,R = {u ∈ K : r ≤ u ≤ R}. Soit T : Kr,R → K une application compacte telle

que l’une des conditions suivantes soit vérifiée

(a) Tu ≤ ‖u‖ si ‖u‖ = r et Tu ≥ u si ‖u‖ = R ;

(b) Tu ≥ u si ‖u‖ = r et Tu ≤ u si ‖u‖ = R

Alors T possède un point fixe u dans Kr,R.

2. Version vectorielle :
Maintenant nous allons rappeler la version vectorielle du théorème de point fixe de
Krasnoselskii dans un cône.
Avant cela, nous allons introduire quelques notations. Considérons n cônes Ki,
(i = 1, ..., n) de E et leur cône produit correspondant K = K1 ×K2 × ...×KN de
En.
Pour r, R ∈ Rn

+, r = (r1, r2, ..., rn), R = (R1, R2, ..., Rn), on écrit 0 < r < R si

0 < ri < R (i = 1, .., n) , et on a les notations :

(Ki)r1,R1 = {ui ∈ Ki, ri ≤ ‖u‖ ≤ Ri pouri = 1, 2, ..., n}

Clairement, Kr,R = (K1)r1,R1 ×Kr,R = (K1)r1,R2 × ....×Kr,R = (Kn)rn,Rn .

Théorème 2.6.10 Soient (E, ‖.‖) un espace normé, K1, K2, ...., Kn ⊂ E n cône,

K = K1×K2× ....×Kn et r = (r1×r2× ....×rn), R = (R1×R2× ....×Rn) ∈ (R+)n

avec 0 < r < R.
Soit T = (T1, T2, ..., Tn) : Kr,R → K une application compacte. Supposons que pour

chaque i ∈ {1, 2, .., n}, l’une des conditions suivantes est vérifiée.

(a) Tiu ≮ ui si ‖ui‖ = ri et Tui ≯ ‖ui‖ si ‖ui‖ = Ri ;

(b) Tiu ≯ ui si ‖ui‖ = ri et Tui ≮ ui si ‖ui‖ = Ri.

Alors T poss un point fixe u = (u1, u1, ..., un) ∈ Kr,R



Chapitre 3

Application

3.1 Introduction

Le calcul fractionnaire apparaît dans de nombreux domaines de l’ingénierie et des
sciences comme la rhéologie, la viscoélasticité, l’électrochimie, l’électromagnétisme, etc.
De nombreux livres et monographies différents sont consacrés au développement du calcul
fractionné. L’intérêt de l’étude des équation différentielles d’ordre fractionnaire réside dans
le fait qu’il ya plus de degrés de liberté dans les modèles d’ordre fractionnaire. En outre,
les dérivés fractionnaires fournissent un excellent instrument pour la description de la
mémoire et des propriétés héréditaires de divers matériaux et processus. Les conditions
aux limites intégrales ont diverses applications dans des domaines appliqués tels que les
problèmes de circulation sanguine, le génie chimique, la dynamique des populations, etc.
Comme dans la dynamique des populations, de nombreux domaines du génie et ses sciences
focalisent leur L’intet sur l’existence de solutions positives, dans ce chapitre, nous étudions
l’existence de solutions positives de l’équation différentielle fractionnelle suivante avec les
conditions aux limites intégrales.

Dδu(t) + f(t, u(t)) = 0, 0 < t < 1, 1 < δ ≤ 2 (3.1)

u(0) = 0,

∫ 1

0

u(s)ds = u(1) (3.2)

où Dδ est la dérivée fractionnaire de Riemann-liouville, f est une fonction donnée. Ce
chapitre est organisé comme suit. Dans la section 2, nous rappelons quelques définitions

44
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concernant l’intégrales et les dérivée fractionnaires, et les propriétés de base associées qui
seront utilisées dans la suite. Nous considérons un problème auxiliaire pour dériver la
fonction de Green. Nos principaux résultats d’existence sont donnés dans la section 3.
Quelques exemples sont donnés dans la dernière section.

3.2 Préliminaires

Nous présentons ici quelques connaissances de base pour le calcul fractionnaire qui
seront utilisées dans la suite.
Lemme 3.2.1 Soit δ > 0, alors l’equation différentielle fractionnelle :

Dδu(t) = 0

A une solution unique donnée par :

u(t) = c1t
δ−1 + c2t

δ−2 + . . .+ cnt
δ−n, ci ∈ R, i = 1, . . . , n

où i = 1, ..., n et

n =

{
[δ] + 1, si n ∈ {0, 1, 2, ....};

δ si n /∈ {0, 1, 2, ....}.

Du lemme(3.2.1), on déduit le lemme suivant.

Lemme 3.2.2 Soit δ > 0, alors :

Iδ(Dδu(t)) = u(t) + c1t
δ−1 + c2t

δ−2 + . . .+ cnt
δ−n, ci ∈ R

où : i = 1, ..., n et n donnée dans lemme (3.2.1)
Nous commençons par résoudre un problème auxiliaire pour obtenir une expression de la
fonction de Green du problème des valeurs limites (3.1)-(3.2).

Lemme 3.2.3 Soit 1 < δ ≤ 2. Supposons que σ ∈ C[0, 1]. Une fonction u ∈ C[0, 1] est
une solution du problème :

Dδu(t) + σ(t) = 0, 0 < t < 1, 1 < δ ≤ 2 (3.3)
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u(0) = 0,

∫ 1

0

u(s)ds = u(1) (3.4)

si et seulement si elle satisfait l’équation intégrale :

u(t) =

∫ 1

0

Gδ(t, s)σ(s)ds

Où Gδ(t, s) est la fonction de Green donnée par :

Gδ(t, s) =


tδ−1(1−s)δ−1(s+δ−1)+(1−δ)(t−s)δ−1

(δ−1)Γ(δ)
0 ≤ s ≤ t ≤ 1;

tδ−1(1−s)δ−1(s+δ−1)
(δ−1)Γ(δ)

0 ≤ t ≤ s ≤ 1

Démonstration : De lemme (3.2.2) le probléme (3.3)− (3.4) est équivalent a l’équation
intégrale

u(t) = −
∫ t

0

(t− s)δ−1

Γ(δ)
σ(s)ds+ c1t

δ−1 + c2t
δ−2

La condition u(0) = 0 implique nécessairement que c2 = 0 .

De
∫ 1

0
u(s)ds = u(1) on en déduit

c1 =

∫ 1

0

u(s)ds+

∫ 1

0

(1− s)δ−1

Γ(δ)
σ(s)ds

enfin nous avons l’expression suivante :

u(t) = −
∫ 1

0

(t− s)δ−1

Γ(δ)
σ(s)ds+ tδ−1

∫ 1

0

u(s)ds+ tδ−1

∫ 1

0

(1− s)δ−1

Γ(δ)
σ(s)ds (3.5)

de légalité précédente, nous en déduisons∫ 1

0

u(s)ds = −
∫ 1

0

∫ t

0

(t− s)δ−1

Γ(δ)
σ(s)dsdt+

∫ 1

0

∫ 1

0

tδ−1u(s)dsdt

+

∫ 1

0

∫ 1

0

tδ−1 (1− s)δ−1

Γ(δ)
σ(s)dsdt

= −
∫

(1− s)δ

δΓ(δ)
σ(s)ds+

1

δ

∫ 1

0

u(s)ds+

∫ 1

0

(1− s)δ−1

δΓ(δ)
σ(s)ds
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Alors, nous avons ∫ 1

0

u(s)ds = −
∫ 1

0

(1− s)δ

(δ − 1)Γ(δ)
σ(s) +

∫ 1

0

(1− s)δ−1

(1− s)δ−1

En remplacant cette valeur dans l’equation (3.5) on arrive a léxpression suivante pour la
fonction u :

u(t) = −
∫ t

0

(t− s)δ−1

Γ(δ)
σ(s)ds+ tδ−1

∫ 1

0

(1− s)δ−1(s+ δ − 1)

(δ − 1)Γ(δ)
σ(s)ds

=

∫ t

0

(1− δ)(t− s)δ−1 + tδ−1(1− s)δ−1(s+ δ − 1)

(δ − 1)Γ(δ)
σ(s)ds

+

∫ 1

t

tδ−1(s+ δ − 1)

(δ − 1)Γ(δ)
σ(s)ds

=

∫ 1

0

Gδ(t, s)σ(s)ds.

cela compléte la preuve.

Lemme 3.2.4 On a 1 < δ ≤ 2. Soit Gδ(t, s) la fonction de Green liée au problème

(3.1)-(3.2). Alors les inégalités suivantes sont valables :

tδ−1Gδ(1, s) ≤ Gδ(t, s) ≤ δGδ(1, s), pour tout t, s ∈ (0, 1)

Démonstration : Supposons dans un premier temps que 0 < t ≤ s < 1. Dans un tel
cas :

h(t, s) ≡ Gδ(t, s)

Gδ(1, s)
=
tδ−1(s+ δ − 1)

s
, pour tout 0 < t ≤ s < 1

Maintenant, il est immédiat de vérifier les inégalités suivantes :

tδ−1 < tδ−1(1 +
δ − 1

s
) = h(t, s) ≤ δtδ−1 < δ, pour tout 0 < t ≤ s < 1

D’un notre coté, si 0 < s ≤ t < 1 nous avons :

h(t, s) =
tδ−1(1− s)δ−1(s+ δ − 1)− (δ − 1)(t− s)δ−1

s(1− s)δ−1
pour tout 0 < s ≤ t < 1
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et puisque s ≥ ts, On déduit que :

h(t, s) ≥ tδ−1(1− s)δ−1[(s+ δ − 1)− (δ − 1)]

s
= tδ−1

Comme dans le cas précédent, il n’est pas difficile de vérifier que h(t, s) ≤ δ à chaque fois
0 < s ≤ t < 1.
Du corollaire du résultat précédent, nous déduisons ce qui suit :

Corollaire 3.2.1 Soit Gδ la fonction de Green liée au problème (3.1)-(3.2).
Alors pour tout 1 < δ ≤ 2, les inégalités suivantes sont valables :

0 < Gδ(t, s) <
δ

(δ − 1)Γ(δ)
pour tout t, s ∈ (0, 1)

3.3 Existence de solutions positives

Cette section est consacrée à prouver l’existence d’une solution positive du problème
des valeurs aux limites non linéaires (3.1)-(3.2). Pour énoncer les principaux résultats de
ce chapitre, nous utilisons le théorème de point fixe de Guo-Krasnoselskii suivant.
Théorème 3.3.1 Soit E un espace de Banach, et soit P ⊂ E un Cône dans E.

Supposons que Ω1,Ω2 sont des sous-ensembles ouverts de E avec 0 ∈ Ω1 ⊂ Ω2 ⊂ Ω2, et
que T : P → P soit un opérateur complètement continu tel que :

1. ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1 et ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2

2. ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1 et ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2

Alors T a un point fixe dans p ∩ (Ω2\Ω1).

Soit E = C[0, 1] l’espace de Banach munit de la norme Sup ‖.‖ et définir le Cône P ∈ E
comme suit :

P =

{
u ∈ E, u(t) ≥ 0 pour tout t ∈ [0, 1], u(t) ≥ tδ−1

δ
‖u‖, pour tout t ∈

[
1

2
, 1

]}



3.3 Existence de solutions positives 49

Lemme 3.3.1 Supposons que f : [0, 1]× [0,∞)→ [0,∞) est continu et définit l’opérateur
T : E → E comme :

Tu(t) =

∫ 1

0

Gδ(t, s)f(s, u(s))ds

Où Gδ la fonction de Green liée au problème (3.1)-(3.2), alors T : P → P est complétement
continu.

Démonstration :

1. On montre d’abord que TP ⊂ P .
Il résulte de la continuité et de la non négativité des fonction Gδ et f sur leurs
domaines de définitions que si u ∈ P alors Tu ∈ E et Tu(t) ≥ 0 pour tout t ∈ [0, 1].

Pour un fixe u ∈ P et pour tout t ∈ [0, 1], en utilisant le lemme (3.2.4), les inégalités
suivantes sont satisfaites :

Tu(t) =

∫ 1

0

Gδ(t, s)f(s, u(s))ds

≥ tδ−1

∫ 1

0

Gδ(1, s)f(s, u(s))ds

≥ tδ−1

δ

∫ 1

0

max
t∈[0,1]

Gδ(t, s)f(s, u(s))ds

≥ tδ−1

δ
max
t∈[0,1]

∫ 1

0

Gδ(t, s)f(s, u(s))ds

≥ tδ−1

δ
‖Tu‖

2. compte tenu de la continuité des fonctions Gδ et f l’opérateur T : P → P est
continue .
Soit Ω ⊂ P est borné, Il existe une constante positive M > 0 tel que ‖u‖ ≤ M

pour tous u ∈ Ω. Posons

L := sup
0≤t≤1,0≤u≤M

|f(t, u)|+ 1
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alors pour tout u ∈ Ω, on a

|Tu(t)| ≤ L

∫
|Gδ(t, s)|ds ≤ LM∗, t ∈ [0, 1]

donc T (Ω) est borné dans P .

3. pour tout u ∈ Ω , et t1, t2 ∈ [0, 1] avec t1 < t2 on a :

|[Tu](t2)− [Tu](t1)| = |
∫ 1

0

Gδ(t2, s)f(s, u(s))ds−
∫ 1

0

Gδ(t1, s)f(s, u(s))ds|

=

∫ t1

0

[tδ−1
2 − tδ−1

1 ](1− s)δ−1(s+ δ − 1)

(δ − 1)Γ(δ)
f(s, u(s))ds

+

∫ t1

0

(1− δ)[(t2 − s)δ−1 − (t1 − s)δ−1]

(δ − 1)Γ(δ)
f(s, u(s))ds

+

∫ t2

t1

[tδ−1
2 − tδ−1

1 ](1− s)δ−1(s+ δ − 1)

(δ − 1)Γ(δ)
f(s, u(s))ds

+

∫ t2

t1

(1− δ)(t2 − s)δ−1

(δ − 1)Γ(δ)
f(s, u(s))ds

+

∫ 1

t2

[tδ−1
2 − tδ1 − 1](1− s)δ−1(s+ δ − 1)

(δ − 1)Γ(δ)
f(s, u(s))ds

≤ L|tδ−1
2 − tδ−1

1 |
(δ − 1)Γ(δ)

∫ t1

0

(1− s)δ−1(s+ δ − 1)ds

+
L|1− δ|

(δ − 1)Γ(δ)

∫ t1

0

|(t2 − s)δ−1 − (t1 − s)δ−1|ds

+
L|tδ−1

2 − tδ−1
1 |

(δ − 1)Γ(δ)

∫ t2

t1

(1− s)δ−1(s+ δ − 1)ds

+
L|1− δ|

(δ − 1)Γ(δ)

∫ t2

t1

(t2 − s)δ−1ds
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+
L|tδ−1

2 − tδ−1
1

(δ − 1)Γ(δ)

∫ 1

t2

(1− s)δ−1(s+ δ − 1)ds

=
LB

(δ − 1)Γ(δ)
|tδ−1

2 − tδ−1
1 |

+
L

Γ(δ)

∫ t1

0

|(t2 − s)δ−1 − (t1 − s)δ−1|ds

+
L

Γ(δ)

∫ t2

t1

(t2 − s)δ−1ds

Où

B =
∫ 1

0
(1− s)δ−1(s+ δ − 1)ds = δ

δ+1
<∞

Notons que ∫ t2

t1

(t2 − s)δ−1ds =
(t2 − t1)δ

δ

pour t1 < t2, on’a (t1 − s)δ−1 < (t2 − s)δ−1, Alors :

∫ t1

0

|(t2 − s)δ−1 − (t1 − s)δ−1|ds =

∫ t1

0

[(t2 − s)δ−1 − (t1 − s)δ−1]ds

= (−1)
(t2 − t1)δ

δ
+
tδ2
δ
− tδ1
δ

par conséquence, pour u ∈ Ω, et t1, t2 ∈ [0, 1], avec t1 < t2

|[Tu](t2)− [Tu](t1)| =
LB

(δ − 1)Γ(δ)
|tδ−1

2 − tδ−1
1 |+

L

δΓ(δ)
(tδ2 − tδ1 − (t2 − t1)δ)

+
L

δΓ(δ)
(t2 − t1)δ

En utilisant le fait que L’application t → tδ soit uniformément continue sur [0, 1]

on déduit que le côté droit de l’inégalité précédente tend vers 0 quand |t1− t2| → 0
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et donc l’ensemble T (Ω) est équicontinu sur P . Maintenant du théorème d’Arzelà-

Ascoli nous concluons que l’ensemble T (Ω) est compact. d’où l’opérateur
T : P → P est complètement continu. La preuve est ainsi complète.

Maintenent nous pouvons indiquer notre résultat principal pour ce chapitre, définir :

f0 = lim
u→0+

min
t∈[1/2,1]

f(t, u)

u
, f ∗0 = lim

u→0+
min
t∈[0,1]

f(t, u)

u

f∞ = lim
u→∞

min
t∈[0,1]

f(t, u)

u
, f ∗∞ = lim

u→∞
min

t∈[1/2,1]

f(t, u)

u

Théorème 3.3.2 Supposons que f(t, u) soit continue sur [0, 1] × [0,∞] et remplit l’une
des conditions suivantes :

(i) (cas sublinéaire) f0 =∞ et f∞ = 0

(ii) (cas superlinéaire) f ∗0 = 0 et f ∗∞ =∞

Alors le problème (3.1)-(3.2) admet au moins une solution positive.

Démonstration :

(i) (cas sublinéaire) : f0 =∞ et f∞ = 0

Puisque f0 = ∞, alors il existe une constante ρ1 > 0 telle que f(t, u) ≥ δ1u pout
tout 0 < u ≤ ρ1, où δ1 > 0 satisfait :

δ1

δ
max
t∈[0,1]

{∫ 1

1
2

sδ−1Gδ(t, s)ds

}
≥ 1 (3.6)

Prendre u ∈ P , tel que ‖u‖ = ρ1, de l’expression (3.6) on déduit les inégalités



3.3 Existence de solutions positives 53

suivantes :

‖Tu‖ = max
t∈[0,1]

{∫ 1

0

Gδ(t, s)f(s, u(s))ds

}

≥ δ1max
t∈[0,1]

{∫ 1

1
2

Gδ(t, s)u(s)ds

}

≥ δ1

δ
‖u‖max

t∈[0,1]

{∫ 1

1
2

sδ−1Gδ(t, s)ds

}
≥ ‖u‖

Puisque f(t, .) est une fonction continue sur [0,∞), nous pouvons définir la fonction
suivante :

f̃(t, u) = max
z∈[0,u]

f(t, z)

Clairement f̃(t, u) non décroissant on [0,∞), de plus puisque f∞ = 0 il est évident
que :

lim
u→∞

max
t∈[0,1]

f̃(t, u)

u
= 0

Choisissez δ2 > 0 tel que :

δ2δ

(δ − 1)Γ(δ)
≤ 1 (3.7)

il existe donc une constante ρ2 > ρ1 > 0 tel que f̃(t, u) ≤ δ2u pour tout u ≥ ρ2.

Poson maintenant u ∈ P , tel que ‖u‖ = ρ2, alors à partir de la définition de f̃ .

De equation (3.7) du choix de δ2 et du corollaire (3.2.1), nous avons les inégalités
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suivantes :

‖Tu‖ = max
t∈[0,1]

{∫ 1

0

Gδ(t, s)f(s, u(s))ds

}

≤ max
t∈[0,1]

{∫ 1

0

Gδ(t, s)f̃(s, ‖u‖)ds
}

≤ δ2‖u‖max
t∈[0,1]

{∫ 1

0

Gδ(t, s)ds

}
≤ δ2δ

(δ − 1)Γ(δ)
‖u‖

≤ ‖u‖

Ainsi, par la première partie du théorème de Guo-Krasnoselskii, nous concluons que
le problème (3.1)-(3.2) a au moins une solution positive u telle que ρ1 ≤ ‖u‖ ≤ ρ2.

(ii) Considérons maintenant le deuxième cas (ii)

Soit δ2 > 0 est donné comme dans eq (3.7) .

Comme f 0 = 0, il existe une constante r1 > 0 tel que f(t, u) ≤ δ2u pour 0 ≤ u ≤ r1.

Soit u ∈ P , tel que ‖u‖ = r1. Ensuite nous avons :

‖Tu‖ = max
t∈[0,1]

{
∫ 1

0

G(t, s)f(s, u(s))ds}

≤ δ2‖u‖max
t∈[0,1]

{
∫ 1

0

G(t, s)ds}

≤ δ2δ

(δ − 1)Γ(δ)
‖u‖

≤ ‖u‖.

Considérez maintenant δ3 > 0 satisfaisant :

δ3

2δ−1δ
max
t∈[0,1]

{∫ 1

1
2

G(t, s)ds

}
≥ 1. (3.8)
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le fait que f∞ =∞ nous dit qu’il existe une constante r2 > r1 > 0 avec

r2δ2
δ−1 > r1 tel que f(t, u) ≥ δ3u pour tous u ≥ r2.

Soit u ∈ P tel que ‖u‖ = r2δ2
δ−1. Notez que d’après la définition du cône P , nous

avons u(t) ≥ r2 pour tous t ∈ [1
2
, 1].

Alors, condition (ii) nous donne les propriétés suivantes :

‖Tu‖ = max
t∈[0,1]

{∫ 1

0

G(t, s)f(s, u(s))ds

}

≤ max
t∈[0,1]

{∫ 1

1
2

G(t, s)f(s, u(s))ds

}

≤ δ3max
t∈[0,1]

{∫ 1

1
2

G(t, s)u(s)ds

}

=
δ3

2δ−1δ
‖u‖max

t∈[0,1]

{∫ 1

1
2

G(t, s)ds

}
≥ ‖u‖.

Donc, par la deuxième partie du théorème du point fixe de Guo-Krasnoselskii ,
nous concluons que le problème (3.1)-(3.2) a au moins une solution positive.

3.4 Exemples
Exemples 3.4.1 Considns le problème des valeurs aux limites fractionnelles :

D3/2u(t) + e−u(t) +
√
u(t) = 0, 0 < t < 1, (3.9)

u(0) = 0,

∫ 1

0

u(s)ds = u(1) (3.10)

On peut facilement voir que pour tout u > 0.

f0 = lim
u→0+

min
t∈[1/2,1]

f(t, u)

u
=∞

f∞ = lim
u→∞

min
t∈[0,1]

f(t, u)

u
= 0
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A partir de la première partie du théorème (3.3.2), nous obtenons que le problème (3.9)-

(3.10) a une solution positive.

Exemples 3.4.2 Considérons le problème des valeurs aux limites fractionnelles :

D3/2u(t) + eu(t) + u2(t) = 0, 0 < t < 1, (3.11)

u(0) = 0,

∫ 1

0

u(s)ds = u(1) (3.12)

On peut facilement voir que pour tout u > 0.

f0 = lim
u→0+

min
t∈[1/2,1]

f(t, u)

u
= 0

f∞ = lim
u→∞

min
t∈[0,1]

f(t, u)

u
=∞

A partir de la seconde partie du théorème (3.3.2), nous obtenons que le problème (3.11)-

(3.12) a une solution positive.



Conclusion

Dans ce mémoire, on va présenter quelques théorèmes de point fixe tels que, le théo-
rème de Banach, de Brouwer, de Schauder et on accordera plus d’importance aux théorème
de Krasnoselskii.

On va commencer par rappelé quelques notions de base de l’analyse fractionnelles et
de résultat connus qu’on va utiliser dans la suite de notre travail, ensuite on va étudier
quelques théorèmes de point fixe, et on va parler d’un théorème de Krasnoselskii qui est
utilisé pour prouver l’existence de la solution des équations différentielles et les équations
intégrales non-linéaire.
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