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Introduction

Les théorémes du point fixe sont les outils mathématiques de base en montrant ’exis-
tence des solutions dans divers genres d’équations. La théorie du point fixe est un coeur de
I’analyse non-linéaire puis qu’elle fournit des outils nécessaires pour avoir des théorémes
d’existence dans beaucoup de problémes non-linéaire différent. Elle utilise ses outils de
I’analyse et de la topologie et pour cette raison nous avons la classification "point fixe et

théorie métrique" et "point fixe et théorie topologique".

Le développement de la théorie du point fixe, qui est la branche cardinale de ’analyse
non-linéaire a donné un grand effets sur I’avancement de 1’analyse non-linéaire. I’analyse
non-linéaire comme une branche autonome des mathématiques a été élaboré dans les an-
nées 1950 par des mathématiciens, comme Brouwer, comme une combinaison de ’analyse

fonctionnelle et I'analyse variationnelle.

Cependant, les premiers résultats avaient déja été obtenus dans les années 1920, les ré-
sultats non-linéaire sont applicables a un large éventail domaines. Plusieurs problémes en
physique, chimie, biologie, économie conduisent & des modeles non-linéaire. Les équations
différentielles non-linéaire et intégrales, les inégalité variationnelles et plus de problémes
d’optimisation générale sont quelques un des sujets importants dans I’analyse non-linéaire.
La théorie du point fixe et d’une importance capitale dans I’étude de I'existence de solu-
tion, et de nombreux théorémes d’existence sont obtenus a partir des théorémes de Banach

et Schauder en transformant le probléme d’existence en un probléme de point fixe.

En analyse, un théoréme de point fixe est un résultat qui affirme, qu’une fonction f

posséde au moins un point fixe, avec quelques conditions sur f. Un point fixe d'une fonc-
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tion f qui est définie dans un espace métrique X vers lui méme, est un élément r € X
qui vérifie f(x) = x. Ces théorémes présentes un outil trés utile en mathématique, prin-

cipalement dans le domaine de résolution des équation différentielles.

L’analyse fractionnaire est une branche de I’analyse mathématique qui étudier la pos-
sibilité de définir des puissances non entiéres des opérateurs de dérivation et d’intégration.

Par exemple, on peut se demander comment interpréter convenablement la racine carrée.

VD = D2

I'opérateur de dérivation, c’est-a-dire une expression d'un certain opérateur qui lorsqu’elle
est appliquée deux fois & une fonction, aura le méme effet que la dérivation, plus générale-
ment, on peut examiner le probléme de définir D*. Pour des valeurs réelles de «, de telle
sorte que lorsque a prend une valeur entiére n, on récupére la dérivation n-iéme usuelle
pour n > 0 ou l'intégration itérée |n| fois pour n < 0. Le terme "Fractionnaire" est utilisé
de fa impropre : « n’est pas nécessairement un nombre rationnel, et 'on devrait donc
plutot parler de dérivation non entiére. Cependant le terme "Analyse fractionnaire" est

devenu traditionnel.
Les dérivées fractionnaires sont utilisées par exemple dans certains domaines de la phy-

sique faisant intervenir des phénomeénes de diffusion comme léléctromanétisme,...
L’équation différentielles fractionnaires également connu sous le nom d’équations différen-
tielles extraordinaire, sont une généralisation des équation différentielles a travers I’appli-

cation du calcul fractionné.

En 1955, et pour la premiére fois, Krasnoselskii a établir son théoréme du point fixe
qui affirme que dans un convexe compact toute application qui se met sous la forme d’une
somme de deux applications dont 'une est contractante et 'autre compacte admet un
point fixe. Ce théoréme est trés efficace dans la résolution des équations différentielles
non linéaire, il apporte des réponses aux problémes d’existence et d’unicité.
Krasnoselskii a prouvé un théoréme de point fixe motivé par une observation que la dans
version d’un opérateur différentiel perturbé peut donner la somme des opérateurs de com-
pactage et de contraction. Son théoréme combine a la fois le principe de contraction de

Banach et le théoréeme du point fixe de Schauder, et est utile pour établir théorémes
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d’existence pour les équations d’opérateurs perturbées.

Le théoreme traditionnel du point fixe de Krasnoselskii dans les espaces de Banach ne
reproduit pas les formes riches et variées des équations d’opérateurs dans les espaces abs-
traits qui ne sont pas une structure linéaire. Par conséquent, ses applications aux équations
intégrales et aux équations différentielles ont rencontré de nombreux obstacles.

Le théoréme de point fixe actuel de Krasnoselskii dans les espaces semi-linéaires généra-
lisés de Banach surmonte cette carence et ouvre a des recherches rentables telles que les
systémes différentielles avec incertitude.

Ce mémoire décompose en trois chapitres de la maniére suivante :

Dans le premier chapitre, nous commengons par présenter quelques fonctions spé-
ciales utiles dans le calcul fractionnaire ainsi que quelques propriétés fondamentales, ce
chapitre est consacré pour un rappel général sur le calcul fractionnaire et plus précisément
les définitions des dérivées et des intégrales fractionnaires aux sens de Riemann-Liouville

et de Caputo ainsi que la relation entre ’approche de Riemann-Liouville et celle de Caputo.

Dans le seconde chapitre, On introduit quelques définitions concernant les cones
et des notations de la fonction de Green et leurs propriétés qu’on va utiliser a travers ce
mémoire. Et j’énonce et montre le théoreme de Krasnoselskii ainsi que quelques théorémes

de point fixe telles que le théoréme de point fixe de Banach, Brouwer, Schauder.

Dans le troisiéme chapitre, On va appliqués le théoréme de Krasnoselskii pour éta-
blir 'existence et d’unicité des solutions et nous prenons des exemples pour mieux com-

prendre.



Chapitre 1

Définitions et notions de bases

1.1 Introduction

Dans ce chapitre nous présentons certaines théories de base qui concernent des fonc-
tions spéciales qui sont utilisées dans les autres chapitres. Nous donnons ici les définitions
des fonctions Gamma, Béta, et la fonction d’erreur . Ces fonctions jouent un réle impor-

tant dans la théorie de différentiation d’ordre fractionnaire.

Nous présentons aussi différentes approche de généralisation de la notion de différen-

tiation et intégration. Le choix étant réduit aux définitions qui sont liée aux applications.

1.2 Fonctions utiles

1.2.1 La fonction Gamma

La fonction Gamma d’Euler est une fonction qui prolonge naturellement la factorielle
aux nombres réels et méme aux nombres complexes. Pour z € C/{0,—1,—2,...} tel que
Re(z) > 0.

Définition 1.2.1 :/9/

La fonction Gamma est généralement définie par l'intégrale suivante :

r(z) = /0 R —— (1.1)

8
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quand la partie réelle de z est strictement positive (Re(z) > 0), cette intégrale est conver-

gente.

Proposition 1.2.1 :/9/
Pour tout € Rf,t >0,ne N, on a :

1. Iz +1) = al'(z)

. I'(0) =
3. T'(n+1)=n!l, neN
4. T(n+13)= (22!7;!/%
_ . nln®

Exemples 1.2.1 :

Pour calculer cette intégrale posons :

+o0
A= / exp(—x?)dx
0

Prenons :

“+00 “+o00 +o0o +oo
A? = / exp(—yz)dy/ exp(—x?)dx = / / exp — (2 + y*)dzdy
0 0 0 0
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Le calcul est plus simple a réaliser qu’on effectue les coordonnées polaires :

, g +o00 4 _z
A = rexp(—r°)drdf =
o Jo 4
Jr

Alors

1.2.2 La fonction Béta

La fonction Béta est appellée intégrale d’Euler du premier type.
Définition 1.2.2 :/9/

La fonction Béta est définie par :
1
B(z,w) = / N1 —t)“"tdt, (Re(z) > 0; Re(w) > 0) (1.2)
0

Proposition 1.2.2 :/9/

les fonctions Gamma et Béta sont reliées par la relation suivante :
B(z,w) = Tetw) (z,w € C; (Re(2); Re(w)) > 0) (1.3)

Propriété 1.2.1 :/9)

sotent a,b € C, (Re(a), Re(b)) >0
1. B(a,b) = B(b,a)
2. B(a,1) =1
3. B(a,b+1)=B(a+1,b)

4. Sin=0b+1 est un entier, cela donne une relation de récurrence.

n—1

B(a,b) = Bla+1,b)

a
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5. Sia=m etb=mn, on obtient

Exemples 1.2.2 :

1.
11 L3I (3)
5(33) = S~
_ VT
1
2.

1.2.3 La fonction d’erreur

La fonction d’erreur appellée aussi la fonction d’erreur de Gauss, utilisée en analyse
et fait partie des fonctions spéciales.
Définition 1.2.3 :/9/

La fonction d’erreur est noté par Erf, elle est définie par :

Brf(z) = % /0 " eap(—t2)dt (1.4)
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Propriété 1.2.2 : /9]

1. Erf(0) =0
2. Erf(oco) =1
3. Erf(—z) = —FErf(z)

1.3 Analyse et calcul fractionnaire

1.3.1 Intégrale fractionnaire au sens de Riemann-Liouville

Cette section sera consacrée aux définitions élémentaires pour les intégrales fraction-

naires de Riemann-Liouville.
La notion d’intégrale fractionnaire d’ordre « € C (Re(a) > 0), selon 'approche de

Riemann-Liouville, généralise la célébre formule (attribuée & Cauchy ) d’intégrale répété

n-fois :

(" f)(z) = /jdtl /:lau2 ..... /t F(t)dt

Définition 1.3.1 /8]

Soit f € LY([a,b]). Uintégrale fractionnaire de Riemann-liouville de la fonction f d’ordre

a € C(Re(a) > 0), notée I f et définie par la formule suivante :

D@ = o | -t f(Wdt 2> a (15)

ot « est un nombre non entier et I'(«) est la fonction Gamma d’Euler.

Théoréme 1.3.1 /8]
Si f € LY([a,b]), alors I®f existe pour presque tout x € [a,b] et de plus I®f € L([a, b))
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Démonstration. En introduisant la définition (1.3.1) puis en utilisant le théoréme de

// — t)* 7! f(t)|dtdx
ﬁ [ 1501 [ @ itaaa
ﬁ/b”(m(b—ﬂ“dt

(b—a)
< U9 )dt
< &= [

Puisque f € L!([a,b]), la derniére quantité est fini, ce qui établit le résultat. u

Fubini, on trouve :

b
/ (1) (@) |dx

IN

IN

IN

Exemples 1.3.1 Soient a >0, 3 > —1 et f(z) = (x — a)?, alors :

(12 f) () = ﬁ / (o — )\t — a)fdt (1.6)

En effectuant le changement de variable
t=a+(x—a)y (0<y<1)
alors (1.6) devient

1

(Lo f)(z) = m/x(l‘—t)a_l(t—a)ﬁdt

1 ! a1
s [ e ey e

- ﬁ /0 [(z — a)(1 — )" (z — a)* Ty dy
T B+a 1l

= S [
(x —a)fte [
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En tenant compte de la fonction Béta (1.2) puis de la relation (1.3) on arrive a :

« _ ('I — a)a—i_ﬁ
12N = SEEBep )
(z —a)*" T ()I(B +1)
') TI(a+pB+1)

L1+ p5)

farp+n 0"
Ainsi on obtient
(12t = 0))o) = oy (o = (17)

Exemples 1.3.2 Soit f(z) = 2° avec > —1 On a

1

(51)(@) = 1°7(0) = s [ o= (18)

En posant t = zu,(1.8) devient :
1 1
I°f(z) = m/o (zu)?(1 — u)* zdu
En utilisant la fonction Béta (1.2) puis de la relation (1.3) on arrive a :

xPta

I“f(x) = F(a)/o u’ (1 —u)* du

Pt
= f1551303%—1,a)
_ F(B + 1) l,a-i—ﬁ
Dla+p+1)

Proposition 1.3.1 /8/
Soient «, € C tels que R(«), R(5) > 0, pour toute fonction
f € LY([a,b]), on a :

L) = 10 f = 1012 )
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pour presque tout x € [a,b]. Si de plus f € C([a,b]), alors cette identité est vraie pour tout
x € [a,b].

Démonstration.Supposons d’abord que f € L'([a,b]), on a :

BN = o [ @

R N R T
=t e -0 wa

En vertu du théoréme (1.3.1), les intégrale figurant dans 1’égalité précédente existent pour

presque tout = € [a, ], et le théoréme de Fubini permet donc d’écrire :

12(19))(x) = W / ) / " — 51 (s — 1) dsldt

En effectuant le changement de variable :

s=t+(@—-t)y (0<y<1)

on obtient

15 (1)) f() = m /ﬂc ft)(z — t)a+ﬁ_1/0 (1 —y)* Yy~ dydt

Enfin, en tenant de la relation (1.3) on obtient :

1

DA = gy . OG0t = U7 et it = (172 )(a)

Supposons maintenant que f € C([a,b]), alors ( d’aprés les théorémes sur les intégrales

dépendant de paramétres )17 f € C([a, b)), et par suite

1°7P 1915 f € C([a, b])

’YTaTa

Ainsi, d’aprés ce qui précéde, les deux fonctions continues I8+° I15 f coincident
presque partout sur [a, b], elles doivent donc coincider partout sur [a, b]. [

Le théoréme suivant fournit un résultat concernant I'inversion de la limite et de I'intégrale

fractionnaire.
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Théoréme 1.3.2 [8§/
Soient a > 0, et (f1.){2] est une suite de fonctions continues et simplement convergentes
sur la,b]. Alors on peut invertir l'intale fractionnaire au sens de Riemann-Liouville et le

signe limite comme suit :
13 lim fol@) = lim (I8 fi)(z)

Démonstration. Voir [§]

1.3.2 Dérivée fractionnaire au sens de Riemann-Liouville

Il existe plusieures définitions de dérivées fractionnaires, Dans cette partie on va pré-

senter la dérivée de Riemann-liouville, qu’est la plus utilisée.

Définition 1.3.2 /8§/
Soit f € L([a,b]) une fonction intégrable sur [a,b], la dérivée fractionnaire au sens de

Riemann-Liouville de la fonction f d’ordre a € C(R(«) > 0) notée D2 f est définie par :

D0 = prey (32) [ @-0rtoa (19)

O n—1<[R()]<n et x>a.

En particulier, pour « =m €N, on a

(Dgf)(x) = ﬁ (%) /:f(t)dt (1.10)
020)0) = 5 (e ) [ 00 = S p o (111)

Par suite la dérivée fractionnaire au sens de Riemann-Liouville coincide avec la dérivée
classique pour a € N.

Remarque 1.3.1

o) = () e ne

tel que : n =[R(a)]+ 1,2 >a .



1.3 Analyse et calcul fractionnaire 17

Exemples 1.3.3

1. Soit f(z) = (x — a)® avec f > —1.
Pour a >0 tel quen—1<a <n, on a d’apreés la remarque (1.3.1) puis l’exemple

(1.3.3) :

L(B+1)

n _ \n—a+p8
TBin—arn’ @9 :

Dgf(x) = D" f(x) =

Alors, pour (o« — ) € {1,2,.....,n} on a :
Def(x)=D¥x—a)*? =0 je{l,2,...,n}

Par ailleurs si (o — B) ¢ {1,2,....,n} on trouve

Dgf(l’) = F(;(f;—_l'_)l)Dn([E - a)ﬁ—a

2. En particulier, si f = 0 et a > 0, la dérivée fractionnaire de Riemann-Liouville

d’une fonction constante f(x) = C est non nulle, sa valeur est :

Clx —a)™™@
DsC = —( )
I'(1—a)
La proposition suivante établie une condition suffisante d’existence de la dérivée fraction-

naire.

Proposition 1.3.2 /8]
Soient a > 0 et n = [a] + 1. Si f € AC™([a,b]), alors la dérivée fractionnaire D2 f existe

presque partout surla,b] et de plus, elle est donnée par

n—1 : 1

Da N\«
fl@ ZFj—a—i-l voa)

)
o | @
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1.3.3 Propriétés de la dérivation fractionnaire au sens de
Riemann-Liouville

Par analogie avec la dérivation usuelle, et comme conséquence directe de la relation

(1.5) , opérateur de dérivation fractionnaire au sens de Riemann-Liouville est linéaire.

Théoréme 1.3.3 /8]
Soient f et g deux fonctions dont les dérivées fractionnaires de Riemann-Liouville d’ordre

a existent. Alors pour A, € R, D¥(\f + ng) existe et on a :
Dg(Mf + pg)(x) = MDg f)(x) + n(Dgg)(x)

Lemme 1.3.1 /[8§/

Soit a €]n — 1,n[ et f une fonction vérifiant DS = 0 alors :

R M S T

Démonstration. Soit

(Dgf)(x) =0

En tenant compte de la remarque (1.3.1) on a :

() twnw@=o

et par suite

[z f1(=)

I
Q(".)
—~

S
|
IS
~—
<

Maintenant, ’application de 'opérateur [ équation précédente donne

(7)) = Y el - )
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En utilisant la relation (1.7) on obtient ainsi
m—

I'(G+1) .
Im _ Jta
N Zo j+1+a)<$ %)

Enfin, la dérivation classique et I'utilisation de la formule

(i)m (z—a) = —F(F(O‘ D o g

dx a—m+1)
établit le résultat désiré. ]

L’opérateur de dérivation au sens de Riemann-Liouville posséde les propriétés résumeées

dans la proposition suivante.

Proposition 1.3.3 /[8§/
Soient a,, 3 >0 tels quen —1 <a<n,m—1<p<m.

1. Pour f € L'([a,b]), légalité :
D(Igf(t) = f(t)
est vrai pour presque tout x € [a,b).

2. Sia> >0, alors pour f € L*([a,b]), la relation :

D(Dg f)(x) = (1" f)()
est vrai presque partout sur [a,b).

3. SiB>a>0 etla dérivée fractionnaire D3~ f existe, alors on a :
D(I° f)(x) = (D7 ~*)(x)
4. Si f € LY([a,b]) et I"*f € AC™([a,b]) avec n = [R(a) + 1], alors :

(L) Ié?“f] (@

n—1 ]n+a

2 DeNI) = fla) =3 o i

“I(j—n+a+1)eat
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1.3.4 La dérivation fractionnaire au sens de Caputo

Bien que la dérivation fractionnaire au sens de Riemann-Liouville a jouée un role
important dans le développement du calcul fractionnaire, plusieurs auteurs y compris Ca-
puto (1967-1969) ont rendu compte que cette définition doit étre révisé, car les problémes
appliqués en viscoélasticité, mécanique des solides et en rhéologie, exigent des conditions
initiales physiquement interprétables par des dérivées classiques, ce qui n’est pas le cas
dans la modélisation par I'approche de Riemann-Liouville qui exige la connaissance des

conditions initiales des dérivées fractionnaires.

Définition 1.3.3 /8§/
Soient o € C avec R(a)) >0 et n € N* tel quen —1 < R(a) <n et f € C"([a,b]).
La dérivée fractionnaire d’ordre o au sens de Caputo de la fonction f notée DS f est

définie par :

Dif(r) = 107D f(x)
— / f _ )n—a—ldt

TL—O(

Remarque 1.3.2 La dérivée fractionnaire au sens de Riemann-Liouville d’ordre
a €|m — 1,m[ s’obtient par une application de [opérateur d’intégration fractionnaire
d’ordre m — « suivit d’une dérivation classique d’ordre m, alors que La dérivée frac-

tionnaire au sens de Caputo est le résultat de la permutation de ces deux opérations.
Exemples 1.3.4 Pour f(z) = (z —a)? avec 3 >0 on a

0 si €40,1,2,...m—1}

‘DYf(x) = (1.12)

(3+1 e
%(m—a)ﬁ st B>n—1

En particulier, si f est constante sur [a,b] , alors :

“D3f =0
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1.3.5 Relation entre approche de Riemann-Liouville et celle de
Caputo

Le théoréme suivants établit le lien entre la dérivée fractionnaire au sens de caputo et

celle au sens de Riemann-Liouville.
Théoréme 1.3.4 [8/

Soient a > 0, n = [a] + 1. Si f possede (n — 1) dérivée en a et si DS f existe, alors :

(“Dgf)(x) = Dg | f(x) —

presque partout sur [a, b].

Remarque 1.3.3 Le résultat du théoreme (1.3.4) signifie que la dérivation au sens de

Caputo d’une fonction f est une dérivation fractionnaire du reste dans le développement
de Taylor de f.



Chapitre 2

Le théoréme du point fixe de
Krasnoselskii

On commence par donner des définitions, Ainsi que quelques résultats connus qui nous

seront utiles dans la suite de notre travail.

2.1 Le cbne

Définition 2.1.1 /7]
Soit E un espace de Banach réel, un sous ensemble convexe P de E est dit un Cone s’il

satisfait :
l.zePetA>20=X e P

2. x€Pet—ax€P=x=0 o0u0 est l’élément nul de &

Définition 2.1.2 [7/(Définition d’un Céne solide)

Soit P Uintérieur du Céne P, Alors P est dit Cone solide si son intérieur est non vide.

Définition 2.1.3 [7/(Définition d’un Céne normal)
P est un Cone normal s’il existe une constante N telle que :

Pour tout x,y € P
0<z<y= ] <Nyl

N est constante de normalité de P.

22
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Autres définitions
1. On dit que E est partiellement ordonné par le Cone P si :
r<ysy—xrelP

2. Sia,b € E, 'ensemble [a,b] =z € E/a < x < b est dit intervalle ordonné entre a

et b.

3. On dit qu'un opérateur A : E — E est croissant(décroissant) si :

2.2 Fonction de Green

2.2.1 Construction de la fonction de Green :

Les fonctions de Green sont un dispositif utilisé pour résoudre des équations diffé-
rentielles ordinaires et partielles. En particulier, quand leurs résolutions ne peuvent étre
évidentes par d’autre méthodes.

La forme générale : Soit I’équation différentielle d’ordre m

L(y) = po(x)y™ + pi(2)y™ ™ + ...+ 1 ()Y + p(a)y =0 (2.1)

Ou les fonctions po(z), p1(z), ..., pm(x) sont continues sur [a, b], po(z) # 0, sur [a, b] avec

les conditions aux limites

Vily) = ay(a) + oDy (a) +...+a Dy D (a) + y(b) + 8y (0) + 5™ Yy D(b) = 0

(2.2)
Avec k = 1,2,...,m et les formes linéaires V4, . . ., V,,_1, en fonction de y(a),y (a), . . ., y™ Y (a),
y(),y (b),...,y™ Y (b) étant linéairement indépendantes. Supposons que le probléme aux

limites homogene (2.1) — (2.2) admet la seule solution triviale y(z) =0

Définition 2.2.1 On appelle fonction de Green (ou fonction d’influence) du probleme
auz limites (2.1) — (2.2) la fonction G(x,y) construite pour tout y, a <y < b.
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Définition 2.2.2 [1//(Fonction de Green en une dimension)
Soit q :]a, b[— R une fonction bornée et on considere le probleme de I’équation différentielle
et les conditions aux limites homogs :
(—i= +a(@)f(x) =h(z), 0<z<1
arf(a) + Pr1f(a) =0 (2.3)
as f(b) + B2f(b) =0
ou h est une fonction donnée et a;, B;(j = 1,2) sont des constantes données.
La méthode de la fonction de Green, consiste a résoudre, pour chaque y €la,b| fizé.
d2

2 0] o) =al ) (2.4

L’équation (2.4) doit étre au sens des distributions.
La fonction de Green satisfait les mémes conditions aux limites en x =a etx =b .
On obtient, la solution f de (2.3) par :

b
(o) = [ Glaphia)ds (2.
Proposition 2.2.1 [14/
Si f est une solution de (2.3), alors f peut étre représentée sous la forme (2.5).
Remarque 2.2.1 La fonction de Green est symétrique i.e :
G(z,y) = Gy, x)

Théoréme 2.2.1 [14]

La fonction de Green posséde les proprietés suivantes :
1. [—% + q(x)} G(z,y) =0 sur (a,y) et sur (b,y).

2. G satisfait les conditions auz limites.

3. G est continue en r = y.
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2.2.2

Les propriétés de la fonction de Green

Cette fonction jouit des quatre propriétés suivantes :

1.

G(z,y) est continue et posséde des dérivées continues par rapport a x jusqu’a
l'ordre (m — 2) inclu pour a <z <b.
Sa (m — 1) —ime dérivée par rapport & x présente au point = y une discontinuité

de premiére espéce, le saut ayant la valeur Iﬁ, ie

G G ]
Oxm—1 Y+, Y Oxm—1 Y-y _po(y)

Dans chacun des intervalles [a,y) et (y,b] la fonction G(z,y) considérée comme

une fonction de x est solution de ’équation (2.1)
L(G)=0 (2.6)
G(z,y) vérifie les conditions aux limites (2.2) :

Vi(G)=0, k=0,1,2,...,m

2.2.3 DPositivité de la fonction de Green :

Théoréme 2.2.2 [1}]

La fonction de Green associée au probleme :

—(p(@)u') +q(z)u = h(z) = €[0,T]

est strictement positive, pour x,y dans [0,T], c’est a dire :

G(z,y) >0, V(x,y)e€][0,T)? (2.7)

Théoréme 2.2.3 Si le probléeme auz limites (2.1) — (2.2), n’a pas de solution autre que

la solution triviale y(x) = 0, lopérateur L a une fonction de Green G(x,y) et une seule.
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Exemples 2.2.1 Soit la fonction de Green pour le systéme suivant :

{ Ly(t) —3dy(t) +2y(t) = f(t) ; (2.8)

y(0) = £y(0) =0 0<t<s<l.
On remplace par :

2

@g(t, T) — 3ig(t, T)+29(t,7) =6(t —7)

dt

Pour g(0,7) = %9(0,7) =0 On applique la transformée de Laplace, et on obtient :

£ (%g(t, T)) (s) +3L (%g(t, T)) (s) +2L(g(t, 7))(s) = L(5(t — 7))(s)

1
SQG(t, 7)—s9(0,7) — %9(0,7') —3[sG(t,7) — g(0,7)] + 2G(¢t, 1) = B
ol
1, t>171
t—71)=
0, t<r
alors :
1
£(5(t—7)(s) = ©
Donc :
1
Gt 7) = 52 —3s5+2

La transformée de la fonction pour le probléme tel que 7 = 0, alors la fonction de Green
est :

1 1
g(t,7) = 562“*7) — e+ S| HE=7), t>7
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ot H est la fonction de heaviside.
Alors, la solution du probléme (2.8) écrit comme suit :

o) = [ attrs

1

b
1
= / |:§62(t_7—) — e+ 5 H(t—7)f(t)dt

2.3 Quelques théorémes de point fixe

Définition 2.3.1 Soient (X,d) un espace métrique, une application f est définie par

f: X — X, on dit que x € X est un point fize de f si f(x) = x.

2.3.1 Théoréme de point fixe de Banach

Vers 1922, Banach reconnu le role fondamental de la complétude métrique, il énonce le

théoreme suivant :
Théoréme 2.3.1 [11](Théoréme de Banach(1922))

soit (E,d) un espace métrique complet non vide et soit f : E — E une application
a — contraction c¢’est-a-dire il existe 0 < o < 1 tel que d(f(x), f(y)) < ad(x,y), pour tout
r,y € L.

Alors f posséde un unique point fize.
Démonstration.

1. L’unicité :
On pose que x,y € F deux points fixes de f alors f(z) ==z, f(y) =y

d(xay> = d(f(x),f(y)) < ad(xay)

comme 0 < o < 1donc:d(z,y)=0=z=y

2. L’existance :
On choisit un point xy € E quelconque et on définit la suite x,, = f(x,11) , on
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montre par récurrence que d(x,,T,+1) < ad(zg, 1) pour n € N et on montre que

la suite (x,,), est de Cauchy :

d(Tn, Tpip)

IN

IN

VAN

IN

IN

p—1

Z A(Tpiks Trkt1)

n=0

" d(xg, x1)

1_ ad(l’o, :L’l)

et donc d(z,, Tp+p) — 0 lorsque n — +o00, ceci exprime le fais que (x,), est une suite de

Cauchy dans F , et comme FE est un espace complet , il existe x € E tel que z, — x .

Par continuité, z,11 = f(x,) — f(z) ,d’ou f(z) =x . u

La signification du théoréme de point fixe de Banach

L’application de ce théoréme nous donne des résultats qui sont d'une importance fonda-

mentale dans I’analyse non linéaire.

citons quelque uns :

1.
2.

Existence de la solution.

Unicité de la solution.

Stabilité de la solution sous une petite perturbation de 1’équation.

. Existence de la convergence des méthodes d’approximation.

Stabilité des méthodes d’approximation.
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2.3.2 Théoréme de point fixe de Brouwer

Le théoréme du point fixe de Brouwer est un résultat de topologie algébrique. 11 fait partie
de grande famille des théorémes du point fixe, il existe plusieurs formes du théoréme selon
le contexte d’utilisation.

Théoréme 2.3.2 [11]/(Théoréme de Brouwer (1910))

1l existe plusieurs forme du theoreme, selon le contexte d’utilisation.

La plus simple est parfois donnée sous la forme suivante :

Dans le plan : Toute application T continue d’un disque fermé dans lui-méme admet
au moins un point fixe.

1l est possible de généraliser a toute dimension finie.

Dans un espace euclidien :Toute application continue d’une boule fermée d’un espace
euclidien dans elle-méme admet un point fize.

De mani iwvalente :
convexe compact :Toute application continue T d’un convere K d’un espace euclidien

a valeur dans K admet un point fize.

2.3.3 Théoréme de point fixe de Schauder

Le théoréme de point fixe de schauder est une généralisation de théoréme de Brouwer, il
s’énonce ainsi :

Théoréme 2.3.3 [11/(Théoréeme de schauder (1930) )

Soit C' un sous ensemble fermé et convexe d’un espace de Banach E et f : C — C une
application continue telle que f(c) est relativement compact. Alors f posséde un point fize.
Plus généralement, si C' est un compact convexe alors toute fonction continue de C sur

C posséde un point fixe.

Démonstration.

On note K l'adhérence de f(C) i.e. K = f(C) qui est par hypothése un compact.

K C C car C est un fermé (si C' est compact alors K = f(C) car f(C') est compact).
Pour chaque n, soit F,, un %—réseau de K i.e F,, = {1, 29, ..., 2} C K telque

K = Ule B(x;, +) et soit P, : K — conv(F,) une projection de Schauder , comme C

est convexe et F), une partie de C alors conv(F,,) C C est un sous ensemble convexe et
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compact. Ont définit f, : conv(F,) — conv(F,), fo = Pn © ficonu(r,)- Par le théoreme de
Brouwer (f,)nen posséde au moins un point fixe y, i.e f,(yn) = yn - Or (f(yn))neny C K
qui est compact et donc la suite (f(y,))neny posséde une sous suite convergente nous

noterons de la méme maniére. On pose
y = lim f(yn) (2.9)

etonay= limf(y,) € C car (f(yn))nen C K C C fermé d’ou contient les limites de
n—oo
tous ses suites convergentes.

Montrons f(y) = y. En effet :

1) — Sl = IBu(F () — F )| < ~

n
d’ou :
y = lsz(yn)
n—oo
= lim fu(yn)
n—oo

= limy,
n—oo

Alors @ limy, =y D’aprés I'égalité (2.9) et par la continuité de f , on obtient : f(y) =y
n—o0

. Par conséquent f admet un point fixe. [ ]

Théoréme 2.3.4 [1}](Théoréme Ascoli-arzela) Soient (X, dx) un espace métrique com-

pact et (Y, dy) un espace métrique . on se donne un ensemble F' de C°(X,Y) tel que :
(i) Vz e X, {f(z), f € F} est compact dans 'Y

(ii) la famille F' est equicontinue, ie Ne > 0,30 > 0 tel que, Vo, 2’ € x , f € F, on a
;s dx(z,2') <0 = dy(f(2), f(z') <e

Alors, F est compact dans C°(X,Y)
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2.4 Théorémes du point fixe de type Krasnoselskii

Introduction :

En 1958, Krasnoselskii a observé que dans un bon nombre de problémes, 'intégration
d’un opérateur différentiel perturbé donne naissance a une somme de deux applications,
une contraction et une application compacte.ll déclare alors :

Principe. L’intégrale d’un opérateur différentiel peut produire une somme de
deux application, une contraction et un opérateur compact.
Pour mieux comprendre cette observation de Krasnoselskii, on considére I'equation diffé-

rentielle perturbé suivante :
2'(t) = —alt)a(t) - g(t,2(1)) (2.10)

oua(t+7T)=ua(t) et gt +T,x) = g(t,x) pour un certain 7" > 0. On peut transformer

cette équation sous une autre forme en écrivant :

2 (t)ewp ( /0 t a(s)ds) = —a(t)z(t)exp ( /0 t a(s)ds) — g(t, z)exp ( /0 t a(s)ds)

Par conséquent :

(x(t)exp /0 ta(s)ds>/ gt 2(t))exp ( /0 ta(s)ds)

Une intégration t — T" & t donne :

/th (z(u)exp /Oua(S)ds)/du = — /:Tg(u,x(u)) (exp /Ou a(s)ds) du

Ainsi

o(t)eap ( /0 t a(s)ds> — 2t = T)eap /0 T a(s)ds = — /ttT g, 2()) <e:tp /0 ' a(s)ds) du

(2.11)
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Alors :
x(t) = x(t—T)exp fgiT a(s)dsexp (— f(f a(s)ds) —ftt_T g(u, z(u)) (exp fou a(s)ds) duexp (— fg a(s)ds)

dot
w(t) = x(t — T)exp (— /:Ta(s)ds) - /:T g(u, 2(w))exp (- / ta(s)ds) (2.12)

Si on suppose que exp (— ftiTa(s)ds) =a <1 etsi(E,|.]|) est I'espace de banach de

fonction ¢ : R — R continues et T-périodique alors I'equation (2.12) peut se mettre sous
forme :
o(t) = (Bo)(t) + (A9)(1)

Avec B est une contraction de constante o < 1 et A est une application compacte. Cet
exemple montre bien la naissance de I'application P¢ = B¢ + A¢ qui s’identifie & une
somme d’une contraction est une application compacte. La recherche d’'une solution pour
(2.12) exige donc un théoréme adéquat qui s’applique a cette opérateur hybride P et qui
peut conclure I'existence d’un point fixe qui sera a son tour, solution de ’equation initiale
(2.10) Krasnoselskii trouva la solution en combinant les deux théorémes de Banach et
celui de Schauder en un seul théoréme hybride mais puissant qui porte son nom, En clair

il établit le résultat suivant :

Théoréme 2.4.1 [11](Théoréme de Krasnoselskii (1955)) :

Soit (I, || . ||) un espace de Banach et soit M une partie non vide, convexe et fermée de
E, On suppose que :
A, B : M — E sont deux applications satisfaisant :

(i) Ax+Bye M,Vx,ye M
(ii) A est continue et AM est contenu dans un ensemble compact.

(iii) B est une contraction de constante o < 1 Alors, 3x* € M, Az* + Bx* = z*

Le lemme suivant est fondamental pour la démonstration de ce théoréme.

Lemme 2.4.1 [11]

Soient (E, ||.||) est un espace vectoriel normé, et C' un sous ensemble non vide de E . Soit
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g : C — E une contraction . Alors (I —g) : C — (I — g)(C) est un homéomorphisme, ot
1 désigne ['identité.

Démonstration :Lapplication I — g est continue. En effet, Vz,y € E | on a

I = 9)(x) = (I = g) (W)

VAN

lz =yl + llg(z) — g W)

A\

lz =yl + kllz -yl

< (1+E)|z -yl

De plus,
(I =9)(@) =T =gl = l(z—=y)—=(9(x) =g
> |z =yl = llg(z) = 9wl
> |z =yl = Klz =yl
> (- Ble—yl, ©O<k<)
Ceci montre que (I — g)~! existe et continue. m

Démonstration :(démonstration du théoréme de Krasnoselskii)
Soit y € C fixé, d’aprés le théoréme du point fixe de Banach, I'application ® : C' — C
définie par :
O(z) = g(x) + f(y)
admet au moins un point fixe dans C.

L’application :
h:C — C
z = hz)=(I—-g)"" o f(z)
est continue, compacte et envoie C' dans lui méme. En effet,
h est une composition d’une application continue et compacte avec une application conti-

nue (I — g)~! est continue d’aprés le lemme précédent), donc compacte.

Par le théoréme du point fixe de Schauder, h admet un point fixe dans C'. |

Remarque 2.4.1 Si A = 0 alors ce théoréme coincide avec le principe de 'application

contractante de Banach et si B = 0 il coincide avec le théoréme de Schauder .
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Remarque 2.4.2 FEn 1998, Burton constate que le théoréme du point fize de Krasnosels-

kii reste valable si on remplace le premiére condition par :
Vye C (x=fly)+g(x)=z€C)

Théoréme 2.4.2 Soient E un espace de Banach, C C E un fermé, borné et convexe.
Supposons que :
1. L’application f : C'— E , est compacte et continue.

2. L’application g : C' — E , est une contraction non linéaire.

3. Vr,ye C, f(x)+g(y) € C . Alors, f + g admet un point fixe dans C.

Démonstration.Voir [11]

2.5 Théorie de ’indice du point fixe

Un des outils les plus importants de 1'analyse fonctionnelle, non linéaire est le degré
topologique de Leray-Schauder pour le champs des vecteurs compacts, définis sur la ferme-
ture des sous-ensemble ouverts bornés dans les espaces de Banach. Cependant, en relation
avec les applications non linéaire dans les espace de Banach ordonnés, il est naturel de
considérer aussi les applications qui sont définies sur les sous-ensemble ouverts d’un céne
positif (ces sous-ensemble sont ouverts par rapport a la topologie induite de l'espace tout
entier).

Si le cone positif n’a pas de points intérieur (la plupart des cone de dimension infinie
intéréssant-du point de vue des applications ont ce défaut), le degré de Leray-Schauder

n’est pas immédiatement applicable.

Il est possible de définir " Lindice du point fixe" pour les applications compactes,
définies dans le cone positif . Cet indice du point fixe est une extension de la notion du

degré de Leray-Schauder.

dans ce suit, on donne les propriétés, les plus importantes de cet indice, on indique
en particulier que I'indice du point fixe peut étre dérivé du degré bien connu de Leray-

schauder.
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Définition 2.5.1 Soit E un espace de Banach. On dit que A C E est un rétracte de

s’il existe une application continue r : E — A telle que r(x) = x,Vx € A.

Définition 2.5.2 Toute partie convexe fermée de E est un rétracte de E, en particulier
tout Cone P C E est un rétracte de E.

2.5.1 Axiomes de l’indice du point fixe

Théoréme 2.5.1 (Définition axiomatique)|17|

Soit A un rétracte de l’espace de Banach E. Pour chaque sous-ensemble ouvert ) de A et

chaque application f : Q — A compacte sans point fize sur OS2, il existe un nombre entier

i(f,Q, A) satisfaisant les conditions suivantes :
(i) Normalisation. i(f,Q, A) =1 si f(x) = yo = cte € Q,Vx € Q.
(ii) Additivité. Pour toute paire de sous-ensemble ouverts disjoints Qq, Qo de Q tel

que f n’admet pas de point five sur Q\ (Q; UQy), on a
Z(fu Qa A) = l(f? Qh A) + Z(fu QQ; A)

Ou
Z(f? Qk7A> - Z(f\m, QkaA)7 k= 17 2.

(iii) Invariance homotopie. L’indice i(h(x,t),Q, A) est indépendant du paramétre
t,0<t<1ouh:Qx][0,1 — A est une application compacte et h(x,t) # x pour
tout x € 02 et 0 <t < 1.

Plus généralement, on peut remplacer Uintervalle [0, 1] par un intervalle fermé de
R.

(iv) Permanence. Si A est une réctractée de A et f(Q0) C A, alors
i(f,QA) =i(f,QNAA)

O
Z(fa an Aa A) = Z(f\vavA)
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2.6 Théorémes du point fixe dans les cénes

Théoréme 2.6.1 [17]
Soient P C E un cone et soit Q. ={u € P : ||u|| < r}. Supposons que T : Q, — P est un
opérateur complétement continu satisfaisant Tu # u,Vu € 0S),.. Alors :

(a) Si||Tul| < ull,Vu € 09,, alors l'indice de point fize i(T,$2,, P) =1
(b) Si||Tul| > ||ul|, Yu € 09,, alors l'indice de point fize i(T, 2., P) =0

Définition 2.6.1 (opérateurs monotones)[7]
Un opérateur A : D — E est dit croissant si x1 < X9, (1,22 € D) implique Az < Axs,
et strictement croissant si x1 < xo implique Ax; < Axo. De méme est dit décroissant si

1 < T implique Az > Axs, et strictement décroissant si x1 < xo implique Axq > Aws.

Définition 2.6.2 (L’ opérateur concave)|[7]
Soit opérateur A : P — P ete > 0. Supposons que pour tout x > 0, il existe « = a(x) > 0
et = pF(x) >0 tel que :

e < Ar < fPe (2.13)

Et pour tout x € P satisfaisant aje < x < fre (ap = aq(x) > 0,51 = fi(x) > 0) et tout
0<t<1,il existe n =mn(x,t) >0 tel que :

A(tr) = (1 +n)tAx (2.14)
Ensuite, est appelé un opérateur e-concave.

Théoréme 2.6.2 [7]

St lopérateur A . P — P est coissant et e-concave, il a alors au plus un point fixe positif

Démonstration. Suppons que 1 > 0 et x5 > 6 sont deux points fixes positifs de A.

Ensuite par (2.13), nous voyons :

T =Ar 2> are = —[he > —
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Ot «a; et By sont des constantes positives. On a ty = sup{t > 0/x; > tz,}, nous voyons
que 0 < ty < 400.
Aussi maintenant, nous pouvons ty > 1, en fait si 0 < ¢ty < 1 alors par (2.14), il n’existe

pas 1y > 0 tel que :
x1 = Axy = A(toro) = (1 +no)toAzy = (14 n0)tor:

Ce qui contredit la définition de ty, d’o tg > 1 et ainsi x9 > x7.

De méme maniére, nous pouvons prouver rp > T ainsi rs = [ |

Théoréme 2.6.3 [7]
Soit 'opérateur A : P — P est croissant et e-concave, supposons que A a un point fixe

soit positif x* > 0 et que le Cone P soit normal. Il existe alors R > r > 0 tel que :
1. Av Lz Yoz e P0O<|z| <r
2. Av Lz Vxe Pz >R
Définition 2.6.3 (L’ opérateur conveze)|]
Soit lopérateur A : P — P ete > 0. Supposons que pour tout x > 0, il existe « = a(x) > 0

et = pF(x) >0 tel que :
e < Ax < fe

Et pour tout x € P satisfaisant cne < x < fre (1 = ay(x) > 0,6, = Bi(z) > 0) et tout
0<t<l,il existen=mn(x,t) >0 tel que :

A(tr) < (1 —n)tAx
Ensuite, est appelé un opérateur e-convexe.

Théoréme 2.6.4 [7]
Si Uopérateur A : P — P est e-convexe et e-croissant, alors A il ne peut pas avoir deux

points fixes positifs comparables.

Démonstration. Supposons que A ait deux points fixes 1 > 6 et x5 > 6, qui sont

comparables, par exemple x; > x,. Puisque A est e-croissant, il existe o > 0 tel que :

To — 11 = Axy — Az = e
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Par (2.13), nous avons

aze < Tp = Awy < Bae

O ay > 0,5y >0 et donc

Q
71 < (1= )z

o

Maintenant, on a ty = inf{t > 0/z; < tza}, nous voyons que :

«
O<t0<1——<1,3§1<t03§2
Do

Ainsi par e-convexité de A, il existe un n > 0 tel que :
T = A.’L"l < A(tofﬂg) < (1 — ﬂ)tUA[BQ = (1 — 77)150.1'2

Ce qui contredit la définition de .
Remarquez, selon les hypothése du théoréme (2.6.4), peut avoir de nombreux points fixes

positifs bien sur, ils ne sont pas comparables les uns aux autres. [ ]

2.6.1 Théorémes Points fixes d’expansion et de la compression
des Cones

Dans ce qui suit, soit P un Cone de l'espace réel de Banach E. Par conséquent P est
un retrait de F et P est également un ensemble fermé convexe étoilé. Soit €2 un ensemble

ouvert borné de E, alors P N () est un ensemble ouvert borné de P et
IPNQ)=PNIN, PNQ=PNQ
Lemme 2.6.1 Soit0 € Q et A: PNQ — P . Supposons que :
Ax # px, Yre PNOQ), pu>1

Alors :
(A, PNQ,P)=1

Lemme 2.6.2 Soit A: PNQ — P étre complétement continue. Supposons que :
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1. inf Az >0
r€PNO

2. Ax £ px, VYre PNoQ, 0<u<l
Alors :
(A, PNQ,P)=0

est vérifier.

Corollaire 2.6.1 Soit A: PNQ — P étre complétement continue. S’il existe un ug > 0
tel que :
x— Ax #£tuy, Yre PNoQd, t=0

Alors i(A, PN Q, P) =0 est valable.

Théoréme 2.6.5 (Théoreme a point fixe de ’expansion et de la compression des Cones)
Soit Oy et Qy deux ensembles ouverts bornés dans E tels que 6 € Qy et Q; C Q. Soit

Vopérateur A : PN (Qy/Q) — P, soit complétement continu. Supposons que l'une des

deux coditions :

(C) Az 22, Ve e PNOQY et Az Lz, VYaxe PNoQ,

(Co) Az Lz, Ve PNOY et Ax ktx, Vre PNy
Satisfait, alors A a au moins un point fize dans P N (/)
Démonstration.Par le théoréme d’extension, A a une extension complétement conti-
nue(également désignée par A) de PN, en P.

Premiérement, nous supposons que (C) est satisfait c’est-a-dire c’est le cas de 'extension

du Cone, il est facile de voir que :
Ax # px, VYre PNoQy, p=>1 (2.15)

Autrement, il existe xqg € PN0O$y et py > 1 tels que Axy = poxg = xo, dans contraduction

avec (C1), maintenant a partir de (2.15) et du lemme(2.6.1) nous obtenons :

(A, PNy, P) =1 (2.16)



40 Le théoréme du point fixe de Krasnoselskii

Par contre, en choisissant un arbitraire po > 6, nous avons
x— Ax #tuy, Yre PNoQy, t=0 (2.17)

En fait, 'l existe ;1 € P N 0§y tels que x1 — Axy = tiug = 0, alors x1 > Axy en

contraduction avec (C), par consent par (2.17) et corrollaire(2.6.1), nous avons :
(A, PNQy, P) =0 (2.18)
I1 découle donc (2.16),(2.18) et du propriété d’additivité de I'indice a point fixe que :
i(A, PN (Q/Q, P)=i(A,PNQy, P)—i(A,PNQ,P)=—-1#0 (2.19)

Par conséquent, par la propriété solution d’indice de point fixe A a au moins un point fixe
dans Qy/Q
De méme, l'orsque (Cy) est satisfait au lieu de (2.16), (2.18) et (2.19) nous avons :

i(A,PNQ,P)=0, i(A,PNQ,P)=1 et i(A,PN(Q/0%, P)=1

par conséquent, nous pouvons également affirmer que A a au moins un point fixe dans

QQ/Q_l |

Théoréme 2.6.6 (Théoreme a point fixe de l'expansion et de la compression des Cones

de type normalisé)
Soit 1 et Qs deur ensembles ouverts bornés dans E tels que 0 € €y et Q C Q. Soit

Vopérateur A : PN (Qy/Q) — P, soit complétement continu. Supposons que l'une des

deuzx coditions :

(Cs) || Az|| < ||z]l, Vo€ PN et ||Az| > ||, Vo€ PNoQy
(Cy) ||Az]| = |lzll, Vee PNoQy et |Az| < |z Yz € PNo

sont Satisfait, alors A a au moins un point five dans P N (/)

Démonstration. : 11 suffit de prouver ce théoréme sous la condition (Cj3), car la preuve

est similaire lorsque (Cy) est satisfait. Par le théoréme d’extension A peut étre étendu a
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opérateur complétement continu de P N €y en P. Nous pouvons supposer que A n’a pas
de points fixes sur PN9IQ; et PN0OQ,. 11 est facile de voir que (2.15) est valable car sinon,
il existe zp € PN Oy et oy > 1 tel que Azg = poxo et donce ||Azo|| = pollzol| > ||zol| en
contraduction avec (C3). Ainsi par (2.15) et lemme(2.6.1),(2.16) est vrai.

D’autre part, il est également facile de vérifier.
Ax # px, VYre PNoQy, 0<u<l (2.20)

En fait, s’il ya z1 NP € 09 et 0 < py < 1 tel que Axy = pyaq alors ||Axy|| = po |z <

|1, en contradiction avec (C3), de plus par (C3) nous avons :

inf ||Az|| > inf x| >0 (2.21)
e PNON2 xePNONo

Il résulte de (2.20),(2.21) et lemme(2.6.2) que (2.18) et vrai. Comme précédemment (2.16)
et (2.18) impliquent (2.19) et donc A a au moins un point fixe dans Q,/Q;. n

Théoréme 2.6.7 Supposons que l'opérateur A : P — P soit complétement continu et

A0 = 6. Supposons que l'une des deux condition :

A A
(Cs) A _ : ‘ Az = +00
vePz—0 ||z|| zeP|lz]—+oo ||z
A A
(Co) | Az || ., : | Az || _0

wePzloo |z weplel—+oo [lzf
est satisfaite, les deux conclusion suivantes sont donc valables :
a) Chaque p1 > 0 est un valeur propre de A, qui correspond & un vecteur propre positif,
c’est-a-dire qu’il existe x,, > 0 tel que Az, = px,.

b) #QTOO |z, || = 400 sous (Cs) et #QTOO |z,]| = 0 sous (Cg)

Démonstration. :11 suffit de prouver ce th sous la condition (Cj), puisque la dnstra-
tion est similaire lorsque (Cg) est satisfaite. Pour g > 0 donnn vertu de (Cs), il existe

R >1r >0 tel que:

L [ Az| < |lzll, VzeP, |zl =r
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2. |2 Az|| > ||lz||, VzeP, |z|=R.
0

D’ot la condition (Cs) du th (2.6.6) est satisfaite pour 'opérateur 1/u A
et W ={zx e E| |z <r}, Qe ={z € E||z| < R}. Il dule donc du th (2.6.6) que
Popérateur 1/u A a un point fixe 7, en Q,\(, ce qui prouve la conclusion a).
Pour prouver ||z,|| — +oo tel que i — 400 i.e conclusion b).

Supposons que ce n’est pas vrai. Alors il existe un nombre ¢ > 0 et une suite p,, — +00

tel que :
|zl <c(n=1,2,3,...)

De plus, la suite {||z,, ||} contient une sous-suite qui converge vers un nombre T
(0 < T < c¢). Par souci de simplicitupposons que {||z,, ||} converge lui-m vers T.
Si T >0, alors ||z, | > T/2 pour n suffisamment grand (disons n > N), et donc
Az, || _ 2M

Hn = < (n > N)
R [

Ou M = sup ||Az||, ce qui contredit p,, — +oc.

[[z]|<e
Si T =0, alors de (C5) nous avons :
A
100 |
en contradiction avec p,, — +00, par consent ||z,| — 400, tel que p — +00 et notre

preuve est compléte. [ ]

Nous rappelons ici deux versions du théoréme de point fixe de Krasnoselskii dans un

cone.

1. Version Scalaire :

Théoréme 2.6.8 [7/
Soient (E, ||.||) un espace normé, K C E un cone, 0 < r < R deux nombre réels et
K,gp={ue K:r <u<R} SoitT:K,r— K une application compacte telle

que l'une des conditions suivantes soit vérifiée



2.6 Théorémes du point fixe dans les cones 43

@) [Tull < flull si lull = r et [[Tul] = [lull si |ull = R
(b) [[Tull = full si [[ull =7 et [[Tu]| < [ul} si [[ul]l = R

Alors T possede un point fixe u dans K, g.

Théoréme 2.6.9 [7/

Soient (E, ||.||) un espace normé, K C E un cone, 0 < r < R deux nombre réels et
Ki,rp={ue K:r <u<R} SoitT:K,r— K une application compacte telle
que 'une des conditions suivantes soit vérifiée

(@) Tu <||ul| silul]|=7r et Tu>wusi|ul|=R;

(b) Tu>w si||ull =r et Tu <w si|ul| =R

Alors T' possede un point fize u dans K, g.

2. Version vectorielle :
Maintenant nous allons rappeler la version vectorielle du théoréme de point fixe de

Krasnoselskii dans un cone.
Avant cela, nous allons introduire quelques notations. Considérons n cones K;,

(1=1,...,n) de E et leur cone produit correspondant K = K; x Ky x ... x Ky de
E".
Pour r,R € R},r = (r1,72,...,7), R = (R1,Ra, ..., R,), on écrit 0 < r < R si

0<r;<R(i=1,..,n),eton a les notations :
(Ki)rory = {wi € Kiyri <|lu|| < R; pouri=1,2,...,n}
Clairement, KT,R = (Kl)m,R1 X KT‘,R = (K1>T1,R2 X o X KT‘,R = (Kn)rn,Rn-

Théoréme 2.6.10 Soient (E,||.||) un espace normé, Ky, K, ...., K,, C E n cone,
K=K xKyx..xK,etr=(rixrgx..xr,), R=(RiXRyx..xR,) € (Ry)"
avec 0 < r < R.

Soit T = (11, Ty, ..., T,,) : K. r — K une application compacte. Supposons que pour

chaque i € {1,2,..,n}, l'une des conditions suivantes est vérifiée.
(a) Tiu £ u; si||u;]] =7 et Tu; F l|ug|| si||will = Ri;
(b) Tou # w; si||lwill =7 et Tu; £ w; si ||wil| = Ry.

Alors T poss un point fixe u = (uy, Uy, ..., u,) € K, g



Chapitre 3

Application

3.1 Introduction

Le calcul fractionnaire apparait dans de nombreux domaines de l'ingénierie et des
sciences comme la rhéologie, la viscoélasticité, 1’électrochimie, 1’électromagnétisme, etc.
De nombreux livres et monographies différents sont consacrés au développement du calcul
fractionné. L’intérét de I’étude des équation différentielles d’ordre fractionnaire réside dans
le fait qu’il ya plus de degrés de liberté dans les modeéles d’ordre fractionnaire. En outre,
les dérivés fractionnaires fournissent un excellent instrument pour la description de la
mémoire et des propriétés héréditaires de divers matériaux et processus. Les conditions
aux limites intégrales ont diverses applications dans des domaines appliqués tels que les
problémes de circulation sanguine, le génie chimique, la dynamique des populations, etc.
Comme dans la dynamique des populations, de nombreux domaines du génie et ses sciences
focalisent leur L’intet sur ’existence de solutions positives, dans ce chapitre, nous étudions
I’existence de solutions positives de 1’équation différentielle fractionnelle suivante avec les

conditions aux limites intégrales.

Dou(t) + f(t,u(t)) =0, 0<t<l, 1<8§<2 (3.1)

u(0) = O,/O u(s)ds = u(1) (3.2)

ot D% est la dérivée fractionnaire de Riemann-liouville, f est une fonction donnée. Ce

chapitre est organisé comme suit. Dans la section 2, nous rappelons quelques définitions

44
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concernant l'intégrales et les dérivée fractionnaires, et les propriétés de base associées qui
seront utilisées dans la suite. Nous considérons un probléme auxiliaire pour dériver la
fonction de Green. Nos principaux résultats d’existence sont donnés dans la section 3.

Quelques exemples sont donnés dans la derniére section.

3.2 Préliminaires

Nous présentons ici quelques connaissances de base pour le calcul fractionnaire qui

seront utilisées dans la suite.
Lemme 3.2.1 Soit 6 > 0, alors l’equation différentielle fractionnelle :

D’u(t) =0
A une solution unique donnée par :
U(t) = Cltéil + C2t572 4+ ...+ Cntéin, c € R"Z = 1’ R 1)

ouvt=1,...n et

O] +1, sine{0,1,2,...}
n =
) sin¢{0,1,2,...}.

Du lemme(3.2.1), on déduit le lemme suivant.
Lemme 3.2.2 Soit 0 > 0, alors :
P(Du(t)) =u(t) + et P et 2+ 4 ent™™ g eER

ot :i=1,....,n et n donnée dans lemme (3.2.1)
Nous commengons par résoudre un probleme auziliaire pour obtenir une expression de la

fonction de Green du probléme des valeurs limites (3.1)-(3.2).

Lemme 3.2.3 Soit 1 < § < 2. Supposons que o € C[0,1]. Une fonction u € C0,1] est

une solution du probleme :

Du(t) +o(t)=0, 0<t<l, 1<§<2 (3.3)
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w(0) = 0, /0 u(s)ds = u(1) (3.4)

si et seulement si elle satisfait [’équation intégrale :

u(t):/o Gs(t,s)o(s)ds

Ou Gs(t, s) est la fonction de Green donnée par :
191 (1—5)5= 1 (s46—1)+(1—-8) (t—s)5 1 ,
CESYINE) 0<s<t<l

01 (1-5)"1(s+6-1)
(éil)l“(;) 0<t<s<lI

Gs (t, S) =

Démonstration : De lemme (3.2.2) le probléme (3.3) — (3.4) est équivalent a I’équation

intégrale
t (t _ 8)6_1
t)y=— [ ~—=—4—0c(s)d 07 4 et
u(t) /0 T0) o(s)ds +cit” " + ¢

La condition «(0) = 0 implique nécessairement que c¢o =0 .

De fo s)ds = u(1) on en déduit

= /0 1u(3)ds+ /0 1 %a(s)ds

enfin nous avons 'expression suivante :

L(p_ )il 1 L (] )1
u(t) = —/0 %o(s)ds—i-t‘s_l/o u(s)d8+t5_1/0 %a(s)ds (3.5)

de légalité précédente, nous en déduisons

+ //t“ (=97 o(s)dsdt

B (1—s) 1 [t L1 —s)0t
_ _/ ey ()ds+5/0 u(s)ds+/0 S
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Alors, nous avons

1 1 (1 o S)(S 1 (1 o 8)6—1
u(s)ds = —/ ———0(s)+ / —
/0 o (0—1I() o (1—s5)7"
En remplacant cette valeur dans I’equation (3.5) on arrive a léxpression suivante pour la

fonction v :

Lt —s)t LT =s) s+ 5 —1)
u(t) = —/0 Wa(s)ds + 10 /0 0= 1T0) o(s)ds

PA=8)t—s) Tt +t 1 —5) s+ 1) J
/ RS0 ols)ds

P (s4+8—1)
+ /t 6= 1T() o(s)ds

_ /0 Gl s)o(s)ds.

cela compléte la preuve. [ ]

Lemme 3.2.4 On a 1 < § < 2. Soit Gs(t,s) la fonction de Green liée au probléme

(3.1)-(3.2). Alors les inégalités suivantes sont valables :
t71G5(1,5) < Gs(t, s) < 0Gs(1,5), pour tout t,s € (0,1)

Démonstration : Supposons dans un premier temps que 0 < ¢t < s < 1. Dans un tel
cas :

Gs(t,s) 7 H(s+d—1)
Gs(1,s) s ’

h(t, s) pour tout 0<t<s<1

Maintenant, il est immédiat de vérifier les inégalités suivantes :

-1
S

)
7 <71+ ) =h(t,s) <ot <6, pourtout 0<t<s<1

D’un notre coté, si 0 < s <t < 1 nous avons :

B — ) (s 46 —1) — (0 — 1)(t — )~

hlt, s) = s(1—s)o-1

pour tout 0<s<t<1
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et puisque s > ts, On déduit que :

I L (e (R VI Gt

o S

Comme dans le cas précédent, il n’est pas difficile de vérifier que h(t, s) < ¢ a chaque fois
O0<s<t<l. -

Du corollaire du résultat précédent, nous déduisons ce qui suit :

Corollaire 3.2.1 Soit G la fonction de Green liée au probléme (3.1)-(3.2).

Alors pour tout 1 < § < 2, les inégalités suivantes sont valables :

J

0<Gslt:s) < G100

pour tout t,s € (0,1)

3.3 Existence de solutions positives

Cette section est consacrée a prouver 'existence d’une solution positive du probléme
des valeurs aux limites non linéaires (3.1)-(3.2). Pour énoncer les principaux résultats de
ce chapitre, nous utilisons le théoréme de point fixe de Guo-Krasnoselskii suivant.

Théoréme 3.3.1 Soit E un espace de Banach, et soit P C E un Céne dans E.

Supposons que 1,y sont des sous-ensembles ouverts de E avec 0 € Q; C Qy C Qo et

que T : P — P soit un opérateur complétement continu tel que :
1 ||Tul| > JJull,u € PNoQy et ||[Tul] < ||u|l,u € PNoQy

2. | Tul| < |full,u € PO et |Tul| > ||ull,u € PN o

Alors T a un point fize dans p N (Q\Q1).
Soit E = C0,1] l’espace de Banach munit de la norme Sup ||.|| et définir le Cone P € E

comme suit :

0! 1
P = {u € E,u(t) >0 pourtout te[0,1],u(t) > THuH, pour tout t € [5, 1]}
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Lemme 3.3.1 Supposons que f : [0,1] x[0,00) — [0, 00) est continu et définit I'opérateur
T:FE — E comme :

_ /0 (. ) f (5, u(s))ds

Ou Gy la fonction de Green liée au probléme (3.1)-(3.2), alors T : P — P est complétement

continu.

Démonstration :
1. On montre d’abord que TP C P.
Il résulte de la continuité et de la non négativité des fonction Gy et f sur leurs
domaines de définitions que si u € P alors Tu € E et T'u(t) > 0 pour tout ¢ € [0, 1].
Pour un fixe u € P et pour tout t € [0, 1], en utilisant le lemme (3.2.4), les inégalités

suivantes sont satisfaites :

Tu(t) — /0 Gt ) (s, u(s))ds

1

> g / Gy(1,5) (s, u(s))ds
t5 1

>

> i tlél[g}f] Gs(t,s)f(s,u(s))ds
té 1

> T / Gi(t, 5) (5, u(s))ds
o—1

> Tl

2. compte tenu de la continuité des fonctions Gs et f l'opérateur 7' : P — P est

continue .
Soit 2 C P est borné, Il existe une constante positive M > 0 tel que ||u| < M

pour tous u € (). Posons

L= sup |f(t,u)]+1
0<t<1,0<u<M
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alors pour tout u € {2, on a
Tu(t)] < L/|G5(t,s)]ds < LM, telo1]

donc T'(Q2) est borné dans P .

3. pour tout u € 0, et ty,ty € [0,1] avec t; <ty on a :

IWWM—WWMPﬂAGNMH@MWM—AGWWM@Mm%

t =1 _ 3-11(] _ §)-1(s _
T

(65— 1I()
[l
e
+A»“?><§f§ F(s,u(s))ds
o [t d D e
g%/hu_s)é-l(sw—n@

L“ 5' / (ts — )~ = (81 — 5)V|ds

Lugl—tm s
+ (0 = 1T(0) /t1 (1—-95)°"(s+d—-1)d

i-sl 2 .
T J, o)
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Lty -t /1 51
_— ]. — S S + 6 — 1 dS
G-1r0) J, 17 )
LB _ _
G

B = fol(l — ) s+ —1)ds = % < 00

Notons que

¢ 5
P e, (=)
/tl (toa —5)°ds = 5

pour t; < t, on’a (t; — 5)°~! < (t; — 5)°~, Alors :

/01'(t2‘5>5‘1—<t1—s>‘5‘1|ds - /0 [t — 5 = (ty — 5)Vds

_ (ta—t1)° 5 19
= (=1 1 1 1)

par conséquence, pour u € ), et t1,ty € [0, 1], avec t; < ty

_ B L
it — 1+ m(tg —t] — (ta — t1)")

LB

I[Tul(ts) — [Tu](ty)] = m

(tz — t1)°

3T()

En utilisant le fait que L’application ¢ — t° soit uniformément continue sur [0, 1]

on déduit que le coté droit de I'inégalité précédente tend vers 0 quand [t; —to| — 0
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et donc I'ensemble T'(€2) est équicontinu sur P. Maintenant du théoréme d’Arzela-

Ascoli nous concluons que I'ensemble T'(Q2) est compact. d’ou 'opérateur

T : P — P est complétement continu. La preuve est ainsi compléte. [ ]

Maintenent nous pouvons indiquer notre résultat principal pour ce chapitre, définir :

t t

fo= lim min / ’u), fo = lim min f(t,)
u—0+ te1/21] U u—0+ te0,1] U
t t

foo = lim min /( ,u)7 fx = lim min f(t,)
u—ootel0,1] U u—oote[l/2,1] U

Théoréme 3.3.2 Supposons que f(t,u) soit continue sur [0,1] x [0, 00] et remplit 'une

des conditions suivantes :
(1) (cas sublinéaire) fo =00 et foo =0
(ii) (cas superlinéaire) f& =0 et fX =0

Alors le probleme (3.1)-(3.2) admet au moins une solution positive.

Démonstration :

(i) (cas sublinéaire) : fy =00 et foo =0
Puisque fo = oo, alors il existe une constante p; > 0 telle que f(t,u) > du pout

tout 0 < u < py, ou d; > 0 satisfait :

01 ! -1
> .
5 Z?[Oaf] {/; S G(g(t, S)ds 1 (3 6)

Prendre u € P, tel que |lul| = p1, de l'expression (3.6) on déduit les inégalités
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suivantes :

ITull = maz {/Ong(t,s)f(s,u(s))ds}

te(0,1]

1
) t d
> 1tm€[gf] {/; Gs(t, s)u(s) s}
> ﬁHu||mam /1 s°1Gs(t, s)ds
) tef0] | J3 o\n
> u]

Puisque f(t,.) est une fonction continue sur [0, c0), nous pouvons définir la fonction

suivante :

f(t,u) = max f(t,z)

z€[0,u]

Clairement f(¢,u) non décroissant on [0, 00), de plus puisque f, = 0 il est évident
que :

lim max L) =0
u—00 t€[0,1] U
Choisissez 05 > 0 tel que :
020
— <1 3.7
(6 —1I) — (3.7)

il existe donc une constante py > p; > 0 tel que f(¢,u) < dou pour tout u > po.

Poson maintenant u € P, tel que |Ju|| = py, alors a partir de la définition de f.

De equation (3.7) du choix de d2 et du corollaire (3.2.1), nous avons les inégalités
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suivantes :

[Tl

IN

IN

<

max
t€[0,1]

[ Gt sutonas
([

s Ga(t,s)f(s,HUH)dS}

1
dal|ul|mazx {/ Gs(t, s)ds}
tel0,1] 0
20y
@-DnrE)""
]|

Ainsi, par la premiére partie du théoréme de Guo-Krasnoselskii, nous concluons que

le probléme (3.1)-(3.2) a au moins une solution positive u telle que p; < [Jul| < po.

(ii) Considérons maintenant le deuxiéme cas (i)

Soit dy > 0 est donné comme dans eq (3.7) .

Comme f° = 0, il existe une constante r; > 0 tel que f(t,u) < dyu pour 0 < u < ry.

Soit u € P, tel que ||u|| = r1. Ensuite nous avons :

[Tl

IN

IN

IN

maz{ /0 G(t, 5) (s, u(s))ds}

te(0,1]

1
Solullmas / G(t, 5)ds}

Considérez maintenant d3 > 0 satisfaisant :

215 ielo

03

(3.8)

{ [ G(t,sms} -
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le fait que f,, = oo nous dit qu’il existe une constante ry > r; > 0 avec

7902071 > 1) tel que f(t,u) > dsu pour tous u > 7y.

Soit u € P tel que |Ju|| = 762°~1. Notez que d’aprés la définition du cone P, nous
avons u(t) > ry pour tous t € [3,1].

Alors, condition (i7) nous donne les propriétés suivantes :
1

il = mar{ [ Gt utsas
te(0,1] 0

t@[g:ﬁ{/Gts (s,u(s ))ds}
§3max{/Gts }

te[0,1]

= gl § [ Gt f = 1
= o5 15”@[0@% s > ||ull.

Donc, par la deuxiéme partie du théoréme du point fixe de Guo-Krasnoselskii |,

IA

IA

nous concluons que le probléme (3.1)-(3.2) a au moins une solution positive.  m

3.4 Exemples

Exemples 3.4.1 Considns le probleme des valeurs aux limites fractionnelles :

D¥2u(t) + e 4 Ju(t) =0, 0<t<l, (3.9)

On peut facilement voir que pour tout u > 0.

pr— l. 1 pr—
Joo = lim min T =
t
foo = lim min AGK) =0

u—00 t€[0,1] U
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A partir de la premiére partie du théoréme (3.3.2), nous obtenons que le probléme (3.9)-

(3.10) a une solution positive.
Exemples 3.4.2 Considérons le probleme des valeurs aux limites fractionnelles :

D*2u(t) + " +42(t) =0, 0<t<l, (3.11)

w(0) = 0, /O u(s)ds = u(1) (3.12)

On peut facilement voir que pour tout u > 0.

p— l' 1 pu— 0
Joo=Jlim T
t
fo = lim min fltw) =

u—ootef0,1] U

A partir de la seconde partie du théoréme (3.3.2), nous obtenons que le probléme (3.11)-

(3.12) a une solution positive.



Conclusion

Dans ce mémoire, on va présenter quelques théorémes de point fixe tels que, le théo-
réme de Banach, de Brouwer, de Schauder et on accordera plus d’importance aux théoréme

de Krasnoselskii.

On va commencer par rappelé quelques notions de base de I'analyse fractionnelles et
de résultat connus qu’on va utiliser dans la suite de notre travail, ensuite on va étudier
quelques théorémes de point fixe, et on va parler d'un théoréme de Krasnoselskii qui est
utilisé pour prouver I'existence de la solution des équations différentielles et les équations

intégrales non-linéaire.

o7
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