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Z = (Z1)ken

Z = (Zt)ier,

(Jv S) = (Jm Sn)nGN
= (Jn)nEN

Notations

Set of positive natural numbers.

Set of nonnegative real numbers.

Probability space.

Expectation with respect to P.

Finite state space.

Set of real matrix on E x E.

Matrix-valued functions defined on N,

with values in Mx.

Semi-Markov chain (SMC).

Semi-Markov process (SMP).

Markov renewal chain (MRC).

Visited states, embedded Markov chain (EMC).
Jump times.

Sojourn times.

Fixed censoring time.

Number of jumps of Z in the time interval [1, M].
Number of visits to state i of the EMC,

up to time M.

Number of transitions from state i to state j

of the EMC, up to time M.

Number of transitions from state i to state j of the EMC,

up to time M, with sojourn time in state i equal to k.
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A

Transition matrix of the EMC J.

Semi-Markov kernel.

Density of the Markov renewal kernel.

Cumulated semi-Markov kernel.

Markov renewal kernel.

Conditional sojourn time distribution

in state i, before visiting state j.

Conditional cumulative sojourn time distribution
in state i, before visiting state j.

Sojourn time distribution

in state i, before visiting state j.

Sojourn time distribution in state i.

Cumulative distribution of sojourn time in state i.
Sojourn time distribution in state i.

Survival function in state i.

Transition function of the semi-Markov chain Z.
Transition function of the semi-Markov process Z.
Markov renewal matrix.

Hazard rate function.

Mean first passage time from state i to state j,
for semi Markov process Z.

Mean first passage time from state i to state j,
for embedded Markov chain J.

Stationary distribution of the EMC J.

Initial distribution of semi-Markov process Z.
Discrete-time matrix convolution product of A, B.
Stieltjes convolution of ¢, Q.

n-fold convolution of A € Mg(N).
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— Almost sure convergence (strong consistency).
N Convergence in probability.

2, Convergence in distribution.

dij Symbole of Kronecker.

T4 Indicatrice function of A.

N(0,0?) Standard normal random variable ( mean p =0 , variance o?).
DTMC Discrete-time Markov Chain.

cCTMC Continuous-time Markov Chain.

SMC Semi-Markov Chain.

SMP Semi-Markov Process.

RC Renewal Chain.

EMC Embedded Markov Chain.

MLE Maximum-Likelihood Estimator.

SLLN Strong Law of Large Numbers.

CLT Central Limit Theorem.

.U random variable.



Introduction

n recent years, the evolution of a system in applications concern queuing
theory, reliability and maintenance, survival analysis, performance eval-
uation, biology, DNA analysis, risk processes, insurance and finance, earth-
quake modelling, etc, is modelled by a stochastic continuous-time process
or discrete. Among the models which are widely used as a standard tool
to describe the evolution of a system, we have the Markov models and the

semi-Markov models.

Much work has been carried out in the field of Markov processes, and
a huge amount of Markov process applications can be found in the litera-
ture of the last 50 years. One of the reasons for applying Markov process
theory in various fields is that the Markovian hypothesis is very intuitive: if
we know the past and present of a system, then the future development of
the system is only determined by its present state. So, the history of the
system does not play a role in its future development. We also call this the
memoryless property. However, the Markov property has its limitations. It
enforces restrictions on the distribution of the sojourn time in a state, which
is exponentially distribution (continuous case) or geometrically distribution
(discrete case). This is a disadvantage when we apply Markov processes in

real-life applications.
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Therefore, we can introduce the semi-Markov process. This process allows
us to have arbitrary distributed sojourn time in any state and still provides
the Markov property, but in a more flexible way. The memoryless property
does not act on the calendar time in this case, but on the sojourn time in
the state.

The semi-Markov processes were introduced independently and almost
simultaneously by Levy [I8], Smith [30], and Takacs [31] in 1954-1955. The
essential developments of semi-Markov processes theory were proposed by
Pyke |25, 26], Cinlar [9], Koroluk and Turbin [I6, 5], Limnios [19], Takacs
[32]. For the semi-Markov processes, the distribution of the sojourn time in
a state can be arbitrary, and the future evolution depends on the time spent

through the last transition.

A semi-Markov process can also be defined by a two-dimensional process,
the first component represents the states successively visited by the process
(Markov chain) and the second describes the moments of change of process

state. This two- dimensional process is called Markov renewal process.

The problem of statistical inference for semi-Markov processes is of in-
creasing interest in literature. There is a growing literature concerning in-
ference problems for continuous-time semi-Markov processes. For instance,
Moore and Pyke (1968)[21] studied empirical and maximum likelihood esti-
mators for semi-Markov kernels; Lagakos et al. (1978)[17] obtained the non-
parametric maximum likelihood estimator for the kernel of a finite state semi-
Markov process with some absorbing states; Akritas and Roussas (1979)][I]
studied the asymptotic local normality: Gill (1980)[I1] constructed an es-
timator for the kernel of a finite state semi-Markov kernel, using counting
processes; Ouhbi and Limnios (1999)[23] studied empirical estimators for
non-linear functionals of finite semi-Markov kernels.

This master memory falls into four chapters.

In chapter 1, we give some background and some basic concepts,

properties, and theorems on homogeneous Markov chains and continuous-
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time homogeneous Markov processes with a discrete set of states.

In chapter 2, we consider a homogeneous discrete-time finite state
space semi-Markov model. We introduce its basic probabilistic properties
and we present their empirical estimators for the main characteristics (ker-
nel, sojourn time distributions, transition probabilities, etc.), which proves
to be also an approached maximum likelihood estimator. The estimation
made by considering a sample path of the discrete-time semi-Markov process
(DTSMP) in the time interval [0, M| with M an arbitrarily chosen posi-
tive integer. After having obtained these general results, we investigate the
asymptotic properties of the estimators, namely, the strong consistency and
the asymptotic normality. We continue by giving the Markov renewal equa-

tion in the discrete case.

In chapter 3, we develop the theory of continuous-time semi-Markov
processes. Results about estimation and the asymptotic behaviors of the em-
pirical estimators of this processes are also transposed here but other specific
results about Markov renewal equation and hazard rate function are given

as well.

In chapter 4 we present the R package semiMarkov for parametric
estimation in multi-state semi-Markov models and we give a detailed descrip-
tion of the package with an application to asthma control. After that, we
apply the nonparametric estimation of the semi-Markov model to the Coro-
navirus data sets in Tunisia and Algeria. For the Coronavirus data set in
Algeria, we use the R package semiMarkov to determine the hazard rate

functions in a parametric way.



Chapter 1
Introduction and preliminaries

In this chapter we introduce some basic concepts, properties, and the-
orems on homogeneous Markov chains and continuous-time homogeneous

Markov processes with a discrete set of states, which will be useful later.

1.1 Definitions and theorems

Consider a finite set E = {1, ..., s}. We denote by Mg the set of real matrices
on E x E and by Mg(N) the set of matrix valued functions defined on N,

with values in Mg.

Definition 1.1.1. (discrete-time matrix convolution product)
Let A,B € Mpg(N) be two matriz-valued functions. The matriz con-
volution product A x B is the matriz-valued function C € Mg(N) defined

by )
Cij(k) ==Y Ak =1)By(l), i,j€E, keN,
rek (=0

or, in matrixz form,
k

C(k):==> A(k—1)B().

=0

Lemma 1.1.1. [5] Let 01 = (3;;(k);i,5 € E) € Mg(N) be the matriz-valued

12
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function defined by

1, ifi=7 and k=0,
0i;(k) =
0, elsewhere.
or, in matrixz form,

I, ifk=0,

0, elsewhere.

oI(k) :=

Then 01 satisfies
MxA=AxdI=A, Aec MgN)

i.e., 01 is the identity element for the discrete-time matrix convolution prod-

uct.

Definition 1.1.2. (discrete-time n-fold convolution) Let A € Mpg(N)
be a matriz-valued function and n € N. The n-fold convolution A™ is the

matriz-valued function defined recursively by:

1, ifi=7 and k=0,

0, elsewhere,

that s,
A0 .= o1, AV = A and A .=AxAD,

Let (€2, F,P) be a probability space, let (E, ¢) be a measurable space and
let I be a set called a parameter set. Generally, I is a subset of R, usually N
or R,.
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Definition 1.1.3. (Stochastic process, state space)

A stochastic process is a family of random variables { X (t),t € I} defined
on (Q, F,P) with values in E. For every t € I, X(t) is a random variable
X(t) : Q@ — E, whose value for the outcome w € ) is noted X (t,w). If instead
of t we fix an w € Q, we obtain the function X (.,w) : I — E which is called
a trajectory or a path-function or a sample function of the process.

The set E is called the state space of the stochastic process X = (X(t),t €
I). The stochastic process may be denoted by X; instead of X (t) (respectively,
X, if I =N).

Theorem 1.1.1. (Strong Law of Large Numbers)[1J] Let (X, Xs,...)
is an infinite sequence of i.i.d. Lebesgue integrable random wvariables with
expected value E[X] = E[X5] = ..., then we have

—ZX 25 E[X].

n—oo

Theorem 1.1.2. (Glivenko-Cantelli theorem) [7] Let F,(z) = £ Z 1ix,<a)

be the empirical distribution function of the i.i.d. random sample Xl, e ,Xn.
Denote by F' the common distribution function of X; , 1 =1,...,n. Thus
sup |F,(z) — F(z)| =5 0.
zeR n—o0

Theorem 1.1.3. [T]|] Let (Y, )nen be a sequence of random variables and

(Np)nen a positive integer-valued stochastic process. Suppose that

Y, =% Y and N,, 2% .

n—0o0 n—oo

Then,
Yy, =5 Y.

n
n—o0

Definition 1.1.4. (Martingale) Let F = (F,,,n > 0) be a family of sub-o-
algebras of F such that F,, C F,,, when n < m. We say that ¥ is a filtration
of F. A real-valued F-adapted stochastic process X, is (F,-measurable for
n > 0) called martingale with respect to a filtration F if, for everyn = 0,1, ...

1. E|X,| < oo ; and



1.2 Discrete-time Markov chain 15

2. B[Xp1|F] = X, (a.5).

Theorem 1.1.4. (CLT for martingales)[6]
Let (X,,)nen+ be a martingale with respect to the filtration F = (Fy)nen
and define the process Y, = X,, — X,,_1, n € N* (with Y1 := X1), called a

difference martingale. If
1A RBIY2|F] n%o o? > 0;

2. %2221 E[Yk21{|Yk|>e\/ﬁ}] — 0, For all e > 0,

then
XTL a.s
— — 0,
n n—oo
and
1

Vi \/' e

Theorem 1.1.5. (Anscombe’s theorem)[S]
Let (Yn)nen be a sequence of random variables and (Np)nen @ positive

integer-valued stochastic process. Suppose that

P
\/_ZY 730./\/’00') and  No/n — 6,
where 0 is a constant, 0 < 6 < oco. Then,

N,
M, ,
m EIYmrjoN(O,O-)

1.2 Discrete-time Markov chain

Let (J,)n>0 be a stochastic process defined on a probability space (2, F, P),
with values in a measurable space (E, £). Unless otherwise stated, we assume
that E={1,2,...,s} or E={1,2,...}.

Definition 1.2.1. (Discrete-time Markov chain)
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1. A stochastic process (Jy)n>0 is called discrete time Markov process or

Markov chain with state space E if, for any n € N and any state se-

quence i1,13,...,1,7 € B,
P(Jn+1 - j | Jl - il, ceey Jn - Z) = ]P)(JnJrl = j|Jn = ’l)
—— ~~ -~ ——
Future Past and present Future  Present

2. If, additionally, the probability P(J,41 = j|J, = i) does not depend on

n, (Jn)n>0 1s said to be homogeneous with respect to time.

Definition 1.2.2. (Transition matriz )
The function (i,7) — pij = P(Jps1 = j|Jn = i) is called transition
function of the chain. For any i,5 € E and n > 0, the transition function

has the following properties :
1. pi; >0, for any 1,5 € E,

2. Zpij =1, foranyi € E,

jEE
J. Zpikpkj =P(Jny2 = jlJn =) = pz(JQ')'
keE

IfE finite, we can represent transition function as a square matriz ( transition

matriz ),

P11 - DPis
P = (Pij)ijeE = : :
Ps1 *° Dss

(= P(J, = j|Jo = i) is called the n-step transition func-

Notation: p;;

tion.

Remark 1.2.1. If E finite, p™ represents the usual n-fold matriz product
of p, that is

p™ =p".

In order to define a Markov chain (J,,),>0 we need :
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1. transition function (matrix) p = (pij)ijen-

2. a=(ay,...,qas), the initial distribution of the chain, that is the distri-
bution of Jy, a; = P(Jy = i) for any state ¢ € E.

Proposition 1.1. [5] Let (J,,)n>0 be a Markov chain of transition matriz p.

1. The sojourn time of the chain in a state 1 € E is a geometric random

variable of parameter 1 — py;.

2. The probability that the chain enters state j when it leaves state 1 s

2 (f07" pii # 1).

1—pii

Definition 1.2.3. (Stationary distribution) A probability distribution v

on E is said to be stationary or invariant for the Markov chain (J,)n>0 if,

forany 7 € E
ZV(i)pij = v(j),
jEE
or, in matrixz form,
vp =v,
where v = (v(1),...,v(s)) is a row vector.

1.2.1 State classification

Definition 1.2.4. (Accessible state) We say that state j is accessible from
state i, written asi — j if pgb) > 0. We assume every state is accessible from
O =1.

%

itself since p
Definition 1.2.5. (Communicate state) Two states i and j are said to
communicate, written as 1 <> j if they are accessible from each other. In

other words,

14<>7J means t—j and j— 1.

Definition 1.2.6. (Irreducible Markov chain) A Markov chain is said

to be irreducible if all states communicate with each other.
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Definition 1.2.7. (Recurrent state) A state is said to be recurrent if, any
time that we leave that state, we will return to that state in the future with
probability one. On the other hand, if the probability of returning is less than
one, the state is called transient. Here, we provide a formal definition: For

any state i, we define
Gy =P(J, =1, for some n > 1|Jy =1).
State i 1s recurrent if Gy; = 1, and it is transient if Gy < 1.

Definition 1.2.8. (Periodic,aperiodic state) A state i € E is said to be
periodic of period d > 1, or d-periodic, if d is equal to the greatest common
divisor of all n such that P(J,+1 =i|Jy =1i) > 0. If d = 1, then the state i is

said to be aperiodic.

Definition 1.2.9. (Ergodic state) An aperiodic recurrent state is called
ergodic. An irreducible Markov chain with one state ergodic (and then all

states ergodic) is called ergodic.

1.3 Continuous-time Markov chain

Definition 1.3.1. (Continuous-time Markov chain) Let (J(t))icr, be
a stochastic process defined on a probability space (Q, F,P), with values in a

measurable space (E,e). Unless otherwise stated, we assume that
E={1,2,...,s} or E={1,2,...}.

1. A stochastic process (J(t))ier, is called continuous-time Markov chain
with the state space E if, for any h, t > 0 and j € E we have

P(J(htt) = jlT(h) = in, s J(hn) = i, J(h) = §) = P(J(h+t) = j|T(h) = i)
0<h<...<h,<h,neN,i,... iyt 7J€E.

2. If P(J(h+t) = j|J(h) = i) does not depend on h, then (J(t))icr, is

said to be homogeneous with respect to time.
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Definition 1.3.2. (Transition matrix) Let (J(t))icr, be a continuous-

time Markov process with state space E. The functions defined on R by
t = pi(t) =P(J(h+1t)=jlJ(h) =i), i,j €E

are called transition functions of the process. The matriz p(t) = (pij(t))ijer
is called the transition matriz (possibly infinite) and (p(t))ier, is called the

transition semigroup of the continuous-time Markov process.

Proposition 1.3.1. (Properties of the transition function)[13]
1. p(t) is a stochastic matriz.
2. p(t) verifies the Chapman-Kolmogrov equation : p(t + h) = p(t)p(h).
3. p(0) =1.

Proposition 1.2. [12] Let T; be the waiting time in state i. The Chapman
Kolmogorov equation allows that T; always has an exponential distribution

with a parameter \; > 0
Gi(t)=P(T;<t)=1—e™, t>0, icE.

Example 1. From the definition of the Poisson process it follows that it is

the process with stationary independent increments and

At)F
IP’(J(t—l—h)—J(h):k):%e)‘t, keE, forall t>0, h>0.

FEach process with stationary independent increments is a homogeneous Markov

process with transition probabilities:
pij(t) =P(J(t+h) — J(h) =j—1).

Hence, the Poisson process is the homogeneous Markov process with the tran-

sition probabilities given by

pl](t) = - e s Z,j S E



Chapter 2

Discrete-time semi-Markov

process

Discrete-time semi-Markov processes (DTSMPs) and discrete-time Markov
renewal processes (DTMRPs) are a class of stochastic processes which gen-
eralize discrete-time Markov chains and discrete-time renewal processes.

For a discrete-time Markov process, the sojourn time in each state is
geometrically distributed. In the semi-Markov case, the sojourn time distri-
bution can be any distribution on N*. This is the reason why the semi-Markov

approach is much more suitable for applications than the Markov one.

2.1 Markov renewal chains and semi-Markov
chains
Let us consider:
e E the state space. We suppose E to be finite, with | E |= s.

e The stochastic process J = (J,,)n,>0 with state space E for the system

state at the n'* jump.

e The stochastic process S = (S, ),>0 With state space N for the n'* jump.
We suppose Sy =0and 0 < S; < S < ... <85, < Spi1 < ...

20



2.1 Markov renewal chains and semi-Markov chains 21

e The stochastic process X = (X,,),>0 with state space N* for the sojourn
time X, in state J,_; before the n'* jump. Thus, X, = S, — S,_1, for
all n € N*.

states

A (X,) : sojourn times
(J,) :states of the system
X, (S,) : jump times
{J1=J } X . i
Uy —
h o
.=k} —<
| I | | )
S 5, S, .. S, Spn - time

Fig 1.1 : Sample path of a semi-Markov chain.

Definition 2.1.1. (Markov renewal chain) The stochastic process
(J,S) = (Jn, Sn)nen s said to be a Markov renewal chain (MRC) if for all
n €N, foralli,7 € E and for all k € N it almost surely satisfies

P(Jps1 = §, Sns1—Sn = klJor -+, Jui Sor -y Sn) = P(Jurs = jy Sps1—Sn = k|J,).
(2.1)

Moreover, if equation ({2.1)) is independent of n, (J,S) is said to be ho-
mogeneous, with discrete semi-Markov kernel q = (¢;;(k);i,5 € E,k € N)
defined by

¢ (k) = P(Jns1 = 7, X1 = k|J, = 4), k> 0, and ¢;;(0) = 0.

Let us introduce the cumulated semi-Markov kernel
Q = (Q(k),k € N) € Mg(N) defined, for all i, 7 € E and for all k£ € N, by

k
Qij(k) = P(Jup1 = J, Xon < klJu=1) = i (1),
1=0
Proposition 2.1. [5] For alli,j € E, for all n and k € N, we have

P(J, = j, S = k|Jo = i) = ¢ (k).
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Proof. We prove the result by induction. For n = 0, we have
P(Jo = j, So = k|Jo = i) = qf?)(/f)-

Obviously, for k # 0 or ¢ # 7, this probability is zero. On the other hand,
if © = j and k = 0, the probability is one, thus the result follows.
For n = 1, the result obviously holds true, using the definition of the semi-
Markov kernel q and of ql(; )(k:) For n > 2:

k—1
P(Jo =5, S =klo=1) = > Y P(Jo=jSa=kJi=rS =IJ=1i

relk [=1
k—1

= Y Y P(Ju=4.Sa=kli=r 8 =1Jy=1i)
rek [=1

]P)(Jl =T, Sl = Z|J() == Z)

:ZZP =4S =k—=llJo=1)P(Jy =r, Xy =1|Jy = i)

rekE =1
= ZZW Dk = Dain(l) = g} (k).0
rek =1

Let us also consider the matrix function ¢ = (¢(k), k € N) € Mg(N),
defined by

k
s (K Zq =Y " ¢"(k), i,j€B, keN
n=0

The infinite series which appears in the definition of ¢) proves to be a
finite series due to the fact that qz")(k) = 0 for all n and k£ € N such that
n > k. Note that this property is specific to a semi-Markov process with

discrete-time.

Definition 2.1.2. (Discrete-time semi-Markov chain) Let (J,S) be a
Markov renewal chain. The chain Z = (Zy)ken 1S said to be a semi-Markov
chain associated to the MRC (J,S) if

VAR JN(k)a keN
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where

N(k) := max{n >0; S, <k},

is the discrete-time counting process of the number of jumps in [1,k] C N.

Thus Zy, gives the system state at time k. We have also J, = Zg,.

Let the row vector a = (ay, ..., ;) denote the initial distribution of
the semi-Markov chain Z = (Zy)gen 1€ o :=P(Zy =1i) =P(Jy =), i € E.

Remark 2.1.1. J = (J,,)nen is a Markov chain, called the embedded Markov
chain (EMC).

Definition 2.1.3. (Transition function of the semi-Markov) The tran-

sition function of the semi-Markov chain Z is the matriz-valued function
P = (P(k);i,j € E,k € N) € Mg(N) defined by

P’L<k) = P(Zk :J|ZO :Z),’L,j € Eak eN.

Definition 2.1.4. (Conditional distributions of sojourn times) For all
i,j € E, let us define:

o fii(.), the conditional distribution of sojourn time in state i before going

to state j:
fij(k) =P(Xps1 = k|Jy, =4, Jps1 = J), VE €N
o Fi;(.), the conditional cumulative distribution of X1, n € N:
k
Fij(k) :=P(Xps1 < k[Jy =i, Joy1 = j) = > _ fi(1), Vk€N.
1=0
e h;(.), the sojourn time distribution in state i:

hi(k) :=P(Xps1 = klJ, = i) =Y qi;;(k),Vk € N,

jEE
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e H;(.), the sojourn time cumulative distribution function in state i:

k
H;(k) :=P(Xps1 < k[Jo =14) = > hi(l),Vk € N,

=1

o H,(.), the survival function of sojourn time in state i:

Hi(k) :=P(X,41 > k|J, =i),Vk € N.
Obuiously, for alli,j € E and k € N, we have ¢;;(k) = pi; fi; (k).

The following assumptions concerning the Markov renewal chain will be

needed in the rest of this work.

A1 The Markov chain (J,),en is irreducible.

A2 The mean sojourn times are finite, i.e. > ,_,kh;(k) < oo for any state
1 € E.

A3 The Markov renewal process (J,,, Sy, )nen is aperiodic.

2.2 Elements of statistical estimation

Let us consider a sample path of the DTMRP (J,,, Sy,)nen, censored at

time M € N (Xy(a)41 s above uyy but it is unknown by how much).

H(M) = (J07 D ST JN(M)—17 XN(M), JN(M)7 UM)7

where N (M) is the number of jumps of the process in [1, M] C N and

upr = M — Sy is the censored sojourn time in the last visited state Jy ).

2.2.1 Empirical estimators

Taking a sample path H(M) of a DTMRP, for all 7,5 € E and
k € N, k < M, we define the empirical estimators of the transition matrix of
the embedded Markov chain p;;, of the conditional sojourn time f;;(k) and
of the discrete semi-Markov kernel ¢;;(k) by
Nij (M) Nij(k, M) Nij(k, M)

N;(M)’ ﬁj(k?,M) = Ny, (M) gij(k, M) =

pij(M) :=
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where N;;(k, M), N;(M) and N;;(M) are given by

N(M)
o N;(M) := Z 1¢5,—4 : the number of visits to state 4, up to time
n=1

M,

N(M)
o Nij(M) = Z 15, =iJg,—;3 : the number of transitions from ¢ to
n=1

J, up to time_]W;

N(M)
Nij(k,M) = Z 1, \=iJ.—jx,—k} : the number of transitions
n=1

from 7 to j, up to time M, with sojourn time in state 7 equal to k,
1<k< M.

The likelihood function corresponding to the history H (M) is

N(M)

L(M) =y H ka,leka,le (Xk)FJN(M)(UM)a
k=1

where H Inon 18 the survival function in state i and «; is the initial distribu-
tion of state i.

Lemma 2.2.1.1. [5/
For a semi-Markov chain Z = (Z,)nen we have

UM/M £> 0.
M—o0

The previous lemma tells us that, for large M, uy; does not add significant
information to the likelihood function. For these reason, we will neglect the
term ﬁJMM) (upr) in the expression of the likelihood function L(M). On the
other side, the sample path H(M) of the MRC (J,,, S )nen contains only one
observation of the initial distribution « of (J,,)nen, so the information on ay,
does not increase with M. As we are interested in large-sample estimation of
semi-Markov chains, the term «;, will be equally neglected in the expression
of the likelihood function.
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Consequently, we will be concerned with the maximization of the ap-
proached likelihood function defined by

N(M)
Li(M) = ] porsfnen(X5). (2.3)

k=1
Proposition 2.2. [j] For a sample path of a DTMRP (J,,, Sy)nen, censored
at time M € N, the empirical estimators p;;(M), ﬁj(k:,M) and g;;(k, M),
proposed in equation (2.2]), are approached non-parametric maximum likeli-

hood estimators i.e. they maximize the approached likelthood function Ly,
given in equation (2.3)).

Proof. We consider the approached likelihood function L (M) given by
equation (2.3). Using the equality

j=1

the approached log-likelihood function can be written in the form

log Ll Z Z zg IOg plj) + Nz](k M) 10g(fz] + )\ 1-— sz]
k=114,5=1

(2.5)
where the Lagrange multipliers \; are arbitrarily chosen constants.
In order to obtain the approached MLE of p;; we maximize equation ([2.5]
with respect to p;;, and get p;; = N;;(M)/A;. Equation (2.4] . ) becomes

- —~ Ni;(M)  N;(M)
7=1 7j=1

1

Finally, we infer that the values )\; which maximize equation (2.5) with
respect to p;; are given by \; = N;(M) and we obtain

~ _ Ny (M)
pij(M) = N

The expression of ﬁ»j(k;, M) can be obtained by the same method. Indeed,

using the equality
k=1
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we write the approached log-likelihood function in the form

IOg L1 Z Z z] 10g ng) + NZJ (k M) log(flj + )\23 Z fl]

k=114,j=1
(2.7)

where A;; are arbitrarily chosen constants. Maximizing with respect to
fi;(k) we obtain fi;(k, M) := Ni;(k, M)/;.

From Equation (2.6) we obtain \;;(M) = N;;(M). Thus
Jig(k, M) = Nij(k, M)/ Ny (M).

In an analogous way we can prove that the expression of the approached
MLE of the kernel ¢;;(k) is given by equation ((2.2). O

Lemma 2.2.1. [5] For a MRC that satisfies Assumptions A1 and A2, we

have:

1. lim Sy =00 a.s;

M—o00
2. lim N(M) =00 a.s.
M—o0
Lemma 2.2.2. [5] For the DTMRP (J,, Sp)nen. We have
Ny(M) as. 1 N;;j(M) a.s pij N(M) as 1
M it Bt M g mt M VO

where u;; is the mean recurrence time of state i for the semi-Markov process
(Zn)nen, (v(1);1 € E) the stationary distribution and [ is an arbitrary fived

state.

2.3 Asymptotic properties of the estimators

In this section, we study the asymptotic properties (consistency and asymp-
totic normality) of the proposed estimators p;;(M), ﬁj(k‘, M) and @;;(k, M).

2.3.1 Strong consistency

Corollary 2.3.1. [5] For any i,j € E, under A1, we have
Nij(M)  as
N,(M) Moo P

Fori,j € E two fized states, let us also define the empirical estimator of the

pij(M) =

conditional cumulative distribution of (X, )nen+
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k k
By M) = 3 Tt M) = 3 % (28)

1=0 1=0
The following result concerns the convergence of fA}j(l{;, M) and ﬁ’ij(k;, M).

Proposition 2.3. [3] For any fived arbitrary states i,j € E, the empirical
estimators fi;(k, M) and ﬁij(l{:, M) proposed in equations (2.2)) and 1) are
uniformly strongly consistent, i.e.

1. max max |Fj;(k, M) — Fy(k)| —~=— 0.

1,J€E 0<k<M M— o0

2. max e £ M) = fiy()| =2 0.

i,jEE 0<k<M M—s00

Proof. We first prove the strong consistency of the estimators using the
SLLN theorem [I.T.T] . Second, we show the uniform consistency, i.e., that
the convergence does not depend on the chosen k, 0 < £ < M. This second
part is done by means of the Glivenko-Cantelli theorem |1.1.2]

Obviously, the strong consistency can be directly obtained using Glivenko-
Cantelli theorem [[.1.2] Anyway, we prefer to derive separately the consis-
tency result because it is easy and constructive.

Let us denote by {n, no,. .. ,nNij(M)} the transition times from state i to

state j, up to time M. Note that we have

R 1 Nij (M)

ok, M) = —— 1 ,
i (k, M) N () ; (X <h}

and
1 Ni; (M)
NZ(M) Z 1{an:k}'

=1

ﬁj(ka M) -

For any [ € {1,2,..., N;;(M)} we have
E[l{anSk}] = I[D(an < k) = Flj(k)a

and
E[lix, =] = P(Xy, = k) = fi;(k).
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Since N;;(M) Ma—s> 00, applying the SLLN theorem [1.1.1{to the sequences
— 00

ofi.i.d. random variables {1{an§k}}le{1,2 ,,,,, N;; ()} and 1{an:k}}l€{l72 .... Niy (M)}
and using Theorem [1.1.3], we get
Nij (M)
ﬁ(k: M) — 1 Z 1 LGN E[l ]ZF(k’)
Y ’ N(M) = {X"lgk} M—o00 {anﬁk} ) )

v

and
1 Ny (M)
fij(k, M) = N, (A1) > Lix=n = Bl -] = fi().
t =1

In order to obtain uniform consistency, from the Glivenko-Cantelli theorem

[1.1.2] we have

0<k<m m M—00

1 & a.s
max |— Y yx, <ky — Fy(k)] =5 0.
=1

1 m
Let us define &, := Jmax |E Z 1(x,, <k} —Fij(k)|. The previous convergence
== I=1

tells us that &, =% 0. As N(M) Ma—3> oo ([2.2.1) applying Theorem [1.1.3
m—00 — 00

we obtain {n(ar) Ma—8> 0 which reads
—00
omax |Fi(k, M) — Fi(k)| = 0.

As the state space E is finite, we take the maximum with respect to i,j € E
and the desired result for Fy;(k, M) follows.

Concerning the uniform consistency of ﬁj(k’, M), note that we have

max max |fi;(k, M) = fij (k)] = max max |Fy(k, M)—Fy;(k—1, M)—=Fy;(k)+F;;(k—1)|

i,j€E 0<k<M i,j€E 0<k<M

< max max |Fj;(k, M) — Fy;(k)| + max max |Fy;(k—1, M) — Fy;(k —1)]

i,jEE 0<k<M i,j€E 0<k<M

and the result follows from the uniform strong consistency of ]*A}j(k, M).O

Proposition 2.4. [5] The empirical estimator of the semi-Markov kernel

proposed in equation (2.2)) is uniformly strongly consistent, i.e.

q; a.s.
max max |g;;(k, M) — ¢;(k)| == 0.
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Proof. Firstly, from Corollary 2.3.1] we immediately obtain the almost

sure convergence of p;;(M).

The uniform strong consistency of g;;(k, M)

follows from the consistency of the estimators p;; (M), f:j(k, M) (Proposition
and from the following inequality

g}ggog%ﬁwij(kaM) — qii (k)| =

IN

<

max max [Py (M) fi;(k, M) — pi;(M) fi; (k)
+0ii (M) fi5(k) = pij fi3 (k)|

max py; (M) max max |f;;(k, M) — fi;(k)]
+max max fi;(k) max [p;; (M) — pl

max [pi;(M) — pyj| + max max |fij(k, M) — fi;(k)].

i,j€EE 0<k<M

The conclusion follows from the consistency of p;;(M) and ﬁj(k;, M) O

2.3.2 Asymptotic normality

We present further theorem CLT for additive functionals of Markov re-

newal chains. Let f be a real function defined on E x E x N. Define, for each

M e N, the functional W;(M) as

N(M)
Wi(M) =" f(Jnt, Jny Xn),
n=1
or, equivalently,
s Nij(M)

where Xj;, is the n'" sojourn time of the chain in state i, before going to

state j. Set

)4i5(),

> g
r=1

ZfQ(ivja x)qzj(x)a

Ai = XS:AZ‘J‘7
7j=1

Bi = i Bij;
7=1
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if the sums exist. Define

S

T = ZAJ-M?, my =T
=1 ij Hii
0-1‘2 = 7 +ZB :uzz +2ZZZATZA M*ulz—i_uzk :ulk: B 02
r=1 I#i k#i TTH kk M”

Where 1 is the mean recurrence time of state i for the Markov chain (.J,,),,>0.

Theorem 2.3.1. (Central Limit Theorem) [21|]
For an aperiodic Markov renewal chain that satisfies Assumptions A1 and
A2 we have W)
7 D

Theorem 2.3.2. [J] Fori,j € E, and k € N,
VMI[gij(k, M) — qi;(k)] converges in distribution, as M — oo, to a zero mean

normal random variable with variance p;q;;(k)[1 — g;;(k)].

Proof. We present two different proofs of the theorem. The first one is
based on the CLT for Markov renewal chains (Theorem [2.3.1]). The second
one relies on the Lindeberg-Lévy CLT for martingales (Theorem [1.1.4)).

Method 1.
v N N(M)
VM Igij(k, M) — q;;(k)] = Ni(M) VAT D Mmixami =@ (W)L =iy = D> f(nors Jus Xan).
¢ n=1 n=1

Let us consider the function

Fm, Lu) i= Lpmmii—ju=k} — Gij (k) Lim=i}.

Using the notation from the Pyke and Schaufele’s CLT, we have

N(M) N(M)
Wi(M) =" f(Jnets T Xn) = D> [Lumjixa—iy — 6 (B)] 1, =iy

n=1 n=1
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In order to apply Pyke and Schaufeles’central limit theorem for Markov re-
newal processes (Theorem [2.3.1)), we need to compute A, A, Bini, B, my
and By for m,l € E.

Aml = Zf(m,l,u)qmz(u),
= Zl{m i, l=7,u= k:}le Zl{m z}qu qml(u)

= 5mi5lj Z 1{u:k}%]( - mzqw Z QZI - qU 5mi(5lj - pil)

u=1

A, = ZAml = q@'j(k)émi[z O — Zpil] =0
=1 =1 =1

Bml = Z f2<m7 l7 u>qml(u)
u=1

= Zl{m 1,l=7,u= k}le +Zl{m Z}qw qml(u>

-2 Z ]-{m:i,l:j,u:k}qij (k)le (U)

u=1
= Qij(k)5mi5lj + Q?j(k)dmipil — Qq?j(k)émiélj
Bm = Z Bml mqu )[1 - %](k)]

Finally, we obtain

S

:U’u i
ry = A = O, mye . = — = 0’
mz_l Honm, / i
S * 2
Fii g; @i (k)1 — q;(k
o2 = Y B S, Bye= 2 = WL G
m=1 Fmm Mg i

Since N;(M)/M Ma—s> 1/ (see Lemma [2.2.2), we conclude as follows:
—00

VMG (k, M) = g (k)] =3 N0, i (R)[L = g455(k)]).
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Method 2.
For i,j € E arbitrarily fixed states and k& € N arbitrarily fixed positive
integer, we write the random variable v M[g;;(k, M) — g¢;; (k)] as

M

VM{Gi;(k, M) — q;(k)] = N.OD) Vi > [Lmixamsy — 65(F)] L, =iy

Let F,, be the o-algebra defined by F,, := o(J;, X;;1 < n),n > 0, and let Y,
be the random variable

Yo = 1 =i dn=j Xn=k} — Gij (k) 1{s,_ =i}

Obviously, Y,, is F,,-measurable and F,, C F,, .1, for all n € N. Moreover, we

have

]E(Yn ‘ Fn—l) = ]P)(Jn 1 = Z J = j, = k | fn 1) qu(k?)]P)(Jn_l =1 | fn—l)
= ]-{Jn,l:i}]P)(Jn = ijn =k | Jn—1 = Z) - qij<k)1{Jn71=i}
= 0.

Therefore, (Y;,)nen is an F,-martingale difference and (3", Y})ien is an F,,-

martingale. Note also that, as Y] is bounded for all [ € N, we have
fZE (Y Lgysevmy) — 0.
For any ¢ > 0. Using the CLT for martingales (Theorem [I.1.4) we obtain

\/_ZYT;ZNOJ) (2.9)

where 0% > 0 is given by

2
JEQOTZEY | Fi-1)

As N(M)/M Ma—s> 1/v(l)puy applying Anscombe’s theorem (Theorem [1.1.5
—00

we obtain

Yl—>Noa) (2.10)



2.3.2 Asymptotic normality 34

To obtain ¢, we need to compute Y and E(Y;? | F;_;). First,

Yf = 1{J171=i»=7l=j7Xz=k} + (q@'j(k))Ql{Jl,lzi} - 2%’;’(k)l{Jl,lzi,JFj,Xl:k}-
Second,
EY? | Fia) = ly,=gPUh=5Xi=k| Ji1=1)
(g (k)1 =iy — 21 =05 (R)P(Ji = J, Xo = K | Jia = 10)
= Ly ,=i05 (k) + (05(K) s =iy — 2(05(k))* 1 =iy
= 1y, ,=a;(k)[1 — qi(K)].

Thus, o2 given by

o? = lim ( Z Loa=)4is (R)[1 = qi5 (R)] = v(0)gi; (k)[1 = g5 ()],

n—)oo

where v is the stationary distribution of the embedded Markov chain (J, )pen-
The random variable of interest v M[g;;(k, M) — ¢;;(k)] can be written as

VM(Gi(k, M) — qi;(k)] = %L VN (M \/7 Z

S A1 ﬁN‘M

NZ(M> a.s 1
H _’
N(M) s, 1
M M—r00 V(Z')p,ii '
Using these results and convergence ([2.10]), we obtain that
VMI[gij(k, M) — q;;(k)] converges in distribution, as M tends to infinity, to

a zero-mean normal random variable, of variance
oo(iy g k) = (pa/1/ paav (i) v()qi; (k)1 — qi; (k)]
= piidij(k)[1 — qi;(K)],

Note that we have

which is the desired result. O
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2.4 Markov renewal equation

Definition 2.4.1. (Discrete-time Markov renewal equation).
Let L = (Lij(k);i,7 € E,k € N) € Mg(N) be an unknown matriz-valued
function and U = (U;j(k);i,5 € E,k € N) € Mg(N) be a known one. The

equation
L(k) = U(k) + Q+L(k), keN,
is called a discrete-time Markov renewal equation (DTMRE).

The following result consists in a recursive formula for computing the
transition function P of the semi-Markov chain Z, which is a first example

of a Markov renewal equation.

Proposition 2.5. (Markov renewal equation of the semi-Markov)[5]
For allv,7 € E and k € N, we have:

Py(k) = 6] +Zqu Pk = 1), (2.11)

rek =0

For all k € N, let us define H(k) := diag(H;(k);i € E), H:= (H(k); k € N).

In matriz-valued function notation, equation becomes
P(k)=(I-H)(k) +q*P(k), keN
Proof. For all 7,j € E and k € N, we have

Pij(k) = P(Zk = jlZo = i)

k

rekE (=0

K
= > N P(Z=jlZs, = 7.5 =1,Zo = i)P(Jy = 1,8 = 1| Jy = i) + 6;5(1

rek =0

= D Y P(Zior = jlZo = r)P(Jy =, X1 = 1| Jy = i) + 6;5(1 — Hy(k))

rekE =0

= i —1—223«] Dair (1),

rekE [=0

— Hi(k))
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and we obtain the desired result.0]
Solving the Markov renewal equation for the semi-Markov transition func-

tion P [3] we obtain that the unique solution is

P(k) = (61— )"V % (I - H)(k) = (¢ (I - diag(Q - 1)))(k),
where (61 — )" denotes the left convolution inverse of the matrix function
(0I — q), H(k) := diag(H;(k));ce and 1 denotes the s-column vector whose

all elements equal 1.
We propose the following estimator for P(-):

P(k,M) = [(01—d(-, M)V % (I - diag(Q
= [(-, M) * (I - diag(Q(-, M) - 1)

(-, M) - 1))](k)
(k).

Theorem 2.4.1. [J|] The estimator of the semi-Markov transition matriz is
strongly consistent and, for any fived k € N, k < M, and 1,7 € E, we have

V(P (k, M) = Py(k) 25 N(0,0%(k)),

ofi(k) = Z Hmm {Z[Csqujij — (1 —H;) = ¢im¢rj]2 * er(k)}
(1 - j) * wimwrj * er] (k’),

and ¥ = (U(k),k € N € Mg(N) is the matriz renewal function of the

DTMRP given by
k k
Wy(k) =B N;(R)] = D> QW (k) =Y " wi;(1), i,j €E and k € N.
=0



Chapter 3

Continuous-time semi-Markov

process

This chapter provides the definitions and basic properties related to
Continuous-time semi-Markov process (CTSMP). The semi Markov process
(SMP) is constructed by the so-called Markov renewal process (MRP) that
is a special case of the two-dimensional Markov sequence. The MRP is
defined by the transition probabilities matrix, called the renewal kernel and
an initial distribution, or by other characteristics that are equivalent to the
renewal kernel. The counting process corresponding to the SMP allows us to
determine the concept of process regularity. The process is said to be regular
if the corresponding counting process has a finite number of jumps in a finite

period.

3.1 Definitions and properties

Definition 3.1.1. (Markov renewal process) Let E be the state space.
A Markov renewal process is a bivariate stochastic process (J,, S,) where J,
are the values of the state space E in the Markov chain and S,, are the jump
times. We define X, 11 = Spi1 — Sp to be the sojourn time in the state. The

process has to satisfy the following equality

P((]n+1 = j, Sn+1—Sn S t|J0, Jl, ey Jn, SO, Sl, ey Sn> = P(Jn—f—l == j, Sn+1—Sn S t|<]n),
(3.1)

37
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forallj € E, allt € Ry and alln € N.

Definition 3.1.2. (Renewal matriz, renewal kernel) Let E be the state
space and consider the Markov renewal process (J,, Sy), we define

Xni1 = Spa1 — Sy to be the sojourn time in the state. The matrix defined as

Qi (1) 1= P(Jnsr = J, X < ]I = i),

15 called a renewal matriz. We identify the renewal matrix Q as the renewal

kernel.

Proposition 3.1. [12] The Markov renewal matriz Q satisfies the following

conditions:
(i) Forallt> 0 andi,j € E, it holds true that Q;;(t) > 0.
(ii) The functions Q;;(t) are right-continuous.

(iii) For all i,j € E, it holds true that Q;;(0) = 0 and Q;;(t) < 1 for all
t>0.

(iv) For alli € E, it holds that tlggonij (t) =1.

jEE
Definition 3.1.3. The probabilities
pij = Jim Qy(t) = Qy(0)
= P(Jus1 =j|Jn =1),

are the transition probabilities from state i to state j of the embedded Markov
chain {J,;n € N}.

We assume that the transition probabilities do not depend on the time n.

Proposition 3.2. [12] For a Markov renewal process with a renewal kernel
Q(t),t > 0 a following equality is satisfied

P(Jo =g, J1 =41, X1 < t1, .., Jp =in, Xy < tp) = igQigiy (1) Qiyin (t2) - - - Qi _1i (t0),
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where o, = P(Jy = ig) is the initial distribution of the Markov renewal
process.
Forty — o0,...,t, — 00, we obtain

P(Jo =0, J1 = i1, ..., Jn = in) = QigDigiy Pirin - - - Din_1in-

Definition 3.1.4. (Continuous-time semi-Markov process) Consider a
Markov-renewal process {(J,,S,) : n € N} defined on a complete probability
space and with state space E. The stochastic process {Zy;t € R, } defined by

Zi = Inw,

is called a Semi-Markov Process (SMP) where N(t) = max{n € N: 5, <t}
15 the counting process of the semi-Markov process up to time t. we can also

define the semi-Markov Process by
Zy = J, Fort €[Sy, Sni1), n € N,

Definition 3.1.5. we define the transition matriz of the process {Z;;t > 0}

as

P(t) = {P;(t):4,j € E},
Py(t) = P(Z = j|Zy = 1),
= P(Inw = jlJo = 1).

For alli,j € E.
Then the unconditional semi-Markov state probability is equal to

Pit) =

=

Zp = ]) = IED(JN(t) = ])

I
'M"’

P(JIng = jlJo = 0)P(Jo = i)

=1

M.

aiPij (t)

=1

Where «; = P(Jy = i) is the initial distribution of the Markov renewal

process.
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Definition 3.1.6. (Regularity of SMP) A SMP {Z;;t € R.} is said to
be reqular if the corresponding counting process {N(t);t > 0} has a finite

number of jumps in a finite period with probability 1:

vVt € Ry, P(N(t) < o) = 1. (3.2)
The equality 1s equivalent to a relation

vVt e Ry, P(N(t) = o0) = 0.

Definition 3.1.7. (Distribution functions of sojourn time) for all
i,j €E, Vt € R,.

1. F;(.), the distribution function associated with the sojourn time in state

1, before going to state j:

Fij(t) :=P(Xpy < t]Jn =i, Juy1 = j).

2. H;(.), the distribution function of the sojourn time, also called the wait-

ing time, in state i:

Hi(t) = P(Xp1 < t[Jy=1) = > Qis(t).

jJEE
From the definition before we can derive the following result.

Proposition 3.3. [12] It holds true that
Fy(t) = %0,

Pij

Forallt >0 and i,j € E
Proof. From the definition of conditional probabilities, it follows that

Fi(t) = P( X1 <t|Jp=1,Jni1=7)
P(Xp1 <t Jp=1,Jps1 =17)
P(Jy =i Jng1 = J)
P(Xo1 <t,Jp=1,Jnt1=17) P(J, = i)
P(J, = 1) P(J, =1, Jut1 = J)
P(Joi1 = j, Xng1 < t|J, = 1)
P(Jn+1 =J,Jn = Z)
Pij
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3.2 Elements of statistical estimation

Estimators for semi Markov kernel @);;(¢) are defined on sample functions
of the MRP over [0, M]. These sample functions of the MRP are equivalent
to the sample functions (Jo, J1, ..., Inary, Xo, X1, - Xnn)-

3.2.1 Empirical estimators

Let M be the end time of the process. For the semi-Markov kernel Q;;(¢)

we have the following empirical estimator

N(t)
Qij(t, M) = m Z V(g =i dn=j Xp <t}

n=1

where
N(t)

Ni(M) = Z lej,=iy = Z 1¢s,=i,s,<m}-
n=1 n=1

We define the empirical estimator of the transition matrix of the embedded

Markov chain p;; by

Pij =
where

N(t) oo
N'L] (M) = Z 1{Jn71:i:Jn:j} = Z ]‘{Jnflzi’t]n:innSM}'
n=1 n=1

Because Fj;(t) = Q;;(t)/pij, in a similar way we obtain that
Fyy(t. M) = Quy(t, M)/iy(M) with
N(t)
Fy(t, M) = 55 D LonormistumsXast)-
n=1
The quantities ﬁij (t, M) and p;; are respectively the empirical estimators
for the conditional transition functions and the transition probabilities. We
see that for p;; we divide the number of transitions from state i to state j by

the (total) number of visits to state i.
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3.2.2 Asymptotic properties of the estimators
Strong consistency

From corollary (2.3.1)) the empirical estimator p;;(M) of p;; for all 4, j € E is

strongly consistent, i.e.

pij(M) J\ﬁ;pij-

Theorem 3.2.1. [10] The empirical estimator @ij(t,M) of Qij(t) for all
1,7 € E is strongly consistent, i.e.

max sup @i-t,M — Qi) —==—0
max sup QM) = Q)] 2

Proof. It holds true that Q;;(t) = Fj;(t)p;; and therefore

~

@ij(t, M) = F;;(t, M)p;;(M) as well. Then it follows that

max sup |Qi;(t, M) — Q(t)] = max sup [Fy(t, M)p;;(M)) — Fi;(t)pi;l
4J€E tefo,M] LIEE te(o,M]
= maX sup |Fw<t,M)]/)\ZJ(M)) _Ej(t; M)p”
HIEE tefo, M)

+Fi(t, M)pij — Fij(t)psj]
max sup |Fj;(t, M)pi;(M)) — Fi;(t, M)pij|
i,jEE tE[O,M}

+max sup [F;(t, M)pi; — Fi;(t)pij|
LICE 1[0, M]

IN

= max sup |Ej(t7M)(@j(M)_pij)’

LI€E te(0,M]

+max sup |(Fi;(t, M) — F;(t))ps]
LIEE te(0,M]

= max sup [p;(M) — py|F;(t, M)
LICE 1[0, M]
+max sup |F(t M) — Fy(0)|pis
LIEE tefo,M]
The first term converges to 0 (a.s.). The second converges to 0 (a.s.) as
well by theorem (Glivenko-Cantelli theorem [1.1.2)). O



3.2.2 Asymptotic properties of the estimators 43

Asymptotic normality

It is assumed throughout that the MRP is irreducible, recurrent, and that
F;; = H; for 1 < j < s. This last assumption incurs no loss of generality as

is pointed out in [27]. Consider the estimator defined by:

Qui(t. M) = H(t, M)pi;(M) (3.3)
N; (M)
Hi(t,M) = N;(M)™" e(t — Xu) (3.4)

and where €(u) equals one if u > 0 and zero otherwise. H;(t, M) is therefore
the ordinary empirical distribution function determined from the sample, of
random size N;(M) , of the holding times in state i.

The limiting distributions of the quantities in (3.3) may be obtained as
consequences of the central limit theorem for MRP (|3.2.2)).

For a real measurable function f, defined on E x E x R. Define, for each
M > 0, the functional Wy (M) as

N;(M)

where X, is the n'* sojourn time of the chain in state i ie X;, = S/, — Si.
The functional Wy (M) can be defined only if the series in (3.5]) converges.
Set

Ay = / £, 4, 7)dQu ZAW,

Bij = / (f(zvja )) dQZ] ZBZ]’
0
Let p;; and p;; denote the mean first passage times from state i to j in the
MRP and in the corresponding Markov Chain,{J,;n > 0}, respectively.
Write
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S

ry = Z Aj M}}

j=1 Jj
y ii - * *i+ :_ i
# o e B 23T A
= M T E i v FieHick
Finally, put
T
my = —
Hii
2
Bf = O——Z
His

Theorem 3.2.2. (Central Limit Theorem)[21]
For an irreducible recurrent MRP and if the above moments are finite,

we have,
Ajilﬂ[”f(ﬂj) M'”Lf]M N(Ova)
—00

To apply this result in the proofs of the theorems of this section it will
only be necessary to produce the appropriate function f and to compute the

corresponding moments.

Theorem 3.2.3. [2]|] For fized i, j, t,
(MY2[p;;(M) — py;), MM2[H;(t, M) — H;(t)]) converges in law as M — oo to
a bivariate normal r.v. with means zero and covariance matriz (o;;) given by

o11 = piipi;(1 —pij), 020 = pi i () (1 — Hy(t)), o012 =091 = 0.

Proof. Let w; and wsy be arbitrary constants. To prove the asymptotic

joint normality it suffices to show that
wi M2 [5i;(M) = pig] + wa M2 [Hi(t, M) — Hy(1)], (3.6)

converges in law to a normal r.v. for all w; and ws. We rewrite (3.6) as
the product of [M/N;(M)|M~*/2? and a sum of the form (3.5) by using the
function f defined by

f(rys,y) = {wilds; — pis] +wale(t —y) — Hi(t)]}0r:. (3.7)
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For this function
A = wi0rilprj — pij] + w2byi[Hy () — Hi(t)] = 0,
and
B, = {wilpr + 0l — 2Pespis] + w3l H, () + H (t) — 2H,(£) Hi(1)]}0,4,

for [ <r < s ; hence r; and the third sum in (3.6| is zero. Then

o7 = Br% = wipij[1 — pij] + w2 Hi()[1 — Hi(t)].

r=1 rr

The variance o7 is finite, so from Lemma 7.1 of [27] the limiting distribu-
tion of M~Y2W;(M) for the f given in is normal with zero mean and
variance o2 /p;. But M/N;(M) — pg (a.s.) so the limiting distribution of
is normal with zero mean and variance o7y as required. O

The zero correlation between p;; and f-\li(t, M) yields the following results.

Corollary 3.2.1. [2]] For fized i, j, t, p;; and f[i(t, M) are asymptotically

independent.

Theorem 3.2.4. [2]1] The empirical estimator @ij(t, M) is asymptotically
normal, i.e. for fized t > 0

VMQy(t, M) — Qy(t)] 2> N(0,07).

M —o0
With
0® = i Hi(t)pi;[H;(t) — 2H;(t)pi; + pij).-

Proof. We rewrite \/M[@ij(t,M) — Qi;(t)] as
M1/2]?1¢(t, M)[pi;(M) — pi;] + M1/2pij[ﬁi(t7 M) — H;(t)]). (3.8)

By a well-known convergence theorem [I0] the limiting distribution of (3.8)

is the same as that of
MY2H; () [Py (M) — pyg] + M"?py[H(t, M) — Hy(t))) (3.9)

With the particular choice wy = H;(t) and we = p;j, (3.9) is just the same as
(3.6) and the proof is complete.Od
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3.3 Markov renewal matrix

Definition 3.3.1. (Stieltjes convolution) Let ¢(i,t) fort > 0 and i € E
be a real valued measurable function and Q) be a semi-Markov kernel. Then

the Stieltjes convolution of ¢ by Q is defined as

Qxo(it) =Y [ Qulds)o(k,t—s).

keg V0

We obtain the following recursive formula for le) (t):

Z/o Qik(dS)Ql(g_l)(t —3s), if n>2,

keE

(n) .
Q1) = Qi(1), if n=1,
0ij 1 (>0}, if n=20

where 6;; 1s Kronecker’s delta symbol. We have

QU (t) = P(J = j, Sy < t|Jy = i),

]
and therefore an MRP is reqular if and only if Z le) (t) = 0, as n — oo,

JjeE

for all 1.

The Markov renewal matrix 1(t) = (¢;;(¢)) is defined as

Pij(t) = EiN;(t)]
N;(t)]Jo = 1)

0 n=0

n—=

for t > 0, 7,57 € E. Here, 9;(t) = E;[N;(t)] is the expected number of visits
from state i to state j up to time t. As an estimator for the (i, j) element of

the matrix (), we use the empirical estimator
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where Q\gl) (t, M) is the n-fold convolution of @,-j(t, M). For the empirical
estimator @81) (t, M) of the n-fold convolution of the semi-Markov kernel,

the following theorem holds true.

Theorem 3.3.1. [23] The empirical estimator @\gl) (t, M) of QE;L) (t) for all
1,] € E is strongly consistent, i.e. for any fited n € N

A1) (n) a.8.
max su (M) - Q7 ()] ——— 0.
max sup 15(1, M) = Q)]

Proof. By induction. For the case n = 1, the result follows from theorem
B.2.1l Assume that it holds true for n = m. So

AH(m) (m) a.s.
max su (M) — Q7 ()] ——— 0.
max sup (0476, M) - Q7 (0] =
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Now, let n =m + 1. It follows that

(m+1) m+1)
max sup Q t, M) —Qy t)] = max sup Qir(t, M) *QZ (t, M) Qir(t
ma s 10577000 - OF 0] = max sup 130 (e = 35 Qul0) + Q)
= max sup | D (Qult, M) % Q1 (8, M) — Qu(t) » Q5 (1))
LICE tefo,M] G oh

= max sup > |Quelt, M) x Q" (8, M) = Quilt) x Q7 (1)]

LIEE yelo.M) L oh

= max sup Z|Qik(t,M)*@§;n)(t, M) —Qik(t)*QE,T)(t, M)

LIEE tef0,M] keE

+FQu(t) x QY (1, M) — Qu(t) % Q5 (1)]

< max sup Y [Qult, M) * QU (t, M) — Qui(t) x Q7 (¢, M)
LICE telo,M) 1 Th
(m)
+ max sup Qi (1) Qi Q. (t
g s 3| 21 A) ~ Qu(t) * Q) (1)
= max sup Zl[@-k(t,m—Q,-k@)]*@?)(uMn
LICE velo.M] L oh
Qurlt) % [Q5" (1, M) — Qi (#)]]
+max sup Z| i (t) * i
LICE tefo,M] i oh
< max sup QZ t, M) — Q; max  sup QZ (t, M
Rl te[OM]‘ WD = Qa0 RJIEE yelo,M keZE ’ )
(m
+ max sup Q — Q' max sup Qin(t
g sup 100 0) = QO g s, 5 Q)
< smax sup |sz(t M) — Qir(t)]
i,k€EE te[0,M]
(m)
+ max sup Q — Q. (t
max sw [QU7(.0) ~ Q)

The last step holds true, because E = {1,2,...,s}. By theorem the
first converges to 0 (a.s). By the induction hypothesis, the second term con-
verges to 0 (a.s) as well. The result follows from the principle of mathematical
induction.O

The empirical estimator 1@-]- (t, M) of the elements of the renewal matrix

has the following two properties.

Theorem 3.3.2. [19] The empirical estimator {b\ij (t, M) of the Markov re-

newal function ;;(t) is uniformly strongly consistent, for all i,j € E is
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strongly consistent, i.e.

max sup wz t, M) —; — 0.
max sup [0t M) = (0] 2

Theorem 3.3.3. [19] The empirical estimator Jij (t, M) of the Markov re-
newal function 1;;(t) converges in distribution, for any fixed t >0, as M —

o0, to a normal random variable, 1. e.,
VM |y (t, M) = 3(8) [N (0, 02 (1)

It holds true that

S S

(0= ; 121: Lk [ (i * 1) * Qu — (ir * iy * Q)] (8).

Proof. See for example (Ouhbi and Limnios, [22]), theorem 3.

3.4 Markov renewal equation

Definition 3.4.1. (Continuous-time Markov renewal equation) Let
L = (L;(t);i,5 € E;t € Ry) € Mg(R;) be an unknown matriz-valued
function and U = (Uy;(t);i,j € E;t € Ry) € Mg(Ry) be a known one. The
equation

L(t) = U(t) + Q~ L(¢), (3.10)
is called a Markov renewal equation (MRE).

Note that Equation (3.10]) is equivalent to equation
(I—-Q)*L(t) =U(¥).
And has a unique solution [29] L(t) = ¢« U().

Proposition 3.4. [19/ For alli,j € E and t € Ry, we have:

P,(t) = 0;[1 )] + Z/ Qur(ds) Py (t — s). (3.11)

keE

For allt € Ry, let us define H(t) := diag(H;(t);i € E), H := (H(t);t € R,).

In matriz-valued function notation, equation (3.11)) becomes



3.5 Hazard rate function 50

P(t)= (I-H)(t)+ QxP(t), teR,.

Whose unique solution s

P(t) = v (1 — H)(t).

Let us define now the empirical estimator of the transition function of
the semi-Markov process P;;(t), i,j € E and ¢t € Ry. In a matrix form, we
have

P(t, M) = ¢ * (I — diag(Q(t, M)).

Then, the following results hold:

Theorem 3.4.1. [19] For any fixred C > 0 and i,j € E, we have

lim max sup |18ij(t, M) —P;(t)]=0. (a.s)

M=o0 4] te0,0]
Theorem 3.4.2. [1Y] Fori,j € E, we have

MY2(Py(t, M) — Py(1)) — N(0,0%(1)),

Mo
T—o0 K

where

op(t) = Z Z firr [(1 — H;) * Bipij — wijl{r:j}}Q*Qrk(t)_{[(1_Gi)*Birkj_wij]-{r:j}]*Qrk(t)}27

rcE keE
and -
-1 n—I
Bii(1) = >3 QW Qi (1).
n=1 =1

3.5 Hazard rate function

We define the instantaneous transition rate function, A\;;(t) fort > 0,4,j € E

of a semi-Markov kernel by

.1 : :
)\Zj(t) = iltrﬂ) EP [Jn+1 =J,t< Xn+1 <t+ AtlJn = Z,Xn+1 > t]

1
0 otherwise.
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The quantity \;;(t)At + o(At), @ # j, is the probability that the process
has spent t units of time in state i and will transit to state j in (¢,t + At].

We define the cumulative hazard rate function from state i to state j at
time t by Ay;(t) = [o Aij(s)ds.

The empirical estimator of the hazard rate function of the semi-Markov

process is equal to

i (£,M) e~ -~
~ —o—— " if p;;(M) >0 and H;(t, M) < 1,
Nij(t, M) := {1 H®AD PyM) (& M) (3.12)
0, otherwise

Where the empirical estimator of the derivative function g;;(t, M) of the

semi-Markov kernel is

Gis(t, M) = Qi (t + ,MA) Quy(t, M)

It holds true that A = M * for 0 < a < 1.

Theorem 3.5.1. [23] For 0 < a < 1/2, The empirical estimator Xij (t, M)
of Xij(t) is uniformly strongly consistent,in all compacts [0,C], C' € R, , in
the sense that, ie

/):Zt,M _)\zt L)O
g{;ggts[%%]\ 38 M) = A ()] ———

Definition 3.5.1. We define the hazard rate function of the waiting time

1 : .
O./ij(t) = lAlig(l) _tIED[X’VH—l € (t, t+ At)|<]n+1 =7, I =1, Xn+1 > t]

We know that the survival function of the sojourn time S;;(t) is
Sii(t) = P[Xps1 > tJs1 = J, Jn = 0] = 1 — Fy(t)

(Note that S;;(t) is a decreasing function, that is S;;(0) =1 and
—00
Now, by the definition of conditional probability we have
fii(t)
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The relation between the hazard rate function of the semi-Markov and hazard
rate function of the waiting time s
Pii Sij ()
Aij(t) = L2020 ().
J( ) Sj(lf) a]( )
Where S;(t) = P[X,11 > t|Jns1 = j|. We call this the survival function of

the waiting time in state j.

Remark 3.5.1. The hazard rate of waiting time at time t represents the con-
ditional probability that a transition from state i to state j is observed given
that no event occurs until time t and The hazard rate of the semi-Markov
process at time t represents the conditional probability that a transition into
state j is observed given that the subject is in state i and that no event occurs
until time t. The hazard rate of the semi-Markov process can be interpreted

as the subject’s risk of passing from state i to state j.



Chapter 4

Applications

4.1 Application to asthma control data

As an illustrative example, we revisit the analysis of severe asthmatic
patients which was conducted in France between 1997 and 2001 by ARIA
(Association pour la Recherche en Intelligence Artificielle). Adult asthmat-
ics were prospectively enrolled over a 4-year period by a number of French
chest physicians. The data reflects the real follow-up of patients consulting
at varied times according to their perceived needs. At each visit, several

covariates were recorded and asthma was evaluated

State 2

Sub-optimal control

State 1

Optimal control

N4

State 3

Unacceptable control

—

Figure 4.1: The three states model used for asthma control evolution.

The considered model to study the evolution of asthma consists of three
transient states Figure [L.1} the optimal control (State 1), the sub-optimal

33
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control (State 2), the unacceptable control (State 3) and three covariates are
included in the data: Severity (disease severity : coded 1 if severe, 0 if mild-
moderate asthma), BMI (Body Mass Index : 1 if BMI > 25, 0 if BMI<25)
and Sex (1 if men, 0 if women). A random selection of 371 patients with at

least two visits (data asthma) is included in the package SemiMarkov.

4.1.1 The SemiMarkov R package

Package description

The SemiMarkov package was developed to analyze longitudinal data
using multi-state semi-Markov models. The main function semiMarkov of the
package computes the parametric maximum likelihood estimation in multi-
state semi-Markov models in continuous-time. The effect of time varying or
fixed covariates can be studied using a proportional intensities model for the

hazard of the sojourn time.

Format of data.
The data frame to be used in the function semiMarkov must be similar to
the asthma data : a table in long format (one row per transition and possibly

several rows by individual) that must contain the following informations.
1. id: the individual identification number
2. state.h: state left by the process
3. state.j: state entered by the process

4. time: sojourn time in state.h

The data set may also include additional explanatory variables (for in-
stance, some individual’s characteristics). The values of these covariates must
be given for each individual and for each transition in order to take fixed or
time-dependent covariates into account (one value for each row of the data

frame data).

Functions description.

Following is a brief description of the package functions.
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e table.state: Computes a frequency table counting the number of

observed transitions in the data set.

e param.init: Defines default or specified initial values of the parame-

ters.

e semiMarkov: Computes the parametric maximum likelihood estima-

tion of multi-state semi-Markov models.

e hazard: For any object of classes semiMarkov and param.init, the
function computes the values of the hazard rate of sojourn times or the
values of the hazard rate of the semi-Markov process for a given vector

of times.

e summary.semiMarkov, summary.hazard, print.semiMarkov, print.hazard:
Summary and printing methods for objects of classes semiMarkov and

hazard.

e plot.hazard: Plot method for objects of class hazard.

Sojourn times distribution.

The parametric estimation in homogeneous semi-Markov models is based
on the specification of the sojourn times distribution. The simplest model is
obtained using the exponential distribution £(o;;), for which the hazard rate
is constant over time (corresponding to the Markov case) and is related to a

single positive parameter o,

O{ij(t) = —, Vi > 0.
Oij
The Weibull distribution which generalizes the exponential one, is often
used in practical applications. Indeed, the Weibull distribution with two pa-
rameters W (o;;, v;5) is well adapted to deal with various shapes of monotone
hazards,
Vi t

aif(t) = 2L (=)',
iJ iJ
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where o;; > 0 is a scale parameter and v;; is a shape parameter. The ex-
ponentiated Weibull distribution EW(0y;, v45,6,;) with an additional shape

parameter 6;; > 0 is very useful to fit N and U shapes of hazard rates

B2 ()" exp(=(2))[L = expl(— ()"

T [ —exp(— (L))

a;(t) =

These three distributions are available in the package SemiMarkov : ex-
ponential ("E", "Exp" or "Exponential"), Weibull ("W" or "Weibull") and
exponentiated Weibull ("EW", "EWeibull" or "Exponentiated Weibull").
which allow to fit various shapes of the hazard ratio are nested: a EW(o;;,1,1)
is equivalent to WW(o;j, 1) which is equivalent to a £(0;;). The estimations of
the distribution parameters are given with standard deviations and p-values
of the Wald test E| (Hp : 6;; = 1). One can then evaluate, for instance, the rele-
vance of the exponentiated Weibull distribution in comparison to the Weibull
or the exponential distribution.

For each of the parameters of the hazard rate functions of the semi-
Markov process, the R package SemiMarkov performed the Wald test. The
Wald test gives us the relevance of the given distribution. In our case we test
the distribution parameters o;; for 4, j € E for the exponential distribution
and o0, v;; for 4,7 € E for the Weibull distribution. We have the following

hypothesis test for the scale parameter o;;

HO 045 = 1,
Hl - 045 7é 1.
Similarly, we have the hypothesis test for the shape parameter v;;:
HO : Vij = 1,
H1 L Vi 7& 1.
I The Wald test is an econometric parametric test whose name comes from the American

mathematician of Hungarian origin Abraham Wald (October 31, 1902- December 13, 1950)
with a wide variety of uses. Whenever we have a relationship within or between data items

that can be expressed as a statistical model with parameters to be estimated, and all from
a sample, the Wald test can be used to "test the true value of the parameter" based on

the sample estimate.
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The p-value illustrates when we can reject the null-hypothesis Hy. It is
defined to be the smallest significance level at which the null hypothesis is
rejected. If p < 0.05, we reject the null-hypothesis Hy. If p > 0.05, we fail to
reject Hy.

Multi-state model definition.

The multi-state approach requires to define the states of the process and
to specify the structure of the model (the number of states and the possi-
ble transitions between them). In case of the three-state model described in
Figure where the sojourn times associated to each transition are Weibull

distributed, the matrix mtrans of possible transitions will be defined as fol-

lows
R> mtrans

1] 2] [, 3]
[1,] "FALSE" "W" W
2,] "w" "FALSE" "W"
[3’] nyn ny" "FALSE"

The argument states is a character vector used to define the names of
states, possible values are those included in the data’s columns state.h and

state.j.

Covariates

The effect of covariates on the process evolution can be investigated con-
sidering a Cox proportional hazard model E| for the hazard rates of waiting
times. Let Z;; be a vector of explanatory variables and f3;; a vector of regres-
sion parameters associated with the transition from state ¢ to state j. Then

the hazard rate is defined as
Nj(t1Z) = A2 (1)e7.

The interpretation of the regression coefficients in terms of relative risks

(as in the Cox model) can help to quantify the effect of covariates and to

2The Cox proportional-hazards model (Cox, 1972) is essentially a regression model
commonly used statistical in medical research for investigating the association between

the survival time of patients and one or more predictor variables.
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understand the process evolution. For each estimation of regression coeffi-
cients, standard deviation and p-value of the Wald test (Hy : 8 = 0) are given.

Initial values.

The optimization procedure used in the maximum likelihood estimation
requires definition of initial values of the parameters: the distribution param-
eters, the transition probabilities and the regression coefficients associated to

the covariates.

Parametric maximum likelihood estimation

The semiMarkov function.

In a parametric framework, distributions of sojourn times are supposed to
belong to a class of parametric functions. For each transition, the distribution
(which depends on a finite number of parameters) can be specified using
either the hazard rate A

function Fj;.

ij» the density f;; or the cumulative distribution

The main function semiMarkov estimates the parameters of a multi-state
homogeneous semi-Markov model using the parametric maximum likelihood
estimation. The following arguments are used in the function semiMarkov:
arguments related to the data (data, cov), arguments related to the model
(states, mtrans, cov_tra, cens) and initial values (dist_init, proba_init,
coef_init).

This function gives informations on the optimization method and provides
the parameters estimation together with their standard deviations. For each
regression coefficient 3, the p-value of the Wald test when testing the absence
of effect (Hp : 5 = 0) is also provided whereas for each distribution parame-

ter o(or v or #) the p-value of the Wald test when testing (Hy : 0 = 1) is given.

The hazard function.

The hazard rate of sojourn time and the hazard rate of the semi-Markov
process can be deduced from the parameters and the distributions of sojourn
times. The function hazard computes vectors of hazard rates values using ei-

ther the estimations included in an object of class semiMarkov or the specific
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values defined by an object of class param.init. The argument type is used
to choose the type of hazard rate: alpha for the hazard rates of waiting times
and lambda for the hazard rates of the semi-Markov process. If covariates
are used in the model, the hazard rates can be obtained for given values of

the covariates using the argument cov.

4.1.2 Script and concluding remarques

R>1library("SemiMarkov")
## Asthma control data
R>data("asthma")

R>head (asthma)

id state.h state.j time Severity BMI Sex
1 2 3 2 0.15331964 1 1 0
2 2 2 2 4.12320329 1 1 0
3 3 3 1 0.09582478 1 1 1
4 3 1 3 0.22997947 1 1 1
5 3 3 1 0.26557153 1 1 1
6 3 1 1 5.40725530 1 1 1

There are no absorbing states in the considered model Figure [£.1 The last
sojourn time is then right-censored. Its value is the time between the last
visit and the date of the end of the study. A censored observation is identified
by a transition into the same state. In such case, the value of state.h is
equal to the value of state.j and the value of time is the censored sojourn

time.

R>table.state(asthma)

$table.state
1 2 3

1 152 95 44
2 112 116 71

3 115 120 103
$Ncens

[1] 371
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## Definition of the model: states, names

# possible transitions and waiting times distributions
R> states <- c("1", "2", "3")

R> mtrans <- matrix(FALSE, nrow=3, ncol=3)

R> mtrans[1,2:3] <- c("W","W")

R> mtrans[2,c(1,3)] <- c("W","W")

R> mtrans[3,c(1,2)] <- c("W","W")

L1 2] 3]
[1,] "FALSE" "w" W
2,] "W "FALSE" "W"
3,] "W "W "FALSE"

## Semi-Markov model without covariates

fitl <- semiMarkov(data=asthma, states=states, mtrans=mtrans)
## Hazard rates of waiting time

alphal <- hazard(fitl)

plot(alphal)
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Sojourn time hazard rate
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Figure 4.2: The hazard rate of sojourn time.

## Hazard rates of the semi-Markov process
lambdal <- hazard(fitl, type = "lambda")
plot(lambdal)
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Semi-Markov process hazard rate
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Figure 4.3: The hazard rate of the semi-Markov process.

The effect of covariates and the proportional hazard assumption can be
evaluated by representing the hazard rates in each stratum. In a second step,
a proportional model can be considered to study the effect of covariates. For
instance, one can consider a model with BMI as covariate and the Weibull
distribution for the waiting times.

Semi-Markov model with a covariate "BMI"

R> BMI <- as.data.frame(asthma$BMI)

## Semi-Markov model with a covariate "BMI"

R> fit2 <- semiMarkov(data=asthma, states=states,
mtrans=mtrans, cov=BMI)

## Estimations of parameters of the waiting times distributions
R> fit2$table.dist
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$Sigma
Transition Sigma SD Lower_CI Upper_CI Wald_test p_value
1 1 ->2 9.38¢ 2.42 4.64 14.13 12.01 0.0005
2 1 ->3 0.418 0.08 0.26 0.58 51.564 <0.0001
3 2 ->1 5.014 1.25 2.57 7.46 10.36 0.0013
4 2 ->3 0.714 0.12 0.49 0.94 6.06 0.0138
5 3 ->1 2.233 0.53 1.20 3.26 5.51 0.0189
6 3 ->2 0.498 0.08 0.34 0.65 41.05 <0.0001
$Nu
Transition Nu SD Lower_CI Upper_CI Wald_test p_value
1 1 ->2 0.531 0.05 0.44 0.63 95.85 <0.0001
2 1 ->3 1.18 0.14 0.90 1.46 1.65 0.1990
3 2 ->1 0.51 0.04 0.43 0.59 141.80 <0.0001
4 2 ->3 1.048 0.10 0.86 1.24 0.25 0.6171
5 3->1 0.499 0.04 0.42 0.58 161.12  <0.0001
6 3 ->2 0.931 0.06 0.81 1.06 1.14 0.2857

The semiMarkov function provides estimations of parameters of the wait-
ing times distributions, the standard deviations, the confidence intervals and
the Wald test statistics (Ho : 0,; = 1). One can observe that the coefficient
o3 et 3o associated to the transition from state 2 to state 3 and from 3 to
2 is not significantly different from 1. The exponential distribution can then

be used instead of the Weibull distribution for this transitions.

## The estimation of the coefficient
R> fit2$table.coef

Transition Covariates Estimation SD Lower_CI Upper_CI Wald_test p_value
1 1 ->2 Betal -0.27808202 0.22 -0.72 0.16 1.55 0.2131
2 1 ->3 Betal -0.87827455 0.35 -1.57 -0.19 6.27 0.0123
3 2 ->1 Betal 0.03216316 0.19 -0.35 0.41 0.03 0.8625
4 2 -> 3 Betal -0.11151384 0.27 -0.64 0.41 0.17 0.6801
5 3 ->1 Betal -0.61127842 0.20 -1.00 -0.22 9.43 0.0021
6 3 ->2 Betal -0.23912936 0.21 -0.65 0.17 1.32 0.2506

For this new model, BMI regression coefficients remain significant for
transitions from 1 to 3 and from 3 to 1 with ;3 = —0.88 and f3; = —0.61,
and respective p-values 0.012, and 0.002. The fact that hazard rate of the
sojourn time associated with these covariates is less than unity (estimated
coefficients are negative), indicates that BMI> 25 generally lengthens the
duration of the sojourn time in state 1 when making a 1 — 3 transition
and generally lengthens the duration of the sojourn time in state 3 when

making a 3 — 1 transition. This can also be interpreted as a decrease of
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the risk of leaving "optimal control" state to "unacceptable control" as well
as a decrease of the risk of leaving "unacceptable control" state to "optimal

control".

## Time fixed covariate

## Covariate equal to O and 1 for each transition
R> alpha2 <- hazard(fit2, cov=0)

R> alpha3 <- hazard(fit2, cov=1)

R> plot(alpha2,alpha3)
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Figure 4.4: The hazard rate of sojourn time
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4.2 Application to Covid-19 pandemic

The COVID-19 pandemic, also known as the Coronavirus pandemic is an
ongoing global pandemic of Coronavirus disease 2019 (COVID-19), caused
by severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). The
outbreak was first identified in Wuhan, China, in December 2019.

The World Health Organization declared the outbreak a Public Health
Emergency of International Concern on 30 January 2020, and a pandemic
on 11 March. As of 3 July 2020, more than 10.8 million cases of COVID-19
have been reported in more than 188 countries and territories, resulting in
more than 521,000 deaths, more than 5.76 million people have recovered.

In this section we apply the semi-Markov model to the data set of the
COVID-19 pandemic in Algeria and Tunisia.

4.2.1 Application for Tunisia Coronavirus data

Firstly, we apply the semi-Markov model in continuous-time for Coronavirus
cases in Tunisia. So we consider this cases between March and June, which
are given in table .0

Daily New Cases

Cases per Day
Data as of 0:00 CMT+0

[=3)
=}

s
=}

vel Coronavirus Daily Cases

(5]

No

Daily Cases (] [

Figure 4.5: Daily new cases in Tunisia.
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From the table [1.6) we can define three states corresponding to the number

of Coronavirus cases in Tunisia:

e State 1:[0 : 24]
e State 2:[25 : 50]
e State 3:[51 : 75].

These intervals are defined to specify the discrete states of the system.
We derive that the state space is equal to the set E = {1, 2, 3}.
We can resume the table [4.6] to the following table:

date state
21/03/2020
22/03/2020
23/03/2020
24/03/2020
25/03/2020
26,/03/2020
27/03/2020
28/03/2020
04,/04,/2020
05/04/2020
07,/04,/2020
08,/04,/2020
10/04,/2020
12/04,/2020
14/04/2020
17/04/2020
22/04/2020
23/04,/2020

w

— N =N N DN WD WD = WD

Table 4.1: Table of the states corresponding to the number of Coronavirus

cases in Tunisia.
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Let ¢ = 0 be the time we observed the first cases which happened in
March 21, 2020. We set the end time M = 96 days.

The number of observed transitions in the data set from any state ¢ to
any state j for 7,5 € E are presented as elements in the matrix N. The

elements of this matrix are the values N;;(M) for all i, 5 € E.

N =

W = O
_ O O
o w O

We read the matrix N as follows: four times there was a transition from
state 2 to state 1.
The values V;(M) for i € E are equal to

Ni(M)=6, No(M)=7,  N3(M)=A4.

The estimations of the transition probabilities from any state ¢ to any

state j are presented as elements in the matrix P = (Dij)-

0.0000 1.0000 0.0000
P =1 05714 0.0000 0.4286
0.7500 0.2500 0.0000

We read the matrix P as follows: the probability that there is a transition
from state 3 to state 1 is equal to 0.75.

04285714

‘A

A |

15714286

Figure 4.6: Transitions from state 7 to state j with transition probabilities,
for all 7,5 € E.
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With use of the definition for @ij (t, M), we can estimate the semi-Markov
kernels for transitions from state 7 to state j.
The semi-Markov kernels are shown in figure [£.7] for all transitions from
state ¢ to state j, 7,7 € E and ¢ > 0. The sojourn time is measured in weeks.
The empirical estimators for conditional transition functions Ej(t,M ),
associated with the sojourn time in each state before transition, are shown
in figure for all transitions from state ¢ to state j, ¢,7 € E and t > 0.

10

08

06

_____

04

Semi-Markov kernel

02
|

T T T T T T
0.0 0.2 0.4 06 0.8 1.0

Time (weeks)

Figure 4.7: Empirical estimators for semi-Markov kernels, @ij(t, M) for all

transitions from state 7 to state 7, 7,5 € E.
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Figure 4.8:  Empirical estimators for conditional transition functions,

~

F;;(t, M) for all transitions from state ¢ to state j, i,j € E.

Given that the last Coronavirus occurrence was in state ¢ and at least a
time interval of length ¢ has already elapsed, the probability of an Coron-
avirus occurrence of state j in the next time interval of length A is denoted
by Aij(t)A. The term Instantaneous Coronavirus Occurrence Rate at state j
in the next step conditional on the starting state ¢ is used for the description
of the probability A;;(¢)A, which is expressed by means of the semi-Markov
kernels via the formula
_ Qut+A) — Q)

H;(t)

Table shows the estimated instantaneous Coronavirus occurrence rate for

+ o(A).

each type of transitions.

t=0.1

A )\11(25) /\12@) )\13 (t) )\21 (t) )\22 (t) )\23<t> )\31(25) /\32(15) >\31 (t)

1/2 0 1.667 0 1.143 0 0.571 1.5 0.5 0
1 0 1 0 0.571 0 0429 0.75  0.25 0
2 0 0.5 0 0.286 0 0.214 0.375 0.125 0

Table 4.2: Estimated instantaneous Coronavirus occurrence rates
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4.2.2 Application for Algeria Coronavirus data

Now, we apply the semi-Markov model in continuous-time for Coronavirus
cases in Algeria. So we consider this cases between March and June, which
are given in table [4.5

Daily New Cases

Cases per Day
Data as of 0:00 GMT+0
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Figure 4.9: Daily new cases in Algeria.

From the table we can define three states corresponding to the num-

ber of Coronavirus cases in Algeria:

e State 1: [22: 99
e State 2: [100 : 150]
e State 3: [151 : 199].

These intervals are defined to specify the discrete states of the system. We
derive that the state space is equal to the set E = {1, 2, 3}.
We can resume the table [4.5] to the following table:
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Date state
21-03-2020
22-03-2020
31-03-2020
03-04-2020
04-04-2020
06-04-2020
07-04-2020
08-04-2020
09-04-2020
16-04-2020
19-04-2020
24-04-2020
29-04-2020
01-05-2020
03-05-2020
28-05-2020
04-06-2020
05-06-2020
23-06-2020

\]

W N = DN WD WD~ N = DN =N =W N -

Table 4.3: Table of the states corresponding to the number of Coronavirus

cases in Algeria.

Non parametric estimation

Let t = 0 be the time we observed the first cases which happened in March
21, 2020, and we set the end time M = 96 days.

The number of observed transitions in the data set from any state ¢ to

any state j for 7,5 € E are presented as elements in the matrix N. The

elements of this matrix are the values N;;(M) for all i, 5 € E.

N =

—= ot O
N O D
O = O

We read the matrix N as follows: four times there was a transition from
state 2 to state 3.
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The values N;(M) for i € E are equal to

The estimations of the transition probabilities from any state ¢ to any

state j are presented as elements in the matrix P = (Pij)-

0.0000 1.0000 0.0000
P=| 05556 0.0000 0.4444 |. (4.1)
0.3333  0.6667 0.0000

We read the matrix P as follows: the probability that there is a transition

from state 3 to state 1 is equal to 0.3333.

0.3333333

0.5555556

0.6666667

-

o
0.4444444

Figure 4.10: Transitions from state ¢ to state 7 with transition probabilities,

for all 7,5 € E.

The semi-Markov kernels are shown in figure for all transitions from
state ¢ to state 7, ¢, j € E and ¢t = 0. The sojourn time is measured in weeks.
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Figure 4.11: Empirical estimators for semi-Markov kernels, Q\ij (t, M) for all

transitions from state ¢ to state 7, 7,5 € E.

The empirical estimators for conditional transition functions ﬁij(t,M ),
associated with the sojourn time in each state before transition, are shown
in figure for all transitions from state ¢ to state j, ¢,7 € E and t = 0.
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Figure 4.12: FEmpirical estimators for conditional transition functions,

~

F;j(t, M) for all transitions from state i to state j, 4, j € E.
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Table 4.4l shows the estimated instantaneous Coronavirus occurrence rate

for each type of transitions.

t=1/2
A ) M) ) da(®) A M) Aa(t) Aa(t) Aa(t)
10 1 0 0333 0 0333 0 0 0
2 0 0.5 0 0.167 0 0.167 0 0 0
5) 0 1 0 0.333 0 0.333 0 0 0

Table 4.4: Estimated instantaneous Coronavirus occurrence rates.

Parametric estimation

With use of the R package SemiMarkov we are able to find the estimated
hazard rate functions of the semi-Markov process for all the transitions from
state i to state 7,1 # 7 € E.

Homogeneous Markov model

First, we derive the hazard rate function of the semi-Markov process for
the homogeneous Markov model. We changed the original data set from ta-
ble to meet the requirements to apply for the package, which we call it
markov. We measure the time ¢ in weeks and we know that a semi-Markov
process is a homogeneous Markov process if and only if the sojourn time
is exponentially distributed. Therefore, we choose the exponential distri-
bution £ for the sojourn time. We fit the data with use of the function

semiMarkov(.). Figure 4.13| shows the performed steps in Rstudio.

> Tibrary(numberiv)

> Tibrary(MAss)

> library(Rsolnp)

= Tibrary(Semimarkov)
= markov=data.frame(id=rep(1,18),state. h=c(2,1,2,3,1,2,1,2,1,2,1,2,3,2,3,2,1,2),state. j=c(1,2,3,1,2,1,2,
1,2,1,2,3,2,3,2,1,2,3),time=c(0.1428571, 1.2857143, 0.4285714, 0.1428571, 0.2857143, 0.1428571, 0.142857
1, 0.1428571, 1.0000000,0.4285714, 0.7142857, 0.7142857, 0.2857143 ,0.2857143, 3.5714286, 1.0000000, 0.14
28571, 2.5714286))

states=c("1","2","3")

mtrans=matrix(FALSE,nrow =3 ,ncol=3)

mtrans[1,2]=c("E")
mtrans[2,c(1,3)]=c("
mtrans[3,c(1,2)]=c("
fit=semimarkov(data

w mEmy
wiegny
markov,states = states,mtrans = MLrans)

V¥ W VY Y

mm

Iter: 1 fn: 17.3951 Pars: 0.539524 0.37143 1.00002 0.14286 1.92857 0.
Iter: 2 fn: 17.3951 Pars: 0.539524 0.37143 1.00000 0.14286 1.92857 0.
solnp--> Completed in 2 iterations

0.33333

55556
55556 0.33333
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Figure 4.13: The setting of the hazard rate function in case of the homoge-

neous Markov model.

In figure [4.14] we see the estimates of parameters of the waiting time
distributions, the standard deviations, the confidence intervals and the Wald

test statistics.

= Titftable.dist
isigma
Type Index Transition Estimation SD Lower_CTI Upper_CI wald_HO wald_test p_value

1 dist 1 1 -=2 0.595 0.24 12 1.07 1.00 2.77 0.0960
2 dist 2 2 -= 1 0.371 0.17 Q.05 0.70 1.00 14.32 0.0002
3 dist 3 2 -= 3 1 0.50 0.02 1.98 1.00 0.00 1.0000
4 dist 4 I ->1 0.143 0.14 -0.14 0.42 1.00 36.00 «0.0001
5 dist 5 3 -2 1.929 1.36 -0.74 4.60 1.00 0.46 0.4976

Figure 4.14: Estimates of parameters of the waiting time distribution in case

of the homogeneous Markov model.

In the following matrix ¥ = (0;;) we give the values for the parameters
of the exponential distribution for all i # j € E:

— 0595 —
»=|o031 - 1 |. (4.2)
0.143 1.929 —

With use of the R package SemiMarkov we can determine two hazard
rate functions, namely the hazard rate function of the waiting time oy;(t)
and the hazard rate function of the semi-Markov process \;;(t). First, we
give the hazard rate function of the waiting time and after that the hazard
rate function of the semi-Markov process.

When we choose an exponential distribution for the sojourn time. Then
we obtain the following estimated hazard rate functions of the waiting time

a;;(t) for the homogeneous Markov model for all ¢ # j € E:

ap(t) = 16807, az(t) = 6.9930
an(t) = 2.6954, as(t) = 0.8383
0623(15) 1.
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Sojourn time hazard rate
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Figure 4.15: Hazard rate of waiting time for the homogeneous Markov model

for transitions from state ¢ to state j, ¢ # j € E.

The density functions of the sojourn time with scale parameter o;; are

defined as

1
fig(t) = —e/7,

foralls,j € Eand t > 0. We obtain the following estimated density functions
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fij(t) in case of the homogeneous Markov model for all i # j € E:

frat) = 1.6807e=19%0T f(t) = 6.9930e” 0993
fa(t) = 2.6954e~ 20954 foo(t) 0.8383¢—0-8383¢

f23(t) = 16_“.

The probability distribution functions of the sojourn time with scale pa-

rameter o;; are defined as:
Fyt)=1— /o,

foralli,j € Eand ¢t > 0. The estimated probability distribution functions

of the sojourn time for all i # j € E are

Fia(t) = 1—e 16807t po(p) = 1 — ¢ 69930
Fou(t) = 1—e 26954 F(f) = 1 — ¢ 08383
Fo(t) = 1—e '

We know that the transition probability matrix is given by

0.0000 1.0000 0.0000
P =1 0.5556 0.0000 0.4444
0.3333 0.6667 0.0000

We can write that 1 — H;(t) = Zpij(l — F;;(t)) as the survival function
of the sojourn time in state i. Hgg, F;;(t) is the probability distribution
function of the sojourn time and p;; the transition probability of the embed-
ded Markov chain. For the derivative of the semi-Markov kernel, we know
that ¢;;(t) = p;; fi;(t). With use of this information, we can determine the
hazard rate function of the semi-Markov process \;;(t).

If we plug the expressions for the density functions of the sojourn time,
the probability distribution functions of the sojourn time and the transition
probabilities in case of the homogeneous Markov model into the hazard rate

function of the semi-Markov process

() — qi;(t) _ pij fi (1)
Aij (1) T I Zpij(l—ﬂj(t))'

JjeEE
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We obtain the estimated hazard rate functions of the semi-Markov process

for all i # j € E. The plots of the hazard rate function of the semi-Markov

process are shown in figure [4.16]
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Figure 4.16: Hazard rate of semi-Markov process for the homogeneous

Markov model for transitions from state from state i to state j, i # j € E.

model.
From and [£.2] we obtain the following semi-Markov kernels for the

homogeneous Markov model with i # j € E.

Now, we determine the semi-Markov kernels for the homogeneous Markov
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Quot) = L1 —e 0, Qu(t) = 0.3333(1 — e 6995%)
Q21(t) = 0.5556(1 — e20954)  Qsy(1) 0.6667(1 — e~0-8383¢)
Qas(t) = 0.4444(1 — 7).

We define Q;(t) = 0 for all 4,j € E and ¢t > 0, because we have no
information about the sojourn time distributions of the transitions from state
7 to itself.

The plots of the semi-Markov kernels are shown for the homogeneous

Markov model for all transitions from state ¢ to state j, i # j € E.
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Figure 4.17: Semi-Markov kernels for the homogenous Markov model for all

transitions from state i to state j, i # j € E.

Wald test and p-value.
For the homogeneous Markov model, we choose the exponential distri-
bution for the sojourn time of the process. In figure the results of the

Wald test are shown.
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> fititable.dist

$sigma

Type Index Transition Estimation  SD Lower_CI Upper_CI wWald_HO wald_test p_value
1 dist 1 1 -=2 0.595 0.24 0.12 1.07 1.00 2.77 0.0960
2 dist 2 2 -=1 0.371 0.17 0.05 0.70 1.00 14.32 0.0002
3 dist 3 2 - 3 1 0.50 0.02 1.98 1.00 0.00 1.0000
4 dist 4 3 -1 0.143 0.14 -0.14 0.42 1.00 36.00 =0.0001
5 dist 3 3 -» 2 1.929 1.36 -0.7 4.60 1.00 0.46 0.4976

Figure 4.18: Wald test p-values for the homogeneous Markov model.

We derive that for all 05, 7 # j € E, we only reject the null-hypothesis for
the scale parameters o9 and 031, the rest we fail to reject the null-hypothesis

for o;;.

Semi-Markov model

For the semi-Markov model we use the same data set as before, and
call it semimarkov. We measure the time ¢ in weeks. Because we want an
estimator for the semi-Markov process, we choose the (non-Markov) Weibull
distribution W for the sojourn time for all transitions except for the transition
from state 3 to state 1 Here, we choose the exponential distribution. We fit
the data with use of the function semiMarkov(.) as before.
Figure shows the performed steps in Rstudio.

> Tibrary(numberiv)

> library(MASS)

> Tibrary(rRsolnp)

> Tibrary(semiMarkov)

> markov=data.frame(id=rep(1,18),state.h=c(2,1,2,3,1,2,1,2,1,2,1,2,3,2,3,2,1,2),state. j=c(1,2,3,1,2,1,2,

1,2,1,2,3,2,3,2,1,2,3) ,time=c(0.1428571, 1.2857143, 0.4285714, 0.1428571, 0.2857143, 0.1428571, 0.142857

1, 0.1428571, 1.0000000,0.4285714, 0.7142857, 0.7142857, 0.2857143 ,0.2857143, 3.5714286, 1.0000000, 0.14
28571, 2.5714286))

= states=c("1","2","3")

> MLrans=matrix(FALSE,nrow =3 ,ncol=3)

> mtrans[1,2]=c("w")

> mtrans[2,c(1,3)]=c("w","wW")

> mtrans[3,c(1,2)]=c("E","W")

> fit2=semimarkov(data = markov,states = states,mtrans = mtrans)

Iter: 1 fn: 16.8176 Pars: 0.64831 0.39995 1.06613 0.14287 1.88666 1.32623 1.21954 1.17870 0.94999
0.55556 0.33335

Iter: 2 fn: 16.8176 Pars: 0.64831 0.39996 1.06614 0.1428¢ 1.886660 1.32623 1.21954 1.17871 0.94998

0.55556 0.33333
solnp--> Completed in 2 iterations

Figure 4.19: The setting of the hazard rate function in case of the semi-

Markov model.

From figure [4.20], we can derive the estimates of parameters of the waiting
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time distributions, the standard deviations, the confidence intervals and the
Wald test statistics.

> fit2%table.dist

£sigma

Type Index Transition Sigma  SD Lower_CI Upper_CI wald_HO wald_test p_value
1 dist 1 1 -2 0.648 0.21 0.24 1.06 1.00 2.78 0.0954
2 dist 2 2 -=1 0.4 0.16 0.09 0.71 1.00 14.79 0.0001
3 dist 3 2 -» 3 1.066 0.48 0.12 2.01 1.00 0.02 0.8875
4 dist 4 3 ->1 0.143 0.14 -0.14 0.42 1.00 36.00 <0.0001
5 dist 5 3 -> 2 1.887 1.48 -1.02 4.79 1.00 0.36 0.5485
ENu

Type Index Transition NU SD Lower_CI Upper_CI wald_HO wald_test p_value
1 dist b 1 -> 2 1.326 0.44 0.46 2.19 1.00 0.55 0.4583
2 dist 7 2 -»>1 1.22 0.41 0.42 2.02 1.00 0.29 0.5902
3 dist 8 2 -> 3 1.179 0.44 0.31 2.04 1.00 0.16 0.6892
4 dist 9 3 -2 0.953 0.56 -0.15 2.05 1.00 0.01 0.9203

Figure 4.20: Estimates of parameters of the waiting time distribution in case

of the semi-Markov model.

In the following two matrices ¥ = (0;;) and V = (v;;) we give the values
for the parameters of the Weibull and exponential distribution for all
1#j €k

- 0.648 — — 1326 —
Y= 0.4 - 1.066 |, V=1| 122 - 1179

0.143 1.887 — — 0.95 —
(4.3)

As we said before, we can determine two hazard rate functions, one for
the waiting time «;;(t) and one for the semi-Markov process \;;(t). First, we
give the hazard rate function of the waiting time and then the hazard rate
function of the semi-Markov process.

When we choose a Weibull distribution for the sojourn time. Then we
obtain the following estimated hazard rate functions of the waiting time o;;(¢)
for the semi-Markov model for all i # j € E:

ap(t) = 2.0463(1.54326)03% oy () = 6.9930
an(t) = 3.05(2.5t)°22, as(t) = 0.5034(1.0526¢) 09
a3 (1) 1.106(0.938¢)%17
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The plots of the hazard rate functions of the waiting time are shown in
figure [£.21]
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Figure 4.21: Hazard rate of waiting time for the semi-Markov model for

transitions from state i to state j, i # j € E.

The density functions of the sojourn time with scale parameter o;; and
shape parameter v;; are defined as
Vii— Yij
fij(t) = > (i) ] 16(_%) ;
Oij Oij
forall7,7 € Eand t > 0. We obtain the following estimated density functions
fi;(t) in case of the semi-Markov model for all i # j € E:

fi2(t) = 2.0463(1.5432¢)0320¢ (1543201520 o (1) — 6.9930¢~6-9930¢
for(t) = 3.05(2.5t)022e~ (250" faa(t) = 0.5034(1.0526¢)~0-05¢(1.05261)°%
fas(t) = 1.106(0.938¢)01 79— (0:9380)" 17

The probability distribution functions of the sojourn time with scale pa-

rameter o;; are defined as:

Fi(t)=1— (/7)™

v
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forall7,j € Eand ¢t > 0. The estimated probability distribution functions
of the sojourn time for all i # j € E are

Fio(t) = 1—e 0882890 py = ] — 699308
F21 (t) — 1 _ e—(2.5t)1~22’ FSQ(t) _ 1 . 6(1.052615)0‘95
Fos(t) = 1-— o—(0.938)1170

As before, the transition probability matrix is given by

0.0000 1.0000 0.0000
P =1 0.5556 0.0000 0.4444
0.3333 0.6667 0.0000

The plots of the hazard rate functions of the semi-Markov process are

shown in figure [4.22]
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Figure 4.22: Hazard rate of semi-Markov process for the semi-Markov model

for transitions from state 7 to state j, i # j € E.
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Now, using and for i # j € E, we obtain the following semi-Markov
kernels for the semi-Markov model.
Qua(t) = 11 —eCMPW) 0 Qai(t) = 0.3333(1 — e 0%
Qult) = 05556(1— e C30") Qu(t) = 0.6667(1 — eH07260"")
Qus(t) = 0.4444(1 — e~ (093807,

We define also Q;;(t) =0 for all 4,j € E and t > 0.
The plots of the semi-Markov kernels are shown for the semi-Markov

model for all transitions from state 7 to state j, i # j € E.
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Figure 4.23: Semi-Markov kernels for the semi-Markov model for all transi-

tions from state i to state j, ¢ # j € E.

Wald test and p-value.

For the semi-Markov model the results of the Wald test are shown in
figure [£.24] We remember that for the transitions from state 3 to state 1 we
chose an exponential distribution for the sojourn time instead of the Weibull

distribution. So we exclude this transition from our conclusions.
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> Tit2itable. dist

f£sigma

Type Index Transition sigma SD Lower_CI Upper_CI wald_HO wald_test p_value
1 dist 1 1 -2 0.648 0.21 0.24 1.06 1.00 2.78 0.0954
2 dist 2 2 -»1 0.4 0.16 0.09 0.71 1.00 14.79 0.0001
3 dist 3 2 -» 3 1.066 0.48 0.12 2.01 1.00 0.02 0.B8875
4 dist 4 3 -1 0.143 0.14 -0.14 0.42 1.00 36.00 «0.0001
5 dist 5 3 -» 2 1.887 1.48 -1.02 4.79 1.00 0.36 0.53485
ENU

Type Index Transition NU SD Lower_CI uUpper_CI wald_HO wald_test p_value
1 dist 6 1 -> 2 1.326 0.44 0.46 2.19 1.00 0.55 0.45383
2 dist 7 2 -1 1.22 0.41 0.42 2.02 1.00 0.29 0.5902
3 dist 8 2 -» 3 1.179 0.44 0.31 2.04 1.00 0.16 0.6892
4 dist 9 3 -2 0.95 0.56 -0.15 2.05 1.00 0.01 0.9203

Figure 4.24: Wald test p-values for the semi-Markov model.

In this case we only reject the null-hypothesis for the scale parameter og;
which is associated with the transition from state 2 to state 1. In the other
case we fail to reject the null-hypothesis for o;; and v;;. For these transitions

we can use the exponential distribution instead of the Weibull distribution.

We conclude that for some of the hazard rate functions of the semi-Markov
process A;;(t) for ¢,j € E the homogeneous Markov model maybe a better
fit. For the rest of the hazard rate functions of the semi-Markov process, we
cannot conclude a preference for a certain model based on the p-values of
the Wald test.



Conclusion

In this work, we explained the continuous-time semi-Markov model with
a discrete set of states. We defined empirical estimators of important quanti-
ties such as semi-Markov kernel, sojourn time distributions, transition prob-
abilities, and hazard rate function. We gave results about their asymptotic
properties.

The present work aims at the introduction of the continuous-time semi-
Markov model as a candidate model for the description of asthma control,
Tunisia, and Algeria Coronavirus data. For asthma control, it was very
important to study this data with covariate variable (BMI), using the Wald
test, we can conclude the decreasing or increasing effects of this variable.

The process of Algeria Coronavirus data was represented with two sta-
tistical models Markov and semi Markov model and with the parametric
and nonparametric methods. Semi-Markov package in R Language was used
for the implementation of the parametric-method however, for the nonpara-
metric one, we had developed our functions. Parametric methods provide
estimators with several attractive asymptotic properties; however, these es-
timators present inconvenience when the sample size is small. Since appli-
cations of parametric methods presuppose certain conditions concerning the
sample size, this difficulty could be affected through the application of non-
parametric methods. For the hazard rate functions, the semi-Markov process
maybe a better fit for the previous model.

For providing more accurate forecasting results for Algeria Coronavirus
data one more ways the accessibility into instantaneous results about Coron-
avirus cases and the inclusion of different covariate variables like age, chronic

diseases,- - -.
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Date Number of cases state
21-03-2020 139 2
22-03-2020 62 1
23-03-2020 29 1
24-03-2020 34 1
25-03-2020 38 1
26-03-2020 65 1
27-03-2020 42 1
28-03-2020 45 1
29-03-2020 57 1
30-03-2020 73 1
31-03-2020 132 2
01-04-2020 131 2
02-04-2020 139 2
03-04-2020 185 3
04-04-2020 80 1
05-04-2020 69 1
06-04-2020 103 2
07-04-2020 45 1
08-04-2020 104 2
09-04-2020 94 1
10-04-2020 95 1
11-04-2020 64 1
12-04-2020 89 1
13-04-2020 69 1
14-04-2020 87 1
15-04-2020 90 1
16-04-2020 108 2
17-04-2020 150 2
18-04-2020 116 2
19-04-2020 95 1
20-04-2020 89 1
21-04-2020 93 1
22-04-2020 99 1
23-04-2020 97 1
24-04-2020 120 2
25-04-2020 129 2
26-04-2020 126 2
27-04-2020 135 2
28-04-2020 132 2
29-04-2020 199 3
30-04-2020 158 3
01-05-2020 148 2
02-05-2020 141 2
03-05-2020 179 3
04-05-2020 174 3
05-05-2020 190 3
06-05-2020 159 3
07-05-2020 185 3
08-05-2020 187 3
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Date Number of cases  state
09-05-2020 189 3
10-05-2020 165 3
11-05-2020 168 3
12-05-2020 176 3
13-05-2020 186 3
14-05-2020 189 3
15-05-2020 187 3
16-05-2020 192 3
17-05-2020 198 3
18-05-2020 182 3
19-05-2020 176 3
20-05-2020 165 3
21-05-2020 186 3
22-05-2020 190 3
23-05-2020 195 3
24-05-2020 193 3
25-05-2020 197 3
26-05-2020 194 3
27-05-2020 160 3
28-05-2020 140 2
29-05-2020 137 2
30-05-2020 133 2
31-05-2020 127 2
01-06-2020 119 2
02-06-2020 113 2
03-06-2020 107 2
04-06-2020 98 1
05-06-2020 104 2
06-06-2020 115 2
07-06-2020 104 2
08-06-2020 111 2
09-06-2020 117 2
10-06-2020 102 2
11-06-2020 105 2
12-06-2020 109 2
13-06-2020 112 2
14-06-2020 109 2
15-06-2020 112 2
16-06-2020 116 2
17-06-2020 121 2
18-06-2020 117 2
19-06-2020 119 2
20-06-2020 127 2
21-06-2020 140 2
22-06-2020 149 2
23-06-2020 156 3
24-06-2020 176 3
25-06-2020 197 3

Table 4.5: Table of the number cases (COVID-19) in Algeria.
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Date Number of cases  state
21-03-2020 75 3
22-03-2020 14 1
23-03-2020 25 2
24-03-2020 59 3
25-03-2020 24 1
26-03-2020 30 2
27-03-2020 52 3
28-03-2020 33 2
29-03-2020 50 2
30-03-2020 32 2
31-03-2020 29 2
01-04-2020 32 2
03-04-2020 40 2
04-04-2020 58 3
05-04-2020 21 1
06-04-2020 22 1
07-04-2020 27 2
08-04-2020 5 1
09-04-2020 15 1
10-04-2020 28 2
11-04-2020 36 2
12-04-2020 19 1
13-04-2020 21 1
14-04-2020 33 2
15-04-2020 42 2
16-04-2020 42 2
17-04-2020 2 1
18-04-2020 13 1
19-04-2020 5 1
20-04-2020 17 1
21-04-2020 8 1
22-04-2020 30 2
23-04-2020 0 1
24-04-2020 0 1
25-04-2020 10 1
26-04-2020 18 1
27-04-2020 8 1
28-04-2020 5 1
29-04-2020 14 1
30-04-2020 4 1
01-05-2020 11 1
02-05-2020 4 1
03-05-2020 5 1
04-05-2020 4 1
05-05-2020 3 1
06-05-2020 1 1
07-05-2020 4 1
08-05-2020 2 1
09-05-2020 0 1
10-05-2020 0 1
11-05-2020 0 1
12-05-2020 0 1
13-05-2020 0 1
14-05-2020 3 1
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Date

Number of cases

state

15-05-2020
16-05-2020
17-05-2020
18-05-2020
19-05-2020
20-05-2020
21-05-2020
22-05-2020
23-05-2020
24-05-2020
25-05-2020
26-05-2020
27-05-2020
28-05-2020
29-05-2020
30-05-2020
31-05-2020
01-06-2020
02-06-2020
03-06-2020
04-06-2020
05-06-2020
06-06-2020
07-06-2020
08-06-2020
09-06-2020
10-06-2020
11-06-2020
12-06-2020
13-06-2020
14-06-2020
15-06-2020
16-06-2020
17-06-2020
18-06-2020
19-06-2020
20-06-2020
21-06-2020
22-06-2020
23-06-2020
24-06-2020
25-06-2020
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Table 4.6: Table

of the number cases (COVID-19) in Tunisia.
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