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Notations

N Set of positive natural numbers.
R+ Set of nonnegative real numbers.
(Ω,F ,P) Probability space.
E Expectation with respect to P.
E = {1, . . . , s} Finite state space.
ME Set of real matrix on E× E.

ME(N) Matrix-valued functions defined on N,
with values in ME.

Z := (Zk)k∈N Semi-Markov chain (SMC).
Z := (Zt)t∈R+ Semi-Markov process (SMP).
(J, S) := (Jn, Sn)n∈N Markov renewal chain (MRC).
J := (Jn)n∈N Visited states, embedded Markov chain (EMC).
S := (Sn)n∈N Jump times.
X := (Xn)n∈N Sojourn times.
M Fixed censoring time.
N(M) Number of jumps of Z in the time interval [1,M ].

Ni(M) Number of visits to state i of the EMC,
up to time M.

Nij(M) Number of transitions from state i to state j
of the EMC, up to time M.

Nij(k,M) Number of transitions from state i to state j of the EMC,
up to time M, with sojourn time in state i equal to k.
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Notation 7

p := (pij)i,j∈E Transition matrix of the EMC J.
q := (qij(k))i,j∈E,k∈N Semi-Markov kernel.
q := (qij(t))i,j∈E,t∈R+ Density of the Markov renewal kernel.
Q := (Qij(k))i,j∈E,k∈N Cumulated semi-Markov kernel.
Q := (Qij(t))i,j∈E,t∈R+ Markov renewal kernel.
f := (fij(k))i,j∈E,k∈N Conditional sojourn time distribution

in state i, before visiting state j.
F := (Fij(k))i,j∈E,k∈N Conditional cumulative sojourn time distribution

in state i, before visiting state j.
F := (Fij(t))i,j∈E,t∈R+ Sojourn time distribution

in state i, before visiting state j.
h := (hi(k))i∈E,k∈N Sojourn time distribution in state i.
H := (Hi(k))i∈E,k∈N Cumulative distribution of sojourn time in state i.
H := (Hi(t))i∈E,t∈R+ Sojourn time distribution in state i.
H := (H i(k))i∈E,k∈N Survival function in state i.
P := (Pij)(k)i,j∈E,k∈N Transition function of the semi-Markov chain Z.
P := (Pij)(t)i,j∈E,t∈R+ Transition function of the semi-Markov process Z.
ψ(t) = (ψij(t))i,j∈E,t∈R+ Markov renewal matrix.
λ(t) := (λij(t))i,j∈E,t∈R+ Hazard rate function.
µij Mean first passage time from state i to state j,

for semi Markov process Z.
µ∗ij Mean first passage time from state i to state j,

for embedded Markov chain J.
ν = (ν(j)j∈E) Stationary distribution of the EMC J.
α = (αi)i∈E Initial distribution of semi-Markov process Z.
A ∗B Discrete-time matrix convolution product of A, B.
Q ? φ Stieltjes convolution of φ, Q.
A(n) n-fold convolution of A ∈ME(N).



Notation 8

a.s−→ Almost sure convergence (strong consistency).
P−→ Convergence in probability.
D−→ Convergence in distribution.
δij Symbole of Kronecker.
1IA Indicatrice function of A.
N (0, σ2) Standard normal random variable ( mean µ = 0 , variance σ2).

DTMC Discrete-time Markov Chain.
CTMC Continuous-time Markov Chain.
SMC Semi-Markov Chain.
SMP Semi-Markov Process.
RC Renewal Chain.
EMC Embedded Markov Chain.
MLE Maximum-Likelihood Estimator.
SLLN Strong Law of Large Numbers.
CLT Central Limit Theorem.

r.v random variable.



Introduction

I n recent years, the evolution of a system in applications concern queuing
theory, reliability and maintenance, survival analysis, performance eval-

uation, biology, DNA analysis, risk processes, insurance and finance, earth-
quake modelling, etc, is modelled by a stochastic continuous-time process
or discrete. Among the models which are widely used as a standard tool
to describe the evolution of a system, we have the Markov models and the
semi-Markov models.

Much work has been carried out in the field of Markov processes, and
a huge amount of Markov process applications can be found in the litera-
ture of the last 50 years. One of the reasons for applying Markov process
theory in various fields is that the Markovian hypothesis is very intuitive: if
we know the past and present of a system, then the future development of
the system is only determined by its present state. So, the history of the
system does not play a role in its future development. We also call this the
memoryless property. However, the Markov property has its limitations. It
enforces restrictions on the distribution of the sojourn time in a state, which
is exponentially distribution (continuous case) or geometrically distribution
(discrete case). This is a disadvantage when we apply Markov processes in
real-life applications.
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Introduction 10

Therefore, we can introduce the semi-Markov process. This process allows
us to have arbitrary distributed sojourn time in any state and still provides
the Markov property, but in a more flexible way. The memoryless property
does not act on the calendar time in this case, but on the sojourn time in
the state.

The semi-Markov processes were introduced independently and almost
simultaneously by Levy [18], Smith [30], and Takacs [31] in 1954-1955. The
essential developments of semi-Markov processes theory were proposed by
Pyke [25, 26], Cinlar [9], Koroluk and Turbin [16, 15], Limnios [19], Takacs
[32]. For the semi-Markov processes, the distribution of the sojourn time in
a state can be arbitrary, and the future evolution depends on the time spent
through the last transition.

A semi-Markov process can also be defined by a two-dimensional process,
the first component represents the states successively visited by the process
(Markov chain) and the second describes the moments of change of process
state. This two- dimensional process is called Markov renewal process.

The problem of statistical inference for semi-Markov processes is of in-
creasing interest in literature. There is a growing literature concerning in-
ference problems for continuous-time semi-Markov processes. For instance,
Moore and Pyke (1968)[21] studied empirical and maximum likelihood esti-
mators for semi-Markov kernels; Lagakos et al. (1978)[17] obtained the non-
parametric maximum likelihood estimator for the kernel of a finite state semi-
Markov process with some absorbing states; Akritas and Roussas (1979)[1]
studied the asymptotic local normality: Gill (1980)[11] constructed an es-
timator for the kernel of a finite state semi-Markov kernel, using counting
processes; Ouhbi and Limnios (1999)[23] studied empirical estimators for
non-linear functionals of finite semi-Markov kernels.

This master memory falls into four chapters.

In chapter 1, we give some background and some basic concepts,
properties, and theorems on homogeneous Markov chains and continuous-
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time homogeneous Markov processes with a discrete set of states.

In chapter 2, we consider a homogeneous discrete-time finite state
space semi-Markov model. We introduce its basic probabilistic properties
and we present their empirical estimators for the main characteristics (ker-
nel, sojourn time distributions, transition probabilities, etc.), which proves
to be also an approached maximum likelihood estimator. The estimation
made by considering a sample path of the discrete-time semi-Markov process
(DTSMP) in the time interval [0,M ] with M an arbitrarily chosen posi-
tive integer. After having obtained these general results, we investigate the
asymptotic properties of the estimators, namely, the strong consistency and
the asymptotic normality. We continue by giving the Markov renewal equa-
tion in the discrete case.

In chapter 3, we develop the theory of continuous-time semi-Markov
processes. Results about estimation and the asymptotic behaviors of the em-
pirical estimators of this processes are also transposed here but other specific
results about Markov renewal equation and hazard rate function are given
as well.

In chapter 4 we present the R package semiMarkov for parametric
estimation in multi-state semi-Markov models and we give a detailed descrip-
tion of the package with an application to asthma control. After that, we
apply the nonparametric estimation of the semi-Markov model to the Coro-
navirus data sets in Tunisia and Algeria. For the Coronavirus data set in
Algeria, we use the R package semiMarkov to determine the hazard rate
functions in a parametric way.



Chapter 1

Introduction and preliminaries

In this chapter we introduce some basic concepts, properties, and the-
orems on homogeneous Markov chains and continuous-time homogeneous
Markov processes with a discrete set of states, which will be useful later.

1.1 Definitions and theorems

Consider a finite set E = {1, . . . , s}.We denote byME the set of real matrices
on E × E and by ME(N) the set of matrix valued functions defined on N,
with values inME.

Definition 1.1.1. (discrete-time matrix convolution product)
Let A,B ∈ ME(N) be two matrix-valued functions. The matrix con-

volution product A ∗ B is the matrix-valued function C ∈ ME(N) defined
by

Cij(k) :=
∑
r∈E

k∑
l=0

Air(k − l)Brj(l), i, j ∈ E, k ∈ N,

or, in matrix form,

C(k) :=
k∑
l=0

A(k − l)B(l).

Lemma 1.1.1. [5] Let δI = (δij(k); i, j ∈ E) ∈ME(N) be the matrix-valued

12



1.1 Definitions and theorems 13

function defined by

δij(k) :=

1, if i = j and k = 0,

0, elsewhere.

or, in matrix form,

δI(k) :=

I, if k = 0,

0, elsewhere.

Then δI satisfies

δI ∗A = A ∗ δI = A, A ∈ME(N)

i.e., δI is the identity element for the discrete-time matrix convolution prod-
uct.

Definition 1.1.2. (discrete-time n-fold convolution) Let A ∈ ME(N)

be a matrix-valued function and n ∈ N. The n-fold convolution A(n) is the
matrix-valued function defined recursively by:

A
(0)
ij (k) := δij(k)

1, if i = j and k = 0,

0, elsewhere,

A
(1)
ij (k) := Aij(k),

A
(n)
ij (k) :=

∑
r∈E

k∑
l=0

Air(l)A
(n−1)
rj (k − l), n ≥ 2, k ∈ N,

that is,

A(0) := δI, A(1) := A and A(n) := A ∗A(n−1).

Let (Ω,F ,P) be a probability space, let (E, ε) be a measurable space and
let I be a set called a parameter set. Generally, I is a subset of R, usually N
or R+.
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Definition 1.1.3. (Stochastic process, state space)
A stochastic process is a family of random variables {X(t), t ∈ I} defined

on (Ω,F ,P) with values in E. For every t ∈ I, X(t) is a random variable
X(t) : Ω→ E, whose value for the outcome ω ∈ Ω is noted X(t, ω). If instead
of t we fix an ω ∈ Ω, we obtain the function X(., ω) : I → E which is called
a trajectory or a path-function or a sample function of the process.

The set E is called the state space of the stochastic process X = (X(t), t ∈
I). The stochastic process may be denoted by Xt instead of X(t) (respectively,
Xn if I = N).

Theorem 1.1.1. (Strong Law of Large Numbers)[19] Let (X1, X2, . . .)

is an infinite sequence of i.i.d. Lebesgue integrable random variables with
expected value E[X1] = E[X2] = . . ., then we have

1

n

n∑
i=1

Xi
a.s−→

n→∞
E[X1].

Theorem 1.1.2. (Glivenko-Cantelli theorem) [7] Let Fn(x) = 1
n

n∑
k=1

1{Xk≤x}

be the empirical distribution function of the i.i.d. random sample X1, . . . , Xn.
Denote by F the common distribution function of Xi , i = 1, . . . , n. Thus

sup
x∈R
|Fn(x)− F (x)| a.s−→

n→∞
0.

Theorem 1.1.3. [14] Let (Yn)n∈N be a sequence of random variables and
(Nn)n∈N a positive integer-valued stochastic process. Suppose that

Yn
a.s−→

n→∞
Y and Nn

a.s−→
n→∞

∞.

Then,
YNn

a.s−→
n→∞

Y.

Definition 1.1.4. (Martingale) Let F = (Fn, n ≥ 0) be a family of sub-σ-
algebras of F such that Fn ⊂ Fm, when n < m. We say that F is a filtration
of F . A real-valued F-adapted stochastic process Xn is (Fn-measurable for
n ≥ 0) called martingale with respect to a filtration F if, for every n = 0, 1, . . .

1. E|Xn| <∞ ; and
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2. E[Xn+1|Fn] = Xn (a.s).

Theorem 1.1.4. (CLT for martingales)[6]
Let (Xn)n∈N? be a martingale with respect to the filtration F = (Fn)n∈N

and define the process Yn = Xn − Xn−1, n ∈ N? (with Y1 := X1), called a
difference martingale. If

1. 1
n

∑n
k=1 E[Y 2

k |Fk−1]
P−→

n→∞
σ2 > 0;

2. 1
n

∑n
k=1 E[Y 2

k 1{|Yk|>ε
√
n}] −→

n→∞
0, For all ε > 0,

then
Xn

n

a.s−→
n→∞

0,

and
1√
n
Xn =

1√
n

n∑
k=1

Yk
D−→

n→∞
N (0, σ2).

Theorem 1.1.5. (Anscombe’s theorem)[8]
Let (Yn)n∈N be a sequence of random variables and (Nn)n∈N a positive

integer-valued stochastic process. Suppose that

1√
n

n∑
m=1

Ym
D−→

n→∞
N (0, σ2) and Nn/n

P−→
n→∞

θ,

where θ is a constant, 0 < θ <∞. Then,

1√
Nn

Nn∑
m=1

Ym
D−→

n→∞
N (0, σ2).

1.2 Discrete-time Markov chain

Let (Jn)n≥0 be a stochastic process defined on a probability space (Ω,F ,P),
with values in a measurable space (E, ε). Unless otherwise stated, we assume
that E = {1, 2, . . . , s} or E = {1, 2, . . .}.

Definition 1.2.1. (Discrete-time Markov chain)
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1. A stochastic process (Jn)n≥0 is called discrete time Markov process or
Markov chain with state space E if, for any n ∈ N and any state se-
quence i1, i2, . . . , i, j ∈ E,

P(Jn+1 = j︸ ︷︷ ︸
Future

| J1 = i1, . . . , Jn = i︸ ︷︷ ︸
Past and present

) = P(Jn+1 = j︸ ︷︷ ︸
Future

|Jn = i︸ ︷︷ ︸
Present

).

2. If, additionally, the probability P(Jn+1 = j|Jn = i) does not depend on
n, (Jn)n≥0 is said to be homogeneous with respect to time.

Definition 1.2.2. (Transition matrix )
The function (i, j) → pij := P(Jn+1 = j|Jn = i) is called transition

function of the chain. For any i, j ∈ E and n ≥ 0, the transition function
has the following properties :

1. pij ≥ 0, for any i, j ∈ E,

2.
∑
j∈E

pij = 1, for any i ∈ E,

3.
∑
k∈E

pikpkj = P(Jn+2 = j|Jn = i) = p
(2)
ij .

If E finite, we can represent transition function as a square matrix ( transition
matrix ),

p = (pij)i,j∈E =

p11 · · · p1s

...
...

ps1 · · · pss


Notation: p(n)

ij := P(Jn = j|J0 = i) is called the n-step transition func-
tion.

Remark 1.2.1. If E finite, p(n) represents the usual n-fold matrix product
of p, that is

p(n) = pn.

In order to define a Markov chain (Jn)n≥0 we need :
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1. transition function (matrix) p = (pij)i,j∈E.

2. α = (α1, . . . , αs), the initial distribution of the chain, that is the distri-
bution of J0, αi = P(J0 = i) for any state i ∈ E.

Proposition 1.1. [5] Let (Jn)n≥0 be a Markov chain of transition matrix p.

1. The sojourn time of the chain in a state i ∈ E is a geometric random
variable of parameter 1− pii.

2. The probability that the chain enters state j when it leaves state i is
pij

1−pii (for pii 6= 1).

Definition 1.2.3. (Stationary distribution) A probability distribution ν

on E is said to be stationary or invariant for the Markov chain (Jn)n≥0 if,
for any j ∈ E ∑

j∈E

ν(i)pij = ν(j),

or, in matrix form,
νp = ν,

where ν = (ν(1), . . . , ν(s)) is a row vector.

1.2.1 State classification

Definition 1.2.4. (Accessible state) We say that state j is accessible from
state i, written as i→ j if p(n)

ij > 0. We assume every state is accessible from
itself since p(0)

ii = 1.

Definition 1.2.5. (Communicate state) Two states i and j are said to
communicate, written as i ↔ j if they are accessible from each other. In
other words,

i↔ j means i→ j and j → i.

Definition 1.2.6. (Irreducible Markov chain) A Markov chain is said
to be irreducible if all states communicate with each other.
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Definition 1.2.7. (Recurrent state) A state is said to be recurrent if, any
time that we leave that state, we will return to that state in the future with
probability one. On the other hand, if the probability of returning is less than
one, the state is called transient. Here, we provide a formal definition: For
any state i, we define

Gii = P(Jn = i, for some n ≥ 1|J0 = i).

State i is recurrent if Gii = 1, and it is transient if Gii < 1.

Definition 1.2.8. (Periodic,aperiodic state) A state i ∈ E is said to be
periodic of period d > 1, or d-periodic, if d is equal to the greatest common
divisor of all n such that P(Jn+1 = i|J1 = i) > 0. If d = 1, then the state i is
said to be aperiodic.

Definition 1.2.9. (Ergodic state) An aperiodic recurrent state is called
ergodic. An irreducible Markov chain with one state ergodic (and then all
states ergodic) is called ergodic.

1.3 Continuous-time Markov chain

Definition 1.3.1. (Continuous-time Markov chain) Let (J(t))t∈R+ be
a stochastic process defined on a probability space (Ω,F ,P), with values in a
measurable space (E, ε). Unless otherwise stated, we assume that
E = {1, 2, . . . , s} or E = {1, 2, . . .}.

1. A stochastic process (J(t))t∈R+ is called continuous-time Markov chain
with the state space E if, for any h, t ≥ 0 and j ∈ E we have

P(J(h+t) = j|J(h1) = i1, . . . , J(hn) = in, J(h) = i) = P(J(h+t) = j|J(h) = i)

0 ≤ h1 < . . . < hn < h, n ∈ N, i1, . . . , in, i, j ∈ E.

2. If P(J(h + t) = j|J(h) = i) does not depend on h, then (J(t))t∈R+ is
said to be homogeneous with respect to time.
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Definition 1.3.2. (Transition matrix) Let (J(t))t∈R+ be a continuous-
time Markov process with state space E. The functions defined on R+ by

t→ pij(t) := P(J(h+ t) = j|J(h) = i), i, j ∈ E

are called transition functions of the process. The matrix p(t) = (pij(t))i,j∈E

is called the transition matrix (possibly infinite) and (p(t))t∈R+ is called the
transition semigroup of the continuous-time Markov process.

Proposition 1.3.1. (Properties of the transition function)[13]

1. p(t) is a stochastic matrix.

2. p(t) verifies the Chapman-Kolmogrov equation : p(t+ h) = p(t)p(h).

3. p(0) = I.

Proposition 1.2. [12] Let Ti be the waiting time in state i. The Chapman
Kolmogorov equation allows that Ti always has an exponential distribution
with a parameter λi > 0

Gi(t) = P(Ti ≤ t) = 1− e−λit, t ≥ 0, i ∈ E.

Example 1. From the definition of the Poisson process it follows that it is
the process with stationary independent increments and

P(J(t+ h)− J(h) = k) =
(λt)k

k!
e−λt, k ∈ E, for all t > 0, h ≥ 0.

Each process with stationary independent increments is a homogeneous Markov
process with transition probabilities:

pij(t) = P(J(t+ h)− J(h) = j − i).

Hence, the Poisson process is the homogeneous Markov process with the tran-
sition probabilities given by

pij(t) =
(λt)j−i

(j − i)!
e−λt, i, j ∈ E.



Chapter 2

Discrete-time semi-Markov
process

Discrete-time semi-Markov processes (DTSMPs) and discrete-time Markov
renewal processes (DTMRPs) are a class of stochastic processes which gen-
eralize discrete-time Markov chains and discrete-time renewal processes.

For a discrete-time Markov process, the sojourn time in each state is
geometrically distributed. In the semi-Markov case, the sojourn time distri-
bution can be any distribution on N∗. This is the reason why the semi-Markov
approach is much more suitable for applications than the Markov one.

2.1 Markov renewal chains and semi-Markov
chains

Let us consider:

• E the state space. We suppose E to be finite, with | E |= s.

• The stochastic process J = (Jn)n≥0 with state space E for the system
state at the nth jump.

• The stochastic process S = (Sn)n≥0 with state space N for the nth jump.
We suppose S0 = 0 and 0 < S1 < S2 < . . . < Sn < Sn+1 < . . .

20
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• The stochastic processX = (Xn)n≥0 with state space N? for the sojourn
time Xn in state Jn−1 before the nth jump. Thus, Xn = Sn − Sn−1, for
all n ∈ N?.

Fig 1.1 : Sample path of a semi-Markov chain.

Definition 2.1.1. (Markov renewal chain) The stochastic process
(J, S) = (Jn, Sn)n∈N is said to be a Markov renewal chain (MRC) if for all
n ∈ N, for all i, j ∈ E and for all k ∈ N it almost surely satisfies

P(Jn+1 = j, Sn+1−Sn = k|J0, . . . , Jn;S0, . . . , Sn) = P(Jn+1 = j, Sn+1−Sn = k|Jn).

(2.1)

Moreover, if equation (2.1) is independent of n, (J, S) is said to be ho-
mogeneous, with discrete semi-Markov kernel q = (qij(k); i, j ∈ E, k ∈ N)

defined by

qij(k) = P(Jn+1 = j,Xn+1 = k|Jn = i), k > 0, and qij(0) = 0.

Let us introduce the cumulated semi-Markov kernel
Q = (Q(k), k ∈ N) ∈ME(N) defined, for all i, j ∈ E and for all k ∈ N, by

Qij(k) = P(Jn+1 = j,Xn+1 ≤ k|Jn = i) =
k∑
l=0

qij(l).

Proposition 2.1. [5] For all i, j ∈ E, for all n and k ∈ N, we have

P(Jn = j, Sn = k|J0 = i) = q
(n)
ij (k).



2.1 Markov renewal chains and semi-Markov chains 22

Proof. We prove the result by induction. For n = 0, we have

P(J0 = j, S0 = k|J0 = i) = q
(0)
ij (k).

Obviously, for k 6= 0 or i 6= j, this probability is zero. On the other hand,
if i = j and k = 0, the probability is one, thus the result follows.
For n = 1, the result obviously holds true, using the definition of the semi-
Markov kernel q and of q(1)

ij (k). For n ≥ 2:

P(Jn = j, Sn = k|J0 = i) =
∑
r∈E

k−1∑
l=1

P(Jn = j, Sn = k, J1 = r, S1 = l|J0 = i)

=
∑
r∈E

k−1∑
l=1

P(Jn = j, Sn = k|J1 = r, S1 = l, J0 = i)

P(J1 = r, S1 = l|J0 = i)

=
∑
r∈E

k−1∑
l=1

P(Jn−1 = j, Sn−1 = k − l|J0 = r)P(J1 = r,X1 = l|J0 = i)

=
∑
r∈E

k−1∑
l=1

q
(n−1)
rj (k − l)qir(l) = q

(n)
ij (k).2

Let us also consider the matrix function ψ = (ψ(k), k ∈ N) ∈ ME(N),
defined by

ψij(k) =
∞∑
n=0

q(n)(k) =
k∑

n=0

q(n)(k), i, j ∈ E, k ∈ N.

The infinite series which appears in the definition of ψ proves to be a
finite series due to the fact that q(n)

ij (k) = 0 for all n and k ∈ N such that
n > k. Note that this property is specific to a semi-Markov process with
discrete-time.

Definition 2.1.2. (Discrete-time semi-Markov chain) Let (J, S) be a
Markov renewal chain. The chain Z = (Zk)k∈N is said to be a semi-Markov
chain associated to the MRC (J, S) if

Zk := JN(k), k ∈ N
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where
N(k) := max{n ≥ 0; Sn ≤ k},

is the discrete-time counting process of the number of jumps in [1, k] ⊂ N.
Thus Zk gives the system state at time k. We have also Jn = ZSn .

Let the row vector α = (α1, . . . , αs) denote the initial distribution of
the semi-Markov chain Z = (Zk)k∈N i.e αi := P(Z0 = i) = P(J0 = i), i ∈ E.

Remark 2.1.1. J = (Jn)n∈N is a Markov chain, called the embedded Markov
chain (EMC).

Definition 2.1.3. (Transition function of the semi-Markov) The tran-
sition function of the semi-Markov chain Z is the matrix-valued function
P = (Pij(k); i, j ∈ E, k ∈ N) ∈ME(N) defined by

Pij(k) := P(Zk = j|Z0 = i), i, j ∈ E, k ∈ N.

Definition 2.1.4. (Conditional distributions of sojourn times) For all
i, j ∈ E, let us define:

• fij(.), the conditional distribution of sojourn time in state i before going
to state j:

fij(k) := P(Xn+1 = k|Jn = i, Jn+1 = j), ∀k ∈ N.

• Fij(.), the conditional cumulative distribution of Xn+1, n ∈ N:

Fij(k) := P(Xn+1 ≤ k|Jn = i, Jn+1 = j) =
k∑
l=0

fij(l), ∀k ∈ N.

• hi(.), the sojourn time distribution in state i:

hi(k) := P(Xn+1 = k|Jn = i) =
∑
j∈E

qij(k),∀k ∈ N.
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• Hi(.), the sojourn time cumulative distribution function in state i:

Hi(k) := P(Xn+1 ≤ k|Jn = i) =
k∑
l=1

hi(l), ∀k ∈ N.

• H i(.), the survival function of sojourn time in state i:

H i(k) := P(Xn+1 > k|Jn = i), ∀k ∈ N.

Obviously, for all i, j ∈ E and k ∈ N, we have qij(k) = pijfij(k).

The following assumptions concerning the Markov renewal chain will be
needed in the rest of this work.

A1 The Markov chain (Jn)n∈N is irreducible.

A2 The mean sojourn times are finite, i.e.
∑

k=0 khi(k) < ∞ for any state
i ∈ E.

A3 The Markov renewal process (Jn, Sn)n∈N is aperiodic.

2.2 Elements of statistical estimation

Let us consider a sample path of the DTMRP (Jn, Sn)n∈N, censored at
time M ∈ N (XN(M)+1 is above uM but it is unknown by how much).

H(M) := (J0, X1, . . . , JN(M)−1, XN(M), JN(M), uM),

where N(M) is the number of jumps of the process in [1,M ] ⊂ N and
uM := M−SN(M) is the censored sojourn time in the last visited state JN(M).

2.2.1 Empirical estimators

Taking a sample path H(M) of a DTMRP, for all i, j ∈ E and
k ∈ N, k ≤M , we define the empirical estimators of the transition matrix of
the embedded Markov chain pij, of the conditional sojourn time fij(k) and
of the discrete semi-Markov kernel qij(k) by

p̂ij(M) :=
Nij(M)

Ni(M)
, f̂ij(k,M) :=

Nij(k,M)

Nij(M)
, q̂ij(k,M) :=

Nij(k,M)

Ni(M)
. (2.2)
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where Nij(k,M), Ni(M) and Nij(M) are given by

• Ni(M) :=

N(M)∑
n=1

1{Jn=i} : the number of visits to state i, up to time

M ;

• Nij(M) :=

N(M)∑
n=1

1{Jn−1=i,Jn=j} : the number of transitions from i to

j, up to time M ;

• Nij(k,M) :=

N(M)∑
n=1

1{Jn−1=i,Jn=j,Xn=k} : the number of transitions

from i to j, up to time M , with sojourn time in state i equal to k,
1 ≤ k ≤M .

The likelihood function corresponding to the history H(M) is

L(M) = αJ0

N(M)∏
k=1

pJk−1JkfJk−1Jk(Xk)HJN(M)
(uM),

where HJN(M)
is the survival function in state i and αi is the initial distribu-

tion of state i.

Lemma 2.2.1.1. [5]
For a semi-Markov chain Z = (Zn)n∈N we have

uM/M
a.s−→

M→∞
0.

The previous lemma tells us that, for largeM , uM does not add significant
information to the likelihood function. For these reason, we will neglect the
term HJN(M)

(uM) in the expression of the likelihood function L(M). On the
other side, the sample path H(M) of the MRC (Jn, Sn)n∈N contains only one
observation of the initial distribution α of (Jn)n∈N, so the information on αJ0
does not increase withM . As we are interested in large-sample estimation of
semi-Markov chains, the term αJ0 will be equally neglected in the expression
of the likelihood function.
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Consequently, we will be concerned with the maximization of the ap-
proached likelihood function defined by

L1(M) =

N(M)∏
k=1

pJk−1JkfJk−1Jk(Xk). (2.3)

Proposition 2.2. [5] For a sample path of a DTMRP (Jn, Sn)n∈N, censored
at time M ∈ N, the empirical estimators p̂ij(M), f̂ij(k,M) and q̂ij(k,M),
proposed in equation (2.2), are approached non-parametric maximum likeli-
hood estimators i.e. they maximize the approached likelihood function L1,
given in equation (2.3).

Proof. We consider the approached likelihood function L1(M) given by
equation (2.3). Using the equality

s∑
j=1

pij = 1 (2.4)

the approached log-likelihood function can be written in the form

log(L1(M)) =

M∑
k=1

s∑
i,j=1

[Nij(M) log(pij) +Nij(k,M) log(fij(k)) + λi(1−
s∑
j=1

pij)],

(2.5)

where the Lagrange multipliers λi are arbitrarily chosen constants.
In order to obtain the approached MLE of pij we maximize equation (2.5)

with respect to pij, and get pij = Nij(M)/λi. Equation (2.4) becomes

1 =
s∑
j=1

pij =
s∑
j=1

Nij(M)

λi
=
Ni(M)

λi
.

Finally, we infer that the values λi which maximize equation (2.5) with
respect to pij are given by λi = Ni(M) and we obtain

p̂ij(M) :=
Nij(M)

Ni(M)
.

The expression of f̂ij(k,M) can be obtained by the same method. Indeed,
using the equality

∞∑
k=1

fij(k) = 1 (2.6)
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we write the approached log-likelihood function in the form

log(L1(M)) =
M∑
k=1

s∑
i,j=1

[Nij(M) log(pij) +Nij(k,M) log(fij(k)) + λij(1−
∞∑
k=1

fij(k))],

(2.7)

where λij are arbitrarily chosen constants. Maximizing (2.7) with respect to
fij(k) we obtain f̂ij(k,M) := Nij(k,M)/λij.

From Equation (2.6) we obtain λij(M) = Nij(M). Thus
f̂ij(k,M) := Nij(k,M)/Nij(M).

In an analogous way we can prove that the expression of the approached
MLE of the kernel qij(k) is given by equation (2.2). 2

Lemma 2.2.1. [5] For a MRC that satisfies Assumptions A1 and A2, we
have:

1. lim
M→∞

SM =∞ a.s;

2. lim
M→∞

N(M) =∞ a.s.

Lemma 2.2.2. [5] For the DTMRP (Jn, Sn)n∈N. We have
Ni(M)
M

a.s−→
M→∞

1
µii
,
Nij(M)

M

a.s−→
M→∞

pij
µii

, N(M)
M

a.s−→
M→∞

1
ν(l)µll

.

where µii is the mean recurrence time of state i for the semi-Markov process
(Zn)n∈N, (ν(l); l ∈ E) the stationary distribution and l is an arbitrary fixed
state.

2.3 Asymptotic properties of the estimators

In this section, we study the asymptotic properties (consistency and asymp-
totic normality) of the proposed estimators p̂ij(M), f̂ij(k,M) and q̂ij(k,M).

2.3.1 Strong consistency

Corollary 2.3.1. [5] For any i, j ∈ E, under A1, we have

p̂ij(M) =
Nij(M)

Ni(M)

a.s−→
M→∞

pij.

For i, j ∈ E two fixed states, let us also define the empirical estimator of the
conditional cumulative distribution of (Xn)n∈N∗
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F̂ij(k,M) :=
k∑
l=0

f̂ij(l,M) =
k∑
l=0

Nij(l,M)

Nij(M)
. (2.8)

The following result concerns the convergence of f̂ij(k,M) and F̂ij(k,M).

Proposition 2.3. [5] For any fixed arbitrary states i, j ∈ E, the empirical
estimators f̂ij(k,M) and F̂ij(k,M) proposed in equations (2.2) and (2.8), are
uniformly strongly consistent, i.e.

1. max
i,j∈E

max
0≤k≤M

|F̂ij(k,M) − Fij(k)| a.s.−−−−→
M−→∞

0.

2. max
i,j∈E

max
0≤k≤M

|f̂ij(k,M) − fij(k)| a.s.−−−−→
M−→∞

0.

Proof. We first prove the strong consistency of the estimators using the
SLLN theorem 1.1.1 . Second, we show the uniform consistency, i.e., that
the convergence does not depend on the chosen k, 0 ≤ k ≤ M . This second
part is done by means of the Glivenko-Cantelli theorem 1.1.2.

Obviously, the strong consistency can be directly obtained using Glivenko-
Cantelli theorem 1.1.2. Anyway, we prefer to derive separately the consis-
tency result because it is easy and constructive.

Let us denote by {n1, n2, . . . , nNij(M)} the transition times from state i to
state j, up to time M. Note that we have

F̂ij(k,M) =
1

Nij(M)

Nij(M)∑
l=1

1{Xnl≤k},

and

f̂ij(k,M) =
1

Nij(M)

Nij(M)∑
l=1

1{Xnl=k}.

For any l ∈ {1, 2, . . . , Nij(M)} we have

E[1{Xnl≤k}] = P(Xnl ≤ k) = Fij(k),

and
E[1{Xnl=k}] = P(Xnl = k) = fij(k).
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Since Nij(M)
a.s−→

M→∞
∞, applying the SLLN theorem 1.1.1 to the sequences

of i.i.d. random variables {1{Xnl≤k}}l∈{1,2,...,Nij(M)} and {1{Xnl=k}}l∈{1,2,...,Nij(M)},
and using Theorem 1.1.3, we get

F̂ij(k,M) =
1

Nij(M)

Nij(M)∑
l=1

1{Xnl≤k}
a.s−→

M→∞
E[1{Xnl≤k}] = Fij(k),

and

f̂ij(k,M) =
1

Nij(M)

Nij(M)∑
l=1

1{Xnl=k}
a.s−→

M→∞
E[1{Xnl=k}] = fij(k).

In order to obtain uniform consistency, from the Glivenko-Cantelli theorem
1.1.2, we have

max
0≤k≤m

| 1
m

m∑
l=1

1{Xnl≤k} − Fij(k)| a.s−→
M→∞

0.

Let us define ξm := max
0≤k≤m

| 1
m

m∑
l=1

1{Xnl≤k}−Fij(k)|. The previous convergence

tells us that ξm
a.s−→

m→∞
0. As N(M)

a.s−→
M→∞

∞ (2.2.1) applying Theorem 1.1.3

we obtain ξN(M)
a.s−→

M→∞
0 which reads

max
0≤k≤M

|F̂ij(k,M)− Fij(k)| a.s−→
M→∞

0.

As the state space E is finite, we take the maximum with respect to i, j ∈ E

and the desired result for F̂ij(k,M) follows.
Concerning the uniform consistency of f̂ij(k,M), note that we have

max
i,j∈E

max
0≤k≤M

|f̂ij(k,M)− fij(k)| = max
i,j∈E

max
0≤k≤M

|F̂ij(k,M)−F̂ij(k−1,M)−Fij(k)+Fij(k−1)|

≤ max
i,j∈E

max
0≤k≤M

|F̂ij(k,M)− Fij(k)|+ max
i,j∈E

max
0≤k≤M

|F̂ij(k − 1,M)− Fij(k − 1)|

and the result follows from the uniform strong consistency of F̂ij(k,M).2

Proposition 2.4. [5] The empirical estimator of the semi-Markov kernel
proposed in equation (2.2) is uniformly strongly consistent, i.e.

max
i,j∈E

max
0≤k≤M

|q̂ij(k,M) − qij(k)| a.s.−−−−→
M−→∞

0.
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Proof. Firstly, from Corollary 2.3.1, we immediately obtain the almost
sure convergence of p̂ij(M). The uniform strong consistency of q̂ij(k,M)

follows from the consistency of the estimators p̂ij(M), f̂ij(k,M) (Proposition
2.2) and from the following inequality

max
i,j∈E

max
0≤k≤M

|q̂ij(k,M) − qij(k)| = max
i,j∈E

max
0≤k≤M

|p̂ij(M)f̂ij(k,M)− p̂ij(M)fij(k)

+p̂ij(M)fij(k)− pijfij(k)|
≤ max

i,j∈E
p̂ij(M) max

i,j∈E
max

0≤k≤M
|f̂ij(k,M) − fij(k)|

+ max
i,j∈E

max
0≤k≤M

fij(k) max
i,j∈E
|p̂ij(M) − pij|

≤ max
i,j∈E
|p̂ij(M) − pij|+ max

i,j∈E
max

0≤k≤M
|f̂ij(k,M) − fij(k)|.

The conclusion follows from the consistency of p̂ij(M) and f̂ij(k,M) 2

2.3.2 Asymptotic normality

We present further theorem CLT for additive functionals of Markov re-
newal chains. Let f be a real function defined on E×E×N. Define, for each
M ∈ N, the functional Wf (M) as

Wf (M) :=

N(M)∑
n=1

f(Jn−1, Jn, Xn),

or, equivalently,

Wf (M) :=
s∑

i,j=1

Nij(M)∑
n=1

f(i, j,Xijn),

where Xijn is the nth sojourn time of the chain in state i, before going to
state j. Set

Aij :=
∞∑
x=1

f(i, j, x)qij(x), Ai :=
s∑
j=1

Aij,

Bij :=
∞∑
x=1

f 2(i, j, x)qij(x), Bi :=
s∑
j=1

Bij,
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if the sums exist. Define

ri :=
s∑
j=1

Aj
µ∗ii
µ∗jj

, mf :=
ri
µii

σ2
i := −r2

i +
s∑
j=1

Bj
µ∗ii
µ∗jj

+ 2
s∑
r=1

∑
l 6=i

∑
k 6=i

ArlAkµ
∗
ii

µ∗li + µ∗ik − µ∗lk
µ∗rrµ

∗
kk

, Bf :=
σ2
i

µii

Where µ∗ii is the mean recurrence time of state i for the Markov chain (Jn)n≥0.

Theorem 2.3.1. (Central Limit Theorem) [21]
For an aperiodic Markov renewal chain that satisfies Assumptions A1 and

A2 we have √
M

[
Wf (M)

M
−mf

]
D−→

M→∞
N (0, Bf ).

Theorem 2.3.2. [5] For i, j ∈ E, and k ∈ N,√
M [q̂ij(k,M)− qij(k)] converges in distribution, asM →∞, to a zero mean

normal random variable with variance µiiqij(k)[1− qij(k)].

Proof. We present two different proofs of the theorem. The first one is
based on the CLT for Markov renewal chains (Theorem 2.3.1). The second
one relies on the Lindeberg-Lévy CLT for martingales (Theorem 1.1.4).

Method 1.

√
M [q̂ij(k,M)− qij(k)] =

M

Ni(M)

1√
M

N(M)∑
n=1

[1{Jn=j,Xn=k}−qij(k)]1{Jn−1=i} =

N(M)∑
n=1

f(Jn−1, Jn, Xn).

Let us consider the function

f(m, l, u) := 1{m=i,l=j,u=k} − qij(k)1{m=i}.

Using the notation from the Pyke and Schaufele’s CLT, we have

Wf (M) =

N(M)∑
n=1

f(Jn−1, Jn, Xn) =

N(M)∑
n=1

[1{Jn=j,Xn=k} − qij(k)]1{Jn−1=i}.
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In order to apply Pyke and Schaufeles’central limit theorem for Markov re-
newal processes (Theorem 2.3.1), we need to compute Aml, Am, Bml, Bm,mf

and Bf for m, l ∈ E.

Aml :=
∞∑
u=1

f(m, l, u)qml(u),

:=
∞∑
u=1

1{m=i,l=j,u=k}qml(u)−
∞∑
u=1

1{m=i}qij(k)qml(u)

:= δmiδlj

∞∑
u=1

1{u=k}qij(u)− δmiqij(k)
∞∑
u=1

qil(u) = qij(k)δmi(δlj − pil)

Am :=
s∑
l=1

Aml = qij(k)δmi[
s∑
l=1

δlj −
s∑
l=1

pil] = 0.

Bml :=
∞∑
u=1

f 2(m, l, u)qml(u)

:=
∞∑
u=1

1{m=i,l=j,u=k}qml(u) +
∞∑
u=1

1{m=i}q
2
ij(k)qml(u)

−2
∞∑
u=1

1{m=i,l=j,u=k}qij(k)qml(u)

:= qij(k)δmiδlj + q2
ij(k)δmipil − 2q2

ij(k)δmiδlj

Bm :=
s∑
l=1

Bml = δmiqij(k)[1− qij(k)].

Finally, we obtain

ri :=
s∑

m=1

Am
µ∗ii
µ∗mm

= 0, mf :=
ri
µii

= 0,

σ2
i :=

s∑
m=1

Bm
µ∗ii
µ∗mm

= qij(k)[1− qij(k)], Bf :=
σ2
i

µii
=
qij(k)[1− qij(k)]

µii
.

Since Ni(M)/M
a.s−→

M→∞
1/µii (see Lemma 2.2.2), we conclude as follows:

√
M [q̂ij(k,M)− qij(k)]

D−→
M→∞

N (0, µiiqij(k)[1− qij(k)]).



2.3.2 Asymptotic normality 33

Method 2.
For i, j ∈ E arbitrarily fixed states and k ∈ N arbitrarily fixed positive

integer, we write the random variable
√
M [q̂ij(k,M)− qij(k)] as

√
M [q̂ij(k,M)− qij(k)] =

M

Ni(M)

1√
M

N(M)∑
n=1

[
1{Jn=j,Xn=k} − qij(k)

]
1{Jn−1=i}.

Let Fn be the σ-algebra defined by Fn := σ(Jl, Xl; l ≤ n), n ≥ 0, and let Yn
be the random variable

Yn = 1{Jn−1=i,Jn=j,Xn=k} − qij(k)1{Jn−1=i}.

Obviously, Yn is Fn-measurable and Fn ⊆ Fn+1, for all n ∈ N. Moreover, we
have

E(Yn | Fn−1) = P(Jn−1 = i, Jn = j,Xn = k | Fn−1)− qij(k)P(Jn−1 = i | Fn−1)

= 1{Jn−1=i}P(Jn = j,Xn = k | Jn−1 = i)− qij(k)1{Jn−1=i}

= 0.

Therefore, (Yn)n∈N is an Fn-martingale difference and (
∑n

l=1 Yl)l∈N is an Fn-
martingale. Note also that, as Yl is bounded for all l ∈ N, we have

1√
n

n∑
l=1

E(Y 2
l 1{|Yl|>ε

√
n}) −→

n→∞
0.

For any ε > 0. Using the CLT for martingales (Theorem 1.1.4) we obtain

1√
n

n∑
l=1

Yl
D−→

n→∞
N (0, σ2), (2.9)

where σ2 > 0 is given by

σ2 = lim
n→∞

1√
n

n∑
l=1

E(Y 2
l | Fl−1) > 0.

As N(M)/M
a.s−→

M→∞
1/ν(l)µll applying Anscombe’s theorem (Theorem 1.1.5)

we obtain
1√
N(M)

N(M)∑
l=1

Yl
D−→

M→∞
N (0, σ2). (2.10)
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To obtain σ2, we need to compute Y 2
l and E(Y 2

l | Fl−1). First,

Y 2
l = 1{Jl−1=i,Jl=j,Xl=k} + (qij(k))21{Jl−1=i} − 2qij(k)1{Jl−1=i,Jl=j,Xl=k}.

Second,

E(Y 2
l | Fl−1) = 1{Jl−1=i}P(Jl = j,Xl = k | Jl−1 = i)

+(qij(k))21{Jl−1=i} − 21{Jl−1=i}qij(k)P(Jl = j,Xl = k | Jl−1 = i)

= 1{Jl−1=i}qij(k) + (qij(k))21{Jl−1=i} − 2(qij(k))21{Jl−1=i}

= 1{Jl−1=i}qij(k)[1− qij(k)].

Thus, σ2 given by

σ2 = lim
n→∞

(
1√
n

n∑
l=1

1{Jl−1=i})qij(k)[1− qij(k)] = ν(i)qij(k)[1− qij(k)],

where ν is the stationary distribution of the embedded Markov chain (Jn)n∈N.
The random variable of interest

√
M [q̂ij(k,M) − qij(k)] can be written as

√
M [q̂ij(k,M) − qij(k)] =

M

Ni(M)

1√
M

√
N(M)

1√
N(M)

N(M)∑
l=1

Yl

=
M

Ni(M)

√
N(M)

M

1√
N(M)

N(M)∑
l=1

Yl.

Note that we have

Ni(M)

M

a.s−→
M→∞

1

µii
,

N(M)

M

a.s−→
M→∞

1

ν(i)µii
.

Using these results and convergence (2.10), we obtain that√
M [q̂ij(k,M) − qij(k)] converges in distribution, as M tends to infinity, to

a zero-mean normal random variable, of variance

σ2
q (i, j, k) = (µii

√
1/µiiν(i))2ν(i)qij(k)[1− qij(k)]

= µiiqij(k)[1− qij(k)],

which is the desired result. 2
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2.4 Markov renewal equation

Definition 2.4.1. (Discrete-time Markov renewal equation).
Let L = (Lij(k); i, j ∈ E, k ∈ N) ∈ ME(N) be an unknown matrix-valued

function and U = (Uij(k); i, j ∈ E, k ∈ N) ∈ ME(N) be a known one. The
equation

L(k) = U(k) + Q ∗ L(k), k ∈ N,

is called a discrete-time Markov renewal equation (DTMRE).

The following result consists in a recursive formula for computing the
transition function P of the semi-Markov chain Z, which is a first example
of a Markov renewal equation.

Proposition 2.5. (Markov renewal equation of the semi-Markov)[5]
For all i, j ∈ E and k ∈ N, we have:

Pij(k) = δij[1−Hi(k)] +
∑
r∈E

k∑
l=0

qir(l)Prj(k − l), (2.11)

For all k ∈ N, let us define H(k) := diag(Hi(k); i ∈ E), H := (H(k); k ∈ N).
In matrix-valued function notation, equation (2.11) becomes

P(k) = (I−H)(k) + q ∗P(k), k ∈ N.

Proof. For all i, j ∈ E and k ∈ N, we have

Pij(k) = P(Zk = j|Z0 = i)

= P(Zk = j, S1 ≤ k|Z0 = i) + P(Zk = j, S1 > k|Z0 = i)

=
∑
r∈E

k∑
l=0

P(Zk = j, ZS1 = r, S1 = l|Z0 = i) + δij(1−Hi(k))

=
∑
r∈E

k∑
l=0

P(Zk = j|ZS1 = r, S1 = l, Z0 = i)P(J1 = r, S1 = l|J0 = i) + δij(1−Hi(k))

=
∑
r∈E

k∑
l=0

P(Zk−l = j|Z0 = r)P(J1 = r,X1 = l|J0 = i) + δij(1−Hi(k))

= δij(1−Hi(k)) +
∑
r∈E

k∑
l=0

Prj(k − l)qir(l),
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and we obtain the desired result.2
Solving the Markov renewal equation for the semi-Markov transition func-

tion P [3] we obtain that the unique solution is

P(k) = (δI− q)(−1) ∗ (I−H)(k) = (ψ ∗ (I− diag(Q · 1)))(k),

where (δI−q)(−1) denotes the left convolution inverse of the matrix function
(δI − q), H(k) := diag(Hi(k))i∈E and 1 denotes the s-column vector whose
all elements equal 1.

We propose the following estimator for P(·):

P̂(k,M) := [(δI− q̂(·,M))(−1) ∗ (I− diag(Q̂(·,M) · 1))](k)

= [ψ̂(·,M) ∗ (I− diag(Q̂(·,M) · 1))](k).

Theorem 2.4.1. [4] The estimator of the semi-Markov transition matrix is
strongly consistent and, for any fixed k ∈ N, k ≤M , and i, j ∈ E, we have

√
M(P̂ij(k,M)− Pij(k))

D−→
M→∞

N (0, σ2
ij(k)),

where

σ2
ij(k) =

s∑
m=1

µmm

{
s∑
r=1

[δmjΨij − (1−Hj) ∗ ψimψrj]2 ∗ qmr(k)

}

−

[
δmjψij ∗Hm(k)−

s∑
r=1

(1−Hj) ∗ ψimψrj ∗ qmr

]2

(k),

and Ψ = (Ψ(k), k ∈ N ∈ ME(N) is the matrix renewal function of the
DTMRP given by

Ψij(k) := Ei[Nj(k)] =
k∑

n=0

Q
(n)
ij (k) =

k∑
l=0

ψij(l), i, j ∈ E and k ∈ N.



Chapter 3

Continuous-time semi-Markov
process

This chapter provides the definitions and basic properties related to
Continuous-time semi-Markov process (CTSMP). The semi Markov process
(SMP) is constructed by the so-called Markov renewal process (MRP) that
is a special case of the two-dimensional Markov sequence. The MRP is
defined by the transition probabilities matrix, called the renewal kernel and
an initial distribution, or by other characteristics that are equivalent to the
renewal kernel. The counting process corresponding to the SMP allows us to
determine the concept of process regularity. The process is said to be regular
if the corresponding counting process has a finite number of jumps in a finite
period.

3.1 Definitions and properties

Definition 3.1.1. (Markov renewal process) Let E be the state space.
A Markov renewal process is a bivariate stochastic process (Jn, Sn) where Jn
are the values of the state space E in the Markov chain and Sn are the jump
times. We define Xn+1 = Sn+1 − Sn to be the sojourn time in the state. The
process has to satisfy the following equality

P(Jn+1 = j, Sn+1−Sn ≤ t|J0, J1, . . . , Jn, S0, S1, . . . , Sn) = P(Jn+1 = j, Sn+1−Sn ≤ t|Jn),

(3.1)

37
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for all j ∈ E, all t ∈ R+ and all n ∈ N.

Definition 3.1.2. (Renewal matrix, renewal kernel) Let E be the state
space and consider the Markov renewal process (Jn, Sn), we define
Xn+1 = Sn+1−Sn to be the sojourn time in the state. The matrix defined as

Q(t) = {Qij(t) : i, j ∈ E},

Qij(t) := P(Jn+1 = j,Xn+1 ≤ t|Jn = i),

is called a renewal matrix. We identify the renewal matrix Q as the renewal
kernel.

Proposition 3.1. [12] The Markov renewal matrix Q satisfies the following
conditions:

(i) For all t ≥ 0 and i, j ∈ E, it holds true that Qij(t) ≥ 0.

(ii) The functions Qij(t) are right-continuous.

(iii) For all i, j ∈ E, it holds true that Qij(0) = 0 and Qij(t) ≤ 1 for all
t ≥ 0.

(iv) For all i ∈ E, it holds that lim
t→∞

∑
j∈E

Qij(t) = 1.

Definition 3.1.3. The probabilities

pij = lim
t→∞

Qij(t) = Qij(∞)

= P(Jn+1 = j|Jn = i),

are the transition probabilities from state i to state j of the embedded Markov
chain {Jn;n ∈ N}.

We assume that the transition probabilities do not depend on the time n.

Proposition 3.2. [12] For a Markov renewal process with a renewal kernel
Q(t), t ≥ 0 a following equality is satisfied

P(J0 = i0, J1 = i1, X1 ≤ t1, . . . , Jn = in, Xn ≤ tn) = αi0Qi0i1(t1)Qi1i2(t2) . . . Qin−1in(tn),
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where αi0 := P(J0 = i0) is the initial distribution of the Markov renewal
process.

For t1 →∞, . . . , tn →∞, we obtain

P(J0 = i0, J1 = i1, . . . , Jn = in) = αi0pi0i1pi1i2 . . . pin−1in .

Definition 3.1.4. (Continuous-time semi-Markov process) Consider a
Markov-renewal process {(Jn, Sn) : n ∈ N} defined on a complete probability
space and with state space E. The stochastic process {Zt; t ∈ R+} defined by

Zt = JN(t),

is called a Semi-Markov Process (SMP) where N(t) = max{n ∈ N : Sn ≤ t}
is the counting process of the semi-Markov process up to time t. we can also
define the semi-Markov Process by

Zt = Jn For t ∈ [Sn, Sn+1), n ∈ N.

Definition 3.1.5. we define the transition matrix of the process {Zt; t > 0}
as

P(t) = {Pij(t) : i, j ∈ E},
Pij(t) = P(Zt = j|Z0 = i),

= P(JN(t) = j|J0 = i).

For all i, j ∈ E.

Then the unconditional semi-Markov state probability is equal to

Pj(t) = P(Zt = j) = P(JN(t) = j)

=
s∑
i=1

P(JN(t) = j|J0 = i)P(J0 = i)

=
s∑
i=1

αiPij(t).

Where αi = P(J0 = i) is the initial distribution of the Markov renewal
process.
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Definition 3.1.6. (Regularity of SMP) A SMP {Zt; t ∈ R+} is said to
be regular if the corresponding counting process {N(t); t > 0} has a finite
number of jumps in a finite period with probability 1:

∀t ∈ R+, P(N(t) <∞) = 1. (3.2)

The equality (3.2) is equivalent to a relation

∀t ∈ R+, P(N(t) =∞) = 0.

Definition 3.1.7. (Distribution functions of sojourn time) for all
i, j ∈ E, ∀t ∈ R+.

1. Fij(.), the distribution function associated with the sojourn time in state
i, before going to state j:

Fij(t) := P(Xn+1 ≤ t|Jn = i, Jn+1 = j).

2. Hi(.), the distribution function of the sojourn time, also called the wait-
ing time, in state i:

Hi(t) := P(Xn+1 ≤ t|Jn = i) =
∑
j∈E

Qij(t).

From the definition before we can derive the following result.

Proposition 3.3. [12] It holds true that

Fij(t) =
Qij(t)

pij
.

For all t ≥ 0 and i, j ∈ E

Proof. From the definition of conditional probabilities, it follows that

Fij(t) = P(Xn+1 ≤ t|Jn = i, Jn+1 = j)

=
P(Xn+1 ≤ t, Jn = i, Jn+1 = j)

P(Jn = i, Jn+1 = j)

=
P(Xn+1 ≤ t, Jn = i, Jn+1 = j)

P(Jn = i)

P(Jn = i)

P(Jn = i, Jn+1 = j)

=
P(Jn+1 = j,Xn+1 ≤ t|Jn = i)

P(Jn+1 = j, Jn = i)

=
Qij(t)

pij
.2



3.2 Elements of statistical estimation 41

3.2 Elements of statistical estimation

Estimators for semi Markov kernelQij(t) are defined on sample functions
of the MRP over [0,M ]. These sample functions of the MRP are equivalent
to the sample functions (J0, J1, . . . , JN(M), X0, X1, . . . , XN(M)).

3.2.1 Empirical estimators

LetM be the end time of the process. For the semi-Markov kernel Qij(t)

we have the following empirical estimator

Q̂ij(t,M) = 1
Ni(M)

N(t)∑
n=1

1{Jn−1=i,Jn=j,Xn≤t},

where

Ni(M) :=

N(t)∑
n=1

1{Jn=i} =
∞∑
n=1

1{Jn=i,Sn≤M}.

We define the empirical estimator of the transition matrix of the embedded
Markov chain pij by

p̂ij =
Nij(M)

Ni(M)
,

where

Nij(M) :=

N(t)∑
n=1

1{Jn−1=i,Jn=j} =
∞∑
n=1

1{Jn−1=i,Jn=i,Sn≤M}.

Because Fij(t) = Qij(t)/pij, in a similar way we obtain that
F̂ij(t,M) = Q̂ij(t,M)/p̂ij(M) with

F̂ij(t,M) = 1
Nij(M)

N(t)∑
n=1

1{Jn−1=i,Jn=j,Xn≤t}.

The quantities F̂ij(t,M) and p̂ij are respectively the empirical estimators
for the conditional transition functions and the transition probabilities. We
see that for p̂ij we divide the number of transitions from state i to state j by
the (total) number of visits to state i.
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3.2.2 Asymptotic properties of the estimators

Strong consistency

From corollary (2.3.1) the empirical estimator p̂ij(M) of pij for all i, j ∈ E is
strongly consistent, i.e.

p̂ij(M)
a.s−→

M→∞
pij.

Theorem 3.2.1. [10] The empirical estimator Q̂ij(t,M) of Qij(t) for all
i, j ∈ E is strongly consistent, i.e.

max
i,j∈E

sup
t∈[0,M ]

|Q̂ij(t,M) − Qij(t)|
a.s.−−−−→

M−→∞
0

Proof. It holds true that Qij(t) = Fij(t)pij and therefore
Q̂ij(t,M) = F̂ij(t,M)p̂ij(M) as well. Then it follows that

max
i,j∈E

sup
t∈[0,M ]

|Q̂ij(t,M) − Qij(t)| = max
i,j∈E

sup
t∈[0,M ]

|F̂ij(t,M)p̂ij(M)) − Fij(t)pij|

= max
i,j∈E

sup
t∈[0,M ]

|F̂ij(t,M)p̂ij(M))− F̂ij(t,M)pij

+F̂ij(t,M)pij − Fij(t)pij|
≤ max

i,j∈E
sup

t∈[0,M ]

|F̂ij(t,M)p̂ij(M))− F̂ij(t,M)pij|

+ max
i,j∈E

sup
t∈[0,M ]

|F̂ij(t,M)pij − Fij(t)pij|

= max
i,j∈E

sup
t∈[0,M ]

|F̂ij(t,M)(p̂ij(M)− pij)|

+ max
i,j∈E

sup
t∈[0,M ]

|(F̂ij(t,M)− Fij(t))pij|

= max
i,j∈E

sup
t∈[0,M ]

|p̂ij(M)− pij|F̂ij(t,M)

+ max
i,j∈E

sup
t∈[0,M ]

|F̂ij(t,M)− Fij(t)|pij.

The first term converges to 0 (a.s.). The second converges to 0 (a.s.) as
well by theorem (Glivenko-Cantelli theorem 1.1.2). 2
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Asymptotic normality

It is assumed throughout that the MRP is irreducible, recurrent, and that
Fij = Hi for 1 ≤ j ≤ s. This last assumption incurs no loss of generality as
is pointed out in [27]. Consider the estimator defined by:

Q̂ij(t,M) = Ĥi(t,M)p̂ij(M) (3.3)

Ĥi(t,M) = Ni(M)−1

Ni(M)∑
k=1

ε(t−Xik) (3.4)

and where ε(u) equals one if u ≥ 0 and zero otherwise. Ĥi(t,M) is therefore
the ordinary empirical distribution function determined from the sample, of
random size Ni(M) , of the holding times in state i.

The limiting distributions of the quantities in (3.3) may be obtained as
consequences of the central limit theorem for MRP (3.2.2).

For a real measurable function f , defined on E× E×R. Define, for each
M > 0, the functional Wf (M) as

Wf (M) :=
∑
i

Ni(M)∑
n=1

f(i,Xin), (3.5)

where Xin is the nth sojourn time of the chain in state i ie Xin = Sin+1 − Sin.
The functional Wf (M) can be defined only if the series in (3.5) converges.

Set

Aij :=

∫ ∞
0

f(i, j, x)dQij(x), Ai :=
s∑
j=1

Aij,

Bij :=

∫ ∞
0

(f(i, j, x))2dQij(x), Bi :=
s∑
j=1

Bij,

Let µij and µ∗ij denote the mean first passage times from state i to j in the
MRP and in the corresponding Markov Chain,{Jn;n ≥ 0}, respectively.

Write
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ri :=
s∑
j=1

Aj
µ∗ii
µ∗jj

σ2
i := −r2

i +
s∑
j=1

Bj
µ∗ii
µ∗jj

+ 2
s∑
r=1

∑
l 6=i

∑
k 6=i

ArlAkµ
∗
ii

µ∗li + µ∗ik − µ∗ii
µ∗lkµ

∗
kk

Finally, put

mf :=
ri
µii

Bf :=
σ2
i

µii

Theorem 3.2.2. (Central Limit Theorem)[21]
For an irreducible recurrent MRP and if the above moments are finite,

we have,
M−1/2 [Wf (M)−M ·mf ]

D−→
M→∞

N (0, Bf ).

To apply this result in the proofs of the theorems of this section it will
only be necessary to produce the appropriate function f and to compute the
corresponding moments.

Theorem 3.2.3. [21] For fixed i, j, t,
(M1/2[p̂ij(M)− pij],M1/2[Ĥi(t,M)−Hi(t)]) converges in law as M →∞ to
a bivariate normal r.v. with means zero and covariance matrix (σij) given by

σ11 = µiipij(1− pij), σ22 = µiiHi(t)(1−Hi(t)), σ12 = σ21 = 0.

Proof. Let ω1 and ω2 be arbitrary constants. To prove the asymptotic
joint normality it suffices to show that

ω1M
1/2[p̂ij(M)− pij] + ω2M

1/2[Ĥi(t,M)−Hi(t)], (3.6)

converges in law to a normal r.v. for all ω1 and ω2. We rewrite (3.6) as
the product of [M/Ni(M)]M−1/2 and a sum of the form (3.5) by using the
function f defined by

f(r, s, y) = {ω1[δsj − pij] + ω2[ε(t− y)−Hi(t)]}δri. (3.7)
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For this function

Ar = ω1δri[prj − pij] + ω2δri[Hr(t)−Hi(t)] = 0,

and

Br = {ω2
1[prj + p2

ij − 2prjpij] + ω2
2[Hr(t) +H2

i (t)− 2Hr(t)Hi(t)]}δri,

for l ≤ r ≤ s ; hence ri and the third sum in (3.6) is zero. Then

σ2
i =

s∑
r=1

Br
µ∗ii
µ∗rr

= ω2
1pij[1− pij] + ω2Hi(t)[1−Hi(t)].

The variance σ2
i is finite, so from Lemma 7.1 of [27] the limiting distribu-

tion of M−1/2Wf (M) for the f given in (3.7) is normal with zero mean and
variance σ2

i /µii. But M/Ni(M) → µii (a.s.) so the limiting distribution of
(3.6) is normal with zero mean and variance σ2

i µii as required. 2
The zero correlation between p̂ij and Ĥi(t,M) yields the following results.

Corollary 3.2.1. [21] For fixed i, j, t, p̂ij and Ĥi(t,M) are asymptotically
independent.

Theorem 3.2.4. [21] The empirical estimator Q̂ij(t,M) is asymptotically
normal, i.e. for fixed t > 0

√
M [Q̂ij(t,M) − Qij(t)]

D−→
M→∞

N (0, σ2).

With
σ2 = µiiHi(t)pij[Hi(t)− 2Hi(t)pij + pij].

Proof. We rewrite
√
M [Q̂ij(t,M) − Qij(t)] as

M1/2Ĥi(t,M)[p̂ij(M)− pij] +M1/2pij[Ĥi(t,M)−Hi(t)]). (3.8)

By a well-known convergence theorem [10] the limiting distribution of (3.8)

is the same as that of

M1/2Hi(t)[p̂ij(M)− pij] +M1/2pij[Ĥi(t,M)−Hi(t)]) (3.9)

With the particular choice ω1 = Hi(t) and ω2 = pij, (3.9) is just the same as
(3.6) and the proof is complete.2
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3.3 Markov renewal matrix

Definition 3.3.1. (Stieltjes convolution) Let φ(i, t) for t ≥ 0 and i ∈ E

be a real valued measurable function and Q be a semi-Markov kernel. Then
the Stieltjes convolution of φ by Q is defined as

Q ? φ(i, t) :=
∑
k∈E

∫ t

0

Qik(ds)φ(k, t− s).

We obtain the following recursive formula for Q(n)
ij (t):

Q
(n)
ij (t) :=



∑
k∈E

∫ t

0

Qik(ds)Q
(n−1)
kj (t− s), if n ≥ 2,

Qij(t), if n = 1,

δij1{t≥0}, if n = 0

where δij is Kronecker’s delta symbol. We have

Q
(n)
ij (t) = P(Jn = j, Sn ≤ t|J0 = i),

and therefore an MRP is regular if and only if
∑
j∈E

Q
(n)
ij (t) → 0, as n → ∞,

for all i.

The Markov renewal matrix ψ(t) = (ψij(t)) is defined as

ψij(t) := Ei[Nj(t)]

= E(Nj(t)|J0 = i)

=
∞∑
n=0

P(Jn = j, Sn ≤ t|J0 = i) =
∞∑
n=0

Q
(n)
ij (t),

for t ≥ 0, i, j ∈ E. Here, ψij(t) = Ei[Nj(t)] is the expected number of visits
from state i to state j up to time t. As an estimator for the (i, j) element of
the matrix ψ(t), we use the empirical estimator

ψ̂ij(t,M) =
∞∑
n=0

Q̂
(n)
ij (t,M),



3.3 Markov renewal matrix 47

where Q̂(n)
ij (t,M) is the n-fold convolution of Q̂ij(t,M). For the empirical

estimator Q̂(n)
ij (t,M) of the n-fold convolution of the semi-Markov kernel,

the following theorem holds true.

Theorem 3.3.1. [22] The empirical estimator Q̂(n)
ij (t,M) of Q(n)

ij (t) for all
i, j ∈ E is strongly consistent, i.e. for any fixed n ∈ N

max
i,j∈E

sup
t∈[0,M ]

|Q̂(n)
ij (t,M)−Q(n)

ij (t)| a.s.−−−−→
M−→∞

0.

Proof. By induction. For the case n = 1, the result follows from theorem
3.2.1. Assume that it holds true for n = m. So

max
i,j∈E

sup
t∈[0,M ]

|Q̂(m)
ij (t,M)−Q(m)

ij (t)| a.s.−−−−→
M−→∞

0.
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Now, let n = m+ 1. It follows that

max
i,j∈E

sup
t∈[0,M ]

|Q̂(m+1)
ij (t,M)−Q(m+1)

ij (t)| = max
i,j∈E

sup
t∈[0,M ]

|
∑
k∈E

Q̂ik(t,M) ? Q̂
(m)
ij (t,M)−

∑
k∈E

Qik(t) ? Q
(m)
ik (t)|

= max
i,j∈E

sup
t∈[0,M ]

|
∑
k∈E

(Q̂ik(t,M) ? Q̂
(m)
ij (t,M)−Qik(t) ? Q

(m)
ik (t))|

= max
i,j∈E

sup
t∈[0,M ]

∑
k∈E

|Q̂ik(t,M) ? Q̂
(m)
ij (t,M)−Qik(t) ? Q

(m)
ik (t)|

= max
i,j∈E

sup
t∈[0,M ]

∑
k∈E

|Q̂ik(t,M) ? Q̂
(m)
ij (t,M)−Qik(t) ? Q

(m)
ik (t,M)

+Qik(t) ? Q
(m)
ik (t,M)−Qik(t) ? Q

(m)
ik (t)|

≤ max
i,j∈E

sup
t∈[0,M ]

∑
k∈E

|Q̂ik(t,M) ? Q̂
(m)
ij (t,M)−Qik(t) ? Q

(m)
ik (t,M)|

+ max
i,j∈E

sup
t∈[0,M ]

∑
k∈E

|Qik(t) ? Q
(m)
ik (t,M)−Qik(t) ? Q

(m)
ik (t)|

= max
i,j∈E

sup
t∈[0,M ]

∑
k∈E

|[Q̂ik(t,M)−Qik(t)] ? Q̂
(m)
ij (t,M)|

+ max
i,j∈E

sup
t∈[0,M ]

∑
k∈E

|Qik(t) ? [Q
(m)
ik (t,M)−Q(m)

ik (t)]|

≤ max
i,k∈E

sup
t∈[0,M ]

|Q̂ik(t,M)−Qik(t)|max
k,j∈E

sup
t∈[0,M ]

∑
k∈E

Q̂
(m)
ij (t,M)

+ max
i,k∈E

sup
t∈[0,M ]

|Q(m)
ik (t,M)−Q(m)

ik (t)|max
k,j∈E

sup
t∈[0,M ]

∑
k∈E

Qik(t)

≤ smax
i,k∈E

sup
t∈[0,M ]

|Q̂ik(t,M)−Qik(t)|

+ max
i,k∈E

sup
t∈[0,M ]

|Q(m)
ik (t,M)−Q(m)

ik (t)|

The last step holds true, because E = {1, 2, . . . , s}. By theorem 3.2.1 the
first converges to 0 (a.s). By the induction hypothesis, the second term con-
verges to 0 (a.s) as well. The result follows from the principle of mathematical
induction.2

The empirical estimator ψ̂ij(t,M) of the elements of the renewal matrix
has the following two properties.

Theorem 3.3.2. [19] The empirical estimator ψ̂ij(t,M) of the Markov re-
newal function ψij(t) is uniformly strongly consistent, for all i, j ∈ E is
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strongly consistent, i.e.

max
i,j∈E

sup
t∈[0,M ]

|ψ̂ij(t,M)− ψij(t)|
a.s.−−−−→

M−→∞
0.

Theorem 3.3.3. [19] The empirical estimator ψ̂ij(t,M) of the Markov re-
newal function ψij(t) converges in distribution, for any fixed t > 0, as M →
∞, to a normal random variable, i. e.,

√
M |ψ̂ij(t,M)− ψij(t)|

D−→N (0, σ2
ij(t)).

It holds true that

σ2
ij(t) =

s∑
k=1

s∑
l=1

µkk[(ψik ? ψlj)
2 ? Qkl − (ψik ? ψlj ? Qkl)

2](t).

Proof. See for example (Ouhbi and Limnios, [22]), theorem 3.

3.4 Markov renewal equation

Definition 3.4.1. (Continuous-time Markov renewal equation) Let
L = (Lij(t); i, j ∈ E, t ∈ R+) ∈ ME(R+) be an unknown matrix-valued
function and U = (Uij(t); i, j ∈ E, t ∈ R+) ∈ ME(R+) be a known one. The
equation

L(t) = U(t) + Q ? L(t), (3.10)

is called a Markov renewal equation (MRE).

Note that Equation (3.10) is equivalent to equation

(I−Q) ? L(t) = U(t).

And has a unique solution [29] L(t) = ψ ?U(t).

Proposition 3.4. [19] For all i, j ∈ E and t ∈ R+, we have:

Pij(t) = δij[1−Hi(t)] +
∑
k∈E

∫ t

0

Qik(ds)Pkj(t− s). (3.11)

For all t ∈ R+, let us define H(t) := diag(Hi(t); i ∈ E), H := (H(t); t ∈ R+).
In matrix-valued function notation, equation (3.11) becomes
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P(t) = (I−H)(t) + Q ?P(t), t ∈ R+.

Whose unique solution is

P(t) = ψ ? (I−H)(t).

Let us define now the empirical estimator of the transition function of
the semi-Markov process Pij(t), i, j ∈ E and t ∈ R+. In a matrix form, we
have

P̂(t,M) = ψ̂ ? (I− diag(Q̂(t,M)).

Then, the following results hold:

Theorem 3.4.1. [19] For any fixed C > 0 and i, j ∈ E, we have

lim
M→∞

max
i,j

sup
t∈[0,C]

|P̂ij(t,M)− Pij(t)| = 0. (a.s)

Theorem 3.4.2. [19] For i, j ∈ E, we have

M1/2(P̂ij(t,M)− Pij(t))
D−→

T→∞
N (0, σ2

ij(t)),

where

σ2
ij(t) =

∑
r∈E

∑
k∈E

µrr
[
(1−Hi) ? Birkj − ψij1{r=j}

]2
?Qrk(t)−{[(1−Gi)?Birkj−ψij1{r=j}]?Qrk(t)}2,

and

Birkj(t) =
∞∑
n=1

n∑
l=1

Q
(l−1)
ir ? Q

(n−l)
kj (t).

3.5 Hazard rate function

We define the instantaneous transition rate function, λij(t) for t ≥ 0, i, j ∈ E

of a semi-Markov kernel by

λij(t) = lim
∆t↓0

1

∆t
P [Jn+1 = j, t < Xn+1 ≤ t+ ∆t|Jn = i,Xn+1 > t]

=


qij(t)

1−Hi(t) , if pij > 0 and Hi(t) < 1,

0 otherwise.
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The quantity λij(t)∆t + o(∆t), i 6= j, is the probability that the process
has spent t units of time in state i and will transit to state j in (t, t+ ∆t].

We define the cumulative hazard rate function from state i to state j at
time t by Λij(t) =

∫ t
0
λij(s)ds.

The empirical estimator of the hazard rate function of the semi-Markov
process is equal to

λ̂ij(t,M) :=


q̂ij(t,M)

1−Ĥi(t,M)
, if p̂ij(M) > 0 and Ĥi(t,M) < 1,

0, otherwise
(3.12)

Where the empirical estimator of the derivative function q̂ij(t,M) of the
semi-Markov kernel is

q̂ij(t,M) :=
Q̂ij(t+ ∆,M)− Q̂ij(t,M)

∆
.

It holds true that ∆ = M−α for 0 < α < 1.

Theorem 3.5.1. [23] For 0 < α < 1/2, The empirical estimator λ̂ij(t,M)

of λij(t) is uniformly strongly consistent,in all compacts [0, C], C ∈ R+, in
the sense that, ie

max
i,j∈E

sup
t∈[0,C]

|λ̂ij(t,M)− λij(t)|
a.s.−−−−→

M−→∞
0.

Definition 3.5.1. We define the hazard rate function of the waiting time
αij(t) by:

αij(t) = lim
∆t↓0

1

∆t
P[Xn+1 ∈ (t, t+ ∆t)|Jn+1 = j, Jn = i,Xn+1 > t].

We know that the survival function of the sojourn time Sij(t) is

Sij(t) = P[Xn+1 > t|Jn+1 = j, Jn = i] = 1− Fij(t)

(Note that Sij(t) is a decreasing function, that is Sij(0) = 1 and
lim
t→∞

Sij(t) = 0 ).
Now, by the definition of conditional probability we have

αij(t) =
fij(t)

Sij(t)
.
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The relation between the hazard rate function of the semi-Markov and hazard
rate function of the waiting time is

λij(t) =
pijSij(t)

Sj(t)
αij(t).

Where Sj(t) = P[Xn+1 > t|Jn+1 = j]. We call this the survival function of
the waiting time in state j.

Remark 3.5.1. The hazard rate of waiting time at time t represents the con-
ditional probability that a transition from state i to state j is observed given
that no event occurs until time t and The hazard rate of the semi-Markov
process at time t represents the conditional probability that a transition into
state j is observed given that the subject is in state i and that no event occurs
until time t. The hazard rate of the semi-Markov process can be interpreted
as the subject’s risk of passing from state i to state j.



Chapter 4

Applications

4.1 Application to asthma control data

As an illustrative example, we revisit the analysis of severe asthmatic
patients which was conducted in France between 1997 and 2001 by ARIA
(Association pour la Recherche en Intelligence Artificielle). Adult asthmat-
ics were prospectively enrolled over a 4-year period by a number of French
chest physicians. The data reflects the real follow-up of patients consulting
at varied times according to their perceived needs. At each visit, several
covariates were recorded and asthma was evaluated

Figure 4.1: The three states model used for asthma control evolution.

The considered model to study the evolution of asthma consists of three
transient states Figure 4.1: the optimal control (State 1), the sub-optimal

53
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control (State 2), the unacceptable control (State 3) and three covariates are
included in the data: Severity (disease severity : coded 1 if severe, 0 if mild-
moderate asthma), BMI (Body Mass Index : 1 if BMI ≥ 25, 0 if BMI<25)
and Sex (1 if men, 0 if women). A random selection of 371 patients with at
least two visits (data asthma) is included in the package SemiMarkov.

4.1.1 The SemiMarkov R package

Package description

The SemiMarkov package was developed to analyze longitudinal data
using multi-state semi-Markov models. The main function semiMarkov of the
package computes the parametric maximum likelihood estimation in multi-
state semi-Markov models in continuous-time. The effect of time varying or
fixed covariates can be studied using a proportional intensities model for the
hazard of the sojourn time.

Format of data.
The data frame to be used in the function semiMarkov must be similar to

the asthma data : a table in long format (one row per transition and possibly
several rows by individual) that must contain the following informations.

1. id: the individual identification number

2. state.h: state left by the process

3. state.j: state entered by the process

4. time: sojourn time in state.h

The data set may also include additional explanatory variables (for in-
stance, some individual’s characteristics). The values of these covariates must
be given for each individual and for each transition in order to take fixed or
time-dependent covariates into account (one value for each row of the data
frame data).

Functions description.
Following is a brief description of the package functions.
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• table.state: Computes a frequency table counting the number of
observed transitions in the data set.

• param.init: Defines default or specified initial values of the parame-
ters.

• semiMarkov: Computes the parametric maximum likelihood estima-
tion of multi-state semi-Markov models.

• hazard: For any object of classes semiMarkov and param.init, the
function computes the values of the hazard rate of sojourn times or the
values of the hazard rate of the semi-Markov process for a given vector
of times.

• summary.semiMarkov, summary.hazard, print.semiMarkov, print.hazard:
Summary and printing methods for objects of classes semiMarkov and
hazard.

• plot.hazard: Plot method for objects of class hazard.

Sojourn times distribution.

The parametric estimation in homogeneous semi-Markov models is based
on the specification of the sojourn times distribution. The simplest model is
obtained using the exponential distribution E(σij), for which the hazard rate
is constant over time (corresponding to the Markov case) and is related to a
single positive parameter σ,

αij(t) =
1

σij
, ∀t ≥ 0.

The Weibull distribution which generalizes the exponential one, is often
used in practical applications. Indeed, the Weibull distribution with two pa-
rametersW(σij, νij) is well adapted to deal with various shapes of monotone
hazards,

αij(t) =
νij
σij

(
t

σij
)1−νij ,
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where σij > 0 is a scale parameter and νij is a shape parameter. The ex-
ponentiated Weibull distribution EW(σij, νij, θij) with an additional shape
parameter θij > 0 is very useful to fit ∩ and ∪ shapes of hazard rates

αij(t) =
θij

νij
σij

( t
σij

)νij−1 exp(−( t
σij

)νij)[1− exp(−( t
σij

)νij)]θij

1− [1− exp(−( t
σij

)νij)]
.

These three distributions are available in the package SemiMarkov : ex-
ponential ("E", "Exp" or "Exponential"), Weibull ("W" or "Weibull") and
exponentiated Weibull ("EW", "EWeibull" or "Exponentiated Weibull").
which allow to fit various shapes of the hazard ratio are nested: a EW(σij, 1, 1)

is equivalent to W(σij, 1) which is equivalent to a E(σij). The estimations of
the distribution parameters are given with standard deviations and p-values
of the Wald test 1 (H0 : θij = 1). One can then evaluate, for instance, the rele-
vance of the exponentiated Weibull distribution in comparison to the Weibull
or the exponential distribution.

For each of the parameters of the hazard rate functions of the semi-
Markov process, the R package SemiMarkov performed the Wald test. The
Wald test gives us the relevance of the given distribution. In our case we test
the distribution parameters σij for i, j ∈ E for the exponential distribution
and σij, νij for i, j ∈ E for the Weibull distribution. We have the following
hypothesis test for the scale parameter σij{

H0 : σij = 1,

H1 : σij 6= 1.

Similarly, we have the hypothesis test for the shape parameter νij:{
H0 : νij = 1,

H1 : νij 6= 1.

1 The Wald test is an econometric parametric test whose name comes from the American
mathematician of Hungarian origin Abraham Wald (October 31, 1902- December 13, 1950)
with a wide variety of uses. Whenever we have a relationship within or between data items
that can be expressed as a statistical model with parameters to be estimated, and all from
a sample, the Wald test can be used to "test the true value of the parameter" based on
the sample estimate.
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The p-value illustrates when we can reject the null-hypothesis H0. It is
defined to be the smallest significance level at which the null hypothesis is
rejected. If p ≤ 0.05, we reject the null-hypothesis H0. If p > 0.05, we fail to
reject H0.

Multi-state model definition.
The multi-state approach requires to define the states of the process and

to specify the structure of the model (the number of states and the possi-
ble transitions between them). In case of the three-state model described in
Figure 4.1 where the sojourn times associated to each transition are Weibull
distributed, the matrix mtrans of possible transitions will be defined as fol-
lows

R> mtrans
[, 1] [, 2] [, 3]

[1, ] "FALSE" "W" "W"
[2, ] "W" "FALSE" "W"
[3, ] "W" "W" "FALSE"

The argument states is a character vector used to define the names of
states, possible values are those included in the data’s columns state.h and
state.j.

Covariates
The effect of covariates on the process evolution can be investigated con-

sidering a Cox proportional hazard model 2 for the hazard rates of waiting
times. Let Zij be a vector of explanatory variables and βij a vector of regres-
sion parameters associated with the transition from state i to state j. Then
the hazard rate is defined as

λij(t|Z) = λ
(θij)
ij (t)eβ

T
ijZ .

The interpretation of the regression coefficients in terms of relative risks
(as in the Cox model) can help to quantify the effect of covariates and to

2The Cox proportional-hazards model (Cox, 1972) is essentially a regression model
commonly used statistical in medical research for investigating the association between
the survival time of patients and one or more predictor variables.
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understand the process evolution. For each estimation of regression coeffi-
cients, standard deviation and p-value of the Wald test (H0 : β = 0) are given.

Initial values.
The optimization procedure used in the maximum likelihood estimation

requires definition of initial values of the parameters: the distribution param-
eters, the transition probabilities and the regression coefficients associated to
the covariates.

Parametric maximum likelihood estimation

The semiMarkov function.
In a parametric framework, distributions of sojourn times are supposed to

belong to a class of parametric functions. For each transition, the distribution
(which depends on a finite number of parameters) can be specified using
either the hazard rate λij, the density fij or the cumulative distribution
function Fij.

The main function semiMarkov estimates the parameters of a multi-state
homogeneous semi-Markov model using the parametric maximum likelihood
estimation. The following arguments are used in the function semiMarkov:
arguments related to the data (data, cov), arguments related to the model
(states, mtrans, cov_tra, cens) and initial values (dist_init, proba_init,
coef_init).

This function gives informations on the optimization method and provides
the parameters estimation together with their standard deviations. For each
regression coefficient β, the p-value of the Wald test when testing the absence
of effect (H0 : β = 0) is also provided whereas for each distribution parame-
ter σ(or ν or θ) the p-value of the Wald test when testing (H0 : σ = 1) is given.

The hazard function.
The hazard rate of sojourn time and the hazard rate of the semi-Markov

process can be deduced from the parameters and the distributions of sojourn
times. The function hazard computes vectors of hazard rates values using ei-
ther the estimations included in an object of class semiMarkov or the specific
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values defined by an object of class param.init. The argument type is used
to choose the type of hazard rate: alpha for the hazard rates of waiting times
and lambda for the hazard rates of the semi-Markov process. If covariates
are used in the model, the hazard rates can be obtained for given values of
the covariates using the argument cov.

4.1.2 Script and concluding remarques

R>library("SemiMarkov")
## Asthma control data
R>data("asthma")
R>head(asthma)

id state.h state.j time Severity BMI Sex

1 2 3 2 0.15331964 1 1 0

2 2 2 2 4.12320329 1 1 0

3 3 3 1 0.09582478 1 1 1

4 3 1 3 0.22997947 1 1 1

5 3 3 1 0.26557153 1 1 1

6 3 1 1 5.40725530 1 1 1

There are no absorbing states in the considered model Figure 4.1. The last
sojourn time is then right-censored. Its value is the time between the last
visit and the date of the end of the study. A censored observation is identified
by a transition into the same state. In such case, the value of state.h is
equal to the value of state.j and the value of time is the censored sojourn
time.

R>table.state(asthma)
$table.state

1 2 3
1 152 95 44
2 112 116 71
3 115 120 103
$Ncens
[1] 371
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## Definition of the model: states, names
# possible transitions and waiting times distributions
R> states <- c("1","2","3")
R> mtrans <- matrix(FALSE, nrow=3, ncol=3)
R> mtrans[1,2:3] <- c("W","W")
R> mtrans[2,c(1,3)] <- c("W","W")
R> mtrans[3,c(1,2)] <- c("W","W")

[, 1] [, 2] [, 3]

[1, ] "FALSE" "W" "W"
[2, ] "W" "FALSE" "W"
[3, ] "W" "W" "FALSE"

## Semi-Markov model without covariates
fit1 <- semiMarkov(data=asthma, states=states, mtrans=mtrans)
## Hazard rates of waiting time
alpha1 <- hazard(fit1)
plot(alpha1)
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Figure 4.2: The hazard rate of sojourn time.

## Hazard rates of the semi-Markov process
lambda1 <- hazard(fit1, type = "lambda")
plot(lambda1)
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Figure 4.3: The hazard rate of the semi-Markov process.

The effect of covariates and the proportional hazard assumption can be
evaluated by representing the hazard rates in each stratum. In a second step,
a proportional model can be considered to study the effect of covariates. For
instance, one can consider a model with BMI as covariate and the Weibull
distribution for the waiting times.
Semi-Markov model with a covariate "BMI"

R> BMI <- as.data.frame(asthma$BMI)
## Semi-Markov model with a covariate "BMI"
R> fit2 <- semiMarkov(data=asthma, states=states,
mtrans=mtrans, cov=BMI)
## Estimations of parameters of the waiting times distributions
R> fit2$table.dist
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$Sigma
Transition Sigma SD Lower_CI Upper_CI Wald_test p_value

1 1 -> 2 9.384 2.42 4.64 14.13 12.01 0.0005
2 1 -> 3 0.418 0.08 0.26 0.58 51.54 <0.0001
3 2 -> 1 5.014 1.25 2.57 7.46 10.36 0.0013
4 2 -> 3 0.714 0.12 0.49 0.94 6.06 0.0138
5 3 -> 1 2.233 0.53 1.20 3.26 5.51 0.0189
6 3 -> 2 0.498 0.08 0.34 0.65 41.05 <0.0001

$Nu
Transition Nu SD Lower_CI Upper_CI Wald_test p_value

1 1 -> 2 0.531 0.05 0.44 0.63 95.85 <0.0001
2 1 -> 3 1.18 0.14 0.90 1.46 1.65 0.1990
3 2 -> 1 0.51 0.04 0.43 0.59 141.80 <0.0001
4 2 -> 3 1.048 0.10 0.86 1.24 0.25 0.6171
5 3 -> 1 0.499 0.04 0.42 0.58 161.12 <0.0001
6 3 -> 2 0.931 0.06 0.81 1.06 1.14 0.2857

The semiMarkov function provides estimations of parameters of the wait-
ing times distributions, the standard deviations, the confidence intervals and
the Wald test statistics (H0 : θhj = 1). One can observe that the coefficient
ν23 et ν32 associated to the transition from state 2 to state 3 and from 3 to
2 is not significantly different from 1. The exponential distribution can then
be used instead of the Weibull distribution for this transitions.

## The estimation of the coefficient
R> fit2$table.coef

Transition Covariates Estimation SD Lower_CI Upper_CI Wald_test p_value
1 1 -> 2 Beta1 -0.27808202 0.22 -0.72 0.16 1.55 0.2131
2 1 -> 3 Beta1 -0.87827455 0.35 -1.57 -0.19 6.27 0.0123
3 2 -> 1 Beta1 0.03216316 0.19 -0.35 0.41 0.03 0.8625
4 2 -> 3 Beta1 -0.11151384 0.27 -0.64 0.41 0.17 0.6801
5 3 -> 1 Beta1 -0.61127842 0.20 -1.00 -0.22 9.43 0.0021
6 3 -> 2 Beta1 -0.23912936 0.21 -0.65 0.17 1.32 0.2506

For this new model, BMI regression coefficients remain significant for
transitions from 1 to 3 and from 3 to 1 with β13 = −0.88 and β31 = −0.61,
and respective p-values 0.012, and 0.002. The fact that hazard rate of the
sojourn time associated with these covariates is less than unity (estimated
coefficients are negative), indicates that BMI≥ 25 generally lengthens the
duration of the sojourn time in state 1 when making a 1 → 3 transition
and generally lengthens the duration of the sojourn time in state 3 when
making a 3 → 1 transition. This can also be interpreted as a decrease of
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the risk of leaving "optimal control" state to "unacceptable control" as well
as a decrease of the risk of leaving "unacceptable control" state to "optimal
control".

## Time fixed covariate
## Covariate equal to 0 and 1 for each transition
R> alpha2 <- hazard(fit2, cov=0)
R> alpha3 <- hazard(fit2, cov=1)
R> plot(alpha2,alpha3)

Figure 4.4: The hazard rate of sojourn time
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4.2 Application to Covid-19 pandemic

The COVID-19 pandemic, also known as the Coronavirus pandemic is an
ongoing global pandemic of Coronavirus disease 2019 (COVID-19), caused
by severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). The
outbreak was first identified in Wuhan, China, in December 2019.

The World Health Organization declared the outbreak a Public Health
Emergency of International Concern on 30 January 2020, and a pandemic
on 11 March. As of 3 July 2020, more than 10.8 million cases of COVID-19
have been reported in more than 188 countries and territories, resulting in
more than 521,000 deaths, more than 5.76 million people have recovered.

In this section we apply the semi-Markov model to the data set of the
COVID-19 pandemic in Algeria and Tunisia.

4.2.1 Application for Tunisia Coronavirus data

Firstly, we apply the semi-Markov model in continuous-time for Coronavirus
cases in Tunisia. So we consider this cases between March and June, which
are given in table 4.6.

Figure 4.5: Daily new cases in Tunisia.
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From the table 4.6 we can define three states corresponding to the number
of Coronavirus cases in Tunisia:

• State 1:[0 : 24]

• State 2:[25 : 50]

• State 3:[51 : 75].

These intervals are defined to specify the discrete states of the system.
We derive that the state space is equal to the set E = {1, 2, 3}.

We can resume the table 4.6 to the following table:

date state
21/03/2020 3
22/03/2020 1
23/03/2020 2
24/03/2020 3
25/03/2020 1
26/03/2020 2
27/03/2020 3
28/03/2020 2
04/04/2020 3
05/04/2020 1
07/04/2020 2
08/04/2020 1
10/04/2020 2
12/04/2020 1
14/04/2020 2
17/04/2020 1
22/04/2020 2
23/04/2020 1

Table 4.1: Table of the states corresponding to the number of Coronavirus
cases in Tunisia.
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Let t = 0 be the time we observed the first cases which happened in
March 21, 2020. We set the end time M = 96 days.

The number of observed transitions in the data set from any state i to
any state j for i, j ∈ E are presented as elements in the matrix N . The
elements of this matrix are the values Nij(M) for all i, j ∈ E.

N =

 0 6 0

4 0 3

3 1 0

 .

We read the matrix N as follows: four times there was a transition from
state 2 to state 1.

The values Ni(M) for i ∈ E are equal to

N1(M) = 6, N2(M) = 7, N3(M) = 4.

The estimations of the transition probabilities from any state i to any
state j are presented as elements in the matrix P̂ = (p̂ij).

P̂ =

 0.0000 1.0000 0.0000

0.5714 0.0000 0.4286

0.7500 0.2500 0.0000

 .

We read the matrix P̂ as follows: the probability that there is a transition
from state 3 to state 1 is equal to 0.75.

Figure 4.6: Transitions from state i to state j with transition probabilities,
for all i, j ∈ E.
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With use of the definition for Q̂ij(t,M), we can estimate the semi-Markov
kernels for transitions from state i to state j.

The semi-Markov kernels are shown in figure 4.7 for all transitions from
state i to state j, i, j ∈ E and t ≥ 0. The sojourn time is measured in weeks.

The empirical estimators for conditional transition functions F̂ij(t,M),
associated with the sojourn time in each state before transition, are shown
in figure 4.8 for all transitions from state i to state j, i, j ∈ E and t ≥ 0.

Figure 4.7: Empirical estimators for semi-Markov kernels, Q̂ij(t,M) for all
transitions from state i to state j, i, j ∈ E.
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Figure 4.8: Empirical estimators for conditional transition functions,
F̂ij(t,M) for all transitions from state i to state j, i, j ∈ E.

Given that the last Coronavirus occurrence was in state i and at least a
time interval of length t has already elapsed, the probability of an Coron-
avirus occurrence of state j in the next time interval of length ∆ is denoted
by λij(t)∆. The term Instantaneous Coronavirus Occurrence Rate at state j
in the next step conditional on the starting state i is used for the description
of the probability λij(t)∆, which is expressed by means of the semi-Markov
kernels via the formula

λij(t)∆ =
Qij(t+ ∆)−Qij(t)

H i(t)
+ o(∆).

Table 4.2 shows the estimated instantaneous Coronavirus occurrence rate for
each type of transitions.

t=0.1
∆ λ11(t) λ12(t) λ13(t) λ21(t) λ22(t) λ23(t) λ31(t) λ32(t) λ31(t)

1/2 0 1.667 0 1.143 0 0.571 1.5 0.5 0
1 0 1 0 0.571 0 0.429 0.75 0.25 0
2 0 0.5 0 0.286 0 0.214 0.375 0.125 0

Table 4.2: Estimated instantaneous Coronavirus occurrence rates
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4.2.2 Application for Algeria Coronavirus data

Now, we apply the semi-Markov model in continuous-time for Coronavirus
cases in Algeria. So we consider this cases between March and June, which
are given in table 4.5.

Figure 4.9: Daily new cases in Algeria.

From the table 4.5 we can define three states corresponding to the num-
ber of Coronavirus cases in Algeria:

• State 1: [22 : 99]

• State 2: [100 : 150]

• State 3: [151 : 199].

These intervals are defined to specify the discrete states of the system. We
derive that the state space is equal to the set E = {1, 2, 3}.

We can resume the table 4.5 to the following table:
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Date state
21-03-2020 2
22-03-2020 1
31-03-2020 2
03-04-2020 3
04-04-2020 1
06-04-2020 2
07-04-2020 1
08-04-2020 2
09-04-2020 1
16-04-2020 2
19-04-2020 1
24-04-2020 2
29-04-2020 3
01-05-2020 2
03-05-2020 3
28-05-2020 2
04-06-2020 1
05-06-2020 2
23-06-2020 3

Table 4.3: Table of the states corresponding to the number of Coronavirus
cases in Algeria.

Non parametric estimation

Let t = 0 be the time we observed the first cases which happened in March
21, 2020, and we set the end time M = 96 days.

The number of observed transitions in the data set from any state i to
any state j for i, j ∈ E are presented as elements in the matrix N . The
elements of this matrix are the values Nij(M) for all i, j ∈ E.

N =

 0 6 0

5 0 4

1 2 0

 .

We read the matrix N as follows: four times there was a transition from
state 2 to state 3.
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The values Ni(M) for i ∈ E are equal to

N1(M) = 6, N2(M) = 9, N3(M) = 3.

The estimations of the transition probabilities from any state i to any
state j are presented as elements in the matrix P̂ = (p̂ij).

P̂ =

 0.0000 1.0000 0.0000

0.5556 0.0000 0.4444

0.3333 0.6667 0.0000

 . (4.1)

We read the matrix P̂ as follows: the probability that there is a transition
from state 3 to state 1 is equal to 0.3333.

Figure 4.10: Transitions from state i to state j with transition probabilities,
for all i, j ∈ E.

The semi-Markov kernels are shown in figure 4.11 for all transitions from
state i to state j, i, j ∈ E and t = 0. The sojourn time is measured in weeks.
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Figure 4.11: Empirical estimators for semi-Markov kernels, Q̂ij(t,M) for all
transitions from state i to state j, i, j ∈ E.

The empirical estimators for conditional transition functions F̂ij(t,M),
associated with the sojourn time in each state before transition, are shown
in figure 4.12 for all transitions from state i to state j, i, j ∈ E and t = 0.

Figure 4.12: Empirical estimators for conditional transition functions,
F̂ij(t,M) for all transitions from state i to state j, i, j ∈ E.
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Table 4.4 shows the estimated instantaneous Coronavirus occurrence rate
for each type of transitions.

t=1/2
∆ λ11(t) λ12(t) λ13(t) λ21(t) λ22(t) λ23(t) λ31(t) λ32(t) λ31(t)

1 0 1 0 0.333 0 0.333 0 0 0
2 0 0.5 0 0.167 0 0.167 0 0 0
5 0 1 0 0.333 0 0.333 0 0 0

Table 4.4: Estimated instantaneous Coronavirus occurrence rates.

Parametric estimation

With use of the R package SemiMarkov we are able to find the estimated
hazard rate functions of the semi-Markov process for all the transitions from
state i to state j, i 6= j ∈ E.
Homogeneous Markov model

First, we derive the hazard rate function of the semi-Markov process for
the homogeneous Markov model. We changed the original data set from ta-
ble 4.3 to meet the requirements to apply for the package, which we call it
markov. We measure the time t in weeks and we know that a semi-Markov
process is a homogeneous Markov process if and only if the sojourn time
is exponentially distributed. Therefore, we choose the exponential distri-
bution E for the sojourn time. We fit the data with use of the function
semiMarkov(.). Figure 4.13 shows the performed steps in Rstudio.
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Figure 4.13: The setting of the hazard rate function in case of the homoge-
neous Markov model.

In figure 4.14, we see the estimates of parameters of the waiting time
distributions, the standard deviations, the confidence intervals and the Wald
test statistics.

Figure 4.14: Estimates of parameters of the waiting time distribution in case
of the homogeneous Markov model.

In the following matrix Σ = (σij) we give the values for the parameters
of the exponential distribution for all i 6= j ∈ E:

Σ =

 − 0.595 −
0.371 − 1

0.143 1.929 −

 . (4.2)

With use of the R package SemiMarkov we can determine two hazard
rate functions, namely the hazard rate function of the waiting time αij(t)
and the hazard rate function of the semi-Markov process λij(t). First, we
give the hazard rate function of the waiting time and after that the hazard
rate function of the semi-Markov process.

When we choose an exponential distribution for the sojourn time. Then
we obtain the following estimated hazard rate functions of the waiting time
αij(t) for the homogeneous Markov model for all i 6= j ∈ E:

α12(t) = 1.6807, α31(t) = 6.9930

α21(t) = 2.6954, α32(t) = 0.8383

α23(t) = 1.
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The plots of the hazard rate functions of the waiting time are shown in
figure 4.15.

Figure 4.15: Hazard rate of waiting time for the homogeneous Markov model
for transitions from state i to state j, i 6= j ∈ E.

The density functions of the sojourn time with scale parameter σij are
defined as

fij(t) =
1

σij
e−t/σij ,

for all i, j ∈ E and t ≥ 0. We obtain the following estimated density functions
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fij(t) in case of the homogeneous Markov model for all i 6= j ∈ E:

f12(t) = 1.6807e−1.6807t, f31(t) = 6.9930e−6.9930t

f21(t) = 2.6954e−2.6954t, f32(t) = 0.8383e−0.8383t

f23(t) = 1e−1t.

The probability distribution functions of the sojourn time with scale pa-
rameter σij are defined as:

Fij(t) = 1− e−t/σij ,

for all i, j ∈ E and t ≥ 0. The estimated probability distribution functions
of the sojourn time for all i 6= j ∈ E are

F12(t) = 1− e−1.6807t, F31(t) = 1− e−6.9930t

F21(t) = 1− e−2.6954t, F32(t) = 1− e−0.8383t

F23(t) = 1− e−1t.

We know that the transition probability matrix is given by

P̂ =

 0.0000 1.0000 0.0000

0.5556 0.0000 0.4444

0.3333 0.6667 0.0000

 .

We can write that 1−Hi(t) =
∑
j∈E

pij(1− Fij(t)) as the survival function

of the sojourn time in state i. Here, Fij(t) is the probability distribution
function of the sojourn time and pij the transition probability of the embed-
ded Markov chain. For the derivative of the semi-Markov kernel, we know
that qij(t) = pijfij(t). With use of this information, we can determine the
hazard rate function of the semi-Markov process λij(t).

If we plug the expressions for the density functions of the sojourn time,
the probability distribution functions of the sojourn time and the transition
probabilities in case of the homogeneous Markov model into the hazard rate
function of the semi-Markov process

λij(t) =
qij(t)

1−Hi(t)
=

pijfij(t)∑
j∈E

pij(1− Fij(t))
.
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We obtain the estimated hazard rate functions of the semi-Markov process
for all i 6= j ∈ E. The plots of the hazard rate function of the semi-Markov
process are shown in figure 4.16.

Figure 4.16: Hazard rate of semi-Markov process for the homogeneous
Markov model for transitions from state from state i to state j, i 6= j ∈ E.

Now, we determine the semi-Markov kernels for the homogeneous Markov
model.

From 4.1 and 4.2, we obtain the following semi-Markov kernels for the
homogeneous Markov model with i 6= j ∈ E.



4.2.2 Application for Algeria Coronavirus data 79

Q12(t) = 1(1− e−1.6807t), Q31(t) = 0.3333(1− e−6.9930t)

Q21(t) = 0.5556(1− e−2.6954t), Q32(t) = 0.6667(1− e−0.8383t)

Q23(t) = 0.4444(1− e−1t).

We define Qii(t) = 0 for all i, j ∈ E and t ≥ 0, because we have no
information about the sojourn time distributions of the transitions from state
i to itself.

The plots of the semi-Markov kernels are shown for the homogeneous
Markov model for all transitions from state i to state j, i 6= j ∈ E.

Figure 4.17: Semi-Markov kernels for the homogenous Markov model for all
transitions from state i to state j, i 6= j ∈ E.

Wald test and p-value.
For the homogeneous Markov model, we choose the exponential distri-

bution for the sojourn time of the process. In figure 4.18 the results of the
Wald test are shown.
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Figure 4.18: Wald test p-values for the homogeneous Markov model.

We derive that for all σij, i 6= j ∈ E, we only reject the null-hypothesis for
the scale parameters σ21 and σ31, the rest we fail to reject the null-hypothesis
for σij.

Semi-Markov model
For the semi-Markov model we use the same data set as before, and

call it semimarkov. We measure the time t in weeks. Because we want an
estimator for the semi-Markov process, we choose the (non-Markov) Weibull
distributionW for the sojourn time for all transitions except for the transition
from state 3 to state 1 Here, we choose the exponential distribution. We fit
the data with use of the function semiMarkov(.) as before.
Figure 4.19 shows the performed steps in Rstudio.

Figure 4.19: The setting of the hazard rate function in case of the semi-
Markov model.

From figure 4.20, we can derive the estimates of parameters of the waiting
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time distributions, the standard deviations, the confidence intervals and the
Wald test statistics.

Figure 4.20: Estimates of parameters of the waiting time distribution in case
of the semi-Markov model.

In the following two matrices Σ = (σij) and V = (νij) we give the values
for the parameters of the Weibull and exponential distribution for all
i 6= j ∈ E:

Σ =

 − 0.648 −
0.4 − 1.066

0.143 1.887 −

 , V =

 − 1.326 −
1.22 − 1.179

− 0.95 −

 .

(4.3)

As we said before, we can determine two hazard rate functions, one for
the waiting time αij(t) and one for the semi-Markov process λij(t). First, we
give the hazard rate function of the waiting time and then the hazard rate
function of the semi-Markov process.

When we choose a Weibull distribution for the sojourn time. Then we
obtain the following estimated hazard rate functions of the waiting time αij(t)
for the semi-Markov model for all i 6= j ∈ E:

α12(t) = 2.0463(1.5432t)0.326, α31(t) = 6.9930

α21(t) = 3.05(2.5t)0.22, α32(t) = 0.5034(1.0526t)−0.05

α23(t) = 1.106(0.938t)0.179.
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The plots of the hazard rate functions of the waiting time are shown in
figure 4.21.

Figure 4.21: Hazard rate of waiting time for the semi-Markov model for
transitions from state i to state j, i 6= j ∈ E.

The density functions of the sojourn time with scale parameter σij and
shape parameter νij are defined as

fij(t) =
νij
σij

(
t

σij

)νij−1

e

(
− t
σij

)νij
,

for all i, j ∈ E and t ≥ 0. We obtain the following estimated density functions
fij(t) in case of the semi-Markov model for all i 6= j ∈ E:

f12(t) = 2.0463(1.5432t)0.326e−(1.5432t)1.326 , f31(t) = 6.9930e−6.9930t

f21(t) = 3.05(2.5t)0.22e−(2.5t)1.22 , f32(t) = 0.5034(1.0526t)−0.05e(1.0526t)0.95

f23(t) = 1.106(0.938t)0.179e−(0.938t)1.179 .

The probability distribution functions of the sojourn time with scale pa-
rameter σij are defined as:

Fij(t) = 1− e(−t/σij)νij ,
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for all i, j ∈ E and t ≥ 0. The estimated probability distribution functions
of the sojourn time for all i 6= j ∈ E are

F12(t) = 1− e−(1.5432t)1.326 , F31(t) = 1− e−6.9930t

F21(t) = 1− e−(2.5t)1.22 , F32(t) = 1− e(1.0526t)0.95

F23(t) = 1− e−(0.938t)1.179 .

As before, the transition probability matrix is given by

P̂ =

 0.0000 1.0000 0.0000

0.5556 0.0000 0.4444

0.3333 0.6667 0.0000

 .

The plots of the hazard rate functions of the semi-Markov process are
shown in figure 4.22.

Figure 4.22: Hazard rate of semi-Markov process for the semi-Markov model
for transitions from state i to state j, i 6= j ∈ E.
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Now, using 4.1 and 4.3 for i 6= j ∈ E, we obtain the following semi-Markov
kernels for the semi-Markov model.

Q12(t) = 1(1− e−(1.5432t)1.326), Q31(t) = 0.3333(1− e−6.9930t)

Q21(t) = 0.5556(1− e−(2.5t)1.22), Q32(t) = 0.6667(1− e(1.0526t)0.95)

Q23(t) = 0.4444(1− e−(0.938t)1.179).

We define also Qii(t) = 0 for all i, j ∈ E and t ≥ 0.
The plots of the semi-Markov kernels are shown for the semi-Markov

model for all transitions from state i to state j, i 6= j ∈ E.

Figure 4.23: Semi-Markov kernels for the semi-Markov model for all transi-
tions from state i to state j, i 6= j ∈ E.

Wald test and p-value.
For the semi-Markov model the results of the Wald test are shown in

figure 4.24. We remember that for the transitions from state 3 to state 1 we
chose an exponential distribution for the sojourn time instead of the Weibull
distribution. So we exclude this transition from our conclusions.
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Figure 4.24: Wald test p-values for the semi-Markov model.

In this case we only reject the null-hypothesis for the scale parameter σ21

which is associated with the transition from state 2 to state 1. In the other
case we fail to reject the null-hypothesis for σij and νij. For these transitions
we can use the exponential distribution instead of the Weibull distribution.

We conclude that for some of the hazard rate functions of the semi-Markov
process λij(t) for i, j ∈ E the homogeneous Markov model maybe a better
fit. For the rest of the hazard rate functions of the semi-Markov process, we
cannot conclude a preference for a certain model based on the p-values of
the Wald test.



Conclusion

In this work, we explained the continuous-time semi-Markov model with
a discrete set of states. We defined empirical estimators of important quanti-
ties such as semi-Markov kernel, sojourn time distributions, transition prob-
abilities, and hazard rate function. We gave results about their asymptotic
properties.

The present work aims at the introduction of the continuous-time semi-
Markov model as a candidate model for the description of asthma control,
Tunisia, and Algeria Coronavirus data. For asthma control, it was very
important to study this data with covariate variable (BMI), using the Wald
test, we can conclude the decreasing or increasing effects of this variable.

The process of Algeria Coronavirus data was represented with two sta-
tistical models Markov and semi Markov model and with the parametric
and nonparametric methods. Semi-Markov package in R Language was used
for the implementation of the parametric-method however, for the nonpara-
metric one, we had developed our functions. Parametric methods provide
estimators with several attractive asymptotic properties; however, these es-
timators present inconvenience when the sample size is small. Since appli-
cations of parametric methods presuppose certain conditions concerning the
sample size, this difficulty could be affected through the application of non-
parametric methods. For the hazard rate functions, the semi-Markov process
maybe a better fit for the previous model.

For providing more accurate forecasting results for Algeria Coronavirus
data one more ways the accessibility into instantaneous results about Coron-
avirus cases and the inclusion of different covariate variables like age, chronic
diseases,· · ·.
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Appendix

Date Number of cases state
21-03-2020 139 2
22-03-2020 62 1
23-03-2020 29 1
24-03-2020 34 1
25-03-2020 38 1
26-03-2020 65 1
27-03-2020 42 1
28-03-2020 45 1
29-03-2020 57 1
30-03-2020 73 1
31-03-2020 132 2
01-04-2020 131 2
02-04-2020 139 2
03-04-2020 185 3
04-04-2020 80 1
05-04-2020 69 1
06-04-2020 103 2
07-04-2020 45 1
08-04-2020 104 2
09-04-2020 94 1
10-04-2020 95 1
11-04-2020 64 1
12-04-2020 89 1
13-04-2020 69 1
14-04-2020 87 1
15-04-2020 90 1
16-04-2020 108 2
17-04-2020 150 2
18-04-2020 116 2
19-04-2020 95 1
20-04-2020 89 1
21-04-2020 93 1
22-04-2020 99 1
23-04-2020 97 1
24-04-2020 120 2
25-04-2020 129 2
26-04-2020 126 2
27-04-2020 135 2
28-04-2020 132 2
29-04-2020 199 3
30-04-2020 158 3
01-05-2020 148 2
02-05-2020 141 2
03-05-2020 179 3
04-05-2020 174 3
05-05-2020 190 3
06-05-2020 159 3
07-05-2020 185 3
08-05-2020 187 3
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Date Number of cases state
09-05-2020 189 3
10-05-2020 165 3
11-05-2020 168 3
12-05-2020 176 3
13-05-2020 186 3
14-05-2020 189 3
15-05-2020 187 3
16-05-2020 192 3
17-05-2020 198 3
18-05-2020 182 3
19-05-2020 176 3
20-05-2020 165 3
21-05-2020 186 3
22-05-2020 190 3
23-05-2020 195 3
24-05-2020 193 3
25-05-2020 197 3
26-05-2020 194 3
27-05-2020 160 3
28-05-2020 140 2
29-05-2020 137 2
30-05-2020 133 2
31-05-2020 127 2
01-06-2020 119 2
02-06-2020 113 2
03-06-2020 107 2
04-06-2020 98 1
05-06-2020 104 2
06-06-2020 115 2
07-06-2020 104 2
08-06-2020 111 2
09-06-2020 117 2
10-06-2020 102 2
11-06-2020 105 2
12-06-2020 109 2
13-06-2020 112 2
14-06-2020 109 2
15-06-2020 112 2
16-06-2020 116 2
17-06-2020 121 2
18-06-2020 117 2
19-06-2020 119 2
20-06-2020 127 2
21-06-2020 140 2
22-06-2020 149 2
23-06-2020 156 3
24-06-2020 176 3
25-06-2020 197 3

Table 4.5: Table of the number cases (COVID-19) in Algeria.
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Date Number of cases state
21-03-2020 75 3
22-03-2020 14 1
23-03-2020 25 2
24-03-2020 59 3
25-03-2020 24 1
26-03-2020 30 2
27-03-2020 52 3
28-03-2020 33 2
29-03-2020 50 2
30-03-2020 32 2
31-03-2020 29 2
01-04-2020 32 2
03-04-2020 40 2
04-04-2020 58 3
05-04-2020 21 1
06-04-2020 22 1
07-04-2020 27 2
08-04-2020 5 1
09-04-2020 15 1
10-04-2020 28 2
11-04-2020 36 2
12-04-2020 19 1
13-04-2020 21 1
14-04-2020 33 2
15-04-2020 42 2
16-04-2020 42 2
17-04-2020 2 1
18-04-2020 13 1
19-04-2020 5 1
20-04-2020 17 1
21-04-2020 8 1
22-04-2020 30 2
23-04-2020 0 1
24-04-2020 0 1
25-04-2020 10 1
26-04-2020 18 1
27-04-2020 8 1
28-04-2020 5 1
29-04-2020 14 1
30-04-2020 4 1
01-05-2020 11 1
02-05-2020 4 1
03-05-2020 5 1
04-05-2020 4 1
05-05-2020 3 1
06-05-2020 1 1
07-05-2020 4 1
08-05-2020 2 1
09-05-2020 0 1
10-05-2020 0 1
11-05-2020 0 1
12-05-2020 0 1
13-05-2020 0 1
14-05-2020 3 1
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Date Number of cases state
15-05-2020 2 1
16-05-2020 0 1
17-05-2020 6 1
18-05-2020 1 1
19-05-2020 1 1
20-05-2020 1 1
21-05-2020 2 1
22-05-2020 0 1
23-05-2020 3 1
24-05-2020 0 1
25-05-2020 0 1
26-05-2020 17 1
27-05-2020 3 1
28-05-2020 5 1
29-05-2020 1 1
30-05-2020 7 1
31-05-2020 2 1
01-06-2020 1 1
02-06-2020 0 1
03-06-2020 0 1
04-06-2020 0 1
05-06-2020 0 1
06-06-2020 0 1
07-06-2020 0 1
08-06-2020 0 1
09-06-2020 0 1
10-06-2020 6 1
11-06-2020 1 1
12-06-2020 2 1
13-06-2020 14 1
14-06-2020 15 1
15-06-2020 3 1
16-06-2020 4 1
17-06-2020 14 1
18-06-2020 10 1
19-06-2020 1 1
20-06-2020 2 1
21-06-2020 2 1
22-06-2020 1 1
23-06-2020 2 1
24-06-2020 2 1
25-06-2020 4 1

Table 4.6: Table of the number cases (COVID-19) in Tunisia.



Bibliography

[1] M.G. Akritas Roussas GG Asymptotic expansion of the log-likelihood
function based on stopping times defined on a Markov process. Ann Inst
Stat Math 31 (1979).

[2] A. Asanjarani, B. Liquet and Y. Nazarathy Estimation of Semi-Markov
Multi-state Models: A Comparison of the Sojourn Times and Transition
Intensities Approaches.

[3] V. Barbu and N. Limnios. Discrete time semi-Markov processes for re-
liability andsurvival analysis, Communications in statistic theory and
methods. Taylor and Francis publisher 2004.

[4] V. Barbu and N. Limnios. Empirical estimation for discrete time
semi-Markov processes with applications in reliability. J. Non-
parametr.Statist. 2006a.

[5] V. Barbu and N. Limnios. Semi-Markov chains and Hidden Semi Markov
Models toward Applications vol.191, Spring, New York.(2008a).

[6] P. Billingsley. The Lindeberg-L’evy theorem for martingales. Proc.
Amer. Math. Soc. 1961b.

[7] P. Billingsley. Probability and Measure. Wiley, New York, 3rd edition,
1995.

[8] P. Billingsley. Convergence of Probability Measures. Wiley, New York,
2nd edition, 1999.

[9] E. Cinlar, Markov renewal theory, Adv. Appl. Prob. 1 (1969).

91



BIBLIOGRAPHY 92

[10] H. Cramér, Mathematical Methods of Statistics, Princeton University
Press, 1946.

[11] R.D. Gill Nonparametric estimation based on censored observations of
Markov renewal process. Z Wahrscheinlichkeitstheor Verw Geb 53(1980).

[12] F. Grabski, Semi-Markov Processes: Applications in System Reliability
and Maintenance,Polish Naval University Gdynia, Poland, 2015

[13] F. Grabski, Concept of Semi-Markov Process, De Gruyter, 2016. D.
A. Darling, " The Kolmogorov-Smirnov, Cram r-von mises tests,"
Ann.Math. Statist., 28 (1957).

[14] A. Gut. Stopped Random Walks. Limit Theorems and Applications,
volume 5 ofApplied Probability. A Series of the Applied Probability
Trust. Springer, New York, 1988.

[15] V.S. Korolyuk, A.F. Turbin, Semi-Markov Processes and Their Appli-
cations, Naukova Dumka, Kiev, 1976 (in Russian)

[16] V.S. Korolyuk, A.F. Turbin, Decompositions of Large Scale Systems,
Kluwer Academic, Singapore, 1993.

[17] S.W. Lagakos, Sommer CJ, Zelen M Semi-Markov models for partially
censored data. Biometrika 65 (1978).

[18] P. Levy, Proceesus semi-Markoviens, in: Proc. Int. Cong. Math., Ams-
terdam, 1954, pp.

[19] N. Limnios and Oprisan, G, 2001, Semi-Markov Processes and Reliabil-
ity (Boston: Birkhäuser).

[20] A. Listwon and P. Saint-Pierre, SemiMarkov: An R Package for Para-
metric Estimation in MultiState Semi-Markov Models, Journal of Sta-
tistical Software, 2015.

[21] E.H. Moore, R. Pyke, Estimation of the transition distributions of a
Markov renewal process, Ann. Inst. Stat. Math. 20 (1968).



BIBLIOGRAPHY 93

[22] B. Ouhbi and N. Limnios. Comportement asymptotique de la matrice
de renouvellement markovien. . R. Acad. Sci. Paris, 1997.

[23] B. Ouhbi and N. Limnios. Nonparametric estimation for semi-Markov
processes based on its hazard rate functions. Stat. Inference Stoch. Pro-
cess., 2(2), 1999.

[24] B. Ouhbi and N. Limnios, The rate of occurence of failures for semi-
Markov processes and estimation, Elsevier Science B.V, 2002.

[25] R. Pyke, Markov renewal processes: definitions and preliminary proper-
ties, Ann. Math. Stat. 32 (1961).

[26] R. Pyke, Markov renewal processes with finitely many states, Ann.
Math. Stat. 32 (1961).

[27] R. Pyke, R. Schaufele, "Limit theorems for Markov renewal processes,"
Ann. Math. Stat. 35 (1964).

[28] S. M. Ross, Introduction to Probability Models, Elsevier, 9th edition,
2007.

[29] V.M. Shurenkov. On the theory of Markov renewal. Theory Probab
Appl, 1984.

[30] W.L. Smith, Regenerative stochastic processes, Proc. R. Soc. Lond. A
232 (1955).

[31] L. Takács, Some investigations concerning recurrent stochastic processes
of a certain type, Magyar Tud. Akad. Mat. Kutato Int. Kzl. 3 (1954).

[32] L. Takács, On a sojourn time problem in the theory of stochastic pro-
cesses, Trans. Am. Math. Soc. 93 (1959).

[33] The Coronavirus data. Available at https://www.coronavirus-
statistiques.com.

[34] I. Votsi, N. Limnios, George Tsaklidis and Eleftheria Papadimitiou, Es-
timation of the Expected Number of Earthquake Occurences Based on
Semi-Markov Models, Springer, 2011.

https://www.coronavirus-statistiques.com
https://www.coronavirus-statistiques.com

	Acknowledgments
	Notations
	Introduction
	Introduction and preliminaries
	Definitions and theorems 
	Discrete-time Markov chain
	State classification

	Continuous-time Markov chain

	Discrete-time semi-Markov process
	Markov renewal chains and semi-Markov chains
	Elements of statistical estimation
	Empirical estimators

	Asymptotic properties of the estimators
	Strong consistency
	Asymptotic normality

	Markov renewal equation

	Continuous-time semi-Markov process
	Definitions and properties
	Elements of statistical estimation
	Empirical estimators
	Asymptotic properties of the estimators

	Markov renewal matrix
	Markov renewal equation
	Hazard rate function

	Applications
	Application to asthma control data
	The SemiMarkov R package
	Script and concluding remarques

	Application to Covid-19 pandemic
	Application for Tunisia Coronavirus data
	Application for Algeria Coronavirus data


	Conclusion
	Appendix
	Bibliography

