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Introduction

L’étude des équations aux dérivées partielles elliptiques est un des sujets de recherche

de grande importance dans l’analyse sur les variétés Riemanniennes développé ces dernières

années dans de nombreux travaux ([1], [4], [6], [7], [10], [11]).

Différentes techniques sont employées pour la résolution d’équations aux dérivées par-

tielles elliptiques comme par exemple la méthode variationnelle utilisée pour résoudre le

problème de Yamabe et le problème de courbure scalaire prescrite.

0.1 Problème de Yamabe

Le problème de Yamabe consiste à trouver sur une variété Riemannienne compacte (M, g)

de dimension n ≥ 3 une métrique g̃ conforme à g i.e. ( g̃ = f g où f ∈ C∞ (M) ; f > 0) dont la

courbure scalaire de la métrique g̃ est constante ?

En terme d’analyse les deux courbures scalaires de g et g̃ sont reliées entre elles par une

formule très simple et élégante. En effet, si g̃ = u
4

n−2 g est une métrique conforme à g où

u ∈ C∞ (M), u > 0 alors les deux courbures scalaires Rg et Rg̃ de g et de g̃ sont reliée par

l’équation

∆gu +
n − 2

4 (n − 1)
Rgu =

n − 2
4 (n − 1)

Rg̃u
n+2
n−2 (1)

où ∆g est l’opérateur de Laplace-Beltrami sur (M, g)

Il est clair que le problème de Yamabe est équivalent à l’existence d’une constante λ ∈ R

et d’une fonction u ∈ C∞ (M) strictement positive solution de l’équation

∆gu +
n − 2

4 (n − 1)
Rgu = λu

n+2
n−2 (2)

Ce problème a été conjecturé par Yamabe en 1960 qui l’énonça dans [11]. Quelques

années plus tard en 1968 Trudinger [9] a découvert une erreur dans la preuve de Yamabe et il

5



Introduction 6

a résolut le problème dans certains cas particuliers. En 1976 Aubin [1] a amélioré l’approche

de Yamabe en réduisant le problème à la preuve d’une certaine inégalité sur l’invariant de

Yamabe. Cette inégalité a été démontrée par Aubin [1] dans certains cas, ensuite par Schoen

[7] dans les autres cas en 1984.

0.2 Problème de courbure scalaire prescrite

Soit (M, g) une variété Riemannienne de dimension n ≥ 3. Une généralisation naturelle

du problème de Yamabe, qui peut être très utile dans l’étude de la classe conforme d’une

métrique g, est le problème de la courbure scalaire prescrite. Il s’agit de trouver une métrique

g̃ conforme à g dont la courbure scalaire Rg̃ est égale à une fonction donnée f . En terme

d’analyse ce problème se ramène après calculs à l’équation en u suivante

∆gu +
n − 2

4 (n − 1)
Rgu = f u

n+2
n−2 (3)

L’objectif de ce mémoire consiste à utiliser l’approche variationnelle développée par Ya-

mabe [11] et employée par Aubin dans [1] pour montrer l’existence de solutions positives des

deux problèmes (2) et (3).

Ce mémoire est divisé en trois chapitres :

I Dans le premier chapitre nous commençons par un chapitre introductif, où nous rap-

pelons l’essentiel des notions géométriques et quelques résultats de base de l’analyse

sur les variétés Riemanniennes qui seront utilisés dans ce mémoire.

I Dans le deuxième chapitre nous présentons les résultats obtenus par Aubin [1], plus

précisément on s’intéresse à l’existence de solutions positives d’un problème de type

(2).

I Dans le dernier chapitre nous montrons d’une manière analogie que la technique

variationnelle utilisée dans le deuxième chapitre reste valable pour montrer l’existence

de solutions positives d’un problème de type (3)



Chapitre 1

Notions préliminaires

L’objectif de ce chapitre est d’introduire différents résultats d’analyse sur les variétés

Riemanniennes que nous utiliserons dans la suite. Pour plus de détails on pourra se référer

aux ouvrages de Hebey [5]et de Aubin [2].

1.1 Éléments de la géométrie Riemannienne

1.1.1 Variétés Riemanniennes

Définition 1.1.1 Une variété Riemannienne de dimension n est un espace topologique sé-

paré M qui vérifie la propriété suivante : tout point de M possède un voisinage ouvert ho-

méomorphe à un ouvert de Rn.

Autrement dit si pour tout point x ∈ M, il existe un voisinage ouvert U de x, il existe un

voisinage ouvert V de Rn et il existe ϕ : U −→ V un homéomorphisme. Le couple (U, ϕ) est

appelé carte locale de x où ϕ est l’application de coordonnées.

Définition 1.1.2 Soient M une variété topologique etA = {(Ui, ϕi)}i∈I⊂N une famille de cartes

locales de M. On dit que A est un atlas de classe Ck de M si

1. M = ∪
i∈I

Ui

2. pour tous i et j dans I, les applications de changement de cartes ϕi j : ϕ j ◦ ϕ
−1
i :

ϕi

(
Ui ∩ U j

)
→ ϕ j

(
Ui ∩ U j

)
sont des difféomorphismes de classe Ck.

Définition 1.1.3 Soient M une variété topologique et A1 et A2 deux atlas de classe Ck sur

M.

7



Chapitre 1. Notions préliminaires 8

On dit que A1 et A2 sont Ck compatibles si A1 ∪ A2 est encore un atlas de classe Ck sur M.

Remarque 1.1.1 On peut vérifier facilement que la relation de Ck compatibilité sur les atlas

est une relation d’équivalence. La réunion des atlas d’une même classe d’équivalence est

appelée un Ck atlas complet.

Définition 1.1.4 Une variété de classe Ck est une variété topologique munie d’un atlas com-

plet.

Définition 1.1.5 Étant donnés des entiers p, q > 0, Soit M une variété de dimension n. Un

tenseur de type (p, q) ( p-fois contravariants et q-fois covariants sur M est une forme p + q-

linéaire sur (TxM)p × ((TxM)∗)q

On note

(p,q)
⊗ TxM = TxM ⊗ TxM ⊗ . . . ⊗ TxM︸                          ︷︷                          ︸

p fois

⊗ (TxM)∗ ⊗ (TxM)∗ ⊗ . . . ⊗ (TxM)∗︸                                     ︷︷                                     ︸
q fois

l’ensemble des tenseurs de type (p, q) sur M. Si T ∈
(p,q)
⊗ TxM et (U, ϕ) désigne une carte

locale de M au point x alors on peut écrire

T = T i1i2...ip

j1 j2... jq

∂

∂xi1
⊗

∂

∂xi2
⊗ . . . ⊗

∂

∂xip

⊗ dx j1 ⊗ dx j2 ⊗ . . . ⊗ dx jq

où T i1i2...ip

j1 j2... jq
sont les coordonnées du tenseur T .

Exemple 1.1.1 :

– Toute fonction sur une variété M est un tenseur de type (0, 0)

– Un champ de vecteur X est un tenseur 1− fois contravariant et 0− fois covariant i.e. de

type (1, 0), tandis qu’une 1− forme différentielle sur une variété M est un tenseur 0−

fois contravariant et 1− fois covariant i.e. de type (0, 1).

Définition 1.1.6 Une métrique Riemannienne sur une variété M est un champ de tenseur

deux fois covariants sur M qui définit en tout point x de M un produit scalaire symétrique

non dégénéré et défini positif sur TxM. Une telle métrique g, le couple (M, g) s’appelle une

variété Riemannienne.
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Remarque 1.1.2 Les coordonnées d’une métrique g dans une carte (U, ϕ) sont données par

g = gi j dxi ⊗ dx j.

Exemple 1.1.2 SurRn avec les coordonnées cartésiennes (x1, x2, . . . , xn), on définit sur TxR
n �

Rn la métrique euclidienne δ défini par

δ =
∑

i

δi jdxi ⊗ dx j =
∑

i

dxi ⊗ dxi

En particulier pour surR2, avec les coordonnées cartésiennes, la métrique euclidienne s’écrit

δ = dx ⊗ dx + dy ⊗ dy

On peut vérifier facilement que la métrique euclidienne δ en coordonnées polaires (x =

r cos θ, y = r sin θ) s’écrit

δ = dr ⊗ dr + r2dθ ⊗ dθ.

Proposition 1.1.1 Toute variété paracompacte possède une métrique Riemannienne.

1.1.2 Courbures Riemanniennes

Définition 1.1.7 Soit (M, g) une variété. On note Γ (M) l’espace des champs de vecteurs

différentiables sur M.

Une connexion sur M est une application D : T (M) × Γ (M)→ T (M) qui vérifie les

1. ∀x ∈ M si X ∈ T (M) et Y ∈ Γ (M), alors D (X,Y) ∈ T (M)

2. ∀x ∈ M, D restreint à TxM × Γ (M) est bilinéaire

3. ∀x ∈ M, ∀X ∈ TxM, ∀Y ∈ Γ (M) et si f : M → R est différentiable, alors

D (X, f Y) = X ( f ) Y (x) + f (x) D (X,Y)

Remarque 1.1.3 On note généralement DXY au lieu de D (X,Y). DXY est la dérivée cova-

riante de Y par rapport à X.
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Soit (Ω, ϕ) une carte de M de coordonnées associées (x1, x2, . . . , xn), pour i = 1, . . . n , on
note

∇i
∂

∂x j
= D(

∂

∂xi
,
∂

∂x j
) = D ∂

∂xi
(
∂

∂x j
) = Γk

i j
∂

∂xk

où Γk
i j sont les symboles de Christoffel.

Définition 1.1.8 La torsion d’une connexion D est l’application

T : ∪
x∈M

(TxM × TxM) −→ T M

(X,Y) 7−→ T (X,Y) = DXY − DY X − [X,Y]

Dans une carte (Ω, ϕ) de M de coordonnées associées (x1, x2, . . . , xn), si X = Xi ∂

∂xi
et Y =

Y i ∂

∂xi
alors

T (X,Y) =
(
Γk

i j − Γk
ji

)
XiY j ∂

∂xk

On pourra regarder la torsion comme un tenseur un fois covariant et deux fois contravariants

dont les composantes sont données par la formule

T k
i j = Γk

i j − Γk
ji.

Définition 1.1.9 Soit (M, g) une variété Riemannienne de dimension n ≥ 1 ∇ la connexion

de Levi-Civita est la connexion sans torsion pour laquelle g est à dérivée covariante nulle),

son expression locale est donné par

Γk
i j =

1
2

gkl

(
∂gl j

∂xi
+
∂gli

∂x j
−
∂gi j

∂xl

)

où gi j et gi j désignent respectivement les coordonnées de la métrique g et les coordonnées de

son inverse g−1.

Définition 1.1.10 Soit ∇ la connexion de Levi-Civita

1. Le tenseur de courbure R relatif à la connexion ∇ s’écrit

Rl
i jk =

∂Γl
ki

∂x j
−
∂Γl

ji

∂xk
+ Γl

jαΓ
α
ki − Γl

kαΓ
α
ji.
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2. On appelle tenseur de courbure de Riemann noté Rmg, le champ de tenseur C∞ quatre

fois covariants défini par

Ri jkl = giαRα
jkl.

3. On appelle tenseur de courbure de Ricci, le champ de tenseur C∞ deux fois covariants,

obtenu en contractant le tenseur de courbure Riemannienne

Rici j = Rα
iα j = gαβRiα jβ.

4. La courbure scalaire est la fonction numérique de classe C∞ sur M notée Rg et définie
par

Rg = Ri jgi j.

1.1.3 Métriques conformes

Définition 1.1.11 Soit (M, g) une variété Riemannienne de dimension n. La classe conforme

de g notée
[
g
]
, est l’ensemble des métriques sur M qui s’écrivent sous la forme

g̃ = ϕg

où ϕ est une fonction C∞ (M) strictement positive.

On pourra encore écrire que

[
g
]

=
{
e f g / f ∈ C∞ (M)

}
Deux métrique dans la même classe conforme sont tout simplement dites conformes.

1.2 Intégrale Riemannienne

Définition 1.2.1 (Partition de l’unité) Soient M une variété et A = (Ωi, ϕi)i∈I un atlas de

M. On dira qu’une famille
(
Ω j, ϕ j, α j

)
j∈J

est une partition de l’unité subordonnée àA si :

1. ∀ j ∈ J, Ωi : M −→ R est de classe C∞ sur M

2. ∀ j ∈ J, ∀x ∈ M, 0 ≤ α j(x) ≤ 1

3. ∀ j ∈ J, ∃i ∈ I tel que S uppα j ⊂i
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4. ∀x ∈ M, ∃V voisinage ouvert de x tel que S uppα j ∩V = ∅ sauf pour un nombre fini de

j

5. ∀x ∈ M,
∑
j∈J

α j = 1

6. (Ω j, ϕ j) j∈J est un sous atlas deA

7. pour tout j, S uppα j ⊂ Ω j.

Définition 1.2.2 (Définition et proposition)

I Soit (M, g une variété Riemannienne de dimension n et soit f : M → R une fonction de

continue à support compact dans M. Étant donné A = (Ωi, ϕi)i∈I un atlas de M. L’intégrale

Riemannienne de f se définit de la manière suivante∫
M

f dvg =
∑
j∈J

∫
ϕ j(Ω j)

(
α j

√
|g|

)
f ◦ ϕ−1

j dx (1.1)

où
(
Ω j, ϕ j, α j

)
j∈J

est une partition de l’unité subordonnée à A, |g| désigne le déterminant de

la matrice g et dx est la mesure de Lebesgue.

I L’intégrale Riemannienne de f définit par la relation (1.1) ne dépend ni du choix de l’atlas

A et ni du choix de la partition de l’unité
(
Ω j, ϕ j, α jb

)
j∈J

.

1.3 Espaces de Sobolev

1.3.1 Définitions et propriétés

Nous rappelons l’inégalité de Hölder qu’on l’utilise plus souvent dans les majorations.

Proposition 1.3.1 (Inégalité de Hölder) Soient (M, g) une variété Riemannienne compacte.

Si

f ∈ Lp (M) et g ∈ Lq (M) où
1
p

+
1
q

= 1

alors

f .g ∈ L1 (M) et ‖ f .g‖1 ≤ ‖ f ‖p . ‖g‖q
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Définition 1.3.1 Soient (M, g) une variété Riemannienne compacte de dimension n, p ≥ 1 un

réel et k est un entier positif. On note C∞c (M) l’espace des fonctions de classe C∞ à supports

compactes dans M.

1. L’espace de Sobolev Hp
k (M) est le complété de C∞c (M) pour la norme

‖u‖ :=
k∑

i=0

(∫
M

∣∣∣∇iu
∣∣∣p dvg

) 1
p

où ∇iu est la i-ème dérivée covariante de u.

2. En particulier pour pour p = 2, l’espace de Sobolev H2
k (M) est un espace de Hilbert,

on peut donc définir la norme équivalente induite du produit scalaire par

‖u‖2H2
k (M) =

k∑
i=0

∫
M

∣∣∣∇iu
∣∣∣2 dvg

Pour k = 1, on obtient la norme de l’espace H2
1(M) définie par

‖u‖2H2
1 (M) =

∫
M
|u|2dvg +

∫
M
|∇u|2dvg

On rappelle maintenant le théorème de Banach qui consiste à caractériser la réflexivité

des espaces de Sobolev.

Définition 1.3.2 (Convergence faible) Soit (E, ‖.‖) un espace de Banach. On rappelle qu’une

suite (un) de E est dite faiblement convergente vers u si pour tout forme linéaire Φ continue

de E, Φ(un) converge Φ(u) dans R. La limite u est unique et on a nécessairement que

‖u‖ ≤ lim inf
n
‖un‖.

Théorème 1.3.1 (Théorème de Banach) L’espace de Banach (E, ‖.‖) est réflexif si est seule-

ment si sa boule unité fermée centrée en 0 est faiblement compacte. Autrement dit l’espace

(E, ‖.‖) est réflexif si est seulement si toute suite bornée de E possède une sous suite qui

converge faiblement.

Proposition 1.3.2 Pour tout k et tout réel p > 1, l’espace de Sobolev Hp
k (M) est réflexif.
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1.3.2 Espaces de Hölder

Définition 1.3.3 Soient (M, g) une variété Riemannienne compacte de dimension n, m un

entier naturel et α ∈ (0, 1).

1. L’espace de Hölder C0,α (M) est l’espace des fonctions continues, muni de la norme

‖u‖C0,α(M) := ‖u‖∞ + sup
x,y∈M

|u (x) − u (y)|
dg (x, y)α

où dg (., .) est la distance géodésique.

2. L’espace de Hölder Cm,α (M) est l’espace des fonctions de classe Cm, dont la m-ème

dérivée covariante ∇mu appartient à C0,α (M). On munit Cm,α (M) d’une norme définie
par

‖u‖Cm,α(M) := ‖u‖Cm(M) + sup
x,y∈M

|∇mu (x) − ∇mu (y)|
dg (x, y)α

.

Nous rappelons les deux résultats très importants sur les espaces de Sobolev.

Théorème 1.3.2 (Théorème d’inclusion de Sobolev) Soit (M, g) une variété Riemannienne

compacte de dimension n.

1. Si k et l sont deux entiers avec (k > l ≥ 0), p et q deux réels tels que (p > q ≥ 1) qui

vérifient
1
p

=
1
q
−

(k − l)
n

, alors l’inclusion Hq
k (M) ⊂ Hp

l (M) est continue.

2. En particulier pour q = 2 et k = 1 , alors l’inclusion H2
1(M) ⊂ L2](M) est continue où

2] =
2n

n − 2

3. Si m ∈ N et
(k − m − α)

n
≥

1
q

, alors l’inclusion Hq
k (M) ⊂ Cm,α (M) est continue avec

α ∈ (0, 1).

Le deuxième résultat donne des conditions de compacité des inclusions dans le théorème

précédent.

Théorème 1.3.3 (Théorème de Rellich Kondrakov) Soit (M, g) une variété Riemannienne

compacte de dimension n et soient k et l deux entiers avec k > l ≥ 0
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1. Si p, q ≥ 1 sont deux réels tels que
1
p
<

1
q
−

(k − l)
n

, alors l’inclusion Hq
k (M) ⊂ Hp

l (M)

est compacte.

2. En particulier pour q = 2, k = 1, alors l’inclusion H2
1(M) ⊂ Lp(M) est compacte où

p < 2]

3. Si
(k − α)

n
>

1
q

, alors l’inclusion Hq
k (M) ⊂ C0,α (M) est compacte avec α ∈ (0, 1).

1.3.3 Meilleure constante de Sobolev pour H2
1(M) ⊂ L2](M)

Définition 1.3.4 On définit K0 > 0 par

1
K0

:= inf
u∈C∞c (Rn)−{0}

∫
Rn

|∇u|2dx

(
∫
Rn

|u|2]dx)
2
2]

la meilleure constante dans l’inégalité ‖u‖22] ≤ K‖∇u‖22 de l’inclusion de Sobolev H2
1(Rn) ⊂

L2](Rn) où 2] =
2n

n − 2
est l’exposant critique de Sobolev

Cette constante a été calculée par Talenti [8] et pat Aubin [1]. Ils ont montré que

1
K0

=
n(n − 2)ω

2
n
n

4

où ωn est le volume de la sphère unité standard de Rn+1.

1.3.4 Inégalité de la meilleure constante

Nous citons l’inégalité de la meilleure constante de Sobolev K0 (n, k) concernant l’inclu-

sion de Sobolev H2
1(M) ⊂ L2](M) qui a été démontrée par Aubin [2].

Lemme 1.3.1 ([1]) Soit (M, g) une variété Riemannienne compacte de dimension n. Alors

pour tout ε > 0, il existe Bε ∈ R tel que pour tout u ∈ H2
1 (M) on a

‖u‖22] ≤ (K0 + ε) ‖∇u‖22 + Bε ‖u‖2L2(M)

où K0 est la meilleure constante Euclidienne et 2] =
2n

n − 2
.
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1.4 EDP sur les variétés Riemanniennes

Nous rappelons quelques définitions et propriétés des EDP sur les les variétés Rieman-

niennes

1.4.1 Opérateur de Laplace-Beltrami

Définition 1.4.1 Soit (M, g) une variété Riemannienne, le Laplacien ∆gu d’une fonction u ∈

C2 (M) est l’opposé de divergence du gradient de u, Son expression en coordonnées locales

donnée par

∆gu := −divg (∇u) = −
1√
|g|

∂

∂xi

(√
|g|gi j ∂u

∂x j

)
où |g| le déterminant de la métrique g

1.4.2 Opérateur de laplacien conforme

Définition 1.4.2 Soit (M, g) une variété Riemannienne de dimension n ≥ 3. L’opérateur de

laplacien conforme agissant sur les fonction de C2(M) défini par

Pgu := ∆gu +
n − 2

4(n − 1)
Rgu

où Rg est la courbure scalaire.

Proposition 1.4.1 ([2]) Soit (M, g) une variété Riemannienne de dimension n ≥ 3. L’opéra-

teur de laplacien conforme Pgu := ∆gu +
n − 2

4(n − 1)
Rgu est invariant conforme i.e.

Pour toute fonction φ ∈ C∞(M) strictement positive, si g̃ = φ
4

n−2 .g, alors

Pg(uφ) = φ
n+2
n−2 Pg̃u

Définition 1.4.3 Soit (M, g) une variété Riemannienne compacte de dimension n. On dit que

l’opérateur de laplacien conforme Pg est coercif s’il existe Λ > 0 tel que pour tout u ∈ H2
1 (M)

∫
M

(
Pgu

)
udvg =

∫
M

(
|∇u|2 +

n − 2
4(n − 1)

Rgu2
)

dvg ≥ Λ ‖u‖2H2
1 (M) .
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1.4.3 Principe du maximum

Définition 1.4.4 On dira qu’un opérateur P défini sur une variété Riemannienne (M, g) vé-

rifie le principe de maximum si

∀u ∈ C∞ (M) , Pu ≥ 0 =⇒ u > 0 ou u ≡ 0

Théorème 1.4.1 Soient (M, g) une variété Riemannienne compacte et u ∈ C∞(M) une fonc-

tion positive ou nulle. On suppose qu’en tout point x de M

(∆gu)(x) ≥ u(x) f (x, u(x))

où f : M× R→ R est une fonction continue. Alors u est soit partout strictement positive, soit

identiquement nulle.

Remarque 1.4.1 L’opérateur de Laplacien conforme Pg vérifie le principe de maximum si

et seulement s’il est coercif, ce résultat est important pour montrer la positivité des solutions

d’un problème du second ordre sachant que si u ∈ H2
1 (M) on a alors |u| ∈ H2

1 (M).

1.4.4 Solutions faibles et résultats de régularité

Définition 1.4.5 Soient (M, g) une variété Riemannienne compacte sans bord de dimension

n > 3, f ∈ L1
loc(M). Alors u est dite solution faible de l’équation

∆gu +
n − 2

4(n − 1)
Rgu = λ f u

n+2
n−2

si pour tout φ ∈ C∞ (M)

∫
M

(
〈∇u,∇φ〉g +

n − 2
4(n − 1)

Rguφ
)

dvg = λ

∫
M

fφu
n+2
n−2 dvg.

La résolution des équations aux dérivées partielles par une méthode variationnelle ne

permet de trouver que des solutions faibles alors que très souvent on a besoin de montrer que

les solutions faibles sont des solutions régulières (ou classiques). Nous rappelons quelques

résultats de régularité des solutions faibles appliqués aux problèmes elliptiques du second

ordre. Pour plus de détails sur ce sujet on pourra se référer aux ouvrages de Hebey [5] et

Gilbard-Trudinger [3].
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Théorème 1.4.2 Soient (M, g) une variété Riemannienne compacte et f ∈ C0,α (M) avec

α ∈ (0, 1). Si u ∈ H2
1 (M) est une solution faible de

∆gu +
n − 2

4(n − 1)
Rgu = f

alors u ∈ C2,α (M). En plus on a

‖u‖C2(M) ≤ C
(
‖ f ‖C0,α(M) + ‖u‖C0(M)

)
où C = C (M, g) une constante.

1.4.5 Théorème des multiplicateurs de Lagrange

Très souvent, trouver la solution d’une équation aux dérivées partielles revient à minimi-

ser une fonctionnelle sur un ensemble de contraintes. On rappellera le théorème du multipli-

cateurs de Lagrange qui est un résultat très important que nous utiliserons par la suite pour

montrer l’existence de solutions d’une EDP.

Théorème 1.4.3 (Théorème des multiplicateurs de Lagrange) [5] Soient E un espace de

Banach, Ω un ouvert de E ; f : Ω → R une fonction différentiable sur Ω et φ : Ω → Rn une

application de classe C1 sur Ω de composantes φ1, ..., φn. Étant donné a un point de Rn, on

pose H = φ−1 (a) que l’on suppose non vide ; si en un point x0 de H

f (x0) = min
x∈H

f (x) (1.2)

et si de plus Dφ (x0) ∈ L (E,Rn) est surjective, alors il existe des réels λ1, ..., λn pour lesquels

D f (x0) = λ1Dφ1 (x0) + ... + λnDφn (x0) .

Cette relation est l’équation d’Euler-Lagrange associée au problème de minimisation consi-

déré par (1.2), les λi sont les coefficients de Lagrange .



Chapitre 2

Problème de Yamabe

Position du problème

Dans ce chapitre nous rappelons quelques résultats obtenus par T. Aubin dans [1] concer-

nant le problème de Yamabe qui a été énoncé en 1960 par Yamabe comme suit :

Problème de Yamabe : Étant donnée (M, g) une variété Riemannienne compacte de di-

mension n ≥ 3, prouver qu’il existe une métrique conforme à g qui est à courbure scalaire

constante. En vertu de ce qui a été dit dans l’introduction, résoudre le problème de Yamabe

revient à montrer qu’il existe un réel λ ∈ R, et il existe une fonction strictement positive

u ∈ C2,α(M) où α ∈ ]0, 1[, tels que

∆gu +
n − 2

4(n − 1)
Rgu = λu2]−1 (2.1)

où ∆g est l’opérateur de Laplace-Beltrami, Rg est la courbure scalaire de la variété (M, g)

et 2] =
2n

n − 2
est l’exposant critique de Sobolev.

Cette équation à la particularité de contenir l’exposant critique de Sobolev donc toute la dif-

ficulté du problème vient ici de ce que l’inclusion de H2
1(M) dans L2](M) n’est pas compacte.

Pour éviter ce problème nous utilisons l’approche variationnelle présenter dans le travail de

Yamabe [11] qui consiste à approcher l’équation (2.1) par des équations sous critiques pour

lesquelles on récupère la compacité donnée par le théorème 1.3.3 de Rellich-Kondrakov.

Le résultat principal de ce chapitre qui montre l’existence d’une solution strictement positive

de l’équation critique (2.1) est énoncé dans théorème suivant.

19
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Théorème 2.0.4 (Théorème principal) ([1], [5]) Soit (M, g) une variété Riemannienne com-

pact de dimension n ≥ 3 de courbure scalaire positive Rg. Sous la condition

inf
u∈H2

1 (M)/{0}

∫
M
|∇u|2dvg + n−2

4(n−1)

∫
M

Rgu2dvg(∫
M

u2]dvg

) 2
2]

<
1

K0

où K0 est la meilleure constante de Sobolev énoncé dans la définition 1.3.4.

Alors il existe un réel λ > 0 et une fonction strictement positive u ∈ C2,α (M) qui est solution

de l’équation

∆gu +
n − 2

4(n − 1)
Rgu = λu2]−1

et qui minimise la fonctionnelle I définie sur H2
1(M) par :

I(u) =

∫
M
|∇u|2dvg +

n − 2
4(n − 1)

∫
M

Rgu2dvg

sous la contrainte
∫

M
u2]dvg = 1.

Ce chapitre est organisé comme suit :

I Dans la première section, nous construisons par la méthode variationnelle, une suite

de fonctions positives (uq) solutions de la famille d’équations sous critiques suivantes :

∆gu +
n − 2

4(n − 1)
Rgu = λuq−1

où q est l’exposant sous critique tel que 2 < q < 2] =
2n

n − 2
.

I Dans la deuxième section, nous montrons que sous certaine condition géométrique,

la suite (uq) converge vers une solution strictement positive (u . 0) de l’équation cri-

tique (2.1) lorsque l’exposant sous critique q tend vers l’exposant critique 2].

2.1 Existence de solutions des équations sous critiques

Dans cette section, nous montrons l’existence de solutions des équations sous-critiques

associées à l’équation (2.1) sur une variété Riemannienne compacte sans bord de dimension
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n ≥ 3. Il s’agit de la famille d’équations

∆gu +
n − 2

4(n − 1)
Rgu = λuq−1 (2.2)

où 2 < q < 2].

Pour cela on note

1. H2
1 (M) est l’espace de Sobolev muni de la norme

‖u‖2H2
1 (M) = ‖∇u‖22 + ‖u‖22

2. I est la fonctionnelle associée à l’équation (2.2) définie sur l’espace H2
1 (M) par

I (u) =

∫
M
|∇u|2dvg +

n − 2
4(n − 1)

∫
M

Rgu2dvg. (2.3)

3. λq est le minimum de la fonctionnelle I

λq := inf
u∈H2

1 (M)−{0}

I(u)(∫
M

uqdvg

) 2
q

= inf
u∈Hq

I (u)

oùHq est la contrainte

Hq =

{
u ∈ H2

1 (M) /
∫

M
|u|qdvg = 1

}

Nous avons le théorème suivant, qui montre l’existence d’une suite de solution minimisante

de la famille d’équations sous critique (2.2).

Théorème 2.1.1 ([1], [5]) Soit (M, g) une variété Riemannienne compact de dimension n ≥

3. Pour tout réel q ∈
]
2,

2n
n − 2

[
, il existe une fonction strictement positive uq ∈ C2,α (M) qui

est solution de l’équation

∆guq +
n − 2

4(n − 1)
Rguq = λquq−1

q (2.4)

et qui vérifie
∫

M
uqdvg = 1, où λq = inf

u∈Hq

I (u) = I(uq)
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Preuve. L’idée de la démonstration :
(a) Tout d’abord, on montre que λq est fini.

(b) On montre ensuite que le minimum λq de la fonctionnelle I est atteint par une fonction

positive ou nulle uq ∈ Hq.

(c) On montre enfin que uq est régulière, strictement positive et solution de (2.4).

(a) λq est fini, pour toute u ∈ Hq ,
∫

M
|u|qdvg = 1, D’après l’inégalité de Hölder, on a

∣∣∣∣∣∫
M

Rgu2dvg

∣∣∣∣∣ ≤ (
max
x∈M
|Rg|

) ∫
M

u2dvg

≤

(
max
x∈M
|Rg|

) (∫
M

uqdvg

) 2
q

V
1− 2

q
g

≤

(
max
x∈M
|Rg|

)
V

1− 2
q

g

où Vg =

∫
M

dvg désigne le volume de (M, g)

Il est clair que pour toute u ∈ Hq

I(u) =

∫
M
|∇u|2dvg +

n − 2
4(n − 1)

∫
M

Rgu2dvg

≥

∫
M
|∇u|2dvg −

(
n − 2

4(n − 1)
max
x∈M
|Rg|

)
V

1− 2
q

g (2.5)

≥ −

(
n − 2

4(n − 1)
max
x∈M
|Rg|

)
V

1− 2
q

g

ce qui entraine que le minimum λq est fini.

(b) On montre l’existence d’une fonction uq ∈ Hq, positive ou nulle presque partout telle

que I(uq) = λq. Pour cela, considérons (vi) une suite minimisante supposée positive ou nulle

de la fonctionnelle I surHq i.e.

lim
i−→+∞

I(vi) = λq

Pour i suffisamment grand on pourra écrire

I(vi) ≤ λq + 1

On obtient avec l’inégalité (2.5) et cette dernière inégalité que
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‖∇vi‖
2
2 =

∫
M
|∇vi|

2dvg ≤ 1 + λq +

(
n − 2

4(n − 1)
max
x∈M
|Rg|

)
V

1− 2
q

g (2.6)

D’autre part de l’inégalité de Hölder on a

‖vi‖
2
2 =

∫
M

v2
i dvg ≤

(∫
M

vq
i dvg

) 2
q
(∫

M
1dvg

)1− 2
q

Comme vi ∈ Hq i.e.
∫

M
|vi|

qdvg = 1 et , on déduit que

‖vi‖
2
2 ≤ V

1− 2
q

g (2.7)

où Vg :=
∫

M
1dvg.

De l’inégalité (2.6) et (2.7), on déduit que

‖vi‖
2
H2

1 (M) := ‖∇vi‖
2
2 + ‖vi‖

2
2 ≤ 1 + λq +

(
n − 2

4(n − 1)
max
x∈M
|Rg|

)
V

1− 2
q

g + V
1− 2

q
g

Ce qui montre que la suite vi est bornée dans l’espace H2
1(M) qui est un espace réflexif et

d’après le théorème de Banach 1.3.1, il existe une fonction uq ∈ H2
1(M) et une sous suite de

(vi) encore notée (vi) telle que

(i) (vi) converge faiblement vers (uq) dans H2
1(M)

(ii) (vi) converge fortement vers (uq) dans Lq(M) où q < 2]

Le point (ii) résulte du théorème 1.3.3 de Rellich Kondrakov puisque l’espace H2
1(M) s’in-

jecte d’une manière compacte dans l’espace Lq(M).

Du point (ii) on peut déduire que la suite (vi) converge fortement dans L2(M) et presque par-

tout sur M vers uq.

Il résulte du point (i) et de la définition 1.3.2 de la convergence faible que∥∥∥uq

∥∥∥2

H2
1 (M) ≤ lim inf

i−→+∞
‖vi‖

2
H2

1 (M)

i.e. ∥∥∥∇uq

∥∥∥2

2
+

∥∥∥uq

∥∥∥2

2
≤ lim inf

i−→+∞

(
‖∇vi‖

2
2 + ‖vi‖

2
2

)
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Puisque vi converge fortement vers uq dans L2(M), il suit que

∥∥∥∇uq

∥∥∥2

2
≤ lim inf

i−→+∞
‖∇vi‖

2
2

De cette dernière inégalité et de la convergence forte de vi vers uq dans L2(M), on récupère
que

I(uq) =
∥∥∥∇uq

∥∥∥2

2
+

∫
M

Rgu2
qdvg ≤ lim inf

i−→+∞

(
‖∇vi‖

2
2 +

∫
M

Rgv2
i dvg

)
= lim inf

i−→+∞
I(vi) := λq

Alors
I(uq) ≤ λq (2.8)

Il résulte de la convergence forte de vi vers uq dans Lq(M) et de
∫

M
|vi|

qdvg = 1 que

∫
M
|uq|

qdvg = lim
i−→+∞

∫
M
|vi|

qdvg = 1

d’où uq ∈ Hq et comme λq est un minimum de I on aura

I(uq) ≥ λq (2.9)

De (2.8) et (2.9), on en déduit que I(uq) = λq. D’où le minimum de λq est atteint par la

fonction uq. On obtient avec le théorème des multiplicateurs de Lagrange 1.4.3, qu’il existe

un coefficient α ∈ R tel que pour tout v ∈ H2
1(M),

DI(uq).v = αDφ(uq).v

où φ(uq) =

∫
M
|uq|

qdvg

Par conséquent ∫
M
< ∇uq,∇v >g dvg +

n − 2
4(n − 1)

∫
M

Rguq.v = α

∫
M

uq−1
q .vdvg

En prenant v = uq dans cette relation, on obtient que α = λq. Par suite et d’après la définition

(1.4.5), uq est une solution faible de l’équation (2.4)

∆guq +
n − 2

4(n − 1)
Rguq = λquq−1

q
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(c) On peut constaté avec le théorème 1.4.2 de régularité que uq ∈ C2,α (M) pour un certain

α ∈ (0, 1). On a uq est positive ou nulle, comme uq ∈ Hq i.e.
∫

M
|uq|

qdvg = 1, alors uq est

non identiquement nulle. Il suit du principe du maximum énoncé au théorème 1.4.1 que uq

est strictement positive.

2.2 Existence de solution d’équation critique

Dans cette section, on montre que la suite uq donnée par le théorème 2.1.1 converge

vers une solution non triviale de l’équation critique (2.1), lorsque l’exposant q tend vers

l’exposant critique 2] =
2n

n − 2
. Avant d’entamer la convergence de la suite uq, nous adoptons

les notations suivantes.
Etant donnée (M, g) une variété Riemannienne compacte de dimension n ≥ 3 sur laquelle on

considère l’équation critique (2.1),

∆gu +
n − 2

4(n − 1)
Rgu = λu2]−1

Notation 2.2.1 on note

1.

I(u) =

∫
M
|∇u|2dvg +

n − 2
4(n − 1)

∫
M

Rgu2dvg

la fonctionnelle associée à l’équation (2.1)

2.

µg := inf
u∈H

I(u) = inf
u∈H2

1 (M)/{0}

I(u)(∫
M

u2]dvg

) 2
2]

qui s’appelle l’invariant de Yamabe de la variété (M, g)

3. lorsque l’exposant sous-critique q tend vers 2] la contrainte

H = H2] :=
{

u ∈ H2
1 (M) /

∫
M
|u|2

]

dvg = 1
}
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Le premier résultat que l’on démontre est la convergence de la suite (λq) lorsque l’exposant

sous critique q tend vers l’exposant critique 2] =
2n

n − 2
.

Lemme 2.2.1 Soient (M, g) une variété Riemannienne compacte de dimension n ≥ 3, pour

q ∈
]
2, 2]

[
, la suite (λq) converge vers l’invariant de Yamabe µg lorsque q tend vers 2] i.e.

lim
q−→2]

λq = µg.

Preuve. Pour tout ε > 0, il existe un u ∈ H telle que

I(u) ≤ µg + ε

Comme

lim
q−→2]

∫
M

uq
qdvg =

∫
M

u2]dvg

on obtient que

lim
q−→2]

I(uq) ≤ µg + ε

Il s’ensuit que

lim
q−→2]

λq ≤ I(u) ≤ µg + ε

Or ε quelconque, ceci entraîne que

lim
q−→2]

λq ≤ µg (2.10)

D’autre part, on a

lim
q−→2]

(∫
M

u2]
q dvg

) q

2]

V
1− q

2]
g = lim inf

q−→2]

∫
M

u2]
q dvg ≥ 1

Or

µg ≤
I(uq)(∫

M
u2]

q dvg

) 2
2]

≤ I(uq) = λq

et ainsi
lim

q−→2]
λq ≥ µq (2.11)
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Il suit des relations (2.10) et (2.11) que la suite λq converge pour q −→ vers µg i.e.

lim
q−→ 2n

n−2

λq = µq.

Le deuxième résultat que l’on démontre est la convergence de la suite (uq) donnée par le

théorème 2.1.1 vers une solution faible de l’équation (2.1) lorsque l’exposant sous critique q

tend vers l’exposant critique 2] =
2n

n − 2
.

Lemme 2.2.2 Soient (M, g) une variété Riemannienne compacte de dimension n ≥ 3, il existe

une suite (qi) de réels dans
]
2, 2]

[
qui tend vers 2] =

2n
n − 2

lorsque i −→ +∞,pour laquelle

la suite correspondante de fonctions (uqi) donnée par le théorème 2.1.1 converge vers une

fonction positive ou nulle u ∈ H2
1 (M) ∩C2,α(M) solution faible de l’équation critique

∆gu +
n − 2

4(n − 1)
Rgu = µgu2]−1

où µg est l’invariant de Yamabe de (M, g).

Preuve. On commence à montrer que la suite de fonctions uq donnée par le théorème 2.1.1

reste bornée dans l’espace H2
1 (M) indépendamment de q. Sachant que

∫
M

uq
qdvg = 1, avec

l’inégalité de Hölder on obtient que

∫
M

u2
qdvg ≤


∫

M
(u2

q)
q
2 dvg︸         ︷︷         ︸

=1


2
q

V
1− 2

q
g = V

1− 2
q

g (2.12)

où Vg =

∫
M

dvg est le volume de (M, g)

Comme V
−1
q

g ∈ Hq (car
∫

M

(
V
−1
q

g

)q

dvg = 1, par ailleurs il est clair que

λq = I(uq) ≤ I(V
−1
q

g ) :=
n − 2

4(n − 1)
V
−2
q

g

∫
M

Rgdvg

≤
n − 2

4(n − 1)
V

1− 2
q

g max
x∈M

Rg
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Ainsi

λq ≤
n − 2

4(n − 1)
V

1− 2
q

g max
x∈M

Rg

De cette dernière inégalité et de l’inégalité (2.12), on pourra ainsi écrire que

‖uq‖H2
1 (M) =

∫
M
|∇uq|

2dvg +

∫
M

u2
qdvg

= λq +

∫
M

(
1 −

n − 2
4(n − 1)

Rg

)
u2

qdvg

≤
n − 2

4(n − 1)
V
−2
q

g

∫
M

Rgdvg + max
x∈M
|1 −

n − 2
4(n − 1)

Rg|

∫
M

u2
qdvg

≤
n − 2

4(n − 1)
V

1− 2
q

g max
x∈M

Rg + max
x∈M
|1 −

n − 2
4(n − 1)

Rg|V
1− 2

q
g (2.13)

Or la fonction (1 +
1
Vg

)α est croissante en α et comme
2
q
< 1 car q ∈

]
2, 2]

[
on peut déduire

que

V
1− 2

q
g = Vg(

1
Vg

)
2
q ≤ Vg(1 +

1
Vg

)
2
q ≤ Vg(1 +

1
Vg

)1 = Vg + 1

Par conséquent l’inégalité (2.13) devient

‖uq‖H2
1 (M) ≤ (Vg + 1)

(
n − 2

4(n − 1)
max
x∈M

Rg + max
x∈M
|1 −

n − 2
4(n − 1)

Rg|

)
(2.14)

ce qui preuve que la suite uq est indépendamment de q et elle est bornée dans H2
1(M) qui est

un espace réflexif et d’après le théorème de Banach 1.3.1, il existe une fonction u ∈ H2
1(M)

et une sous suite de (qi) encore notée (qi) qui tend vers 2] lorsque i −→ +∞ telle que

(a) (uqi) converge faiblement vers u dans H2
1(M)

(b) (uqi) converge fortement vers u dans Lq(M) où q < 2]. En particulier dans L2(M)

(c) (uqi−1
qi

) converge faiblement vers u2]−1 dans L
2]

2]−1 (M) .

Le point (b) résulte du théorème 1.3.3 de Rellich Kondrakov puisque l’espace H2
1(M) s’injecte

d’une manière continue dans l’espace Lq(M).

Le point (c) résulte du théorème 1.3.1 de Banach. En effet on a la suite (uq) est bornée dans
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l’espace L2](M), il est clair que (uq−1
q ) est bornée dans L

2]
q−1 (M) ⊂ L

2]

2]−1 (M) (car
2]

2] − 1
<

2]

q − 1
) par suit (uq) est bornée dans L

2]

2]−1 (M)

Du point (b) on peut déduire que la suite (uqi) converge fortement dans L2(M) et presque

partout sur M vers u.

Comme la suite (uqi) converge faiblement vers u dans H2
1 , par ailleurs on pourra utiliser la

définition 1.3.2 de la convergence faible pour dire que pour tout φ ∈ H2
1(M)

lim
i−→+∞

∫
M
< ∇uqi , ∇φ >g dvg =

∫
M
< ∇u, ∇φ >g dvg (2.15)

De la même façon et comme la suite (uqi−1
qi

) converge faiblement vers u2]−1 dans L
2]

2]−1 (M),

par ailleurs on pourra utiliser la définition 1.3.2 de la convergence faible pour dire que pour

tout φ ∈ H2
1(M) ⊂ L2](M)

lim
i−→+∞

∫
M

uqi−1
qi

φdvg =

∫
M

u2]−1φdvg (2.16)

On obtient facilement avec (b) que pour tout φ ∈ H2
1(M),

lim
i−→+∞

∫
M

Rguqiφdvg =

∫
M

Rguφdvg (2.17)

Or la suite (uqi) est une solution de l’équation sous-critique (2.2) (Voir le théorème 2.1.1) i.e.

elle vérifie

∆guqi +
n − 2

4(n − 1)
Rguqi = λqiu

qi−1
qi

autrement dit∫
M
< ∇uqi , ∇φ >g dvg +

n − 2
4(n − 1)

∫
M

Rguqiφdvg = λqi

∫
M

uqi−1
qi

φdvg (2.18)

En passant à la limite (i −→ +∞) dans l’équation (2.18) et on utilise les équations (2.15),

(2.16) et (2.17) et le fait que lim
i−→+∞

λqi = µg (voir le lemme 2.2.1), on déduit que pour tout

φ ∈ H2
1(M), ∫

M
< ∇u, ∇φ >g dvg +

n − 2
4(n − 1)

∫
M

Rguφdvg = µg

∫
M

u2]−1φdvg
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Cela signifie que u est une solution faible de l’équation

∆gu +
n − 2

4(n − 1)
Rgu = µgu2]−1 (2.19)

On obtient avec le résultat de régularité énoncé du théorème 1.4.2 de régularité et que la so-

lution u de l’équation (2.19) est régulière i.e. u ∈ C2,α (M) où α ∈ (0, 1).

On peut déduire immédiatement par le principe du maximum énoncé au théorème 1.4.1 que

u soit identiquement nulle soit partout strictement positive i.e. (u ≥ 0). D’où le résultat de-

mandé.

Remarque 2.2.1 A ce moment on a démontré que notre équation critique (2.19) possède une

solution u soit identiquement nulle soit partout strictement positive. Toute la difficulté consiste

maintenant à trouver une condition qui va nous permettre d’éviter la solution triviale (u ≡ 0).

C’est l’objet du lemme suivant.

Lemme 2.2.3 (Condition géométrique) Soient (M, g) une variété Riemannienne compacte

de dimension n ≥ 3 et µg son invariant de Yamabe. Sous la condition

µg <
1

K0
=

n(n − 2)ω
2
n
n

4
(2.20)

où K0 est la meilleure constante de Sobolev énoncé dans la définition 1.3.4. Alors la fonction

u donnée par le lemme 2.2.2 est une solution non triviale (u . 0) de l’équation critique

(2.19).

Preuve. On raisonne par absurde, supposons que que u ≡ 0, En reprenant les notation du

lemme 2.2.2, il est clair que la suite (uqi) converge faiblement vers 0 dans l’espace H2
1(M) et

fortement vers 0 dans L2(M) i.e. lim
i−→+∞

∫
M

u2
qi

dvg = 0

On a uqi ∈ Hqi i.e.
∫

M
|uqi |

qidvg = 1, avec l’inégalité de Hölder, on pourra écrire que pour tout



31 2.2. Existence de solution d’équation critique

i

1 =

(∫
M
|uqi |

qidvg

) 2
qi

≤

(∫
M

(|uqi |
qi)

2]
qi dvg

) qi
2]

V
1− qi

2]
g


2
qi

≤

(∫
M
|uqi |

2]dvg

) 2
2]

V
2
qi
− 2

2]
g (2.21)

où Vg est le volume de la variété (M, g). D’autre part on utilise l’inégalité de la meilleure

constante de Sobolev énoncé dans le lemme 1.3.1, pour tout ε > 0, il existe Bε ∈ R tel que

(∫
M
|uqi |

2]dvg

) 2
2]

≤ (K0 + ε)
∫

M
|∇uqi |

2dvg + Bε

∫
M

u2
qi

dvg

l’inégalité (2.21) devient

1 =

(∫
M
|uqi |

qidvg

) 2
qi

≤

(∫
M
|uqi |

2]dvg

) 2
2]

V
2
qi
− 2

2]
g

≤ V
2
qi
− 2

2]
g

(
(K0 + ε)

∫
M
|∇uqi |

2dvg + Bε

∫
M

u2
qi

dvg

)
Or on a ∫

M
|∇uqi |

2dvg = λqi −
n − 2

4(n − 1)

∫
M

Rgu2
qi

dvg

alors la dernière inégalité devient

1 ≤ V
2
qi
− 2

2]
g

{
(K0 + ε)

(
λqi −

n − 2
4(n − 1)

∫
M

Rgu2
qi

dvg

)
+ Bε

∫
M

u2
qi

dvg

}

≤ V
2
qi
− 2

2]
g

{
(K0 + ε)λqi +

(
(K0 + ε)

n − 2
4(n − 1)

max
x∈M
|Rg| + Bε

) ∫
M

u2
qi

dvg

}
En passant à la limite pour i −→ +∞, dans la dernière inégalité et on utilise le fait que

lim
i−→+∞

∫
M

u2
qi

dvg = 0, lim
i−→+∞

λqi = µg et lim
i−→+∞

V
2
qi
− 2

2]
g = V

2
2]
− 2

2]
g = 1
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on obtient
1 ≤ (K0 + ε)µg

Par conséquent pour ε suffisamment petit on aura

1 ≤ K0µg

ce qui contredit avec la condition (2.20) µg <
1

K0
. D’où u . 0.

Remarque 2.2.2 Pour achever la preuve du théorème principal 2.0.4, il nous reste à démon-

tré le lemme suivant.

Lemme 2.2.4 Soient (M, g) une variété Riemannienne compacte de dimension n ≥ 3 et µg

son invariant de Yamabe. Sous la condition

µg <
1

K0

Alors la fonction u donnée par le lemme 2.2.2 minimise la fonctionnelle

I(u) =

∫
M
|∇u|2dvg +

n − 2
4(n − 1)

∫
M

Rgu2dvg

sur la contrainte

H :=
{

u ∈ H2
1 (M) /

∫
M
|u|2

]

dvg = 1
}

(c-a-d, u vérifie
∫

M
|u|2

]

dvg = 1 et µg = I(u)).

Preuve. Nous reprenons les notations du lemme 2.2.2. Comme la suite (uqi−1
qi

) converge fai-

blement vers u2]−1, c-a-d pour tout φ ∈ H2
1(M) on a

lim
i−→+∞

∫
M

uqi−1
qi

φdvg =

∫
M

u2]−1φdvg

En particulier pour φ = u, alors

lim
i−→+∞

∫
M

uqi−1
qi

udvg =

∫
M

u2]dvg
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On déduit avec l’inégalité de Hölder que∫
M

u2]dvg = lim
i−→+∞

∫
M

uqi−1
qi

udvg

≤ lim
i−→+∞


∫

M
uqi

qi
dvg︸     ︷︷     ︸

=1


1− 1

qi (∫
M

uqidvg

) 1
qi

Pour i −→ +∞, on en déduit que

∫
M

u2]dvg ≤

(∫
M

u2]dvg

) 1
2]

ce qui signifie que ∫
M

u2]dvg ≤ 1 (2.22)

Par ailleurs, u est solution de

∆gu +
n − 2

4(n − 1)
Rgu = µgu2]−1

En multipliant cette équation par u, puis en intégrant sur M, on obtient que

I(u) = µg

∫
M

u2]dvg (2.23)

Comme u . 0, on sait par définition que µg vérifie l’inégalité suivante (Voir la notation 2)

I(u)(∫
M

u2]dvg

) 2
2]

≥ µg

En combinant entre cette dernière inégalité et l’égalité (2.23), on en déduit que

µg

∫
M

u2]dvg(∫
M

u2]dvg

) 2
2]

≥ µg

=⇒

µg

(∫
M

u2]dvg

) 2
n

− 1

 ≥ 0
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=⇒ ∫
M

u2]dvg ≥ 1 (2.24)

On tire alors des égalités (2.22), (2.23) et (2.24) que

∫
M

u2]dvg = 1 et I(u) = µg

D’où le résultat demandé.

Démonstration du théorème principal 2.0.4

La preuve du théorème principal 2.0.4 est une application directe des lemmes 2.2.1 à

2.2.4.



Chapitre 3

Problème de courbure scalaire prescrite

Position du problème

Le problème de la courbure scalaire est une généralisation naturelle du problème de Ya-

mabe, qui consiste à trouver sur une variété Riemannienne compacte de dimension n ≥ 3

une métrique g̃ conforme à la métrique initiale g dont la courbure scalaire Rg̃ est égale à une

fonction f donnée à priori. En vertu de ce qui a été dit dans l’introduction, La résolution du

problème de la courbure scalaire revient à l’existence d’un réel λ ∈ R, et l’existence d’une

fonction strictement positive u ∈ C2,α(M) où α ∈ ]0, 1[, tels que

∆gu +
n − 2

4(n − 1)
Rgu = λ f u2]−1 (3.1)

où ∆g est l’opérateur de Laplace-Beltrami, Rg est la courbure scalaire de la variété M, f

une fonction positive de classe C∞(M) et 2] =
2n

n − 2
est l’exposant critique de Sobolev.

Cette équation à la particularité de contenir l’exposant critique de Sobolev donc toute la dif-

ficulté du problème vient ici de ce que l’inclusion de H2
1(M) dans L2](M) n’est pas compacte.

Dans ce chapitre nous montrons d’une manière analogie comme dans le deuxième cha-

pitre que la technique variationnelle utilisée pour résoudre le problème de Yamabe reste va-

lable pour résoudre l’équation (3.1).

Le résultat principal de ce chapitre est énoncé dans théorème suivant.

Théorème 3.0.1 (Théorème principal) ([1], [5]) Soit (M, g) une variété Riemannienne com-

pact de dimension n ≥ 3 de courbure scalaire positive Rg et f une fonction positive de classe

35
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C∞(M). Sous la condition

inf
u∈H2

1 (M)/{0}

∫
M
|∇u|2dvg + n−2

4(n−1)

∫
M

Rgu2dvg(∫
M

f u2]dvg

) 2
2]

<
1(

max
x∈M

f (x)
) 2

2] K0

où K0 est la meilleure constante de Sobolev énoncé dans la définition 1.3.4.

Alors il existe un réel λ > 0 et une fonction strictement positive u ∈ C2,α (M) qui est solution

de l’équation

∆gu +
n − 2

4(n − 1)
Rgu = λ f u2]−1

et qui minimise la fonctionnelle I définie sur H2
1(M) par :

I(u) =

∫
M
|∇u|2dvg +

n − 2
4(n − 1)

∫
M

Rgu2dvg

sous la contrainte
∫

M
f u2]dvg = 1.

Tout comme le chapitre précédent, ce chapitre est organisé comme suit :

I Dans la première section, nous construisons par la méthode variationnelle, une suite

de fonctions positives (uq) solutions de la famille d’équations sous critiques suivantes :

∆gu +
n − 2

4(n − 1)
Rgu = λ f uq−1

où q est l’exposant sous critique tel que 2 < q < 2] =
2n

n − 2
.

I Dans la deuxième section, nous montrons que sous certaine condition géométrique,

la suite (uq) converge vers une solution strictement positive (u . 0) de l’équation cri-

tique (3.1) lorsque l’exposant sous critique q tend vers l’exposant critique 2].

3.1 Existence de solutions des équations sous critiques

Dans cette section, nous montrons d’une manière analogie comme le deuxième chapitre,

l’existence de solutions des équations sous-critiques associées à l’équation (3.1) sur une va-
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riété Riemannienne compacte de dimension n ≥ 3. Il s’agit de la famille d’équations

∆gu +
n − 2

4(n − 1)
Rgu = λ f uq−1 (3.2)

où 2 < q < 2].

Pour cela on note

1. H2
1 (M) est l’espace de Sobolev muni de la norme

‖u‖2H2
1 (M) = ‖∇u‖22 + ‖u‖22

2. I est la fonctionnelle associée à l’équation (3.2) définie sur l’espace H2
1 (M) par

I (u) =

∫
M
|∇u|2dvg +

n − 2
4(n − 1)

∫
M

Rgu2dvg. (3.3)

3. λq est le minimum de la fonctionnelle I

λq := inf
u∈H2

1 (M)−{0}

I(u)(∫
M

f uqdvg

) 2
q

= inf
u∈Hq

I (u)

oùHq est la contrainte

Hq =

{
u ∈ H2

1 (M) /
∫

M
f |u|qdvg = 1

}

Nous avons le théorème suivant, qui montre l’existence d’une suite de solution minimisante

de la famille d’équations sous critique (3.2).

Théorème 3.1.1 ([1], [5]) Soit (M, g) une variété Riemannienne compact de dimension n ≥

3. Pour tout réel q ∈
]
2,

2n
n − 2

[
, il existe une fonction strictement positive uq ∈ C2,α (M) qui

est solution de l’équation

∆guq +
n − 2

4(n − 1)
Rguq = λq f uq−1

q (3.4)

et qui vérifie
∫

M
f uqdvg = 1, où λq = inf

u∈Hq

I (u) = I(uq)
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Preuve. La démonstration de ce théorème est tout à fait similaire à la démonstration du
théorème 2.1.1.

L’idée de la démonstration :
(a) Tout d’abord, on montre que λq est fini.

(b) On montre enshuite que le minimum λq de la fonctionnelle I est atteint par une fonc-

tion positive ou nulle uq ∈ Hq.

(c) On montre enfin que uq est régulière, strictement positive et solution de (3.4).

3.2 Existence de solution d’équation critique

Dans cette section, on montre d’une manière similaire comme le deuxième chapitre que

la suite uq obtenue du théorème 3.1.1 converge vers une solution non triviale de l’équation

critique (3.1), lorsque l’exposant q tend vers l’exposant critique 2] =
2n

n − 2
. Avant d’entamer

la convergence de la suite uq, nous adoptons les notations suivantes.

Etant donnée (M, g) une variété Riemannienne compacte de dimension n ≥ 3 sur laquelle on

considère l’équation critique (3.1),

∆gu +
n − 2

4(n − 1)
Rgu = λ f u2]−1

Notation 3.2.1 on note

1.

I(u) =

∫
M
|∇u|2dvg +

n − 2
4(n − 1)

∫
M

Rgu2dvg

la fonctionnelle associée à l’équation (3.1)

2.

µg := inf
u∈H

I(u) = inf
u∈H2

1 (M)/{0}

I(u)(∫
M

f u2]dvg

) 2
2]

est le minimum de la fonctionnelle I sur la contrainte

H = H2] :=
{

u ∈ H2
1 (M) /

∫
M

f |u|2
]

dvg = 1
}
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Le premier résultat que l’on démontre est la convergence de la suite (λq) lorsque l’exposant

sous critique q tend vers l’exposant critique 2] =
2n

n − 2
.

Lemme 3.2.1 Soient (M, g) une variété Riemannienne compacte de dimension n ≥ 3, pour

q ∈
]
2, 2]

[
, la suite (λq) converge vers µg lorsque q tend vers 2] i.e. lim

q−→2]
λq = µg.

Preuve. La démonstration de ce lemme se fait d’une manière similaire comme la démonstra-
tion du lemme 2.2.1.
Le deuxième résultat que l’on démontre dans cette section est la convergence de la suite (uq)

donnée par le théorème 3.1.1 vers une solution faible de l’ lorsque l’exposant sous critique q

tend vers l’exposant critique 2] =
2n

n − 2
.

Lemme 3.2.2 Soient (M, g) une variété Riemannienne compacte de dimension n ≥ 3, il existe

une suite (qi) de réels dans
]
2, 2]

[
qui tend vers 2] =

2n
n − 2

lorsque i −→ +∞,pour laquelle

la suite correspondante de fonctions (uqi) donnée par le théorème 3.1.1 converge vers une

fonction positive ou nulle u ∈ H2
1 (M) ∩C2,α(M) solution faible de l’équation critique

∆gu +
n − 2

4(n − 1)
Rgu = µg f u2]−1 (3.5)

où µg = inf
u∈H2

1 (M)/{0}

I(u)(∫
M

f u2]dvg

) 2
2]

.

Preuve. La démonstration de ce lemme est tout à fait similaire à la démonstration du lemme
2.2.2.

Remarque 3.2.1 Le lemme précédent montre que notre équation critique (3.5) possède une

solution u soit identiquement nulle soit partout strictement positive. Toute la difficulté consiste

maintenant à trouver une condition qui va nous permettre d’éviter la solution triviale (u ≡ 0).

C’est l’objet du lemme suivant.

Lemme 3.2.3 (Condition géométrique) Soient (M, g) une variété Riemannienne compacte

de dimension n ≥ 3 de courbure scalaire Rg positive. Sous la condition

µg <
1(

max
x∈M

f (x)
) 2

2] K0

(3.6)
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où K0 est la meilleure constante de Sobolev énoncé dans la définition 1.3.4. Alors la fonction

u donnée par le lemme 3.2.2 est une solution non triviale (u . 0) de l’équation critique (3.5).

Preuve. Tout comme la démonstration du lemme 2.2.3, on raisonne par absurde, supposons

que que u ≡ 0, En reprenant les notation du lemme 3.2.2, il est clair que la suite (uqi) converge

faiblement vers 0 dans l’espace H2
1(M) et fortement vers 0 dans L2(M) i.e. lim

i−→+∞

∫
M

u2
qi

dvg =

0

On a uqi ∈ Hqi i.e.
∫

M
f |uqi |

qidvg = 1, avec l’inégalité de Hölder, on pourra écrire que pour

tout i

1 =

(∫
M

f |uqi |
qidvg

) 2
qi

≤

(
max
x∈M

f (x)
) 2

qi

(∫
M
|uqi |

qidvg

) 2
qi

≤≤

(
max
x∈M

f (x)
) 2

qi

(∫
M

(|uqi |
qi)

2]
q dvg

) qi
2]

V
1− qi

2]
g


2
qi

≤≤

(
max
x∈M

f (x)
) 2

qi V
2
qi
− 2

2]
g

(∫
M
|uqi |

2]dvg

) 2
2]

(3.7)

où Vg est le volume de la variété (M, g). D’autre part on utilise l’inégalité de la meilleure

constante de Sobolev énoncé dans le lemme 1.3.1, pour tout ε > 0, il existe Bε ∈ R tel que

(∫
M
|uqi |

2]dvg

) 2
2]

≤ (K0 + ε)
∫

M
|∇uqi |

2dvg + Bε

∫
M

u2
qi

dvg

l’inégalité (3.7) devient

1 ≤
(
max
x∈M

f (x)
) 2

qi V
2
qi
− 2

2]
g

(∫
M
|uqi |

2]dvg

) 2
2]

≤

(
max
x∈M

f (x)
) 2

qi V
2
qi
− 2

2]
g

(
(K0 + ε)

∫
M
|∇uqi |

2dvg + Bε

∫
M

u2
qi

dvg

)
Or on a ∫

M
|∇uqi |

2dvg = λqi −
n − 2

4(n − 1)

∫
M

Rgu2
qi

dvg
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alors la dernière inégalité devient

1 ≤
(
max
x∈M

f (x)
) 2

qi V
2
qi
− 2

2]
g

{
(K0 + ε)

(
λqi −

n − 2
4(n − 1)

∫
M

Rgu2
qi

dvg

)
+ Bε

∫
M

u2
qi

dvg

}

≤

(
max
x∈M

f (x)
) 2

qi V
2
qi
− 2

2]
g

{
(K0 + ε)λqi +

(
(K0 + ε)

n − 2
4(n − 1)

max
x∈M
|Rg| + Bε

) ∫
M

u2
qi

dvg

}
En passant à la limite pour i −→ +∞, dans la dernière inégalité et on utilise le fait que

lim
i−→+∞

∫
M

u2
qi

dvg = 0, lim
i−→+∞

λqi = µg et lim
i−→+∞

V
2
qi
− 2

2]
g = V

2
2]
− 2

2]
g = 1

on obtient

1 ≤
(
max
x∈M

f (x)
) 2

2] (K0 + ε)µg

Par conséquent pour ε suffisamment petit on aura

1 ≤
(
max
x∈M

f (x)
) 2

2] K0µg

ce qui contredit avec la condition (3.6). D’où u . 0.

Remarque 3.2.2 Pour achever la preuve du théorème principal 3.0.1, il nous reste à démon-

tré le lemme suivant.

Lemme 3.2.4 Soient (M, g) une variété Riemannienne compacte de dimension n ≥ 3 et µg.

Sous la condition

µg <
1(

max
x∈M

f (x)
) 2

2] K0

Alors la fonction u donnée par le lemme 3.2.2 minimise la fonctionnelle

I(u) =

∫
M
|∇u|2dvg +

n − 2
4(n − 1)

∫
M

Rgu2dvg

sur la contrainte

H :=
{

u ∈ H2
1 (M) /

∫
M

f |u|2
]

dvg = 1
}

(c-a-d, u vérifie
∫

M
f |u|2

]

dvg = 1 et µg = I(u)).

Preuve. La preuve se fait d’une manière similaire de la preuve du lemme 2.2.4.
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Démonstration du théorème principal 3.0.1

La preuve du théorème principal 3.0.1 est une application directe des lemmes 3.2.1 à

3.2.4.
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