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Introduction

L’étude des équations aux dérivées partielles elliptiques est un des sujets de recherche
de grande importance dans 1’analyse sur les variétés Riemanniennes développé ces dernieres
années dans de nombreux travaux ([1], [4], [6], [7], [10], [11]).

Différentes techniques sont employées pour la résolution d’équations aux dérivées par-
tielles elliptiques comme par exemple la méthode variationnelle utilisée pour résoudre le

probleme de Yamabe et le probleme de courbure scalaire prescrite.

0.1 Probleme de Yamabe

Le probleme de Yamabe consiste a trouver sur une variété Riemannienne compacte (M, g)
de dimension n > 3 une métrique g conforme a gi.e. (g = fgou f € C°(M); f > 0) dont la
courbure scalaire de la métrique g est constante ?

En terme d’analyse les deux courbures scalaires de g et g sont reliées entre elles par une
formule tres simple et élégante. En effet, si § = u g est une métrique conforme a g ol
u € C* (M), u > 0 alors les deux courbures scalaires R, et R; de g et de g sont reliée par
I’équation

n—2 n-—2 ne2

A —_— = —  R.un2 1
TP TP T M

ou A, est I’opérateur de Laplace-Beltrami sur (M, g)
Il est clair que le probleme de Yamabe est équivalent a I’existence d’une constante 4 € R
et d’une fonction u € C* (M) strictement positive solution de I’équation

n-—2

n+2
——R.u = Au2 2
RV S @

Agu

Ce probleme a été conjecturé par Yamabe en 1960 qui I’énonca dans [11]. Quelques

années plus tard en 1968 Trudinger [9] a découvert une erreur dans la preuve de Yamabe et il

5
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a résolut le probleme dans certains cas particuliers. En 1976 Aubin [1] a amélioré 1’approche
de Yamabe en réduisant le probleme a la preuve d’une certaine inégalité sur I’invariant de
Yamabe. Cette inégalité a été¢ démontrée par Aubin [1] dans certains cas, ensuite par Schoen

[7] dans les autres cas en 1984.

0.2 Probleme de courbure scalaire prescrite

Soit (M, g) une variété Riemannienne de dimension n > 3. Une généralisation naturelle
du probleme de Yamabe, qui peut étre tres utile dans I’étude de la classe conforme d’une
métrique g, est le probleme de la courbure scalaire prescrite. Il s’agit de trouver une métrique
g conforme a g dont la courbure scalaire R; est égale a une fonction donnée f. En terme

d’analyse ce probleme se ramene apres calculs a 1’équation en u suivante

I’l—2 n+2
— ~ Ru= fu—=
+ T0-D gl = fur? 3)

Agu

L’ objectif de ce mémoire consiste a utiliser I’approche variationnelle développée par Ya-

mabe [11] et employée par Aubin dans [1] pour montrer 1’existence de solutions positives des
deux problemes (2) et (3).

Ce mémoire est divisé en trois chapitres :

» Dans le premier chapitre nous commengons par un chapitre introductif, ou nous rap-
pelons I’essentiel des notions géométriques et quelques résultats de base de 1’analyse
sur les variétés Riemanniennes qui seront utilisés dans ce mémoire.

» Dans le deuxieme chapitre nous présentons les résultats obtenus par Aubin [1], plus
précisément on s’intéresse a I’existence de solutions positives d’un probleme de type
(2).

» Dans le dernier chapitre nous montrons d’une maniere analogie que la technique
variationnelle utilisée dans le deuxieme chapitre reste valable pour montrer 1’existence

de solutions positives d’un probleme de type (3)



Chapitre 1

Notions préliminaires

L’objectif de ce chapitre est d’introduire différents résultats d’analyse sur les variétés
Riemanniennes que nous utiliserons dans la suite. Pour plus de détails on pourra se référer

aux ouvrages de Hebey [S]et de Aubin [2].

1.1 Eléments de la géométrie Riemannienne

1.1.1 Variétés Riemanniennes

Définition 1.1.1 Une variété Riemannienne de dimension n est un espace topologique sé-
paré M qui vérifie la propriété suivante : tout point de M posseéde un voisinage ouvert ho-
méomorphe a un ouvert de R".

Autrement dit si pour tout point x € M, il existe un voisinage ouvert U de x, il existe un
voisinage ouvert V de R" et il existe ¢ : U — V un homéomorphisme. Le couple (U, ¢) est

appelé carte locale de x ou ¢ est I’application de coordonnées.

Définition 1.1.2 Soient M une variété topologique et A = {(U,, ¢;)}icicn une famille de cartes

locales de M. On dit que A est un atlas de classe C* de M si

]. M = UU,‘
iel

2. pour tous i et j dans I, les applications de changement de cartes ¢;; : ¢; o goi_l :

i (U,- N Uj) - @ (Ul- N U.,-) sont des difféomorphismes de classe C*.

Définition 1.1.3 Soient M une variété topologique et A, et A, deux atlas de classe C* sur
M.
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On dit que A, et A, sont c* compatibles si Ay U A, est encore un atlas de classe C* sur M.

Remarque 1.1.1 On peut vérifier facilement que la relation de C* compatibilité sur les atlas

est une relation d’équivalence. La réunion des atlas d’une méme classe d’équivalence est

appelée un C* atlas complet.

Définition 1.1.4 Une variété de classe C* est une variété topologique munie d’un atlas com-

plet.

Définition 1.1.5 Etant donnés des entiers p,q > 0, Soit M une variété de dimension n. Un
tenseur de type (p, q) ( p-fois contravariants et g-fois covariants sur M est une forme p + gq-
linéaire sur (T . M)’ x (T .M)*)?

On note

(P,9)
QT M=TMITM®... 8 T.M&(T.M) ®(TM)®... oTM)'

p fois q fois

(P.9)
I’ensemble des tenseurs de type (p,q) sur M. Si T € @ T.:M et (U, ) désigne une carte
locale de M au point x alors on peut écrire
iy 00

0 . , .
=T @ —®...0 — RdxX'Qdx* Q... dx"
N2dadxg  Oxg, Ox.

ip

< ilin.d .
ouT i 5 sont les coordonnées du tenseur T.
A

Exemple 1.1.1 :

— Toute fonction sur une variété M est un tenseur de type (0, 0)
— Un champ de vecteur X est un tenseur 1— fois contravariant et O— fois covariant i.e. de
type (1,0), tandis qu’une 1— forme différentielle sur une variété M est un tenseur 0—

fois contravariant et 1— fois covariant i.e. de type (0, 1).

Définition 1.1.6 Une métrique Riemannienne sur une variété M est un champ de tenseur
deux fois covariants sur M qui définit en tout point x de M un produit scalaire symétrique
non dégénéré et défini positif sur T.M. Une telle métrique g, le couple (M, g) s’appelle une

variété Riemannienne.
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Remarque 1.1.2 Les coordonnées d’une métrique g dans une carte (U, @) sont données par

g =&ij dx' ® dx’.

IR

Exemple 1.1.2 SurR" avec les coordonnées cartésiennes (x', x°, . .., x"), on définit sur TR"

R" la métrique euclidienne § défini par

0= Z&ijdxi@)dxj = dei@)dxi

En particulier pour sur R?, avec les coordonnées cartésiennes, la métrique euclidienne s’écrit
0=dx®dx+dy®dy

On peut vérifier facilement que la métrique euclidienne 6 en coordonnées polaires (x =
rcos@, y = rsinf) s’écrit

S=dredr+r’do® de.

Proposition 1.1.1 Toute variété paracompacte posséde une métrique Riemannienne.

1.1.2 Courbures Riemanniennes

Définition 1.1.7 Soit (M, g) une variété. On note I' (M) ’espace des champs de vecteurs
différentiables sur M.
Une connexion sur M est une application D : T(M) X I' (M) — T(M) qui vérifie les

1. VNxeMsiXeTM)etY eI’ (M), alors D(X,Y) e T (M)
2. Yx € M, D restreint a T.M X I" (M) est bilinéaire
3. VxeM, VX eT M, VY el'(M)etsi f: M — R est difféerentiable, alors

DX, fY)=X(HY )+ f()DX,Y)

Remarque 1.1.3 On note généralement DxY au lieu de D (X,Y). DxY est la dérivée cova-

riante de Y par rapport a X.
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Soit (Q, ¢) une carte de M de coordonnées associées (x,x,...,X,), pouri = 1,...n, on
note
0 0o 0 0 0
V,'—:D—,— :D —:Fk—
0x; (0x,~ 6xj) %(ﬁxj) Y Oxy
ou Ffj sont les symboles de Christoffel.
Définition 1.1.8 La rorsion d’une connexion D est I’application
T: U(TMXT.M) — ™
xXe
(X,Y) — T(X,Y) =DyxY - DyX - [X,Y]
. . . ;0
Dans une carte (€, ¢) de M de coordonnées associées (X1, Xa,...,X,), si X = X Em etY =
Xi
.0
Y'— alors
Xi
T(X,Y) = (r@ -T%) xyi 2
’ v oxy,

On pourra regarder la torsion comme un tenseur un fois covariant et deux fois contravariants

dont les composantes sont données par la formule
k _ 1k k

Définition 1.1.9 Soit (M, g) une variété Riemannienne de dimension n > 1V la connexion
de Levi-Civita est la connexion sans torsion pour laquelle g est a dérivée covariante nulle),

son expression locale est donné par

w2 L(Py dnds
o2 ox;  Oxj Ox
ou g;j et 8" désignent respectivement les coordonnées de la métrique g et les coordonnées de

son inverse g_l.

Définition 1.1.10 Soit V la connexion de Levi-Civita
1. Le tenseur de courbure R relatif a la connexion V s’écrit
ort.  ar

Jt | T | Ta
R, =—8__ 2, plre_rirre
ijk an 8Xk Jja ki ka™ ji
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2. On appelle tenseur de courbure de Riemann noté Rmy, le champ de tenseur C* quatre
fois covariants défini par

_ @
Riju = giaRy-

3. On appelle tenseur de courbure de Ricci, le champ de tenseur C* deux fois covariants,

obtenu en contractant le tenseur de courbure Riemannienne

RiC,’j =R¢

iaj

= g"Rijp.

4. La courbure scalaire est la fonction numérique de classe C* sur M notée R, et définie

par
R, = Ryg".
1.1.3 Métriques conformes

Définition 1.1.11 Soir (M, g) une variété Riemannienne de dimension n. La classe conforme

de g notée |g|, est I’ensemble des métriques sur M qui s’écrivent sous la forme
8§ =8

out ¢ est une fonction C* (M) strictement positive.

On pourra encore écrire que

sl ={e’e / fecC™ )
Deux métrique dans la méme classe conforme sont tout simplement dites conformes.

1.2 Intégrale Riemannienne

Définition 1.2.1 (Partition de ’unité) Soient M une variété et A = (Qi, ), un atlas de
M. On dira qu’une famille (Q i P j)jej est une partition de [’unité subordonnée a A si :

1. Yje J, Q;: M — R estde classe C* sur M

2. ¥jeJ, ¥xeM 0<a;(x)<1

3. VjeJ, Jdieltel que Suppa; C;



Chapitre 1. Notions préliminaires 12

4. ¥Yx € M, AV voisinage ouvert de x tel que Suppa; NV = 0 sauf pour un nombre fini de
J
5. VxeM, ) a;=1
el
6. (Qj,¢;)jes est un sous atlas de A

7. pour tout j, Suppa; C Q;.

Définition 1.2.2 (Définition et proposition)
» Soit (M, g une variété Riemannienne de dimension n et soit f : M — R une fonction de

continue a support compact dans M. Etant donné A = (;, ©i);e; un atlas de M. L’intégrale

Riemannienne de f se définit de la maniere suivante

fodvg =)

jeJ

f (e Vigl) S o 7' (1.1)
()

ou (Q Q) j)_ est une partition de [’'unité subordonnée a ‘A, |g| désigne le déterminant de
. jeJ

la matrice g et dx est la mesure de Lebesgue.
» L’intégrale Riemannienne de f définit par la relation (1.1) ne dépend ni du choix de l’atlas

A et ni du choix de la partition de ['unité (QJ-, ®js ajb)jej.

1.3 Espaces de Sobolev

1.3.1 Définitions et propriétés

Nous rappelons I’inégalité de Holder qu’on I’utilise plus souvent dans les majorations.

Proposition 1.3.1 (Inégalité de Holder) Soient (M, g) une variété Riemannienne compacte.
Si

1 1
fel’P(M) etgeL1(M) on —+—-=1
P 4

alors
fge L (M) et lif.gll, <171, lgl,
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Définition 1.3.1 Soient (M, g) une variété Riemannienne compacte de dimensionn, p > 1 un
réel et k est un entier positif. On note C;" (M) I’espace des fonctions de classe C* a supports

compactes dans M.

1. L’espace de Sobolev Hf (M) est le complété de C;° (M) pour la norme

k :
TS ( [ |vfu|”dvg)
i=0 \WM

ou V'u est la i-eme dérivée covariante de u.

2. En particulier pour pour p = 2, I’espace de Sobolev H,f (M) est un espace de Hilbert,

on peut donc définir la norme équivalente induite du produit scalaire par

k
2 212
il = 3, [ 9] av,
i=0 vM

Pour k = 1, on obtient la norme de [’espace H%(M) définie par

2 2 2
3, = f luPPdv, + f Vuldv,
M M

On rappelle maintenant le théoreme de Banach qui consiste a caractériser la réflexivité

des espaces de Sobolev.

Définition 1.3.2 (Convergence faible) Soit (E, ||.||) un espace de Banach. On rappelle qu’une
suite (u,) de E est dite faiblement convergente vers u si pour tout forme linéaire ® continue

de E, ®(u,) converge ®(u) dans R. La limite u est unique et on a nécessairement que

|lz]| < liminf ||u,]|.
n

Théoreme 1.3.1 (Théoréme de Banach) L’espace de Banach (E, ||.||) est réflexif si est seule-
ment si sa boule unité fermée centrée en O est faiblement compacte. Autrement dit I’espace
(E,|I.I) est réflexif si est seulement si toute suite bornée de E possede une sous suite qui

converge faiblement.

Proposition 1.3.2 Pour tout k et tout réel p > 1, I'espace de Sobolev H, (M) est réflexif.
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1.3.2 Espaces de Holder

Définition 1.3.3 Soient (M, g) une variété Riemannienne compacte de dimension n, m un

entier naturel et a € (0, 1).

1. L’espace de Holder C*® (M) est I’espace des fonctions continues, muni de la norme

lleell cowary := llullo + Sup M
wtyem  dg (X,y)

oud,(.,.) est la distance géodésique.

2. L’espace de Holder C™" (M) est I’espace des fonctions de classe C™, dont la m-eme
dérivée covariante V" u appartient & C** (M). On munit C"™® (M) d’une norme définie

par

al lllomyy + sup ) =V O)
u cma (M = ||u M Sup
(M) (M) shyeM dg (x, y)(l

Nous rappelons les deux résultats tres importants sur les espaces de Sobolev.

Théoreme 1.3.2 (Théoréme d’inclusion de Sobolev) Soit (M, g) une variété Riemannienne

compacte de dimension n.

1. Sik et | sont deux entiers avec (k > 1> 0), p et q deux réels tels que (p > q > 1) qui

1 1 (k-1
vérifient — = — —( )
P 4 n

, alors Uinclusion H] (M) C H; (M) est continue.

2. En particulier pour g =2 et k = 1, alors l'inclusion HIZ(M) C Lzﬂ(M) est continue o

2n
2F =
n-2
k—m— 1
3. Sim € N et u > —, alors linclusion HZ (M) c C"™" (M) est continue avec
n q
a € (0,1).

Le deuxieme résultat donne des conditions de compacité des inclusions dans le théoreme

précédent.

Théoreme 1.3.3 (Théoreme de Rellich Kondrakov) Soir (M, g) une variété Riemannienne

compacte de dimension n et soient k et | deux entiers avec k > 1> 0
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1 1 (k-1
1. Si p, q > 1 sont deux réels tels que — < — — ( )
P 4q

, alors Uinclusion H] (M) c H] (M)
n

est compacte.
2. En particulier pour g = 2, k = 1, alors Uinclusion le(M) C LP(M) est compacte ou
p <2
(k—a) 1

> —, alors U'inclusion HZ (M) c C* (M) est compacte avec a € (0, 1).
n q

3. Si

1.3.3 Maeilleure constante de Sobolev pour Hf(M ) C Lzu(M )

Définition 1.3.4 On définit Ky > 0 par

[ \VuPdx

l n
— = inf =

Ky = uec2®n-{0} (f |u|2ﬁdx)2%
Rn

la meilleure constante dans ’inégalité ||u||§ﬁ < KlquII% de l'inclusion de Sobolev le(R”) C

L¥®R") o0 2% =

n "
> est I’exposant critique de Sobolev

Cette constante a été calculée par Talenti [8] et pat Aubin [1]. Ils ont montré que

2
1 nn-2)w,

Ky 4

ot w, est le volume de la sphére unité standard de R"".

1.3.4 Inégalité de la meilleure constante

Nous citons 1’inégalité de la meilleure constante de Sobolev K (n, k) concernant I’inclu-
sion de Sobolev H f(M ) C Lzu(M ) qui a été démontrée par Aubin [2].

Lemme 1.3.1 ([1]) Soit (M, g) une variété Riemannienne compacte de dimension n. Alors

pour tout € > 0, il existe B, € R tel que pour tout u € Hf (M) ona
2 2 2
llull5s < (Ko + €) IVully + Be llully2

2n
n—2

ot Ky est la meilleure constante Euclidienne et ¥ =
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1.4 EDP sur les variétés Riemanniennes

Nous rappelons quelques définitions et propriétés des EDP sur les les variétés Rieman-

niennes

1.4.1 Opérateur de Laplace-Beltrami

Définition 1.4.1 Soit (M, g) une variété Riemannienne, le Laplacien Ayu d’une fonction u €

C? (M) est I’opposé de divergence du gradient de u, Son expression en coordonnées locales

donnée par

. 1 0 . Ou
Agu = —divy (Vu) = ———(\/@81_)

|g| (9)61' 6xj

ou |g| le déterminant de la métrique g

1.4.2 Opérateur de laplacien conforme

Définition 1.4.2 Soit (M, g) une variété Riemannienne de dimension n > 3. L’ opérateur de
laplacien conforme agissant sur les fonction de C*(M) défini par

n-—2

Pgu = Agu + ngu

out R, est la courbure scalaire.

Proposition 1.4.1 ([2]) Soit (M, g) une variété Riemannienne de dimension n > 3. L’opéra-

teur de laplacien conforme Pgu := Agu + ﬂRgu est invariant conforme i.e.
n —

4
Pour toute fonction ¢ € C*(M) strictement positive, si g = ¢p»-2.g, alors
n+2
Pg(u¢) = ¢’1_2P§u

Définition 1.4.3 Soit (M, g) une variété Riemannienne compacte de dimension n. On dit que

I’opérateur de laplacien conforme P, est coercif s’il existe A > 0 tel que pour tout u € H f (M)

_ 5 n-2 2 2
L(Pgu) udv, = fM(IVLtl + 2012 1)Rgu )a’vg > Al ) -
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1.4.3 Principe du maximum

Définition 1.4.4 On dira qu’un opérateur P défini sur une variété Riemannienne (M, g) vé-

rifie le principe de maximum si
YueC"M),Pu>0=u>00uu=0

Théoreme 1.4.1 Soient (M, g) une variété Riemannienne compacte et u € C*(M) une fonc-

tion positive ou nulle. On suppose qu’en tout point x de M
(Agu)(x) = u(x) f(x, u(x))

o f : MxX R — R est une fonction continue. Alors u est soit partout strictement positive, soit

identiquement nulle.

Remarque 1.4.1 L’opérateur de Laplacien conforme P, vérifie le principe de maximum si
et seulement s’il est coercif, ce résultat est important pour montrer la positivité des solutions

d’un probleme du second ordre sachant que si u € Hf (M) on a alors |u| € Hf (M).

1.4.4 Solutions faibles et résultats de régularité

Définition 1.4.5 Soient (M, g) une variété Riemannienne compacte sans bord de dimension

n>3, f € L, (M). Alors u est dite solution faible de I’équation

n— 2 n+2
Agl/t + 4(n—_1)Rgl/t = /Lfl/l"‘z

si pour tout ¢ € C* (M)

n-—2

fﬂ; ((Vl/t, V¢>g + ngu¢) dVg = ﬂLf¢u%dVg

La résolution des équations aux dérivées partielles par une méthode variationnelle ne
permet de trouver que des solutions faibles alors que trés souvent on a besoin de montrer que
les solutions faibles sont des solutions régulieres (ou classiques). Nous rappelons quelques
résultats de régularité des solutions faibles appliqués aux problemes elliptiques du second
ordre. Pour plus de détails sur ce sujet on pourra se référer aux ouvrages de Hebey [5] et
Gilbard-Trudinger [3].
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Théoréme 1.4.2 Soient (M, g) une variété Riemannienne compacte et f € C®® (M) avec

aec(0,1).Siuce Hf (M) est une solution faible de

n-—2

A+ "2
GV T

Ru=f
alors u € C** (M). En plus on a

lellcaqary < C (1o + ltlleoqan)

ou C = C (M, g) une constante.

1.4.5 Théoreme des multiplicateurs de Lagrange

Tres souvent, trouver la solution d’une équation aux dérivées partielles revient 2 minimi-
ser une fonctionnelle sur un ensemble de contraintes. On rappellera le théoreme du multipli-
cateurs de Lagrange qui est un résultat trés important que nous utiliserons par la suite pour

montrer 1’existence de solutions d’une EDP.

Théoreme 1.4.3 (Théoreme des multiplicateurs de Lagrange) /5] Soient E un espace de

Banach, Q un ouvert de E ; f : Q — R une fonction différentiable sur Q et ¢ : Q — R" une
application de classe C' sur Q de composantes 1, ..., . Etant donné a un point de R", on

pose H = ¢~ (a) que I’on suppose non vide ; si en un point x, de H
f (x0) = min f (x) (1.2)
xeH

et si de plus D¢ (xy) € L(E,R") est surjective, alors il existe des réels Ay, ..., A, pour lesquels
Df (xo) = 11D¢; (x0) + ... + 4,D¢,, (x0) .

Cette relation est I’équation d’Euler-Lagrange associée au probleme de minimisation consi-

déré par (1.2), les A; sont les coefficients de Lagrange .



Chapitre 2

Probleme de Yamabe

Position du probleme

Dans ce chapitre nous rappelons quelques résultats obtenus par T. Aubin dans [1] concer-

nant le probleme de Yamabe qui a ét€ énoncé en 1960 par Yamabe comme suit :

Probleme de Yamabe : Etant donnée (M, g) une variété Riemannienne compacte de di-
mension n > 3, prouver qu’il existe une métrique conforme a g qui est a courbure scalaire

constante. En vertu de ce qui a été dit dans I'introduction, résoudre le probleme de Yamabe

revient a montrer qu’il existe un réel 4 € R, et il existe une fonction strictement positive

u € C**(M)ou a €10, 1], tels que

)
T2 Rou= ! @.1)

A
ST T

8

ou A, est I’opérateur de Laplace-Beltrami, R, est la courbure scalaire de la variété (M, g)

et 2% =

est I’exposant critique de Sobolev.

Cette équation a la particularité de contenir 1’exposant critique de Sobolev donc toute la dif-

ficulté du probleme vient ici de ce que I’inclusion de H 12(M) dans Lzu(M ) n’est pas compacte.
Pour éviter ce probleme nous utilisons 1’approche variationnelle présenter dans le travail de
Yamabe [11] qui consiste a approcher 1I’équation (2.1) par des équations sous critiques pour
lesquelles on récupere la compacité donnée par le théoreme 1.3.3 de Rellich-Kondrakov.

Le résultat principal de ce chapitre qui montre I’existence d’une solution strictement positive

de I’équation critique (2.1) est énoncé dans théoreme suivant.

19



Chapitre 2. Probleme de Yamabe 20

Théoreme 2.0.4 (Théoreme principal) (/1], [5]) Soit (M, g) une variété Riemannienne com-

pact de dimension n > 3 de courbure scalaire positive R,. Sous la condition

\Vul*dv, + 2=% [ R, u*dv
inf fM ¢ T An 1)fM g g <L

ueHX(M)/{0} ( f w2 dvg)z% Ky
M

ou Ky est la meilleure constante de Sobolev énoncé dans la définition 1.3.4.

Alors il existe un réel A > 0 et une fonction strictement positive u € C** (M) qui est solution

de I’équation

-2
QU+ n—Rgu = P!
4n-1)

et qui minimise la fonctionnelle I définie sur Hf(M ) par :

n—2
Iw)= | |VuPdvy+ —— | Ru’d
“ fM' . Vg+4<n—1>fM st e

) §
sous la contrazntef u? dvy = 1.
M

Ce chapitre est organisé comme suit :

» Dans la premicre section, nous construisons par la méthode variationnelle, une suite

de fonctions positives (u,) solutions de la famille d’équations sous critiques suivantes :

n— 2 -1
Agu + ngu = Au?
N . .. 4 2]’1
ou g est I’exposant sous critique tel que 2 < g < 2* = >
n —

» Dans la deuxieme section, nous montrons que sous certaine condition géométrique,

la suite (u,) converge vers une solution strictement positive (u # 0) de I’équation cri-

tique (2.1) lorsque I’exposant sous critique ¢ tend vers 1’exposant critique 2.

2.1 Existence de solutions des équations sous critiques

Dans cette section, nous montrons I’existence de solutions des équations sous-critiques

associées a I’équation (2.1) sur une variété Riemannienne compacte sans bord de dimension
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n > 3. 11 s’agit de la famille d’équations

n—2 _
@t e = ™! (2.2)
ol 2 < g <2
Pour cela on note
1. H f (M) est I’espace de Sobolev muni de la norme
il = V2l + Il
2. I est la fonctionnelle associée 4 1’équation (2.2) définie sur I’espace H? (M) par
() = f VuPdv, + ——Z f Reudv 2.3)
M $4m-1 M ¢ ¢ .

3. A4, estle minimum de la fonctionnelle /

1
Ag:= inf (—M) = inf I (u)

2

ueH? (M)—{0} (fM u‘fdvg); ueH,

ou H, est la contrainte

H, = {u € Hi (M) / f ulfdv, = 1}
M

Nous avons le théoreme suivant, qui montre 1’existence d’une suite de solution minimisante

de la famille d’équations sous critique (2.2).

Théoreme 2.1.1 ([1], [5]) Soit (M, g) une variété Riemannienne compact de dimension n >

3. Pour tout réel g € ]2, 2[, il existe une fonction strictement positive u, € C (M) qui

n —

est solution de I’équation

—2
277 Ry = Al (2.4)

A, + =2
M 4m—1)

et qui vérifie f uldvy = 1, ot Ay = inf I (u) = I(u,)
M uE(Hq
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Preuve. L’idée de la démonstration :

(a) Tout d’abord, on montre que A, est fini.

(b) On montre ensuite que le minimum A, de la fonctionnelle / est atteint par une fonction
positive ou nulle u, € H,.

(c) On montre enfin que u, est réguliere, strictement positive et solution de (2.4).

(a) 4, est fini, pour toute u € H, , f [ul’dv, = 1, D’apres I’inégalité de Holder, on a
M

‘f Ridv, S(max IRgI)f udv,
M xeM M
2
) )
< r%;;IRgI Mu Vel V,

1-2
< q
< (maxIR) v

[N}

ouV, = f dv, désigne le volume de (M, g)
M

I1 est clair que pour toute u € H,

n-—2
Iw) = | |VuPdv,+ ——— | R,u’d
(u) jﬂ‘/[l l/ll Vg 4(n _ 1) fﬂ; gl/l Vg
n—2 1-2
> L |Vu|2dvg - (4(n . max |Rg|) Ve (2.5)

S n-—2 |R|V1_5
= a1 e el Ve

ce qui entraine que le minimum A, est fini.

(b) On montre I’existence d’une fonction u, € H,, positive ou nulle presque partout telle

que I(uy) = A,. Pour cela, considérons (v;) une suite minimisante supposée positive ou nulle
de la fonctionnelle / sur H,, i.e.

Jdim I(v) = 4,
i—+00
Pour i suffisamment grand on pourra écrire

Iv) <, +1

On obtient avec I’inégalité (2.5) et cette derniere inégalité que
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n-2 1-2
v = [ [P, < 14,4 ( T |Rg|) Ve ! 2.6)

D’autre part de I’inégalité de Holder on a

2 1=-2
q q
i = [ v%dvgs( [ vfdvg) ( [ la’vg)
M M M

Comme v; € H, i.e. f [vil’dv, = 1 et, on déduit que
M

1=2
vill3 <V 2.7)

ouV, ::fldvg.
M

De I’inégalité (2.6) et (2.7), on déduit que

_ 2 2 n-— -3 i
=Vl + il <1+ 44 +( max |Rg|) Vo "+ V, 7

2
v.

Ce qui montre que la suite v; est bornée dans 1’espace H:(M) qui est un espace réflexif et

d’apres le théoreme de Banach 1.3.1, il existe une fonction u, € Hf(M) et une sous suite de

(v;) encore notée (v;) telle que
(1) (v;) converge faiblement vers (u,) dans H ]Z(M )
(ii) (v;) converge fortement vers (u,) dans L/(M) ou g < pX

Le point (i) résulte du théoréme 1.3.3 de Rellich Kondrakov puisque 1’espace H:(M) s’in-
jecte d’une maniere compacte dans I’espace L/(M).

Du point (ii) on peut déduire que la suite (v;) converge fortement dans L*(M) et presque par-
tout sur M vers u,.

Il résulte du point (i) et de la définition 1.3.2 de la convergence faible que

2

< liminf v}z,
1

2
g
” N H (M) oo
i.e.

2 2 lim 2 2
Vitg|[, + [lgll, < tim inf (¥l + il
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Puisque v; converge fortement vers u, dans L*(M), il suit que
2 .. 2
V|| < liminf [|Vvill3
I—+00

De cette dernicre inégalité et de la convergence forte de v; vers u, dans L*(M), on récupere
que

I(Mq):||vuq||§+ fM Rgujdvgslljgigf(HVvill%wL fM Rgv?dvg):lljgigfl(vi) = A,

Alors
I(u,) < A, (2.8)

Il résulte de la convergence forte de v; vers u, dans L/(M) et de f vil’dv, = 1 que
M

f lugl’dv, = lim f villdv, = 1
M i—+oo Jur

d’ou u, € H, et comme A, est un minimum de / on aura
I(uy) = 4, (2.9)

De (2.8) et (2.9), on en déduit que I(u,) = A,. D’ou le minimum de A, est atteint par la

fonction u,. On obtient avec le théoreme des multiplicateurs de Lagrange 1.4.3, qu’il existe

un coefficient a € R tel que pour tout v € Hy(M),

DI(u,).v = aD¢(u,).v

ou ¢(uq):f|uq|qdvg
M

Par conséquent

n—2
<Vu, Vv>,dv,+ ——— | Ru,.v= a1 yd
L Ltq, \% g Vg 4(11—1)‘[1‘:1 guqv aLuq VVg

En prenant v = u, dans cette relation, on obtient que @ = A,. Par suite et d’apres la définition

(1.4.5), u, est une solution faible de 1’équation (2.4)

n _
Agl/lq + nguq = /lquf’] !
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(¢) On peut constaté avec le théoreme 1.4.2 de régularité que u, € C** (M) pour un certain
@ € (0,1). On a u, est positive ou nulle, comme u, € H, i.e. f luyl’dv, = 1, alors u, est
M

non identiquement nulle. II suit du principe du maximum €noncé au théoréme 1.4.1 que u,

est strictement positive. ®

2.2 Existence de solution d’équation critique

Dans cette section, on montre que la suite u, donnée par le théoréme 2.1.1 converge

vers une solution non triviale de 1’équation critique (2.1), lorsque I’exposant g tend vers

.\ 2n ‘
I’exposant critique 2* = — Avant d’entamer la convergence de la suite u,, nous adoptons

les notations suivantes.
Etant donnée (M, g) une variété Riemannienne compacte de dimension n > 3 sur laquelle on

considere 1’équation critique (2.1),

n-—2

Ru=21 241
An—1) =

Agu +

Notation 2.2.1 on note

1.

n—2
I(u)= | |Vuld R u*d
“ fM' “ Vg+4<n—1>fM ot e

la fonctionnelle associée a I’équation (2.1)

1
Mg :=inf I(u) =  inf %
ueH ueH2(M)/{0} ( f w2 dv )zﬁ
M 8

qui s’appelle ’invariant de Yamabe de la variété (M, g)

3. lorsque I’exposant sous-critique q tend vers 2% la contrainte

H =FHy = {u € Hf M) / f Iulzudvg = 1}
M
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Le premier résultat que 1’on démontre est la convergence de la suite (4,) lorsque 1’exposant

2n

sous critique ¢ tend vers I’exposant critique 2* = >
n f—

Lemme 2.2.1 Soient (M, g) une variété Riemannienne compacte de dimension n > 3, pour
q € ]2, Zﬂ[, la suite (1) converge vers ’invariant de Yamabe u, lorsque q tend vers 2 je.
lim A, = u,.
Tl Hg

Preuve. Pour tout € > 0, il existe un u € H telle que

I(u) < p, + €

) §
lim f ugdvg = f u? dv,
—2 JIym M

lim I(ugy < p, +€
(1—)2’i

Comme

on obtient que

Il s’ensuit que

lim A, < I(u) < py + €
q—>2’j

Or € quelconque, ceci entraine que

lim A, < g (2.10)

qg—24

D’autre part, on a

49
) ¢ *o1-5 4
lim ui dvg| V, * — liminf ué dve, > 1
q—)Zﬁ M q—)Zﬁ M

Or
I(u,)

y 2% <I(uy) = 44
(fM u; dvg)

e <

et ainsi
lim A, >y, (2.11)
q—>2ﬁ



27 2.2. Existence de solution d’équation critique

I1 suit des relations (2.10) et (2.11) que la suite A, converge pour g — Vers i, i.€.

]
Le deuxieme résultat que I’on démontre est la convergence de la suite (u,) donnée par le
théoreme 2.1.1 vers une solution faible de I’équation (2.1) lorsque I’exposant sous critique g

2n
n—-2"

tend vers 1’exposant critique 2f =

Lemme 2.2.2 Soient (M, g) une variété Riemannienne compacte de dimensionn > 3, il existe

2n

une suite (q;) de réels dans ]2, Zﬁ[ qui tend vers 2 = > lorsque i — +oo,pour laquelle

n —

la suite correspondante de fonctions (u,,) donnée par le théoreme 2.1.1 converge vers une

fonction positive ou nulle u € Hf (M) N C**(M) solution faible de I’équation critique

n-—2 #
Rou = pgu® ™
4(n—-1) g = Helt

Aqu +

oul {1, est I'invariant de Yamabe de (M, g).

Preuve. On commence a montrer que la suite de fonctions u, donnée par le théoreme 2.1.1

reste bornée dans I’espace le (M) indépendamment de ¢g. Sachant que f uldvg = 1, avec
M

I’inégalité de Holder on obtient que

2

_2
fM W2dv, < L W)idv,| V"=V, (2.12)
=1

ouV, = f dvg est le volume de (M, g)
M

;1
Comme V,' € H, (car f

-1\q
(ng ) dv, = 1, par ailleurs il est clair que
M

= n— 2 =2
Ay = 1) STV = o5V f Rydv,
- M




Chapitre 2. Probleme de Yamabe 28

Ainsi
n—-2 _1-2
< - q
T 4n—-1) % xeM

De cette derniere inégalité et de I’inégalité (2.12), on pourra ainsi écrire que

||uq||H%(M):f|qu|2dvg+fuf]dvg
M M
n-2
=A + 1 - R 2d
g fM( A —1) g)”‘f .

n-2 2 n-—2 5

_4(n_1)V fRdVg-l‘m%(ll—nglLquVg
n—-2 _1-2 n—2 1-2

< V R, + 1- R |V, ¢ 2.13
d=my e xR rmaxll - RV (2.13)

1 2
Or la fonction (1 + —)® est croissante en a et comme — < 1 carg € ]2, 2ﬁ[ on peut déduire
g q

que

2

V

V() < Vil 4+ ) <V 4 ) = v, 11
8 - ng - '8 Vg - '8 Vg - rg

Par conséquent I’inégalité (2.13) devient

—2 —2
litgllzany < (Vi + 1) ——— max Ry + max 1 - — (2.14)

——R
< —1) TS T
ce qui preuve que la suite u, est indépendamment de g et elle est bornée dans H *(M) qui est
un espace réflexif et d’aprés le théoreme de Banach 1.3.1, il existe une fonction u € Hi(M)

et une sous suite de (g;) encore notée (g;) qui tend vers 2F lorsque i — +oo telle que
(a) (ug,,) converge faiblement vers u dans Hf(M )

(b) (ug,) converge fortement vers u dans L(M) ol g < 2* En particulier dans L*(M)

]
(c) (ugf‘l) converge faiblement vers ! dans Lﬁ M) .
Le point (b) résulte du théoreme 1.3.3 de Rellich Kondrakov puisque I’espace Hi(M) s’injecte

d’une maniere continue dans I’espace LY(M).

Le point (c) résulte du théoreme 1.3.1 de Banach. En effet on a la suite (u,) est bornée dans
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#

# ot 2
I’espace Lzu(M), il est clair que (ug_l) est bornée dans LiT (M) c Lzé—l (M) (car 71 <

2f i
1 ) par suit (u,) est bornée dans L7 (M)
q p—

Du point (b) on peut déduire que la suite (u,,) converge fortement dans L*(M) et presque
partout sur M vers u.
Comme la suite (u,,) converge faiblement vers u dans H;, par ailleurs on pourra utiliser la
définition 1.3.2 de la convergence faible pour dire que pour tout ¢ € H; (M)
lim <Vuy, Vo >, dv, = f <Vu, V¢ >, dv, (2.15)
=t JUm M

f
R . _ . 4 _2F
De la méme facon et comme la suite (uZ; D) converge faiblement vers u? ! dans L@ (M),

par ailleurs on pourra utiliser la définition 1.3.2 de la convergence faible pour dire que pour

tout ¢ € HX(M) < L* (M)

lim | g™ gdv, = f > pdv, (2.16)
M M

[—+00

On obtient facilement avec (b) que pour tout ¢ € H:(M),

lim nguqiquvg:nguqﬁdvg (2.17)
=t Um M

Or la suite (u,,) est une solution de 1’équation sous-critique (2.2) (Voir le théoréeme 2.1.1) i.e.

elle vérifie

n—2
— qi—1
Agug, + Rouy, = Aq,uy,

4n-1)

autrement dit

n-—2
Vu,, V dv, + ———— | R,u,¢dv, = A, Y| 2.18
f[\;< Ug, V& >, Vg+4(n_1)‘fﬂ; Uq PV qtfﬂ;”qi ¢dv, (2.18)

En passant a la limite (i — +o00) dans I’équation (2.18) et on utilise les équations (2.15),

(2.16) et (2.17) et le fait que lim A, = p, (voir le lemme 2.2.1), on déduit que pour tout
I—>+00

¢ € H{(M),

n—2 §
Vu, V dv, + ——— | R.u¢dv, = 21od
fM< o V8 > 4% 4<n—1>fM Vs “ng” P
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Cela signifie que u est une solution faible de 1’équation

n—2 H
Agu + ngu = ! (2.19)

On obtient avec le résultat de régularité énoncé du théoreme 1.4.2 de régularité et que la so-
lution u de I’équation (2.19) est réguliere i.e. u € C>*(M)oua € (0,1).

On peut déduire immédiatement par le principe du maximum énoncé au théoreme 1.4.1 que
u soit identiquement nulle soit partout strictement positive i.e. (u > 0). D’ou le résultat de-

mandé. m

Remarque 2.2.1 A ce moment on a démontré que notre équation critique (2.19) posséde une
solution u soit identiquement nulle soit partout strictement positive. Toute la difficulté consiste
maintenant a trouver une condition qui va nous permettre d’éviter la solution triviale (u = 0).

C’est I’objet du lemme suivant.

Lemme 2.2.3 (Condition géométrique) Soient (M, g) une variété Riemannienne compacte

de dimension n > 3 et j1, son invariant de Yamabe. Sous la condition

1 nm-2w:
/.lg < fo = T (220)

ou Ky est la meilleure constante de Sobolev énoncé dans la définition 1.3.4. Alors la fonction

u donnée par le lemme 2.2.2 est une solution non triviale (u % 0) de I’équation critique

(2.19).

Preuve. On raisonne par absurde, supposons que que # = 0, En reprenant les notation du

lemme 2.2.2, il est clair que la suite (u,,) converge faiblement vers 0 dans I’espace H ]2(M ) et

fortement vers 0 dans L*(M) i.e. lim uidvg =0
M

[—>+00

Onau, € H,ie. f lug,|”dv, = 1, avec I'inégalité de Holder, on pourra écrire que pour tout
M
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2
| = f |uq,|qfdvg) '
M

IA
—_—
S 2

famn

<

=
-
~
2
QU
<
og
~———
o=
|
s
) SEEEE———
2

IA

2 2 2
2\ aw
lug Fdv, |V (2.21)
M

ou V, est le volume de la variét€ (M, g). D’autre part on utilise I’inégalit€¢ de la meilleure

constante de Sobolev énoncé dans le lemme 1.3.1, pour tout € > 0, il existe B, € R tel que

%

2

(f |uqi|2ﬁdvg) S(K0'+‘€)‘[ |V”qi|2dvg+BEf u;idvg
M M M

I’inégalité (2.21) devient

2

1_(f |uq,|qfdvé)i
(f g, dvg) V‘”t
V”i’_271 ((K0+6)f|qu Izdvg+B fu dvg)

n-—2
fﬁ; Vuy Pdvg = 4, - 4n—1) MRgufndvg

alors la derniere inégalité devient

W n-2 2 2
1< V z {(Ko + €) (/lql. — m LRguqidVg) + B, Luqidvg}

2

-2
i ﬁ ;
< Vq 2 {(Ko + €)4y, + ((Ko + 6)4( -1 r&%‘ IR,| + Bé) fM Mqidvg}

Orona

En passant a la limite pour i — +o0, dans la derniere inégalité et on utilise le fait que

2

2_2
lim u;id\}g = O lim /1 = g et lim V‘h 2?1 ngﬁ of -1

i—>+00 M [—>+00 i—>+00
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on obtient
1 < (Ko + €,

Par conséquent pour € suffisamment petit on aura

1< K()/.lg
: . . 1 .
ce qui contredit avec la condition (2.20) p, < I Doutu#0. m
0
Remarque 2.2.2 Pour achever la preuve du théoréme principal 2.0.4, il nous reste a démon-

tré le lemme suivant.

Lemme 2.2.4 Soient (M, g) une variété Riemannienne compacte de dimension n > 3 et u,

son invariant de Yamabe. Sous la condition

1

o < —
He < 3o

Alors la fonction u donnée par le lemme 2.2.2 minimise la fonctionnelle

-2
1wy = | VuPdv, + — fR 2
W= [ Wby + 7= |, R

sur la contrainte

H = {u c HX(M) | f uldv, = 1}
M

(c-a-d, u vérifie f Iulzudvg =1 ety = I(u)).
M

Preuve. Nous reprenons les notations du lemme 2.2.2. Comme la suite (ugj’l) converge fai-

blement vers >~ , c-a-d pour tout ¢ € Hf(M )on a

. gi—1 _ 21
lim ug gdvg = f u "~ ¢dv,
M M

i—>+00

En particulier pour ¢ = u, alors

) - §
lim uq:_ 1udvg = f u? dv,

i—+o0 Jar 4 M
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On déduit avec I’inégalité de Holder que

Pour i — +c0, on en déduit que

ce qui signifie que
f v, < 1 (2.22)
M

Par ailleurs, u est solution de

n—2 H
R — 2F—1
An—1) T H

Agu +
En multipliant cette équation par u, puis en intégrant sur M, on obtient que

I(u) = g f v, (2.23)
M

Comme u # 0, on sait par définition que , vérifie I’'inégalité suivante (Voir la notation 2)
1(u)
2
4 %
( fM u? dvg) 2

En combinant entre cette derniere inégalité et 1’égalité (2.23), on en déduit que

He fM uzudvg

uzudvg #
Ju

g [(fM uz”dvg)ﬁ - 1) >0
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fﬂle (2.24)
M

On tire alors des égalités (2.22), (2.23) et (2.24) que

f uzudvg =letl(u) = py,
M

D’ou le résultat demandé. m

Démonstration du théoréme principal 2.0.4

La preuve du théoreme principal 2.0.4 est une application directe des lemmes 2.2.1 a
224.



Chapitre 3

Probleme de courbure scalaire prescrite

Position du probleme

Le probléme de la courbure scalaire est une généralisation naturelle du probleme de Ya-
mabe, qui consiste a trouver sur une variété Riemannienne compacte de dimension n > 3
une métrique g conforme a la métrique initiale g dont la courbure scalaire R; est égale a une
fonction f donnée a priori. En vertu de ce qui a été dit dans I’introduction, La résolution du

probleme de la courbure scalaire revient a I’existence d’un réel A € R, et I’existence d’une

fonction strictement positive 1 € C>*(M) ot « € 10, 1[, tels que

n—2

_ 261
2= 1)Rgu = Afu (3.1)

Agu +

ou A, est I’opérateur de Laplace-Beltrami, R, est la courbure scalaire de la variété M, f

: .. 2n .
une fonction positive de classe C*(M) et 2 = 5 est I’exposant critique de Sobolev.
n—

Cette équation a la particularité de contenir 1’exposant critique de Sobolev donc toute la dif-

ficulté du probleme vient ici de ce que I’inclusion de H f(M ) dans LQ”(M ) n’est pas compacte.

Dans ce chapitre nous montrons d’une maniere analogie comme dans le deuxieme cha-
pitre que la technique variationnelle utilisée pour résoudre le probleme de Yamabe reste va-
lable pour résoudre 1’équation (3.1).

Le résultat principal de ce chapitre est énoncé dans théoreme suivant.

Théoreme 3.0.1 (Théoreme principal) (/1], [5]) Soit (M, g) une variété Riemannienne com-

pact de dimension n > 3 de courbure scalaire positive R, et f une fonction positive de classe

35
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C®(M). Sous la condition

2 -2 2
) fM \Vul~dv, + 43;—1) y Rett™dvg 1
%nf 2 < 2
ueH2(M)/{0) f A oA
| U foeve) (max r0)” K
XE

ou K est la meilleure constante de Sobolev énoncé dans la définition 1.3.4.

Alors il existe un réel 1 > 0 et une fonction strictement positive u € C** (M) qui est solution
de I’équation

n-2 he
Agu + ngu = /1fl/l2 !

et qui minimise la fonctionnelle I définie sur Hf(M) par:

n—2
() = fM Vuldv, + 30— fM Ryidv,
sous la contrainte f fufdvy = 1.
M

Tout comme le chapitre précédent, ce chapitre est organisé comme suit :

» Dans la premiere section, nous construisons par la méthode variationnelle, une suite
de fonctions positives (u,) solutions de la famille d’équations sous critiques suivantes :
-2

Agut + ng” = Afu”

2n
n-2

ol g est I’exposant sous critique tel que 2 < g < oM =

» Dans la deuxieme section, nous montrons que sous certaine condition géométrique,

la suite (u,) converge vers une solution strictement positive (u # 0) de I’équation cri-

tique (3.1) lorsque I’exposant sous critique ¢ tend vers 1’exposant critique 2.

3.1 Existence de solutions des équations sous critiques

Dans cette section, nous montrons d’une maniere analogie comme le deuxieme chapitre,

I’existence de solutions des équations sous-critiques associées a 1’équation (3.1) sur une va-
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riété Riemannienne compacte de dimension n > 3. Il s’agit de la famille d’équations

n-—2

_ -1
ngu = /lfl/tq (32)

Agu +

ou?2 < g <2

Pour cela on note

1. H f (M) est I’espace de Sobolev muni de la norme

2 2 2
letllzz agy = 1V atlly + Tlaelly

2. I est la fonctionnelle associée 4 1’équation (3.2) définie sur I’espace H? (M) par

n-—2
I(u) = fM \Vuldv, + 20D fM Rdv,. (3.3)

3. A4, estle minimum de la fonctionnelle /

I
Ag:= inf (—M) = inf I (u)

2

ueH?(M)—{0} (f fuqdvg)a ueH,
M
ou H, est la contrainte
H, = {u € H (M) / f flul'dv, = 1}
M

Nous avons le théoreme suivant, qui montre 1’existence d’une suite de solution minimisante

de la famille d’équations sous critique (3.2).

Théoreme 3.1.1 ([1], [5]) Soit (M, g) une variété Riemannienne compact de dimension n >

3. Pour tout réel g € ]2, 2[, il existe une fonction strictement positive u, € C (M) qui

n —

est solution de I’équation

) ~
Agu, + =D I)Rguq = A, ful”’ (3.4)

et qui vérifie f fuldvy =1, on A, = inf I(u) = I(u,)
M ME(}'{q
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Preuve. La démonstration de ce théoréme est tout a fait similaire a la démonstration du
théoréeme 2.1.1.

L’idée de la démonstration :

(a) Tout d’abord, on montre que A, est fini.

(b) On montre enshuite que le minimum A, de la fonctionnelle / est atteint par une fonc-
tion positive ou nulle u, € H,.

(c) On montre enfin que u, est régulicre, strictement positive et solution de (3.4).

3.2 Existence de solution d’équation critique

Dans cette section, on montre d’une maniere similaire comme le deuxieme chapitre que

la suite u, obtenue du théoreme 3.1.1 converge vers une solution non triviale de I’équation

2n
critique (3.1), lorsque I’exposant g tend vers 1’exposant critique 2% =~ Avant d’entamer

la convergence de la suite u,, nous adoptons les notations suivantes.

Etant donnée (M, g) une variété Riemannienne compacte de dimension n > 3 sur laquelle on

considere 1’équation critique (3.1),

n—2 o
Aglxt + ngu = /lflxt2 !

Notation 3.2.1 on note

1.
I(u) = f VuPdv, + =2 f Ridv
I CAn-D Jy
la fonctionnelle associée a l’équation (3.1)
2.
1
Ho = inf IG) = inf I —
ue ueH; (M)/{0} (fM fuzﬂdvg)zﬁ

est le minimum de la fonctionnelle I sur la contrainte

H =Hy = {u e HX(M) | f flufFdv, = 1}
M
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Le premier résultat que 1’on démontre est la convergence de la suite (4,) lorsque 1’exposant

2n
n—-2

sous critique ¢ tend vers 1’exposant critique 2* =

Lemme 3.2.1 Soient (M, g) une variété Riemannienne compacte de dimension n > 3, pour

qE€ ]2, 2f [, la suite (A,) converge vers u, lorsque q tend vers 2ie. limu Ay = My
qg—2
Preuve. La démonstration de ce lemme se fait d’une maniere similaire comme la démonstra-
tion du lemme 2.2.1. m
Le deuxieéme résultat que I’on démontre dans cette section est la convergence de la suite (u,)

donnée par le théoreme 3.1.1 vers une solution faible de I’ lorsque I’exposant sous critique g

2n
n-2

tend vers 1’exposant critique 2f =

Lemme 3.2.2 Soient (M, g) une variété Riemannienne compacte de dimensionn > 3, il existe

2n

une suite (q;) de réels dans ]2, 2’#[ qui tend vers 2 = 5 lorsque i — +oo,pour laquelle

n —

la suite correspondante de fonctions (u,,) donnée par le théoreme 3.1.1 converge vers une

fonction positive ou nulle u € Hf (M) N C**(M) solution faible de I’équation critique

-2
Agu + n—Rgu = ,LtgfuzL1

4n-1) (3-5)

o I(u)
ou ﬂg B L[EHI%{}W)/{O} (f fuzﬁdv )272” .
M 8

Preuve. La démonstration de ce lemme est tout a fait similaire a la démonstration du lemme
222. m

Remarque 3.2.1 Le lemme précédent montre que notre équation critique (3.5) possede une
solution u soit identiquement nulle soit partout strictement positive. Toute la difficulté consiste
maintenant a trouver une condition qui va nous permettre d’éviter la solution triviale (u = 0).

C’est I’objet du lemme suivant.

Lemme 3.2.3 (Condition géométrique) Soient (M, g) une variété Riemannienne compacte

de dimension n > 3 de courbure scalaire R, positive. Sous la condition

1
[y < . (3.6)

(‘133‘ f (x))zu Ky
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ou Ky est la meilleure constante de Sobolev énoncé dans la définition 1.3.4. Alors la fonction

u donnée par le lemme 3.2.2 est une solution non triviale (u # 0) de I’équation critique (3.5).

Preuve. Tout comme la démonstration du lemme 2.2.3, on raisonne par absurde, supposons

que que u = 0, En reprenant les notation du lemme 3.2.2, il est clair que la suite (u,,) converge
faiblement vers O dans I’espace H 12(M ) et fortement vers 0 dans L>(M) i.e. lim uéidvg =
M

1—>+00

0

Onau, € H,ie. f flug|"dv, = 1, avec I’'inégalité de Holder, on pourra écrire que pour
M

2
| = ( f f|uq,.|%‘dvg)'
M
2 2
< (max f(x))qi (f |uq,.|q"dvg) l
xeM M
qi 2
<< (maxf(x)) [(f (|uq,.|qi)qdvg) v, 2]
xeM M

2

2
2 2.2 E:
<< (max f(x)) yi ( f |uq,.|2”dvg)2 (3.7)
X M

tout i

ou V, est le volume de la variété (M, g). D’autre part on utilise I’inégalité¢ de la meilleure

constante de Sobolev énoncé dans le lemme 1.3.1, pour tout € > 0, il existe B, € R tel que

2
2 ¥ 2 2
lug|"dvy| < (Ko +e) |Vug|"dv, + B, uq[_dvg
M M M
I’inégalité (3.7) devient
1< (max f0)" v fM ey v,
w22
s(r){g} f(x)) v ((Ko+e) fM \Vu,,*dv, + B jl; uidvg)

Orona
2 _ n-2 2
" |qu[| dvg = /lq[ - m MRgl/lqidVg
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alors la derniere inégalité devient

Z 5 2
4G g Tof n—2
1< (I,Ivle%/}( f(.X')) Vg f {(KO + E) (/lql. - m fMRgu‘zﬁdVg) + Be L l/lid\/g}
)
i

4% g T of n—2 2
< (r?e%;( f(x)) V, {(KO + €)d,, + ((Ko + 6)4(n D max |R,| + Be) jﬂ; ”q,-d"g}

En passant a la limite pour i — +o0, dans la derniere inégalité et on utilise le fait que

2_2

2_2
lim uidvg =0, lim /1%_ = U et lim ngi 2% _ ngﬁ 2 _ 1

[—>+00 I—>+00 [—>+00

on obtient

2

1< (max 700} (Ko + e

Par conséquent pour € suffisamment petit on aura

2

of
1< (meg f (x)) Kop,
ce qui contredit avec la condition (3.6). D’otu £ 0. =

Remarque 3.2.2 Pour achever la preuve du théoreme principal 3.0.1, il nous reste a démon-

tré le lemme suivant.

Lemme 3.2.4 Soient (M, g) une variété Riemannienne compacte de dimension n > 3 et .

Sous la condition
1
/Jg < 2
(max f (x))ﬂt Ky
xeM

Alors la fonction u donnée par le lemme 3.2.2 minimise la fonctionnelle

n—-2
I(u) = Vul’dv, + R, u’d
w= J Wi+ 2= [ Ratan,

sur la contrainte

H = {u c HX(M) | f flufFdv, = 1}
M

L. #
(c-a-d, u vérifie f Flul? dve =1 et g, = I(u)).
M

Preuve. La preuve se fait d’une maniere similaire de la preuve du lemme 2.2.4. m
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Démonstration du théoréme principal 3.0.1

La preuve du théoreme principal 3.0.1 est une application directe des lemmes 3.2.1 a
3.24.



Bibliographie

[1] T. Aubin. Equations différentielles non linéaires et probleme de Yamabe concernant la
courbure scalaire, J. Math. Pures Appl. 55 (1976) 269-296.

[2] T. Aubin. Some nonlinear problems in Riemannian geometry, Springer (1998).

[3] D. Gilbard, N. Trudinger, Elliptical partial difierential equations of second order, Sprin-
ger Verlag 1983.

[4] E. Hebey, Meilleures constantes dans le théoreme d’inclusion de Sobolev, Ann. Inst.
Henri Poincaré Anal. Non Lineaire 13 (1996), 57-93.

[5] E. Hebey, Introduction a 1’analyse non linéaire sur les variétés, Diderot Editeur, Paris,
1997.
[6] E. Hebey, F. Madani, These de Doctorat. Université Paris 6, 2009.

[7] R. Schoen. Conformal deformation of a Riemannian metric to constant scalar curvature.
J. Differential Geom, 20, (1984), 479-495.

[8] G. Talenti, Best constant in Sobolev inequality, Ann. di Matem. Pura ed Appl. 110 (1976),
353-372.
[9] N.S. Trudinger. Remarks concerning the confomal deformation of Riemannian structures

on compacts manifold. Ann. Sc. Norm. Super. Pipa, Sci. Fis. Mat., IIl. Ser., 22(1968).265-
274.

[10] M. Vaugon, Transformation de la courbure scalaire sur une variété Riemannienne com-
pacte J. of Funct. Anal. 71 No. 1 (1987), 182-194.

[11] H. Yamabe. On the deformation of Riemannian structures on compact manifolds, Osaka
Math. J. 12 (1960), 21-37.

43



	Introduction
	Problème de Yamabe
	Problème de courbure scalaire prescrite

	Notions préliminaires
	Éléments de la géométrie Riemannienne
	Variétés Riemanniennes
	Courbures Riemanniennes
	Métriques conformes

	Intégrale Riemannienne
	Espaces de Sobolev
	Définitions et propriétés
	Espaces de Hölder
	Meilleure constante de Sobolev pour  H21(M) L2(M)
	Inégalité de la meilleure constante

	EDP sur les variétés Riemanniennes
	Opérateur de Laplace-Beltrami
	Opérateur de laplacien conforme
	Principe du maximum
	Solutions faibles et résultats de régularité
	Théorème des multiplicateurs de Lagrange


	Problème de Yamabe
	Position du problème 
	Existence de solutions des équations sous critiques
	Existence de solution d'équation critique

	Problème de courbure scalaire prescrite
	Position du problème
	Existence de solutions des équations sous critiques
	Existence de solution d'équation critique

	Bibliographie



