République Algérienne Démocratique et Populaire
Ministére de 1l’enseignement supérieure et de la recherche scientifique

N° Attribué par la bibliothéque

N
f/

yNIVERSITY 7}* yNIVERSITY
/7G| of SAIDA

.’.',-, »m of SAIDA
I\,&’%&I} MOULAY IAIIJ‘\I ' I\&’%_I} MOULAY IAIIJ’\I

Année univ.: 2019/2020

Fractional Calculus & Fractional Stochastic

Processes: Theory and Applications

Mémoire présenté en vue de 'obtention du diplome de

Master Académique

Université de Saida - Dr Moulay Tahar
Discipline : MATHEMATIQUES
Spécialité: ASSPA
par

Mlle. Allou Bakhta [

Sous la direction de

Dr. S. Idrissi

Soutenue le 15/09/2020 devant le jury composé de

Dr. T. Djebbouri Université Dr Tahar Moulay - Saida Président
Dr. S. Idrissi Université Dr Tahar Moulay - Saida Encadreur
Dr. F. Benziadi Université Dr Tahar Moulay - Saida Examinatice
Dr. K. Mehdi Université Dr Tahar Moulay - Saida Examinatrice

le-mail: alloubakhtal994@gmail.com



Acknowledgments

n the Name of Allah, the Most Merciful, the Most Compassionate all praise be to

Allah and prayers and peace be upon Mohammed His servant and messenger.

First and foremost, I must acknowledge my limitless thanks to Allah, the Ever-
Magnificent, the Ever-Thankful, for His help and bless. I am totally sure that this work

would have never become truth, without His guidance.

I would like to express my sincere gratitude to my supervisor Dr. S. Idrissi. I ap-

preciate her scholarly guidance, observations, and patience throughout my work.

I wish to thank my master thesis committee members: Dr. T.Djebbouri, Dr. K.
Mehdi and Dr. F. Benziadi, for generously offering their time, support, guidance and

good will throughout the review of this document.

I owe a deep debt of gratitude to our university, laboratory of stochastic models, statis-

tic and applications and his members for giving us an opportunity to complete this work.

I would like to take this opportunity to say warm thanks to all my beloved friends,

who have been so supportive along the way of doing my master thesis.

I owe my deepest gratitude to my family. Especially for Tayeb Allou for their gener-
ous support, they have provided me throughout my life and especially through the process

of obtaining a master’s degree.

Last but not least, deepest thanks go to all people who took part in making this master

thesis real. To all a big thank you.



Contents

[Acknowledgments|

[Abstract /Résumé]

Introductionl

I ich ] . Tcalus

(1.1  Basic concepts of stochastic processes| . . . . . ... ... .. ... ....

(1.1.1  Propaedeutic notions| . . . . . . . . . . ... ... ... .......

[1.1.2  Main Classes of stochastic process. . . . . . . ... ... ... ...

7 E S of T . [calaus
[2.1 ~ Special functions| . . . . . ..o o
211 The Gamma functionl . . . . . . . ... ... oL

2.1.2 The Beta function] . . . ... ... ... ... L.

2.1.3  The Mittag-Lefler Function| . . . . . . . .. ... ... ... .. ..

[2.1.4  'The Weighted function| . . . . . . . . .. .. ... ... ... ....

[2.2  'T'he basic fractional derivatives approaches . . . . . . . . . ... ... ...

[2.2.1  Riemann-liouville definition, 1982-1847 . . . . . . . . .. . ... ..

[2.2.2  Grunwald-Letnikove definition, 1867-1868[. . . . . . . . . . . . . ..

[2.2.3  Caputo fractional derivatives definition, 1969(. . . . . . . . . . . ..

[2.3  Application] . . . . . ..o

10
10
10
12
14
14
17



[2.3.1 Fractional Calculus and Its Application to the Respiratory System|. 28

[3 Fractional stochastic processes| 31
[3.1  Selt-similarity and long range dependency| . . . . . . . ... ... ... .. 31
[3.1.1  Selt-similarity] . . . . . .. ... ... 31

[3.1.2  Long-range dependency|. . . . . . . . .. .. ... ... ... .. 33

(3.2 Fractional Brownian motion| . . . . . . . .. ... .o 34
[3.2.1 'T'he basic properties of fractional Brownian motion . . . . . . . .. 35

[3.2.2  Integral representation of fractional Brownian motion fractionaire| . 39

[3.2.3  Stochastic integration with respect to fractional Brownian motion| . 40

[3.3  'T'he Weighted Fractional Brownian Motion| . . . . . . ... ... ... ... 42
[3.3.1  Definition and basic properties . . . . . . . . ... ... ... ... 42

[3.4 Application] . . . . ... 49
[3.4.1 A Weighted-fractional (Merton weighted fractional) model to Eu- |

[ ropean option PriCing| . . . . . . . . . ... .o e e 50
Conclusion 53

(Bibliography| 54




Abstract

He main goal of this master thesis, is to give by means of the examples chosen a
little glance on fractional calculus and fractional processes and discuss how are used

in modeling some real phenomena, We begin by giving some preliminary background on
stochastic calculus. Then we give an overview on the theory of fractional calculus and its

application to the respiratory system.

We wanted after to widens the notion of the fractional paradigm from calculus to
stochastic processes by studying one of self-similar, long-range dependence, Gaussian
fractional processes called weighted fractional Brownian motion (wfBm), which depends
on two real parameters a, b. It includes fractional Brownian motion when a = 0, standart
Brownian motion when a = b = 0. Then we will give some properties of this process.
These properties, which are analogous to those of fBm, are self-similarity, path continuity,
behavior of increments and long-range dependence. B*® is neither a semi-martingale nor
a Markov process unless b = 0. Although, the wfBm B’ has not stationary increments
in general. wfBm widens the scope of behaviour of fBm, it may be useful in some appli-

cations.

Key words: Standard Brownian motion. Stochastic differential equations. Fractional

calculus. Fractional Brownian motion. Weighted fractional Brownian motion.



Résumé

] objectif principal de ce travail est de donner a I’aide de quelques exemples un apergu
L sur le calcul fractionnaire et les processus fractionnaires et leurs utilisation dans
la modélisation de certains phénomeénes réels. Nous commengons par donner quelques
notions préliminaires sur le calcul stochastique. Ensuite, nous donnons un apercu de la

théorie du calcul fractionnaire avec une application au systéme respiratoire.

Nous avons ensuite voulu élargir le paradigme fractionnaire du calcul aux processus
stochastiques en étudiant I'un des processus fractionnaires Gaussiens autosimilaires et
qui posséde la proprieté de la longue memoire appelé mouvement brownien fractionnaire
pondéré (wfBm), qui dépend de deux paramétres réels a,b. Il comprend le mouvement
brownien fractionnaire lorsque a = 0, le mouvement brownien standard lorsque a = b = 0.
Ensuite, nous donnerons quelques propriétés de ce processus analogues aux celles de fBm,
telle que l'auto-similarité, le comportement des incréments et la dépendance a longue
terme. B*® n’est ni une semi-martingale ni un processus de Markov sauf que pour b = 0.
généralemnt les incréments du wfBm B®’ ne sont pas stationnaires. wfBm élargit la

portée du comportement de fBm, cela peut étre utile dans certaines applications.

Mots clés: Mouvement Brownien standard. Equation différentielle stochastique.
Calcul fractionnaire. Mouvement Brownien fractionnaire. Mouvement Brownien frac-

tionnaire pondérée.



Introduction

ractional calculus is a generalization of ordinary calculus. Calculus proved to be
F a key tool for modern science because it allows the writing of differential equations
that link variables and their rates of change. Fractional calculus has a long history. It
is seen as the generalization of ordinary differentiation and integration to non-integer or-
ders. Over the last few years, fractional calculus was found to play an important role in
the modeling of a considerable number of real-life or physical phenomena see [18, 1] and

references therein.

The fractional paradigm applies not only to calculus but also to stochastic processes,
used in many applications in finance and economics such as modeling volatility and inter-
est rates and modeling high frequency data. The key features of fractional processes that
make them interesting to these disciplines include the following: Long-range memory, non
Markovian properties and self-similarity. The definition and properties of fractional pro-
cesses look very different from those of fractional calculus; actually, fractional Brownian
motion (fBm) seems to be the simplest fractional process. It was introduced in the pioneer
paper[§|, and has been widely studied due to some compact properties such as long/short
range dependency, self-similarity, stationary increments and Holder’s continuity, and also
due to its numerous applications in various scientific areas. Some surveys and complete
literatures on fractional Brownian motion could be found in Alos and other.[I], Biagini
and other.[2], Decreusefond and Ustiiunel[S], Embrechts and Maejima[I0], Mishura [15],
Nourdin[16], Nualart [17], Samorodnitsky [20], Taqqu|24] and Tudor|23]. The fractional
nature of these processes appears in some parameters that characterize autocorrelations,
namely the so called Hurst-exponent H, which might assume fractional values as opposed

to integer values.



However, fBm alone cannot serve as an adequate model in all the fields of applications,
and more complex fractional random processes are needed to model real phenomena. In
the same context, the fractional Brownian motion, which is characterized by a single pa-
rameter, namely the Hurst index, cannot serve as a good model where there are several
levels of fractionality. It is for this, and as an extension of the fractional Brownian mo-
tion, Bojdecki and other. [7] introduced and studied a rather special class of self-similar
Gaussian processes which preserve many properties of the fractional Brownian motion.

This process is called weighted fractional Brownian motion (weighted-fBm).

In contrast to the extensive studies on fractional Brownian motion, there has been lit-
tle systematic investigation on other self-similar Gaussian processes such as the weighted
fractional Brownian motion, for which some works for weighted-fBm can be found in Bo-
jdecki and other [7, 4. [5, 6], Yan-An [25] 26]. Fractional calculus and fractional Brownian
motion are studied in detail both in the sense of theory and in terms of applications. In
this master thesis, we wanted to give an idea of both fractional calculus, and some other
extension of fBm more precisely the weighted fractional Brownian motion with applica-

tion in finance.

The subject matter presented in this master thesis has been divided into three chapters.

The first chapter gives an introduction to the topic of our study and a brief survey
of the stochastic calculus. We start this chapter with the general definition of stochastic
process and study the relation between stochastic processes and finite dimensional distri-
bution of a stochastic process. In particular, we present some important class of stochastic
process such as stationary, martingales, Markov and Gaussian processes. Then we discuss
some properties of a very particular class of stochastic processes witch is the Brownian

motion. We conclude the chapter with a section about stochastic integration.

The second chapter gives a brief description of some fractional differintegral oper-

ators. The Griinwald-Letnikov, Riemann-Liouville and Caputo approaches will be ex-
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plored. These are the most frequently used differintegrals fractional operators, and we
will discover if some basic properties, such as linearity, Leibniz’s rule and composition,
still apply to differintegrals fractional operators. An application to human respiratory

system is given in the last of this chapter.

The third chapter is devoted to fractional stochastic processes, we shall first introduce
the notions of self-similarity, the long range dependency and the connection between them.
Second we will define the fractional Brownian motion , study its essential properties and
some of its several representations also. Then we will study pathwise integration with
respect to fractional Brownian motion. the two last sections of this chapter are devoted

to the weighted fractional Brownian motion and its application in finance.



Chapter 1

Introduction to stochastic calculus

In this chapter we collect the basic notions of stochastic process and study some class of
stochastic process such as stationary, martingales, Markov and Gaussian processes. Then
we discuss some properties of the Brownian motion, we conclude this chapter by stochas-
tic integration and stochastic differential equation. For more reference on this chapter we

refer the reader to [24], [14].

1.1  Basic concepts of stochastic processes

P.A. Meyer and C. Dellacherie have created the so called general theory of stochastic
processes, which consists of a number of fundamental operations on either real valued
stochastic processes indexed by [0, 00), or random measures on [0, 00), relative to a given
filtered probability space (€2, F,P). So throughout this master thesis, we assume we are
given a filtered probability space (€2, F, F;, P) that satisfies the usual conditions, that is

(F:) is a right continuous filtration of (F,P), complete sub-o-fields of F.

1.1.1 Propaedeutic notions

Definition 1.1.1. (of Stochastic process).

We define real valued (one-dimensional) stochastic process as a family of random variables

10
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{Xi}er defined on (2, F,P):
X,: Q- RteTCR,.

A stochastic process could be a discrete time or a continuous time process, according to

the set T is countable or continuous.

Definition 1.1.2. (of Trajectory).
For each element w € § the mapping t — X (w) defined on the parameter set T, is called

a realization (or a trajectory, a sample path) or sample function of the stochastic process

{Xiteer.

Definition 1.1.3. (Finite-dimensional marginal distribution)

Let {X};t € T}, be a real-valued stochastic process and {t; < ... < t,} C T, then the
probability distribution Py, 4, =Po (X4, ..., Xy,)" " of the random vector

(Xipyy ooy X4,)) 2 = R™ is called a finite-dimensional marginal distribution of the process

Definition 1.1.4. FEgquivalence of stochastic processes
Let X = {X,t € T} and Y = {Y;,t € T} be two stochastic processes. Then X and'Y

are:
1. Equivalent if they have the same finite dimensional distributions.
2. Modification if P{X;, = Y;} =1, for everyt € T.
3. Indistinguable if P{X; =Y,, for everyt € T} = 1.

Definition 1.1.5. (Continuity concept)
Fiz p > 1. Let {X;,t € T} be a real-valued stochastic process, such that E(|X;|P) < oo,

forallt € T. The process {X;,t € T} is said to be continuous in mean of order p if
ImE(]X; — X,[?) = 0.
s—t

Definition 1.1.6. (" Filtration)
A filtration on (2, F,P) is an increasing family (F;)ier, of sub -o-field of F.

A measurable space (Q, F) endowed with a filtration (F)ier s said to be a filtered space.
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Definition 1.1.7. ( of adapted stochastic process)
A stochastic process (Xi)ier is adapted to the filtration (Fy)er if Vt € T, Xy is  Fi—

measurable.

1.1.2 Main Classes of stochastic process
1.1.2.1 Processes with independent increments

Definition 1.1.8. The process X is said to have independent increments if for any finite
subset {ty < ... <t,} CT, the increments Xy, Xy, —Xto, - - -, X1, — X4, _,, are independent

random variables.

1.1.2.2 Markov processes.

Definition 1.1.9. X is a Markov process if for anyt and s > 0 the conditional distribution
of X(t+ s) given Fy is the same as the conditional distribution of X (t + s) given X (t),
that s,

P(X(t+s) < y\F) =P(X(t +5) < y\X (1)), as.

The above well-known formulation of the Markov property states that given the current
state of X at time ¢, the future of X is independent of the o —algebra F; of events including,

alternative and useful statements of the Markov property.

1.1.2.3 Stationary processes.

Definition 1.1.10. A stochastic process (Xi)i>o s said a stationary process if any
collection (Xy,, Xy,, ..., Xy,) has the same distribution of (X, , Xt,,, .. X4, ), for each
72> 0. That is,

(Xiys Xtgs oo X0) 2 (X Xy oo Xo )

1.1.2.4 Processes with stationary increment

Definition 1.1.11. A stochastic process (X;)i>o is said a stationary increments, if for

any h > 0 : finite subset {to < ... <t,} C T the increments

(Xtwn — Xn)t=0 < (Xt — Xo)tzo-
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1.1.2.5 Gaussian process

Definition 1.1.12. A stochastic process (Xi)i>o is Gaussian if every finite linear combi-

nation of (X¢)i>o 1S a gaussian r.v i.e

Vn,Vt,1 <1 <n,Va, ZaiXti'

=1

1S a gaussian r.v.

1.1.2.6 Martingale

Definition 1.1.13. A stochastic process (My)ier is a martingale with respect to the fil-

tration (Fy)er if -

(a) (My)ier is adapted to the filtration (Fy)ier;
(b) E(|M;|) < o0,V € T.

(c) E(M\Fs) = M, Vs <t,s,t €T.

Definition 1.1.14. (Stopping Times)

A Fi-stopping times is r.v. T : Q — R, U {oo} such that {T <t} € F, VteR,.

Definition 1.1.15. (Local-martingale)
A process X is a local martingale if there exists a sequence of stopping times T, with
T, /oo as., T, <T as on{T >0}, and lim, T, =T a.s. and moreover Xar, is

a martingale for each n

Definition 1.1.16. (Semi-martingale)

A stochastic process is called a semimartingale if it can be written in the form
Xt:Xo‘i‘Mt‘i‘At,

where (My)ier, is a local martingale vanishing at 0 and (Ay)ier, s a right—continuous

Fi— adapted process of finite variation vanishing at 0.
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1.2 Brownian Motion and stochastic integration

In this section we are going to introduce Brownian motion and stochastic integration
with respect to it. We shall see that the paths of the Brownian motion are not of finite
variation. Therefore, it is not possible to give a pathwise definition of the integral with

respect to the Brownian motion.

1.2.1 Brownian motion

In 1827 Robert Brown (botanist, 1773-1858) observed the erratic and continuous motion
of plant spores suspended in water. Later in the 20’s Norbert Wiener (mathematician,
1894-1964) proposed a mathematical model describing this motion, the Brownian motion

(also called the Wiener process).

Definition 1.2.1. A Gaussian, continuous process characterized by mean value m(t) =0
and covariance function ¢ = min(s,t) = s A't, for any s,t € [0,T], is called a Brownian

motion.

We will often talk about a Wiener process following the characterization just stated,
but it is appreciable to notice that next definition can provide a more intuitive description

of the fundamental properties of a process of this kind.

Definition 1.2.2. A stochastic process (By)icr, s called a standard Brownian motion

iof it satisfies the following conditions:
1. P(we Q: By(w) =0) = 1.
2. Yn,Vt;,0 <tg <t, <..<t,, therv(By,—Bs, ,,..., By, — By, By,) are independent.

3. For any s < t,B; — By is a centered real valued r.v. mnormally distributed with

variance t — s, i.e. By — By ~ N (0,t — s).

4. P(w e Q:t— By(w) is continuous ) = 1.

1.2.1.1 Properties of Brownian motion

From the description of BM as the motion of a pollen grain-and even more from its

derivation as the limit of a random walk, it should be clear why the following result holds.
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Proposition 1.2.1. Let B(t) be a standard Brownian motion in dimension d > 1.
o Isometry. If ¢ is a linear isometry of R, then ¢(B;) is a Brownian motion.
e Translation. For every s > 0, the process Bt(s) = Byt — Bs 15 a Brownian motion.
o Time reversal. The process (By — Bi_t)icjoq) s distributed as (By)iejoq).

e Scale invariance. For every a > 0, the process (%Bazt :t > 0) is a Brownian

motion.

Proof: All the processes considered are continuous, Gaussian, centered (mean zero)

and the covariance functions are easily seen to coincide with that of Brownian motion. W

Theorem 1.2.1. Brownian Motion is a martingale.

Proof:
By definition, B(t) ~ N(0,t), so that B(t) is integrable with E(B(t)) = 0. Let F; =
o(B(s):s <t). Then

E[B(t+ s)\F| = E[B(t+s)— B(t) + B(t)\F]

(
= E[B(t+s) — B(t)\F)] + E[B(t)\F
— E[B(t + s) — B(t)] + E[B(t)\F]
= E[B(t)\F
= B(t).
So B is an {F;}-martingale. [ |

Theorem 1.2.2. The standard Brownian motion B(t) possesses Markov property.

Proof:
It is seen by using the moment generating function that the conditional distribution of

B(t + s) given F; is the same as that given B(t). Indeed, let as define

T(s)f(z) = E[f(z + B(s))],
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and note that

E[B(t+s)\F] = E[f(B(t+s)— B(t)+ B(t))\F]

= E[f(B(t+s)\B(1) ™

Definition 1.2.3. Quadratic Variation of Brownian Motion.

The quadratic variation of Brownian motion [B, B](t) is defined as

(B, B](t) = [B, B]([0,t]) = limz |B! — B! 2, (1.1)

ti—1
=1

where the limit is taken over all shrinking partitions of [0,t], with o, = max;(X;;, —

X[') —> 0 as n — oo. It is remarkable that although the sums in the definition (1.1 are

random, their limit is non-random, as the following result shows.

Theorem 1.2.3. [14] Quadratic variation of a Brownian motion over [0,1] is t.
e Properties of Brownian paths

B(t)’s as functions of ¢ have the following properties. Almost every sample path B(t),0 <

t<T
1. is a continuous function of ¢,
2. is not monotone in any interval, no matter how small the interval is,
3. is not differentiable at any point,
4. has infinite variation on any interval, no matter how small it is,
5. has quadratic variation on [0, t] equal to t, for any t.

Theorem 1.2.4. For every ty,

B(t) — B(t)

lim sup -
— 1o

t—to

= 00 a.s.,

which implies that for any to, almost every sample B(t) is not differentiable at this point.

Proof. We refer the reader to ([14]).
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Figure 1.1: Four realizations or paths of Brownian motion

1.2.2 Stochastic diffierential equations and Ito integrals

Definition 1.2.4. (It6 integral).
Let {B;, 0<t<T}, bethe standard Wiener process (Bm) adapted to the filtration F;.

Let p; is also an Fi—adapted stochastic process such that

E UOT @tdt] < . (12)

Let ¢, = {0 = to,t1,...,t,, = T'} be the partitioning set and the norm ||¢,|| is defined as

lénll = ,_max (b1 — )

77777

The Ito integrals It is then obtained by the following expression

T
IT:/ ¢idBy := lim Z% (Bt — Bt) (1.3)
0

[lén] |‘)0
I7 defined above is a random variable and the following theorem lists some of its

properties.

Theorem 1.2.5. LetT' > 0, let ¢, and 1, 0 <t < T, be Fi-adapted stochastic processes
that satisfy (1.2)). [to integral It defined by (1.3) has the following properties:
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1. Adaptivity: For each t, I, is F,—measurable.

2. Continuity: The sample paths of I; are continuous.

3. Ito isometry: E[I}] = ]Ef(f p3ds.

4. Linearity: [} (ap, + bib,)dB, = a [} 0, dB, +b [ . dB,. fora,beR.

5. Martingale:E[I;] = 0 and I, is a martingale.

Proof: See [14].

Ito integrals are of key importance for the stochastic differential equations (SDE’s).
In fact, they appear in what is defined as the strong solution of an SDE. Let us start with

the definition of this class of differential equations.

Definition 1.2.5. (SDE).Let F; be a filtration generated by a Wiener process By, let T
be a positive constant. Also let p : R x [0,7] — R0 : R x [0,T] — R be measurable
functions and Xq be Fo-measurable random variable. A stochastic differential equation

can be expressed in the form of stochastic differential

dXt = [L(Xt,t)dt—{—U(Xt,t)dBt, t e [O,T] (14)

XO =g € R. (15)

Moreover, if fOT w(Xe, t)dt < oo and fOT o?(Xy, t)dt < oo then a continuous F;-adapted
process X; satisfying

t t
X, =29 +/ w(Xs, s)ds + / o(Xs, s)dBs,t € 10,7, (1.6)
0 0

is said to be a (strong) solution of the SDE[1.4—{1.5]

Remark 1.2.1. The first integral on the right hand side of (1.6 is a Lebesgue integral
and the second one is an Ito integral. The functions u(Xy,t),o(Xy,t) are called the drift
and diffusion respectively. X; defined as (1.6)) is also known as an Ito process.
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Definition 1.2.6. (Pathwise uniqueness). Let X;,0 < t < T, and Y;,0 < t < T,

are adapted stochastic processes defined on the same probability space with filtration JF;.

If both processes satisfy then the solution of is (pathwise) unique,

if any two processes satisfying the SDE with respect to the same initial condition are

indistinguishable.
Theorem 1.2.6. If the following conditions are satisfied

1. Coefficients are locally Lipschitz in x uniformly in t, that is, for every T and N,
there is a constant K depending only on T and N such that for all |x|, |y| < N and

all0<t<T

2. Coefficients satisfy the linear growth condition

|, )] + oz, )] < K(1 4 [x])

3. X(0) is independent of (B(t),0 <t <T), and EX?(0) < oo.

Then there exists a unique strong solution X (t) of the SDE[L.4-LE X (¢) has continuous
paths, moreover E(supy<,<r X*(t)) < C(1 + E(X?(0))), where constant C' depends only

on K and T.

Proof :

The proof can be found in the original paper [14]



Chapter 2

Essentials of fractional calculus

In this second chapter, we briefly introduced some of the useful definitions in fractional
calculus theory, such as Griinwald-Letnikov, Riemann-Liouville and Caputo approach and
we will discover if some their basic properties, some examples are explored and application.
All definitions and results recalled below are very standard in the literature and are mostly

extracted from the main reference who is based around them this chapter are [I8, 11, [15].

2.1 Special functions

In this section we give a brief review of some important functions for the fractional
calculus theory. These functions are: the gamma, Beta Mittag-Lefller and Weighted

functions.

2.1.1 The Gamma function

A comprehensive definition of The Gamma function I'(x), is that provided by the Euler
limit
nin®

L) = i z(x+1)...(z+n) (2.1)

but the integral transform definition

[(x) :/ t"te7tdt, x> 0. (2.2)
0
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is often more useful, although it is restricted to positive x values.
An integration by parts applied to the definition (2.2]) leads to the recurrence relation-

ship

['(z+1) =al'(2) (2.3)

which is the most important property of the gamma function. The same result is a
simple consequence of the Euler limit definition. Since I'(1) = 1, this recurrence shows

that for a positive integer n
IF'n+1)=nl'(n)=nn—-1Tn-1)=..=n[n—1]..21T(1) =

2.1.2 The Beta function

The Beta function (3, is defined by Euler integral of the first Kind

1
Bz, y) = /0 11— )t oy € R. (2.4)

This function is connected to the Gamma function by the relation :

2.1.3 The Mittag-Lefler Function

The Mittag-Leffler function is named after a Swedish mathematician who defined and
studied it in 1903. The function is a direct generalization of the exponential function, it
plays a major role in fractional calculus. Firstly, we introduce one parameter function by
using series, namely

o0 ok
Eo(z) = ; farrn 7 0. (2.5)

Then, we define the Mittag-LefHler function with two parameters, as:

kZ:OFOzk—l-ﬁ o6>0. (2:6)
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Some examples of Mittag-Leffler function, are given:

% 2k ©  k

E = =

(@) % T(k+1) < & xp(z),

, oo ka; oo x2k

E = = cosh

2,1(2%) kz_: T(2k + 1) kz_; (2h)] cosh(z)

o0 2k o0 2k+1 h(z)

(g x _ x _sin

2,2(2%) ['(2k + 2) kZ:O z(2k +1)! x

2.1.4 The Weighted function

Weights give more weight to some elements in a set. The weight function gives weights
to data.

The weight function has many uses, including:
e Compensating for bias(error).

e Giving some data points more, or less, influence. For example, you can adjust for

outliers.
e (Calculating integrals.

Mathematically, a weight is a positive measure such as w(z) dz on some domain €2, which
is typically a subset of a Euclidean space r», for instance 2 could be an interval [a, b], dz
is Lebesgue measure and w: QR+ is a non-negative measurable function. In this context,

the weight function w(x) is sometimes referred to as a density.

Definition 2.1.1. If f: Q — R s a real-valued function, then the unweighted integral

/Q /(@) de,

can be generalized to the weighted integral

/ﬂ [ (@) da.

Remark 2.1.1. Note that one may need to require f to be absolutely integrable with

respect to the weight w(x)dx in order for this integral to be finite.
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2.2 The basic fractional derivatives approaches

Definitions of the fractional order derivative are not unique and there exist several

definitions, including Griinwald-Letnikov, Riemann-Liouville, and the Caputo and more

other definitions. This section is dedicated to basic recalls about G-L, R-L and Caputo

fractional operators.

2.2.1 Riemann-liouville definition, 1982-1847

At first, we define the Cauchy’s formula

I"f(x) = /ax /axl /:nl f(zp)dr,dxedr, = " _1 ol /: G i(;))l_ndt.

Definition 2.2.1. Suppose that f € Li([a,b]) anda < x < b. Then we have

R )
D1 =5 |, o
1)
P =t | e

Is named the Riemann-Liouville fractional integral of order 0 < o < 1.

dt.

Definition 2.2.2. Suppose that f € Li([a,b]) and a < x <b. Then we have

1 ar rr ) on n—1<a<neN,

a T(m—a) de™ Ja (z—t)oti-m
De fla) =4 T )
cgc_m (iL‘), a=m € N.
S et ﬂbedt n—1<a<neN
a T'(m—a) dz™ Jz (t—zx)otl-m ,
dz™ (ZU), a=m €N

Is named the Riemann-Liouville fractional derivative of order o

2.2.1.1 Basic Properties

1- Linearity of the operator:

(2.7)

Let f and g are functions for which the given derivatives or integrals operator are defined
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and A\, u € R are real constants.
D(Af(x) + pg(x)) = AD* f(x) + pD%g(x) (2.8)

Proof:

1 am
['(m — «) da™

- (m— a) dzm fO r— tm “ 1f( )dt+F(m o) dcal;l" Ox(x_tyn_a_lg(t)dt

DH(Af(x) + pg(x)) = /Ow(l“ — )" TN AS(E) + pg(t)dt

=AD" f(z) + pD"g(x)

2.2.1.2 Some examples

1. The Power Function

I(m+1)

D" = ————
F(m—-p+1)

t"r -l <a<j,m>—-1,meR

2. The Exponential Function Now, we consider the exponential function e**

DM =t"E1 1 ,(M),n—1<a<n acR AeC

2.2.2 Griinwald-Letnikove definition, 1867-1868

Griinwald-Letnikov derivative is a basic extension of the natural derivative to fractional

one. It was introduced by A. Griinwald in 1867, and then by A. Letnikov in 1868.

The G-L definition of a fractional derivative can be viewed as a derivative which finds

its roots in the definition of a first derivative in terms of a limit:

o) — tim L8 =S = h)  f@) = o= )

h1—0 h,l hl

, if 0<h <1 (2.9)

In a similar way, we can define the second derivative of a function:

J@)=f=h) _ i flx —hg) — f(x — hy — hy)

. ha h1—0 h
" _ 1 1
f (x) o hlglgo hQ

(2.10)

It is clear that one can extend this derivation to third, fourth and higher integer deriva-

tives as well. These formulas in ordinary calculus may be used in the construction of
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approximations, i.e., numerical discretizations of derivatives in terms of finite differences.

If we take h = hy; = hy in (2.10)), we see that we obtain for the ordinary second derivative:

() = g =D @2 S22 gy

(2.11)
Using the principle of mathematical induction one can extend this idea to the n th deriva-

tive in the following way:
1 ) o
F() = lim — > (=1)/ f(t—jh),n €N

Definition 2.2.3. Let a € (0,1) be fized and let f : R — R be a given function. The
Right-G-L derwative of order o of f is defined as:

1 (5]

DY f(£) = lim = (—1) a f(t—=jh)
Jj=0 J

We recall that the binomial coefficients can be defined as: = ey

Next, replacing the terms with values in terms of the Gamma function, we define the

G-L fractional derivative:

Dg, <x>:,gg%%;0<— Ve e ) (2.12)

2.2.2.1 Basic Proprties

Lemma 2.2.1. [18] Let y € C[0,00) be a continuous function and o, 3 > 0. Then, for

any x >0

oD, {0 D5 f(x)} =0 D, ) f(x) =0 D" {oD, f(x)}

Linearity of the operator:

As for integer-order differentiation, fractional differentiation defines a linear operator as

well:

D*(Af(2) + ug(x)) = AD*f(2) + uDg(x) (2.13)
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2.2.2.2 Some Examples
1. The constant Function

Corollary 2.2.1. [18] If f is a constant function (i.e. f(x) = C forallt € [a—L,b]),
then MG DA f is a constant function for all t € [a,b]. Furthermore we have

N C
yGDt f =

= T (2.14)

2. The Power Function

Proposition 2.2.1. [1§] Let o > 0,L > 0, m an integer such that m —1 < a <m

and f(t) =t", then we have

MG mar m " oplLio(g — L)
LD = (n—j)!r((j—03+1) (2.15)

Jj=0

3. The Exponential Function

Proposition 2.2.2. [I8] Let o > 0, L > 0 and m an integer such that m —1 < a <
m, then we have

o El,lfoz(L)

MG na( x T
10D (") = Taol € (2.16)

2.2.3 Caputo fractional derivatives definition, 1969

Since R-L fractional derivatives failed in the description and modeling of some complex

phenomena, Caputo derivative was introduced in 1967.

Definition 2.2.4. Suppose that o > 0,2 > «a,a,x € R. The fractional caputo operator

has the form

F(ml—a) faz (I_t])cf(xlt‘gl*mdt’ m—1<a<meN,
D2 f(z) =
L f(x),a=meN,

Remark 2.2.1. The difference between Caputo and R-L formulas for the fractional deriva-

tives leads to the following differences:

a) Caputo fractional derivative of a constant equals zero, while R-L fractional derivative

of a constant does not equal zero.
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b) The non-commutation, in Caputo fractional derivative we have:
DID™f(t) = DY f(t) # D f(t)
In general, the R-L derivative has also the non-commutation propriety :
D"Dy_ f(t) = D" f(t) # Di_ D™ f(¢)

Where a € (n — 1,n),n € Nym € N*.

2.2.3.1 Basic Properties

Lemma 2.2.2. [18/ Letn—1 < a < n,n € Nya € R and f(t) be such that D f(t) exists.

Then the following properties for the Caputo operator hold

lim D f(z) = f)(x),

a—m

lim Df(z) = fmV(z) — fm=1(0),

a—m—1

Proof: The proof uses integration by Parts

Df(0) = ey | ot

im—a x — t)ati-mdt
_ 1 _rm (l’ — t)m—oz x ! _ rm+l ((L’ — t)m_a
- s e i [ =
1 m m+a ’ m~+1 _ 4f\ym—a
:m(f (0)z™* +/0 FrN ) (r — )™ dt

Now, by taking the limit for &« — m and o — m — 1, respectively , it follows

lim D°f(x) = (f7(0) + /()i = )

And

Jim D) = O+ O = - [ 0
= Pl

= "7 a) = fm7H0).

Linearity of the operator:

Let m —1 < a<m,m € N,a,\ € C and let the two functions f and ¢ such as

¢D*f(x) and *D*g(x) exist. Caputo fractinary derivation is an operator linear :

D(Af(x) + g(x)) = XD f(x) +° D(2)
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2.2.3.2 Some Examples

1. The constant Function

Theorem 2.2.1. [18] For the Caputo Fractional derivative it holds D*C = 0,C =

const

2. The Power Function

Theorem 2.2.2. [18] The Caputo fractional derivative of the power function satis-
fies

r -« «
p(p(f;:i)l)t” =D, n—1<a<n, p>n-—-1  pel

Detr =

0, n—1<a<n, p<n—1peN
3. The Exponential Function

Theorem 2.2.3. [I8/ Let « e R.m — 1 <a <m,m € N;v € C Then the Caputo

fractional derivative of the exponential function has the form :

o _vT m,_ .m—o
D" = 0™ 2™ Ey pp_at1(v),

2.3 Application

2.3.1 Fractional Calculus and Its Application to the Respiratory

System

Of all applications in biology, linear viscoelasticity is certainly the most popular field,
for their ability to model hereditary phenomena with long memory. Viscoelasticity has

been shown to be the origin of the appearance of fractional models in biological tissues [12].

Viscoelasticity of the lungs is characterized by compliance, expressed as the volume
increase in the lungs for each unit increase in alveolar pressure or for each unit decrease

of pleural pressure. The most common representation of the compliance is given by the
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pressure-volume (PV) loops. The initial steps under-taken to characterize the pressure-
volume relationship in the lungs by means of exponential functions suggested a new in-
terpretation of mechanical properties in lungs. Hildebrandt [I2] used similar concepts to
assess the viscoelastic properties of a rubber balloon [12] as a model of the lungs. He
obtained similar static pressure-volume curves by stepwise infiation in steps of 10 ml (vol-
ume) increments in a one minute time interval. He then points out that the curves can

be represented by means of a power-law function.

P} V| ——

C—Dlogt

Figure 2.1: Schematic representation dependence of the pressure-volume ratio with the

logarithm of time

Instead of deriving the compliance from the PV curve, Hildebrandt suggests to apply
sinusoidal inputs instead of steps and he obtains the frequency response of the rubber
balloon. The author considers the variation of pressure over total volume displacement
also as an exponentially decaying function:

P(t)

_ ps-a P(t)

with A, B, C, D arbitrary constants, V the total volume, t the time, and « the power-law

constant. The transfer function obtained by applying Laplace to this stress relaxation
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curve is given by

Pty _ T(1-0a) B

VT Sl—a

with T' the Gamma function. If the input is a step v(t) = Vru(t)., then V(s) = Vp/s

(2.18)

and the output is given by P(s) = T'(s)Vr/s with T(s) the unknown transfer function.
Introducing this into (2.18)) one obtains

T(s) = i As"I'1—a)+ B (2.19)

By taking into account the mass of air introduced into the balloon, an extra term appears

in the transfer function equation:

T(s) = Vis) As°T(1 —a) + B + L,s (2.20)

with L, the inductance. The equivalent form in frequency domain is given by

T(jw) = AT(1 — a)u® cos(%) L+ B+ [AF(l — a)u® sm(o;—”) (2.21)

This function describes the behavior of the balloon in a plethysmograph, while undergoing

sinusoidal forced oscillations.



Chapter 3

Fractional stochastic processes

In this chapter we shall first introduce self-similarity and the long range the fractional
Brownian motion , study its essential properties and some representations are given. Then
we will study then pathwise and Wick-Ito integration theories with respect to fBM. the
weighted fractional Brownian motion and its application in finance. good monographs on

this subject are [10} 24] [7, 4. [5, [6], 25]

3.1 Self-similarity and long range dependency

Self-similar processes with long-range dependence have attracted much attention re-
cently for their applications and their intrinsic mathematical interest (see [24]). Therefore
it seems important and worthwhile to know and address the various new processes that

are available in them.

3.1.1 Self-similarity

First we introduce stochastic processes that are invariant in distribution under suitable
scaling of time and space. These processes can be used to model many space- time scaling

random phenomena observed in physics, biology and other fields.

Definition 3.1.1. A stochastic process (Xi)i>o is called self-similar if there ezists a real

number H > 0 such that for any ¢ > 0 the processes (Xq)=0 and (2 Xy)i>o have the

31
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same finite dimensional distributions.

Remark 3.1.1. o A self-similar process satisfies Xo = 0 almost surely.

o The self-similar processes with stationary increments all have the same covariance.

Figure 3.1: Self-Similarity

Theorem 3.1.1. Let (X;)i>0 be a non-trivial H—self-similar process with stationary in-

crements such that EX? < oo. Then
EX, X, = %EXf(tQH + 527 — |t — s
Proof: Let s <t¢. Writing
XiX, = 5(XF+ X2 = (X, - X))
we get
E(XX) = SB(X7 + X2~ (X, X))

1

= §(E[Xf] +E[X?] - E(X; - X,)?)
1

= 5]1@,)(12(75”1 + 2t — ). m
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Proposition 3.1.1. [23] Let (X;)i>0 be a non-trivial H— self-similar process with station-

ary increments. Then
1. if E|Xy| < oo, then 0 < H < 1.
2. if E|X1| < 0o, H =1 then X =tX;.
3. if E| X" < o0 for some o < 1, then H < +.

Proposition 3.1.2. Let (X;)i>o be a non-trivial H—self-similar process with stationary

increments such that EX? < oo. Define, for any integer n > 1
T’(n) = ]E(Xl (XnJr]_ — Xn))

Then, ifH;é%, as n — 0o

r(n) ~ H2H — 1)n*" ?EX?.

Proof: From Proposition [3.1.1]

r(n) = %EX%((n + 1) 4 (n — 1)27 — 2p2H)

and it suffices to study the asymptotic behavior of the sequence on the right-hand side

above when n — oco.

Remark 3.1.2. If H = % then r(n) =0 for any n > 1.

3.1.2 Long-range dependency

Long-range dependence is a phenomenon that may arise in the analysis of time series
data. It relates to the rate of decay of statistical dependence. Mathematically long-rang

dependence is defined as:

Definition 3.1.2. (Long-range dependence)

We say that a process X exhibits long-range dependence (or it is a long-memory process)

if
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where r(n) = E(X; — Xo)(Xnt1 — X,). Otherwise, if

Zrn<oo

n>0

we say that X 1s a short-memory process.

)e>0

Remark 3.1.3. From Proposition and Deﬁm’tion we conclude that if (X,
is a non- trivial H-self-similar process with stationary increments and with E(X;)? < oo

then X is with long-range dependence for H > % and with short-memory if H < %

There are fundamental connections between self-similarity and fractional calculus,
which is an area of real analysis. These connections are explored in the context of frac-

tional Brownian motion (fBm).

3.2 Fractional Brownian motion

The very first article about fractional Brownian motion (fBm) was published in 1940,
by Andrey Nikolaevich Kolmogorov (1903-1987), a Soviet Russian mathematician. He
introduced continuous time Gaussian processes with stationary increments and with the
self-similarity property. Kolmogorov named such processes as Wiener spirals. However,
that was Benoit B. Mandelbrot (1924-2010), a French mathematician and also best known
as the father of fractal geometry. He considered an integral representation for fBm via a

classical Brownian motion (Bm), and named the process as fractional Brownian motion.

Definition 3.2.1. The fractional Brownian motion (fBm) with Hurst index H € (0,1) is

a centered Gaussian process B = (BJ!)ej0. 1) with By =0

E[BBT] = Cool B BYT] = S(P" + 57" |t — ") (3.1)
Remark 3.2.1. It follows from that:
1. For H = 1/2, the covariance function is E[B}/* Bi'*| = tAs this mean that B'/* = B,
a standard Wiener process(BM).
2. The covariance of increments of fBm is easily given by

1
E[(Bg_Bg)(Bg_Bg)] - §(|t1_32‘2H+|t2—31|2H—|t2—t1|2H—|32—81|2H) (3.2)
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Bm =01 Bm H=0.5
T T T T T T

" L " L " L L L L b r L r L c L r L M L
0om2 04 D8 0B i 12 14 16 18 2 o 02 04 D& 08 i 12 14 e B 2

(a) (b)
fBm H=0.9 fBm H=0.9 {zo0med in}

- ] 0z 04 0E 08 1 12 14 16 18 z 3000 4000 5000 000 TO00 B000 8000

(c) (d}

Figure 3.2: Sample paths of a fractional Brownian motion for different H.

3.2.1 The basic properties of fractional Brownian motion
3.2.1.1 Stationarity of the increments

Theorem 3.2.1. Fractional Brownian motion has stationary increments.

Proof :
Take a fixed t > 0 and consider the process Y; = Bff — B ¢ > 0. It follows from ({3.2)
that the covariance function of Y is the same as that of B. Since the both processes
are centered Gaussian, the equality of covariance functions implies means that Y has the
same distribution as B . Thus, the incremental behavior of BY at any point in the

future is the same, for this reason B¥ is said to have stationary increments.l

3.2.1.2 Self-similarity property of fBm

The fBm with Hurst parameter H is up to a constant, the only H —self-similar Gaussian

process with stationary increments.
Theorem 3.2.2. Fractional Brownian motion is H—self-similar.

Proof :
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Consider centred Gaussian processes X; = B and Y; = o BY. By applying the covari-
ance structure(3.1)) of fractional Brownian motion it is straightforward to see that X and

Y have the same covariance functions from which the result follows.l

3.2.1.3 Holder continiuity

Theorem 3.2.3. (Kolmogorov-Chentsov continuity theorem, [1jl]) Assume that for a
stochastic process {Xy,t > 0} there exist such K > 0,p > 0,8 > 0 such that for all
t>0,5>0

E[|X; — X,|P] < K|t — s|*F.

Then the process X has a continuous modification (X). Moreover, for any v € (0,5/p)

and T > 0 the process X is y-Holder continuous on [0,T), i.e.

|Xt - X8|
sup —— < Q.
o<s<t<T (t — )7

Corollary 3.2.1. The fractional Brownian motion BY has continuous modification. More-

over, for any v € (0, H) this modification is vy-Hélder continuous on each finite interval.

Proof :

Since B — BY is centered Gaussian with variance |t — s| | we have

E[|B" - BJ|| = K|t — s|"".
Therefore, taking any p > 1/H, we get the existence of continuous modification. We also
get the Holder continuity of the modification with exponent v € (0, H — 1/p). Choosing
p sufficiently large, we arrive at the desired statement.ll

3.2.1.4 Differentiability

As in the Brownian case, the fBm is a.s. nowhere differentiable. Effectively, we have

the following proposition.

Proposition 3.2.1. For H € (0,1), the fBm sample paths BH) are non differentiable.

:oo>:1,

Indeed, for every ty € [0, 00],

H H
B — B

P (hm sup -
— o

t—to
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Proof :
B _p(D

————0 Using the self-similarity property, we have:

Let us denote by B;,, = r—

By, = (t — to) B

H
s

S

Let us define U(t, w) = { sup

0<s<t

> d}. Then, for any (t,)nen \ 0, we have

U(tpr1, w) C ULy, w).

i ( Tim ﬂ(tn)> = lim P(U(t,) (3.3)
and -
P(8U(t,)) > P ( Zth | s g =P(BY| > t};Hd)> iy (3.4)
)

3.2.1.5 Not a semimartingale
Theorem 3.2.4. {BH(t):t >0}, for H # 1/2, is not semimartingale.

Proof :
In fact, it is sufficient to compute p-variation of BU). More precisely, we asserts that the

index of p-variation of a fBm is % Indeed, let us consider for fixed p > 0,

Yap =3 ‘ B(;) _ Bg?
=1

p
an—l

Now if we consider

}N/mp - Z ‘B(H) - Bl(fll)

i=1

we have, by the self-similar property of the {Bm, that Y,, ,, 2 Ymp. Besides, remark that the

(H)
n—1

sequence (B,(IH) — B, "1)nez is stationary and ergodic. Therefore, we can use the ergodic

theorem [2] and obtain that
Yo L ]E(|B§H)|p)a.s, as n — 0o
So that Y, 2 E(|B")|P) which implies, Yo, 5 E(| B |P) Therefore,
0  if pH>I1,

i P
Vap = Z ‘B%H) — Bﬁfﬁ) i as n — 0o.
i=1

n

00 vf pH <1,
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Then we showed that the index of p-variation is % However, for a semimartingale, the

index must be either in [0,1] either equal to 2, i.e. % € [0,1] U {2}. But since H €
(0,1), H* € [0, 1]. Therefore, the fBm is a semimartingale only for H = 1
3.2.1.6 Long-Range Dependence

The next property of fBm is the long-rang dependency, which is determined by correlation

of increments. Recall that the mathematical definition of the long-rang dependence is:

Definition 3.2.2. A stationary sequence (X,)nen exhibits long-range dependence if
rg(n) = Cov(Xg, Xkin)

satisfy

)

n—oo CN~¢

=1.

for some constant ¢ and o € (0,1).

The covariance function of fBm. It is defined as follow:
rg(t,s) = %(tQH + 82—t — s, 5,6 > 0
Use Taylor expansion on
cov(BY — BY | Bin — Bfm_l)
gives:
rp(n) = %[(n + 1) 4 (n -1 —2n*H) ~ H2H — 1)n*"2  |n| = cc.
And therefor
1. For H € (0,3), i lrg(n)| < oo.
n=1

o

2. For  He(3,1), > |ru(n)|=oc.

n=1
The fBm have a long-range dependence property when H € (%, 1), since

lim r (1)

=1.
n—00 H(ZH — 1)n2H*2
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3.2.2 Integral representation of fractional Brownian motion frac-

tionaire

Now we show that the fractional Brownian motion can be represented as a stochastic
integral

Bl = (J/KH(t,u)dBu

Where C is a standardized constant.

3.2.2.1 Representations of the FBm on R

e Moving Average Representation

The standard fractional Brownian motion as introduced by Mandelbrot and Van

Ness is defined by the following moving average representation:

B0 = ] | 0" ot s [ -0t s |
(3.5)

where B(t) is the standard Brownian motion, I" is the gamma function. Equation (3.5])

can be written more compactly as

B0) = g | =07 = () B, (36)

o0

e Harmonizable Representation

There is another representation of the real-valued fBm using the complex-valued

Brownian motion. In fact, for a fBm (B/?);cr, we obtain

ite 5
Bl = L /6 ! |z "W dB,,  teR,
R W

where (By)er is a complex Brownian measure and

Ci(H) = (HF(ZH)Hsin(HH) ) 1/2‘

Remark 3.2.2. The complex Brownian measure on R can be splitted as B = By + iBs

and is such that By(A) = By(—A), By(A) = —By(—A) and E(B,(A))? = 4 vA € B(R).

We also call this representation, the spectral representation.
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3.2.2.2 Representions of FBm on a finite interval

e Levy-Hida Representation

The fBm admits a third representation as a Wiener integral of the form
t
BY = / Ky (t,s)dBs, t€[0,T]
0
Where B = (By)ier is a Wiener process, and Ky (¢, s) is the kernel

t
Ky(t,s)=CH(t — S)H_% + SH_%Fl (—)7
s

with Cg is a constant and

1

Fi(2) = O <§ - H> /OH 615 (1 — (64 1) 3)de.

It H> %, the kernel Ky has the simpler expression

t
Kt =enst [ a— b
S

1
where t > s and cyg = (%)2 .
) 2

3.2.3 Stochastic integration with respect to fractional Brownian

motion

As same as the classical Brownian motion case, a definition is needed for

/0 F(s,w)dB (w). (3.7)

There are several ways to reach the goal. This mean that several ways of introducing
a stochastic calculus with respect to the fBm are defined such as Wiener, divergence-
type integral, Wick-Ito, Wick-Ito-Skorohod and Fractional Wick-Ito-Skorohod integrals
for fBm. We refer the reader to [2] for further details. From the view of simulation, the

pathwise integration is which makes most sense.

3.2.3.1 Pathwise integral for fractional Brownian motion

As we have just proved fBM is not a semimartingale, hence one cannot use standard

It6 integration theory. A natural way to introduce a stochastic integral with respect to
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the fBM is to consider the Riemann sums:
> F) B (i — B (1)
i=1

where 0 = ¢, < ... < t, = T is a partition of [0,7] and then to investigate if the
convergence holds at least in probability. For a more thorough study of different types of

integration see [2]

Definition 3.2.3. By the forward integral of a process f :[0,T] x Q — R with respect to
B we mean: .
[ rat = i S )8 1~ B0 35)
0 =0
The fundamental question is when (upon what conditions) this integral exists.

Young proved that the Riemann-Stieltjes integral can be extended to functions that are

together smooth in the p—variation sense:

Theorem 3.2.5 ([9], Theorem 2.1). Suppose f € W,.g € W, for some p and q such
that % + é > 1 and have no common discontinuities. Then the Riemann-Stieltjes integral

exists.

With W, is the Banach space of all functions with bounded p—variation equipped

with the norm ||£]ly = £l + 11 1o where |71y = v,(£)F and ||l = supyeiom [£2)].

We may apply this theorem to the fBM and obtain:

Proposition 3.2.2 ([22], Theorem 6.2). Let f : [0,T] x Q — R be a stochastic process

with sample paths in W, a.s. with ¢ < ﬁ . Then the integral

T
| #sa
0
exists a.s.

Since we defined pathwise integrals in the Riemann-Stieltjes style, we have the classical

change of variables formula:

Proposition 3.2.3 (|22], Theorem 6.4). Let F € CY1([0,T] x R) such that the mapping

[0, 7] > t — 2E(t, Bff) € R is in W, for some q < {25. Then the equation

t t
F(t.BfI)—F(s,Bf):/ g—i(u.Bf)dBf—l—/ %—f(u.Bf)du

holds a.s. for all s,t € [0,T).
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The above can be regarded as an analogue of Ito’s formula.

3.3 The Weighted Fractional Brownian Motion

As an extension of the Brownian motion, Bojdecki et al. [7] introduced and studied
a rather special class of self-similar Gaussian processes which preserve many properties
of the fractional Brownian motion. This process is called weighted fractional Brownian
motion (weighted-fBm). More works for weighted-fBm can be found in Bojdecki [4, [5, 6],

Yan-An [26, 25] and references therein.

3.3.1 Definition and basic properties

Definition 3.3.1. The weighted-fBm B** = {B*" 0 < t < T} with indices a and b is a

mean zero Gaussian processes such that Bg’b =0 and
SNt
E[BA B = Qt, ) = / u[(t — u)° + (5 — w)’ldu (3.9)
0
for s,t > 0.

Remark 3.3.1. 1. For a = 0 the weighted-fBm B®*" reduces to the usual fractional

Brownian motion with Hurst parameter %(b +1).

2. For a = b = 0, B* reduces to the Brownian motion for (up to a multiplicative

constant).

Let us discussing conditions under which the function @ (symmetric, continuous) is

the covariance of a stochastic process.:
SNt
Q(s,t) = / u((t —u)® + (s — u)")du, s,t > 0. (3.10)
0

Theorem 3.3.1. The function Q defined by (3.10)) is positive-definite if and only if a and

b satisfy the condition

a>-1, —-1<b<1, [b<1+a. (3.11)
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Proof :

Firstly, we prove positive definiteness of () in the case
a>-1, -1<b<0, a+b+1>0 (3.12)
(see(3.11).) We have from ({3.10)

Q(‘S?t) = Q1<Sat) + Q2(Svt)v

where

Q1(s,t) = /OS u®((s A t) — u)du, Qs(s,t) = /08 u®((s vV t) — u)’du.

It suffices to show that both )1 and (), are positive-definite.

(21 can be written as

1
Qu(s,8) = (s A+ / (1 — u)ldu,
0

so it is positive definite by (3.12). Next, since b < 0 we can write Q)2 as

Q2(s,t) = /000 u[(s — u)’ A (t — u)?] 1,9 (u) 1, (u)du,

hence positive definiteness of ()5 follows easily.
Now assume that

a>-1, 0<b<1, b<1l+a. (3.13)
From (3.11)), @ can be transformed into
s t
Q(s,t) = b/ / (w A7) |u — r|Ptdrdu, (3.14)
o Jo

hence it is clear that @ is positive-definite for b = 1 ( note that (3.13)) implies @ > 0 in
this case). Assume b < 1; then, from (3.14)),

Q(s,t) = b/os /Ot(u/\7")“(u\/7")b1 (1 — ZC;)b_l dudr.

Using the power series expansion of (1 —.)*~! we obtain

o0

L(1—b+n) (unr)”
;b T byl //u/\r (V) Wdudr
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Each summand is positive definite, since
(uAT) (uV )P uAr) (u V)™ =ur (W AT (A ) (uT AT

(we have used that b — 1 —a < 0, by(3.13))). Hence @ is positive-definite in this case.

We will show that for the remaining values of parameters () is not positive-definite
(recall that @ is infinite if either a or b is < —1). More precisely, we will prove that there

exists ¢ > 0 such that the covariance inequality

Q(1,1) < (Q(1,1)Q(t, 1))/ (3.15)

does not hold. Indeed, for —1 < b < 0,a > —1l,a+b+ 1 < 0 and ¢ ~\, 0, the left-
hand side of ([3.15) is of order t'*** while the right-hand side is of order ¢t(1Te+0)/2  For
a>—1,b>a+1andt 7 oo the left-hand side of is of order ¢’ and the right-hand
side is of order t(1tet0)/2,

It remains to consider the case 1 < b < a + 1. We show that does not hold for

t=1+¢, ¢\ 0. Using convexity of the function x° for b > 1, we have

2

eatb1 [O+e/2)71
= 2 (1 + 5) / u®(1 — u)’du
0

g2 (atb+1)/2 1 enb+l 1
> 2(1 £ (1 — u)bd —(—) L
> ( +8+4) {/0 u( w)’du 5 b+1}

1 b
Q,1+¢) > 2/ ua<1+f—u) du
0

This implies

Q(L1+e) —(QLQ(L +¢,1+¢))"/?

1
= Q(1,1+5)—2(1+5)(“+b+1)/2/ u(1 — u)bdu
0

52 (a+b+1)/2 1
<1 +e+ Z) _ (1 + 8)(a+b+l)/2 / ua(l B u)bdu
0

1 2\ (a+b+1)/2
— m (1 + e+ Z) 5b+1 Z A€2 — B€b+1 (316)

vV

2
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for some positive constants A, B. In the last estimate we have used the fact that a+b+1 >

2b> 2.

The right-hand side of (3.16]) is strictly positive for e sufficiently small, since b > 1, so
(3.15)) does not hold for such .l

In the next theorem we collect the main properties of wiBm.
e The basic properties of wfBm.

Theorem 3.3.2. The weighted fractional Brownian motion B*" with parameters a and b

has the following properties:
1. Self-simailarity:

(Bgt’b)tzo < (Cl+a+b)/zBf’b)tzo foreach ¢ > 0.

2. Second moments of increments: for 0 < s <t

t
E(B — B2 = 9 / (¢ — u)’du, (3.17)

E(BM" — B**)? < Ot — s|"*, (3.18)

ifa>0,s,t<T for any T > 0 with C = C(T), and also if a < 0,s,t > & >0
for any € > 0, with C = C(e);

E(BM — B®")? < Clt — s[5t >0, (3.19)

ifa<0, l+a+b>0;

E(BM — B*)? > Ot — s|'* (3.20)

ifa>0,s,t>¢e>0 for any e > 0 with C = C(g) and also if a < 0,s,t < T
for any T > 0 with C = C(T)
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3. Covariance of increments: For 0 <r <v <s <t,

Qr.v.s.t) = (B - BBy - B = [ (= ) - (s — w)fldu, (321)

hence
>0 if b>0
Q(T’,'U,S,t): :0 'Lf b:O
<0 if b<O

4. Asymptotic homogeneity: The finite-dimensional distributions of the process
(T*a/2(ijrbT — B3"))i=0 converge as T — oo to those of fBm with Hurst paramter

(14 b)/2, multiplied by (2/(1 + b))"/2.

5. Short and long-time asymptotics:

2

. —b—1 ab  paby2 _ a
ll{(%E E(Bit. — B/™) b1 1t , (3.22)
1
Jim Tt R(BRY. — BEYY =2 / u(1 — u)bdu. (3.23)
— 00 0

Hence B*" has asymptotically stationary increments for long time intervals, but not

for short time intervals.
6. B** is not a semimartingale if b # 0.
7. B is not Markov if b # 0.

Proof :

1. Self similarity follows from ((3.9), [7]).

2. Formula (3.17)) is a direct consequence of (3.9)), and (3.18)) follows from (3.17). To
prove (3.19)), first observe that if a < 0,0 > 0, (3.17)) implies

2
E(Bta,b - Bg,b)Z S + 1 |t o S‘b‘ta+1 _ S(Jﬁi’l‘ S + 1 ’t _ S|1+a+b.
a a

Next assume that a < 0,b < 0,14+a+b > 0. Fix any 6 such that |a|/(1+b) < 8 < 1,

and put p = 6/|a|] and ¢ = 0/(0 — |a|). For s < t, the Holder inequality applied to
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(3.17) yields

R(B - Bit)?

IN

2 ( / t u"“pdu> " ( / t(t — u)quu> v

C(tap—H . Sap+1)1/p(t . S)(bq+1)/q

IA

IN

C(t o S)1+a+b
since 0 < ap + 1 < 1. The inequality (3.20]) follows from (3.17)).

3. Formula (3.21)) follows from (3.9)).
4. For 0 < s <t, by (3.17) and (3.21]) we have

1 s+T
Te Jr
u

= [ G+1) =+ (s~

1
N =" 1(tb+1 4 8b+1 + Sb+1 _ (t _ S)bJrl)

1 a a a, a,
_E((Bt—;-bT - BT’b)<Bsz - BTb)) -

Ta u(t+T —u)’+ (s +T —u)’)du

as T — oo hence the assertion follows because B*? is Gaussian.

5. For the proofs of (3.22) and (3.23)), see [7].

6. The non-semimartingale property follows from (3.18)), (3.20)) and ([7], Corollary 2.1).

7. For b # 0 the covariance ([3.10) does not have the triangular property, so B*? is not

Markovian (see [13], Proposition 13.7).
e Holder continuity
Theorem 3.3.3. Under the condition a > —1, |b| <1, |b] <1+ a, we have
E[B" — B&)?] < (t v )|t — 5|+
for s,t > 0. In particular, we have
E[BY — BEY)?) < Coplt — s[4
fora <0

where,
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e zVy:=max{r,y}

e [’ =< (G with the meaning that there are positive constants ¢; and ¢ so that ¢;G(x) <

F(z) < ¢oG(x) in the common domain of F" and G.

Proof:For all t > s > 0 we have

Qt,s) = (B — B =2 / w(t — u)’du

s

1
— 2ta+b+1/ Ta<1 o T)de

Consider the function

x— f(x)= / r*(1 —r)dr, z€[0,1]

for all a,b > —1. We have
f(z) 1

ilgilt (1—x)1+b: 1+0

for all a,b > —1, which gives
1
/ r*(1 —r)dr < (1 —2)"**. 2 €10,1]

In particular, for a < 0 we have (1 — x)1* = (1 — z)1tett,
Thus, Kolmogorov’s continuity criterion implies that weighted-fBm is Holder continuous

of order d for any 6 < 1+ b.l

e Long/short-range dependency:

Theorem 3.3.4. Let B*® be a weighted-fBm with a > —1, —1<b<1and|b|<1+a
o Ifb> 0, then B*" is long-range dependence;
o Ifb <0, then B*" is short-range dependence.

Proof:

For any @ > 0 and n > a + 1 we have

pula) = EI(BeL, — Ba%)(Baly — Ba®)).
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a+1
_ / w(n 41— ) — (n— u)]du.
If b > 0, we have

0<(ntl-ul—(n—u)l=m+1—u [1—(1—;)1.

~(n+1- u)b’l,

foralla <u<a+1, and

1 1((a 4 1)1+a o a1+a)(n L1 a)b—l’

a+1
pnl() ~ / u(n 41 —u)"du >
o a

which deduces:

Z pn(a) = 00,

n>o

if b < 0, we have

0<(n-u)—@n+1l-u)’=n-u’ [1_ (1+niu)b] ~ (n—u),

foralla <u<a+1 ,and

a+1
@]~ [t = e < (e )7 — - a - 1P

a+1

which deduces the following sum
> lpala)] < oo
n>o

This completes the proof.l

3.4 Application

Since a financial system is a complex system with great flexibility, investors do not make
their decisions immediately after receiving the financial information, but rather wait until
information reaches to its threshold limit value. This behavior can lead to the features of
"asymmetric leptokurtic" and "long/short memory". The weighted fractional Brownian

motion may be a useful tool for capturing this phenomenon.
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3.4.1 A Weighted-fractional (Merton weighted fractional) model
to European option pricing

In this section we consider the following dynamics for V' :
dV, = uV,dt + oV,dB™", (3.24)

where B}’ * denotes a weighted fractional Brownian motion defined on the probability space
(Q, F,P). Stochastic integration in (3.24) is of divergence-type [2I]. Let Q = Cy(0,T;R)
be the Banach space of a real-valued continuous function on [0, 7] with the initial value

zero and the super norm.

In what follows we model long-range dependence of financial assets under the as-
sumption b > 0, and denote by ¢(.) the cumulative probability distribution function of a

standard normal random variable:

1" 1,
@) = —= / exp(—gut)da

and by ¢(.) = ¢(.) the density function.

Pricing using Fair Premium

Consider a financial market in which we have two securities: a bond (Security 1) with
(instantaneous) interest rate which is also interpreted as the risk-free rate of interest, and
a stock (Security 2) which is described by the stochastic price process (pay-out) V; at
time t. A time interval [0,7] considered with 0 being the initial or present time and T
being the terminal time. The price of Security 2 is denoted by V,. We are interested in
calculating the pricing of a European call option C(K,T), say, written on Security 2 with

strike price K and time to maturity 7' .

Definition 3.4.1. The value {V;} results in an expected (instantaneous) rate of return p

and T 1s defined as
uT E[VT]
Vo

Since nothing has been assumed about the process {V;}, p will in general depend on T .
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Lemma 3.4.1. (M. Bladt, [5])
The fair premium, and hence the call option price, C(K,T), of a European call option

with time to maturity T and strike price K is given by
C(K,T)=E[(e Vs — e ""K)1{o-uryyse—rri))

and the put option price, P(K,T), of a European put option with time to maturity T and
strike price K 1s given by
P(K,T)=E[(e"TK — e*uTVT)l{e_HTVTQ_TTK}].

According to Alos et al [1] (see also Yan-An [25]), we have the following.

Lemma 3.4.2. [2]]/The solution to Equation (3.24)) is given by
t
Vi = Voexp <,ut - 0'2/ u®(t — u)’du + an’b) : (3.25)
0

Theorem 3.4.1. The fair premium, and hence the call option price, C(K,T), of a Eu-

ropean call option with time to maturity T and strike price K, is given by

C(K,T) = Voo(d) — KeT¢(da),

where
J In® +rT + o* fOT u(T — u)’du
1 prm—
a\/Q fOT us(T — u)bdu
and
y In%e — T — o* fOT u(T — u)bdu
2 =
a\/Q fOT us(T — u)bdu
Proof:

Fix T > 0, for ¢t € [0,T], the weighted fractional Brownian motion B{"’ is a centered

Gaussian process with variance 2 fOT u®(T — u)’du. According to (3.25)), we have

Vi t
L —exp (,ut — 02/ u®(t — u)’du + JBf’b> :
Vo 0

Then

Vi t
log— = ut — o / u(t — u)’du + o B
Vo 0
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which means log% is a Gaussian process with mean s — o fg u®(t — u)du and variance
202 fg u®(t—u)bdu. The distribution of V7 at T is in fact the only thing we need since only
the price at the terminal date matters. Then noticing that e **Vy > e "7 K is equivalent

to
logi: + 0 fOT u(T — u)’du — rT

g

T

From the Lemma [3.4.1] the call option price, C(K,T'), of a European call option with

time to maturity 7" and strike price K is given by
C(K,T) =E[(e Vs — e " K)1{-urypse—rriy)-
First get that with

B logvﬁ0 +0? fOT u(T — u)bdu — rT

g

Y

E[GMTVTI{B*#TVTNTTTK}]
22
1 e_4foT u(T—wbdu ]
\/47r fOT u(T — u)bdu

_(z—20 f(,)T ua‘(T—u)bolu)2
4fOT w@(T—u)bdu dx

0o
e—p,T/ VbeuT—UZ fOT u(T—u)ldutox
Y

o 1
v [ _ ¢
Y \/47r Jo v (T —u)bdu
= WP(Z >y),

where Z ~ N (20 fOT u(T — u)’du, 2 fOT u®(T — u)’du). Furthermore

In% + 7T + o2 fOT u(T — u)bdu

a\/2 fOT u(T — u)bdu

P(Z>y)=¢

On the other hand
In¥e 4+ 7T — o? fOT u(T — u)bdu

a\/Q fOT u(T — u)bdu

Ele"" Vil e-urypse—rriy] = € Ko

Then the proof of this theorem is complete.ll

Corollary 3.4.1. The put option price, P(K,T) of an European put option with time to

maturity T and strike price K is given by
P(K,T) = Ke ™ ¢(—dy) — Vod(—d,).

Proof: The proof can be found in [21]



Conclusion

Ur interest through this work has been focused on the fractional calculus and a
O class of fractional stochastic processes, we begin by giving a very brief overview
on stochastic calculus theory in the first chapter. The second chapter presented some
frequently used differintegral operators in fractional calculus theory with application to

the respiratory system.

We extend the fractional paradigm from calculus to stochastic processes in the last
chapter by studying the weighted fractional Brownian motion (wfBm). After recalling
some basic notions such as the self-similarity, the long range dependency, we have stud-
ied the fractional Brownian motion by giving its essential properties, representations and
stochastic integration with respect to it. We have concluded this master thesis by intro-
ducing the weighted fractional Brownian motion (wfBm), we showed that this process is
made up of self self-similar, long-range dependence, Gaussian fractional processes which
depends on two real parameters a, b. It includes fractional Brownian motion when a = 0,
standart Brownian motion when a = b = 0. Then some of the basic properties of this
process were discussed. The most ones, which are analogous to those of fBm, are self-
similarity, path continuity, behavior of increments and long-range dependence. B’ is
neither a semi-martingale nor a Markov process unless b = 0. Although, the wfBm B®?
has not stationary increments in general. wfBm widens the scope of behavior of fBm,
it may be useful in some domain of applications such as finance as we have seen, more

precisely the option pricing problem in the weighted fractional Brownian motion model.

This can be extended to several directions in the future. Other fractional Gaussian/non
gaussian processes can be studied, stochastic integration, stochastic differential equations

driven by one of them and more of their application can be viewed in the future.
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