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Introduction

La théorie des équations différentielles est un vaste domaine aussi bien en mathématiques
pures qu’en mathématiques appliquées. Celles-ci sont utilisées pour construire des modèles
mathématiques de phénomènes physiques et biologiques.

La théorie des équations différentielles ordinaires impulsives a été initialisée en 1960 par
V. Milman et A. Myshkis, elle a connait une période de développement de 1960 à 1975.
Ensuite, de 1975 à 1990, le mérite du développement de cette théorie et de sa popularisation
revient au mathématicien américain V. Lakshmikantham.

A partir de 1991, en plus de Lakshmikantham, d’autres mathématiciens comme L. Bys-
zewski, D. Bainov contribuaient à l’enrichissement de la théorie des équations différentielles
impulsives où ils lancèrent différentes études sur ce sujet et beaucoup de résultats ont été
obtenus dès lors [4].

De nos jours, les systèmes impulsifs (différentielles et aux différences) sont devenus de
plus en plus importants dans certains processus réels et phénomènes étudiés en physique,
en pathologie [42], en technologie chimique [26], en dynamique des populations [63, 64], en
biotechnologie, surtout dans les réseaux de neurones biologiques [36] et en économie [32].
Ces dernières années, il y a eu un développement important dans la théorie des équations
différentielles impulsives avec moments fixés, voir les ouvrages [9], [62] et [70].

Ce mémoire comprend quatre chapitres.

Le premier chapitre intitulé “Préliminaires”, contient un ensemble de définitions et
résultats qui nous seront utiles pour la suite de cette étude. Il est divisé comme suit :

• Dans la section 1, nous donnons en quelques lignes un aperçu sur les équations différen-

4



tielles impulsives.
• La section 2, sera consacrée aux différentes définitions de base.
• La section 3, nous donnons quelques définitions et théoremes de point fixe.
• La section 4, sera réservée à un petit rappel sur l’analyse multivoque.

Le deuxième chapitre intitulé “Equations différentielles impulsives”, on traitera l’exis-
tence des solutions par le théoreme de Banach et par le théoreme de Krasnoselskii pour les
équations différentielles impulsives.


ẏ(t) = f(t, y(t)), t 6= tk

y(t+k )− y(t−k ) = Ik(y(tk)), t = tk
y(t+0 ) = y0

(1)

Où, f : Ω ⊂ Rn → Rn, avec Ω est un domaine de Rn, I : Ω ⊂ Rn → Rn sont des fonctions
continues.

Le troisième chapitre intitulé “Systèmes d’équations différentielles impulsives”, on trai-
tera l’existence des solutions pour le systhème suivant :

x′(t) = f(t, x, y), t ∈ J := [0,∞), t 6= tk, k = 1, . . . ,
y′(t) = g(t, x, y), t ∈ J, t 6= tk, k = 1, . . . ,

x(t+k )− x(t−k ) = Ik(x(tk), y(tk)), k = 1, . . . ,
y(t+k )− y(t−k ) = Ik(x(tk), y(tk)), k = 1, . . . ,

x(0) = x0,
y(0) = y0,

(2)

Où x0, y0 ∈ R, f, g : J × R × R → R sont des fonctions données, Ik, Ik ∈ C(R × R,R).
Les notations x(t+k ) = limh→0+ x(tk +h) et x(t−k ) = limh→0+ x(tk−h) sont les limites à droite
et à gauche des fonctions y à t = tk, respectivement.

Le quatrième chapitre intitulé “Equations aux différences impulsives”, sera consacré au
notions sur le calcul aux différences et à l’existence et unicité des solutions pour le problème
discret suivant :



∆x(n) = f(n, x(n), y(n)), n 6= nk,
∆y(n) = g(n, x(n), y(n)), n 6= nk,

∆x(nk) = Bkx(nk), n = nk
∆y(nk) = B̄ky(nk), n = nk

x(0) = x0,
y(0) = y0,

(3)

f, g : N×Rn×Rn → Rn sont des fonctions ; Bk, B̄k sont des constantes k ∈ N. Les impulsions
{nk}∞1 sont des entiers naturels et satisfaits 0 = n0 < n1 < · · · < nk < . . . .
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Notations

Dans tout ce mémoire on désignera par

C : l’ensemble des nombres complexes.

R : l’ensemble des nombres réels.

R+ : l’ensemble des nombres réels positifs.

R∗+ : l’ensemble des nombres réels strictement positifs.

N : l’ensemble des nombres naturels.

N∗ : l’ensemble des nombres naturels non nuls.

Nn0 = {n0, n0 + 1, . . .} où n0 ∈ N

x(t+j ) := lim
t→t+j

x(t)

x(t−j ) := lim
t→t−j

x(t)
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Chapitre 1

Quelques notions et résultats
préliminaires

Ce chapitre est consacré aux rappels de quelques définitions et résultats qui seront utilisés
dans la suite.

1.1 Un aperçu historique sur les équations différentielles
impulsives

De nos jours, les systèmes impulsifs sont devenus, de plus en plus, importants dans cer-
tains processus réels et phénomènes naturels. Par exemple, en physique, en dynamique des
populations, en biotechnologie, en économie, etc.

La théorie des équations différentielles impulsives a été initiée par A. Mishkis et V.D. Mil’man
en 1960. Le développement de cette théorie était relativement lent à cause de la difficulté de
manipulation de telles équations. Après, beaucoup de chercheurs ont participé à l’enrichisse-
ment de cette théorie où ils lancèrent différentes études sur ce sujet et beaucoup de résultats
ont été obtenus dès lors.

1.2 Définitions et notions fondamentales
Soit J := [0, T ], T > 0 et E un espace de Banach, muni de la norme ‖.‖.

Notons C(J,E) l’espace de Banach des fonctions continues y : J → E, muni de la norme

‖y‖∞ := sup{‖y(t)‖, t ∈ J}.

Définition 1.2.1. Soit E un espace vectoriel sur le corps K = R ou C, on appelle norme
sur l’espace E toute application notée ‖.‖ définie sur E à valeurs dans R+, vérifiant pour
tout x, y dans E et α dans K
i) ‖x‖ = 0 si seulement si x = 0.
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ii) ‖αx‖ = |α|.‖x‖.
iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (inégalité triangulaire).

Définition 1.2.2. Un espace vectoriel normé E est un espace de Banach s’il est complet.
Autrement dit, E est complet si toute suite de Cauchy dans E est convergente.

Exemple 1.2.1. C([a, b],Rn) avec a, b ∈ Rn est l’espace de Banach des fonctions continues
y : ([a, b])→ Rn, muni de la norme

‖y‖∞ := sup
t∈[a,b]

‖y(t)‖.

Soit J = [0, b], L1(J,R) est l’espace de Banach des fonctions mesurables x : J → R qui sont
Lebesgue intégrable avec la norme

‖x‖1 =

∫ b

0

‖x(t)‖ds.

On désigne par AC(J,R) : l’espace des fonctions absolument continues sur J . Notons ACi(J,Rn),
l’espace des fonctions y : J → Rn qui sont i-emme fois différentiables et dont la i-emme dé-
rivée y(i) est absolument continue.

Définition 1.2.3. (Fonction Carathéodory)
Soient X, Y deux espaces de Banach. Une application f : J ×X → Y est dite Carathéodory
si f vérifie :
(1) t→ f(t, x) est mesurable pour tout x ∈ X,
(2) x→ f(t, x) est continue presque pour tout t ∈ J .

L’application f est dite L1 - Carathéodory si f est Carathéodory et on a ∀q > 0,∃lq ∈
L1(J,R+) :

‖f(t, x)‖ ≤ lq(t) p.p. t ∈ J,∀‖x‖ ≤ q

Exemple 1.2.2. Soient h : J → Y une fonction mesurable et g : X → Y une fonction
continue, alors la fonction f : J×X → Y définie par f(t, x) = h(t) +g(x) est Carathéodory.

Définition 1.2.4. (Fonction localement lipschitzienne)
Soient J un intervalle, D un ouvert de Rn, f : J × D 7→ Rn. Soient (t0, y0) ∈ J × D. Soit
U ⊂ D un voisinage du point y0. On dit que f est lipschitzienne par rapport à la variable y
dans le voisinage U s’il existe une constante L > 0 et il existe un voisinage V ⊂ J du point
t0 tels que :

‖f(t, y1(t))− f(t, y2(t))‖ ≤ L‖y1(t)− y2(t)‖ pour y1(t), y2(t) ∈ U, t ∈ V.

Définition 1.2.5. Soient (X, d) et (Y, δ) deux espaces métriques. Soit k un réel strictement
positif. On dit que f : X → Y est lipschitzienne de rapport k si

∀x, y ∈ X : δ(f(x), f(y)) ≤ kd(x, y)

Si de plus k < 1, on dit que f est contractante.
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Exemple 1.2.3. La fonction f : R→ R+ :

f(y) =
√
y

n’est pas lipschitzienne au voisinage de y = 0.
En effet :

lim
(y1,y2)→(0,0)

| f(y1)− f(y2) |
| y1 − y2 |

=∞

Et par conséquent il ne peut pas exister une constante L vérifiant la condition de Lipschitz.
Cependant f est Lipschitzienne sur tout intervalle [a, b] avec b > a > 0.
En effet pour tout y1(t), y2(t) ∈ [a, b] on a :

|
√

(y1)−
√

(y2) |
| y1 − y2 |

=
1

| y1 − y2 |
≤ 1

2
√
a
.

Et donc la condition de Lipschitz est vérifiée avec L = 1
2
√
a
.

Remarque 1.2.1. (1) Si une fonction (d’une variable) est dérivable au voisinage d’un point
et la dérivée est bornée dans ce voisinage, alors la fonction est localement lipschitzienne.
La réciproque est fausse : il y a des fonctions lipschitziennes qui ne sont pas dérivables.

(2) Si une fonction est de classe C1 alors elle est localement lipschitzienne.

Définition 1.2.6. Soient E et F deux espaces de Banach. On appelle opérateur borné toute
application linéaire continue de E dans F.

Définition 1.2.7. (Opérateur complètement continu).
Soient E et F deux espaces de Banach et f une application définie de E à valeurs dans F. On
dit que f est complètement continue si elle est continue et transforme tout borné de E en un
ensemble relativement compact dans F.

Définition 1.2.8. (Ensemble uniformément borné).
On dit que M ⊂ C(E,F ) est uniformément borné s’il existe un nombre réel c > 0 tel que :

‖x(t)‖ ≤ c,∀x ∈M

Définition 1.2.9. (Partie équicontinue).
Soient (E, d) un espace métrique et F un un espace vectoriel normé. On dit qu’une partie
A(E ; F) est équicontinue si, pour tout ε > 0 il existe α(ε) > 0 telle que pour tout f ∈ A, on
a

‖f(x)− f(y)‖F ≤ ε pour tout x, y ∈ E et d(x, y) < α(ε).

Définition 1.2.10. (Théorème d’Arzela-Ascoli).
Soient E un espace métrique complet, et J un ensemble compact de R, soit A un sous en-
semble de C(J,E), A est relativement compact dans C(J,E) si et seulement si les conditions
suivantes sont vérifiées :
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1. L’ensemble A est uniformément borné i.e il existe une constante K > 0 tel que :

‖f(x)‖ ≤ K pour tout x ∈ J et tout f ∈ A

2. L’ensemble A est équicontinu i.e pour tout ε > 0 il existe δ > 0 tel que

| t1 − t2 |≤ δ ⇒ ‖f(t1)− f(t2)‖ ≤ ε pour tout t1, t2 ∈ J et tout f ∈ A

3. Pour tout x ∈ A, l’ensemble {f(x); f ∈ A} ⊂ E est relativement compact.

Théorème 1.2.1. (Convergence dominée de Lebesgue).
Soit Ω un ouvert de Rn et (fn) une suite de fonctions de L1. On suppose que
i) fn(x)→ f(x) p.p sur Ω.

ii) Il existe une fonction g ∈ L1 tel que pour chaque n, | fn(x) |≤ g(x) p.p sur Ω, Alors

f ∈ L1(Ω) et ‖fn − f‖L1 → 0.

Définition 1.2.11. (Semi-groupes uniformément continus d’opérateurs linéaires bornés).
Soit (X, ‖.‖) est un espace de Banach.
• Une famille à un paramètre (T (t))t≥0 d’opérateurs linéaires bornés de X dans X est dite

un semi-groupe d’opérateurs linéaires bornés sur X si :
(i) T (0) = I (où I est l’opérateur identité de X).
(ii) T (t+ s) = T (t)T (s),∀t, s ≥ 0.

• un semi-groupe (T (t))t≥0 d’opérateurs linéaires bornés sur X est dit uniformément continu
sur X si :

lim
t→0+
‖T (t)− I‖ = 0, (1.1)

• L’opérateur linéaire A défini par :

D(A) =
{
x ∈ X, lim

t→0+

T (t)x− x
t

existe dans X
}
,∀x ∈ D(A)

et
Ax = lim

t→0+

T (t)x− x
t

=
dT (t)x

dt
|t=0,

est appelé le générateur infinitésimal du semi-groupe (T (t))t≥0 et D(A) est appelé le
domaine de A.

Définition 1.2.12. (C0-semi-groupes d’opérateurs linéaires bornés).
Un semi-groupe (T (t))t≥0 d’opérateurs linéaires bornés sur X est dit fortement continu si :

lim
t→0+
‖T (t)x− x‖ = 0,∀x ∈ X, (1.2)

Un semi-groupe fortement continu sur X est aussi appelé C0-semi-groupe sur X.
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Théorème 1.2.2. Soit (T (t))t≥0 C0-semi-groupe sur X. Alors il existe deux constantes ω ≥ 0
et M ≥ 1 telles que :

‖T (t)‖ ≤Meωt, ∀t ≥ 0.

Théorème 1.2.3. (Hille-Yosida).
Soit A : D(A) ⊂ X → X un opérateur linéaire tel que :

(i) A est fermé et D(A) est dense dans X,
(ii) il existe M ≥ 1 et ω ≥ 0 tels que

ρ(A) ⊃ {λ ∈ C : |Re(λ)| > ω}

et pour Reλ > ω, n = 1, 2, . . .

‖(A− λI)−n‖L(X) ≤
M

(Reλ− ω)n

Alors A est le générateur infinitésimal d’un C0 semi-groupe (T (t))t≥0

Définition 1.2.13. (Espace métrique généralisé).
Si v, r ∈ Rm, v := (v1, . . . , vm) et r := (r1, . . . , rm) alors v ≤ r si vi ≤ ri pour tous
i = 1, . . . ,m.
Aussi |v| := (|v1|, . . . , |vm|) et max(u, v) := (max(u1, v1), . . . ,max(um, vm)). Si c ∈ R, alors
v ≤ c si vi ≤ c pour tous i ∈ {1, . . . ,m}.
Soit X un ensemble non vide et considérons l’espace Rm

+ . L’application d : X × X → Rm
+

qui vérifie tous les axiomes habituels de la métrique est appelée une métrique généralisé au
sens de Perov et (X, d) est appelé espace métrique généralisé.

Pour r := (r1, r2, . . . , rm) ∈ Rm
+ , on note par

B(x0, r) = {x ∈ X : d(x0, x) < r},

La boule ouverte centrée en x0 et de rayon r

B(x0, r) = {x ∈ X : d(x0, x) ≤ r}

La boule fermée centrée en x0 et de rayon r
Les notions de convergence, suite de cauchy et les sous ensembles ouverts et fermés dans
le cas des espaces métrique généralisé sont similaires à ceux correspondants dans l’espace
métrique habituel.

Définition 1.2.14. (Matrice convergente).
Une matrice carrée M ∈Mm×m(R+) de nombres réels est convergente vers zéro si et seule-
ment si An → 0 quand n→∞.

Lemme 1.2.1. Soit A ∈Mm×m(R+). Alors les assertions suivantes sont équivalentes :
• A est une matrice convergente vers zéro ;
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• les valeurs propres de A sont dans le disque ouvert unité,i.e., | λ |< 1, pour tous λ ∈
C avec det(A− λI) = 0;

• La matrice (I − A) est non-singulière et (I − A)−1 a des éléments non négatifs ;
• Anq → 0 et qAn → 0 quand n→∞, pour tous q ∈ Rm.

Exemple 1.2.4. Exemples de matrices qui convergent vers zero :

1. A =

(
a a
b b

)
, où a, b ∈ R+ et a+ b < 1 ;

2. A =

(
a b
a b

)
, où a, b ∈ R+ et a+ b < 1 ;

3. A =

(
a b
0 c

)
, où a, b, c ∈ R+ et max{a, c} < 1.

Définition 1.2.15. (Opérateur contractif).
Soit (X, d) un espace métrique généralisé. Un opérateur N : X → X est contractif s’il existe
une matrice convergente vers zéro A tel que

d(N(x), N(y)) ≤ Ad(x, y),∀x, y ∈ X.

Théorème 1.2.4. Soit (X, d) un espace métrique généralisé complet et N : X → X un
opérateur contractif avec la matrice de Lipschitz A. Alors N a un point fixe unique x∗ et
pour tout x0 ∈ X on a

d(Nk(x0), x
∗) ≤ Ak(I − A)−1d(x0, N(x0)) pour tout k ∈ N.

1.3 Théorèmes de point fixe
Les théorèmes de point fixe sont les outils mathématiques de base qui aident à établir

l’existence de solutions de divers genres d’équations. La méthode du point fixe consiste à
transformer un problème donné en un problème de point fixe. Les points fixes du problème
transformé sont ainsi les solutions du problème donné.

Dans cette section nous rappelons les théorèmes célèbres du point fixe que nous allons
utiliser pour obtenir des résultats d’existence variés. Nous commençons par la définition d’un
point fixe.

Définition 1.3.1. Soit f une application d’un ensemble E dans lui même. On appelle point
fixe de f tout point u ∈ E tel que

f(u) = u.

Le principe de contraction de Banach, qui garantit l’existence d’un point fixe unique d’une
contraction d’un espace métrique complet à valeurs dans lui-même, est certainement le plus
connu des théorèmes de point fixe. Ce théorème prouvé en 1922 par Stefan Banach est basé
essentiellement sur les notions d’application Lipschitzienne et d’application contractante.
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Théorème 1.3.1. (Principe de contraction de Banach)
Soit E un espace métrique complet et soit F : E → E une application contractante, alors F
possède un point fixe unique.

Le deuxième théorème de point fixe qu’on va énnoncer est celui de Schauder.

Théorème 1.3.2. Soit C une partie convexe et fermée d’un espace de Banach E et soit
F : C → C un opérateur continu et compact . Alors F possède au moins un point fixe.

Théorème 1.3.3. (Théorème du point fixe de Brouwer).
Soit C un compact, convexe non vide de Rn et f : C → C une application continue. Alors f
admet au moins un point fixe dans C.

Théorème 1.3.4. (Alternative non linéaire de Leray et Schauder).
Soit E un e.v.n. et B := B(0, R) une boule fermée dans E. Supposons que f : B → E est
une application continue, compacte. Alors
(a) Ou bien f possède un point fixe dans B.
(b) Ou bien il existe x ∈ ∂B et λ ∈]0, 1[ tel que x = λf(x).

Théorème 1.3.5. [28] (Théorème du point fixe de Krasnoselskii).
Soit (E, ‖.‖) un espace de Banach, et soit M une partie non vide, convexe et fermée de E.
On suppose que A,B : M → E sont deux applications satisfaisant :
• Ax+By ∈M,∀x, y ∈M
• A est continue et AM est contenu dans un ensemble compact,
• B est une contraction.
Alors ∃x∗ ∈M,Ax∗ +Bx∗ = x∗.

1.4 Quelques définitions d’analyse multivoque
Pour un éspace métrique (X, d), les notations suivantes seront employées dans tout ce

mémoire
• P(X) = {A ⊂ X : A 6= ∅}
• Pf (X) = {A ∈ P(X) : A fermé }
• Pcp(X) = {A ∈ P(X) : A compact }
• Pcv(X) = {A ∈ P(X) : A convexe }, avec X muni d’une structure d’un espace vectoriel.
• Pcv,cp(X) = Pcv(X) ∩ Pcp(X)

Définition 1.4.1. Une multifonction (ou application multivoque) (ou multi application) F
d’un espace X vers un espace Y est une correspondance qui associe à tout élément x ∈ X
un sous-ensemble F (x) de Y . On notera F : X → P(Y ) (les notations F : X → 2Y et F :
X → ◦Y sont aussi utilisées dans la littérature )

14



Définition 1.4.2. On appelle graphe de la multifonction F , l’ensemble

Graph(F ) = {(x, y) ∈ E × F : y ∈ F (x)}

F est à graphe fermé si Graph(F) est fermé dans X × Y . On dira aussi que F est fermée

Définition 1.4.3. On appelle image de F l’union des images F (x) :

Im(F ) =
⋃
x∈X

F (x)

et le domaine de F , l’ensemble

Dom(F ) = {x ∈ X : F (x) 6= ∅}

Définition 1.4.4. Soit F : X → P(Y ) une application multivoque. On dira que F est
fortement mesurable si pour chaque fermé U ⊂ Y , l’ensemble F−1(U) = {x ∈ X : F (x)∩U 6=
∅} est mesurable dans X.

Lemme 1.4.1. [14]
Soit X un esace normé séparable.L’application multivoque : F : J → P(X) est mesurable si
et seulement si pour chaque x ∈ X, la fonction ϕ : J → [0,+∞[ définie par

ϕ(t) = d(x, F (t)) = inf{‖x− y‖ : y ∈ F (t)}, t ∈ J

est lebesgue mesurable.

Définition 1.4.5. Soit (E, ‖.‖) un espace de Banach et F : E → P(E) une application
multivoque. On dit que F a un point fixe s’il existe x ∈ X tel que x ∈ F (x). L’ensemble
des points fixes de F sera noté par Fix(F ). On dit que F est à valeurs (fermés) convexes si
F (x) est fermé convexe pour tout x ∈ X et F est localement borné si F (A) = ∪x∈AF (x) est
borné dans E pour tout ensemble A ⊂ E, c.à.d.

sup
x∈A
{sup{‖y‖} : y ∈ F (x)} <∞

Définition 1.4.6. Soient (X, d) et (Y, ρ) deux espaces métriques et soit F : X → P(Y ) une
application multivoque.
On dit que F est semi-continu supérieurement (s.c.s) sur X si pour chaque x0 ∈ X l’ensemble
F (x0) est un ensemble non vide, et si pour chaque sous ensemble ouvert N de Y contenant
F (x0), il existe un voisinage ouvert M de x0 tel que F (M) ⊂ N . C’est à dire, si l’ensemble
F−(V ) = {x ∈ X : F (x) ∩ V 6= ∅} est fermé pour n’importe quel ensemble fermé V dans Y .
D’une manière équivalente, F est s.c.s si l’ensemble F+ = {x ∈ X : F (x) ⊂ V } est ouvert
pour chaque ouvert V dans Y .
La fonction F est semi-continue inférieurement (s.c.i) si l’image inverse de V par F

F−(V ) = {x ∈ X : F (x) ∩ V 6= ∅}
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est ouverte pour chaque ouvert V dans Y . D’une manière équivalente, F est s.c.i si le noyau
de V par F

F+(V ) = {x ∈ X : F (X) ⊂ V }
est fermé pour n’importe quel ensemble fermé V dans Y .
En conclusion, pour une fonction à valeurs multiples F : J × Rn → P(Rn), on prend

‖F (t, z)‖p := sup{‖v‖; v ∈ F (t, z)}

Définition 1.4.7. Une fonction multivoque F est dite Carathéodory si :
(a) la fonction t→ F (t, z) est mesurable pour chaque z ∈ Rn ;
(b) pour tout t ∈ J la fonction z → F (t, z) est semi-continue supérieurement, p.p.
En outre, elle est L1- Carathéodory si F est localement intégrablement bornée, c.à.d. pour
chaque nombre réel positif r , il existe hr ∈ L1(J,R+) telle que

‖F (t, z)‖p ≤ hr(t) p.p t ∈ J,∀‖z‖ ≤ r

Lemme 1.4.2. Soit X un espace de Banach. Soit F : [0, b]×X → Pcp,cv(X) une multifonc-
tion L1-Carathéodory avec SF,y 6= 0 et soit Γ un opérateur linéaire continu de L1([0, b], X)
dans C([0, b], X), alors l’opérateur

Γ ◦ SF : C([0, b], X) → Pcp,cv(C([0, b], X))
y 7→ (Γ ◦ SF )(y) := Γ(SF,y)

est à graphe fermé dans C([0, b], X)× C([0, b], X), où

SF,y = {v ∈ L1([0, b], X) : v(t) ∈ F (t, y(t)); t ∈ [0, b]}

Définition 1.4.8. On considère la distance pseudo-métrique de Hausdorf :

Hd : P(Rn)× P(Rn)→ R+ ∪ {+∞}

définie par
Hd(A,B) = max{sup

a∈A
d(a,B), sup

bnB
d(A, b)}

où d(A, b) = infa∈A, d(a,B) = infb∈B d(a, b) . Donc (Pb,f (Rn, Hd) est un espace métrique et
(Pbf (Rn, Hd) est un espace métrique généralisé. D’ailleurs, Hd satisfait l’inégalité triangu-
laire. Et si x0 ∈ Rn, on a

d(x0, A) = inf
x∈A

d(x0, x) et Hd({x0}, A) = sup
x∈A

d(x0, x)

Définition 1.4.9. Une multifonction F : Rn → P(Rn) s’appelle :
(a) k-Lipschitz s’il existe k > 0 telle que

Hd(F (x), F (y)) ≤ kd(x, y),∀x, y ∈ Rn

(b) Une contraction si elle est k-Lipschitz avec k < 1.
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Lemme 1.4.3 (21). Soit (X, d) un espace métrique complet. Si F : X → Pf (X) est contrac-
tante, alors Fix(F ) 6= ∅.

Lemme 1.4.4 (21). Pour une multifonction F : X → Pcp(Y ) s.c.s. on a

∀x0 ∈ X, lim
x→x0

supF (x) = F (x0)

Lemme 1.4.5 (21). Soit (Kn)n ⊂ K tel que K est un sous ensemble compact de X, et X
est un espace de Banach separable. Alors

co( lim
n→∞

supKn) = ∩N>0co(∪N≥0Kn)

où co l’enveloppe convexe.
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Chapitre 2

Équations différentielles impulsives

Ce chapitre traîte l’existence et l’unicité des solutions d’un problème de Cauchy sur les
équations différentielles ordinaires impulsives de premier ordre sur un intervalle compact.

Définition 2.0.1. (Description d’une équation impulsive).
Une équation différentielle impulsive représente une combinaison d’un processus continu dé-
crit par une équation différentielle ordinaire et des sauts instantanés de l’état appelés impul-
sions.

Dans ce mémoire, on s’intéresse à une équation impulsive avec des impulsions fixés, de
la forme :  x

′
= f(t, x), t 6= tk k = 1, 2, . . .

∆x = Ik(x), t = tk
x(t+0 ) = x0

(2.1)

Où pour, t = tk,∆x(tk) = x(t+k )− x(t−k ) et x(t+k ) = lim
h→0+

x(tk + h), x(t−k ) = lim
h→0+

x(tk − h).

La solution x(t) du système 2.1 satisfait :
• x′ = f(t, x(t)), t ∈]tk, tk+1],

• ∆x(tk) = Ik(x(tk)), t = tk, k = 1, 2, . . .

2.1 L’espace des solutions
Comme les équations différentielles ordinaires, il existe des équations impulsives qui

peuvent être résolues dont la solution est une fonction continue par morceau.

On considère le problème de Cauchy suivant :

ẏ(t) = f(t, y(t)), t ∈ J\{t1, t2, . . . , tm}. (2.2)

y(t+k )− y(t−k ) = Ik(y(tk)), k = 1, 2, 3, . . . ,m (2.3)
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y(0) = a, a ∈ Rn (2.4)

Où J = [0, b], f : J × Rn → Rn est une fonction Carathéodory, Ik : Rn → Rn, k =
1, . . . ,m, a ∈ Rn, 0 = t0 < t1 < · · · < tm,∆y|t=tk = y(t+k ) − y(t−k ), y(t+k ) = lim

h→0+
y(tk +

h) et y(t−k ) = lim
h→0+

y(tk − h) représentent les limites à droite et à gauche de y(t) à t = tk.
Tout d’abord, nous définissons ce que nous exprimons être une solution du problème 2.2 -
2.4.
PC(J,Rn) désigne l’espace de Banach défini par :

PC(J,Rn) =

{
y : J → Rn, y ∈ C((tk, tk+1],Rn), k = 0, . . . ,m+1, y(t−k ) et y(t+k ) existe et satisfait

y(t+k ) = y(t−k ) pour k = 1, . . . ,m

}
.

Avec la norme
‖y‖PC = sup

t∈J
‖y(t)‖.

Lemme 2.1.1. [?]
L’espace (PC, ‖.‖PC) est un espace de Banach.

Démonstration. Soit (yq)q une suite de Cauchy dans PC, alors

∀ε > 0,∃n0 ∈ N,∀q0, q1 ≥ n0 ⇒ ‖yq0 − yq1‖PC ≤ ε

Avec
‖yq0 − yq1‖PC = sup

t∈]0,b]
‖yq0(t)− yq1(t)‖

Comme yq ∈ PC alors yq ∈ C(J0,Rn), et on a

‖yq0 − yq1‖J0 ≤ ‖yq − yq1‖PC ≤ ε

donc (yq)q une suite de Cauchy dans C(J0,Rn) alors on a ∃y0 ∈ C(J0,Rn) tel que

‖yq − yq0‖J0 → 0 quand q →∞

On a aussi yq ∈ C(J1,Rn), on considère la suite des fonctions :

ỹq(t) =

{
yq(t) , t ∈]t1, t2]
yq(t

+) , t = t1

Alors (ỹq)q est une suite de Cauchy dans C([t1, t2],Rn), donc ∃y1 ∈ C([t1, t2],Rn) tel que
lim
q→∞

ỹq = y1

lim
q→∞

yq = y1,∀t ∈]t1, t2], lim
q→∞

ỹq(t1) = lim
q→∞

yq(t
+
1 ) = y1(t1)

Donc ‖yq − y1‖J1 → 0 quand q →∞
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Par analogie, on peut continuer la démonstration jusqu’a l’étape "m", d’ou lim
q→∞
‖yq−y‖PC =

0 tel que :

y(t) =


y0(t) , t ∈ J0
y1(t) , t ∈ J1

... ,
...

ym(t) , t ∈ Jm

Définition 2.1.1. Une fonction y ∈ PC(J,E) est dite une solution de (2.2) - (2.4) si y
satisfait l’équation (2.2) et les conditions (2.3)-(2.4)

Lemme 2.1.2. [?]
y est solution du problème (2.2) - (2.4), si et seulement si y ∈ PC ∩ ∪mk=1AC(Jk,Rn) et
satisfait

y(t) = a+

∫ t

0

f(s, y(s))ds+
∑

0<tk<t

Ik(y(tk) (2.5)

Démonstration. • Si t ∈ [0, t1]

ẏ(t) = f(t, y(t)), t ∈ J\{t1, t2, . . . , tm}. (2.6)

y(0) = a, a ∈ Rn (2.7)

On a, si t ∈ [0, t1], l’intégration de l’équation (2.6) entre 0 et t, donne∫ t

0

ẏ(s)ds =

∫ t

0

f(s, y(s))ds

y(t)− y(0) =

∫ t

0

f(s, y(s))ds

y(t) = y(0) +

∫ t

0

f(s, y(s))ds

y(t) = a+

∫ t

0

f(s, y(s))ds (2.8)

• Si t ∈ [t1, t2]
ẏ(t) = f(t, y(t)), t ∈ J\{t1, t2, . . . , tm}.

y(t+1 ) = y(t−1 ) + I1(y(t1)) (2.9)
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On a, d’après l’équation (2.8)

y(t) = y(t+1 ) +

∫ t

t1

f(s, y(s))ds

y(t) = y(t−1 ) + I1(y(t1)) +

∫ t

t1

f(s, y(s))ds

y(t) = a+

∫ t1

0

f(s, y(s))ds+ I1(y(t1)) +

∫ t

t1

f(s, y(s))ds

y(t) = a+

∫ t

0

f(s, y(s))ds+ I1(y(t1)) (2.10)

• Si t ∈ [t2, t3]
ẏ(t) = f(t, y(t)), t ∈ J\{t1, t2, . . . , tm}.

y(t+2 ) = y(t−2 ) + I2(y(t2)) (2.11)

On a, d’après l’équation (2.8)

y(t) = y(t+2 ) +

∫ t

t2

f(s, y(s))ds

y(t) = y(t−2 ) + I2(y(t2)) +

∫ t

t2

f(s, y(s))ds

y(t) = a+

∫ t2

0

f(s, y(s))ds+ I1(y(t1)) + I2(y(t2)) +

∫ t

t2

f(s, y(s))ds

y(t) = a+

∫ t

0

f(s, y(s))ds+ I1(y(t1)) + I2(y(t2)) (2.12)

En répétant successivement la procédure ci-dessus, on obtient
• Si t ∈ [tm, b]

y(t) = a+

∫ t

0

f(s, y(s))ds+
∑

0<tk<t

Ik(y(tk) (2.13)

Inversement, il est facile de démontere que si y est une solution de l’équation intégrale
(2.13), alors y est une solution du problème (2.2) - (2.4)

2.2 Existence des solutions

2.2.1 Utilisation du théorème de Banach

Théorème 2.2.1. Supposons qu’il existe une fonction l ∈ L1([0, b],R+) telle que :

‖f(t, x)− f(t, y)‖ ≤ l(t)‖x− y‖; ∀x, y ∈ Rn

Alors le problème (2.2) - (2.4) admet une solution unique.
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Démonstration. 1. L’existence :
On considère le problème (2.2) - (2.4) sur [0, t1]{

ẏ(t) = f(t, y(t)), t ∈ J0 = [0, t1]
y(0) = a

(2.14)

Nous considérons l’opérateur N1 : C([0, t1],Rn)→ C([0, t1],Rn) définie par

N1(y)(t) = a+

∫ t

0

f(s, y(s))ds, t ∈ [0, t1]

Soient x, y ∈ C([0, t1] et t ∈ [0, t1]

‖N1x(t)−N1y(t)‖ ≤
∫ t

0

l(s)‖x(s)− y(s)ds‖

≤ 1

τ

∫ t

0

τ l(s)eτL(s)ds‖x− y‖BC ;L(t) =

∫ t

0

l(s)ds

≤ 1

τ
eτL(t)‖x− y‖BC

Donc
e−τL(t)‖N1x(t)−N1y(t)‖ ≤ 1

τ
‖x− y‖BC ; t ∈ J0 = [0, t1]

Alors
‖N1x(t)−N1y(t)‖BC ≤

1

τ
‖x− y‖BC

Avec, ‖y‖BC = sup
t∈[0,t1]

e−τL(t)‖y(t)‖.

N1 est contractant, (τ ∈ [1,+∞)), donc

∃y0 ∈ C([0, t1],Rn) : N1y0 = y0

Donc y0 est la solution de (2.14).
On considère le problème (2.2) - (2.4) sur [t1, t2]{

ẏ(t) = f(t, y(t)), t ∈ J1 =]t1, t2]
y(t+1 ) = y0(t1) + I1(y0(t1))

(2.15)

On considère l’espace C∗ = {y ∈ C(J1,Rn)/y(t+1 ) existe}, (C∗, ‖.‖) est un espace de
Banach. Nous considérons l’opérateur N2 : C∗ → C∗ définie par

N2(y)(t) = y0(t1) + I1(y0(t1)) +

∫ t

t1

f(s, y(s))ds, t ∈]t1, t2]
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Soient x, y ∈ C∗, t ∈ [t1, t2]

‖N2x(t)−N2y(t)‖ ≤
∫ t

t1

l(s)‖x(s)− y(s)ds‖

≤ 1

τ

∫ t

t1

τ l(s)eτL(s)ds‖x− y‖BC ;L(t) =

∫ t

t1

l(s)ds

≤ 1

τ
eτL(t)‖x− y‖BC

Donc
e−τL(t)‖N2x(t)−N2y(t)‖ ≤ 1

τ
‖x− y‖BC ; t ∈]t1, t2]

Alors
‖N2x−N2‖BC ≤

1

τ
‖x− y‖BC

N2 est contractant, (τ ∈ [1,+∞)), donc

∃y1 ∈ C(]t1, t2],Rn) : N2y1 = y1

et on a

y1(t
+
1 ) = N2y1(t

+
1 ) + I1(y0(t1)) + lim

t→t1

∫ t

t1

f(s, y(s))ds

Donc (y1) est la solution de (2.15).Par suite, la solution du problème (2.2) - (2.4) est
donnée par :

y∗(t) =


y0(t) , t ∈ [0, t1]
y1(t) , t ∈ [t1, t2]

... ,
...

ym(t) , t ∈ [tm, b]

2. L’unicité :
Soient y∗, y∗∗ deux solution du problème de Cauchy (2.2) - (2.4), on va montrer que :
y∗(t) = y∗∗(t),∀t ∈ J = [0, b]
Si t ∈ J0 = [0, t1], alors y∗(t) = y∗∗(t),∀t ∈ [0, t1]
Si t ∈ Ji = [ti, ti+1], alors y∗(t) = y∗∗(t), ∀t ∈ [ti, ti+1]; y∗(t

+
i ) = y∗∗(t

+
i ), i ∈ {1, 2, . . . ,m}

On a : y∗(t+i )− y∗(t−i ) = Ii(y∗(ti)) implique que :
y∗(t

+
i ) = y∗(t

−
i ) + Ii(y∗(ti)) = y∗∗(ti) + Ii(I∗∗(ti)) = y∗∗(t

+
i )

2.2.2 Utilisation du théorème de Krasnoselskii

Théorème 2.2.2. Supposons que :
(H1) f : J × Rn → Rn est une fonction L1 - Carathéodory,
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(H2) Ik ∈ C(Rn,Rn), k = 1, . . . ,m avec ∃ck, tel que

∀x, y ∈ Rn ‖Ik(x)− Ik(y)‖ ≤ ck‖x− y‖. (2.16)

Avec
m∑
k=1

ck < 1. (2.17)

sont vérifiées. Alors le problème (2.2) - (2.4) admet au moins une solution.

Démonstration. Considérons l’opérateur N défini par :

N : PC(J,Rn) → PC(J,Rn)

y 7→ (N(y))(t) = y0 +
∫ t
0
f(s, y(s))ds+

∑
0<tk<t

Ik(y(t−k ))

D’aprés le lemme 1.3.5, les points fixes de l’opérateur N sont les solutions du problème (2.2)
- (2.4).
On va appliquer le théorème de Krasnoselskii sur l’opérateur N :
On écrit la forme de la solution sous la forme de la somme de deux applications A et B tel
que N = A+B avec A est une contraction et B est complètement continu.
On suppose que :

A(y(t)) = y0 +
∑

0<tk<t

Ik(y(t−k )) (2.18)

B(y(t)) =

∫ t

0

f(s, y(s))ds (2.19)

La preuve est donnée par les étapes suivantes :
Étape 1 : Soit M une partie non vide, convexe et fermée de PC. On suppose que :

A,B : M → PC.
M est défini par la formule suivante :

∃l > 0,M = {y ∈ PC, tel que ‖y‖PC ≤ l}.

On montre que A(x) +B(y) ∈M,∀x, y ∈M :
Soient x, y ∈M il faut que A(x) + (y) ∈M ,
x, y ∈M ⇒ ‖x‖PC ≤ l et ‖y‖PC ≤ l,
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On a :

‖A(x(t)) +B(y(t))‖ = ‖a+

∫ t

0

f(s, y(s))ds+
∑

0<tk<t

Ik(y(t−k ))‖

≤ ‖a‖+ ‖
∑

0<tk<t

Ik(x(t−k ))‖+ ‖
∫ t

0

f(s, y(s))ds‖

≤ ‖a‖+
∑

0<tk<t

‖Ik(x(t−k ))‖+ ‖
∫ t

0

f(s, y(s))ds‖

≤ ‖a‖+
m∑
k=1

‖Ik(x(t−k ))‖+ ‖
∫ t

0

hr(s))ds‖

≤ ‖a‖+
m∑
k=1

‖Ik(x(t−k ))‖+ ‖hr‖L1 .

On a ‖x‖PC ≤ l donc ‖x(t−k )‖ ≤ l, k = 1, . . . ,m donc x(t−k ) ∈ B(0, l) = {x ∈ Rn, ‖x‖ ≤
l}.
Puisque les Ik sont continues sur le compact B(0, l) alors

sup
x∈B(0,l)

‖Ik(x)‖ <∞. (2.20)

Donc

‖A(x(t)) +B(y(t))‖ ≤ ‖a‖+
m∑
k=1

‖Ik(x(t−k ))‖+ ‖hr‖L1 .

≤ ‖a‖+
m∑
k=1

sup
x∈B(0,l)

‖Ik(x)‖+ ‖hr‖L1 .

≤ C

Donc ‖A(x(t)) +B(y(t))‖PC ≤ C avec C une constante positive.
Donc A(x) +B(y) ∈M.

Étape 2 : On montre que A est une contraction :
Soient y, z ∈ PC(J,Rn) :

‖A(y(t))− A(z(t))‖ = ‖
∑

0<tk<t

Ik(y(t−k ))−
∑

0<tk<t

‖Ik(z(t−k ))‖

= ‖
∑

0<tk<t

[
Ik(y(t−k ))− Ik(z(t−k ))

]
‖

≤
∑

0<tk<t

‖Ik(y(t−k ))− Ik(z(t−k ))‖

≤ ck‖y − z‖
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et comme :
m∑
k=1

ck < 1. (2.21)

Donc A est une contraction.
Étape 3 : On montre que B est complètement continu en appliquant le théorème d’Arzela-

Ascoli :
1. B transforme tout ensemble borné en un ensemble borné :

Soit y ∈M

‖B(y(t))‖ = ‖
∫ t

0

f(s, y(s))ds‖

≤
∫ t

0

‖f(s, y(s))ds‖

≤ ‖hr‖L1

2. B est équicontinu :
Soient l1, l2 ∈ [0, b] tel que l1 < l2 et soit y ∈M

‖B(y(l2))−B(y(l1))‖ = ‖
∫ l2

0

f(s, y(s))ds−
∫ l1

0

f(s, y(s))ds‖

= ‖
∫ l1

0

f(s, y(s))ds+

∫ l2

l1

f(s, y(s))ds−
∫ l1

0

f(s, y(s))ds‖

= ‖
∫ l2

l1

f(s, y(s))ds‖

≤
∫ l2

l1

hr(s))ds.

Si l1 → l2 alors ‖B(y(l2))−B(y(l1))‖ → 0.

3. B est continue :
Soit (yn)n∈N une suite dans PC qui converge vers y. Il existe un entier l tel que
‖yn‖PC ≤ r pour tout n ∈ N et ‖y‖PC ≤ l donc yn ∈M et y ∈M.
D’aprés le théorème de la convergence dominée de Lebesgue, on a :

‖B(yn)−B(y)‖ = ‖
∫ t

0

f(s, yn(s))ds−
∫ t

0

f(s, y(s))ds‖

= ‖
∫ t

0

(
f(s, yn(s))− f(s, y(s))

)
ds‖

≤
∫ t

0

‖
(
f(s, yn(s))− f(s, y(s))

)
ds‖ → 0 si n→∞

Donc B est continu.
D’ou d’aprés le théoreme de Krasnoselskii N admet un point fixe.
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2.3 Exemples
Exemple 2.3.1. Pour appliquer le résultat de ce chapitre, on considère l’équation différen-
tielle impulsive suivante :

y
′
(t) =

1

(t+ 1)(t+ 2)
y2(t), t ∈ [0,∞) \ {t1, t2, . . .}, (2.22)

y(t+k )− y(t−k ) = bky(t−k ), (2.23)

y(0) = 0. (2.24)

Soit R > 0 et x, x ∈ Rn telle que ‖x‖, ‖x‖ ≤ R

‖f(t, x)− f(t, x)‖ = ‖ 1

(t+ 1)(t+ 2)
(x2 − x2)‖

≤ 1

(t+ 1)(t+ 2)
‖x+ x‖‖x− x‖

≤ 2R

(t+ 1)(t+ 2)
‖x− x‖

Soit lR(t) = 2R
(t+1)(t+2)

, pour t ∈ [0,∞), lR ∈ L1
loc([0,∞),Rn).

Il est claire que ‖Ik(x)− Ik(x)‖ ≤ bk‖x− x‖ pour tout x, x ∈ Rn

Si
∞∑
k=1

bk < 1, alors d’aprés le théorème (2.2.2), le problème (2.22)-(2.24) admet une solution

unique.
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Chapitre 3

Système d’équations différentielles
impulsive

Ce chapitre est consacré à l’étude de l’existence des solutions d’un système d’équations
différentielles impulsives.

x′(t) = f(t, x, y), t ∈ J := [0,∞), t 6= tk, k = 1, . . . ,
y′(t) = g(t, x, y), t ∈ J, t 6= tk, k = 1, . . . ,

x(t+k )− x(t−k ) = Ik(x(tk), y(tk)), k = 1, . . . ,
y(t+k )− y(t−k ) = Ik(x(tk), y(tk)), k = 1, . . . ,

x(0) = x0,
y(0) = y0,

(3.1)

Où x0, y0 ∈ R, f, g : J × R × R → R sont des fonctions données, Ik, Ik ∈ C(R × R,R).
Les notations x(t+k ) = limh→0+ x(tk +h) et x(t−k ) = limh→0+ x(tk−h) sont les limites à droite
et à gauche des fonctions y à t = tk, respectivement.

Le résultat de ce chapitre est basé sur les Théremes du point fixe de Perov et Krasnoselskii
.

3.1 Existence des solutions
dans le but de définir une solution pour le problème (3.1), considerons l’espace des fonc-

tions suivant :
PCb = {y ∈ PC([0,∞),R) : y est bornée}

Où PC([0,∞),R) = {y : [0,∞) → R, yk ∈ C((tk, tk+1],R), k = 0, . . . , y(t−k ) et y(t+k )
existent et satisfaits y(tk) = y(t−k ) pour k = 1, . . .}.

PCb est un espace de Banach avec la norme

‖y‖b = sup{|y(t)| : t ∈ [0,∞)}.
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Lemme 3.1.1. Une fonction (x, y) ∈ PCb(J,R) × PCb(J,R) est dite une solution de (3.1)
si et seulement si

x(t) = x0 +
∫ t
0
f(s, x(s), y(s))ds+

∑
0<tk<t

Ik(x(tk), y(tk)), t ∈ J,

y(t) = y0 +
∫ t
0
g(s, x(s), y(s))ds+

∑
0<tk<t

Ik(x(tk), y(tk)), t ∈ J.

Dans cette section nous allons établir l’existence des solutions du problème (3.1). En vue
d’obtenir un tel résultat, on propose les hypothèses suivantes :

(H1) Il existe des functions li ∈ L1(J,R+), i = 1, . . . , 4, tel que

|f(t, x, y)− f(s, x, y)| ≤ l1(t)|x− x|+ l2(t)|y − y|, pour tout x, x, y, y ∈ R

et

|g(t, x, y)− g(s, x, y)| ≤ l3(t)|x− x|+ l4(t)|y − y|, pour tout x, x, y, y ∈ R.

(H2) Il existe des constantes a1k, a2k ≥ 0, k = 1, . . . , tal que

|Ik(x, y)− Ik(x, y)| ≤ a1k|x− x|+ a2k|y − y|, pour tout x, x, y, y ∈ R

et
∞∑
k=1

|Ik(0, 0)| <∞.

(H3) Il existe des constantes b1k, b2k ≥ 0, k = 1, . . . , tel que

|Ik(x, y)− Ik(x, y)| ≤ b1k|x− x|+ b2k|y − y|, pour tout x, x, y, y ∈ R

et
∞∑
k=1

|Īk(0, 0)| <∞.

On utilise le théorème de Perov pour montrer que la solution du problème (3.1) est bornée
et tends vers zero quand t→∞.

Théorème 3.1.1. Supposons que les conditions (H1)− (H3) sont vérifiées. Si la matrice

M =


‖l1‖L1 +

∞∑
k=1

a1k ‖l2‖L1 +
∞∑
k=1

a2k

‖l3‖L1 +
∞∑
k=1

b1k ‖l4‖L1 +
∞∑
k=1

b2k

 ∈M2×2(R+) (3.2)

Où
∞∑
k=1

aik <∞ et
∞∑
k=1

bik <∞, i = 1, 2,
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converge vers zero et f(·, 0, 0), g(·, 0, 0) ∈ L1(J,R). Alors le probleme (3.1) a une solution
unique. Si de plus

∞∑
k=1

a1k +
∞∑
k=1

a2k +
∞∑
k=1

b1k +
∞∑
k=1

b2k < 1,

alors l’unique solution de (3.1) est bornée.

Démonstration. Considerons l’opérateur N : PC × PC → PC × PC défini par

N(x, y) = (N1(x, y), N2(x, y))

Où

N1(x, y)(t) = x0 +

∫ t

0

f(s, x(s), y(s))ds+
∑

0<tk<t

Ik(x(tk), y(tk)), t ∈ [0,∞)

et

N2(x, y)(t) = y0 +

∫ t

0

g(s, x(s), y(s))ds+
∑

0<tk<t

Ik(x(tk), y(tk)), t ∈ [0,∞).

Nous montrons que l’opérateur N est bien défini.
Soient (x, y) ∈ PCb × PCb, t ∈ [0,∞), alors

‖N1(x, y)‖b ≤ |x0|+
∫ t

0

|f(s, x(s), y(s))|ds+
∑

0<tk<t

|Ik(x(tk), y(tk))|

≤ ‖l1‖L1‖x‖b + ‖l2‖L1‖y‖b +
∑

0<tk<t

(a1k‖x‖b + a2k‖y‖b)

+‖f(·, 0, 0)‖L1 +
∑

0<tk<t

(|Ik(0, 0)|+ |Īk(0, 0)|).

D’une manière similaire, on trouve

‖N2(x, y)‖b ≤ ‖l3‖L1‖x‖b + ‖l4‖L1‖y‖b +
∑

0<tk<t

(b1k‖x‖b + b2k‖y‖b)

+‖g(·, 0, 0)‖L1 +
∑

0<tk<t

(|Ik(0, 0)|+ |Īk(0, 0)|).

Donc(
‖N1(x, y)‖b
‖N1(x, y)‖b

)
≤

(
‖l1‖L1 +

∑∞
k=1 a1k ‖l2‖L1 +

∑∞
k=1 a2k

‖l3‖L1 +
∑∞

k=1 b1k ‖l4‖L1 +
∑∞

k=1 b1k‖x‖+ b2k

)(
‖x‖b
‖y‖b

)

+

 ‖f(., 0, 0)‖L1 +
∑∞

k=1(‖Ik(0, 0)‖b + ‖Īk(0, 0)‖b)

‖g(., 0, 0)‖L1 +
∑∞

k=1(|Ik(0, 0)|+ |Īk(0, 0)|)

 .

Ceci implique que l’opérateur N est bien défini.
Il est claire que les points fixes de l’opérateur N sont les solutions du probleme (3.1).
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On montre que N est une contraction.
Soient (x, y), (x, y) ∈ PCb × PCb. Alors (H1) et (H2) implique

|N1(x, y)(t)−N1(x, y)(t)| ≤
∫ t

0

|f(s, x(s), y(s))− f(s, x(s), y(s))|ds

+
∞∑

0<tk<t

|Ik(x(tk), y(tk))− Ik(x(tk), y(tk))|

≤
∫ t

0

(l1(s)|x(s)− x(s)|+ l2(s)|y(s)− y(s)|) ds

+
∑

0<tk<t

(a1k|x(tk)− x(tk)|+ a2k|y(tk)− y(tk)|).

Donc

‖N1(x, y)−N1(x, y)‖b ≤ (‖l1‖L1 +
∞∑
k=1

a1k)‖x− x‖b

+ (‖l2‖L1 +
∞∑
k=1

a2k)‖y − y‖b.

D’une manière similaire, on trouve

‖N2(x, y)−N2(x, y)‖b ≤ (‖l3‖L1 +
∞∑
k=1

b1k)‖x− x‖b

+ (‖l4‖L1 +
∞∑
k=1

b2k)‖y − y‖b.

Donc

‖N(x, y)−N(x, y)‖b ≤M

(
‖x− x‖b
‖y − y‖b

)
, pour tout (x, y), (x, y) ∈ PCb × PCb.

Alors, par le théoreme (1.2.4), l’opérateur N a un point fixe unique qui est solution du
probleme (3.1).

Nous montrons maintenant que la solution (x, y) est bornée.
Soit t ∈ [0,∞), alors on obtient

|x(t)| ≤ |x0|+
∫ t

0

|f(s, x(s), y(s))|ds+
∑

0<tk<t

|Ik(x(tk), y(tk))|

≤ |x0|+
∫ t

0

(l1(s)|x|+ l2(s)|y|)ds+
∞∑
k=1

a1k|x(tk)|+
∞∑
k=1

a2k|y(tk)|

+‖f(., 0, 0)‖L1 + ‖g(., 0, 0)‖L1 +
∞∑
k=1

|Ik(0, 0) +
∞∑
k=1

|Īk(0, 0)|
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et

|y(t)| ≤ |y0|+
∫ t

0

(l3(s)|x(s)|+ l4(s)|y(s)|)ds+
∞∑
k=1

b1k|x(tk)|+
∞∑
k=1

b2k|y(tk)|

+‖f(., 0, 0)‖L1 + ‖g(., 0, 0)‖L1 +
∞∑
k=1

|Ik(0, 0) +
∞∑
k=1

|Īk(0, 0)|.

Donc

|x(t)|+ |y(t)| ≤ |x0|+ |y0|+
∫ t

0

((l1(s) + l3(s))|x(s)|+ (l2(s) + l4(s))|y(s)|)ds

+ (
∞∑
k=1

a1k +
∞∑
k=1

a2k +
∞∑
k=1

b1k +
∞∑
k=1

b2k)(|x(tk)|+ |y(tk)|)

+2‖f(., 0, 0)‖L1 + 2‖g(., 0, 0)‖L1 + 2
∞∑
k=1

|Ik(0, 0) + 2
∞∑
k=1

|Īk(0, 0)|.

Alors

sup
s∈(0,t)

(|x(s)|+ |y(s)|) ≤ |x0|+ |y0|+
∫ t

0

(l1(s) + l3(s) + l2(s) + l4(s))×

sup
s∈[0,t]

(|x(s)|+ |y(s)|)ds

+

(
∞∑
k=1

a1k +
∞∑
k=1

a2k +
∞∑
k=1

b1k +
∞∑
k=1

b2k

)
sup
s∈[0,t]

(|x(tk)|+ |y(tk)|)

+ 2‖f(., 0, 0)‖L1 + 2‖g(., 0, 0)‖L1 + 2
∞∑
k=1

|Ik(0, 0) + 2
∞∑
k=1

|Īk(0, 0)|.

Ceci implique que

sup
s∈(0,t)

(|x(s)|+ |y(s)|) ≤ α +

∫ t

0

l(s) sup
s∈[0,t]

(|x(s)|+ |y(s)|)ds

Où

α =
|x0|+ |y0|+ 2‖f(., 0, 0)‖L1 + 2‖g(., 0, 0)‖L1 + 2

∑∞
k=1 |Ik(0, 0) + 2

∑∞
k=1 |Īk(0, 0)|

1− (
∑∞

k=1 a1k +
∑∞

k=1 a2k +
∑∞

k=1 b1k +
∑∞

k=1 b2k)

et
l(s) =

l1(s) + l2(s) + l3(s) + l4(s)

1− (
∑∞

k=1 a1k +
∑∞

k=1 a2k +
∑∞

k=1 b1k +
∑∞

k=1 b2k)
.

Par application de l’inégalité de Gronwall, on obtient

sup
s∈[0,t]

(|x(s)|+ |y(s)|) ≤ α exp

(∫ t

0

l(s)ds

)
.
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Alors
‖x‖b + ‖y‖b ≤ α exp

(∫ ∞
0

l(s)ds

)
.

Ceci implique que la solution (x, y) est bornée.
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Chapitre 4

Équations aux Différences Impulsives

Les équations aux différences sont devenues un outil de valeur et ont beaucoup d’im-
portance dans plusieurs domaines et disciplines scientifiques et ceci par leurs nombreuses
applications dans les sciences appliquées telles que l’économie, la biologie, la théorie des
probabilités, l’ecologie,...etc. D’une part, elles sont utilisées pour la simulation des équations
différentielles ordinaires ou aux dérivées partielles, dans l’ana- lyse numérique pour la ré-
solution des équations à l’aide des suites, avec la recherche de la valeur approchée de la
solution par exemple le schéma numérique d’Euler ou de Runge-Kutta. D’autre part, elle
sont utilisées en modélisation des phénomènes de la vie réelle, notamment en dyna- mique
des populations.

4.1 Équations aux Différences

4.2 Notions sur le calcul aux différences
Définition 4.2.1. On définit l’opérateur de différence ∆ et l’opérateur de décalage E res-
pectivement par

∆x(n) = x(n+ 1)− x(n), n ∈ Nn0 (4.1)

Ex(n) = x(n+ 1), n ∈ Nn0 (4.2)

Remarque 4.2.1. 1. ∆ et E sont des opérateurs linéaires.
2. ∆ et E commuttent, c’est à dire ∆E = E∆.

3. ∆ = E − I où I est l’opérateur identité, c’est à dire Ix(n) = x(n),∀x ∈ Nn0

Définition 4.2.2. En général, on définit ∆r et Er respectivement par

∆rx(n) = ∆(∆r−1x(n)), n ∈ Nn0 (4.3)

Erx(n) = x(n+ r), n ∈ Nn0 (4.4)
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Lemme 4.2.1. De la remarque (4.2.1) on peut montrer facilement les égalités suivantes

∆r = (E − I)r =
r∑
i=0

(−1)r−iCr
iE

i (4.5)

Er = (∆ + I)r =
r∑
i=0

Cr
i ∆

i (4.6)

où C0
0 = 1 et C0

i = 0 si i 6= 0.

Théorème 4.2.1. Soit {x(n)}n≥0 une suite réelle telle que x(0) = x0. Alors

x(n) = x(0 + n) = Enx0 =
n∑
i=0

Cn
i ∆ix0 (4.7)

∆nx0 =
n∑
i=0

(−1)n−iCn
i E

ix0 (4.8)

Démonstration. Il suffit d’appliquer les égalitées (4.5) et (4.6) à x0

Proposition 4.2.1. On a les propriétés suivantes pour ∆.

(a)
n−1∑
i=n0

∆x(i) = x(n)− x(n0), n ∈ Nn0 (4.9)

(b)

∆(
n−1∑
i=n0

) = x(n)n, n ∈ Nn0 (4.10)

(c)
∆(x(n)y(n)) = Ex(n)∆y(n) + y(n)∆x(n), n ∈ Nn0 (4.11)

(d)

∆
(x(n)

y(n)

)
=
y(n)∆x(n)− x(n)∆y(n)

y(n)Ey(n)
, n ∈ Nn0 et y(n) est non nulle sur Nn0 (4.12)

(e) Soit P (n) =
∑k

i=0 ain
k−i un polynôme de degré k (i.e a0 6= 0) où ai, i ∈ {0, 1, . . . , k}

sont des réels. Alors

∆kP (n) = a0 k!. (4.13)

∆k+iP (n) = 0,∀i ≥ 1. (4.14)

Démonstration. En utilisant (4.1) et (4.2) on trouve.
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(a)

n−1∑
i=n0

∆x(i) =
n−1∑
i=n0

(x(i+ 1)− x(i))

=
n∑

i=n0+1

x(i)−
n−1∑
i=n0

(xi)

= x(n)− x(n0).

(b)

∆(
n−1∑
i=n0

) =
n∑

i=n0

x(i)−
n−1∑
i=n0

x(i)

= x(n).

(c)

∆(x(n)y(n)) = x(n+ 1)y(n+ 1)− x(n)y(n)

= x(n+ 1)
(
y(n+ 1)− y(n)

)
+ y(n)

(
x(n+ 1)− x(n)

)
= Ex(n)∆y(n) + y(n)∆x(n).

(d)

∆
(x(n)

y(n)

)
=

x(n+ 1)

y(n+ 1)
− x(n)

y(n)

=
x(n+ 1)y(n)− x(n)y(n+ 1)

y(n+ 1)y(n)

=
y(n)

(
x(n+ 1)− x(n)

)
− x(n)

(
y(n+ 1)− y(n)

)
y(n+ 1)y(n)

=
y(n)∆x(n)− x(n)∆y(n)

y(n)Ey(n)

(e)

∆P (n) =
k∑
i=0

ai(n+ 1)k−i −
k∑
i=0

ain
k−i

D’autre part on a

(n+ 1)k =
k∑
i=0

Ck
i n

i = 1 + kn+
k(k − 1)

2!
n2 + · · ·+ knk−1 + nk
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(n+ 1)k−1 = 1 + (k − 1)n+
(k − 1)(k − 2)

2!
n2 + · · ·+ (k − 1)nk−2 + nk−1

...

...

Donc
∆P (n) = a0kn

k−1 + P1(n)

Où P1 est un polynôme de degré inférieur strictement à k−1, c’est à dire degP1 < k−1.
De la même manière on peut montrer que

∆2P (n) = a0k(k − 1)nk−2 + P2(n) avec degP2 < k − 2,

∆3P (n) = a0k(k − 1)(k − 2)nk−3 + P3(n) avec degP3 < k − 3,
...
...

D’ou (4.13)
Pour montrer (4.14) il suffit d’utiliser (4.4) et (4.13)

Proposition 4.2.2. Soit

P (E) =
k∑
i=0

aiE
k−i (4.15)

où E est l’opérateur défini par (4.2) et ai ∈ {0, 1, . . . , k} sont des réels. Alors
1. Pour tout b ∈ R on a

P (E)bn = P (b)bn, n ∈ N∗ (4.16)

2. Pour tout b ∈ R on a
P (E)(bnx(n)) = bnP (bE)x(n), n ∈ N∗ (4.17)

Démonstration. En utilisant ( 4.4) et ( 4.15) on trouve
1.

P (E)bn = (a0E
k + a1E

k−1 + · · ·+ akI)bn

= a0b
n+k + a1b

n+k−1 + · · ·+ akb
n

= (a0b
k + a1b

k−1 + · · ·+ ak)b
n

= P (b)bn.
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2.

P (E)(bnx(n)) = (a0E
k + a1E

k−1 + · · ·+ akI)(bnx(n))

= a0E
kbnx(n) + a1E

k−1bnx(n) + · · ·+ akIb
nx(n))

= a0b
n+kx(n+ k) + a1b

n+k−1x(n+ k − 1) + · · ·+ akb
nx(n))

= bn(a0b
kx(n+ k) + a1b

k−1x(n+ k − 1) + · · ·+ akx(n))

= bnP (bE)x(n).

4.3 Équations aux Différences impulsives
On considère Équations aux Différences impulsives suivante :

∆x(n) = f(n, x(n)), n 6= nk, (4.18)

∆x(nk) = Bkx(nk), n = nk (4.19)

x(0) = x0, (4.20)

Où ∆x(n) = x(n + 1) − x(n), x(n) ∈ Rn, f : N × Rn → Rn est une fonction, Bk est
une constante pour tout k ∈ N. Les moments {nk}∞1 sont des entiers naturels et satisfaits
0 = n0 < n1 < · · · < nk < . . . , nk →∞ quand k →∞

Définition 4.3.1. Une fonction y ∈ PC(N(0, b),R) est dite une solution du probleme (4.18-
4.18) si y satisfait l’équation (4.18) et les conditions (4.19-4.20)

Lemme 4.3.1. Une fonction x ∈ PC(N(0, b),R) est dite une solution du probleme (4.18-
4.20) si et seulement si.

x(nj + k + 1) =
k∑
i=1

f(x(nj + i)) + (1 +Bj)

nj−nj−1−1∑
i=1

f(x(nj−1 + i)) +

j∏
i=0

(1 +Bi)x(0)

+

j∏
i=0

(1 +Bi)

n0−1∑
i=0

f(x(i)) +

j∏
i=1

(1 +Bi)

n1−n0−1∑
i=1

f(x(n0 + i))

+

j∏
i=2

(1 +Bi)

n2−n1−1∑
i=1

f(x(n1 + i)) + · · ·+ (1 +Bj)

nj−nj−1−1∑
i=1

f(x(nj−1 + i))

+
k∑
i=1

f(x(nj + i)), j = −1, 0, . . . ; k = 0, . . . ;n−1 = 0.
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Démonstration. • Si n ∈ {1, 2, . . . , n0 − 1}, donc

∆x(0) = x(1)− x(0)

= f(x(0))

∆x(1) = x(2)− x(1)

= f(x(1))
...

∆x(n− 1) = x(n)− x(n− 1)

= f(x(n− 1))

Donc.
x(n) = x(0) +

∑
1≤i≤n−1

f(x(i))

• Si n ∈ {n0 + 1, . . . , n1 − 1}, thus

∆x(n0 + 1) = x(n0 + 2)− x(n0 + 1)

= f(x(n0 + 1))

∆x(n0 + 2) = x(n0 + 3)− x(n0 + 2)

= f(x(n0 + 2))
...

∆x(n0 + k) = x(n0 + k + 1)− x(n0 + k)

= f(x(n0 + k))

= f(n0 + k)

Alors

x(n0 + k + 1) =
k∑
i=1

f(x(n0 + i)) + x(n0 + 1)

De la définition de ∆x(n0), on obtient.

∆x(n0) = x(n0 + 1)− x(n0)

= B0x(n0)

Donc
x(n0 + 1) = (1 +B0)x(n0)
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on a

∆x(n0 − 1) = x(n0)− x(n0 − 1)

= f(x(n0 − 1))

Alors
x(n0) = x(n0 − 1) + f(x(n0 − 1))

Donc

x(n0 + k + 1) =
k∑
i=1

f(x(n0 + i)) + (1 +B0)

(
x(0) +

n0−2∑
i=1

f(x(i)) + f(x(n0 − 1))

)
Alors

x(n0+k+1) =
k∑
i=1

f(x(n0+ i))+(1+B0)

(
x(0) +

n0−1∑
i=0

f(x(i))

)
, k = 1, . . . , n1−n0−2

• Si n ∈ {n1 + 1, . . . , n2 − 1}, alors

∆x(n1 + 1) = x(n1 + 2)− x(n1 + 1)

= f(x(n1 + 1))

∆x(n1 + 2) = x(n1 + 3)− x(n1 + 2)

= f(x(n1 + 2))
...

∆x(n1 + k) = x(n1 + k + 1)− x(n1 + k)

= f(n1 + k)

Donc

x(n1 + k + 1) =
k∑
i=1

f(x(n1 + i)) + x(n1 + 1)

on a

∆x(n1) = x(n1 + 1)− x(n1)

= B1x(n1)

Donc
x(n1 + 1) = (1 +B1)x(n1)

∆x(n1 − 1) = x(n1)− x(n1 − 1)

= f(x(n1 − 1))
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Alors
x(n1) = x(n1 − 1) + f(x(n1 − 1))

x(n1) =

n1−n0−1∑
i=1

f(x(n0 + i)) + (1 +B0)

(
x(0) +

n0−1∑
i=0

f(x(i))

)
x(n1) = x(n1 − 1) + f(x(n1 − 1))

x(n1 + 1) = (1 +B1)

(
n1−n0−1∑

i=1

f(x(n0 + i)) + (1 +B0)

(
x(0) +

n0−1∑
i=0

f(x(i))

))

x(n1 + 1) = (1 +B1)

n1−n0−1∑
i=1

f(x(n0 + i)) + (1 +B1)(1 +B0)

n0−1∑
i=0

f(x(i))

+ (1 +B1)(1 +B0)x(0)

x(n1 + k + 1) =
k∑
i=1

f(x(n1 + i)) + (1 +B1)

n1−n0−1∑
i=1

f(x(n0 + i))

+ (1 +B0)(1 +B1)x(0) + (1 +B0)(1 +B1)

n0−1∑
i=0

f(x(i)), k = 1, . . . , n2 − n1 − 1

• Si n ∈ {n2 + 1, . . . , n3 − 1}, alors

∆x(n2 + 1) = x(n2 + 2)− x(n2 + 1)

= f(x(n2 + 1))

∆x(n2 + 2) = x(n2 + 3)− x(n2 + 2)

= f(x(n2 + 2))
...

∆x(n2 + k) = x(n2 + k + 1)− x(n2 + k)

= f(n2 + k)

Donc

x(n2 + k + 1) =
k∑
i=1

f(x(n2 + i)) + x(n2 + 1)

On a

∆x(n2) = x(n2 + 1)− x(n2)

= B2x(n2)
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Donc
x(n2 + 1) = (1 +B2)x(n2)

∆x(n2 − 1) = x(n2)− x(n2 − 1)

= f(x(n2 − 1))

Alors
x(n2) = x(n2 − 1) + f(x(n2 − 1))

x(n2) =

n2−n1−1∑
i=1

f(x(n1 + i)) + (1 +B1)

n1−n0−1∑
i=1

f(x(n0 + i))

+ (1 +B0)(1 +B1)x(n0) + (1 +B0)(1 +B1)

n0−1∑
i=0

f(x(i))

x(n2 + 1) = (1 +B2)

n2−n1−1∑
i=1

f(x(n1 + i)) + (1 +B2)(1 +B1)

n1−n0−1∑
i=1

f(x(n0 + i))

+ (1 +B2)(1 +B0)(1 +B1)x(n0) + (1 +B2)(1 +B0)(1 +B1)

n0−1∑
i=0

f(x(i))

Donc

x(n2 + k + 1) =
2∏
i=0

(1 +Bi)x(0) +
2∏
i=0

(1 +Bi)

n0−1∑
i=0

f(x(i))

+
2∏
i=1

(1 +Bi)

n1−n0−1∑
i=1

f(x(n0 + i)) + (1 +B2)

n2−n1−1∑
i=1

f(x(n1 + i)

+
k∑
i=1

f(x(n2 + i), k = 1, . . . , n3 − n2 − 1.

• On continue le processus, on obtient pour ,j = 3, 4, . . . ; k = 1, . . .

x(nj + k + 1) =
k∑
i=1

f(x(nj + i)) + (1 +Bj)

nj−nj−1−1∑
i=1

f(x(nj−1 + i)) +

j∏
i=0

(1 +Bi)x(0)

+

j∏
i=0

(1 +Bi)

n0−1∑
i=0

f(x(i)) +

j∏
i=1

(1 +Bi)

n1−n0−1∑
i=1

f(x(n0 + i))

+

j∏
i=2

(1 +Bi)

n2−n1−1∑
i=1

f(x(n1 + i)) + · · ·+ (1 +Bj)

nj−nj−1−1∑
i=1

f(x(nj−1 + i))

+
k∑
i=1

f(x(nj + i))
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4.4 Système d’Équations aux Différences impulsives
On considere le système d’Équations aux Différences impulsives suivant :

∆x(n) = f(n, x(n), y(n)), n 6= nk,
∆y(n) = g(n, x(n), y(n)), n 6= nk,

∆x(nk) = Bkx(nk), n = nk
∆y(nk) = B̄ky(nk), n = nk

x(0) = x0,
y(0) = y0,

(4.21)

f, g : N × Rn × Rn → Rn sont des fonctions ; Bk, B̄k sont des constantes pour tout k ∈ N.
Les moments {nk}∞1 sont des entiers naturels et satisfaits 0 = n0 < n1 < · · · < nk < . . . .
N(0, b) = {1, 2, . . . , n0−1, n0, n0+1, n1−1, n1, n1+1, . . . , nm−1, nm, nm+1, . . . , b+1} où n0 <
n1 < n2 < · · · < nm < b+ 1.

Lemme 4.4.1. Une fonction (x, y) ∈ PC(J,R)×PC(J,R) est dite une solution du probleme
(4.21) si (x, y) satisfait les équations et les conditions du probleme (4.21).

Définition 4.4.1. (x, y) ∈ PC(J,R) × PC(J,R) est une solution du probleme (4.21)si et
seulement si (x, y) satisfait
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

x(nj + k + 1) =
k∑
i=1

f(nj + i, x(nj + i), y(nj + i)) +

j∏
i=0

(1 +Bi)x(0)

+ (1 +Bj)

nj−nj−1−1∑
i=1

f(nj−1 + i, x(nj−1 + i), y(nj−1 + i))

+

j∏
i=0

(1 +Bi)

n0−1∑
i=0

f(i, x(i), y(i)) +

j∏
i=1

(1 +Bi)

n1−n0−1∑
i=1

f(n0 + i, x(n0 + i), y(n0 + i))

+

j∏
i=2

(1 +Bi)

n2−n1−1∑
i=1

f(n1 + i, x(n1 + i), y(n1 + i)) + · · ·

+ (1 +Bj)

nj−nj−1−1∑
i=1

f(nj−1 + i, x(nj−1 + i), y(nj−1 + i))

+
k∑
i=1

f(nj + i, x(nj + i), y(nj + i)), j = −1, 0, 1, . . . , k = 0, 1, . . . , n−1 = 0

y(nj + k + 1) =
k∑
i=1

g(nj + i, x(nj + i), y(nj + i)) +

j∏
i=0

(1 + B̄i)y(0)

+ (1 + B̄j)

nj−nj−1−1∑
i=1

g(nj−1 + i, x(nj−1 + i), y(nj−1 + i))

+

j∏
i=0

(1 + B̄i)

n0−1∑
i=0

g(i, x(i), y(i)) +

j∏
i=1

(1 + B̄i)

n1−n0−1∑
i=1

g(n0 + i, x(n0 + i), y(n0 + i))

+

j∏
i=2

(1 + B̄i)

n2−n1−1∑
i=1

g(n1 + i, x(n1 + i), y(n1 + i)) + · · ·

+ (1 + B̄j)

nj−nj−1−1∑
i=1

g(nj−1 + i, x(nj−1 + i), y(nj−1 + i))

+
k∑
i=1

g(nj + i, x(nj + i), y(nj + i)), j = −1, 0, 1, . . . , k = 0, 1, . . . , n−1 = 0

4.5 Existence des solutions
Considérons le système d’Équations aux Différences suivant :


∆x(k) = f(k, x(k), y(k)), k ∈ N(a, b− 1) = {a, a+ 1, . . . , b− 1},
∆y(k) = g(k, x(k), y(k)), k ∈ N(a, b− 1),

x(a) = x0,
y(a) = y0,

(4.22)

Où f, g : N(a, b− 1)× Rm → Rm sont des fonctions données.
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Dans cette section, nous allons établir l’existense des solutions du problème (4.22). En
vue d’obtenir un tel résultat, on propose les hypothèses suivantes :
(H1) Il existe des nombres non nuls ai et bi pour tout i ∈ {1, 2}{

|f(k, x, y)− f(k, x, y)| ≤ a1|x− x|+ b1|y − y|
|g(k, x, y)− g(k, x, y)| ≤ a2|x− x|+ b2|y − y|

pour tout x, y, x, y ∈ Rm.
Pour montrer l’existense et l’unicité des solutions du problème (4.22), on utilise le théo-

rème du point fixe de Perov.

Théorème 4.5.1. Supposons que la condition (H1) est vérifiée et la matrice

M = (b− 1)

(
a1 b1
a2 b2

)
∈M2×2(R+).

Si M converge vers zero. Alors le problème (4.22) a une solution unique.

Démonstration. Considerons l’opérateur N : C(N(a, b − 1),Rm) × C(N(a, b − 1),Rm)× →
C(N(a, b− 1),Rm) defined for (x, y) ∈ C(N(a, b− 1),Rm)× C(N(a, b− 1),Rm) by

N(x, y) = (N1(x, y), N2(x, y)), (x, y) ∈ C(N(a, b− 1),Rm)× C(N(a, b− 1),Rm) (4.23)

où

N1(x(k), y(k)) = x0 +
k−1∑
l=a

f(l, x(l), y(l)), k ∈ N(a, b− 1)

et

N2(x(k), y(k)) = y0 +
k−1∑
l=a

g(l, x(l), y(l)), k ∈ N(a, b− 1).

Soient (x, y), (x, y) ∈ C(N(a, b − 1),Rm) × C(N(a, b − 1),Rm). Alors on a pour tout
k ∈ N(a, b− 1)

|N1(x(k), y(k))−N1(x(l), y(l))|
=

∣∣∣∑l=k−1
l=a [f(l, x(l), y(l))− f(l, x(l), y(l))]

∣∣∣ .
Alors

‖N1(x, y)−N1(x, y)‖∞ ≤ (b− 1)a1‖x− x‖∞ + (b− 1)b1‖y − y‖∞.

D’une manière similaire, on a

‖N2(x, y)−N2(x, y)‖∞ ≤ (b− 1)a2‖x− x‖∞ + (b− 1)b2‖y − y‖∞.
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Donc

‖N(x, y)−N(x, y)‖∞ =

(
‖N1((x, y)−N1(x, y)‖∞
‖N2(x, y)−N2(x, y)‖∞

)
≤ (b− 1

(
a1 b1
a2 b2

)(
‖x− x‖∞
‖y − y‖∞

)
.

Alors

‖N(x, y)−N(x, y)‖∞ ≤M

(
‖x− x‖∞
‖y − y‖∞

)
, for all, (x, y), (x, y) ∈ C(N(a, b−1),Rm)×C(N(a, b−1),Rm).

Par le théorème du point fixe de Perov, l’opérateur N a un point fixe unique (x, y) ∈
C(N(a, b−1),Rm)×C(N(a, b−1),Rm) qui est solution unique pour le problem (4.22). �
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Conclusion et Perspective

Au terme de cette recherche, nous estimons que les résultats présentés contribueront au
développement de l’étude des équations différentielles impulsives, en ouvrant de nouveaux
horizons à la recherche scientifique sur cette thématique émergente.

Après avoir présenté les notions préliminaires utiles pour la bonne compréhension du pré-
sent travail, nous avons présenté des résultats d’existence et d’unicité de certains problèmes
différentiels d’ordres impulsifs. Tout d’abord, nous avons établi des résultats d’existence glo-
bale et d’unicité d’un problème différentiel impulsif en utilisant les techniques de points fixes,
l’existence des résultats dans le cas discret sont également discutés.

Les résultats présentés dans cette thèse offrent naturellement de nombreuses perspectives.
La première est l’étude des stabilités des solutions des équations différentielles impulsives
d’ordre discret.
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يحتوي الفصل  .تنقسم المذكرة إلى أربعة فصول .لهدف من هذه المذكرة هو دراسة المعادلات التفاضلية للدفعة المنفصلةالملخص   ا 

في الفصل الثاني ، سنتعامل مع وجود الحلول من  .الأول على مجموعة من التعاريف والنتائج التي ستكون مفيدة لبقية هذه المذكرة

في الفصل الثالث ، ندرس وجود وتفرد الحلول  للأنظمة  .ونظرية كراسنوسيلسكي للمعادلات التفاضلية المندفعة خلال نظرية باناخ

الفصل الأخير مكرس  لمفاهيم التفاضل والتكامل ووجود مشكلة  .الاندفاعية ، طريقة الحل تعتمد على مبدأ النقطة الثابتة لبيروف

 .اندفاعية منفصلة وتفردها

 .المعادلات التفاضلية المندفعة ، نظرية النقطة الثابتة متعددة الوظائف ، مساحة مترية معممةتاحية   الكلمات المف

 

Résumé : Le but de ce mémoire est d’étudier les équations différentielles impulsives 

discrètes. Le mémoire est divisé en quatre chapitres. Le premier chapitre contient un ensemble 

de définitions et résultats qui seront utiles pour la suite de cette étude. Dans le deuxième 

chapitre, on traitera l’existence des solutions par le théorème de Banach et par le théorème de 

Krasnoselskii pour les équations différentielles impulsives. Dans le troisième chapitre, nous 

étudions l’existence et l’unicité des solutions pour les systèmes impulsifs, la méthode de 

résolution est basée sur le principe du point fixe de Perov. Le dernier chapitre est consacré aux 

notions sur le calcul aux différences et à l’existence et l’unicité d’un problème impulsif discret.   

Mots clés : Equations différentielles Impulsives, multifonction, théorèmes du point fixe, 

espace métrique généralisé. 

 

Abstract: The aim of this dissertation is to study discrete impulse differential equations. The 

dissertation is divided into four chapters. The first chapter contains a set of definitions and 

results which will be useful for the rest of this study. In the second chapter, we will treat the 

existence of solutions by Banach's theorem and by Krasnoselskii's theorem for impulsive 

differential equations. In the third chapter, we study the existence and uniqueness of solutions 

for impulsive systems, the solving method is based on Perov's fixed point principle. The last 

chapter is devoted to notions of difference calculus and to the existence and uniqueness of a 

discrete impulse problem.   

Keywords: Impulsive differential equations, multifunction, fixed point theorems, generalized metric 

space. 


