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Introduction

La théorie des équations différentielles est un vaste domaine aussi bien en mathématiques
pures qu’en mathématiques appliquées. Celles-ci sont utilisées pour construire des modéles
mathématiques de phénoménes physiques et biologiques.

La théorie des équations différentielles ordinaires impulsives a été initialisée en 1960 par
V. Milman et A. Myshkis, elle a connait une période de développement de 1960 & 1975.
Ensuite, de 1975 a 1990, le mérite du développement de cette théorie et de sa popularisation
revient au mathématicien américain V. Lakshmikantham.

A partir de 1991, en plus de Lakshmikantham, d’autres mathématiciens comme L. Bys-
zewski, D. Bainov contribuaient a I’enrichissement de la théorie des équations différentielles
impulsives ou ils lancérent différentes études sur ce sujet et beaucoup de résultats ont été
obtenus dés lors [4].

De nos jours, les systémes impulsifs (différentielles et aux différences) sont devenus de
plus en plus importants dans certains processus réels et phénoménes étudiés en physique,
en pathologie [42], en technologie chimique [26], en dynamique des populations [63, 64|, en
biotechnologie, surtout dans les réseaux de neurones biologiques [36] et en économie [32].
Ces derniéres années, il y a eu un développement important dans la théorie des équations
différentielles impulsives avec moments fixés, voir les ouvrages [9], [62] et [70].

Ce mémoire comprend quatre chapitres.

Le premier chapitre intitulé “Préliminaires”, contient un ensemble de définitions et
résultats qui nous seront utiles pour la suite de cette étude. Il est divisé comme suit :

e Dans la section 1, nous donnons en quelques lignes un apercu sur les équations différen-



tielles impulsives.
e La section 2, sera consacrée aux différentes définitions de base.
e La section 3, nous donnons quelques définitions et théoremes de point fixe.

e La section 4, sera réservée a un petit rappel sur 'analyse multivoque.

Le deuxiéme chapitre intitulé “Equations différentielles impulsives”, on traitera 1’exis-
tence des solutions par le théoreme de Banach et par le théoreme de Krasnoselskii pour les
équations différentielles impulsives.

gty = ftyt)).t #tx
y(t) —y(ty) = Ii(y(ty)),t =ty (1)
y(ts) = Yo
Ou, f:Q CR" — R", avec €2 est un domaine de R", [ : 2 C R" — R" sont des fonctions
continues.

Le troisiéme chapitre intitulé “Systémes d’équations différentielles impulsives”, on trai-
tera l’existence des solutions pour le systhéme suivant :

( P(t) = f(t,z,y),teJ =[0,00),t At k=1,...,
y'(t) = glt,z,y),ted, t#t, k=1,...,
Jf(t;:) - x(tlz) = {k(x(tk)7y(tk))7 k= 17 R (2>
y(te) —yty) = Ie(z(te),y(te), k=1,...,
‘T(O) = o,
\ y(()) = Yo,

Ou 2,5 € R, f,g:J xR xR — R sont des fonctions données, I, I, € C(R x R, R).
Les notations z(t;) = limy_o+ z(tx + h) et x(t;,) = limy_o+ z(tx — h) sont les limites a droite
et a gauche des fonctions y & t = t;, respectivement.

Le quatriéme chapitre intitulé “Equations aux différences impulsives”, sera consacré au
notions sur le calcul aux différences et a 1’existence et unicité des solutions pour le probléme
discret suivant :

( Az(n) = f(n,2(n),y(n)),n # n,
Ay(n) = g(n,xz(n),y(n)),n # n,
< Ax(ng) = Brz(ng),n = ny )
Ay(ng) = Bry(ng),n = ny
.Z'(O) = Xo,
\ y<0) = Yo,

f,g: NxR"xR"™ — R" sont des fonctions ; By, B;, sont des constantes k € N. Les impulsions
{ni}5° sont des entiers naturels et satisfaits 0 =ng <n; <--- <mnp < ....
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Mots clés : Equations différentielles Impulsives, multifonction, théoremse du point fixe,
espace métrique généralisé.



Notations

Dans tout ce mémoire on désignera par

C : I'ensemble des nombres complexes.

R : I’ensemble des nombres réels.

R, : I’ensemble des nombres réels positifs.

R : 'ensemble des nombres réels strictement positifs.
N : 'ensemble des nombres naturels.

N* : ’ensemble des nombres naturels non nuls.

N,, = {no,no+1,...} oung € N

x(t]) == lim x(t)

+
t—)t]-

z(t;) = lim z(t)

t—)tj



Chapitre 1

Quelques notions et résultats
préliminaires

Ce chapitre est consacré aux rappels de quelques définitions et résultats qui seront utilisés
dans la suite.

1.1 Un apercu historique sur les équations différentielles
impulsives

De nos jours, les systémes impulsifs sont devenus, de plus en plus, importants dans cer-
tains processus réels et phénomeénes naturels. Par exemple, en physique, en dynamique des
populations, en biotechnologie, en économie, etc.

La théorie des équations différentielles impulsives a été initiée par A. Mishkis et V.D. Mil’'man
en 1960. Le développement de cette théorie était relativement lent & cause de la difficulté de
manipulation de telles équations. Aprés, beaucoup de chercheurs ont participé a ’enrichisse-
ment de cette théorie ot ils lancérent différentes études sur ce sujet et beaucoup de résultats
ont été obtenus deés lors.

1.2 Définitions et notions fondamentales

Soit J :=1[0,T],T > 0 et E un espace de Banach, muni de la norme |.||.
Notons C(J,E) 'espace de Banach des fonctions continues y : J — FE, muni de la norme

[Ylloe == sup{[ly(£)I,t € J}.

Définition 1.2.1. Soit E un espace vectoriel sur le corps K = R ou C, on appelle norme
sur lespace E toute application notée ||.|| définie sur E a valeurs dans RT, vérifiant pour
tout x, y dans E et o dans K

i) ||z|| = 0 si seulement si x = 0.



i) [Joz| = faf =[]
iii) ||z +y| < ||z|| + lly|| (inégalité triangulaire).

Définition 1.2.2. Un espace vectoriel normé E est un espace de Banach s’il est complet.
Autrement dit, F est complet si toute suite de Cauchy dans E est convergente.

Exemple 1.2.1. C([a,b],R"™) avec a,b € R™ est l’espace de Banach des fonctions continues
y: ([a,b]) = R™, muni de la norme

[Ylloo := sup [ly(t)]]

te(a,b]

Soit J = [0,0], L*(J,R) est l’espace de Banach des fonctions mesurables x : J — R qui sont
Lebesgue intégrable avec la norme

b
||f7UH1=/0 |lz(t)||ds.

On désigne par AC(J,R) : l’espace des fonctions absolument continues sur J. Notons AC*(J,R™),
I’espace des fonctions y : J — R™ qui sont i-emme fois différentiables et dont la i-emme dé-
rivée y) est absolument continue.

Définition 1.2.3. (Fonction Carathéodory)
Soient X, Y deux espaces de Banach. Une application f: J x X — Y est dite Carathéodory
si f vérifie :
(1) t — f(t,x) est mesurable pour tout v € X,
(2) x — f(t,x) est continue presque pour tout t € J.
L’application f est dite L' - Carathéodory si f est Carathéodory et on a Vg > 0,3, €
LY(J,RT) :
1f(t @) < () pp- t € LYzl < q
Exemple 1.2.2. Soient h : J — Y une fonction mesurable et g : X — Y wune fonction
continue, alors la fonction f: Jx X — Y définie par f(t,x) = h(t)+ g(z) est Carathéodory.

Définition 1.2.4. (Fonction localement lipschitzienne)

Soient J un intervalle, D un ouvert de R, f : J x D +— R™. Soient (to,y0) € J x D. Soit
U C D un voisinage du point yo. On dit que f est lipschitzienne par rapport a la variable y
dans le voisinage U s’il existe une constante L > 0 et il existe un voisinage V. C J du point
to tels que :

1 (892 (8)) = (& y2(0)) | < Lllya(8) = w2 (0) || pour yi(t), 4a(t) € Ut € V.

Définition 1.2.5. Soient (X,d) et (Y,0) deux espaces métriques. Soit k un réel strictement
positif. On dit que f: X — Y est lipschitzienne de rapport k si

Vr,y € X 0(f(x), f(y)) < kd(z,y)

St de plus k < 1, on dit que f est contractante.
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Exemple 1.2.3. La fonction f: R — R* :

n’est pas lipschitzienne au voisinage de y = 0.

En effet :
R VA (70 Rl A 727
(Wiw2)=©0.0) | Y1 — Y2 |
Et par conséquent il ne peut pas exister une constante L vérifiant la condition de Lipschitz.
Cependant f est Lipschitzienne sur tout intervalle [a,b] avec b > a > 0.

En effet pour tout yi(t),y2(t) € [a,b] on a :

V-Vl 1 _ 1

|1 —ya | -y | T 2va

Et donc la condition de Lipschitz est vérifiée avec L = ﬁa

Remarque 1.2.1. (1) Siune fonction (d’une variable) est dérivable au voisinage d’un point
et la dérivée est bornée dans ce voisinage, alors la fonction est localement lipschitzienne.
La réciproque est fausse : il y a des fonctions lipschitziennes qui ne sont pas dérivables.

(2) Si une fonction est de classe C* alors elle est localement lipschitzienne.

Définition 1.2.6. Soient F et F deux espaces de Banach. On appelle opérateur borné toute
application linéaire continue de E dans F.

Définition 1.2.7. (Opérateur complétement continu,).

Soient F et F deuz espaces de Banach et f une application définie de E a valeurs dans F. On
dit que f est completement continue si elle est continue et transforme tout borné de E en un
ensemble relativement compact dans F.

Définition 1.2.8. (Ensemble uniformément borné).
On dit que M C C(E, F) est uniformément borné s’il existe un nombre réel ¢ > 0 tel que :

le@)] < e Ve € M

Définition 1.2.9. (Partie équicontinue).
Soient (E, d) un espace métrique et F un un espace vectoriel normé. On dit qu’une partie
A(E; F) est équicontinue si, pour tout € > 0 il existe a(e) > 0 telle que pour tout f € A, on
a

If(z) — f(y)llr < € pour tout z,y € E et d(z,y) < afe).

Définition 1.2.10. (Théoreme d’Arzela-Ascoli).

Soient E un espace métrique complet, et J un ensemble compact de R, soit A un sous en-
semble de C(J, E), A est relativement compact dans C(J, E) si et seulement si les conditions
sutvantes sont vérifiées :
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1. L’ensemble A est uniformément borné i.e il existe une constante K > 0 tel que :

I|f(z)]] < K pour tout x € J et tout f € A

2. L’ensemble A est équicontinu i.e pour tout € > 0 il existe 6 > 0 tel que
|ty —ta |< 6= ||f(t1) — f(t2)|| < € pour tout t1,ty € J et tout f € A

3. Pour tout x € A, l'ensemble {f(z); f € A} C E est relativement compact.

Théoréme 1.2.1. (Convergence dominée de Lebesque).
Soit Q un ouvert de R™ et (f,) une suite de fonctions de L'. On suppose que

i) fu(z) = f(z) pp sur Q.
ii) 1l existe une fonction g € L' tel que pour chaque n, | f,(z) |< g(x) p.p sur Q, Alors

FeLXQ) et || fo— fllu — 0.

Définition 1.2.11. (Semi-groupes uniformément continus d’opérateurs linéaires bornés).
Soit (X, ]|.]]) est un espace de Banach.

e Une famille a un parametre (T(t))i>0 d’opérateurs linéaires bornés de X dans X est dite
un semi-groupe d’opérateurs linéaires bornés sur X si :
(i) T(0) =1 (ou I est l'opérateur identité de X ).
(i) T(t+s)=T(t)T(s),Vt,s > 0.

o un semi-groupe (T'(t))i>0 d’opérateurs linéaires bornés sur X est dit uniformément continu

sur X si:
lim ||T'(t) — I|| =0, (1.1)

t—0t

e L’opérateur linéaire A défini par :

D(A) = {m € X, tim L7

t—0t

° existe dans X },Vx € D(A)

et

e — lim T(t)xr —x _ dT(t)x o,
t—0+ t dt

est appelé le générateur infinitésimal du semi-groupe (T'(t))i>0 et D(A) est appelé le
domaine de A.

Définition 1.2.12. (Cy-semi-groupes d’opérateurs linéaires bornés).
Un semi-groupe (T'(t))i>0 d’opérateurs linéaires bornés sur X est dit fortement continu si :

lim |T(t)x — z|| = 0,Vx € X, (1.2)
t—0+
Un semi-groupe fortement continu sur X est aussi appelé Cy-semi-groupe sur X .
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Théoréme 1.2.2. Soit (T'(t)):>0 Co-semi-groupe sur X . Alors il existe deuz constantes w > 0
et M > 1 telles que :
[T < Met, vt > 0.

Théoréme 1.2.3. (Hille-Yosida,).

Soit A: D(A) C X — X un opérateur linéaire tel que :
(i) A est fermé et D(A) est dense dans X,
(i) il existe M > 1 et w > 0 tels que

p(A) D {A € C:|Re(N)| > w}
et pour ReA >w,n=1,2,...

M

A=) <
14 =AD" < n =57

Alors A est le générateur infinitésimal d’un Cy semi-groupe (T'(t))i>0

Définition 1.2.13. (Espace métrique généralisé).

Siv,r € R™ v = (v,...,0p) et 7 := (r,...,7) alors v < r si v; < 1; pour tous
1=1,...,m.

Aussi [v] == (|v1], ..., |vm]) et max(u,v) ;= (max(uq,v1), ..., max(Uy,, v,)). Sic € R, alors
v<csiv; <cpourtousie {l,...,m}.

Soit X un ensemble non vide et considérons l’espace R'!'. L’application d : X x X — R7
qui vérifie tous les axiomes habituels de la métrique est appelée une métrique généralisé au
sens de Perov et (X, d) est appelé espace métrique généralisé.

Pour r := (ry,72,...,7) € R, on note par
B(zg,r) ={zx € X : d(zo,z) <r},
La boule ouverte centrée en zy et de rayon r
B(zo,7) = {z € X : d(zg,z) <71}

La boule fermée centrée en z( et de rayon r

Les notions de convergence, suite de cauchy et les sous ensembles ouverts et fermés dans
le cas des espaces métrique généralisé sont similaires a ceux correspondants dans l'espace
métrique habituel.

Définition 1.2.14. (Matrice convergente).
Une matrice carrée M € Mxm(RT) de nombres réels est convergente vers zéro si et seule-
ment si A — 0 quand n — oo.

Lemme 1.2.1. Soit A € M, (R™). Alors les assertions suivantes sont équivalentes :

o A est une matrice convergente vers z€ro ;

12



e les valeurs propres de A sont dans le disque ouvert unitéi.e., | A |< 1, pour tous \ €
C avec det(A — \I) = 0;

e La matrice (I — A) est non-singuliére et (I — A)~*

a des éléments non négatifs;

o A"q — 0 et gA™ — 0 quand n — oo, pour tous ¢ € R™.

Exemple 1.2.4. Exemples de matrices qui convergent vers zero :

1. A:(Z Z), ot a,be R, eta+b<1;

2. A:(a Z), ota,beR, eta+b<1;

7 a-(

Définition 1.2.15. (Opérateur contractif ).
Soit (X,d) un espace métrique généralisé. Un opérateur N : X — X est contractif s’il existe
une matrice convergente vers zéro A tel que

o 2

i), ot a,b,c € Ry et max{a,c} < 1.

d(N(z),N(y)) < Ad(z,y),Yz,y € X.

Théoréme 1.2.4. Soit (X,d) un espace métrique généralisé complet et N : X — X un
opérateur contractif avec la matrice de Lipschitz A. Alors N a un point fize unique x* et
pour tout o € X on a

d(N¥(zo),2%) < AT — A) 7 d(20, N(20)) pour tout k € N.

1.3 Théorémes de point fixe

Les théorémes de point fixe sont les outils mathématiques de base qui aident a établir
Iexistence de solutions de divers genres d’équations. La méthode du point fixe consiste a
transformer un probléme donné en un probléme de point fixe. Les points fixes du probléme
transformé sont ainsi les solutions du probléme donné.

Dans cette section nous rappelons les théorémes célébres du point fixe que nous allons
utiliser pour obtenir des résultats d’existence variés. Nous commencons par la définition d’un
point fixe.

Définition 1.3.1. Soit f une application d’un ensemble E dans lui méme. On appelle point
fize de f tout point u € E tel que

f(u) = u.

Le principe de contraction de Banach, qui garantit ’existence d’un point fixe unique d’une
contraction d’un espace métrique complet a valeurs dans lui-méme, est certainement le plus
connu des théorémes de point fixe. Ce théoréme prouvé en 1922 par Stefan Banach est basé
essentiellement sur les notions d’application Lipschitzienne et d’application contractante.

13



Théoréme 1.3.1. (Principe de contraction de Banach)
Soit E un espace métrique complet et soit F : E — E une application contractante, alors F
posséde un point fixe unique.

Le deuxiéme théoréme de point fixe qu'on va énnoncer est celui de Schauder.

Théoréme 1.3.2. Soit C une partie convexe et fermée d’un espace de Banach FE et soit
F:C — C un opérateur continu et compact . Alors F posséde au moins un point fize.

Théoréme 1.3.3. (Théoréme du point fize de Brouwer).
Soit C' un compact, convexe non vide de R™ et f : C — C une application continue. Alors f
admet au moins un point fize dans C.

Théoréme 1.3.4. (Alternative non linéaire de Leray et Schauder).
Soit E un e.v.n. et B := B(0, R) une boule fermée dans E. Supposons que f : B — E est
une application continue, compacte. Alors

(a) Ou bien f posséde un point fize dans B.
(b) Owu bien il existe x € OB et A €]0, 1] tel que x = \f(x).
Théoréme 1.3.5. [28] (Théoréme du point fize de Krasnoselskii).

Soit (E,|.]]) un espace de Banach, et soit M une partie non vide, conveze et fermée de E.
On suppose que A, B : M — E sont deux applications satisfaisant :

e Av+ By € M,Vx,y e M
e A est continue et AM est contenu dans un ensemble compact,

e B est une contraction.
Alors da* € M, Ax* + Bx* = z*.

1.4 Quelques définitions d’analyse multivoque

Pour un éspace métrique (X, d), les notations suivantes seront employées dans tout ce
mémoire

e P(X)={ACX:A#0}

Pi(X)={AecP(X): A fermé }

Pop(X)={Ae€P(X): A compact }

Po(X) ={A € P(X): A convexe }, avec X muni d’une structure d’un espace vectoriel.
Pev,ep(X) = Peu(X) N Pep(X)

Définition 1.4.1. Une multifonction (ou application multivoque) (ou multi application) F
d’un espace X wvers un espace Y est une correspondance qui associe a tout élément x € X
un sous-ensemble F(x) de Y. On notera F : X — P(Y) (les notations F : X — 2Y et F :
X — oY sont aussi utilisées dans la littérature )

14



Définition 1.4.2. On appelle graphe de la multifonction F', I’ensemble
Graph(F) ={(z,y) e EX F:y € F(x)}
F est a graphe fermé si Graph(F) est fermé dans X x Y. On dira aussi que F est fermée

Définition 1.4.3. On appelle image de F' l'union des images F(x) :

et le domaine de F, [’ensemble
Dom(F)={zx € X : F(x) # 0}

Définition 1.4.4. Soit F : X — P(Y) une application multivoqgue. On dira que F est
fortement mesurable si pour chaque fermé U C Y, l'ensemble F~(U) = {z € X : F(z)NU #
0} est mesurable dans X .

Lemme 1.4.1. [14]
Soit X un esace normé séparable. L application multivoque : F : J — P(X) est mesurable si
et seulement si pour chaque x € X, la fonction ¢ : J — [0, +o0o[ définie par

p(t) =d(z, F(t)) =inf{llz -yl -y € F{O)}.t € J
est lebesgue mesurable.

Définition 1.4.5. Soit (E,||.||) un espace de Banach et F : E — P(E) une application
multivoque. On dit que F a un point fize s’il existe v € X tel que v € F(x). L’ensemble
des points fizes de F' sera noté par Fiz(F'). On dit que F' est a valeurs (fermés) convezes si
F(z) est fermé convexe pour tout x € X et F est localement borné si F(A) = UyeaF'(z) est
borné dans E pour tout ensemble A C E, c.a.d.

ilelg{sup{HyH} ry € F(r)} < oo

Définition 1.4.6. Soient (X, d) et (Y, p) deuz espaces métriques et soit F': X — P(Y') une
application multivoque.

On dit que F' est semi-continu supérieurement (s.c.s) sur X si pour chaque xo € X [’ensemble
F(z0) est un ensemble non vide, et si pour chaque sous ensemble ouvert N de Y contenant
F(xy), il existe un voisinage ouvert M de xq tel que F(M) C N. C’est a dire, si [’ensemble
F-(V)={z e X :F(x)NV # 0} est fermé pour n’importe quel ensemble fermé V dansY .
D’une maniére équivalente, F est s.c.s si l'ensemble F™ = {x € X : F(x) C V} est ouvert
pour chaque ouvert V dans'Y .

La fonction F' est semi-continue inférieurement (s.c.i) si l'image inverse de V' par F

F(V)={reX:Fz)nV @}
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est ouverte pour chaque ouvert V- dans Y. D’une maniere équivalente, F' est s.c.i si le noyau
de V par F
FrV)={ze X :F(X)CV}

est fermé pour nimporte quel ensemble fermé V dans Y .
En conclusion, pour une fonction a valeurs multiples F' : J x R™ — P(R™), on prend

1E @, 2)lp = sup{[lvl;v € F(t,2)}

Définition 1.4.7. Une fonction multivoque F' est dite Carathéodory si :

(a) la fonction t — F(t,z) est mesurable pour chaque z € R™ ;

(b) pour tout t € J la fonction z — F(t, z) est semi-continue supérieurement, p.p.

En outre, elle est L'- Carathéodory si F est localement intégrablement bornée, c.a.d. pour
chaque nombre réel positif v , il existe h, € L*(J,R") telle que

[E @, 2)|lp < he(t) pp t € V|2l <7

Lemme 1.4.2. Soit X un espace de Banach. Soit F' : [0,b] x X — Py o(X) une multifonc-
tion L*-Carathéodory avec S, # 0 et soit I' un opérateur linéaire continu de L*([0,b], X)
dans C([0,b], X), alors l'opérateur

0], X))

['o SF : C([(]? b]? X) Pcp,cv(c<[07
ZIZF(Sfy)

N
Y = (I'o Sk)(y)
est a graphe fermé dans C([0,b], X) x C([0,b], X), ow
Sp, ={ve L'([0,b],X) : v(t) € F(t,y(t));t € [0,b]}
Définition 1.4.8. On considére la distance pseudo-métrique de Hausdorf :
Hy: P(R") x P(R") = R* U {+oc}
définie par

Hy(A, B) = max{supd(a, B),supd(A,b)}

acA nB
ot d(A,b) = inf,ca,d(a, B) = infyep d(a,b) . Donc (Pyr(R™, Hy) est un espace métrique et
(Pyp(R™, Hy) est un espace métrique généralisé. D’ailleurs, Hy satisfait linégalité triangu-
laire. Et si xg € R™, on a

d(xg, A) = inf d(zg, x) et Hg({xo}, A) = supd(xg,x)

zeA €A

Définition 1.4.9. Une multifonction F : R" — P(R™) s’appelle :
(a) k-Lipschitz s’il existe k > 0 telle que

Hy(F(x), F(y)) < kd(z,y),Ve,y € R

(b) Une contraction si elle est k-Lipschitz avec k < 1.
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Lemme 1.4.3 (21). Soit (X, d) un espace métrique complet. Si F': X — P¢(X) est contrac-
tante, alors Fix(F) # 0.

Lemme 1.4.4 (21). Pour une multifonction F': X — P.,(Y) s.c.s. on a

Vro € X, lim sup F(z) = F(x)
T—TQ

Lemme 1.4.5 (21). Soit (K,), C K tel que K est un sous ensemble compact de X, et X
est un espace de Banach separable. Alors

co( lim sup K,,) = Nnsoco(Un>0K)

n—oo

ot co l’enveloppe conveze.
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Chapitre 2

Equations différentielles impulsives

Ce chapitre traite ’existence et 1'unicité des solutions d’un probléme de Cauchy sur les
équations différentielles ordinaires impulsives de premier ordre sur un intervalle compact.

Définition 2.0.1. (Description d’une équation impulsive).

Une équation différentielle impulsive représente une combinaison d’un processus continu dé-
crit par une équation différentielle ordinaire et des sauts instantanés de l’état appelés impul-
S10MS.

Dans ce mémoire, on s’intéresse & une équation impulsive avec des impulsions fixés, de
la forme :

’

xr = fltr),t#tek=12,...
z(ty) = o

Ou pour, t = ty,, Ax(ty) = z(t]) — z(t;) et z(t)) = hli%l+ x(ty +h),z(t,) = lim x(t, — h).
—

h—0+t
La solution z(t) du systéme 2.1 satisfait :

o 2’ = f(t,z(1)),t €ltr, trs1],
® Al’(tk) = [k(l’(tk)),t = tk, k= 1, 2, c.
2.1 L’espace des solutions

Comme les équations différentielles ordinaires, il existe des équations impulsives qui
peuvent étre résolues dont la solution est une fonction continue par morceau.

On considére le probléme de Cauchy suivant :
g(t) = f(tyt)), t€ I\{ti,ta,. . tm}. (2.2)

y(tlj) - y(tlz) - ]k<y(tk))7 k= 17 27 37 S, M (23>
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y(0) =a, aeR" (2.4)

Ou J = [0,b],f : J x R" — R" est une fonction Carathéodory, I, : R* — R" k =
L...,ma € R0 =ty < t1 < -+ < ty, Aylimy, = y(&) — y(ty), y(t)) = hlir(r)1+y(tk +
—

h) et y(t;) = hligl+ y(ty — h) représentent les limites a droite et a gauche de y(t) a t = ty.

Tout d’abord, nous définissons ce que nous exprimons étre une solution du probléme 2.2 -
2.4.
PC(J,R") désigne I'espace de Banach défini par :

PC(J,R") = {y :J = Ry € O((tg, tra], R"), k=0,...,m+1,y(t,) et y(t;) existe et satisfait

y(t)) =y(t,) pour k=1,... ,m}.
Avec la norme
[yl e = sup [ly(@)]-
teg

Lemme 2.1.1. [?/]
L’espace (PC, ||.||pc) est un espace de Banach.

Démonstration. Soit (y,), une suite de Cauchy dans PC, alors
Ve > 07 Ean € N7VQO7Q1 2 ng = quo - ythHPC S €
Avec

quo - yq1||PC’ = sup quo(t) — Yaq (t)H
t€]0,b]

Comme y, € PC alors y, € C(Jy,R"), et on a
quo - yQ1HJ0 < qu - ythPC <e€

donc (y,), une suite de Cauchy dans C(Jy, R™) alors on a Jyy € C(Jyp, R™) tel que
qu - yQOHJO — 0 quand ¢ — oo

On a aussi y, € C(J1,R™), on considére la suite des fonctions :

- q(lf) , te]tl,tg]
ytI(t) = { yqy@-l—) L t=1

Alors (yq), est une suite de Cauchy dans C([t1, %], R"), donc Jy; € C([t1,t2],R") tel que
lim y, =y
q—00
lim y, = y1, Vt €]y, ta], lim g,(t1) = lim y, (1) = y1(t1)
q—o0 q—00

q—o0

Donc ||y, — v1||, = 0 quand ¢ — oo

19



Par analogie, on peut continuer la démonstration jusqu’a '’étape "m", d’ou lim ||y, —y|lpc =
q—o0

0 tel que :
yo(t) 3 t e Jo
yl(t) , L€ J1

ym(t) , tE€ Jy
O

Définition 2.1.1. Une fonction y € PC(J,E) est dite une solution de (2.2) - (2.4) si y
satisfait I’équation (2.2) et les conditions (2.3)-(2.4)

Lemme 2.1.2. [?/
y est solution du probleme (2.2) - (2.4), si et seulement si y € PC N U AC(Ji, R") et
satisfait

) =a+ [ Se)ds+ 3 L) 2.5

Démonstration. e Sit € [0,4]
y(t) = f(t,y(t), te J\{ti,ta, ..., tm} (2.6)
y(0)=a, a€R" (2.7)

On a, si t € [0,t], 'intégration de I’équation (2.6) entre 0 et t, donne

[itrts = [ ss.utonas

y@—mm=:Af@mmw
w>=y@+4f@mm@
w>=a+Af@MW% (2.8)

e Site [t1,t2]
y@t) = f(ty(t), te J\{tr,ta, ... tm}

y(t) = y(ty) + Ly(t)) (2.9)
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On a, d’aprés I’équation (2.8)

u(t) = y(t) + / £(s,y(s))ds
y(t) = y(t)) + L) + / £(s,y(s))ds
y(t) = a+ / Fs.y(s))ds + Ly() + / £(s,y(s))ds

o = o [ ' Fls,y(s))ds + I(y(h)) (2.10)

o Sit S [tg,tg]
y(t) = f(ty(1), te N\t ty,. ..t}

y(t3) = y(ty) + L(y(t2)) (2.11)
On a, d’apres I’équation (2.8)

y(t) = tz /f S y
y(t) = y(t)+ hiy(t) + / £(s,y(s))ds

y(t) = a+ / " Fsy()ds + T (y(t)) + La(y(ta)) + / £(s,y(s))ds

t
o) = a+ [ Fsy(e)ds + Liut) + Bly(e) (212)
0
En répétant successivement la procédure ci-dessus, on obtient
o Sit€ [tm,b)
—a—l—/fsy ))ds + Z[k (tr) (2.13)
O<tp<t

Inversement, il est facile de démontere que si y est une solution de 1’équation intégrale
(2.13), alors y est une solution du probléme (2.2) - (2.4) O

2.2 Existence des solutions

2.2.1 Utilisation du théoréme de Banach
Théoréme 2.2.1. Supposons qu’il existe une fonction | € L*([0,b], RT) telle que :

Alors le probleme (2.2) - (2.4) admet une solution unique.
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Démonstration. 1. L’existence :
On considére le probléeme (2.2) - (2.4) sur [0, ]

Nous considérons l'opérateur Ny : C([0,t1], R") — C([0, t1], R™) définie par

M@W%w+£f@mwﬁiemm

Soient z,y € C([0,t1] et t € [0, 4]

[Nz (t) = Ny ()] < /OZ(S)HI(S)—Z/(S)dSII

1 t t
< —/ 7l(s)e™ O ds||z — y|| pe; L(t) :/ I(s)ds
0 0

T

1
<~z —y| pe
-

Donc 1
e O N (t) = Nyl < ~lz = yllgest € o = [0, 1]

Alors 1
1Nz (t) = Ny (t)l|se < —llz = yllse

Avec, |lyllpc = sup e Oy (t)]].

te[0,t1]
N est contractant, (7 € [1,+00)), donc

EIyO < C([O7t1]aRn) : N1yo = o
Donc yy est la solution de (2.14).
On considére le probléme (2.2) - (2.4) sur [ty, t2]

y<t) - f(tay(t)),t e J; :]tl,tQ]
{y(tf) = yo(tr) + Li(yo(tr)) (2.15)

On considere lespace C, = {y € C(J1,R")/y(t]) existe}, (C., |.||) est un espace de
Banach. Nous considérons l'opérateur N, : C, — C, définie par

No(y)(t) = yo(t1) + Li(yo(th)) + /t f(s,y(s))ds, t €]t1,to]
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Soient z,y € C,,t € [t1, 5]

[N22(t) — Nay(B)]| - < /l(S)Hﬂ?(S)—y(S)dSH

t1

1 t t
= _/ 7l(s)e™ P ds||lz -yl pos L(t) :/ I(s)ds
T t1 t1
1 TL(t)
< -z —yllse
-

Donc 1
L0 || Ny (t) — Noy(t)|| < ;||x —yllBest €]ty to]

Alors )
||N2I — N2||BC < ;||x - ?JHBC

N est contractant, (7 € [1, +00)), donc
Fy1 € C(Jtr, &2], R™) : Noyr =1

et on a .

yi(t) = Ny (87) + Li(yo(th)) + }gﬁ t f(s,y(s))ds

Donc (y;) est la solution de (2.15).Par suite, la solution du probléme (2.2) - (2.4) est
donnée par :

Yo(t) , t €0t
y*(t) _ yl(t? ) t € [tl’tQ]
Ym(t) , t € [tm, D]

2. L’unicité :
Soient Yy, Ys deux solution du probléme de Cauchy (2.2) - (2.4), on va montrer que :
y*(t) = y**(t)7Vt €J= [Ovb]
Site Jy=10,t], alors y.(t) = y.(t),Vt € [0, 4]
Sit € J; = [ti, tiy1], alors yu(t) = yus (1), VE € [ti, tis1); y(tT) = yuu(877),7 € {1,2,...,m}
On a: y.(t]) — y.(t;) = L(y.(¢;)) implique que :
Ye(t7) = v 7)) + Liya(t) = Yo (t) + Li(Ln(ts)) = Y (1))

2.2.2 Utilisation du théoréme de Krasnoselskii

Théoréme 2.2.2. Supposons que :
(Hy) f:J xR"— R" est une fonction L' - Carathéodory,
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(Hy) Ir € C(R",R"),k =1,...,m avec Iy, tel que

Vr,y € R" [ Ix(z) — L(y)|| < exllz —yl. (2.16)

Avec .
d o<l (2.17)

k=1

sont vérifiées. Alors le probléme (2.2) - (2.4) admet au moins une solution.
Démonstration. Considérons I'opérateur N défini par :

N : PC(JR") — PC(J,R™)
y = (N =yo+ [y f(s,y(s))ds + > I(y(ty))

0<trp<t

D’aprés le lemme 1.3.5, les points fixes de 'opérateur N sont les solutions du probléme (2.2)
- (24).

On va appliquer le théoréme de Krasnoselskii sur 'opérateur N :

On écrit la forme de la solution sous la forme de la somme de deux applications A et B tel
que N = A+ B avec A est une contraction et B est complétement continu.

On suppose que :

Aly®) =+ Y I(y(ty)) (2.18)

0<trp<t

Bly(t) = / F(5,y(s))ds (2.19)

La preuve est donnée par les étapes suivantes :

Etape 1 : Soit M une partie non vide, convexe et fermée de PC. On suppose que :
A B: M — PC.
M est défini par la formule suivante :

Al > 0,M = {y € PC, tel que ||y|lpc <1}

On montre que A(x) + B(y) € M,Vz,y € M :
Soient z,y € M il faut que A(x) + (y) € M,
r,y € M= |lz|lpe <let yllpe <1,
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[A((2)) + Bly(0)ll = ||a+/O F(s,y(s)ds+ D Iuly(t)

< all+11 D Ik(x(tk))|’+|’/0 f(s,y(s))ds||
< all+ > ka(x(t;Z))HJrH/o f(s,y(s))ds||
< \|G|I+Z|Uk($(tk))||+||/ hy(s))ds||

k=1 0
<

lall + > k(O + a1
k=1

On a ||z]|pc <l donc ||z(ty)|| <1,k =1,...,mdonc z(t;) € B(0,1) = {z € R", ||z|| <
l}.
Puisque les I;, sont continues sur le compact B(0,1) alors
sup [ Ix(z)]| < oo. (2.20)
2€B(0,])

Donc

1A@(®)) + Byl < llall + Y Ikt )+ ez

< lal+) sup (Hx(@)] + [l 2

k=1 z€B(0,l)
< C
Donc ||A(z(t)) + B(y(t))||pc < C avec C' une constante positive.
Donc A(z) + B(y) € M.

Etape 2 : On montre que A est une contraction :
Soient y, z € PC(J,R") :

Awe) = ACON = || 3 Ret) = 3 Wl
= Z () - f:<z<t,;>>} ||
< 3 I - A
< auly -]
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et comme :
m

» a<l (2.21)

k=1
Donc A est une contraction.

Etape 3 : On montre que B est complétement continu en appliquant le théoréme d’Arzela-
Ascoli :

1. B transforme tout ensemble borné en un ensemble borné :
Soit y € M

IBMWH=HAf@MWM|
AW@mwmr

< HhrHLl

IN

2. B est équicontinu :
Soient Iy, 1y € [0, b] tel que l; < Iy et soit y € M

umwm—mem::uoﬁ@mmw—évammwu
1 l2 l
=u0f@mm@+/f@mm@— £(s,y(s))ds]

l1 0

ZHZV@mme

sufm®ﬂs

Si ll — l2 alors ||B(y(l2)) — B(y(h))” — 0.
3. B est continue :
Soit (Yn)nen une suite dans PC' qui converge vers y. Il existe un entier [ tel que
|lYnllpc < 7 pour tout n € N et ||y||pc <1 donc y, € M et y € M.
D’aprés le théoréme de la convergence dominée de Lebesgue, on a :

1B = B = 1| [ fs.un(sDds = [ slsso(s)as)
= [ (o) = () ) s
< [ (o) = S50 Yl 051 m = o

Donc B est continu.
D’ou d’aprés le théoreme de Krasnoselskii N admet un point fixe. O]
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2.3 Exemples

Exemple 2.3.1. Pour appliquer le résultat de ce chapitre, on considére [’équation différen-
tielle impulsive sutvante :

y(t) = myz(t),t €[0,00)\ {t1,t2,...}, (2.22)
y(t) — ylty) = bay(ty), (2.23)
y(0) = 0. (2.24)

Soit R > 0 et x,T € R" telle que ||z|, ||Z|| < R

1 2

1f(t,z) = f(t,7)]| = ||m($ sl
1 _ _
< m||$+$||||$—$”
LA

=+ D(t+2)

Soit Ig(t) = #ﬁwz)’ pour t € [0,00),1lr € L},.([0,00), R").

Il est claire que ||I(x) — Ix(Z)|| < bil|lz — T|| pour tout x,T € R

Si Z br < 1, alors d’aprés le théoréme (2.2.2), le probleme (2.22)-(2.24) admet une solution

k=1
Unique.
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Chapitre 3

Systéme d’équations différentielles
impulsive

Ce chapitre est consacré a I’étude de 'existence des solutions d’un systéme d’équations
différentielles impulsives.

( P(t) = f(t,z,y),teJ:=[0,00),t#t, k=1,...,
y'(t) = glt,z,y),ted, t#t, k=1,...,
J](t—]:) - x(t/;) = {k(x( k)?y(tk))7 k= 1» R (3 1)
y(tl—:)_y tl;) = Ik<x(tk:>7y<tk))7 k= 1a"'7 ‘
z(0) = o,
| y(0) = wo,

Ou 2,5 € R, f,g:J xR xR — R sont des fonctions données, I, I, € C(R x R, R).
Les notations z(t;) = limy_o+ z(tx + h) et x(t;,) = limy,_o+ z(tx — h) sont les limites a droite
et a gauche des fonctions y a t = t;, respectivement.

Le résultat de ce chapitre est basé sur les Théremes du point fixe de Perov et Krasnoselskii

3.1 Existence des solutions

dans le but de définir une solution pour le probléme (3.1), considerons I’espace des fonc-
tions suivant :

PC, ={y € PC(]0,0),R) : y est bornée}

Ou PC([0,00),R) = {y : [0,00) = R,yx € C((tg,tr1],R), k& = 0,...,y(t,) et y(t})
existent et satisfaits y(tx) = y(t, ) pour k =1,...}.

PCY est un espace de Banach avec la norme
lylle = sup{ly(¢)| : t € [0,00)}.
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Lemme 3.1.1. Une fonction (x,y) € PCy(J,R) x PCy(J,R) est dite une solution de (3.1)
s1 et seulement st

2(t) = wo+ [y fs,2(s),y(s)ds+ > Lu(w(te),y(te)),t € J,

0<tp <t

y(t) = yo+f(fg(87$(8),y(8))d3+ Z Ti(z(ty), y(te)), t € J.

0<tp<t

Dans cette section nous allons établir 'existence des solutions du probléme (3.1). En vue
d’obtenir un tel résultat, on propose les hypothéses suivantes :

H,) 1l existe des functions [; € L'(J,R*),i =1,...,4, tel que
( ) ) ) ) ) b q

lf(t,x,y) — f(s,Z,9)| < L(t)|x —Z| + 12(t)|ly — 7|, pour tout z,Z,y, 7 € R

et
lg(t,x,y) — g(s,Z,79)| < l3(t)|x —Z| + l4(t)|ly — Y|, pour tout z,Z,y,y € R.
(H2) Il existe des constantes ajx, aor, >0, k=1,..., tal que
| Ik(z,y) — Ie(Z,9)| < aix|r — T| + agkly — 7|, pour tout x,7,y,7 € R
et

> 11:(0,0)] < 0.
k=1

(Hj3) 1l existe des constantes byg, bop > 0, k=1,..., tel que
\Ii(2,y) — (7, 7)| < bix|z — Z| + bar|y — 7|, pour tout z,7,y,7 € R

et

> " |7:(0,0)] < oo.
k=1

On utilise le théoréme de Perov pour montrer que la solution du probléme (3.1) est bornée
et tends vers zero quand t — oo.

Théoréme 3.1.1. Supposons que les conditions (Hy) — (Hs) sont vérifiées. Si la matrice

oo o0
WlHLl +Za1k Hl?”Ll +Za2k
k=1 k=1

M = > o € Moy o(RT) (3.2)
sl +> bue Mallzr + > bar
k=1 k=1
Ou . .
Zaik < o0 et Zbik <oo,t=1,2,
k=1 k=1
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converge vers zero et f(-,0,0),9(-,0,0) € L'(J,R). Alors le probleme (3.1) a une solution

unique. St de plus
Za1k+za2k +Zb1k +Zb2k <1,
k=1 k=1 k=1 k=1

alors lunique solution de (3.1) est bornée.

Démonstration. Considerons 'opérateur N : PC' x PC — PC x PC défini par

N(.I,y) = (Nl(xay)?NQ(x7y))
Ou .
N (2, 9)(t) = 0 + / F(s,2(s)y(s)ds + 3 Tu(w(t), y(te), t € [0, 00)
et . k
No(, 9)(t) = o + / g5, 2(),y(s)ds + 3 Ta(a(te), y(ta) £ € 0, 00).

Nous montrons que 'opérateur N est bien défini.
Soient (z,y) € PCy, x PCy,t € [0,00), alors

[INi(z, )l < |x0|+/0 [f(s,2(s),y())lds + > Hela(te), y(t)]

O<tp<t

< llellzlls + el lylls + Y (aukllzllo + azillylls)

O<tp<t

HIFC0,0)l + Y (1:(0,0)] + [Z:(0,0)]).

O<trp<t

D’une maniére similaire, on trouve

INo()llo < Mles oo llelle + Wallsliylls + > Guellello + barllylls)

0<tp<t

+g(-0,0)[lr + D (11x(0,0)] + |1x(0,0))).

0<trp<t

Donc

( N2 (2, )]s ) < ( e + 2002y a lallzr + 2 00%y az ) ( eIl )
N y)llo ) =\ sl + 2062y ban lalloe + 3262 bawllll + box 1yl

1£C, 0,01z + 322, (170, 0) 1y + 1170, 0) 1)
g5 0,0z + 3272, (111 (0, 0)] + [Z(0, 0) )

Ceci implique que 'opérateur N est bien défini.
Il est claire que les points fixes de 'opérateur N sont les solutions du probleme (3.1).

_|_
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On montre que N est une contraction.
Soient (x,y), (Z,7) € PCy, x PCy. Alors (H;) et (Hy) implique

[Ni(z,y)(t) — N (Z,7) (1) < /0If(S,ZB(S),y(S))—f(Sﬁ(S),@(S))IdS

+ Z [ e(2(tr), y(tr)) — (T (te), U(te))]

0<tp<t

IN

/0 (Li(s)]z(s) = Z(s)] + la(s)|y(s) — U(s)|) ds
+ ) (anlr(te) = T(te)| + axly(te) — ()

O<trp<t

Donc

INy(z,y) = M@ D) < (Il + ) aw)llz = Z
k=1

+ (el + ) aze)lly = llo-
k=1

D’une maniére similaire, on trouve

INo(2,y) = No@ D)6 < (sl + ) o)l — 2l
k=1

+ (Maller + D bai)lly = llo-
k=1

Donc

(R

NG - Nl < o 2

> , pour tout (z,y), (Z,y) € PCy x PC}.

Alors, par le théoreme (1.2.4), 'opérateur N a un point fixe unique qui est solution du
probleme (3.1).

Nous montrons maintenant que la solution (z,y) est bornée.
Soit t € [0, 00), alors on obtient

0<tp<t

2(t)] < ol + / Fs,2(s) y)lds + S el (t), y(te)
< ol + / ()l + b(s)yDds + 3 anela(t)] + 3 asely(te)
0 k=1 k=1

0,01z + 1g(50,0) [z + > 17:(0,0) + > [1,(0,0)]
k=1 k=1
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et

)] < Iyo!+/0(13(8)|x(8)!+l4(8)|y(8)\)d8+me|x(tk)!+Zb2k!y(tk)\

HI 0,01+ lg( 0,02+ D 111(0,0) + Y (0, 0)]-

k=1 k=1

Donc

[z(®)] + y(@)] < |$o|+|yo|+/0((51(8)+l3(8))lm(8)l+(l2(8)+l4(8))ly(8)l)d8

[e.o] [e.9] o0 [e.9]

+ O an+ Y am+ > b+ Y ba)(2(te)] + [y (te)])

k=1 k=1 k=1 k=1

+2/£(,0,0)][ 1 + 2[[g(,0,0)[|zx +2 ) |T6(0,0) + 2> [1(0,0)].

k=1 k=1
Alors
t
Sl(lp)(lﬁ(é’)l +ly(s)) < lzol + |yol + / (Li(s) + 13(s) + la(s) + la(s)) X
se(0,t 0
sup (|z(s)| + |y(s)|)ds
s€[0,¢]
+ (Z aip + Z gk + Z b + Z b2k> sup (|z(te)] + |y (t)])
k=1 k=1 k=1 k=1 s€[0,¢]

k=1 k=1
Ceci implique que
t
sup (|z(s)| + y(s)]) < a+/ I(s) sup (|z(s)[ + [y(s)|)ds
s€(0,t) 0 s€[0,t]
Ou

0 o] + [yo| + 2/ £(,0,0) ][ 4+ 2[|g(,0,0) |l +2>°77, [1:(0,0) + 2577, |1,(0,0)]
11— (leozl ag + ZZL agg + ZZL bik + leozl bar,)

I(s) = li(s) + la(s) + I3(s) + 14(s)
L— (3002, aw + D000 ok + D05y bug + 3277 bar)
Par application de I'inégalité de Gronwall, on obtient

sup (o(5)] + (o)) < aexp ([ tz<s>ds) |

s€[0,¢]

et
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Alors

lells + llyllo < @ exp ( / z<s>ds) |
0

Ceci implique que la solution (z,y) est bornée.
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Chapitre 4

Equations aux Différences Impulsives

Les équations aux différences sont devenues un outil de valeur et ont beaucoup d’im-
portance dans plusieurs domaines et disciplines scientifiques et ceci par leurs nombreuses
applications dans les sciences appliquées telles que 1’économie, la biologie, la théorie des
probabilités, ’ecologie,...etc. D’une part, elles sont utilisées pour la simulation des équations
différentielles ordinaires ou aux dérivées partielles, dans ’ana- lyse numérique pour la ré-
solution des équations a l’aide des suites, avec la recherche de la valeur approchée de la
solution par exemple le schéma numérique d’Euler ou de Runge-Kutta. D’autre part, elle
sont utilisées en modélisation des phénomeénes de la vie réelle, notamment en dyna- mique
des populations.

4.1 Equations aux Différences

4.2 Notions sur le calcul aux différences

Définition 4.2.1. On définit l'opérateur de différence A et l'opérateur de décalage E res-
pectivement par

Az(n)=z(n+1) —x(n),n € N,, (4.1)
Ex(n) =z(n+1),n € N,, (4.2)

Remarque 4.2.1. 1. A et E sont des opérateurs linéaires.
2. A et E commuttent, c’est a dire AE = EA.
3. A=FE—1 ou I est Uopérateur identité, c’est a dire Ix(n) = z(n),Vx € N,

Définition 4.2.2. En général, on définit A" et E" respectivement par
A'z(n) = A(A" 'z(n)),n € N, (4.3)
E"x(n) =x(n+r),n €Ny (4.4)
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Lemme 4.2.1. De la remarque (4.2.1) on peut montrer facilement les égalités suivantes

T

A" =(E-1I) =) (-1)'C/E' (4.5)

E'=(A+1) ZC”A’ (4.6)

ouC=1etCY)=0sii#0.

Théoréme 4.2.1. Soit {z(n)},>0 une suite réelle telle que x(0) = xy. Alors

z(n) =x(0+ n) Z Cl"Alwg (4.7)
Atzg =Y (=1)"'Cl E'ag (4.8)
i=0
Démonstration. 11 suffit d’appliquer les égalitées (4.5) et (4.6) a xg O

Proposition 4.2.1. On a les propriétés suivantes pour A.

(a)

Z Ax(i) = x(n) —x(ng),n € Ny, (4.9)
(b) -
A(Z) = x(n)n,n € Ny, (4.10)
(c)
A(z(n)y(n)) = Ex(n)Ay(n) + y(n)Az(n),n € N, (4.11)

(d)

z(n)\ _ y(n)Az(n) — x(n)Ay(n)
A<y(n)> = ,n €N, et y(n) est non nulle sur N, (4.12)

y(n)Ey(n)

(e) Soit P(n) = Zf:o a;n*=" un polynéme de degré k (i.e ag # 0) ot a;,i € {0,1,...,k}

sont des réels. Alors

AFP(n) = ag k. (4.13)
AFP(n) =0,Vi > 1. (4.14)

Démonstration. En utilisant (4.1) et (4.2) on trouve.
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(a)

(b)

(d)

(e)

D’autre part on a

(n+1)F

= z(n+Dy(n+1)
2(n+1)(y(n+1) = y(n)) +y(n) (2(n + 1) = 2(n))
= Bx(n)Ay(n) +y(n)Az(n).

n—1 n—1

> Ax(i) = ) (x(i+1) -

1=ng 1=ng

i=ng i=ng

r(n+1)  x(n)
y(n+1)  y(n)

—z(n)y(n)

z(n+ Dy(n) —2(n)y(n +1)

y(n+y(n)

y(n) (2(n + 1)

—a(n)) = x(n) (y(n + 1)~ y(n))

y(n)Axz(n) — xz(n)Ay(n)

y(n+1y(n)

y(n)Ey(n)

Za n+1

ZCkn =1+kn+
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(kF-DE=-2) ,

(n+1D)" = 14+ (k—1n+ n?+ -+ (k—1)nP2 4 nk!

Donc
AP(n) = agkn*~" + Py(n)

Ou P, est un polynéme de degré inférieur strictement a k—1, c’est a dire degP; < k—1.

De la méme maniére on peut montrer que

A%P(n) = aok(k — 1)n* ™2 + Py(n) avec degP, < k — 2,

A3P(n) = aok(k —1)(k —2)n* + P3(n) avec degPs < k — 3,

D’ou (4.13)
Pour montrer (4.14) il suffit d'utiliser (4.4) et (4.13)

Proposition 4.2.2. Soit
k

P(E)=> a;E""

i=0
ot E est Uopérateur défini par (4.2) et a; € {0,1,...,k} sont des réels. Alors
1. Pour toutb € R on a

P(E)Y" = P(b)b",n € N*
2. Pour toutb € R on a
P(E)(V"z(n)) =b"P(bE)x(n),n € N*

Démonstration. En utilisant ( 4.4) et ( 4.15) on trouve
1.

PEW" = (agE* 4+ aE* ' + -+ ap1)D"
= aph"* £ a b 4 g b”
= (agh® 4+ a b* 1 4 - 4 ap)b"
= P(b)b".
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PE)b"z(n)) = (aoE* 4+ ayE*' + -+ apI)(b"z(n))

agE*b"x(n) + ay EM 0 2 (n) + - - + apIb"z(n))

aph" Fx(n + k) + arb" ™ a(n + k= 1) + - + apb"z(n))
= b"(apb"z(n + k) + ab" tx(n+k—1) + -+ apz(n))

= bV"P(bE)xz(n).
O
4.3 Equations aux Différences impulsives
On considére Equations aux Différences impulsives suivante :
Ax(ng) = Brx(ng),n = ng (4.19)
2(0) = o, (4.20)

Ou Az(n) = z(n+ 1) — z(n),z(n) € R*, f : N x R* — R" est une fonction, By, est
une constante pour tout k& € N. Les moments {n;}3° sont des entiers naturels et satisfaits
O=ng<ng <---<ng<...,ng— o0 quand k — 00

Définition 4.3.1. Une fonction y € PC(N(0,b),R) est dite une solution du probleme (4.18-
4.18) si y satisfait ’équation (4.18) et les conditions (4.19-4.20)

Lemme 4.3.1. Une fonction x € PC(N(0,b),R) est dite une solution du probleme (4.18-
4.20) si et seulement si.

k nj—n;—1—1 J
wnj+k+1) = Y flaln+0)+0+B) > flem+i)+ ][+ B)z(0)

i=1 i=1 i=0
J no—1 j ni1—no—1

+ [+ B) Zf H1+B Z F(x(ng +1))
=0 =1
J ng—ni—1 nj—nj—1—1

v IIa+B) 30 S+ 4 (045) 30 Sl +i)
i=2 i=1

k
+ > flalng+i)),j=—=1,0,...;k=0,...;n_; =0,
=1
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Démonstration.  Sin € {1,2,..., ng — 1}, donc

Az(0) = z(1) —z(0)
f(z(0))
Az(l) = z(2) —x(1)
= f(z(1))
Azx(n—1) = z(n)—z(n—1)
= fla(n—1)
Donc.
() =2(0)+ > fla@)
e Sine€{ng+1,...,ny — 1}, thus
Azx(ng+1) = z(ng+2) —x(ng+1)
= [f(z(no+1))
Azx(ng+2) = z(ng+3) —x(ng + 2)
= [f(z(no+2))
Ax(ng+k) = z(ng+k+1)—z(ng+k)
= f(z(no +k))
= f(no + k’)

Alors
k

w(ng+k+1) =Y f(z(ng+1))+x(ng+1)

i=1
De la définition de Az(ng), on obtient.

Ax(ng) x(ng + 1) — z(ng)

Byz(ng)

Donc
x(ng+ 1) = (14 Boy)x(ng)
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on a

Alors
Donc

2o+ k+1) = 3 Falng + i) + (1+ Bo) <x<o> £ 7))+ F(ang - 1>>)
Alors

x(ng+k+1) = Zf(x(no—i—i))—i—(l—i—Bg) (x(O) + 02: f(x(z))) k=1, ny—ng—2

i=1

e Sine{m+1,..., ny — 1}, alors

Az(ni+1) = xz(ni+2) —xz(ng + 1)
= flz(n +1))
Az(ni+2) = z(ny+3) —x(ng + 2)
= flz(nm +2))
Azx(ni+k) = x(mi+k+1)—x(n + k)
= f(m + k’)
Donc N
z(ng+k+1)= Z flz(ny+1)) +2x(ng + 1)
Az(ny) = z(ng+1) —xz(ny)
= B1$(n1)
Donc

x(ny+1)= (14 By)z(ny)

Az(ny — 1)

z(ny) —x(ny — 1)

fx(ny = 1))

W
(@)



Alors
z(n1) = x(n — 1) + f(x(n — 1))

ny—no—1

_ Z fz(ng +1)) + (1 + Bo) (w(O) + 2 f(ar(z)))

z(ny) = z(m — 1) + f(z(nm — 1))

ni—no—1

z(ni+1) =1+ By) ( Z f(z(ng+1))+ (14 By) (x(O)—i—OZ:f(a:(z))))

1=0

ni—no—1 no—1

wm+1) = (1+B1) Y f(z(ne+1i)) (1+Bl)(1+Bo)Zf(w(i))
4 (1+Bl>(1:30) (0) -

k ni—no—1

(i +k+1) = Zf(ac(nl—l—i))—i—(l—i—Bl) Z f(x(ng +1))

+ (L4 Bo)(1+ B1)z(0) + (1+ Bo)(1+ B1) Y f(a(i), k=1,...,np—ny — 1

e Sine{ny+1,...,n3 — 1}, alors

Az(ng+1) = x(na+2) —x(ng+1)
= flz(nz +1))
Az(ne+2) = z(ne+3) —x(ne + 2)
= flz(n2 +2))
Azx(ng+ k) = x(ne+k+1)—x(ng+k)
= f(ng + k’)
Donc .
z(ne+k+1) = Z f(x(ne +1)) + z(ng + 1)
On a )
Az(ng) x(ny + 1) — z(ny)

BQJJ(TLQ)
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Donc
x(ny + 1) = (14 By)z(nsg)

Az(ng —1) = z(ng) —x(ng — 1)
= f(z(na —1))
Alors
z(ng) = x(nz — 1) + f(z(n2 — 1))
dn) = Y Sl )+ B) Y faln+ )
(4 B+ Byalng) + (14 B)(1+ B) Y S(a(i)
tne+1) = (14 By) Z f(x(ny +1)) + (1 + By)(1 + By) 1—2— f(x(ng +1))
+ (14 B2)(1+ Bo)(1 + By)x(ng) + (1 4+ B)(1 + By)(1+ By) nOZf
Donc -
tlns +k+1) = H(1+Bi)x(0) +H(1+B7;) Z Fla())
- H(1+B¢) _Z_ f(x(ng+1)) + (1 + By) _Z_ f(x(ny +1)
+ ) fla(na+i)k=1,... ng—ny— L
e On continue le processus, on obtient pour ,j =3,4,...;k=1,...

nj—njfl—l 7

w(nj+k+1) = Zf w(nj+0)+(1+B;) > flalni+i) + [+ B)z(0)

=1 i=0
J no—1 ni—no—1

+ H1+B Zf H1+B Z F(z(ng + 1))
i=1

J ng—ni—1 nj—nj_1—1

- H1+B Z fl@(ng +14) + -+ (1+ B;) Z fla(ng +1))

k

+ > S +9)
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4.4 Systéme d’Equations aux Différences impulsives

On considere le systéeme d’Equations aux Différences impulsives suivant :

([ Az(n) = f(n,z(n),y(n)),n # n,
AA?Z(ng = %}n,(w(g),y n)),n # ng,
Ay(ng) = Buyln).n—mt (421)
z(0) = o,
\ y<0) = Yo,

f,g: N xR" x R" — R" sont des fonctions; By, B, sont des constantes pour tout k& € N.
Les moments {ny}$° sont des entiers naturels et satisfaits 0 =ng <mn; < -+ <ngp <....
N(0,b6) = {1,2,...,n0—1,ng,no+1,n1—1,ny,n1+1,...,np—1,np, np+1,...,b+1} oing <
ny<ng <--<n,<b+1.

Lemme 4.4.1. Une fonction (z,y) € PC(J,R)x PC(J,R) est dite une solution du probleme
(4.21) si (x,y) satisfait les équations et les conditions du probleme (4.21).

Définition 4.4.1. (z,y) € PC(J,R) x PC(J,R) est une solution du probleme (4.21)si et
seulement si (x,y) satisfait
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( k j

x%+k+D::ZNMﬁ%ﬂm+mMm+m+Hﬁ+&ﬂ@

+ (1+B)) Z f(nj1 +id,2(nj—1 +1),y(nj—1 +1))

J no—1 J ni—no—1

+ H(1+Bi)Zf(i7$(i)ay(i))+n(1+3i) Z f(no +i,2(ng +1),y(no + 1))
+ H(1+BZ») i_ f(ni+i,2(ny +19),y(ny +14)) + -

+ (14 B;) Z f(njoa +i,x(nj—y + 1), y(nj—1 +1))

k
+ > flny+ix(ng +i),y(ny +14)),5 = —1,0,1,... .k =0,1,...,n_; =0
i;l i
y(nj+k+1) = Y gln;+i,x(n; +1),y(n; +0) + [ [(1 + Bi)y(0)
=1 ny—ny 11 =0
+ (1+ B)) Z g(nj_1 +i,2(nj—1 + 1), y(nj_y +1))

=1
J no—1 J ni—no—1

+ JJa+B)> gl.x().y@) + [JA+B:) > glno+i,x(ng +i),y(no + 1))

=0 =0 i=1 i=1
J ne—ni—1

+ JJa+B) > glna+ia(n+i),y(ng +i) + -
=2 =1
nj—nj_1—1

+ (1+B;) Y gnya+iw(nga+1),y(n 1 +1)
=1

+ Y gl +ia(ng+i),ylng +1),j=-10,1,....k=0,1,...,n_; =0

\ =1

4.5 Existence des solutions

Considérons le systéme d’Equations aux Différences suivant :

Ax(k) = f(k,z(k),yk)), k€ N(a,b—1)={a,a+1,...,b—1},
Ay<k) = g(k,:r;(k),y(k)), k€ N(a>b - 1)7
(4.22)
x(a) = 0,
y(a) = Yo,

Ou f,g:N(a,b—1) x R™ — R™ sont des fonctions données.

44



Dans cette section, nous allons établir I'existense des solutions du probléme (4.22). En
vue d’obtenir un tel résultat, on propose les hypothéses suivantes :

(Hy) 1l existe des nombres non nuls a; et b; pour tout i € {1,2}

{If(k,ﬂf,y)—f( JT,Y)| < arle — T + bily — 7]
lg(k,2,y) — g(k,T,7)| < aslr — 7| + baly — Y|

pour tout x, y, =, y € R™.

Pour montrer I'existense et 1'unicité des solutions du probléme (4.22), on utilise le théo-
réme du point fixe de Perov.

Théoréme 4.5.1. Supposons que la condition (Hy) est vérifiée et la matrice

M =(@b-1) ( “ Z; > € Mayo(R,).

a2
Si M converge vers zero. Alors le probleme (4.22) a une solution unique.

Démonstration. Considerons 'opérateur N: C(N(a,b — 1),R™) x C(N(a,b — 1),R™)x —
C(N(a,b—1),R™) defined for (z,y) € C(N(a,b —1),R™) x C(N(a,b —1),R™) by

N(*T’y) = (N1($7y)7N2($7y))7 (ZE,y) S O(N<a’b - 1)7Rm> X C(N(avb_ 1)7Rm) (42?’)

ou
k—1

N (a(k), (k) = w0+ S (L, x(1), y(1), k € Na,b—1)

l=a

et
Ny(z(k), y _y0+zgzx ), keN(a,b—1).

Soient (z,v), (Z,y) € C(N(a,b — 1),R™) x C(N(a,b — 1),R™). Alors on a pour tout
ke N(a,b—1)

Alors
[Ni(z,y) = M(T, D)oo < (b= Dar]lx = Tljoc + (b= Db1ly = Flloo
D’une maniére similaire, on a

[N2(2,y) = Na(T, 9)l|oo < (b= Dazl|z = Tlleo + (b= 1)bally — Yoo
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Donc

<

ING@,y) = NE D)l = ONﬂ%w—M@@mﬁ

”NQ(xv y) - NQ(fa y)”oo

aq b1 ||ZL’ _E”oo)
b—1 — )
( (az bz) (Hy_yHoo

) , for all, (z,v), (z,9) € C(N(a,b—1),R™)xC(N(a, b—1),R™).

IN

Alors

[ = 7| oo

NG )Nl < 01 (721

Par le théoréme du point fixe de Perov, 'opérateur N a un point fixe unique (z,y) €
C(N(a,b—1),R™) x C(N(a,b—1),R™) qui est solution unique pour le problem (4.22). 0 [
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Conclusion et Perspective

Au terme de cette recherche, nous estimons que les résultats présentés contribueront au
développement de I’étude des équations différentielles impulsives, en ouvrant de nouveaux
horizons a la recherche scientifique sur cette thématique émergente.

Aprés avoir présenté les notions préliminaires utiles pour la bonne compréhension du pré-
sent travail, nous avons présenté des résultats d’existence et d’unicité de certains problémes
différentiels d’ordres impulsifs. Tout d’abord, nous avons établi des résultats d’existence glo-
bale et d’unicité d’un probléme différentiel impulsif en utilisant les techniques de points fixes,
I'existence des résultats dans le cas discret sont également discutés.

Les résultats présentés dans cette thése offrent naturellement de nombreuses perspectives.

La premiére est I’étude des stabilités des solutions des équations différentielles impulsives
d’ordre discret.
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Résumeé : Le but de ce mémoire est d’étudier les équations différentielles impulsives
discretes. Le mémoire est divisé en quatre chapitres. Le premier chapitre contient un ensemble
de définitions et résultats qui seront utiles pour la suite de cette étude. Dans le deuxieéme
chapitre, on traitera I’existence des solutions par le théoréme de Banach et par le théoréeme de
Krasnoselskii pour les équations différentielles impulsives. Dans le troisiéme chapitre, nous
¢tudions I’existence et I’unicité des solutions pour les systemes impulsifs, la méthode de
résolution est basée sur le principe du point fixe de Perov. Le dernier chapitre est consacré aux
notions sur le calcul aux différences et a ’existence et I’unicité d’un probléme impulsif discret.

Mots clés : Equations différentielles Impulsives, multifonction, théorémes du point fixe,
espace métrique géneralisé.

Abstract: The aim of this dissertation is to study discrete impulse differential equations. The
dissertation is divided into four chapters. The first chapter contains a set of definitions and
results which will be useful for the rest of this study. In the second chapter, we will treat the
existence of solutions by Banach's theorem and by Krasnoselskii's theorem for impulsive
differential equations. In the third chapter, we study the existence and uniqueness of solutions
for impulsive systems, the solving method is based on Perov's fixed point principle. The last
chapter is devoted to notions of difference calculus and to the existence and uniqueness of a
discrete impulse problem.

Keywords: Impulsive differential equations, multifunction, fixed point theorems, generalized metric
space.



