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0.1 Introduction

Les équations aux dérivées partielles (EDP) sont omniprésentes dans le monde scienti�que.

Ces équations proviennent naturellement des problèmes de la physique, par exemple en

mécanique classique ou quantique, en relativité générale et dans la théorie de la gravi-

tation. On les retrouve aussi dans l'électromagnétisme (équations de Maxwell) et dans

la théorie du mouvement brownien mais aussi dans la biologie et dans d'autre branches.

Plus généralement la théorie des équations aux dérivées partielles est devenu primordiale

dans tous les domaines notamment dans la simulation aéronautique, la synthèse d'images,

ou la prévision météorologique. Également ces équation apparaissent en mathématique et

particulièrement en géométrie di�érentielle comme l'équation de Yamabe.

Les équations aux Laplacien sont des EDP faisant intervenir l'opérateur Laplacien dont

leurs noms est un hommage au physicien mathématicien Pierre-Simon de Laplace, l'opé-

rateur Laplacien possède des propriétés intéressantes, par exemple il est elliptique. On

retrouve dans la littérature des équations linéaires et non-linéaires, avec un certain expo-

sant où ce dernier pourra être critique. Ce type d'équation est souvent connu sous le nom

d'équation du second-ordre, la plus simple est l'équation de Laplace dont les solutions sont

appelées fonctions harmoniques. Durant ce siècle, on a développé beaucoup de méthode

et d'outils pour résoudre ces EDP et surtout celles qui nous aide à étudier l'existence des

solutions, par exemple la méthode variationnelle.

Dans ce travail, on s'intéresse aux valeurs propres d'un opérateur de type Laplacien ap-

pelé le Laplacien conforme. En d'autre terme, soit P l'opérateur laplacien conforme, P

est donné sous la forme suivante

P = ∆ + h où ∆ = −
n∑
i=1

∂2

∂x2
i

Ω un ouvert bornée de RN de classe C1, N ≥ 3 et h ∈ C∞(Ω). Plus précisément, nous al-

lons étudier l'atteignabilité des valeurs propres, particulièrement la première valeur propre

et la deuxième. Grosso-modo, il s'agit de trouver des fonctions qui sont solutions des équa-

tions correspondantes. Ces dernière sont naturellement appelées fonctions propres asso-

ciées. Pour cela, nous allons utiliser la fameuse méthode variationnelle qui est fortement

relié à la théorie des points critiques qui occupe une place importante dans le vaste champ

de l'analyse non-linéaire.

L'approche variationnelle consiste à utiliser un processus de minimisation et le théorème
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des multiplicateurs de Lagrange fournit l'existence de la solution.

Ce mémoire comprend trois parties :

1) Dans le chapitre 1, on retrouve les préliminaires et les dé�nitions générales, puis on

rappelle quelque résultats sur la théorie des opérateurs. On introduit une notion très im-

portantes en mathématiques qui est la notion des espaces de Sobolev, on parle aussi un

peu de la théorie des point critique et particulièrement on rappelle quelques théorèmes

spéci�ques qui sont nécessaires à ce travail.

2) Dans le chapitre 2, on introduit quelque résultats a développé la démonstration, spécia-

lement le théorème des multiplicateurs de Lagrange et quelques lemmes qui seront utiliser

dans la partie suivante.

3) Dans le dernier chapitre on traite en détail l'existence de la première et la deuxième

valeur propre du Laplacien conforme.

Le théorème principal de ce mémoire est le suivant :

Théorème principal :

Théorème 0.1.1. Soit Ω un ouvert bornée de Rn de classe C1, n ≥ 3 et soit λ1 la

première valeur propre de l'opérateur P = ∆ + h, alors il existe une fonction v ∈ C2(Ω)

strictement positive tel que

∆v + hv = λ1v.

On dit aussi que la première valeur propre λ1 est atteinte par v.

Avec la même méthode on va chercher une fonction w associé à la deuxième valeur
propre λ2, plus précisément on a,

∆w + hw = λ2w.



8 TABLE DES MATIÈRES



Chapitre 1

Préliminaires et généralités

L'objectif de ce chapitre c'est d'introduire les outils de base qui seront utilisés dans

les chapitres qui vont suivre. Dans cette section on fait un rappel sur un certain nombre

de résultats concernant les espaces de Sobolev qui nous seront utiles dans la suite. On

pourra consulter l'ouvrage de Otared Kavian dans [8] intitulé : Introduction à la Théorie

des Points Critiques.

1.1 L'espace Lp(Ω)

Dé�nition 1.1.1. Norme vectorielle.

Soit X un espace vectoriel. On dit que l'application ‖.‖ : X −→ R dé�nit une norme sur

l'espace vectoriel X si, l'application véri�e les propriétés suivantes :

(1) ∀x ∈ X, ‖x‖ ≥ 0.

(2) ‖x‖ = 0⇐⇒ x = 0.

(3) ∀(α, x) ∈ R×X, ‖αx‖ = |α|‖x‖ .

(4) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀x, y ∈ X.

Dé�nition 1.1.2. On dit que l'espace X est un espace de Banach si X est normé et

complet. On appelle forme linéaire sur X toute application linéaire de X dans R, c'est-à-
dire toute application ϕ : X −→ R telle que

∀x, y ∈ X, ∀λ ∈ R, ϕ(λx+ y) = λϕ(x) + ϕ(y).

9
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L'ensemble des ces formes linéaires sur X est un R-espace vectoriel, appelé l'espace dual

de X et est noté X ′.

Dé�nition 1.1.3. Soit X un espace de Banach réel. L'espace X est dit ré�exif si l'image

I(X) = X, où I : X −→ (X ′)′ n'est que l'injection canonique dé�nie comme suit pour

x ∈ X, I(x) : X ′ −→ R

ϕ 7−→ I(x)(ϕ) = ϕ(x).

Dé�nition 1.1.4. Soit X un espace de Banach réel. L'espace X est dit séparable si, X

admet un sous-ensemble D ⊂ X dénombrable et dense.

�������������������������������������

Dans toute la suite Ω désigne un ouvert de RN muni de la mesure de Lebesgue dx.

Dé�nition 1.1.5. Soit u une fonction dé�nie sur Ω.

(1) La fonction u est intégrable sur Ω si :

∫
Ω

|u(x)|dx < +∞. (1.1.1)

où dx désigne de la mesure de Lebesgue.

(2) La fonction u est dite localement intégrable sur Ω si elle est intégrable sur tout com-

pact K ⊂ Ω.

(3) Le support de la fonction u est l'ensemble dé�nie par : Supp(u) = {x ∈ Ω, u(x) 6= 0}.

Dé�nition 1.1.6. Soit Ω un ouvert de RN. On désigne par D(Ω) l'espace de fonction de

classe C∞ sur Ω et à support compact inclus dans Ω.

Dé�nition 1.1.7. Soit p un réel avec 1 ≤ p < +∞. On rappel que l'espace de Lebesgue

Lp(Ω) (l'espace quotient) est dé�ni par :

Lp(Ω) = {u : Ω −→ R, tel que

∫
Ω

|u(x)|pdx < +∞}
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On munit cet espace de la norme suivante :

‖u‖Lp(Ω) = (

∫
Ω

|u(x)|pdx)
1
p . (1.1.2)

Cette norme est appelée norme usuelle. L'espace Lp(Ω) est un espace de Banach et de

plus, si 1 < p < +∞, l'espace Lp(Ω) est ré�exif.

1.2 Espace de Sobolev

Dans cette dé�nition, on va introduire la notion de la dérivée d'une fonction au sens

faible qui est une notion fondamentale pour la construction des espaces de Sobolev.

Dé�nition 1.2.1. Soit u une fonction localement intégrable sur Ω, un multi indice α =

(α1, α2, . . . , αn) ∈ Nn et la longueur |α| = α1 + α2 + . . .+ αn. On appelle dérivée au sens

faible de u d'ordre α et on note Dαu, la fonction qui véri�e∫
Ω

ϕDαudx = (−1)n
∫

Ω

uDαϕdx, ∀ϕ ∈ D(Ω)

avec

Dαϕ =
∂|α|ϕ

∂xα1
x1 , ∂x

α2
x2 , . . . , ∂xαnxn

où ϕ est une fonction de classe C∞(Ω) et a support compact dans Ω.

Les espaces de Sobolev sont des espaces fonctionnels dont les dérivées au sens faible sont

intégrables, ces espaces sont complets ce qui est un avantage considérable pour l'étude des

solutions des équations aux dérivées partielles.

Dé�nition 1.2.2. On appelle espace de Sobolev d'ordre 1 sur Ω l'espace

W 1,p(Ω) = {u ∈ Lp(Ω) où
∂u

∂xi
∈ Lp(Ω) ∀i = 1, 2, . . . , N}

où ∂u
∂xi

désigne la dérivée partielle de u au sens faible, plus précisément, la fonction u

appartient à Lp(Ω) est un élément de W 1,p(Ω) si, il existe N fonctions v1, . . . , vN ∈ Lp(Ω)

tels que : ∫
Ω

u
∂ϕ

∂xi
dx = −

∫
Ω

viϕdx, ∀ϕ ∈ D(Ω), ∀i ∈ {1, 2, . . . , N}.
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On note vi = ∂u
∂xi
, ∀i = 1, 2, . . . , N .

L'espace W 1,p(Ω) est muni de la norme

‖u‖W 1,p(Ω) = ‖u‖Lp(Ω) + ‖∇u‖Lp(Ω) (1.2.1)

où

∇u = (
∂u

∂x1

,
∂u

∂x2

, . . . ,
∂u

∂xN
)

est le vecteur gradient de la fonction u. En particulier, pour p = 2, on pose

W 1,2(Ω) = H1(Ω), (1.2.2)

cet espace est muni du produit scalaire suivant

(u, v)H1 = (u, v)L2(Ω) +
N∑
i=1

(
∂u

∂xi
,
∂v

∂xi

)
L2(Ω)

(1.2.3)

où

(u, v)L2(Ω) =

∫
Ω

uvdx. (1.2.4)

De plus, ce produit scalaire induit la norme associée

‖u‖H1(Ω) =

(
‖u‖2

L2(Ω)2 +
n∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥2

L2(Ω)

) 1
2

. (1.2.5)

Autrement on a,

‖u‖H1(Ω) =

(∫
Ω

u2 + |∇u|2dx
) 1

2

. (1.2.6)

Proposition 1.2.1. L'espace W 1,p(Ω) est un espace de Banach pour 1 ≤ p ≤ +∞, il

est ré�exif pour 1 < p < +∞ et séparable pour 1 ≤ p < +∞. Particulièrement l'espace(
H1(Ω), ‖‖H1(Ω)

)
est un espace de Hilbert séparable.

Dé�nition 1.2.3. Soit 1 ≤ p < +∞,W 1,p
0 (Ω) désigne l'adhérence de D(Ω) dansW 1,p(Ω).

L'espaceW 1,p
0 (Ω) muni de la norme induite parW 1,p(Ω) est un espace de Banach séparable

et de plus il est ré�exif pour tout réel p véri�ant 1 < p < +∞.
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Théorème 1.2.1. Soit

u ∈ W 1,p(Ω) avec 1 ≤ p < +∞.

Alors les propriétés suivantes sont équivalentes :

1. u = 0 sur Γ = ∂Ω.

2. u ∈ W 1,p
0 (Ω).

Théorème 1.2.2. L'espace
(
W 1,p

0 (Ω), ‖‖W 1,p
0 (Ω)

)
est uniformément convexe.

Lemme 1.2.1. Si u ∈ W 1,p
0 (Ω), alors u+, u− et |u| sont dans W 1,p

0 (Ω) où

u+ = max(u(x), 0), u− = min(u(x), 0)

de telle sorte que u = u+ − u− et |u| = u+ + u−. De plus

∇u+ =

{
∇u si u > 0

0 si u ≤ 0

∇u− =

{
0 si u ≥ 0

∇u si u < 0

∇|u| =


∇u si u > 0

0 si u = 0

−∇u si u < 0

.

Par ailleurs, (u p∂Ω)+ = u+ p∂Ω et (u p∂Ω)− = u− p∂Ω.

1.3 Quelques inégalités

Théorème 1.3.1. (Inégalité de Poincaré ) Soit p un réel avec 1 ≤ p < +∞ et Ω un

ouvert borné de RN. Il existe une constante C > 0 telle que pour tout

∀u ∈ W 1,p
0 (Ω) ‖u‖Lp(Ω) ≤ C‖∇u‖Lp(Ω). (1.3.1)

De plus, l'application u −→ ‖u‖(Lp(Ω))N est une norme sur W 1,p
0 (Ω) qui est équivalente à

celle induite par W 1,p(Ω).
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Dé�nition 1.3.1. Soit p et q deux réels véri�ant, 1 < q ≤ +∞ et 1
p

+ 1
q

= 1. On désigne

par W−1,q(Ω) l'espace dual de W 1,p
0 (Ω).

En particulier, on a l'inégalité de Hölder :

Dé�nition 1.3.2. Etant donné que L2(Ω) est le dual de lui même, il suit que∫
Ω

|uv|dx ≤ (

∫
Ω

u2dx)
1
2 (

∫
Ω

v2dx)
1
2 . (1.3.2)

1.4 Les injections des espaces de Sobolev

Dé�nition 1.4.1. On dit qu'un espace de Banach X s'injecte de façon continue dans un

espace de Banach Y et on note X ↪→ Y si et seulement si

(1) X est un sous-espace de Y .

(2) ∃C > 0 tel que pour tout u ∈ X, on a

‖u‖≤ C‖u‖X . (1.4.1)

Dé�nition 1.4.2. On dit qu'un espace de Banach X s'injecte de façon compacte dans

un espace de Banach Y et on note X ↪→↪→ Y si

(1) X s'injecte de façon continue dans Y .

(2) Toute suite faiblement convergente dans X converge fortement dans Y .

Théorème 1.4.1. (Sobolev, Gagliardo et Nirenberg)

Soit 1 ≤ p < N alors

W 1,p(RN) ⊂ Lp
∗
(RN) où p∗ est donné par

1

p∗
=

1

p
− 1

N

et il existe une constante C = C(p,N) telle que

‖u‖Lp∗ (RN ) ≤ C‖∇u‖Lp(RN ) ∀u ∈ W 1,p(RN). (1.4.2)

Soit 1 ≤ p < N , alors

W 1,p(RN) ↪→ Lp(R)N ∀q ∈ [p, p∗]

et pour le cas limite p = N , on a

W 1,N(RN) ↪→ Lq(R)N ∀q ∈ [N,+∞[.
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Théorème 1.4.2. (Morrey) Soit p > N . Alors

W 1,p(RN) ↪→ L∞(R)N .

De plus, pour tout u ∈ W 1,p(RN), on a

|u(x)− u(y)| ≤ C|x− y|α‖∇u‖Lp(RN ) p.p où x, y ∈ RN

avec α = 1− N
p
et C est une constante qui dépend seulement de p et N .

Énonçons les théorèmes "d'injection" continue, ou compacte établis pour les espaces

de Sobolev dé�nis sur un ouvert Ω de RN .

Corollaire 1.4.1. Soit Ω un ouvert borné de RN tel que Ω est de classe C1, on a

Si 1 ≤ p < N alors

W 1,p(Ω) ↪→ Lq(Ω) ∀q ∈ [1, p∗[ où
1

p∗
=

1

p
− 1

N
. (1.4.3)

Si p = N , alors

W 1,p(Ω) ↪→ Lq(Ω) ∀q ∈ [p,+∞[. (1.4.4)

Si p > N alors

W 1,p(Ω) ↪→ L∞(Ω). (1.4.5)

De plus, si p > N , alors on a pour tout u ∈ W 1,p(Ω)

|u(x)− u(y)| ≤ C‖u‖W 1,p(Ω)|x− y|α p.p où x, y ∈ Ω

avec α = 1− 1
N

et C dépend seulement de Ω, p et N .

En particulier, on a

W 1,p(Ω) ⊂ C(Ω).

Théorème 1.4.3. (Rellich-Kondrachov) Soit Ω un ouvert borné de classe C1. On a

Si p < N alors

W 1,p(Ω) ↪→↪→ Lq(Ω) ∀q ∈ [1, p∗[ où
1

p∗
=

1

p
− 1

N
.
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Si p = N alors

W 1,p(Ω) ↪→↪→ Lq(Ω) ∀q ∈ [1,+∞[.

Si p > N alors

W 1,p(Ω) ↪→↪→ C(Ω).

En particulier W 1,p(Ω) ↪→↪→ Lp(Ω) pour tout p.

Ici, on présente la version de ce théorème pour les espaces W 1,p
0 (Ω), remarquons d'abord

que si on remplace l'espace W 1,p(Ω) par W 1,p
0 (Ω) alors les injections précédente sont

véri�ées indépendamment de la régularité du domaine Ω.

Théorème 1.4.4. (Rellich-Kondrachov). Soit Ω un ouvert borné de RN et p ≥ 1.

(1) Si p < N , alors pour tout q ≥ 1 tel que q < p, l'injection de W 1,p
0 (Ω) dans Lq(Ω)

est compacte.

(2) Si p = N , alors pour tout q <∞, l'injection de W 1,p
0 (Ω) dans Lq(Ω) est compacte.

(3) Si p > N et 0 < α < 1, alors l'injection de W 1,p
0 (Ω) dans C0,α(Ω) est compacte.

(4) Lorsque Ω est un ouvert borné de classe C1, les résultats ci-dessus sont vrais en

remplaçant W 1,p
0 (Ω) par W 1,p(Ω).

(5) Lorsque N = 1, l'injection deW 1,1(Ω) dans C(Ω) est continue et non compacte, mais

toute suite bornée (un)n contient une sous-suite (unj)j telle que pour tout x ∈ Ω, la

suite (unj(x))j est convergente.

Théorème 1.4.5. Soit Ω un ouvert borné de RN , avec N ≥ 3 et 1 < p < N . Alors

W 1,p
0 (Ω) ↪→↪→ Lq(Ω) pour tout q ∈

[
1,

Np

N − p

[
.

Le nombre p∗ = Np
N−p est appelé exposant critique de Sobolev.
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1.5 La convergence faible et quelques critères

Dans cette partie, nous allons rappeler la dé�nition de la convergence faible dans un

espace de Hilbert. Soit H un espace de Hilbert, muni d'un produit scalaire noté 〈., .〉H et

de norme associée notée ‖·‖H .

Dé�nition 1.5.1. On dit que la suite (xn) de H converge faiblement vers x ∈ H si

lim
n−→∞

〈xn, y〉H = 〈x, y〉H ∀y ∈ H. (1.5.1)

On note xn ⇀ x.

La convergence forte entraîne la convergence faible

Proposition 1.5.1. Si (xn) converge fortement vers x, alors (xn) converge faiblement

vers x.

Démonstration. En e�et, pour tout y ∈ H,

|〈xn, y〉H − 〈x, y〉| = |〈xn − x, y〉H | ≤ ‖xn − x‖H‖y‖H −→ 0.

Remarque 1.5.1. La réciproque est fausse en général. Par exemple, il est bien connu que

dans H = L2([0, 2π]), la fonction xn(t) = sin(nt) véri�e que

lim
n−→∞

∫ 2π

0

sin(nt)y(t)dt = 0 y ∈ H.

En e�et, on véri�e d'abord que c ?est vrai pour les fonctions y de classe C1 (faire une

intégration par parties), puis par densité, pour toutes les fonctions y ∈ H. Cela signi�e que

(xn) converge faiblement vers la fonction nulle dans H. Mais (xn) ne tend pas fortement

vers la fonction nulle puisque

‖xn‖2
H =

∫ 2π

0

sin2(nt)dt = π

où le dernier terme est une constante strictement positive indépendante de n.

Proposition 1.5.2. (Unicité de la limite faible) Si (xn) converge faiblement, alors sa

limite faible est unique.
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Démonstration. Soient x et x′ deux limites faibles de (xn). Alors par dé�nition de la

convergence faible, on a

lim
n−→∞

〈xn, y〉H = 〈x, y〉H = 〈x′, y〉H y ∈ H

soit 〈x− x′, y〉 = 0 pour tout y ∈ H. Donc x = x′.

En dimension �nie, la convergences faible et forte coïncident :

Proposition 1.5.3. Si H est de dimension �nie et (xn) est une suite d'éléments de H,

alors (xn) converge faiblement si (xn) converge fortement.

Démonstration. Soit (ek) pour k = 1, . . . , N une base orthonormée de H. Si (xn) converge

faiblement vers x ∈ H, alors pour tout k = 1, . . . , N , la suite scalaire (〈xn, ek〉)n∈N converge

vers 〈x, ek〉. Donc

‖xn − x‖2 =
N∑
k=1

(〈xn, ek〉 − 〈x, ek〉)2 −→ 0.

Cela prouve que (xn) converge fortement vers x.

La réciproque est toujours vraie, même en dimension in�nie.

En particulier, on a la dé�nition de la convergence faible dans l'espace H1
0 (Ω).

Dé�nition 1.5.2. Soit vn une suite de H1
0 (Ω). On dit que vn converge faiblement vers v

dans H1
0 (Ω) si et seulement si

∫
Ω

〈∇vn,∇ϕ〉+ vnϕdx −→
∫

Ω

〈∇v,∇ϕ〉+ vϕdx ∀ϕ ∈ H1
0 (Ω). (1.5.2)

Théorème 1.5.1. ( Théorème de la convergence dominée de Lebesgue)

Soit (fn)n une suite de fonctions de L1(Ω) convergeant presque partout vers une fonction

mesurable f . On suppose qu'il existe g ∈ L1(Ω) telle que pour tout n ≥ 1 on ait ‖fn‖ ≤ g

p.p sur Ω, alors f ∈ L1(Ω) et

lim
n−→∞

‖f − fn‖ = 0,

∫
Ω

f(x)dx = lim
n−→+∞

∫
Ω

fn(x)dx. (1.5.3)
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Proposition 1.5.4. Soient (fn)n une suite de Lp(Ω) et f ∈ Lp(Ω), tels que

‖f − fn‖Lp(Ω) −→ 0,

alors il existe une fonction g ∈ Lp(Ω) et une sous-suite extraite (fni)ni telles que :

(1) fni(x) −→ f(x) p.p sur Ω.

(2) |fni(x)| ≤ g(x) pour tout i et p.p sur Ω.

Lemme 1.5.1. (Lemme de Fatou)

Soit (fn)n une suite de fonctions positives. Alors :

∫
Ω

lim
n−→∞

inf fn(x)dx ≤ lim
n−→∞

inf

∫
Ω

fn(x)dx. (1.5.4)

1.6 Quelques éléments de la théorie des points critiques

Dé�nition 1.6.1. (Di�érentiabilité au sens de Fréchet) : Soient X un espace de Banach,

Ω un ouvert de X, J : Ω −→ R une fonction et soit X ′ le dual de X. Considérons u ∈ Ω.

On dit que J est di�érentiable au sens de Fréchet au point u, s'il existe forme linéaire

ϕ ∈ X ′ tel que
∀v ∈ w : J(v)− J(u) = 〈ϕ, v − u〉+ o(v − u).

Posons

ϕ = J ′(u) (1.6.1)

que l'on appelle la di�érentielle de J au sens de Fréchet au point u. Il est noté aussi que

〈ϕ, u〉 est le crochet de dualité, en d'autre terme, on a

ϕ(u) = 〈ϕ, u〉 (1.6.2)

Dé�nition 1.6.2. (Dérivée directionnelle). Soient Ω une partie d'un espace de Banach

X et J : Ω −→ R une fonction à valeurs réelles. Si u ∈ Ω et v ∈ X sont tels que pour

t > 0 assez petit on a u + tv ∈ w, on dit que J admet (au point u) une dérivée dans la

direction de v si

lim
t−→0+

J(u+ tv)− J(u)

t
(1.6.3)

existe. On notera cette limite par J ′v(u).
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Dé�nition 1.6.3. (Di�érentiabilité au sens de Gâteaux). On dit que la fonction J d'un

ouvert Ω d'un espace de Banach X, à valeurs réelles, est di�érentiable au sens de Gâteaux

(ou G-di�érentiable) en u ∈ Ω, s'il existe ϕ ∈ X ′ tel que dans chaque direction v ∈ X où

J(u+ tv) existe pour t > 0 assez petit, la dérivée directionnelle J ′v(u) existe et on a,

lim
t−→0+

J(u+ tv)− J(u)

t
= 〈ϕ, v〉. (1.6.4)

L'application ϕ est appelée la di�érentielle de J au sens de Gâteaux au point u (ou la

G-di�érentielle de J au point u), on note J ′(u) = ϕ.

Remarque 1.6.1. Si J est di�érentiable au sens de Fréchet, alors J est di�érentiable au

sens de Gâteaux. La réciproque est fausse, mais on a le résultat qui suit :

Proposition 1.6.1. Soit J une fonction continue de Ω dans R et G-di�érentiable dans

un voisinage de u ∈ Ω. On désigne par J ′(v) la G-di�érentielle de J en v et on suppose

que l'application v −→ J ′(v) est continue au voisinage de u. Alors

J(v) = J(u) + 〈J ′(u), v − u〉+ o(v − u) (1.6.5)

c'est à dire que J est di�érentiable au sens de Fréchet et sa di�érentielle coïncide avec

J ′(u).

Dé�nition 1.6.4. Soient X un espace de Banach, Ω ⊂ X un ouvert et J ∈ C1(Ω,R).

On dit que u ∈ Ω est un point critique de J si J ′(u) = 0 où J ′(u) est la G-di�érentielle

de J au point u. Si u n'est pas un point critique alors on dit que u est un point régulier

de J . Si c ∈ R, on dit que c est une valeur critique de J s'il existe u ∈ w tel que J(u) = c

et J ′(u) = 0. Si c n'est pas une valeur critique alors on dit que c est une valeur régulière

de J .

Théorème 1.6.1. ( Théorème des fonctions implicites)

Soient X, Y , Z trois espaces de Banach, Ω un ouvert de X × Y et f ∈ C1(Ω, Z). On

suppose que (x0, y0) ∈ Ω est tel que f(x0, y0) = 0 et que ∂yf(x0, y0) est un homéomor-

phisme (linéaire) de Y sur Z. Il existe alors ω ⊂ X voisinage connexe de x0 et une unique

application ϕ ∈ C1(ω, Y ) telle que ϕ(x0) = y0 et pour tout x ∈ ω on ait f(x, ϕ(x)) = 0.

De plus si x ∈ ω et f(x, y∗) = 0 alors y∗ = ϕ(x). La dérivée ϕ′ est donnée par :

ϕ′(x) = −(∂yf(x, ϕ(x)))−1 ◦ (∂xf(x, ϕ(x))) (1.6.6)
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Dé�nition 1.6.5. Soit X un espace de Banach et Ω est une partie de X. Une fonction

J : Ω −→ R est dite faiblement séquentiellement semi-continue inférieurement (s.c.i) si

pour toute suite (un)n de Ω convergeant faiblement vers u ∈ Ω, on a

J(u) ≤ lim
n−→+∞

J(un). (1.6.7)

Proposition 1.6.2. Soit X un espace de Banach ré�exif, K ⊂ X un convexe fermé et

J : K −→ R une fonction faiblement séquentiellement (s.c.i). De plus, si K est non borné,

on suppose que pour toute suite (un)n de K telle que ‖un‖ −→ +∞, on a J(un) −→ +∞.

Alors J est bornée inférieurement et elle atteint son minimum, autrement dit :

∃u ∈ K, J(u) = inf
v∈K

J(v) = min
v∈K

J(v) (1.6.8)

1.7 Régularité

Soient Ω un ouvert de RN , a(·) = (aij(·))1≤i,j≤N une matrice, b(·) = (bi(·))1≤i≤N et

β(·) = (βi(·))1≤i≤N deux vecteurs, et c une fonction. On considéré A et L deux opérateurs

du second ordre dé�nis par :

Au = −
N∑

i,j=1

∂i(aij∂ju) + ∂j(βju) + b · ∇u+ cu

Lu = −
N∑

i,j=1

(aij∂iju) + b · ∇u+ cu

et avec des hypothèses sur les coe�cients on précisera les domaines de ces opérateurs. On

dit que A est un opérateur du second ordre a partie principale divergentielle. Remarquons

en premier lieu que si par exemple les coe�cients aij et βi sont dans W 1,∞(Ω), l'opérateur

A est du même type que L. Il est également a noter que dans l'opérateur L on peut

supposer sans perte de généralité que aij = aji, car ∂jiu = ∂iju et

N∑
i,j=1

aij∂iju =
N∑

i,j=1

aji∂iju =
N∑

i,j=1

aij + aji
2

∂iju.
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En revanche, il faut bien noter qu'en général les deux opérateurs A et L sont de natures

di�érentes, et qu'en particulier les propriétés (surtout celles qui concernent le spectre) de

l'opérateur A dépendent de manière essentielle de la symétrie ou non de la matrice a(·).
En règle générale on supposera que la matrice a(·) véri�e la condition de coercivité ou

d'ellipticité, en d'autre terme ∃α > 0, ∀ξ ∈ RN, on a

〈a(x)ξ, ξ〉 =
N∑

i,j=1

aij(x)ξjξi ≥ α|ξ|2

presque partout sur Ω.

Théorème 1.7.1. (Théorème de Schauder).

L'opérateur L étant dé�ni, on suppose que les coe�cients aij, b et c sont dans Ck,θ(Ω)

pour un θ ∈]0, 1[ et un entier k ≥ 0, que c ≥ 0 et que la condition de coercivité (10.3)

est satisfaite. Alors si l'ouvert Ω est borné et de classe Ck+2,θ et ϕ ∈ Ck+2,θ(Ω) ainsi que

f ∈ Ck,θ(Ω) sont données, il existe une unique fonction u ∈ Ck+2,θ(Ω) telle que

{
Lu = f dans Ω,

u = ϕ sur ∂Ω,

et de plus, pour une constante C dépendant seulement de Ω, θ, α ainsi que des normes

des coe�cients aij, bi, c dans C
k,θ(Ω), on a

‖u‖Ck+1(Ω) ≤ C
(
‖f‖Ck(Ω) + ‖ϕ‖Ck,θ(Ω)

)
, (1.7.1)

‖D2u‖Ck,θ(Ω) ≤ C
(
‖f‖Ck,θ(Ω) + ‖ϕ‖Ck+2,θ(Ω)

)
. (1.7.2)

Théorème 1.7.2. L'opérateur L étant donné, on suppose que les coe�cients aij sont

dans C(Ω), b et c dans L∞(Ω), que c ≥ 0 et que la condition de coercivité est satisfaite.

Alors si l'ouvert Ω est borné et de classe C1,1 et f ∈ Lp(Ω) est donnée pour 1 < p < ∞,

il existe une unique fonction u ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) telle que

{
Lu = f dans Ω,

u = 0 sur ∂Ω,
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et de plus, pour une constante C indépendante de f et u, on a ‖u‖W 2,p(Ω) ≤ C‖f‖Lp(Ω).

En particulier si p > N
2
et ϕ ∈ C(Ω), il existe une unique solution u ∈ C(Ω) ∩W 2,p

loc (Ω)

du problème de Dirichlet Lu = f dans Ω et u = ϕ sur ∂Ω.

Considérons maintenant l'opérateur A dé�ni, en règle générale, lorsque l'on résout une

équation du type Au = f dans Ω et u = ϕ sur ∂Ω, l'équation Au = f est entendue

au sens de D′(Ω) et la condition au bord est interprétée au sens u − ϕ ∈ H1
0 (Ω). De

plus, contrairement a ce qui se passe pour les opérateurs comme L dé�ni, la condition

c ≥ 0 ne su�t pas a montrer l'existence d'une solution. C'est pourquoi nous énonçons le

théorème qui suit sans aborder la question de l'existence de solution (voir D. Gilbarg et

N.S. Trudinger [6]).

Théorème 1.7.3. L'opérateur A étant donné, on suppose que la condition de coercivité

est satisfaite et que, pour un entier k ≥ 0, Ω est de classe Ck+2, que les coe�cients

αij, βj sont dans C
k,1(Ω), bi, c sont dans L

∞(Ω) si k = 0 et dans Ck−1,1(Ω) si k ≥ 1. Si

f ∈ Hk(Ω), ϕ ∈ Hk+2(Ω) et u ∈ H1(Ω) sont telles que Au = f et u − ϕ ∈ H1
0 (Ω), alors

u ∈ Hk+2(Ω), et pour une constante C dépendant uniquement de Ω, k, α et des normes

de aij, βj, bi, c on a

‖u‖Hk+2(Ω) ≤ C(‖u‖L2(Ω) + ‖f‖Hk(Ω) + ‖ϕ‖Hk+2(Ω)).

De plus si Ω est de classe C∞(Ω) et f , ϕ, aij, βj, bi, c sont dans C
∞(Ω) , alors u ∈ C∞(Ω)
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Chapitre 2

Quelques outils de base

Dans cette section, on rappelle quelques lemmes qui nous seront utile par la suite

et particulièrement le Théorème des Multiplicateurs de Lagrange qui fortement relie le

problème de minimisation à l'EDP.

Lemme 2.0.1. (Brezis-Lieb). Soient 1 ≤ p < ∞ et (fn)n une suite bornée de fonctions

de Lp(Ω) convergeant p.p. vers f . Alors f ∈ Lp(Ω) et :

‖f‖pp = lim
n−→+∞

(
‖fn‖pp − ‖f − fn‖pp

)
. (2.0.1)

Démonstration. Soit M = sup
n≥1
‖fn‖p. Remarquons en premier lieu que pour tout ε > 0, il

existe une constante Cε dépendant de p et de ε telle que pour tout s ∈ R, on ait

||s+ 1|p − |s|p − 1| ≤ ε|s|p + Cε. (2.0.2)

En e�et, pour voir que cette inégalité est vraie, il su�t de remarquer que :

lim
|s|−→+∞

|s+ 1|p − |s|p − 1

|s|p
= 0

On déduit de (2.0.2) que pour a, b ∈ R on a :

||a+ b|p − |a|p − |b|p| ≤ ε|a|p + Cε|b|p. (2.0.3)

Pour un ε > 0 �xé, posons :

un = ||fn|p − |fn − f |p − |f |p|, Zn = (un − ε|fn − f |p)+.

25
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On sait que Zn tend vers zéro p.p et que, grâce a (2.0.3) appliquée à la suite un, nous

obtenons 0 ≤ Zn ≤ Cε|f |p. Par conséquent, d'après le théorème de la convergence dominée

de Lebesgue (Théorème 1.5.1), on a ‖Zn‖1 −→ 0 lorsque n −→ +∞ puisque par le

lemme de Fatou (Lemme 1.5.1 ), on a
∫

Ω
fdx < +∞. De plus on a presque partout :

0 ≤ un ≤ ε|fn − f |p + Zn, ce qui donne

‖un‖1 ≤ ε‖fn − f‖pp + ‖Zn‖1 ≤ ε2pMp + ‖Zn‖1.

On en déduit �nalement que ‖un‖1 tend vers zéro, ce qui établit le résultat annoncé.

Un corollaire immédiat de ce résultat est le suivant :

Corollaire 2.0.1. Soient 1 ≤ p <∞, f ∈ Lp(Ω) et (fn)n une suite de Lp(Ω). On suppose

que :

fn −→ f p.p. et lim
n−→+∞

‖fn‖p = ‖f‖p. (2.0.4)

Alors on a :

lim
n−→+∞

‖f − fn‖p = 0. (2.0.5)

Voici maintenant un lien entre la convergence presque partout et la convergence faible

dans les espaces Lp(Ω). Remarquons que pour 1 < p < +∞, les espaces Lp(Ω) étant

ré�exifs, si la suite (fn)n est bornée dans Lp(Ω), on peut en extraire une sous-suite (fni)i

convergeant dans Lp(Ω) faible vers une certaine fonction g ∈ Lp(Ω). Comme le montre le

lemme suivant, si on sait que fn −→ f p.p. on a nécessairement g = f .

Lemme 2.0.2. Soient 1 < p < ∞ et (fn)n une suite bornée de Lp(Ω) convergeant p.p.

vers f . Alors fn ⇀ f dans Lp(Ω) faiblement.

Démonstration. En e�et, d'après ce que nous venons de dire plus haut il existe une sous-

suite (fni)i convergeant vers g ∈ Lp(Ω). Soit alors :

Ωn = {x ∈ Ω, ∀k ≥ n, |fk(x)− f(x)| ≤ 1}.

Si n ≥ 1 est �xé et ϕ ∈ Lp
′
(Ω) est a support compact et telle que supp(ϕ) ⊂ Ωn, en

utilisant le théorème de la convergence dominée (Théorème (1.5.1)), on voit que :∫
Ω

g(x)ϕ(x)dx = lim
i−→+∞

∫
Ω

fni(x)ϕ(x)dx =

∫
Ω

f(x)ϕ(x)dx.
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En faisant tendre n vers l'in�ni, on déduit que

∫
Ω

g(x)ϕ(x)dx =

∫
Ω

f(x)ϕ(x)dx

pour toute fonction ϕ à support compact dans Ω. On en conclut que g = f , et par

conséquent c'est toute la suite (fn)n qui converge faiblement vers f .

Proposition 2.0.1. (Inégalité de Poincaré).

On suppose que Ω est un ouvert borné dans une direction. Alors il existe une constante

C telle que pour tout u ∈ W 1,p
0 (Ω) :

‖u‖p ≤ C‖∇u‖p. (2.0.6)

L'inégalité est vraie si on suppose seulement que Ω est de mesure �nie.

Démonstration. Si Ω est borné dans une direction, on peut supposer sans perte de gé-

néralité qu'il est contenu dans RN−1×]0, a[. Ainsi, en notant (x′, xN) = x ∈ RN, pour

u ∈ C1
c (Ω) on peut écrire :

|u(x′, xN)|p = p

∫ xN

0

|u(x′, t)|p−2u(x′, t)∂Nu(x′, t)dt

≤ p

∫ a

0

|u(x′, t)|p−1|∂Nu(x′, t)|dt.

En intégrant d'abord en xN sur ]0, a[ puis en x′ ∈ RN−1, et utilisant le fait que le support

de u est contenu dans Ω, on obtient :

∫
Ω

|u(x)|pdx ≤ pa

∫
Ω

|u(x)|p−1|∂Nu(x)|dx ≤ pa‖u‖p−1
p ‖∂Nu‖p

Où, pour la dernière estimation, on a utilisé l'inégalité de Hölder (1.3.2).

Lorsque Ω est de mesure �nie, pour ϕ ∈ C1
c (Ω) on part de l'inégalité de Sobolev (1.4.2)

dans RN (ou 1∗ = N
N−1

) :

‖ϕ‖L1∗ ≤ C(N)‖∇ϕ‖L1

Si maintenant u ∈ C1
c (Ω) est donnée, en appliquant cette inégalité à ϕ = |u|p−1u, on
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obtient ‖u‖pp = ‖ϕ‖L1 ≤ mes(Ω)
1
N ‖ϕ‖L1∗ où mes(Ω) est la mesure de Ω et �nalement :

‖u‖pp ≤ (mes(Ω))
1
N ‖ϕ‖L1∗

≤ C(p,Ω)‖|u|p−1∇u‖1

≤ C(p,Ω)‖u‖p−1
p ‖∇u‖p,

Ce qui, joint à l'argument classique de densité, établit l'inégalité de Poincaré.

2.1 Théorème des Multiplicateurs de Lagrange

Dé�nition 2.1.1. Soient X un espace de Banach, F et J ∈ C1(X,R) et un ensemble de

contraintes

S = {v ∈ X, F (v) = 0} . (2.1.1)

Nous supposons que

F ′(v) 6= 0 ∀v ∈ S. (2.1.2)

où F ′ n'est que la di�érentielle de F dé�nie par la formule (1.6.1). On dit que c ∈ R est

valeur critique de J sur S s'il existe u ∈ S et λ ∈ R tels que :

J(u) = c et J ′(u)− λF ′(u) = 0. (2.1.3)

Le point u est un point critique de J et le réel λ est appelé multiplicateur de Lagrange

pour la valeur critique c ou le point critique u.

Théorème 2.1.1. Sous les hypothèses et notations de la dé�nition précédente, on suppose

que u0 ∈ S est tel que

J(u0) = inf
v∈S

J(v). (2.1.4)

Alors il existe α ∈ R tel que :

J ′(u0) = αF ′(u0). (2.1.5)

Démonstration. Soit u0 ∈ S, de (2.1.2) on a F ′(u0) 6= 0, alors on peut toujours trouver

w ∈ X tel que

F ′(u0)(w) = 1

Si X0 = kerF ′(u0), on pourra écrire X = X0 ⊕ Rw.
Soit alors la fonction Φ de X0 × R dans R, dé�nie par :

∀(v, t) ∈ X0 × R : Φ(v, t) = F (u0 + v + tw).
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Puisque u0 ∈ S, de (2.1.1) on a

Φ(0, 0) = F (u0) = 0 (2.1.6)

et
∂tΦ(0, 0) = F ′(u0)(w) = 1 6= 0.

En appliquant le théorème des fonctions implicites (1.6.7) à l'application Φ au point (0, 0)

deX0×R, on obtient l'existence d'un voisinage V ⊂ X0 de v = 0 et une unique application

T ∈ C1(V,R) telle que T (0) = 0 et

∀v ∈ V Φ(v, T (v)) = 0. (2.1.7)

De plus si pour un v ∈ V véri�ant Φ(v, t) = 0 alors nécessairement t = T (v) et puisque

∂vΦ(0, 0) = F ′(u0)(v) = 0 car v ∈ X0, on obtient la dérivé T ′ au point v = 0 par :

T ′(0) = −(∂tΦ(0, 0))−1 ◦ (∂vΦ(0, 0)) = 0. (2.1.8)

Donc il existe un voisinage Ω de u0 dans X, tel que

u ∈ Ω et F (u) = 0⇐⇒ u = u0 + v + T (v)w avec v ∈ V.

Remarquons que rien de ce qui précède ne fait intervenir J .

Si I : V −→ R, est dé�nie par I(v) = J(u0 + v + T (v)w).

Par hypothèse (2.1.4), on voit que le minimum de J est réalisé par u0, donc I atteint

son minimum en v = 0 ∈ V . Par conséquent I ′(0)(v) = 0 pour tout v ∈ X0. Or d'après

la dé�nition de I et la propriété de T , on sait que si v ∈ X0 on a I ′(0)(v) = J ′(u0)(v).

On en conclut que J ′(u0)(v) = 0 pour tout v ∈ X0 et que kerJ ′(u0) ⊃ kerF ′(u0) : par

conséquent il existe λ ∈ R tel que J ′(u0) = λF ′(u0).
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Chapitre 3

Etude des valeurs propres

3.1 Etude de la première valeur propre

Dé�nition 3.1.1. Soit Ω un ouvert bornée de RN de classe C1, N ≥ 3 et h ∈ C∞(Ω).

Soit P un opérateur di�érentiel dé�nit tel que :

P : C∞(Ω) −→ C∞(Ω)

u 7−→ Pu

On dit que P est de type Laplacien conforme si et seulement si l'opérateur P s'écrit sous

la forme suivante :

P = ∆ + h où ∆u = −
n∑
i=1

∂2u

∂x2
i

(3.1.1)

et le Laplacien.

Corollaire 3.1.1. (Formule de Green).

Soient Ω un ouvert de classe C1 et u, v deux fonctions de classe C∞(Ω). Alors on a :∫
Ω

[v(x)∆u(x)− u(x)∆v(x)]dx =

∫
∂Ω

∂u

∂n
(σ)v(σ)− ∂v

∂n
(σ)u(σ)dσ

et ∫
Ω

v(x)∆u(x)dx =

∫
Ω

∇u(x) · ∇v(x)dx−
∫

Ω

∂u

∂n
(σ)v(σ)dσ

où n(σ) est la normale extérieur à ∂Ω au un point σ.

En particulier si v = 0 sur le bord, on a∫
Ω

v(x)∆u(x)dx =

∫
Ω

∇u(x) · ∇v(x)dx (3.1.2)

31
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Dé�nition 3.1.2. L'opérateur P est dit coercif si et seulement si il existe une constante

c tel que

∫
Ω

|∇v2|+ hv2dx ≥ c‖u‖2
H1

0 (Ω)

Par exemple si h > 0, l'opérateur P est coercif, en fait il su�t de voir que

∫
Ω

|∇v2|+ hv2dx ≥ min(1,min
Ω
h)

∫
Ω

|∇u|2 + u2dx

≥ min(1,min
Ω
h)‖u‖2

H1
0 (Ω)

Proposition 3.1.1. La première valeur propre λ1 de l'opérateur P est caractérisée par :

λ1 = inf
v∈H1

0 (Ω)
v 6=0)

∫
Ω
|∇v|2 + hvdx∫

Ω
v2dx

(3.1.3)

Démonstration. En e�et, si v ∈ H1
0 (Ω) est une fonction propre non nulle associée à une

valeur propre λ de P alors v véri�e la relation suivante :

Pv = λv. (3.1.4)

Multipliant cette dernière égalité par v puis intégrant, on obtient

∫
Ω

vPvdx = λ

∫
Ω

v2dx

d'où

λ =

∫
Ω
vPvdx∫

Ω
v2dx

(3.1.5)

et comme ∫
Ω

vPvdx =

∫
Ω

v(∆v + hv)dx
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et d'après la formule de Green (3.1.2), il suit que

∫
Ω

vPvdx =

∫
Ω

v∆v + hv2dx

=

∫
Ω

〈∇v,∇v〉+ hv2dx

Noter que v ∈ H1
0 (Ω), v est nulle sur le bord de Ω, alors le second terme

∫
∂Ω

∂v

∂n
(σ)v(σ)dσ = 0

d'où ∫
Ω

vPvdx =

∫
Ω

|∇v|2 + hv2dx.

Donc la première valeur propre se choisi comme l'in�mum de λ dans (3.1.5) :

λ1 = inf
v∈H1

0 (Ω)
v 6=0)

λ = inf
v∈H1

0 (Ω)
v 6=0)

∫
Ω
|∇v|2 + hvdx∫

Ω
v2dx

.

Théorème principale :

Théorème 3.1.1. Soit Ω un ouvert bornée de RN de classe C1, N ≥ 3 et soit λ1 la

première valeur propre de l'opérateur P = ∆ + h, alors il existe une fonction v ∈ C2(Ω)

strictement positive solution de l'équation suivante

∆v + hv = λ1v.

On dit aussi que la première valeur propre est atteinte par la fonction v.

Démonstration. Soit (vn)n une suite de minimisante de λ1, (vn)n est une suite de fonctions

de ∈ H1
0 (Ω) et telle que

lim
n7−→+∞

∫
Ω
|∇vn|2 + hv2

ndx∫
Ω
v2
ndx

= λ1
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On peut toujours normalisée cette suite, en d'autre termes, on peut prendre∫
Ω

v2
ndx = 1

En e�et, posant wn = αvn où α est nombre réel non nul. On remarque facilement que la

suite wn est aussi une suite minimisante car :

∫
Ω
|∇wn|2 + hw2

ndx∫
Ω
w2
ndx

=
α2
∫

Ω
|∇vn|2 + hv2

ndx

α2
∫

Ω
v2
ndx

=

∫
Ω
|∇vn|2 + hv2

ndx∫
Ω
v2
ndx

donc il su�t de prendre

α =
1

(
∫

Ω
v2
ndx)

1
2

alors on obtient ∫
Ω

w2
ndx = α2

∫
Ω

v2
ndx = (

1

(
∫

Ω
v2
ndx)

1
2

)2

∫
Ω

v2
ndx = 1.

Autrement dit la suite véri�e :

lim
n−→+∞

∫
Ω

|∇vn|2 + hvndx = λ1. (3.1.6)

A présent pour un rang assez grand, on a∫
Ω

|∇vn|2 + hvndx ≤ λ1 + 1

et comme notre opérateur P est coercif, alors il va exister une constante c > 0 telle que∫
Ω

|∇vn|2 + hv2
ndx ≥ c‖vn‖2

H1
0 (Ω)

et cela veut dire que

‖vn‖H1
0 (Ω) ≤

λ1 + 1

c
.
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Il en découle que la suite (vn)n est bornée dans l'espace H1
0 (Ω) et de la ré�exivité de

l'espace H1
0 (Ω), on en déduit que (vn)n admet une sous suite notée encore (vn)n qui

converge faiblement vers un v ∈ H1
0 (Ω) et d'après le théorème de Rellich-Kondrachov

(Théorème (1.4.8)), on a H1
0 (Ω) ⊂ L2(Ω) et cette injection est compacte, donc la suite vn

converge fortement ver v dans L2(Ω), cela signi�e que

∫
Ω

v2
ndx −→

∫
Ω

v2dx

d'où
∫

Ω
v2dx = 1, en conclut que la fonction v n'est pas identiquement nulle. D'autre part,

d'après le lemme de Fatou (1.5.9) on a :

‖v‖2
H1

0 (Ω) ≤ lim

∫
Ω

|∇vn|2 + v2
ndx

≤ lim

∫
Ω

|∇vn|2dx+ lim

∫
Ω

v2
ndx

Encore de la convergence forte dans L2(Ω) et de la dé�nition de la norme, on retrouve

∫
Ω

|∇v|2 + v2dx ≤ lim

∫
Ω

|∇vn|2 + lim

∫
Ω

v2
ndx

≤ lim

∫
Ω

|∇vn|2 +

∫
Ω

v2dx

cela nous conduit à

∫
Ω

|∇v|2dx ≤ lim

∫
Ω

|∇vn|2dx. (3.1.7)

De plus, étant donnée que la fonction h > 0, alors on obtient immédiatement que∫
Ω

h(vn − v)2dx ≤ sup
x∈Ω

h(x)

∫
Ω

(vn − v)2dx

ce qui implique que

∫
Ω

hv2
ndx −→

∫
Ω

hv2dx.
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En revenant à l'inégalité (3.1.7) et en ajoutant la quantité
∫

Ω
hv2dx, il suit que

∫
Ω

|∇v|2dx+

∫
Ω

hv2dx ≤ lim

∫
Ω

|∇vn|2 +

∫
Ω

hv2dx

= lim

∫
Ω

|∇vn|2dx+ lim

∫
Ω

hv2
ndx

= lim

∫
Ω

|∇vn|2dx+ lim

∫
Ω

hv2
ndx

= lim

∫
Ω

|∇vn|2dx+ hv2
ndx

= λ1

c'est à dire que ∫
Ω

|∇v|2 + hv2 ≤ λ1. (3.1.8)

Étant donnée que λ1 est l'in�mum et en particulier pour la fonction v, on retrouve que

λ1 ≤
∫

Ω

|∇v|2 + hv2dx. (3.1.9)

De (3.1.8) et (3.1.9), on conclut que

∫
Ω

|∇v|2 + hv2dx = λ1.

Posant

I : H1
0 (Ω) −→ R

v 7−→
∫

Ω

|∇v|2 + hv2dx

et

J : H1
0 (Ω) −→ R

v 7−→
∫

Ω

v2dx.



3.1. ETUDE DE LA PREMIÈRE VALEUR PROPRE 37

Avec cette nouvelle notation la première valeur propre est donnée par

λ1 = inf
v∈H1

0 (Ω)
v 6=0)

I(v)

J(v)
(3.1.10)

et d'après le Théorème des multiplicateurs de Lagrange (2.1.2), il existe un réel α ∈ R tel
que

DI(v).ϕ = αDJ(v).ϕ (3.1.11)

et ceci et pour tout élément ϕ ∈ H1
0 (Ω). Notant que l'équation (3.1.11) est appelée

équation d'Euler Lagrange associé à notre problème de minimisation. Soit t un réel positif,

alors pour tout ϕ ∈ H1
0 (Ω), le di�érentielle de fonctionnelle I est donnée par :

DI(v).ϕ =
d

dt pt=0
I(v + tϕ)

=
d

dt pt=0

∫
Ω

|∇(v + tϕ)|2 + h(v + tϕ)2dx

=

∫
Ω

d

dt pt=0
|∇(v + tϕ)|2 + h(v + tϕ)2dx

=

∫
Ω

d

dt pt=0
|∇v + t∇ϕ|2 + h(v2 + t2ϕ2 + 2tvϕ)dx

=

∫
Ω

d

dt pt=0
|∇v|2 + t2|∇v|2 + 2t〈∇v,∇v〉+ h(v2 + t2ϕ2 + 2tvϕ)dx.

Donc

DI(v).ϕ = 2

∫
Ω

〈∇v,∇v〉+ hvϕ)dx (3.1.12)

et de même on retrouve,

DJ(v)ϕ = 2

∫
Ω

vϕdx. (3.1.13)

Finalement des équations (3.1.11), (3.1.12) et (3.1.13), on obtient∫
Ω

〈∇v,∇v〉+ hvϕdx = α

∫
Ω

vϕ

Maintenant si on pose ϕ = v, il suit que∫
Ω

|∇v|2 + hv2dx = α

∫
Ω

v2dx = α,
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donc
α = λ1.

On conclut d'après (3.1.11) que pour tout ϕ ∈ H1
0 (Ω),

∫
Ω

〈∇v,∇ϕ〉+ hvϕdx = λ1

∫
Ω

vϕdx

ce qui implique ∫
Ω

ϕ∆v + hvϕdx = λ1

∫
Ω

vϕdx,

encore ∫
Ω

ϕ(∆v + hvϕ− λ1v)dx = 0

pour tout ϕ ∈ H1
0 (Ω). Cela signi�e exactement que v est une solution faible de l'équation

∆v + hv − λ1v = 0.

Etant donnée que la solution v ∈ H1
0 (Ω) alors comme dans le théorème de régularité

(Théorème 1.7.3), il suit de l'équation Pv = λ1v que Pv ∈ H1
0 (Ω) donc v ∈ H3

0 (Ω) et

ainsi de suite v ∈ Hk
0 (Ω) avec k très grand et �nalement le théorème (1.4.7) assure que

Hk
0 (Ω) = W k,2

0 (Ω) ↪→ C0,α(Ω) (3.1.14)

ce qui signi�e que v ∈ C2,α(Ω). De plus du Lemme (1.2.7), on a |∇|u|| = |∇u| dans
H1

0 (Ω), donc on aurais pu choisir la suite minimisante (vn)n positive, ce qui entraîne que

la fonction v ≥ 0 et plus précisément la fonction v > 0. En e�et, on peut toujours trouver

un x0 ∈ Ω tel que v(x0) = 0, d'après l'inégalité de Harnack, pour toute fonction propre

positive

max v
Br
≤ Cn,pmin v

Br
,

où Br = B(x0, r) et B(x0, 2r) ⊂ Ω. Il en résulte que v ≡ 0 dans Br pour tout r > 0. En

conclusion v ≡ 0, ce qui est impossible car v est une fonction non identiquement nulle.

Par conséquent |v| > 0 sur Ω, par continuité v est de signe constant.

Conclusion 3.1.1. On vient de montrer qu'il existe fonction v > 0 appartenant à l'espace

C2(Ω) qui est solution de l'équation

∆v + hv = λ1v.
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De plus on dit que la première valeur propre λ1 de l'opérateur P est atteinte par la fonction

v.

Proposition 3.1.2. Soit u la solution de notre problème :

∆u = λ1u− hu (3.1.15)

où u = 0 sur ∂Ω, alors u véri�e l'identité suivante :

∫
Ω

((
n− 2

2
− n

2

)
λ1u

2 +

(
n− 2

2
h+

1

2
〈x,∇h〉

)
u2

)
dx = −

∫
∂Ω

〈x
2
, v〉〈∇u, v〉2dx.

Cette dernière est connu sous le nom de L'identité de Pohozaev .

Démonstration. On multiplie l'équation (3.1.15) par 〈x,∇u〉, on obtient

〈x,∇u〉∆u = 〈x,∇u〉(λ1u− hu). (3.1.16)

Intégrant par partie chaque terme. D'après la formule de Green, le premier terme donne :

∫
Ω

〈x,∇u〉∆udx =

∫
Ω

〈∇〈x,∇u〉,∇u〉dx−
∫
∂Ω

〈x,∇u〉〈∇u,∇v〉dx (3.1.17)

où v est la normale sortante. Mais vu que u = 0 sur ∂Ω, on a pour tout x ∈ ∂Ω

∇u(x) = 〈∇u(x), v〉v.

Le second terme de droite de (3.1.17) devient alors

∫
∂Ω

〈x,∇u〉〈∇u, v〉dx =

∫
∂Ω

〈x, v〉〈∇u, v〉2dx.

Concernant le premier terme (3.1.17) de la droite, on devra avoir

〈∇(〈x,∇u〉),∇x〉 = |∇u|2 +
1

2
〈x,∇(|∇u|2)〉. (3.1.18)

Pour cette dernière, il est su�sant de donner la preuve de cette égalité en dimension 2,

la généralisation de cette formule se fait de la même façon. Commençant d'abord par
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calculer le terme ∇(〈x,∇u〉), on a :

∇(〈x,∇u〉) = ∇
(
x1
∂u

∂x1

+ x2
∂u

∂x2

)
= (

∂u

∂x1

+
∂

∂x1

∂u

∂x1

x1 +
∂

∂x1

∂u

∂x2

x2,
∂u

∂x2

+
∂

∂x2

∂u

∂x1

x1 +
∂

∂x2

∂u

∂x2

x2)

= (
∂u

∂x1

,
∂u

∂x2

) + (
∂

∂x1

∂u

∂x1

x1 +
∂

∂x1

∂u

∂x2

x2,
∂

∂x2

∂u

∂x1

x1 +
∂

∂x2

∂u

∂x2

x2)

= ∇u+ (〈x, ∂

∂x1

(∇u)〉, 〈x, ∂

∂x2

(∇u)〉)

= ∇u+M

où l'on a posé

M = (〈x, ∂

∂x1

(∇u)〉, 〈x, ∂

∂x2

(∇u)〉).

A présent calculant le terme 〈∇(〈x,∇u〉),∇x〉, on a :

〈∇(〈x,∇u〉),∇x〉 = 〈∇u+M,∇u〉

= |∇u|2 + 〈∇u,M〉.

Pour prouver l'inégalité(3.1.16), il su�t de montrer que

〈∇u,M〉 =
1

2
〈∇(|∇u|2), x〉.
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〈∇u,M〉 = 〈x, ∂

∂x1

(∇u)〉 ∂u
∂x1

+ 〈x, ∂

∂x2

(∇u)〉 ∂u
∂x2

= 〈x ∂u
∂x1

,
∂

∂x1

(∇u)〉+ 〈x ∂u
∂x2

,
∂

∂x2

(∇u)〉

= 〈( ∂u
∂x1

x1,
∂u

∂x1

x2).(
∂

∂x1

∂u

∂x1

,
∂

∂x1

∂u

∂x2

)〉+ 〈( ∂u
∂x2

x1,
∂u

∂x2

x2).(
∂

∂x2

∂u

∂x1

,
∂

∂x2

∂u

∂x2

)〉

=
∂u

∂x1

x1
∂

∂x1

∂u

∂x1

+
∂u

∂x1

x2
∂

∂x1

∂u

∂x2

+
∂u

∂x2

x1
∂

∂x2

∂u

∂x1

+
∂u

∂x2

x2
∂

∂x2

∂u

∂x2

=
∂u

∂x1

x1
∂

∂x1

∂u

∂x1

+
∂u

∂x2

x1
∂

∂x2

∂u

∂x1

+
∂u

∂x1

x2
∂

∂x1

∂u

∂x2

+
∂u

∂x2

x2
∂

∂x2

∂u

∂x2

= (
∂u

∂x1

∂

∂x1

∂u

∂x1

+
∂u

∂x2

∂

∂x2

∂u

∂x1

,
∂u

∂x1

∂

∂x1

∂u

∂x2

+
∂u

∂x2

∂

∂x2

∂u

∂x2

).(x1, x2)

=
1

2
(2
∂u

∂x1

∂

∂x1

∂u

∂x1

+ 2
∂u

∂x2

∂

∂x2

∂u

∂x1

, 2
∂u

∂x1

∂

∂x1

∂u

∂x2

+ 2
∂u

∂x2

∂

∂x2

∂u

∂x2

).(x1, x2)

=
1

2
(2
∂u

∂x1

∂

∂x1

∂u

∂x1

+ 2
∂u

∂x2

∂

∂x1

∂u

∂x2

, 2
∂u

∂x1

∂

∂x2

∂u

∂x1

+ 2
∂u

∂x2

∂

∂x2

∂u

∂x2

).(x1, x2)

=
1

2
〈∇((

∂u

∂x1

)2 + (
∂u

∂x2

)2), x〉

=
1

2
〈∇(|∇u|2), x〉.

On en déduit que :

∫
Ω

〈x,∇u〉∆udx =

∫
Ω

|∇u|2 +
1

2
〈x,∇|∇u|2〉dx−

∫
∂Ω

〈x, v〉〈∇u, v〉2dx

=

∫
Ω

|∇u|2 +
n

2
|∇u|2dx+

∫
∂Ω

〈x
2
, v〉|∇u|2 −

∫
∂Ω

〈x, v〉〈∇u, v〉2dx

=
2− n

2

∫
Ω

|∇u|2dx−
∫
∂Ω

〈x
2
, v〉〈∇u, v〉2dx.

En multipliant par u l'équation et en intégrant par partie, on obtient∫
Ω

|∇u|2dx =

∫
Ω

(λ1u
2 − hu2)dx.
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Finalement, le premier terme donne

∫
Ω

〈x,∇u〉∆udx =
2− n

2

∫
Ω

(λ1u
2 − hu2)dx−

∫
∂Ω

〈x
2
, v〉〈∇u, v〉2dx. (3.1.19)

D'autre part le second terme de (3.1.16) devient :

∫
Ω

〈x,∇u〉(λ1u− hu)dx =

∫
Ω

(
1

2
〈x, λ1∇u2〉 − 1

2
〈xh,∇u2〉

)
dx

=

∫
Ω

(
−n

2
λ1u

2 +
1

2
div(xh)u2

)
dx

On déduit alors de ces dernière égalité,

∫
Ω

(
−n

2
λ1u

2 +
1

2
div(xh)u2

)
dx =

2− n
2

∫
Ω

(λ1u
2 − hu2)dx−

∫
∂Ω

〈x
2
, v〉〈∇u, v〉2dx.

3.2 Etude de la deuxième valeur propre

Soit v la solution de l'équation précédente, on dé�nit la deuxième valeur propre de

l'opérateur P par :

λ2 = inf

∫
Ω
|∇w|2 + hwdx∫

Ω
w2dx

où l'in�mum est pris sur l'ensemble

E = {w ∈ H1
0 (Ω) such that w 6= 0,

∫
Ω

w2dx = 1 et
∫

Ω

wvdx = 0}.

Théorème 3.2.1. Soit Ω un ouvert bornée de RN de classe C1, N ≥ 3 et soit λ2 la

deuxième valeur propre de l'opérateur P = ∆ + h, alors il existe une fonction w ∈ C2(Ω)

tel que

∆w + hw = λ2w.

On dit aussi que la deuxième valeur propre est atteinte par w.
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Démonstration. Soit (wm)m une suite minimisante de λ2, avec la même méthode, on

trouve un minimiseur non nul w de λ2 véri�ant

Pg(w) = λ2w

au sens faible et
∫

Ω
w2dx = 1. Ecrivant,

∫
Ω

wvdx =

∫
Ω

wmv − wmv + wvdx

=

∫
Ω

v(w − wm)dx+

∫
Ω

wmvdx = 0.

et comme wm ∈ E, le second terme est∫
Ω

wmvdx = 0.

En utilisant la convergence faible de wm vers w dans L2(Ω) et le faite que v ∈ L2(Ω)

sachant que L2(Ω) est l'espace dual de L2(Ω), on obtient∫
Ω

v(w − wm)dx→ 0

donc, ∫
Ω

wvdx = 0.

Etant donnée que la solution w ∈ H1
0 (Ω), alors en utilisant un procédé analogue à celle

de v, on montre que w ∈ C2,α(Ω).
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