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0.1 Introduction

Les équations aux dérivées partielles (EDP) sont omniprésentes dans le monde scientifique.
Ces équations proviennent naturellement des problémes de la physique, par exemple en
mécanique classique ou quantique, en relativité générale et dans la théorie de la gravi-
tation. On les retrouve aussi dans 1’électromagnétisme (équations de Maxwell) et dans
la théorie du mouvement brownien mais aussi dans la biologie et dans d’autre branches.
Plus généralement la théorie des équations aux dérivées partielles est devenu primordiale
dans tous les domaines notamment dans la simulation aéronautique, la synthése d’images,
ou la prévision météorologique. Egalement ces équation apparaissent en mathématique et
particuliérement en géométrie différentielle comme I’équation de Yamabe.
Les équations aux Laplacien sont des EDP faisant intervenir I’opérateur Laplacien dont
leurs noms est un hommage au physicien mathématicien Pierre-Simon de Laplace, 'opé-
rateur Laplacien posséde des propriétés intéressantes, par exemple il est elliptique. On
retrouve dans la littérature des équations linéaires et non-linéaires, avec un certain expo-
sant ol ce dernier pourra étre critique. Ce type d’équation est souvent connu sous le nom
d’équation du second-ordre, la plus simple est I’équation de Laplace dont les solutions sont
appelées fonctions harmoniques. Durant ce siécle, on a développé beaucoup de méthode
et d’outils pour résoudre ces EDP et surtout celles qui nous aide a étudier I'existence des
solutions, par exemple la méthode variationnelle.
Dans ce travail, on s’intéresse aux valeurs propres d’un opérateur de type Laplacien ap-
pelé le Laplacien conforme. En d’autre terme, soit P 'opérateur laplacien conforme, P
est donné sous la forme suivante

"o

P=A+h on A=-) —
+ ou i:1ax?

Q un ouvert bornée de RY de classe C!', N > 3 et h € C*(f2). Plus précisément, nous al-
lons étudier I'atteignabilité des valeurs propres, particulierement la premiére valeur propre
et la deuxiéme. Grosso-modo, il s’agit de trouver des fonctions qui sont solutions des équa-
tions correspondantes. Ces derniére sont naturellement appelées fonctions propres asso-
ciées. Pour cela, nous allons utiliser la fameuse méthode variationnelle qui est fortement
relié a la théorie des points critiques qui occupe une place importante dans le vaste champ
de 'analyse non-linéaire.

L’approche variationnelle consiste a utiliser un processus de minimisation et le théoréme
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des multiplicateurs de Lagrange fournit ’existence de la solution.

Ce mémoire comprend trois parties :

1) Dans le chapitre 1, on retrouve les préliminaires et les définitions générales, puis on
rappelle quelque résultats sur la théorie des opérateurs. On introduit une notion trés im-
portantes en mathématiques qui est la notion des espaces de Sobolev, on parle aussi un
peu de la théorie des point critique et particuliérement on rappelle quelques théorémes
spécifiques qui sont nécessaires a ce travail.

2) Dans le chapitre 2, on introduit quelque résultats a développé la démonstration, spécia-
lement le théoréme des multiplicateurs de Lagrange et quelques lemmes qui seront utiliser
dans la partie suivante.

3) Dans le dernier chapitre on traite en détail 'existence de la premiére et la deuxiéme
valeur propre du Laplacien conforme.

Le théoréme principal de ce mémoire est le suivant :

Théoréme principal :

Théoréme 0.1.1. Soit Q un ouvert bornée de R™ de classe C', n > 3 et soit A\ la
premiere valeur propre de l'opérateur P = A + h, alors il existe une fonction v € C*(Q)

strictement positive tel que
Av + hv = A\jo.

On dit aussi que la premiére valeur propre A\, est atteinte par v.

Avec la méme méthode on va chercher une fonction w associé & la deuxiéme valeur
propre Ay, plus précisément on a,

Aw + hw = \w.
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Chapitre 1

Préliminaires et généralités

L’objectif de ce chapitre ¢’est d’introduire les outils de base qui seront utilisés dans
les chapitres qui vont suivre. Dans cette section on fait un rappel sur un certain nombre
de résultats concernant les espaces de Sobolev qui nous seront utiles dans la suite. On
pourra consulter ouvrage de Otared Kavian dans [8] intitulé : Introduction a la Théorie

des Points Critiques.

1.1 L’espace LP(Q))

Définition 1.1.1. Norme vectorielle.
Soit X un espace vectoriel. On dit que Uapplication ||.||: X — R définit une norme sur

l’espace vectoriel X si, l'application vérifie les propriétés suivantes :

(1) Ve € X, ||| > 0.
(2) |z =0 =z =0.
(3) V(a,x) e Rx X, |ax| = |af ||| .

(4) lz+yll < ll=ll + Iyl Ve, y € X.

Définition 1.1.2. On dit que l’espace X est un espace de Banach si X est normé et
complet. On appelle forme linéaire sur X toute application linéaire de X dans R, c’est-a-

dire toute application ¢ : X — R telle que

Ve,ye X, YAER, oAz +1y) = o(z) + o(y).

9
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L’ensemble des ces formes linéaires sur X est un R-espace vectoriel, appelé ['espace dual
de X et est noté X'.

Définition 1.1.3. Soit X un espace de Banach réel. L’espace X est dit réflexif si l'itmage
I(X)=X, 00 I: X — (X') nlest que linjection canonique définie comme suit pour

reX, Ixz): X —R

o — I(z)(p) = p(z).

Définition 1.1.4. Soit X un espace de Banach réel. L’espace X est dit séparable si, X

admet un sous-ensemble D C X dénombrable et dense.

Dans toute la suite Q désigne un ouvert de RY muni de la mesure de Lebesgue du.

Définition 1.1.5. Soit u une fonction définie sur Q).

(1) La fonction u est intégrable sur §) si :

| @lds < +oc, (111)

ot dx désigne de la mesure de Lebesgue.

(2) La fonction u est dite localement intégrable sur Q) si elle est intégrable sur tout com-
pact K C ).

(8) Le support de la fonction u est l’ensemble définie par : Supp(u) = {x € Q,u(x) # 0}.

Définition 1.1.6. Soit Q un ouvert de RN. On désigne par D(Q) lespace de fonction de

classe C™ sur ) et a support compact inclus dans €.

Définition 1.1.7. Soit p un réel avec 1 < p < +o00. On rappel que ’espace de Lebesque
LP(Q2) (Pespace quotient) est défini par :

LP(QY) ={u:Q —R, tel que/ |u(x)|Pdr < +oo}
Q
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On munit cet espace de la norme suivante :

lullzogey = ( / ju(z)Pdz)?. (1.12)

Cette norme est appelée norme usuelle. L’espace LP(S)) est un espace de Banach et de

plus, si 1 < p < 400, lespace LP(QQ) est réflexif.

1.2 Espace de Sobolev

Dans cette définition, on va introduire la notion de la dérivée d’'une fonction au sens

faible qui est une notion fondamentale pour la construction des espaces de Sobolev.

Définition 1.2.1. Soit u une fonction localement intégrable sur €2, un multi indice o =
(o, 0, ... ) € N™ et la longueur |a] = aq + ag + ... + ay,. On appelle dérivée au sens

faible de u d’ordre o et on note D%u, la fonction qui vérifie

/(pDO‘udx = (—1)”/ uD%pdzx, Vo € D(R)
Q Q

avec

B olely
0xrgt,0xg2, ..., 0xon

Tn

D%p

ot @ est une fonction de classe C*(Q2) et a support compact dans ).
Les espaces de Sobolev sont des espaces fonctionnels dont les dérivées au sens faible sont
intégrables, ces espaces sont complets ce qui est un avantage considérable pour [’étude des

solutions des équations aux dérivées partielles.

Définition 1.2.2. On appelle espace de Sobolev d’ordre 1 sur € [’espace

ou

WP (Q) = {u € LP(Q) ou €LP(Q) Vi=1,2,...,N}

€

ot % désigne la dérivée partielle de u au sens faible, plus précisément, la fonction u
L

appartient a LP(Q) est un élément de WP(Q) si, il existe N fonctions vy, ...,vy € LP(Q)

tels que :

/uagpdx:—/vigpdx, Vo e D(2), Vie{l,2,...,N}.
o O Q
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On note vi:%,‘v’izl,l...,]\ﬁ

L’espace W1P(Q) est muni de la norme

[ullwrr@) = llullr@) + [[Vull @) (1.2.1)
ot
Ju 0 0
Vu(Ou Ou Oy
8%1 8372 8$N

est le vecteur gradient de la fonction u. En particulier, pour p = 2, on pose
W2(Q) = H'(Q), (1.2.2)

cet espace est muni du produit scalaire suivant

()i = (0 0) iy + 3 (5 oe) (123)
’ ’ — ox; Ox; £2()
ou
(1, 0) 2y = /Q wvd. (1.2.4)

De plus, ce produit scalaire induit la norme associée

2 3
" du
[ull ) = (HUH%Q(Q)? + E G ) : (1.2.5)
i—1 19T ll12(q)

Autrement on a,

lullgr ) = (/ u? + \Vu]zdx) ) (1.2.6)
Q

Proposition 1.2.1. L’espace W'P(Q) est un espace de Banach pour 1 < p < +o0, il
est réflexif pour 1 < p < 400 et séparable pour 1 < p < 4+o00. Particuliérement [’espace

(HY(Q), || m1.()) est un espace de Hilbert séparable.

Définition 1.2.3. Soit 1 < p < +o00, WyP(Q) désigne l'adhérence de D(Q) dans WP(Q).
L’espace W, P(Q) muni de la norme induite par W'?(Q) est un espace de Banach séparable

et de plus il est réflexif pour tout réel p vérifiant 1 < p < +o0.
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Théoréme 1.2.1. Soit
w€ WH(Q) avec 1< p< +oo.

Alors les propriétés suivantes sont équivalentes :
1. uw=0 sur I' = 0f).
2. u € WyP(Q).

Théoréme 1.2.2. L’espace (Wol’p(Q), |H|W01,p(m) est uniformément conveze.

Lemme 1.2.1. Siu € WyP(Q), alors ut,u™ et |u| sont dans W, *(Q) ou

v = max(u(x),0), u~ = min(u(z),0)

de telle sorte que u=u" —u~ et |u] =ut +u". De plus

Tt Vu si u>0
u g
0 st u<0

_ 0 st u>0
Vu =
{Vu st u<0

Vu st u>0
Viu|=<0 si u=0
—Vu st u<0

Par ailleurs, (u190)t = ut 190 et (u190)” = u™ 1aq.

1.3 Quelques inégalités

Théoréme 1.3.1. (Inégalité de Poincaré ) Soit p un réel avec 1 < p < 400 et  un

ouvert borné de RY. Il existe une constante C > 0 telle que pour tout
Vu e WiP(Q) ulluey < Ol Vulluoe. (1.3.1)

De plus, Uapplication u — |[ul|zr@y~ est une norme sur Wol’p(Q) qui est équivalente a

celle induite par WhP(Q).
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Définition 1.3.1. Soit p et q deux réels vérifiant, 1 < g < 400 et % +% = 1. On désigne
par W=54(Q) Vespace dual de W, P ().

En particulier, on a I'inégalité de Holder :

Définition 1.3.2. Etant donné que L*(Q) est le dual de lui méme, il suit que

/Q\uv\dxg (Au2dx)%(Lv2dx)%. (13.2)

1.4 Les injections des espaces de Sobolev

Définition 1.4.1. On dit qu’un espace de Banach X s’injecte de facon continue dans un

espace de Banach Y et on note X — Y si et seulement si
(1) X est un sous-espace de Y.
(2) 3C > 0 tel que pour tout u € X, on a

[ull< Cllullx. (1.4.1)
Définition 1.4.2. On dit qu’un espace de Banach X s’injecte de facon compacte dans
un espace de Banach Y et on note X ——Y si
(1) X s’injecte de fagon continue dans Y .
(2) Toute suite faiblement convergente dans X converge fortement dans Y.

Théoréme 1.4.1. (Sobolev, Gagliardo et Nirenberg)
Soit 1 < p < N alors

N 1 1 1
WEHRN) c L (RY) ou p*  est donné par — =— — —
®Y) C 17 (&) -
et il existe une constante C' = C(p, N) telle que
||u||Lp*(RN) S C”VUHL;;(RN) Yu € Wl’p(RN). (142)

Soit 1 <p< N, alors
WP (RY) < LP(R)Y Vg € [p,p']

et pour le cas limite p= N, on a

WEN(RN) — LYR)N Vg € [N, +oo|.
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Théoréme 1.4.2. (Morrey) Soit p > N. Alors
WEP(RY) — L=(R)Y.
De plus, pour tout u € WHP(RY), on a
u(@) — u(y)| < Cle — g | Vull o) pop ot 2.y € RY
avec o =1 — % et C est une constante qui dépend seulement de p et N.

Enoncons les théorémes "d’injection” continue, ou compacte établis pour les espaces

de Sobolev définis sur un ouvert Q de RY.

Corollaire 1.4.1. Soit Q un ouvert borné de RN tel que Q est de classe C*, on a
Si1<p< N alors

1 1 1
WP (Q) — LUQ) Vge[l,p| oa — = SN (1.4.3)

Sip= N, alors
WhP(Q) < L1Q) Vq € [p, +oal. (1.4.4)

Sip > N alors
WP (Q) — L>®(Q). (1.4.5)

De plus, si p> N, alors on a pour tout u € WHP(Q)

u(z) —u(y)] < Cllullwrr@le —y* pp od z,ye

avec a = 1 — % et C dépend seulement de 2, p et N.
En particulier, on a

WP (Q) C C[Q).

Théoréme 1.4.3. (Rellich-Kondrachov) Soit Q un ouvert borné de classe C'. On a
St p < N alors

1
WP(Q) s LY(Q) Vge[1,p] on — =

3
*
D
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Sip= N alors
WP(Q) s LYQ) VYq € [1,+o0|.

Sip> N alors
WP (Q) —— C(Q).

En particulier W'P(Q) << LP(Q) pour tout p.

. ) . A 1
Ici, on présente la version de ce théoréme pour les espaces W, (£2), remarquons d’abord

que si on remplace l'espace WHP(Q) par VVO1 P(QQ) alors les injections précédente sont

vérifiées indépendamment de la régularité du domaine €.

Théoréme 1.4.4. (Rellich-Kondrachov). Soit Q un ouvert borné de RN et p > 1.
(1) Sip < N, alors pour tout g > 1 tel que q < p, Uinjection de W, (Q) dans LI(Q)
est compacte.
(2) Sip= N, alors pour tout q¢ < oo, l'injection de Wol’p(Q) dans L1(Q)) est compacte.

(8) Sip>N et 0<a<1, alors UVinjection de W, ?(Q) dans C**(Q) est compacte.

(4) Lorsque Q2 est un ouvert borné de classe C', les résultats ci-dessus sont vrais en

remplagant W, (Q) par WHP(Q).

(5) Lorsque N = 1, linjection de W' (Q) dans C(Q) est continue et non compacte, mais
toute suite bornée (uy), contient une sous-suite (uy,); telle que pour tout x € €2, la

suite (un,(7)); est convergente.

Théoréme 1.4.5. Soit ) un ouvert borné de RY, avec N >3 et 1 < p < N. Alors

N
Wy (Q) = LYQ)  pour tout q € {1 b {

’N—p
p

Le nombre p* = NN—_p est appelé exposant critique de Sobolev.
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1.5 La convergence faible et quelques critéres

Dans cette partie, nous allons rappeler la définition de la convergence faible dans un
espace de Hilbert. Soit H un espace de Hilbert, muni d’un produit scalaire noté (.,.)y et

de norme associée notée ||-||q.

Définition 1.5.1. On dit que la suite (x,) de H converge faiblement vers x € H si

lim (z,,y)n = (x,y)n Vy € H. (1.5.1)

n—ao0

On note x, — x.

La convergence forte entraine la convergence faible

Proposition 1.5.1. Si (z,,) converge fortement vers x, alors (x,) converge faiblement
vers x.

Démonstration. En effet, pour tout y € H,

[(zn 9 — (@ )| = [ — 2, 9) 0| < llzn — 2|allyllz — 0.
O

Remarque 1.5.1. La réciproque est fausse en général. Par exemple, il est bien connu que
dans H = L*([0,27]), la fonction x,(t) = sin(nt) vérifie que

27
lim sin(nt)y(t)dt =0 y € H.

n—-ao0 0

En effet, on vérifie d’abord que c ?est vrai pour les fonctions y de classe C* (faire une
intégration par parties), puis par densité, pour toutes les fonctionsy € H. Cela signifie que
(x,) converge faiblement vers la fonction nulle dans H. Mais (x,) ne tend pas fortement

vers la fonction nulle puisque
2w
|z |3 = / sin®(nt)dt =
0

ot le dernier terme est une constante strictement positive indépendante de n.

Proposition 1.5.2. (Unicité de la limite faible) Si (x,) converge faiblement, alors sa

limite faible est unique.
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Démonstration. Soient x et x’ deux limites faibles de (x,). Alors par définition de la

convergence faible, on a

lim (zn,y)n = (@, y)n = (2", y)n yE€H

n——aoo
soit (x — ', y) = 0 pour tout y € H. Donc = = 2. ]
En dimension finie, la convergences faible et forte coincident :

Proposition 1.5.3. Si H est de dimension finie et (x,) est une suite d’éléments de H,

alors (x,,) converge faiblement si (x,) converge fortement.

Démonstration. Soit (ex) pour k = 1,..., N une base orthonormée de H. Si (z,,) converge
faiblement vers x € H, alors pour tout k = 1,..., N, la suite scalaire ((z,, ex))nen converge

vers (x, ex). Donc

N

2 —2l? =Y ((wa, ex) — (2, e))* — 0.

k=1
Cela prouve que (z,) converge fortement vers x.
La réciproque est toujours vraie, méme en dimension infinie. O

En particulier, on a la définition de la convergence faible dans I'espace Hj ().

Définition 1.5.2. Soit v,, une suite de Hé(Q). On dit que v, converge faiblement vers v

dans H}(Q) si et seulement si
/(an, V) + vppde — /(VU, V) +vpdr Vo € Hy(Q). (1.5.2)
Q Q

Théoréme 1.5.1. ( Théoreme de la convergence dominée de Lebesgue)

Soit (fn)n une suite de fonctions de L'(Q2) convergeant presque partout vers une fonction
mesurable f. On suppose qu’il existe g € L*(Q) telle que pour tout n > 1 on ait ||f.]| < g
p.p sur ), alors f € LY(Q) et

n—> —+00

i If = fll =0, [ p@ye= tm [ fde (1.5.3)
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Proposition 1.5.4. Soient (f,), une suite de LP(Q) et f € LP(2), tels que

\f = fuller@) — 0,

alors il existe une fonction g € LP(QY) et une sous-suite extraite (fp,)n, telles que :

(1) foi(x) — f(z) p.p sur Q.
(2) |fn,(2)| < g(x) pour tout i et p.p sur Q.

Lemme 1.5.1. (Lemme de Fatou)

Soit (fn)n une suite de fonctions positives. Alors :

n——oo

/ lim inf f,(x)dz < lim inf | f,(z)dz. (1.5.4)

1.6 Quelques éléments de la théorie des points critiques

Définition 1.6.1. (Différentiabilité au sens de Fréchet) : Soient X un espace de Banach,
Q un ouvert de X, J: Q@ — R une fonction et soit X' le dual de X. Considérons u € ).
On dit que J est différentiable au sens de Fréchet au point u, sl existe forme linéaire
© € X' tel que
Yoew :Jw)—Ju) = {p,v—u)+o(v—u).

Posons

o =J(u) (1.6.1)
que Don appelle la différentielle de J au sens de Fréchet au point u. Il est noté aussi que

(p,u) est le crochet de dualité, en d’autre terme, on a

p(u) = (p,u) (1.6.2)

Définition 1.6.2. (Dérivée directionnelle). Soient Q une partie d’un espace de Banach
X et J: Q — R une fonction a valeurs réelles. St u € Q et v € X sont tels que pour
t > 0 assez petit on a u +tv € w, on dit que J admet (au point u) une dérivée dans la

direction de v si

lim J(u+tv) — J(u)

t—0t t

(1.6.3)

existe. On notera cette limite par J!(u).
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Définition 1.6.3. (Différentiabilité au sens de Gateauz). On dit que la fonction J d’un
ouvert € d’un espace de Banach X, a valeurs réelles, est différentiable au sens de Giteaux
(ou G-différentiable) en u € Q, s’il existe ¢ € X' tel que dans chaque direction v € X ot

J(u + tv) existe pour t > 0 assez petit, la dérivée directionnelle J!(u) existe et on a,

lim J(u+tv) — J(u)

t—0t t

= (p,v). (1.6.4)

L’application ¢ est appelée la différentielle de J au sens de Gdteaux au point u (ou la

G-différentielle de J au point u), on note J'(u) = .

Remarque 1.6.1. Si J est différentiable au sens de Fréchet, alors J est différentiable au

sens de Gateauz. La réciproque est fausse, mais on a le résultat qui suit :

Proposition 1.6.1. Soit J une fonction continue de ) dans R et G-différentiable dans
un voisinage de u € Q. On désigne par J'(v) la G-différentielle de J en v et on suppose

que Uapplication v — J'(v) est continue au voisinage de u. Alors
J(v) = J(u) + (J'(u),v — u) + o(v — u) (1.6.5)

c’est a dire que J est différentiable au sens de Fréchet et sa différentielle coincide avec

J'(u).

Définition 1.6.4. Soient X un espace de Banach, Q C X un ouvert et J € C'(,R).
On dit que u € Q) est un point critique de J si J'(u) =0 ot J'(u) est la G-différentielle
de J au point u. St u n’est pas un point critique alors on dit que u est un point régulier
de J. Sic € R, on dit que ¢ est une valeur critique de J s’il existe u € w tel que J(u) = ¢

et J'(u) = 0. Si ¢ n'est pas une valeur critique alors on dit que c est une valeur réguliére
de J.

Théoréme 1.6.1. ( Théoreme des fonctions implicites)

Soient X, Y, Z trois espaces de Banach, Q un ouvert de X x Y et f € CHQ,Z). On
suppose que (xg,yo) € S est tel que f(xo,y0) = 0 et que Oy, f(xo,yo) est un homéomor-
phisme (linéaire) de'Y sur Z. Il existe alors w C X woisinage conneze de xq et une unique
application p € CH(w,Y) telle que p(xg) = yo et pour tout x € w on ait f(x,p(x)) = 0.
De plus si x € w et f(x,y.) =0 alors y. = p(x). La dérivée ¢ est donnée par :

¢'(z) = = (0yf(z,(2))) " 0 (0:f (x, o(x))) (1.6.6)
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Définition 1.6.5. Soit X un espace de Banach et Q) est une partie de X. Une fonction
J : Q@ — R est dite faiblement séquentiellement semi-continue inférieurement (s.c.i) si

pour toute suite (uy), de Q convergeant faiblement vers u € §, on a

J(u) < lm J(up). (1.6.7)
n—>-+4oo
Proposition 1.6.2. Soit X un espace de Banach réflexif, K C X un convexe fermé et
J : K — R une fonction faiblement séquentiellement (s.c.i). De plus, si K est non borné,
on suppose que pour toute suite (uy), de K telle que ||u,| — 400, on a J(u,) — +oo.
Alors J est bornée inférieurement et elle atteint son minimum, autrement dit :

Jue K, J(u)= inf J(v) =minJ(v) (1.6.8)

veK veK

1.7 Reégularité

Soient  un ouvert de RY | a(-) = (ai(+))1<ij<n une matrice, b(-) = (b;i(-))1<i<n et
B(-) = (Bi(+))1<i<n deux vecteurs, et ¢ une fonction. On considéré A et L deux opérateurs

du second ordre définis par :

N
Au = — Z@i(aijaju) +0;(Bju) +b-Vu+ cu

1,j=1
N
Lu=— Z (aijaiju) +b-Vu+cu
ij=1

et avec des hypothéses sur les coefficients on précisera les domaines de ces opérateurs. On
dit que A est un opérateur du second ordre a partie principale divergentielle. Remarquons
en premier lieu que si par exemple les coefficients a;; et §; sont dans W>°(Q), 'opérateur
A est du méme type que L. Il est également a noter que dans l'opérateur L on peut

supposer sans perte de généralité que a;; = aj;, car 0;;u = O;ju et

N

N N
ZCLUGZ’]‘U = Zajiaiju = Z Wawu

1,j=1 1,j=1 1,j=1
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En revanche, il faut bien noter qu’en général les deux opérateurs A et L sont de natures
différentes, et qu’en particulier les propriétés (surtout celles qui concernent le spectre) de
l'opérateur A dépendent de maniére essentielle de la symétrie ou non de la matrice a(-).
En régle générale on supposera que la matrice a(-) vérifie la condition de coercivité ou

d’ellipticité, en d’autre terme Jo > 0, V€ € RN, on a

(a()€, ) = > ay(x)&& > alg

ij=1
presque partout sur €.

Théoréme 1.7.1. (Théoréeme de Schauder).

L’opérateur L étant défini, on suppose que les coefficients a;j,b et ¢ sont dans C*9(QQ)

pour un 0 €]0,1[ et un entier k > 0, que ¢ > 0 et que la condition de coercivité (10.3)
est satisfaite. Alors si Uouvert Q est borné et de classe C*29 et ¢ € CF29(Q) ainsi que

f € C*0(Q) sont données, il existe une unique fonction u € C*+%%(Q) telle que

Lu=f dans (),
u=@ sur O,

et de plus, pour une constante C dépendant seulement de €2, 0, o ainsi que des normes

des coefficients a;j, b;, ¢ dans C*°(Q), on a

lullowss@y < € (I lexa + I€llcram) (1.7.1)

1Dl ero@y < € (I llcroy + lellorsza ) - (1.72)

Théoréme 1.7.2. L’opérateur L étant donné, on suppose que les coefficients a;; sont

dans C(2), b et ¢ dans L>(Y), que ¢ > 0 et que la condition de coercivité est satisfaite.
Alors si louvert Q est borné et de classe CY1 et f € LP(Q) est donnée pour 1 < p < oo,

il existe une unique fonction u € WP(Q) N Wy (Q) telle que

Lu=f dans (),
u=0 sur 01,
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et de plus, pour une constante C indépendante de f et u, on a |ullwzr) < C| flr)-
En particulier sip > 5 et o € C(Q), il eziste une unique solution u € C(Q) N WP(Q)
du probléeme de Dirichlet Lu = f dans Q) et u = @ sur 0€).

Considérons maintenant 'opérateur A défini, en régle générale, lorsque I'on résout une
équation du type Au = f dans Q et u = ¢ sur 0€), 'équation Au = f est entendue
au sens de D’'(Q) et la condition au bord est interprétée au sens u — ¢ € H(Q). De
plus, contrairement a ce qui se passe pour les opérateurs comme L défini, la condition
¢ > 0 ne suffit pas a montrer I'existence d’une solution. C’est pourquoi nous énoncons le
théoréme qui suit sans aborder la question de I’existence de solution (voir D. Gilbarg et
N.S. Trudinger [6]).

Théoréme 1.7.3. L'opérateur A étant donné, on suppose que la condition de coercivité
est satisfaite et que, pour un entier k > 0, Q est de classe C**2, que les coefficients
g, B; sont dans C*1(Q), b;, ¢ sont dans L>®(Q) si k = 0 et dans C*11(Q) si k > 1. Si
f e HMQ), p € H2(Q) et uw € H(Q) sont telles que Au= f et u— ¢ € HY(Q), alors
u € H*2(Q), et pour une constante C dépendant uniquement de Q, k, a et des normes

de a;j, B;, b, c on a
[ull 2 () < Clllullz@) + 11 lme@) + lollme2)-

De plus si ) est de classe C°(Q) et f, p, ai;, B, bi, ¢ sont dans C(QQ) , alors u € C>(Q)
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Chapitre 2

Quelques outils de base

Dans cette section, on rappelle quelques lemmes qui nous seront utile par la suite
et particuliérement le Théoréme des Multiplicateurs de Lagrange qui fortement relie le

probléme de minimisation a 'EDP.

Lemme 2.0.1. (Brezis-Lieb). Soient 1 < p < oo et (fn)n une suite bornée de fonctions
de LP(QY) convergeant p.p. vers f. Alors f € LP(Q) et :

Il = dim (fall = 1 = fallp) - (2.0.1)

Démonstration. Soit M = sup|| f,|,- Remarquons en premier lieu que pour tout € > 0, il
n>1

existe une constante C. dépendant de p et de € telle que pour tout s € R, on ait
l|s + 117 —[sP — 1] < ¢els|P + C-. (2.0.2)
En effet, pour voir que cette inégalité est vraie, il suffit de remarquer que :

s+ 1P —|s|P =1

lim 0
|s|—>+o0 ‘S|p
On déduit de (2.0.2) que pour a, b € R on a :
lla+ 0" —[al” — b < elal” + Cc[b]”. (2.0.3)

Pour un € > 0 fixé, posons :

un:”fn|p_|fn_f‘p_’f’p’a Zn:(un_g‘fn_f|p)+'

25
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On sait que Z,, tend vers zéro p.p et que, grace a (2.0.3) appliquée a la suite u,, nous
obtenons 0 < Z,, < C.|f|P. Par conséquent, d’aprés le théoréme de la convergence dominée
de Lebesgue (Théoréme 1.5.1), on a ||Z,|i — 0 lorsque n — +oo puisque par le
lemme de Fatou (Lemme 1.5.1 ), on a fQ fdxr < 4o00. De plus on a presque partout :

0<wu, <el|fn— fIP+ Z,, ce qui donne

[unlly < ellfu = Sl + 1 Znlls < €2°MP + [| Za]]1.

On en déduit finalement que ||u,||; tend vers zéro, ce qui établit le résultat annoncé. [

Un corollaire immeédiat de ce résultat est le suivant :

Corollaire 2.0.1. Soient 1 < p < oo, f € LP(Q) et (f,)n une suite de LP(2). On suppose
que :

fo oo et tm |l = £l (204
Alors on a :
i [~ Full, = 0. (2.0.5)

Voici maintenant un lien entre la convergence presque partout et la convergence faible
dans les espaces LP(Q)). Remarquons que pour 1 < p < +oo, les espaces LP(Q) étant
réflexifs, si la suite (f,)n est bornée dans LP()), on peut en ectraire une sous-suite (fy,);
convergeant dans LP(QY) faible vers une certaine fonction g € LP(QQ). Comme le montre le

lemme suivant, si on sait que f, —> [ p.p. on a nécessairement g = f.

Lemme 2.0.2. Soient 1 < p < oo et (fn)n une suite bornée de LP(Q2) convergeant p.p.
vers f. Alors f, = f dans LP(Q) faiblement.

Démonstration. En effet, d’aprés ce que nous venons de dire plus haut il existe une sous-

suite (fn,); convergeant vers g € LP(Q2). Soit alors :
Q,={xeQ, Vk>n, |filz)— flx) <1}

Sin > 1 est fixé et ¢ € LP(Q) est a support compact et telle que supp(¢) C Q,, en

utilisant le théoréme de la convergence dominée (Théoréme (1.5.1)), on voit que :

/Q g(@)p(z)dz = Tim / fou(@)p (@) = / F () () da.

i—> 400
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En faisant tendre n vers l'infini, on déduit que

Aﬁ@ﬂ@ﬂxzéfwwwwx

pour toute fonction ¢ a support compact dans 2. On en conclut que g = f, et par

conséquent c’est toute la suite (f,,), qui converge faiblement vers f. n

Proposition 2.0.1. (Inégalité de Poincaré).

On suppose que 2 est un ouvert borné dans une direction. Alors il existe une constante

C telle que pour tout u € WyP(Q) :
[ull, < ClI[Vull,. (2.0.6)

Linégalité est vraie si on suppose seulement que €2 est de mesure finie.

Démonstration. Si € est borné dans une direction, on peut supposer sans perte de gé-
néralité qu’il est contenu dans RY~!x]0,a[. Ainsi, en notant (2/,zy) = = € RY, pour

u € CH) on peut écrire :

TN
(@, =) = p / (e, )P 2u(x’, ) Onula £)dt
0

< p/ lu(2, t) [P~ Onu(a’, t)|dt.
0

En intégrant d’abord en xy sur |0, a[ puis en 2’ € RYV~1 et utilisant le fait que le support

de u est contenu dans {2, on obtient :

[ lu@Pds < pa [ futa)p - iovuta)ids < palaly oy,
Q Q

O, pour la derniére estimation, on a utilisé I'inégalité de Holder (1.3.2).

Lorsque Q est de mesure finie, pour ¢ € C}(Q) on part de I'inégalité de Sobolev (1.4.2)
N * _ N .

dans RY (ou 1" = ) :

el < CN) [Vl e

Si maintenant u € C!(€) est donnée, en appliquant cette inégalité a ¢ = |u[P~'u, on
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obtient [|ul[? = [|o||rr < mes(Q)V |||+ ott mes(2) est la mesure de © et finalement :

1
uly < (mes(Q)¥ ||| 1

IN

C(p. Q| [uf~ Vullx
< Cl Dl IVull,,

Ce qui, joint a 'argument classique de densité, établit 'inégalité de Poincaré. O

2.1 Théoréme des Multiplicateurs de Lagrange

Définition 2.1.1. Soient X un espace de Banach, F et J € CY(X,R) et un ensemble de

contraintes

S={veX, F(v)=0}. (2.1.1)

Nous supposons que

F'l(v) £0 Yv e S. (2.1.2)

o F' nest que la différentielle de F' définie par la formule (1.6.1). On dit que ¢ € R est

valeur critique de J sur S s’il existe u € S et A € R tels que :
Jw)=c et J(u)— IF'(u)=0. (2.1.3)

Le point u est un point critique de J et le réel \ est appelé multiplicateur de Lagrange

pour la valeur critique ¢ ou le point critique u.

Théoréme 2.1.1. Sous les hypotheéses et notations de la définition précédente, on suppose

que ug € S est tel que

J(ug) = quggJ(v) (2.1.4)
Alors il existe a € R tel que :
J/(UO) = OéF/<U0). (215)

Démonstration. Soit ug € S, de (2.1.2) on a F'(ug) # 0, alors on peut toujours trouver
w € X tel que
F/(Uo)(UJ) =1

Si Xo = ker F'(ug), on pourra écrire X = Xy @ Ruw.
Soit alors la fonction ® de Xy x R dans R, définie par :

V(v,t) € Xo xR:  ®(v,t) = F(ug + v + tw).
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Puisque uy € S, de (2.1.1) on a
®(0,0) = F(up) =0 (2.1.6)

et
En appliquant le théoréme des fonctions implicites (1.6.7) a 'application ® au point (0, 0)

de Xy xR, on obtient I'existence d’un voisinage V' C Xy de v = 0 et une unique application
T € CY(V,R) telle que T(0) =0 et

YoeV &(v,T(v))=0. (2.1.7)

De plus si pour un v € V vérifiant ®(v,t) = 0 alors nécessairement ¢t = T'(v) et puisque

0, ®(0,0) = F'(up)(v) = 0 car v € Xy, on obtient la dérivé 7" au point v = 0 par :
T'(0) = —(0,2(0,0))* 0 (9,9(0,0)) = 0. (2.1.8)
Donc il existe un voisinage €2 de uy dans X, tel que
ueQ et Flu=0<=u=u+v+T(v)w avec veV.

Remarquons que rien de ce qui précéde ne fait intervenir J.

SiI: V — R, est définie par I(v) = J(ug + v+ T'(v)w).

Par hypothése (2.1.4), on voit que le minimum de J est réalisé par ug, donc I atteint
son minimum en v = 0 € V. Par conséquent I’(0)(v) = 0 pour tout v € X,. Or d’aprés
la définition de I et la propriété de T, on sait que si v € Xy on a I'(0)(v) = J'(ug)(v).
On en conclut que J'(up)(v) = 0 pour tout v € Xy et que kerJ'(ug) D kerF'(up) : par
conséquent il existe A € R tel que J'(ug) = AF"(uy). O
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Chapitre 3

Etude des valeurs propres

3.1 Etude de la premiére valeur propre

Définition 3.1.1. Soit Q un ouvert bornée de RY de classe C*, N >3 et h € C®(Q).
Soit P un opérateur différentiel définit tel que :

P:C*(Q) — C*(Q)
u+— Pu
On dit que P est de type Laplacien conforme si et seulement si ['opérateur P s’écrit sous
la forme suivante :
" 0%u

i=1

(3.1.1)

et le Laplacien.

Corollaire 3.1.1. (Formule de Green).

Soient Q un ouvert de classe C* et u,v deuz fonctions de classe C*(Q)). Alors on a :

ou ov

/Q[U(I)AU(ZB) —u(zx)Av(z)|dr = /Q %(U)U(O‘) — %(a)u(a)da

7]

et

/Qv(x)Au(x)dx:/QVu(a:)-Vv(x)dx—/g%(a)v(a)da

ot n(o) est la normale extérieur a 02 au un point o.

En particulier st v = 0 sur le bord, on a

/Qv(x)Au(x)dx = /QVu(x) - Vo(z)dz (3.1.2)

31
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Définition 3.1.2. L’opérateur P est dit coercif si et seulement si il existe une constante

c tel que

/Q|V1)2]+hv2dx > c||u|]12q(%(m

Par exemple si h > 0, 'opérateur P est coercif, en fait il suffit de voir que

/|V"02|+hvzdx > min(l,m&nh)/|Vu!2+u2d:B
0 0

. . 2
> mln(Lm(%nh)HuHHé(Q)

Proposition 3.1.1. La premiére valeur propre A\ de l'opérateur P est caractérisée par :

Vol? + hvd
A= np dalVel ot hvde

veHE(Q) Jo vidx
v#0)

(3.1.3)

Démonstration. En effet, si v € HJ(2) est une fonction propre non nulle associée a une

valeur propre A de P alors v vérifie la relation suivante :
Py = \v. (3.1.4)

Multipliant cette derniére égalité par v puis intégrant, on obtient

/vPvdx = )\/Ule‘
Q Q

_ vaPvdx
N fQ v2dx

d’ou

A (3.1.5)

et comme

/vPvdx = / v(Av + hv)dx
Q Q
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et d’apres la formule de Green (3.1.2), il suit que

/vPvdx = /vAv%—hv%lx
Q Q

= /(VU,VU> + hv*dx
0

Noter que v € H(2), v est nulle sur le bord de Q, alors le second terme

ov
., %(J)’U(U)CZU =0

d’ou

/vPvdm = / |Vo|* + hv’d.
Q Q

Donc la premiére valeur propre se choisi comme I'infimum de A dans (3.1.5) :

Vol? + hud
A= inf A= inf Jo Vv + hvde

vEHL () vEHL () Jo v¥da
v#0) v#0)

Théoréme principale :

Théoréme 3.1.1. Soit Q un ouvert bornée de RN de classe C', N > 3 et soit \\ la

33

premicre valeur propre de Uopérateur P = A + h, alors il existe une fonction v € C?(Q)

strictement positive solution de [’équation suivante
Av + hv = A\o.

On dit aussi que la premiére valeur propre est atteinte par la fonction v.

Démonstration. Soit (v, ), une suite de minimisante de Ay, (v,,), est une suite de fonctions

de € H}(Q) et telle que
Jo VU |? + holda

lim = A1
n—s—+o0 fQ U%d;p
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On peut toujours normalisée cette suite, en d’autre termes, on peut prendre

/vidx: 1
Q

En effet, posant w, = av, ol « est nombre réel non nul. On remarque facilement que la

suite w,, est aussi une suite minimisante car :

Jo IVwy|? + hw?dx o? [, Vo, |* + hvdx

Jo wida o? [ vidx

Jo IV Ua|? + hoda
Jovidx

donc il suffit de prendre

alors on obtient

1
/widx = a2/vzdx:(—l)2/vidx:1.
Q 0 (fquidz)z™ Jo

Autrement dit la suite vérifie :

n—>-+00

lim / |Vu|? + hvpde = Ay
Q
A présent pour un rang assez grand, on a

/ (Vo |? 4 hvpdz < A + 1
Q

(3.1.6)

et comme notre opérateur P est coercif, alors il va exister une constante ¢ > 0 telle que

[ 190 ke = el g

et cela veut dire que

A+ 1
[vnll 1) < :
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Il en découle que la suite (v,), est bornée dans l'espace HJ(Q) et de la réflexivité de
lespace Hj(f2), on en déduit que (v,), admet une sous suite notée encore (v,), qui
converge faiblement vers un v € Hj(Q) et d’aprés le théoréme de Rellich-Kondrachov
(Théoréme (1.4.8)), on a H}(Q) C L*(Q) et cette injection est compacte, donc la suite v,

converge fortement ver v dans L?(f2), cela signifie que

/Uid$—>/@2dx
Q Q

d’ou fQ v2dx = 1, en conclut que la fonction v n’est pas identiquement nulle. D’autre part,

d’apres le lemme de Fatou (1.5.9) on a :

”UH%I(%(Q) < li_m/Q]VUn|2+vadx
<t [ (Ve +lim [ e
Q Q

Encore de la convergence forte dans L%(Q) et de la définition de la norme, on retrouve

/|Vv|2+vzdx < li_m/|an|2+lim/v,21dx
Q Q

Q
< lim ]V'Un|2—|—/v2dm
Q Q
cela nous conduit a
/]Vv\zdx gli_m/ |V, [*dz. (3.1.7)
Q Q

De plus, étant donnée que la fonction h > 0, alors on obtient immeédiatement que

/Q h(v, — v)2dz < suph(z) /Q (v, — v)2dz

e

ce qui implique que

/hvidx—>/hv2da:.
Q Q



36 CHAPITRE 3. ETUDE DES VALEURS PROPRES

En revenant a l'inégalité (3.1.7) et en ajoutant la quantité [, hv*dz, il suit que

/|Vvl2d:l:+/h02dx < li_m/\an]2+/hv2d:c
0 0 0 0

- h_m/ |V, |2dx + lim/ hv?dzx
Q Q
= h_m/ \an]2d33+li_m/ hvldz
Q Q
= h_m/ |Vu,|*dz + holdax
Q
= )\
c’est a dire que
/ IV|? + ho® < Ay (3.1.8)
Q
Etant donnée que A; est 'infimum et en particulier pour la fonction v, on retrouve que
A < / |Vo|? + hv*da. (3.1.9)
Q
De (3.1.8) et (3.1.9), on conclut que
/ IVv|? + hv*dr = ).
Q

Posant
I: H&(Q) — R

v — / |Vo|? + ho*dz
Q

et
J:H;j(Q) — R

vr—>/v2dx.
Q
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Avec cette nouvelle notation la premiére valeur propre est donnée par

_ I(v)
A = inf 3.1.10
YT e J(v) (8.1.10)
v#0)

et d’aprés le Théoréme des multiplicateurs de Lagrange (2.1.2), il existe un réel o € R tel
que
DI(v).p = aDJ(v).@ (3.1.11)

et ceci et pour tout élément ¢ € H}(Q). Notant que 1'équation (3.1.11) est appelée
équation d’Euler Lagrange associé a notre probléme de minimisation. Soit ¢ un réel positif,

alors pour tout p € Hj (), le différentielle de fonctionnelle I est donnée par :

d
DI(v).e = T I(U + tp)
d 2
= i |Vv—|—tgp)| + h(v + tp)?dx
= / V(v +to)]? + h(v + tp)’de
d 2 2, 42 2
= — Vo +tVe|® + h(v? + t°¢* + 2tvp)dx
9} dt\tZO
d
= /Q pr t:0|VU]2 + t?|Vo|? 4 2t(Vv, Vo) + h(v® + t2p* + 2top)dz.
Donc
DI(v).p = 2/<VU, V) + hvp)dzx (3.1.12)
Q
et de méme on retrouve,
DJ(v)p = 2/ vpd. (3.1.13)
Q

Finalement des équations (3.1.11), (3.1.12) et (3.1.13), on obtient

/(Vv, V) + hvpdr = a/ v
Q

Q

Maintenant si on pose ¢ = v, il suit que

/ IVo|? + hv’de = a/ vidr = a,
0 0
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donc
Oé:)\l.

On conclut d’aprés (3.1.11) que pour tout ¢ € Hj (),

/(VU, V) + hvpdr = A\ / vodr
Q

Q

ce qui implique

/ YAV + hvpdr = M\ / vdr,
Q Q

encore

/ ©(Av + hvgp — \v)dx =0

Q

pour tout ¢ € H} (). Cela signifie exactement que v est une solution faible de I’équation
Av + hv — \jv = 0.

Etant donnée que la solution v € H}(Q) alors comme dans le théoréme de régularité
(Théoréme 1.7.3), il suit de I’équation Pv = A\jv que Pv € H}(Q) donc v € H3(Q) et

ainsi de suite v € HY(Q) avec k trés grand et finalement le théoréme (1.4.7) assure que
HE(Q) = W(Q) = C*(Q) (3.1.14)

ce qui signifie que v € C**(Q). De plus du Lemme (1.2.7), on a |V]u|| = |Vu| dans
H}(Q), donc on aurais pu choisir la suite minimisante (v,),, positive, ce qui entraine que
la fonction v > 0 et plus précisément la fonction v > 0. En effet, on peut toujours trouver
un zg € € tel que v(xg) = 0, d’aprés l'inégalité de Harnack, pour toute fonction propre
positive

maxv < C, ,minwv,
B

T T

ou B, = B(xo,r) et B(xg,2r) C Q. Il en résulte que v = 0 dans B, pour tout r > 0. En
conclusion v = 0, ce qui est impossible car v est une fonction non identiquement nulle.

Par conséquent |v| > 0 sur 2, par continuité v est de signe constant.

Conclusion 3.1.1. On vient de montrer qu’il existe fonction v > 0 appartenant a ’espace

C?(Q2) qui est solution de I’équation

Av + hv = A\jo.
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De plus on dit que la premiere valeur propre A1 de l'opérateur P est atteinte par la fonction

.
O
Proposition 3.1.2. Soit u la solution de notre probléeme :
Au = \ju— hu (3.1.15)
ot u=0 sur 0X, alors u vérifie l'identité suivante :
/Q <(n ; 2 g) Au? + (n ; 2h + %(x, Vh)) u2> de = — /89<§,U)(Vu,v>2dx.
Cette derniére est connu sous le nom de L’identité de Pohozaev .
Démonstration. On multiplie ’équation (3.1.15) par (z, Vu), on obtient
(x, Vu)Au = (x, Vu)(A\u — hu). (3.1.16)

Intégrant par partie chaque terme. D’aprés la formule de Green, le premier terme donne :

/(:z:,Vu)Audx:/(V(m,Vu>,Vu>dx—/ (x, Vu)(Vu, Vu)dz (3.1.17)

ou v est la normale sortante. Mais vu que v = 0 sur 02, on a pour tout z € 0f2
Vu(z) = (Vu(z), v)v.

Le second terme de droite de (3.1.17) devient alors

/8Q<x, Vu)(Vu,v)dr = / (2, 0)(Vu, v)2dz.

o0

Concernant le premier terme (3.1.17) de la droite, on devra avoir
1
(V({z,Vu)), V) = |Vul® + §<$, V(| Vul?)). (3.1.18)

Pour cette derniére, il est suffisant de donner la preuve de cette égalité en dimension 2,

la généralisation de cette formule se fait de la méme facon. Commencant d’abord par
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calculer le terme V({z, Vu)), on a :

ou ou
V({z,Vu)) = V (xl(‘?_xl + 3728—902)
B <8u 0 aux 0 8um ou 0 8u$ 0 8ux
N E)xl 81'1 81:1 ! 8%1 (%2 2 @(EQ 61’2 8x1 ! 81‘2 @(L‘Q 2
_ ou Ou 0 Ou 0 Ou 0 Ou 0 Ou
N 8951 ’ (9.1'2 8%1 83013:1 (‘3:1:1 81'2 2 8332 8351 T 81'2 8952 2

=Vt (o g (VU)o (V)

= Vu+M

ou l'on a posé

M = ({x, a%m», (x, %(Vum.

A présent calculant le terme (V({z, Vu)),Vz), on a :

(V({(z,Vu)),Vz)y = (Vu+ M,Vu)
= |Vul* + (Vu, M).

Pour prouver I'inégalité(3.1.16), il suffit de montrer que

(Vu, M) = S(V(Vuf?), 2.
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0 ou 0 ou
M) = — - _ -
<vu’ > <93, 81’1 (VU)>8$1 + <'I’ 8332 (vu)> axQ

ou 0 ou 0

— (o5 (V) + (25, 5 (VW)

B <(8ux 6ux) 0 Ou 0 8u)>+<(8ux 8ux) 0 Ou 0 Ou

N (933'1 b 8:61 2 (91'1 8351’ 8:1:1 31:2 (9.1'2 b (933'2 2 8332 8:51’ 891:2 81'2

ou 0 Ou ou 0 Ou ou 0 Ou ou 0 Ou

E)xl e 8x1 8%1 8x1 2 8:1;1 8[)32 8%2 e 8x2 8x1 8[)32 2 8x2 8x2

ou 0 Ou ou 0 Ou ou 0 Ou ou 0 Ou

ou 0 8u+6u 0 Ou Ou 0 8u+8u 0 8u)(
(91‘1 81‘1 6$1 8x2 6.172 81'17 61’1 6m1 61'2 8:1;2 8[E2 E)xg i

128u 0 Ou 28u 0 Ou 2(’3u 0 Ou 2(’3u 0 Ou

5 833'1 8I18$1+ 81’281’281'1’ 8:51 (9.%1 8x2+ 8332837281’2
1, _0Ou 0 Ju Ju 0 Ou Ju 0 Ou Ju 0 Ou

= ST+ (), o)

N~ N

(V(IVul?), z).

On en déduit que :

1
/(:B,VU)Audx /|Vu|2—l—§(a:,V|Vu|2)d:1:—/ (z,v){Vu,v)*dw
0 0

o0

83;13:1 (933'1 8%1 + 8902 = 8.1'2 81'1 + 8%1 x28x1 (933'2 81'2 2 81‘2 8.1'2

X1, fEQ)

)-(z1,22)

2( @xl 8m1 6171 + 81'2 3351 61’2’ 8$1 3x2 aZL'l + 8$2 8x2 8302) (Ilyx2)

= /|Vu\2+ﬁ|Vu|2dx—|—/ <£,U>‘VU‘2—/ (z,v){Vu,v)*dx
0 2 2 o9

o0

2—n

= /|Vu|2dx—/ (z,v><Vu,v>2dx.
2 Ja o0 2

En multipliant par v I’équation et en intégrant par partie, on obtient

/ |Vul*dr = /(A1u2 — hu?)dzx.
Q Q
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Finalement, le premier terme donne

/Q<$, Vu)Audzr = 2 ; n /Q()\lu2 — hu?)dx — / <g,v><Vu, v)?dx. (3.1.19)

o0

D’autre part le second terme de (3.1.16) devient :
1 gy 1 2
(x, Vu)y(Mu — hu)dx = §<x,>\1Vu ) — §<xh, Vu?) | dx
0 Q

1
= /(—E)\lu2+—div(xh)u2> dx
o\ 72 2

On déduit alors de ces derniére égalité,

1 2 —
/ —ﬁ)\luz + =~div(zh)u® | dz = z /(AluQ — hu*)dx — / (E, v){Vu, v)dz.
o\ 72 2 2 Jg 2

N

3.2 Etude de la deuxiéme valeur propre

Soit v la solution de I’équation précédente, on définit la deuxiéme valeur propre de
I'opérateur P par :
Jo [Vw|? + hwdz

Ao = inf
2= wide

ou l'infimum est pris sur I’ensemble

E = {we Hy(Q) such that w # O,/

w?dr = 1 et / wvdx = 0}.
Q Q

Théoréme 3.2.1. Soit Q un ouvert bornée de RV de classe C', N > 3 et soit )y la
deuzieme valeur propre de lopérateur P = A + h, alors il existe une fonction w € C?*(Q)

tel que
Aw + hw = w.

On dit ausst que la deuxieme valeur propre est atteinte par w.



3.2. ETUDE DE LA DEUXIEME VALEUR PROPRE 43

Démonstration. Soit (wy,), une suite minimisante de Ay, avec la méme méthode, on

trouve un minimiseur non nul w de Ay vérifiant
Py(w) = Xw

au sens faible et [, w*dx = 1. Ecrivant,

/wvdw = /wmv — W + woudz

Q Q
— /v(w — Wy )dz + /wmvdx =0.
Q Q

et comme w,, € F, le second terme est

/ wy,vdx = 0.
Q

En utilisant la convergence faible de w,, vers w dans L*(Q) et le faite que v € L*(Q)

sachant que L%(Q) est 'espace dual de L*(£2), on obtient

/v(w — Wy )dx — 0

Q

donc,

/wvdw = 0.

Q

Etant donnée que la solution w € H}(f2), alors en utilisant un procédé analogue a celle

de v, on montre que w € C**(Q).
O]
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