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Abreviations

EDP Equation aux dérivées partielles.
p.p. Presque partout.
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Notations

R Ensemble des nombres réels.
R
N

R× R× ...× R N fois.

∇u Gradient de u défini par ∇u
def
=
(
∂u
∂x1
, ..., ∂u

∂xN

)
.

∆u Laplacien de u.
∆pu p-Laplacien de u défini par ∆pu = div

(
|∆u|p−2∆u

)
.
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0.1 Introduction Générale

Une équation aux dérivées partielles (EDP) est une équation dont l’inconnue
est une
fonction et qui fait intervenir non seulement cette fonction mais aussi ses dérivées
partielles. L’ordre maximal de dérivation intervenant dans l’équation est ap-
pelé ordre de l’EDP. Il existe des centaines d’EDP dont l’étude nécessite des
théories différentes, souvent spécifiques. On tente néanmoins de classifier les
EDP en catégories, selon les outils généraux qui permettent de les analyser, ou
encore selon leurs propriétés qualitatives et les problèmes qu’elles modélisent.
En effet, les EDP sont les objets mathématiques qui permettent de modéliser
les phénomènes naturels et il ne faut jamais oublier cet aspect.
Les EDP que nous rencontrerons dans ce mémoire seront toujours placées au
préalable dans
un contexte : physique, mécanique, chimie, biologie, économie, sociologie, ...
On distingue trois grandes catégories d’EDP :

i Les équations de type elliptique qui interviennent très souvent dans la mod-
élisation des phénomènes stationnaires (c’est à dire n’évoluant pas au
cours du temps). Le prototype d’équation elliptique est l’équation de
Laplace

−∆u = f (1)

d’inconnue u(x), x ∈ Ω ⊂ Rn et de donnée f.

ii Les équations de type parabolique, qui modélisent souvent l’évolution tran-
sitoire de phénomènes irréversibles associés à des processus de diffusion.
L’équation de la chaleur en est un prototype :

∂u

∂t
−∆u = f (2)

d’inconnue u(t, x), x ∈ Ω ⊂ Rn, t ≥ 0 et de donnée f.

iii Les équations de type hyperbolique qui modélisent des phénomènes dépen-
dant du temps, de transport ou de propagation d’ondes. On identifie
deux prototypes pour cette classe d’EDP :

— L’´equation de transport

∂u

∂t
+ c

∂u

∂x
= 0 (3)

d’inconnue u(t, x), x ∈ Rn, t ≥ 0.

— L’´equation des ondes
∂2u

∂t2
−∆u = f (4)

d’inconnue u(t, x), x ∈ Ω ⊂ Rn, t ≥ 0 et de donnée f.
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- D’où vient le nom “elliptique”, “parabolique”, “hyperbolique” ?
Plaçons nous dans le cas particulier des équations de deuxième ordre dans R2.
L’inconnue est la fonction u(x, y), qui satisfait l’équation

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu = g. (5)

Pour simplifier, on suppose les coefficients a, b, ..., g constants.
On dit que (5) est:
Elliptique si b2 − 4ac < 0,
Parabolique si b2 − 4ac = 0,
Hyperbolique si b2 − 4ac > 0.
Dans cette thèse nous nous intéressons à l’analyse mathématique des équa-
tions aux dérivées partielles de type elliptique qui correspondent à des modèles
physiques stationnaires, c’est-à-dire indépendants du temps. Nous allons mon-
trer que les problèmes aux limites sont bien posés pour ces e.d.p. elliptiques,
c’est-à-dire qu’elles admettent une solution, unique, et dépendant continûment
des données.
L’approche que nous allons suivre est appelée approche variationnelle.
Le principe de l’approche variationnelle pour la résolution des équations aux
dérivées partielles est de remplacer l’équation par une formulation équivalente,
dite variationnelle, obtenue en intégrant l’équation multipliée par une fonction
quelconque, dite test. Comme il est nécessaire de procéder à des intégrations
par parties dans l’établissement de la formulation variationnelle.
Le but de ce mémoire, basé essentiellement sur les articles [7], [1] et [8], est
l’étude mathématique de quelques équations aux dérivées partielles elliptiques.
Ce mémoire comporte trois chapitres :
Dans le premier chapitre, nous introduisons les outils nécessaires à la suite de
notre travail.
Le second chapitre, est consacrée au théorème de Lax-Milgram qui sera l’outil
essentiel permettant de démontrer des résultats d’existence et d’unicité de so-
lutions de formulation variationnelle.
Dans le dernier chapitre, nous abordons un problème elliptiques non-linéaires
nous appliquerons une methode variationnelle par application du lemme du
col.
Finalement, parmi les nombreuses références bibliographiques, nous avons
choisi à la fin de ce travail un nombre assez consistant permettant au lecteur
interéssé d’avoir accès à quelques sources que nous avons utilisées pour réaliser
ce mémoire.
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Chapitre 1

Préliminaires

Sommaire
1.1 Espaces fonctionnels . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Espaces de Lebesgue . . . . . . . . . . . . . . . . . . . 5

1.1.2 Espace de Sobolev . . . . . . . . . . . . . . . . . . . . 7

1.2 Quelques définitions et théorèmes . . . . . . . . . . . 9

1.2.1 Fonction Lp-Carathéodory . . . . . . . . . . . . . . . . 9

1.2.2 Théorème d’Ascoli-Arzela . . . . . . . . . . . . . . . . 9

1.2.3 Convergence forte et Convergence faible . . . . . . . . 10

1.3 Approche variationnelle . . . . . . . . . . . . . . . . . 11

1.3.1 Approche variationnelle . . . . . . . . . . . . . . . . . 11

Dans ce chapitre, nous dressons une liste non exhaustive des principales nota-
tions et outils utilisés tout au long de ce mémoire. D’autres, plus spécifiques,
seront introduites dans le texte. Nous rappelons également divers résultats
généraux qui pour la plupart sont accompagnés de références à la bibliogra-
phie et seront utilisés dans le texte de manière transparente. Les ouvrages de
base utilisés dans ce chapitre sont [6], et [10].

1.1 Espaces fonctionnels

1.1.1 Espaces de Lebesgue

Nous commençons par introduire les espaces de Lebesgue.
Pour Ω un domaine ouvert de RN , D (Ω) désigne l’ensemble des fonctions de
classe C∞ et à support compact dans Ω.
L’espace de Lebesgue Lp (Ω) pour p ∈ [1,+∞[ est défini par :
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Lp (Ω) =

{
u : Ω→ R mesurable;

∫

Ω

|u (x)|p dx <∞

}
,

Lp est muni de la norme ‖u‖p =
[∫
Ω
|u (x)|p dx

] 1
p . Cette norme le rend com-

plet, c’est donc un espace de Banach.
Pour p =∞,

L∞ (Ω) = {u : Ω→ R mesurable; ess sup |u| < +∞} ,

L∞ (Ω) est muni de la norme suivante: ‖u‖∞ = esssup
Ω
|u| ; avec

ess sup |u| = inf {C > 0; |u (x)| ≤ C p.p dans Ω} .

Lp (Ω) est reflexif et séparable pour 1 < p < +∞ et son dual est isomorphe à
Lq (Ω) avec q le conjugué de p c’est à dire 1

p
+ 1

q
= 1.

Inégalité de Hôlder

Soient f ∈ Lp(Ω) et g ∈ Lq(Ω) avec 1 ≤ p ≤ ∞ et q le conjugué de p alors :

f.g ∈ L1(Ω) et
∫

Ω

|f.g| dx ≤ ‖f‖p ‖g‖q .

lemme de Fatou

Lemme 1.1.1 Soit (fn) une suite de fonctions dans L
1(Ω) telle que, pour

chaque n, fn (x) ≥ 0 p.p sur Ω.Si f (x) := lim
n→∞

inf fn (x) , pour tout x ∈ Ω;

alors f ∈ L1 (Ω) et

∫

Ω

f (x) dx ≤ lim
n→∞

inf

∫

Ω

fn (x) dx,

i.e.

∫

Ω

lim
n→∞

inf fn (x) dx ≤ lim
n→∞

inf

∫

Ω

fn (x) dx.

Définition 1.1.1 Soient Ω ⊂ R
n et ω une fonction poids. Pour 1 < p < ∞,

on définit Lp(Ω, ω), l’espace de Banach de toutes les fonctions mesurables u
définies sur Ω , telles que

||u||Lp(Ω,ω) =




∫

Ω

|u(t)|p ω(x)dx





1

p

<∞.
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1.1.2 Espace de Sobolev

Les espaces de Sobolev sont omniprésents dans l’étude des équations aux dérivées
partielles elliptiques. Il s’avère donc judicieux d’en faire une brève présenta-
tion avant d’aborder ces équations. Nous reprenons dans cette section certains
énoncés de Kavian [8] et de Brezis [6], pour une présentation plus complète des
espaces de Sobolev se référer à [9].
Pour Ω un domaine ouvert de RN , l’espace de Sobolev W 1,p (Ω) est défini par

W 1,p (Ω) =

{
u ∈ Lp (Ω) /

∂u

∂xJ
∈ Lp (Ω) , pour J ∈ {1, ..., N}

}
,

où les dérivées sont au sens des distributions.
W 1,p (Ω) muni de la norme

‖u‖1,p = ‖u‖p +
N∑

J=1

∥∥∥∥
∂u

∂xJ

∥∥∥∥
p

, (1.1)

est un espace de Banach.
L’espace W 1,2 (Ω) est un espace de Hilbert, il est noté H1 (Ω).

W 1,p
0 (Ω) denote la complétion de D (Ω) dans W 1,p (Ω) i.e W 1,p

0 (Ω) = D (Ω)
W 1,p(Ω)

,
pour 1 ≤ p < +∞. Où D (Ω) = C∞0 (Ω) , ensemble des fontions de classe C

∞ a
support compact dans Ω. Comme, l’espace D (Ω) est par définition dense dans
W 1,p
0 (Ω) (pour 1 ≤ p < +∞), le dual de W 1,p

0 (Ω) peut être identifié à un
sous-espace de l’espace des distributions D′ (Ω) par:

W 1,q (Ω) =
(
W 1,p
0 (Ω)

)′
; q conjugué de p.

L’espace W 1,p
0 (Ω) est muni de la norme induite par celle de W 1,p (Ω) .

Lemme 1.1.2 L’espace W 1,p(Ω) est :
1. un espace de Banach pour 1 ≤ p ≤ ∞.
2. il est réflexif pour 1 < p <∞.
3. il est separable pour 1 ≤ p <∞.

Les injections de Sobolev

Les injections de Sobolev sont très utilisées lorsqu’on étudie les équations aux
dérivées partielles. Elles fournissent des inégalités entre les normes des espaces
de Sobolev et les normes des espaces de Lebesgue. Pour l’espace W k,p (Ω), on a
le résultat suivant.

Théorème 1.1 Soit Ω est un ouvert régulier de RN . Soient k ≥ 1 et p ∈
[1,+∞). Alors
a). Si 1

p
− k

N
> 0, on a W k,p (Ω) ↪→ Lq (Ω) avec 1

q
= 1

p
− k

N
;
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b). Si 1
p
− k

N
= 0, on a W k,p (Ω) ↪→ Lq (Ω) pour tout q ∈ [p; +∞[, (mais pas

pour q = +∞);
c). Si 1

p
− k

N
< 0, on a W k,p (Ω) ↪→ L∞ (Ω).

Toutes ces injections sont continues.
Sans hypothèse de régularité sur Ω, les injections sont vraies localement :
W k,p (Ω) ↪→ Lqloc (Ω) elles restent globalement vraies si on remplace W

k,p (Ω)

par W k,p
0 (Ω) . Concernant la compacité des injections précédentes, on a le

théorème suivant.

Théorème 1.2 (Rellich-Kondrachov ([6])):Si Ω un domaine ouvert borné
de classe C1 dans RN , alors
a). Si p < N alors W 1,p (Ω) ↪→↪→ Lq (Ω) pour tout q ∈ [1, p∗[ , où p∗ = N .p

N−p
;

b). Si p > N alors W 1,p (Ω) ↪→↪→ Lq (Ω) pour tout q ∈ [1,+∞[ ;
c). Pour tout q ∈ ]1,+∞[ , W 1,p (Ω) ↪→↪→ C

(
Ω̄
)
.

Remarque 1 a) La condition sur le domaine Ω est nécessaire, si Ω n’est pas
borné alors les injections ne sont pas compactes en général comme le démontre
le contre exemple suivant: Soit φ ∈ C∞0

(
R
N
)
tel que, φ ≥ 0, on pose φn(x) =

φ(x + ne), e = (1, 1, 1, ..., 1), il est facile de voir que φn → 0 p.p. Et ‖φn‖Lq =
‖φ‖Lq > 0.
b) On note α (N, q) > 0, la constante de Sobolev de l’injection compacte de
W 1,p
0 (Ω) 	 Lq (Ω) , avec q ∈ [1, p∗) où p∗ = Np

(N−p)
. Ainsi, pour chaque u ∈

W 1,p
0 , nous avons

‖u‖Lq ≤ α (N, q) ‖u‖ . (1.2)

Inégalitè de Poincaré

L’inégalité de Poincaré est un résultat de la théorie des espaces de Sobolev.
Cette inégalité permet de borner une fonction à partir d’une estimation sur ses
dérivées et de la géométrie du domaine sur lequel elle est considérée.
Soit p, tel que 1 ≤ p < ∞ et Ω un ouvert borné. Alors il existe une con-
stante C, dépendant uniquement de Ω et p, telle que, pour toute fonction u
de l’espace de Sobolev W 1,p

0 (Ω), nous avons

‖u‖p ≤ C ‖∇u‖p . (1.3)

Remarque 1.1.1 L’inégalité de Poincaré permet d’établir l’équivalence sur
W 1,p
0 (Ω) entre la norme 1.1 et celle définie par

‖u‖ =

m∑

k=0

∥∥∇ku
∥∥
p .
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Il est évident que l’ inégalité (1.3) ne peut être généralisée à Wm,p (Ω). Pour
s’en convaincre, il suffit de considérer les fonctions constantes sur Ω borné (ou
de mesure finie).

Remarque 1.1.2 Soit Ω un ouvert de RN borné dans au moins une direction
de l’espace. Alors la semi-norme

|v|H1

0
(Ω) =

(∫

Ω

|∇v (x)|2 dx

) 1

2

est une norme sur H1
0 (Ω) équivalente à la norme usuelle induite par celle de

H1 (Ω).

1.2 Quelques définitions et théorèmes

1.2.1 Fonction Lp-Carathéodory

Définition 1.2.1 Nous rappelons que f : Ω × R → R est une fonction Lp-
Carathéodory si
a). f(x, u) est dans Lp (Ω) pour chaque u ∈ R;
b). f(x, u) est continue presque par tous x ∈ Ω;
c). Pour chaque ρ > 0 il existe une fonction lρ ∈ L

p(Ω) telle que p.p x ∈ Ω.

sup
|u|≤ρ

|f(x, u)| ≤ lρ(x).

1.2.2 Théorème d’Ascoli-Arzela

Définition 1.2.2 Soit (fn)n une suite de fonctions définies sur un intervalle I
à valeurs dans R. On dit que la suite (fn)n est équicontinue ssi :

∀x ∈ I, ∀ε > 0, ∃δ > 0, ∀n ∈ N, ∀y ∈ I, |x− y| < δ ⇒ |fn (x)− fn (y)| < ε.

Autrement dit, toutes les fonctions (fn) sont continues sur I, et elles sont con-
tinues "de la même façon".
La notion d’équicontinuité intervient notamment dans le théorème d’Ascoli-
Arzela:

Théorème 1.3 (Théorème d’Ascoli-Arzela)

Soit (fn) une suite de fonctions définies sur un intervalle fermé borné I, à valeurs
réelles. On suppose que cette suite de fonctions est équicontinue, et qu’il existe
un réel M > 0 tel que |fn(x)| < M pour tout n ∈ N et pour tout x ∈ I. Alors
on peut extraire une sous-suite (fnk) qui converge uniformément sur I vers une
fonction continue f .
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Théorème 1.4 Soit (fn)n une suite de L
pet f ∈ Lp, tels que

‖fn − f‖Lp → 0 lorsque u→∞.

Alors il existe une sous suite extraite (fnk)k∈N telle que
a). fnk (x)→ f (x) p.p sur Ω;
b). |fnk (x)| ≤ h (x) pour tout k et p.p sur Ω avec h ∈ L

p (Ω).

1.2.3 Convergence forte et Convergence faible

Soient X un espace de Banach muni de la norme ‖.‖ et (un)n une suite dans
X.

Définition 1.2.1 On dit que la suite (un)n converge fortement vers u dans X
si ‖un − u‖E → 0 lorsque n→∞.

Définition 1.2.3 (un)n est dite convergente faiblement vers u si 〈un, v〉 →
〈u, v〉 ∀v ∈ X ′ dual de X et elle est notée par un ⇀ u.

Définition 1.2.4 On dit que C ⊂ X est faiblement fermé si pour toute suite
(un) ⊂ C telle que: un ⇀ u alors u ∈ C.

Théorème 1.5 Un convexe C de X est faiblement fermé si et seulement si il
est fortement fermé.

Dans le cas particulier de X = W 1,p
T , nous avons le résultat suivant

Proposition 1.2.1 Si une suite (uk)k converge faiblement vers u dans W
1,p
T ,

alors (uk)k converge uniformement vers u sur [0, T ] . Et il existe C > 0 telle
que pour u ∈ W 1,p

T ,

‖u‖∞ ≤ C ‖u‖W 1,p

T
(Ω) où ‖u‖∞ = max |u (t)|

t∈[0,T ]

.

Théorème 1.6 (Eberlein—Šmulian)Un espace de Banach X est réflexif si
et seulement si de toute suite bornée (xn) de X, on peut extraire une sous suite
qui converge faiblement dans X.
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1.3 Approche variationnelle

Dans cette thèse, nous nous sommes basées sur une approche variationnelle
pour étudier la solvabilité de problèmes de Dirichlet associés à des EDP ellip-
tiques. Considérons le problème suivant :

{
−∆u = f dans Ω
u = 0 sur ∂Ω

, (1.4)

où ∆ est un opérateur uniformément elliptique, Ω est un domaine régulier
dans RN avec N ≥ 1. Les solutions de (1.4) sont cherchées comme points cri-
tiques de fonctionnelles réelles définies sur un espace de Banach X.
Dans le cas où f est minorée ou majorée, il est raisonnable d’essayer de mon-
trer que le minimum ou le maximum est atteint. Pour plus de détails, nous
référons le lecteur à [8] et [10].

1.3.1 Approche variationnelle

Le principe de l’approche variationnelle pour la résolution des équations aux
dérivées partielles est de remplacer l’équation par une formulation équivalente,
dite variationnelle, obtenue en intégrant l’équation multipliée par une fonction
quelconque, dite test.

Formules de Green

Dans toute cette sous-section est un ouvert de l’espace RN (borné ou non),
dont le bord (ou la frontière) est noté ∂Ω . Nous supposons aussi que est un
ouvert régulier de classe C1.

Théorème 1.3.1 (Green) Soit Ω un ouvert régulier de classe C1. Soit W une
fonction de C1(Ω) à support borné dans le fermé Ω. Alors elle vérifie la for-
mule de Green ∫

Ω

∂W

∂xi
(x) dx =

∫

∂Ω

W (x) ηi (x) ds, (1.5)

où ηi est la i-ème composante de la normale extérieure unité de Ω.

Corollaire 1.3.1 (Formule d’intégration par parties) Soit un ouvert
régulier de classe C1. Soit u et v deux fonctions de C1(Ω) à support borné dans
le fermé Ω. Alors elles vérifient la formule d’intégration par parties

∫

Ω

u (x)
∂v

∂xi
(x) dx = −

∫

Ω

v (x)
∂u

∂xi
(x) dx+

∫

∂Ω

u (x) v (x) ηi (x) ds (1.6)
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Preuve: Il suffit de prendre w = uv dans le Théorème (1.3.1) .

Corollaire 1.3.2 Soit un ouvert régulier de classe C1. Soit u une fonction de
C2
(
Ω
)
et v une fonction de C1

(
Ω
)
, toutes deux à support borné dans le fermé

.Alors elles vérifient la formule d’intégration par parties.
∫

Ω

∆u (x) v (x) dx = −

∫

Ω

∇u (x) v (x) dx+

∫

∂Ω

∂u

∂η
(x) v (x) ds, (1.7)

où ∂u
∂η
= ∇u · η.

Preuve: On applique le Corollaire (1.3.1)à v et ∂u
∂xi

et on somme en i.

Formulation variationnelle

Le résultat principal de cette sous-section est la proposition suivante.

Proposition 1.3.1 Soit u une fonction de C2
(
Ω
)
. Soit X l’espace défini par

X =
{
φ ∈ C1

(
Ω
)
tel que φ = 0 sur ∂Ω.

}

Alors u est une solution du problème aux limites (1.4) si et seulement si u ap-
partient à X et vérifie l’égalité

∫

Ω

∇u (x) v (x) dx =

∫

Ω

f (x) v (x) dx pour toute fonction v ∈ X. (1.8)

L’égalité (1.8) est appelée la formulation variationnelle du problème aux limites
(1.4).

Preuve: Si u est solution du problème aux limites (1.4), on multiplie l’équation
par v ∈ X et on utilise la formule d’intégration par parties du Corollaire
(1.3.2)

∫

Ω

∆u (x) v (x) dx = −

∫

Ω

∇u (x) v (x) dx+

∫

∂Ω

∂u

∂η
(x) v (x) ds,

Or v = 0 sur ∂Ω puisque v ∈ X, donc
∫

Ω

∇u (x) v (x) dx =

∫

Ω

f (x) v (x) dx

qui n’est rien d’autre que la formule (1.8). Réciproquement, si u ∈ X vérifie
(1.8), en utilisant “à l’envers” la formule d’intégration par parties précédente
on obtient

∫

Ω

(∆u (x) + f (x)) v (x) dx = 0 pour toute fonction v ∈ X.

12



Comme (∆u + f ) est une fonction continue, grâce au Lemme 1.2.9 on con-
clut que −∆u(x) = f(x) pour tout x ∈ Ω . Par ailleurs, comme u ∈ X, on
retrouve la condition aux limites u = 0 sur ∂Ω, c’est-à-dire que u est solution
du problème aux limites (1.4).

Lemme 1.3.1 Soit Ω un ouvert de RN . Soit g(x) une fonction continue dans
Ω. Si pour toute fonction φ de C∞(Ω) à support compact dans Ω, on a

∫

Ω

g(x)φ(x)dx = 0,

alors la fonction g est nulle dans Ω.

Preuve: Supposons qu’il existe un point x0 ∈ Ω tel que g(x0) 6= 0. Sans
perte de généralité, on peut supposer que g(x0) > 0 (sinon on prend −g). Par
continuité, il existe un petit voisinage ouvert ω ⊂ Ω de x0 tel que g(x) > 0 pour
tout x ∈ ω. Soit alors une fonction test positive, non nulle, φ à support inclus
dans ω. On a ∫

Ω

g(x)φ(x)dx =

∫

ω

g(x)φ(x)dx = 0,

qui est une contradiction avec l’hypothèse sur g. Donc g(x) = 0 pour tout x ∈
Ω .

Corollaire 1.3.3 Soit f ∈ L2(Ω). Si pour toute fonction φ de C∞c (Ω) on a
∫

Ω

f (x)φ(x)dx = 0,

alors f (x) = 0 presque partout dans Ω.

Remarque 1.3.1 En notation compacte on peut réécrire la formulation vari-
ationnelle (1.8) sous la forme : trouver u ∈ X tel que

a(u, v) = L(v) pour toute fonction v ∈ X,

avec

a(u, v) =

∫

Ω

∇u(x)· ∇v(x)dx

et

L (v) =

∫

Ω

f (x)v(x)dx,

où a(·,·)est une forme bilinéaire sur X et L(·) est une forme linéaire sur X.
C’est sous cette forme abstraite que nous résoudrons (avec quelques hypothèses)
la formulation variationnelle dans la prochaine section.
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Théorie de Lax-Milgram

Cadre abstrait Nous décrivons une théorie abstraite pour obtenir l’existence
et l’unicité de la solution d’une formulation variationnelle dans un espace de
Hilbert réel V . Nous considérons une formulation variationnelle du type

trouver u ∈ V tel que a(u, v) = L(v) pour toute fonction v ∈ V. (1.9)

Les hypothèses sur a et L sont

1. L(·) est une forme linéaire continue sur V , c’est-à-dire que v → L(v) est
linéaire deV dans R et il existe C > 0 tel que

|L(v)| ≤ C ‖v‖ pour tout v ∈ V.

2. a(·,·) est une forme bilinéaire sur V , c’est-à-dire que w → a(w, v) est une
forme linéaire de V dans R pour tout v ∈ V , et v → a(w, v) est une
forme linéaire de V dans R pour tout w ∈ V .

3. a(·,·) est continue, c’est-à-dire qu’il existe M > 0 tel que

|a(w, v)| ≤M ‖w‖ ‖v‖ pour tout w, v ∈ V (1.10)

4. a(·,·) est coercive (ou elliptique), c’est-à-dire qu’il existe ν > 0 tel que

a(v, v) ≥ ν ‖v‖2 pour tout v ∈ V. (1.11)

Comme nous le verrons au cours de cette sous-section, toutes les hypothèses
ci-dessus sont nécessaires pour pouvoir résoudre (1.9). En particulier, la coer-
civité de a(·,·) est essentielle.

Théorème 1.3.1 Soit V un espace de Hilbert réel, L(·) une forme linéaire
continue sur V , a(·,·)une forme bilinéaire continue coercive sur V. Alors la for-
mulation variationnelle (1.9) admet une unique solution. De plus cette solution
dépend continûment de la forme linéaire L.

Preuve: Pour tout w ∈ V , l’application v → a(w, v) et une forme linéaire
continue sur V : par conséquent, le théorème de représentation de Riesz en-
traîne qu’il existe un élément de V , noté A(w), tel que

a(w, v) = 〈A(w), v〉 , pour tout v ∈ V.

Par ailleurs, la bilinéarité de a(w, v) implique évidemment la linéarité de l’application
w → A(w). De plus, en prenant v = A(w), la continuité (1.10) de a(w, v) mon-
tre que

‖A(w)‖ = a(w,A(w)) ≤M ‖w‖ ‖A(w)‖
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c’est-à-dire que ‖A(w)‖ ≤ M ‖w‖ et donc w → A(w) est continue. Une autre
application du Théorème de représentation de Riesz implique qu’il existe un
élément de V , noté f , tel que ‖f‖V = ‖L‖V ′ et

L(v) = 〈f, v〉 pour tout v ∈ V.

Finalement, le problème variationnel (1.9) est équivalent à :

trouver u ∈ V tel que A(u) = f. (1.12)

Pour démontrer le théorème il nous faut donc montrer que l’opérateur A est
bijectif de V dans V (ce qui implique l’existence et l’unicité de u) et que son
inverse est continu (ce qui prouve la dépendance continue de u par rapport à
L).
La coercivité (1.11) de a(w, v) montre que

ν ‖w‖2 ≤ a(w,w) = 〈A(w), w〉 ≤ ‖A(w)‖ ‖w‖ ,

ce qui donne
ν ‖w‖ ≤ ‖A(w)‖ pour tout w ∈ V (1.13)

c’est-à-dire que A est injectif. Pour montrer que A est surjectif, c’est-à-dire
que Im(A) = V (ce qui n’est pas évident si V est de dimension infinie), il suffit
de montrer que Im(A) est fermé dans V et que Im(A)⊥ = {0}. En effet, dans
ce cas on voit que V = {0}⊥ = (Im(A)⊥)⊥ = Im(A) = Im(A), ce qui prouve
bien que A est surjectif. Soit A(wn) une suite dans Im(A) qui converge vers b
dans V . En vertu de (1.13) on a

ν ‖wn − wp‖ ≤ ‖A(wn)− A(wp)‖

qui tend vers zéro quand n et p tendent vers l’infini. Donc wn est une suite
de Cauchy dans l’espace de Hilbert V , c’est-à-dire qu’elle converge vers une
limite w ∈ V . Alors, par continuité de A on en déduit que A(wn) converge vers
A(w) = b, c’est-à-dire que b ∈ Im(A) et Im(A) est donc fermé. D’autre part,
soit v ∈ Im(A)⊥ ; la coercivité (1.11) de a(w, v) implique que

ν ‖v‖2 ≤ a(v, v) = 〈A(v), v〉 = 0,

c’est-à-dire que v = 0 et Im(A)⊥ = {0}, ce qui prouve que A est bijectif.
Soit A−1 son inverse : l’inégalité (1.13) avec w = A−1(v) prouve que A−1 est
continu, donc la solution u dépend continûment de f .
Une formulation variationnelle possède souvent une interprétation physique,
en particulier si la forme bilinéaire est symétrique. En effet dans ce cas, la so-
lution de la formulation variationnelle (1.9) réalise le minimum d’une énergie
(très naturelle en physique ou en mécanique).
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Points critiques

Au problème (1.4) on associé une fonctionnelle dite fonctionnelle d’énergie,
définie par J : X → R,

J (u) =

∫

Ω

1

2
|∇u|2 dx−

∫

Ω

F (x, u) dx,

où F (x, u) =

u∫

0

f (x, s) ds.

Définition 1.3.1 Soit J une fonctionnelle de classe C1 définie sur X à valeurs
dans R. On dit que u ∈ X est un point critique de J si J ′ (u) = 0.
La valeur c est dite valeur critique de J s’il existe un point critique u ∈ X tel
que : J(u) = c.

Solution faible

Définition 1.3.1 u est dite solution faible du problème (1.4) si

∫

Ω

Lu.ϕ (x) dx =

∫

Ω

f (x) .ϕ (x) dx ∀ϕ ∈ C∞0 (Ω) .

Définition 1.3.2 Une fonction J : X → R, est dite semi-continue inférieure-
ment et on la note (s.c.i), en x ∈ X si, pour toute suite {xk} ∈ X convergente
vers x,

lim inf
xk→x

J (xk) ≥ J (x) .

Définition 1.3.3 Une fonctionnelle J est dite coercive si: lim
‖u‖→+∞

u∈E

J (u) =

+∞.

Théorème 1.7 (minimisation directe [11]) Si X est réflexif, M ⊂ X un
sous ensemble faiblement fermé de X. et J : X → R ∪ {+∞}, coercive et
faiblement semi continue inférieurement sur M , alors J est borné inférieure-
ment dans M et atteint son minimum dans M .

Définition 1.3.4 (Suite minimisante) Une suite minimisante pour une
fonctionnelle J : X → R est une suite (wk)k telle que J (wk) → inf J quand
k →∞.
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Remarque 2 L’existence d’une suite minimisante est assurée en particulier
quand J est coercive. Un outil essentiel dans le calcul de la variation est la
compacité des suites minimisantes. La condition de Palais-Smale joue un rôle
assez semblable pour des suites sur lesquelles la fonctionnelle prend des valeurs
tendant vers une valeur critique potentielle, et pas seulement vers la borne in-
férieure. C’est une condition a priori, à vérifier pour chaque fonctionnelle, in-
dépendamment de l’existence ou non des valeurs critiques. Elle sera par contre
un outil essentiel pour montrer cette existence dans plusieurs cas.

Conditions de Palais-Smale

Définition 1.3.5 Soit J : X → R de classe C1. On dit que J vérifie la con-
dition de Palais-Smale au niveau c ∈ R et le note (PS)c, si de toute suite (un)
de X telle que

J (un)→ c dans R et J ′ (un)→ 0 dans X ′,

on peut extraire une sous-suite convergente.

Théorème 1.8 Soit J : X → R une fonctionnelle de classe C1 bornée in-
férieurement et c = inf J. Si J satisfait la condition (PS)c, alors c est atteint
en un point x0 ∈ X telle que J ′(x0) = 0.

Théorème 1.3.2 Soit J : X → R une fonctionnelle de classe C1 bornée
inferieurement et c = inf J . Si la condition (PS)c est satisfaite, alors c est
minimum de J.

La preuve est basée sur le principe Ekeland appliqué à l’espace X équipé de
distance géodésique.

Le théorème du Col (Mountain Pass Theorem)

Le premier exemple de construction de valeur critique par le procédé de min-
max est le théorème du Col de la montagne ( en anglais Mountain Pass The-
orem) qui exprime très bien le contenu du résultat et sa démonstration: si
on se trouve en un point A dans une cuvette à une altitude h0, entourée de
montagnes d’une altitude supérieure ou égale à h > h0; si on veut aller à un
point B située en dehors de la cuvette au delà des montagnes, et à une alti-
tude h1 < h, il existe un chemin passant par un col et conduisant de A à B.
Pour le trouver il suffit de prendre parmis tous les chemins allant de A à B,
celui qui monte le moins haut.

Théorème 1.9 [2] Soit J ∈ C 1(X,R) supposons que J satisfait la condition
(PSC), et
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(i) J(0) = 0 ,
(ii) il existe des constantes ρ > 0 et α > 0 telles que J(x) > α si ‖x‖ = ρ,
(iii) il existe e ∈ X, ‖e‖ > ρ, tel que J(e) < 0.
Alors J admet une valeur critique c > α qui peut être caractérisée comme suit

c := inf
γ∈Γ

max
t∈[01]

J (γ (t)) ,

où,
Γ = {γ ∈ C([01], X) : γ(0) = 0, γ(1) = e} .

Remarque 3 a) Nous comprenons mieux pourquoi ce théorème s’appelle théorème
du Col, quand nous interprètons géométriquement ou plutôt géographiquement
les conditions (i) à (iii) dans le cas où X = R

2 et J(u) représente l’altitude
d’un point u (dans R3) . Les conditions (i) et (ii) signifient que l’origine est
placée dans une cuvette entourée de montagnes d’altitude au moins α. La con-
dition iii) signifie qu’au delà de ces montagnes existe un point e situé moins
haut que les dites montagnes, disons dans une vallée. Par conséquent, il est
intuitivement clair que l’on peut joindre continûment 0 à e en passant par un
col de montagne et la construction du min-max nous dit comment faire : il suf-
fit de regarder l’altitude maximale atteinte sur chaque chemin et de choisir un
chemin qui minimise cette altitude maximale.
b) Il faut toute fois faire attention à l’intuition montagnarde. Ainsi, le théorème
du Col est vrai même si J ne satisfait pas la condition de Palais-Smale quand
X = R, par contre il est faux quand X = R2, c’est-à-dire qu’il peut ne pas ex-
ister de col car la borne inférieure de l’altitude maximale sur les chemins n’est
pas atteinte. Ainsi, par exemple, la fonction

J(x1, x2) = x
2
1(1 + x2)

3 + x42,

n’a clairement qu’un seul point critique sur R2, à savoir l’origine où J = 0.
Ce point critique est un minimum local, donc une cuvette entourée de mon-
tagnes, et l’on peut descendre encore plus bas à l’extérieur de la cuvette car
infR2 J = −∞. C’est donc un exemple de fonction présentant un seul point
critique, qui est un minimum local mais pas global. Comme il n’y a pas d’autre
point critique que le minimum local, c’est donc qu’il n’existe pas de col pour
sortir de la cuvette. Cela ne peut se produire que si les chemins minimisants
partent vers l’infini. Cette perte de compacité est évidemment liée au fait que
J ne satisfait pas la condition de Palais-Smale au niveau de l’inf-max.

Théorème 1.10 (de trace)
Soit Ω un ouvert borné régulier de classe C1, ou bien Ω = R

N
+ . On définit

l’application trace γ0

H1(Ω) ∩ C (Ω) → L2(∂Ω) ∩ C (∂Ω)
v → γ0(v) = v p∂Ω

(1.14)
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Cette application γ0 se prolonge par continuité en une application linéaire con-
tinue de H1(Ω) dans L2(∂Ω), notée encore γ0. En particulier, il existe une
constante C ≥ 0 tell que, pour toute fonction v ∈ H1(Ω)

‖v‖L2(∂Ω) ≤ C ‖v‖H1(Ω) (1.15)

Théorème 1.11 (Formule de Green) Soit Ω un ouvert borné régulier de classe
C1. Si u et v sont des fonctions de H1(Ω),elles vérifient

∫

Ω

u(x)
∂v

∂xi
(x) dx = −

∫

Ω

v(x)
∂u

∂xi
(x) dx+

∫

∂Ω

u(x)v(x)ηi(x) ds, (1.16)

où η = (ηi)1≤i≤N est la normale unité extérieure à ∂Ω.

Preuve: Rappelons que la formule (1.16) a été établie pour des fonctions
de classe C1. On utilise à nouveau un argument de densité. Par densité de
C∞c (Ω) dans H

1(Ω), il existe des suites (un)n≥1 et (vn)n≥1 dans C∞c (Ω) qui
convergent dans H1(Ω) vers u et v, on a

∫

Ω

un
∂vn
∂xi

dx = −

∫

Ω

vn
∂un
∂xi

dx+

∫

∂Ω

unvnηi ds. (1.17)

On peut passer à la limite n → +∞ dans les deux premiers termes de (1.17)
car un et ∂un∂xi

( respectivement, vn et ∂vn∂xi ) convergent vers u et
∂u
∂xi

( respec-
tivement, v et ∂v

∂xi
) dans L2(Ω). Pour passer à la limite dans la dernière inté-

grale de (1.17), on utilise la continuité de l’application trace γ0, c’est-à-dire
l’inégalité (1.15), qui permet d’affirmer que γ0(un) (respectivement, γ0(vn))
converge vers γ0(u) (respectivement, γ0(v)) dans L

2(∂Ω). On obtient ainsi la
formule (1.16) pour des fonctions u et v de H1(Ω).
Comme conséquence du Théorème de trace (1.10) on obtient une caractérisa-
tion très simple de l’espace H1

0 (Ω).

Théorème 1.3.2 Soit Ω un ouvert borné régulier de classe C2. Si u ∈ H2(Ω)
et ,v ∈ H1(Ω) on a

∫

Ω

∆u(x)v(x) dx = −

∫

Ω

∇u(x) · ∇v(x) dx+

∫

∂Ω

∂u

∂η
(x)v(x)ds. (1.18)

Comme (1.18) est vraie pour des fonctions de classe C2 et queles fonctions
régulières sont denses dans H1(Ω) et H2(Ω), on utilise un argument de densité.
Nous renvoyons à la démonstration du Théorème (1.11) pour plus de détails.
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Chapitre 2

Etude mathématique des prob-
lèmes elliptiques
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2.1 Application du Théorème de Lax-Milgram

2.1.1 Conditions aux limites de Dirichlet

Ce chapitre est consacré à l’étude de la solvabilité le problème aux limites
suivant

{
−∆u = f x ∈ Ω
u = 0 x ∈ ∂Ω

, (2.1)

où Ω est un domaine borné dans RN , et f est un second membre qui appar-
tient à l’espace L2(Ω).
Dans cette étude, notre objectif principal inspiré par [7], est de montrer l’existence
d’au moins une solution en utilisant le Théorème du Lax-Milgrame (1.3.1).
L’approche variationnelle pour étudier (2.1) est constituée de trois étapes que
nous détaillons.
Etape 1 : établissement d’une formulation variationnelle.
Dans une première étape il faut proposer une formulation variationnelle du
problème aux limites (2.1), c’est-à-dire qu’il faut trouver une forme bilinéaire
a(·,·), une forme linéaire L(·), et un espace de Hilbert V tels que (2.1) soit
équivalent à :
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Trouver

u ∈ V tel que a(u, v) = L(v) pour toutv ∈ V. (2.2)

Le but de cette première étape est seulement de trouver la formulation varia-
tionnelle
(2.2); on vérifiera l’équivalence précise avec (2.1) plus tard au cours de la troisième
étape.
Pour trouver la formulation variationnelle on multiplie l’équation (2.1) par une
fonction test régulière v et on intègre par parties. Ce calcul est principalement
formel au sens où l’on suppose l’existence et la régularité de la solution u afin
que tous les calculs effectués soient licites. A l’aide de la formule de Green
(1.7) (voir aussi (1.7)) on trouve

∫

Ω

fv dx = −

∫

Ω

∆uv dx =

∫

Ω

∇u · ∇v dx−

∫

∂Ω

∂u

∂η
v ds. (2.3)

Comme u doit satisfaire une condition aux limites de Dirichlet, u = 0 sur ∂Ω
, on choisit un espace de Hilbert V tel que toute fonction v ∈ V vérifie aussi
v = 0 sur ∂Ω. Dans ce cas, l’égalité (2.3) devient

∫

Ω

∇u(x) · ∇v(x) dx =

∫

Ω

f(x)v(x) dx (2.4)

Pour que le terme de gauche de (2.4) ait un sens il suffit que ∇u et ∇v appar-
tiennent à L2(Ω) (composante par composante), et pour que le terme de droite
de (2.4) ait aussi un sens il suffit que v appartienne à L2(Ω) (on a supposé que
f ∈ L2(Ω)).
Par conséquent, un choix raisonnable pour l’espace de Hilbert est V = H1

0 (Ω),
le sous-espace de H1(Ω) dont les éléments s’annulent sur le bord ∂Ω.
En conclusion, la formulation variationnelle proposée pour (2.1) est trouver

u ∈ H1
0 (Ω) tel que

∫

Ω

∇u · ∇vdx =

∫

Ω

fvdx ∀v ∈ H1
0 (Ω). (2.5)

Évidemment, nous avons fait un certain nombre de choix pour arriver à (2.5)
; d’autres choix nous auraient conduit à d’autres formulations variationnelles
possibles. La justification de (2.5) s’effectuera donc a posteriori : tout d’abord,
la deuxième étape consiste à vérifier que (2.5) admet bien une unique solution,
puis la troisième étape que la solution de (2.5) est aussi une solution du prob-
lème aux limites (2.1) (dans un sens à préciser).
Etape 2 : Résolution de la formulation variationnelle.
Dans cette deuxième étape nous vérifions que la formulation variationnelle
(2.5) admet une solution unique. Pour cela nous utilisons le Théorème de Lax-
Milgram (1.3.1) dont nous vérifions les hypothèses avec les notations
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a(u, v) =

∫

Ω

∇u(x) · ∇v(x) dx et L(v) =
∫

Ω

f(x)v(x) dx.

On voit facilement en utilisant l’inégalité de Cauchy-Schwarz que a est une
forme bilinéaire continue sur H1

0 (Ω) et que L est une forme linéaire continue
sur H1

0 (Ω).
De plus, en vertu de l’inégalité de Poincaré (voir le Corollaire (1.1.2)); on utilise
ici le caractère borné de l’ouvert Ω), la forme bilinéaire a est coercive, c’est-à-
dire qu’il existe ν > 0 tel que

a(u, v) =

∫

Ω

|∇v(x)|2 dx ≥ ν ‖v‖2H1

0
(Ω) ∀v ∈ H1

0 (Ω).

Comme H1
0 (Ω) est un espace de Hilbert, toutes les hypothèses du Théorème de

Lax-Milgram (1.3.1) sont satisfaites et on peut donc conclure qu’il existe une
unique solution u ∈ H1

0 (Ω) de la formulation variationnelle (2.5).
Etape 3: Équivalence avec l’équation.
La troisième étape (la dernière et la plus délicate) consiste à vérifier qu’en ré-
solvant la formulation variationnelle (2.5) on a bien résolu le problème aux
limites (2.1), et à préciser dans quel sens la solution de (2.5) est aussi une so-
lution de (2.1). En d’autres termes, il s’agit d’interpréter la formulation vari-
ationnelle et de retourner à l’équation. Pour cela on procède aux mêmes in-
tégrations par parties qui ont conduit à la formulation variationnelle, mais en
sens inverse, et en les justifiant soigneusement.
Cette justification est très facile si l’on suppose que la solution u de la for-
mulation variationnelle (2.5) est régulière (précisément si u ∈ H2(Ω)) et que
l’ouvert Ω est aussi régulier, ce que nous faisons dans un premier temps. En
effet, il suffit d’invoquer la formule de Green (1.18) qui nous donne, pour v ∈
H1
0 (Ω),

∫

Ω

∇u · ∇v dx = −

∫

Ω

v ∆u dx,

puisque v = 0 sur le bord ∂Ω. On en déduit alors
∫

Ω

(∆u+ f )v dx = 0 ∀v ∈ C∞c (Ω),

ce qui implique, en vertu du Corollaire (1.3.3), que −∆u = f dans L2(Ω) et
on a l’égalité

−∆u = f presque partout dans Ω (2.6)

De plus, si est un ouvert borné régulier de classe C1, alors le Théorème de
trace (1.10) affirme que toute fonction de H1

0 (Ω) a une trace sur ∂Ω nulle dans
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L2(Ω). On en déduit, en particulier, que

u = 0 presque partout sur ∂Ω. (2.7)

On a donc bien retrouvé l’équation et la condition aux limites de (2.1).
Si l’on ne suppose plus que la solution u de (2.5) et l’ouvert Ω sont réguliers,

il faut travailler davantage (on ne peut plus utiliser la formule de Green (1.18)
qui nécessite que u ∈ H2(Ω)). On note σ = ∇u qui est une fonction à valeurs
vectorielles dans L2(Ω)N . Par l’inégalité de Cauchy-Schwarz, on déduit de la
formulation variationnelle (2.5) que, pour tout v ∈ H1

0 (Ω)

∣∣∣∣

∫

Ω

σ · ∇v dx

∣∣∣∣ =
∣∣∣∣

∫

Ω

fv dx

∣∣∣∣ ≤ C ‖v‖L2(Ω) . (2.8)

Comme C∞c (Ω) ⊂ H
1
0 (Ω), (2.8) n’est rien d’autre que le critère d’existence

d’une divergence faible de σ dans L2(Ω) qui vérifie, pour tout v ∈ H1
0 (Ω),

∫

Ω

σ · ∇v dx = −

∫

Ω

div σv dx.

On en déduit donc que
∫

Ω

(div σ + f) v dx = 0 ∀v ∈ C∞c (Ω)

ce qui implique, en vertu du Corollaire (1.3.3), que − div σ = f dans. Par
conséquent div σ = ∆u appartient à L2(Ω) (rappelons que div∇ = ∆ ), et
on retrouve l’équation (2.6). On retrouve la condition aux limites (2.7) comme
précédemment si l’ouvert Ω est régulier de classe C1. Si Ω n’est pas régulier,
alors on ne peut pas invoquer le Théorème de trace (1.10) pour obtenir (2.7).
Néanmoins, le simple fait d’appartenir à H1

0 (Ω) est une généralisation de la
condition aux limites de Dirichlet pour un ouvert non régulier, et on contin-
uera à écrire formellement que u = 0 sur ∂Ω.
En conclusion nous avons démontré le résultat suivant.

Théorème 2.1 Soit Ω un ouvert borné de RN . Soit f ∈ L2(Ω). Il existe une
unique solution u ∈ H1

0 (Ω) dela formulation variationnelle (2.5). De plus, u
vérifie

−∆u = f presque partout dans Ω,

u = 0 presque partout sur ∂Ω.

On appelle la solution u ∈ H1
0 (Ω) de la formulation variationnelle (2.5)

solution variationnelle du problème aux limites (2.1). Par un raccourci de lan-
gage bien commode, on dira que l’unique solution u ∈ H1

0 (Ω) de la formulation
variationnelle (2.5) est l’unique solution du problème aux limites (2.1).
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Cette appellation est bien sûr justifiée par le Théorème(2.1). La solution de
(2.1), que nous venons d’obtenir, ne vérifie a priori l’équation et la condition
aux limites que dans un sens “faible”, c’est-à-dire presque partout (ou même
pire pour la condition aux limites si l’ouvert n’est pas régulier). On parle alors
de solution faible par opposition aux solutions fortes qu’on aurait pu espérer
obtenir dans une formulation classique de (2.1). De même, on appelle parfois
la formulation variationnelle formulation faible de l’équation.

Remarque 4 En fait, la solution faible peut être une solution forte si le sec-
ond membre f est plus régulier. Autrement dit, l’équation et la condition aux
limitesde (2.1) peuvent être vérifiées en un sens classique, c’est-à-dire pour tout
x ∈ Ω, et tout x ∈ ∂Ω, respectivement. C’est ce qu’on appelle un résultat de
régularité pour la solution.

Pour que le problème aux limites (2.1) soit bien posé (au sens de Hadamard,
il faut en plus de l’existence et de l’unicité de sa solution, montrer que la so-
lution dépend continûment des données. C’est une conséquence immédiate du
Théorème de Lax-Milgram (1.3.1) mais nous en donnons un nouvel énoncé et
une nouvelle démonstration.

Proposition 2.1.1 Soit Ω un ouvert borné de RN , et soit f ∈ L2(Ω) L’application
qui à f ∈ L2(Ω) fait correspondre la solution unique u ∈ H1

0 (Ω) de la formula-
tion variationnelle de (2.1) est linéaire et continue de L2(Ω) dans H1(Ω) . En
particulier,il existe une constante C ≥ 0 telle que, pour tout f ∈ L2(Ω), on a

‖u‖H1(Ω) ≤ C ‖f ‖L2(Ω). (2.9)

Remarque 5 L’inégalité (2.9) est ce qu’on appelle une estimation d’énergie.
Elle garantit que l’énergie de la solution est contrôlée par celle de la donnée.
Les estimations d’énergie sont très naturelles d’un point de vue physique et très
utiles d’un point de vue mathématique.

Preuve: La linéarité de f → u est évidente. Pour obtenir la continuité on
prend v = u dans la formulation variationnelle (2.5)

∫

Ω

|∇u|2 dx =

∫

Ω

fu dx

On majore le terme de droite à l’aide de l’inégalité de Cauchy-Schwarz, et on
minore celui de gauche par la coercivité de la forme bilinéaire

v ‖u‖2H1(Ω) ≤ ‖f ‖L2(Ω) ‖u‖L2(Ω) ≤ ‖f ‖L2(Ω) ‖u‖H1(Ω)

d’où l’on déduit le résultat.
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Nous avons déjà dit que la formulation variationnelle possède souvent une in-
terprétation physique (c’est, par exemple, le principe des travaux virtuels en
mécanique). En fait, la solution de la formulation variationnelle(2.5) réalise le
minimum d’une énergie (très naturelle en physique ou en mécanique).

Proposition 2.1.2 Soit J(v) l’énergie définie pour H1
0 (Ω) par

J(v) =
1

2

∫

Ω

|∇v|2 dx −

∫

Ω

fv dx.

Soit u ∈ H1
0 (Ω) la solution unique de la formulation variationnelle (2.5).

Alors u est aussi l’unique point de minimum de l’énergie, c’est-à-dire que

J(u) = min
v∈H1

0

J(v)

Réciproquement, si u ∈ H1
0 (Ω) est un point de minimum de l’énergie J(v),

alors u est la solution unique de la formulation variationnelle (2.5)

Exemple 2.1.1 A l’aide de l’approche variationnelle démontrer l’existence et
l’unicité de la solution de

{
−∆u+ u = f x ∈ Ω
u = 0 x ∈ ∂Ω

(2.10)

où Ω est un ouvert quelconque de l’espace RN , et f ∈ L2(Ω). Montrer en parti-
culier que l’ajout d’un terme d’ordre zéro au Laplacien permet de ne pas avoir
besoin de l’hypothèst que Ω est borné.
1èr étape. Recherche de la formulation variationnelle.
On multiplie l’équation vérifiée par u par une fonction test v nulle sur ∂Ω. Par
intégration par partie, on obtient que

∫

Ω

(∇u · ∇v + uv) dx =

∫

Ω

fv dx.

Afin que cette expression ait un sens, il sufit de choisir u et v dans H1
0 (Ω). Le

problème variationnel associée à l’équation (2.5) consiste donc a déterminer
u ∈ H1

0 (Ω) tel que

a(u, v) = L (v) pour tout v ∈ H1
0 (Ω),

2ème étape. Résolution du problème variationnel.
La continuit e de a(., .) et L(, )est evidente de mme que la coercivité de la forme
bilinéaire a(, ). En effet,

a (u, u) = ‖u‖2H1(R2) .
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Les hypothèses du Théorème de Lax-Milgram sont réunies. Il existe donc une
solution unique au problème variationnel. On vérifie enfin en effectuant les

m
ˆ
eme integrations par partie que lors de la première étape que ∇u est un élé-

ment de H(div) et que −∆u + u = f en tant qu’ éléments de L2(Ω) et donc
presque partout dans Ω. Enfin, comme u ∈ H1

0 (Ω), et que Ω est un ouvert
régulier, la trace de u est bien définie et u = 0 presque partout sur ∂Ω.

Exemple 2.1.2 Soit Ω un ouvert borné de RN . A l’aide de l’approche varia-
tionnelle démontrer l’existence et l’unicité de la solution du problème suivant
de convection diffusion

{
V · ∇u−∆u = f x ∈ Ω
u = 0 x ∈ ∂Ω

(2.11)

où f ∈ L2(Ω) et V est une fonction régulière à valeurs vectorielles telle que
divV = 0 dans Ω.
1èr étape. Recherche de la formulation variationnelle.
On multiplie l’équation vérifiée par u par une fonction test v nulle sur ∂Ω. Par
intégration par partie, on obtient la formulation variationnelle suivante :
Trouver u ∈ H1

0 (Ω) tel que

a(u, v) = L (v) pour tout v ∈ H1
0 (Ω),

où

a(u, v) =

∫

Ω

∇u(x) · ∇v(x) + (V (x) · ∇u(x)) v (x) dx

L(v) =

∫

Ω

f(x)v(x) dx

2 ème étape. Résolution du problème variationnel.
Affin d’appliquer le Théorème de Lax-Milgram, la seule hypothèse non triviale
à
vérifier est la coercivité de la forme bilinéaire a(, ).

a(u, u) =

∫

Ω

∇u(x) · ∇u(x) + (V (x) · ∇u(x)) u (x) dx .

La diveregnce de V étant nulle, on a
∫

Ω

(V (x) · ∇u(x)) u (x) dx =

∫

Ω

(
div (uV)u− div (V ) |u|2

)
dx

=

∫

Ω

div (uV)udx.

Par intégration par partie et comme u = 0, il vient
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∫

Ω

(V (x) · ∇u(x)) u (x) dx = −

∫

Ω

(V (x) · ∇u(x)) u (x) dx.

Ainsi, ∫

Ω

(V (x) · ∇u(x)) u (x) dx = 0

et
a (u, u) = ‖∇u‖2L2(Ω)

La coercivité de a(, )se déduit alors de l’inégalit e de Poincaré.
3 ème Etape. Equivalence avec l’équation.

∫

Ω

∇u (x) · ∇v (x) dx =

∫

Ω

f (x) v (x)− (V (x)∇u (x) v (x)) dx.

Ainsi, en majorant le membre de droite,

∣∣∣∣

∫

Ω

∇u (x) · ∇v (x) dx

∣∣∣∣ ≤
(
‖f ‖L2(Ω) + ‖V ‖L∞(Ω) ‖u‖H1(Ω)

)
‖v‖L2(Ω) ,

et ∇u est un élément de H(div). On en déduit donc par intégration par partie
que

−∆u+ V · ∇u = f en tant qu’éléments de L2 (Ω) .

Enfin, comme u ∈ H1
0 (Ω) , on a u = 0 sur ∂Ω.
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Chapitre 3

Problèmes elliptiques non-linéaires
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3.1 Le Lemme du Col

3.1.1 Application du lemme du col

Ce chapitre est consacré à l’étude de la solvabilité du problème de Dirichlet
suivant {

∆u = g(u) dans Ω
u = 0 sur ∂Ω

(3.1)

où Ω un domaine borné et régulier de RN , et g une fonction vérifier les hy-
pothèses suivantes

1

lim
t−→0

g(t)

t
= 0 (3.2)

En particulier g(0) = 0 et g dérivable en 0 de dérivée nulle.

2 Il existe 2 < p ≤ 2∗ tel que :

|g(t)| ≤ (1 + |t|p−1), ∀t ∈ R (3.3)

où 2∗ = 2N
N−2

est l’exposant critique de Sobolev de l’injection H1
0 (Ω) ↪→

L2
∗

(Ω)

3 Soit, pour t ∈ R, G(t) =
∫ t
0
g(s)ds. Il existe q > 2, et R0 > 0 tels que :

28



0 < qG(t) < g(t)t si |t| ≥ R0 (3.4)

L’hypothèse (3.3) exprime le fait qu’ à l’infini. L’hypothèse (3.4) en revenche
montre (d’une certaine façon) que g croît au moins aussi vite qu’une fonction
de la forme

t→ C |t|q−2 t; C constante et 2 < q < 2∗.

Proposition 3.1.1 Les solutions u ∈ H1
0 (Ω) sont les points critiques de la

fonctionnelle F , de classe C1 sur H1
0 (Ω) définie par:

F (v) =
1

2

∫

Ω

|∇u|2 −

∫

Ω

G(v), ∀v ∈ H1
0 (Ω)

Afin de pouvoir appliquer les théorèmes du calcul des variations, il est tout
d’abord important de se demander comment se comportent les suites de Palais-
Smale de F .

Proposition 3.1.2 Les suites de Palais-Smale de F sont bornées dans H1
0

(Ω) .

Preuve: Soit un une suite de Palais-Smale de F , i.e telle qu’il existe C > 0
vérifiant

|F (un)| ≤ C ∀n ∈ N (3.5)

|dF (un)| −→ 0 dans H−1, lorsque n −→ +∞ (3.6)

La relation (3.6)signifie que :

∆un + g(un)→ 0, dans H−1(Ω) (3.7)

En multipliant par un et en intégrant on trouve :

〈dF (un), un〉 = 〈−∆un − g(un), un〉

=

∫

Ω

|∇un|
2 −

∫

Ω

g(un)un

Par (3.6)
〈dF (un), un〉 = o(1) ‖un‖H1

0

, où lim
n−→+∞

o(1) = 0

et par (3.4) ∫

Ω

g(un)un ≥ q

∫

Ω

G(un).

On a donc

−

∫

Ω

|∇un|
2 + q

∫

Ω

G(un) ≤ o(1) ‖un‖H1

0

.
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Par ailleurs par (3.5) on a
∣∣∣∣
q

2

∫

Ω

|Oun|
2 − q

∫

Ω

G(un)

∣∣∣∣ ≤ Cq.

En ajoutant ces deux derniéres relations, le terme q

∫

Ω

G(un) disparaît et on

obtient (q
2
− 1
)∫

Ω

|Oun|
2 ≤ Cq + o(1) ‖un‖H1

0

.

Comme q > 2,
(
q

2
− 1
)
> 0, et il résulte de l’inégalité ci-dessus que:

‖un‖H1

0

=

(∫

Ω

|Oun|
2

) 1

2

reste borné lorsque n −→ +∞.

Nous sommes maintenant prêts pour etudier la condition de Palais-Smale.

Théorème 3.1.1 Si p < 2∗ alors F vérifie la condition de Palais-Smale.

Preuve: Soit un une suite de Palais-Smale. D’aprés la proposition (3.1.2),
(un)n∈N est bornée dans H

1
0 (Ω). On peut donc extraire une suite qui converge

faiblement dans H1
0 (Ω) vers un élément u ∈ H

1
0 (Ω), i.e

un −→ u dans H1
0 (Ω)(pour une sous-suite, encore notée un)

Afin de prouver le théorème, montrons que si un −→ u dans H1
0 (Ω) et p < 2 ,

alors
g(un)un −→ g(u)u fortement dans L1 (Ω) (3.8)

En effet par injection compacte de Sobolev

un −→ u fort dans Lp(Ω)(p < 2∗)

Par ailleurs, ∀ϕ ∈ C10(Ω) on a par (3.6)
∫

Ω

∇un∇ϕ =

∫

Ω

g(un) · ϕ+ o(1) ‖ϕ‖H1

0

(3.9)

On peut passer à la limite dans (3.9) pour conclure que
∫

Ω

∇u · ∇ϕ =

∫

Ω

g(u)ϕ, ∀ϕ ∈ C10(Ω) (3.10)

et donc
−∆u = g(u) dans Ω (3.11)
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En fait, on peut prendre ϕ ∈ H1
0 (Ω) dans (3.9) et (3.10). En prenant ϕ = un

(res.ϕ = u) dans (3.9) (resp. (3.10)), on a
∫

Ω

|∇un|
2 =

∫

Ω

g(un)un + o(1)

∫

Ω

|∇u|2 =

∫

Ω

g(u)u

Par (3.8)il vient ∫

Ω

|∇un|
2 −→

∫

Ω

|∇u|2

et donc un −→ u fortement dans H1
0 (Ω).

Remarque 3.1.1 Dans l’énoncé du théorème (3.1.1), le cas p = 2∗ est exclu.
C’est l’assertion (3.8)qui n’est plus valable, car l’injection H1

0 ↪→ L2
∗

n’est pas
compacte.
En fait, dans le cas où

g(t) = |t|2
∗−2 t

nous montrerons que la condition de Palais-Smale n’est pas satisfaite. Nous
ferons en particulier une étude détaillée du mécanisme de perte de compacité
dans ce cas-là.
Nous sommes maintenant en mesure de démontrer un résultat d’existence.

Théorème 3.1.2 Si g vérifie (3.2), pour p < 2∗ et (3.4) alors il existe une
solution positive u+, non nulle, dans H1

0 (Ω) à l’équation (3.1) .

Preuve: Nous allons appliquer le lemme du col (théorème 10.1.1) à la fonc-
tionnelle F . Il s’agit alors de trouver une "cuvette", et un point bas.
1ère etape Existence d’une cuvette.
Il est clair, comme g(0) = 0, que la fonction nulle u = 0 est solution de
l’équation et donc point critique. Afin de voir s’il y a une cuvette autour de
0, nous étudions le développement à l’ordre 2 autour de 0, de la fonctionnelle
F (en fonction de la norme ‖‖H1

0

).

Comme g(t)
t
−→ 0 lorsque t −→ 0, on vérifie par (3.2) et (3.3) que, pour tout

ε > 0 il existe une constante C(ε) telle que

|g(t)| ≤ ε |t|+ C(ε) |t|p−1

d’où il résulte que

|G(t)| ≤
ε

2
|t|2 +

C(ε)

p
|t|p

On a donc

F (u) ≥
1

2
‖u‖2H1

0

−
1

2
ε ‖u‖2L2 −

1

p
C(ε) ‖u‖pLp
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Comme 2 < p < 2∗ , on a par injection de Sobolev

‖u‖Lp ≤ Cp ‖u‖H1

0

et par inégalité de Poincaré

‖u‖L2 ≤ C2 ‖u‖H1

0

Il vient alors

F (u) ≥
1

2
‖u‖2H1

0

−
1

2
εC2 ‖u‖

2
H1

0

−
1

p
CpC(ε) ‖u‖

p

H1

0

≥

[(
1

2
−
1

2
εC2

)
−
1

p
CpC(ε) ‖u‖

p−2

H1

0

]
‖u‖2H1

0

Il suffit alors de choisir ε tel que

1

2
−
1

2
C2ε =

1

4

Comme p > 2, il existe ρ0 > 0 tel que si ‖u‖ < ρ0, alors:

1

p
CpC(ε) ‖u‖

p−2

H1

0

≤
1

S

Ainsi

F (u) ≥
1

S
‖u‖2H1

0

, si ‖u‖ ≤ ρ0

En particulier, si ‖u‖ = ρ0,

F (u) ≥
1

S
ρ20 = α

Cela établit le point 1 du lemme du col.
2ème etape Existence du point bas.
Nous allons établir que F n’est pas minorée, ce qui fournit automatiquement le
point bas u1.
Montrons tout d’abord que G croît au moins aussi vite que |t|q, c’est-à-dire
qu’il existe C > 0 tel que

|G(t)| ≥ C |t|q (3.12)

Cela résulte en fait de l’hypothèse (3.4). En effet:

0 < qG(t) ≤ G(t)t si |t| ≥ R0

qui implique
d

dt
(|t|−q G(t) ≥ 0 si |t| ≥ R0
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(3.12)en découle aisément.
On peut alors utiliser un argument d’homogènéité. On a, pour u ∈ H1

0 ,

F (λv) =
λ2

2

∫

Ω

|∇v|2 −

∫

Ω

G(λv)

≤
λ2

2

∫

Ω

|∇v|2 − |λ|q
∫

Ω

|u|q

Comme q < 2 , si v 6= 0 , on voit que

lim
|λ|−→+∞

F (λv) = −∞

Il suffit alors de choisir un vecteur v non nul, quelconque, et de poser u1 = λv,
pour λ assez grand.
3ème étape Application du lemme du col.
Par le théorème (3.1.1), F satisfait (P.S). Nous venons de vérifier que les hy-
pothèses 1, 2 du théorème 10.1.1 sont satisfaites. On peut donc appliquer ce
résultat, qui nous dit que β ≥ α > 0 est une valeur critique. Nous avons donc
obtenu une solution non triviale de l’équation (3.1).

Conclusion

Une étude variationnelle de certains problèmes faisant intervenir l’opérateur
Laplacien a été présentée dans cette thèse. Nous avons été essentiellement con-
cernées par l’étude de l’ existence et la multiplicité de solutions de problème
de Dirichlet [8]. Les résultats ont été établis par minimisation variationnelle en
utilisant le Théorème du Lax-Milgrame.
Dans une autre direction nous avons abordé un problème elliptiques non-linéaires.
Nous avons déterminé des conditions suffisantes permettant l’existence de solu-
tions en utilisant le lemme du col.
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