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Abreviations

EDP Equation aux dérivées partielles.
p.p. Presque partout.



Notations

R Ensemble des nombres réels.
RY RxRx..xR N fois.

Vu  Gradient de u défini par Vu = < du Ou > .

3_117 ey %
Au  Laplacien de u.
Apu  p-Laplacien de u défini par A,u = div (|Aul’ -2 Au).



0.1 Introduction Générale

Une équation aux dérivées partielles (EDP) est une équation dont 'inconnue
est une

fonction et qui fait intervenir non seulement cette fonction mais aussi ses dérivées
partielles. L’ordre maximal de dérivation intervenant dans 1’équation est ap-
pelé ordre de 'EDP. 1l existe des centaines d’EDP dont ’étude nécessite des
théories différentes, souvent spécifiques. On tente néanmoins de classifier les
EDP en catégories, selon les outils généraux qui permettent de les analyser, ou
encore selon leurs propriétés qualitatives et les problémes qu’elles modélisent.
En effet, les EDP sont les objets mathématiques qui permettent de modéliser
les phénomeénes naturels et il ne faut jamais oublier cet aspect.

Les EDP que nous rencontrerons dans ce mémoire seront toujours placées au
préalable dans

un contexte : physique, mécanique, chimie, biologie, économie, sociologie, ...
On distingue trois grandes catégories d’EDP :

i Les équations de type elliptique qui interviennent trés souvent dans la mod-
élisation des phénoménes stationnaires (c’est a dire n’évoluant pas au
cours du temps). Le prototype d’équation elliptique est I’équation de
Laplace

—Au=f (1)

d’inconnue u(x), z €  C R™ et de donnée f.

ii Les équations de type parabolique, qui modélisent souvent 1’évolution tran-
sitoire de phénomeénes irréversibles associés a des processus de diffusion.
L’équation de la chaleur en est un prototype :

ou
E—Au:f (2)

d’inconnue u(t,z), z € Q C R™, ¢t > 0 et de donnée f.
iii Les équations de type hyperbolique qui modélisent des phénomeénes dépen-

dant du temps, de transport ou de propagation d’ondes. On identifie
deux prototypes pour cette classe d’EDP :

— L’ “equation de transport

% + c% =0 (3)
d’inconnue u(t,z), v € R" ¢ > 0.
— I’ “equation des ondes
AT (@)
ot?

d’inconnue u(t,z), x € Q@ C R™, ¢t > 0 et de donnée f.
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- D’ou vient le nom “elliptique”, “parabolique”, “hyperbolique” ?
Placons nous dans le cas particulier des équations de deuxiéme ordre dans R?.
L’inconnue est la fonction u(z,y), qui satisfait 1’équation

0%u 0%u 0%u ou ou

Pour simplifier, on suppose les coefficients a, b, ..., g constants.

On dit que (5) est:

Elliptique si b*> — 4ac < 0,

Parabolique si b* — 4ac = 0,

Hyperbolique si b* — 4ac > 0.

Dans cette thése nous nous intéressons a 1’analyse mathématique des équa-
tions aux dérivées partielles de type elliptique qui correspondent & des modéles
physiques stationnaires, c’est-a-dire indépendants du temps. Nous allons mon-
trer que les problémes aux limites sont bien posés pour ces e.d.p. elliptiques,
c’est-a-dire qu’elles admettent une solution, unique, et dépendant contintiment
des données.

L’approche que nous allons suivre est appelée approche variationnelle.

Le principe de 'approche variationnelle pour la résolution des équations aux
dérivées partielles est de remplacer I’équation par une formulation équivalente,
dite variationnelle, obtenue en intégrant I’équation multipliée par une fonction
quelconque, dite test. Comme il est nécessaire de procéder & des intégrations
par parties dans ’établissement de la formulation variationnelle.

Le but de ce mémoire, basé essentiellement sur les articles [7], [1] et [3], est
I’étude mathématique de quelques équations aux dérivées partielles elliptiques.
Ce mémoire comporte trois chapitres :

Dans le premier chapitre, nous introduisons les outils nécessaires a la suite de
notre travail.

Le second chapitre, est consacrée au théoreme de Lax-Milgram qui sera 1’outil
essentiel permettant de démontrer des résultats d’existence et d’unicité de so-
lutions de formulation variationnelle.

Dans le dernier chapitre, nous abordons un probléme elliptiques non-linéaires
nous appliquerons une methode variationnelle par application du lemme du
col.

Finalement, parmi les nombreuses références bibliographiques, nous avons
choisi & la fin de ce travail un nombre assez consistant permettant au lecteur
interéssé d’avoir acces a quelques sources que nous avons utilisées pour réaliser
ce mémoire.



Chapitre 1

Préliminaires
Sommaire
1.1 Espaces fonctionnels . . . . ... ... ... ....... 5
1.1.1 Espaces de Lebesgue . . . . . . .. ... ... ..... 5
1.1.2 Espacede Sobolev . . .. .. ... ... ........ 7
1.2 Quelques définitions et théorémes .. ... ... ... 9
1.2.1 Fonction LP-Carathéodory . . . . . . . ... ... ... 9
1.2.2  Théoréme d’Ascoli-Arzela . . . . . .. ... ... ... 9
1.2.3  Convergence forte et Convergence faible . . . . . . .. 10
1.3 Approche variationnelle . ................ 11
1.3.1 Approche variationnelle . . . . ... .. ... ..... 11

Dans ce chapitre, nous dressons une liste non exhaustive des principales nota-
tions et outils utilisés tout au long de ce mémoire. D’autres, plus spécifiques,
seront introduites dans le texte. Nous rappelons également divers résultats
généraux qui pour la plupart sont accompagnés de références a la bibliogra-
phie et seront utilisés dans le texte de maniére transparente. Les ouvrages de
base utilisés dans ce chapitre sont [0], et [10].

1.1 Espaces fonctionnels

1.1.1 Espaces de Lebesgue

Nous commencons par introduire les espaces de Lebesgue.

Pour  un domaine ouvert de RY, D (Q) désigne ’ensemble des fonctions de
classe C*° et a support compact dans €2.

L’espace de Lebesgue L? (Q2) pour p € [1, 400 est défini par :



LP () = {u :  — R mesurable; / lu (z)|P de < oo} )
Q

1
L? est muni de la norme [[ul|, = [ [, [u(2)[" dz]? . Cette norme le rend com-
plet, c’est donc un espace de Banach.
Pour p = oo,
L> () = {u: Q — R mesurable; esssup |u| < 400},

L> (£2) est muni de la norme suivante: ||u||,, = esssup |u|; avec
Q

esssup |u| = inf {C > 0; |u(x)] < C p.pdans Q}.
LP (Q) est reflexif et séparable pour 1 < p < +o00 et son dual est isomorphe a
L1 (Q) avec ¢ le conjugué de p c’est a dire }D + % =1
Inégalité de Holder

Soient f € LP(2) et g € L1(2) avec 1 < p < o0 et ¢ le conjugué de p alors :
foe L@ et | |fgds <11, ol
Q

lemme de Fatou

Lemme 1.1.1 Soit (f,) une suite de fonctions dans L'(Q) telle que, pour
chaque n, f, () > 0 p.p sur Q.S f(x) := lim inf f, (z), pour tout x € Q;

alors f € L' (Q) et

n—oo

/Q F(2)dz < Tim in /Q £ (2) dz,

1.e.

/ lim inf f, (z)dx < lim inf [ f, (x)dz.
Q

n—oo n—o0 QO

Définition 1.1.1 Soient 2 C R" et w une fonction poids. Pour 1 < p < o0,
on définit LP(Q,w), l’espace de Banach de toutes les fonctions mesurables u
définies sur ) , telles que

]| 7y = / (P w(@)de | < oo
Q



1.1.2 Espace de Sobolev

Les espaces de Sobolev sont omniprésents dans I’étude des équations aux dérivées
partielles elliptiques. Il s’avére donc judicieux d’en faire une bréve présenta-

tion avant d’aborder ces équations. Nous reprenons dans cette section certains
énoncés de Kavian [3] et de Brezis [0], pour une présentation plus compléte des
espaces de Sobolev se référer a [9].

Pour © un domaine ouvert de R", I'espace de Sobolev W' (Q) est défini par

WP (Q) = {u € LP(Q) /5—:] € LP(Q), pour J € {1, ...,N}} ,

ou les dérivées sont au sens des distributions.
WP () muni de la norme

N
[l = flull, + JZ_)l : (1.1)

P

o
81’J

est un espace de Banach.

L’espace W12 () est un espace de Hilbert, il est noté H' ().

Wy™ (Q) denote la complétion de D (Q) dans WP (Q) i.e Wy* (Q) = D (Q)
pour 1 < p < 4o00. Ou D (2) = C§° (R2), ensemble des fontions de classe C* a
support compact dans 2. Comme, I'espace D (§2) est par définition dense dans
WyP (Q) (pour 1 < p < 400), le dual de W,” (Q) peut étre identifié a un
sous-espace de l’espace des distributions D’ (£2) par:

WLP(Q)

)

Wwha(Q) = (Wol’p (Q)),; q conjugué de p.

L’espace W, (Q) est muni de la norme induite par celle de W ().

Lemme 1.1.2 L’espace W'P(Q) est :

1. un espace de Banach pour 1 < p < oc.
2. 1l est réflexif pour 1 < p < oo.

3. il est separable pour 1 < p < .

Les injections de Sobolev

Les injections de Sobolev sont trés utilisées lorsqu’on étudie les équations aux
dérivées partielles. Elles fournissent des inégalités entre les normes des espaces
de Sobolev et les normes des espaces de Lebesgue. Pour 'espace W7 (Q), on a
le résultat suivant.

Théoréme 1.1 Soit Q) est un ouvert réqulier de RY. Soientk > 1 etp €
[1,4+00). Alors
a). Si }D — £ >0, ona WkP(Q) — L1(Q) avec % =

k.
N

D =

7



b). Si i — £ =0, on a WHP (Q) — L7() pour tout ¢ € [p;+oo|, (mais pas
pour ¢ = +00);
c). Si % — £ <0, ona WhP (Q) — L (Q).

Toutes ces injections sont continues.

Sans hypothese de régularité sur €2, les injections sont vraies localement :
WP (Q) — L1 (Q) elles restent globalement vraies si on remplace W"? (Q)
par W[f (). Concernant la compacité des injections précédentes, on a le

théoréme suivant.

Théoréme 1.2 (Rellich-Kondrachov ([0])):5i Q un domaine ouvert borné
de classe C' dans RY, alors

a). Sip< N alors WY (Q) —— L1(Q) pour tout q € [1,p*[, ou p* = ]{,V—j;;
b). Sip> N alors WHP (Q) <s— L7 () pour tout q € [1,+00[;

¢). Pour tout q € |1, +oo[, W7 (Q) —— C (Q).

Remarque 1 a) La condition sur le domaine §) est nécessaire, si 2 n’est pas
borné alors les injections ne sont pas compactes en général comme le démontre
le contre exemple suivant: Soit ¢ € C§° (RN) tel que, ¢ > 0, on pose ¢,(x) =
o(x +ne), e = (1,1,1,....1), il est facile de voir que ¢,, — 0 p.p. Et ||¢,|l;4 =
||¢||Lq > 0.

b) On note a(N,q) > 0, la constante de Sobolev de l'injection compacte de

WyP (Q) O LI(Q), avec ¢ € [1,p*) ou p* = (]\],V_pp). Ainsi, pour chaque u €

Wy ”, nous avons
[ull Lo < (N q) |Jull- (1.2)

Inégalité de Poincaré

L’inégalité de Poincaré est un résultat de la théorie des espaces de Sobolev.
Cette inégalité permet de borner une fonction a partir d’une estimation sur ses
dérivées et de la géométrie du domaine sur lequel elle est considérée.

Soit p, tel que 1 < p < oo et 2 un ouvert borné. Alors il existe une con-
stante C, dépendant uniquement de €2 et p, telle que, pour toute fonction u

de Pespace de Sobolev W, 7 (2), nous avons

ull, <C[[Vull,. (1.3)

Remarque 1.1.1 L’inégalité de Poincaré permet d’établir ’équivalence sur
Wy™ (Q) entre la norme 1.1 et celle définie par

ol =394l



1l est évident que 1’ inégalité (1.3) ne peut étre généralisée o W™P (). Pour
s’en convaincre, il suffit de considérer les fonctions constantes sur  borné (ou
de mesure finie).

Remarque 1.1.2 Soit Q un ouvert de RY borné dans au moins une direction
de l’espace. Alors la semi-norme

%
iy = ( [ 170 o)

est une norme sur H} () équivalente a la norme usuelle induite par celle de
H' (Q).

1.2 Quelques définitions et théorémes

1.2.1 Fonction LP-Carathéodory

Définition 1.2.1 Nous rappelons que f : 2 x R — R est une fonction LP-
Carathéodory si

a). f(z,u) est dans LP (Q) pour chaque u € R;

b). f(x,u) est continue presque par tous x € €);

c). Pour chaque p > 0 il existe une fonction l, € LP(Q) telle que p.p x € .

|81‘1<p |2, u)| < ().

1.2.2 Théoréme d’Ascoli-Arzela

Définition 1.2.2 Soit (f,,), une suite de fonctions définies sur un intervalle I
a valeurs dans R. On dit que la suite (f,), est équicontinue ssi :

Veel, YVe>0, 30 >0, VneN, Yy el, |[x—y|<d=|fulx)— fuly)| <e

Autrement dit, toutes les fonctions (f,) sont continues sur I, et elles sont con-
tinues "de la méme facon".

La notion d’équicontinuité intervient notamment dans le théoréme d’Ascoli-
Arzela:

Théoréme 1.3 (Théoréme d’Ascoli-Arzela)

Soit (f,,) une suite de fonctions définies sur un intervalle fermé borné I, a valeurs
réelles. On suppose que cette suite de fonctions est équicontinue, et qu’il existe
un réel M > 0 tel que | f,(z)| < M pour tout n € N et pour tout x € I. Alors
on peut extraire une sous-suite (f,,) qui converge uniformément sur / vers une
fonction continue f.



Théoréme 1.4 Soit (f,), une suite de LPet f € LP, tels que
| fn = fll;» — 0 lorsque u — .

Alors il existe une sous suite extraite (fn, ),y telle que
a). fry (¥) = f (x) p-p sur

b). | fu. ()| < h(z) pour tout k et p.p sur Q avec h € LP ().
1.2.3 Convergence forte et Convergence faible

Soient X un espace de Banach muni de la norme |.|| et (u,), une suite dans
X.

Définition 1.2.1 On dit que la suite (u,), converge fortement vers u dans X
$i ||un — ul| g — 0 lorsque n — oc.

Définition 1.2.3 (u,), est dite convergente faiblement vers u si (up,v) —
(u,v) Yv € X' dual de X et elle est notée par u, — u.

Définition 1.2.4 On dit que C' C X est faiblement fermé si pour toute suite
(un) C C telle que: u, — u alors u € C.

Théoréme 1.5 Un conveze C de X est faiblement fermé si et seulement si il
est fortement fermé.

Dans le cas particulier de X = WTl’p , nous avons le résultat suivant
Proposition 1.2.1 Si une suite (uy), converge faiblement vers u dans W%’p,

alors (uy), converge uniformement vers u sur [0,T]. Et il existe C > 0 telle
que pour u € WP,

[ulloo < Cllullyrrq) ot fully = max|u(2)].
te[0,7)

Théoréme 1.6 (Eberlein—Smulian)Un espace de Banach X est réflexif si
et seulement si de toute suite bornée (x,) de X, on peut extraire une sous suite
qui converge faiblement dans X.
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1.3 Approche variationnelle

Dans cette thése, nous nous sommes basées sur une approche variationnelle
pour étudier la solvabilité de problemes de Dirichlet associés & des EDP ellip-
tiques. Considérons le probléme suivant :

(1.4)

—Au=f dans €
u=0 sur df ’

ol A est un opérateur uniformément elliptique, 2 est un domaine régulier
dans RY avec N > 1. Les solutions de (1.4) sont cherchées comme points cri-
tiques de fonctionnelles réelles définies sur un espace de Banach X.

Dans le cas out f est minorée ou majorée, il est raisonnable d’essayer de mon-
trer que le minimum ou le maximum est atteint. Pour plus de détails, nous
référons le lecteur & [3] et [10)].

1.3.1 Approche variationnelle

Le principe de I'approche variationnelle pour la résolution des équations aux
dérivées partielles est de remplacer I’équation par une formulation équivalente,
dite variationnelle, obtenue en intégrant I’équation multipliée par une fonction
quelconque, dite test.

Formules de Green

Dans toute cette sous-section est un ouvert de I'espace RY (borné ou non),
dont le bord (ou la frontiére) est noté 02 . Nous supposons aussi que est un
ouvert régulier de classe C*.

Théoréme 1.3.1 (Green) Soit Q un ouvert régulier de classe C*. Soit W une

fonction de C1(Q) a support borné dans le fermé Q. Alors elle vérifie la for-
mule de Green

ZI;V (x)dx = W (z)n, (z)ds, (1.5)
o 0% o0

ot n; est la i-éme composante de la normale extérieure unité de ).

Corollaire 1.3.1 (Formule d’intégration par parties) Soit un ouvert

régulier de classe Cl Soit u et v deux fonctions de C*(Q) & support borné dans
le fermé §). Alors elles vérifient la formule d’intégration par parties

ov ou
/Qu (x) o (x)de = — /Q v () oz, (x)dx + /39 u(x)v(x)n; (x)ds  (1.6)

11



Preuve: [l suffit de prendre w = uv dans le Théoréme (1.3.1). =

Corollaire 1.3.2 Soit un owvert régulier de classe C*. Soit u une fonction de
C? (Q) et v une fonction de C* (Q), toutes deux a support borné dans le fermé
Alors elles vérifient la formule d’intégration par parties.

/QAu (x)v(x /Vu x)dr + Ou (x)v (z)ds, (1.7)

a0 On
ou =Vu-n.

Preuve: On applique le Corollaire (1.3.1)a v et 6“ - et on somme en i. M

Formulation variationnelle

Le résultat principal de cette sous-section est la proposition suivante.
Proposition 1.3.1 Soit u une fonction de C*? (ﬁ) Soit X [’espace défini par
X = {(b et (ﬁ) tel que ¢ =0 sur GQ.}

Alors u est une solution du probléme aux limites (1.4) si et seulement si u ap-
partient a X et vérifie ’égalité

/Vu( x)dx = / f(x)v(z)dx pour toute fonction v € X. (1.8)
Q

L’égalité (1.8) est appelée la formulation variationnelle du probléme aux limites
(1.4).

Preuve: Siu est solution du probléme aux limites (1.4), on multiplie ’équation

parv € X et on utilise la formule d’intégration par parties du Corollaire
(1.3.2)

/QAu( /Vu x)dx + @(a:)v(x) ds,

o0 On
Or v =0 sur ) puisque v € X, donc

/QVu(x)v(x)dx:/Qf(x)v ©) da

qui n'est rien d’autre que la formule (1.8). Réciproquement, si u € X vérifie
(1.8), en wutilisant “a l’envers” la formule d’intégration par parties précédente
on obtient

/ (Au(z) + f (z))v(z)de =0 pour toute fonction v € X.
0

12



Comme (Au + f ) est une fonction continue, grice au Lemme 1.2.9 on con-
clut que —Au(x) = f(x) pour tout x € Q . Par ailleurs, comme v € X, on
retrouve la condition aux limites u = 0 sur 0S), c’est-a-dire que u est solution
du probléeme aux limites (1.4). m

Lemme 1.3.1 Soit Q un ouvert de RY. Soit g(x) une fonction continue dans
Q. Si pour toute fonction ¢ de C*(§) a support compact dans 2, on a

alors la fonction g est nulle dans Q.

Preuve: Supposons qu’il existe un point xo €  tel que g(xy) # 0. Sans
perte de généralité, on peut supposer que g(xg) > 0 (sinon on prend —g). Par
continuité, il existe un petit voisinage ouvert w C Q de xq tel que g(x) > 0 pour
tout x € w. Soit alors une fonction test positive, non nulle, ¢ a support inclus
dans w. On a

Agwwwmx=/QWW®Mx=&

w

qui est une contradiction avec l’hypothése sur g. Donc g(x) = 0 pour tout x €
Q. =

Corollaire 1.8.3 Soit f € L*(Q2). Si pour toute fonction ¢ de C(Q) on a

|1 @ola)dz =0,
Q
alors f (z) = 0 presque partout dans €.
Remarque 1.3.1 FEn notation compacte on peut réécrire la formulation vari-
ationnelle (1.8) sous la forme : trouver u € X tel que
a(u,v) = L(v) pour toute fonction v € X,

avec

a(u,v) = /QVu(a:) Vou(x)dx

széf@MMM,

ot a(-,-)est une forme bilinéaire sur X et L(-) est une forme linéaire sur X.
C’est sous cette forme abstraite que nous résoudrons (avec quelques hypothéses)
la formulation variationnelle dans la prochaine section.

13



Théorie de Lax-Milgram

Cadre abstrait Nous décrivons une théorie abstraite pour obtenir 'existence
et I'unicité de la solution d’une formulation variationnelle dans un espace de
Hilbert réel V' . Nous considérons une formulation variationnelle du type

trouver u € V' tel que a(u,v) = L(v) pour toute fonction v € V. (1.9)
Les hypotheéses sur a et L sont

1. L(-) est une forme linéaire continue sur V, c’est-a-dire que v — L(v) est
linéaire deV dans R et il existe C' > 0 tel que

|L(v)| < C'|jv|| pour tout v € V.

2. a(-,-) est une forme bilinéaire sur V', c’est-a-dire que w — a(w, v) est une
forme linéaire de V' dans R pour tout v € V, et v — a(w,v) est une
forme linéaire de V' dans R pour tout w € V.

3. a(-,") est continue, c’est-a-dire qu’il existe M > 0 tel que

la(w,v)| < M |Jw]|| ||v]] pour tout w,v € V' (1.10)

4. a(-,-) est coercive (ou elliptique), c’est-a-dire qu’il existe v > 0 tel que

a(v,v) > v||v||* pour tout v e V. (1.11)

Comme nous le verrons au cours de cette sous-section, toutes les hypotheses
ci-dessus sont nécessaires pour pouvoir résoudre (1.9). En particulier, la coer-
civité de a(-,) est essentielle.

Théoréme 1.3.1 Soit V' un espace de Hilbert réel, L(-) une forme linéaire
continue sur V', a(-,-)une forme bilinéaire continue coercive sur V. Alors la for-
mulation variationnelle (1.9) admet une unique solution. De plus cette solution
dépend continiment de la forme linéaire L.

Preuve: Pour tout w € V, I'application v — a(w,v) et une forme linéaire
continue sur V' : par conséquent, le théoréme de représentation de Riesz en-
traine qu’il existe un élément de V', noté A(w), tel que

a(w,v) = (A(w),v), pour tout v € V.

Par ailleurs, la bilinéarité de a(w,v) implique évidemment la linéarité de application
w — A(w). De plus, en prenant v = A(w), la continuité (1.10) de a(w,v) mon-
tre que

[A(w)[| = a(w, A(w)) < M [Jw]| [[A(w)]]
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c’est-a-dire que ||A(w)|| < M ||w]|| et donc w — A(w) est continue. Une autre
application du Théoreme de représentation de Riesz implique qu’il existe un
élément de V, noté f, tel que ||f]l,, = || L]y et

L(v) = (f,v) pour tout v € V.
Finalement, le probléme variationnel (1.9) est équivalent & :
trouver u € V' tel que A(u) = f. (1.12)

Pour démontrer le théoréme il nous faut donc montrer que I'opérateur A est
bijectif de V' dans V' (ce qui implique 'existence et ['unicité de u) et que son
inverse est continu (ce qui prouve la dépendance continue de u par rapport a
L).

La coercivité (1.11) de a(w,v) montre que

vwl® < a(w,w) = (Aw),w) < [|A@w)]| [lwl],

ce qui donne
v||w| < ||A(w)| pour tout w € V (1.13)

c’est-a-dire que A est injectif. Pour montrer que A est surjectif, c’est-a-dire
que Im(A) =V (ce qui n’est pas évident si V' est de dimension infinie), il suffit
de montrer que I'm(A) est fermé dans V et que Im(A)+ = {0}. En effet, dans
ce cas on voit que V = {0}t = (Im(A)Y)*+ = Im(A) = Im(A), ce qui prouve
bien que A est surjectif. Soit A(w,) une suite dans I'm(A) qui converge vers b
dans V' . En vertu de (1.13) on a

v [wn = wp|| < [|A(wn) — A(wp)|

qui tend vers zéro quand n et p tendent vers l'infini. Donc w,, est une suite

de Cauchy dans l’espace de Hilbert V' | c’est-a-dire qu’elle converge vers une
limite w € V. Alors, par continuité de A on en déduit que A(w,) converge vers
A(w) = b, c’est-a-~dire que b € Im(A) et Im(A) est donc fermé. D’autre part,
soit v € Im(A)* ; la coercivité (1.11) de a(w,v) implique que

voll* < a(v,v) = (A(v),v) =0,

c’est-a-dire que v = 0 et Im(A)t = {0}, ce qui prouve que A est bijectif.
Soit A7 son inverse : I'inégalité (1.13) avec w = A~!(v) prouve que A~! est
continu, donc la solution v dépend contintiment de f. m

Une formulation variationnelle posséde souvent une interprétation physique,
en particulier si la forme bilinéaire est symétrique. En effet dans ce cas, la so-
lution de la formulation variationnelle (1.9) réalise le minimum d’une énergie
(trés naturelle en physique ou en mécanique).
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Points critiques

Au probléme (1.4) on associé une fonctionnelle dite fonctionnelle d’énergie,
définie par J : X — R,

J(u):/Q%|Vu|2dx—/QF(x,u)d:p,
Ole(m,u):/uf(x,s)ds.

Définition 1.3.1 Soit J une fonctionnelle de classe C' définie sur X a valeurs
dans R. On dit que u € X est un point critique de J si J' (u) = 0.

La valeur ¢ est dite valeur critique de J s’il existe un point critique u € X tel
que : J(u) = c.

Solution faible

Définition 1.3.1 u est dite solution faible du probléeme (1.4) si

/QLu.gp (x)dx = /Qf () .p(z)dx Yo € CF° ().

Définition 1.3.2 Une fonction J : X — R, est dite semi-continue inférieure-
ment et on la note (s.c.i), en x € X si, pour toute suite {x} € X convergente
Vers T,

liminfJ (zy) > J ().

Tp—T

Définition 1.3.3 Une fonctionnelle J est dite coercive si: | |}im J(u) =
u||——+o0
ueFl

+00.

Théoréme 1.7 (minimisation directe [11]) Si X est réflexif, M C X un
sous ensemble faiblement fermé de X. et J : X — R U {400}, coercive et
faiblement semi continue inférieurement sur M, alors J est borné inférieure-
ment dans M et atteint son minimum dans M.

Définition 1.3.4 (Suite minimisante) Une suite minimisante pour une

Jonctionnelle J : X — R est une suite (wy,),, telle que J (wy) — infJ quand
k — oo.
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Remarque 2 L’existence d’une suite minimisante est assurée en particulier
quand J est coercive. Un outil essentiel dans le calcul de la variation est la
compacité des suites minimisantes. La condition de Palais-Smale joue un role
assez semblable pour des suites sur lesquelles la fonctionnelle prend des valeurs
tendant vers une valeur critique potentielle, et pas seulement vers la borne in-
férieure. C’est une condition a priori, a vérifier pour chaque fonctionnelle, in-
dépendamment de l’existence ou non des valeurs critiques. FElle sera par contre
un outil essentiel pour montrer cette existence dans plusieurs cas.

Conditions de Palais-Smale

Définition 1.3.5 Soit J : X — R de classe C'. On dit que J vérifie la con-
dition de Palais-Smale au niveau ¢ € R et le note (PS)., si de toute suite (uy,)
de X telle que

J (u,) — ¢ dans R et J' (u,) — 0 dans X',
on peut extraire une sous-suite convergente.

Théoréme 1.8 Soit J : X — R une fonctionnelle de classe C' bornée in-
férieurement et ¢ = inf J. Si J satisfait la condition (PS)., alors c est atteint
en un point xo € X telle que J'(zo) = 0.

Théoréme 1.3.2 Soit J : X — R une fonctionnelle de classe C' bornée
inferieurement et ¢ = inf J. Si la condition (PS). est satisfaite, alors c est
minimum de J.

La preuve est basée sur le principe Ekeland appliqué a I'espace X équipé de
distance géodésique.

Le théoréme du Col (Mountain Pass Theorem)

Le premier exemple de construction de valeur critique par le procédé de min-
max est le théoréme du Col de la montagne ( en anglais Mountain Pass The-
orem) qui exprime trés bien le contenu du résultat et sa démonstration: si
on se trouve en un point A dans une cuvette a une altitude hg, entourée de
montagnes d'une altitude supérieure ou égale & h > hg; si on veut aller & un
point B située en dehors de la cuvette au dela des montagnes, et & une alti-
tude hy; < h, il existe un chemin passant par un col et conduisant de A & B.
Pour le trouver il suffit de prendre parmis tous les chemins allant de A & B,
celui qui monte le moins haut.

Théoréme 1.9 [ Soit J € C Y(X,R) supposons que J satisfait la condition
(PSC), et
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(1) J(0) =0,

(1) il existe des constantes p > 0 et a > 0 telles que J(x) > « si ||z|| = p,
(111) il existe e € X, |le]| > p, tel que J(e) < 0.

Alors J admet une valeur critique ¢ > « qui peut étre caractérisée comme suit

¢ := inf, max.] (v (1),
’ I = {7 € C(01], X) : 4(0) = 0,4(1) = e} .

Remarque 3 a) Nous comprenons mieux pourquoi ce théoréme s’appelle théoréme
du Col, quand nous interprétons géométriquement ou plutoét géographiquement
les conditions (i) & (i4) dans le cas ot X = R? et J(u) représente laltitude
d’un point u (dans R3). Les conditions (i) et (i) signifient que l'origine est
placée dans une cuvette entourée de montagnes d’altitude au moins .. La con-
dition iii) signifie qu’au dela de ces montagnes existe un point e situé moins
haut que les dites montagnes, disons dans une vallée. Par conséquent, il est
intuitivement clair que l’on peut joindre continiment 0 a e en passant par un
col de montagne et la construction du min-max nous dit comment faire : il suf-
fit de regarder ’altitude mazimale atteinte sur chaque chemin et de choisir un
chemin qui minimise cette altitude maximale.

b) Il faut toute fois faire attention & lintuition montagnarde. Ainsi, le théoréme
du Col est vrai méme si J ne satisfait pas la condition de Palais-Smale quand
X = R, par contre il est faux quand X = R?, c’est-a-dire qu’il peut ne pas ex-
ister de col car la borne inférieure de l'altitude mazximale sur les chemins n’est
pas atteinte. Ainsi, par exemple, la fonction

J(xlv £L’2> = l’%(]_ + $2)3 + fL‘%,

n'a clairement qu’un seul point critique sur R?, a savoir l'origine ou J = 0.
Ce point critique est un minimum local, donc une cuvette entourée de mon-
tagnes, et [’on peut descendre encore plus bas a [’extérieur de la cuvette car
infre J = —o0. C’est donc un exemple de fonction présentant un seul point
critique, qui est un minimum local mais pas global. Comme il n’y a pas d’autre
point critique que le minimum local, c’est donc qu’il n’existe pas de col pour
sortir de la cuvette. Cela ne peut se produire que si les chemins minimisants
partent vers l'infini. Cette perte de compacité est évidemment liée au fait que
J ne satisfait pas la condition de Palais-Smale au niveau de l'inf-mazx.

Théoréme 1.10 (de trace)
Soit Q un ouvert borné réqulier de classe C*, ou bien Q = Rﬂ\:. On définit
lapplication trace v,

H(Q)NC (Q) — L200)NC (69)

v — (V) =v 90 (1.14)
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Cette application vy, se prolonge par continuité en une application linéaire con-
tinue de H*(2) dans L*(0), notée encore y,. En particulier, il existe une
constante C > 0 tell que, pour toute fonction v € H'(Q)

191l 200y < C v lli1(g) (1.15)

Théoréme 1.11 (Formule de Green) Soit € un ouvert borné régulier de classe
C'. Siwu et v sont des fonctions de H*(Q),elles vérifient

/u(x) Ov () doe = — / v(x) Ou () dx +/ u(z)v(z)n;(z) ds, (1.16)
o ox; Q O; o9
ot n = (n;)1<i<n est la normale unité extérieure a OS.

Preuve: Rappelons que la formule (1.16) a été établie pour des fonctions
de classe C''. On utilise & nouveau un argument de densité. Par densité de
C>(Q) dans H' (), il existe des suites (u,)n>1 €t (vy)n>1 dans C°(Q) qui
convergent dans H'(Q) vers u et v, on a

ov ou
Up—dr = — | v,——dx +/ UpUp7); dS. 1.17

On peut passer a la limite n — 400 dans les deux premiers termes de (1.17)
car u, et %‘7’; ( respectivement, v,, et ‘gix’;) convergent vers u et g—;i ( respec-
tivement, v et g—;) dans L?(2). Pour passer a la limite dans la derniére inté-
grale de (1.17), on utilise la continuité de I’application trace 7,, c’est-a-dire
I'inégalité (1.15), qui permet d’affirmer que 7, (u,) (respectivement, v,(v,,))
converge vers 7,(u) (respectivement, v,(v)) dans L?(92). On obtient ainsi la
formule (1.16) pour des fonctions u et v de H'(Q2). =

Comme conséquence du Théoréme de trace (1.10) on obtient une caractérisa-

tion tres simple de 'espace Hj(€2).

Théoréme 1.3.2 Soit Q un ouvert borné régulier de classe C*. Siu € H*(Q)
et v e HY(Q) on a

/QAu(x)v(x) dr = — / Vu(z) - Vo(z) do + @(x)v(x)ds. (1.18)

Q aa On

Comme (1.18) est vraie pour des fonctions de classe C? et queles fonctions
réguliéres sont denses dans H'(2) et H?(2), on utilise un argument de densité.
Nous renvoyons a la démonstration du Théoréme (1.11) pour plus de détails.
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Chapitre 2

Etude mathématique des prob-
lémes elliptiques
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2.1 Application du Théoréme de Lax-Milgram

2.1.1 Conditions aux limites de Dirichlet

Ce chapitre est consacré a I’étude de la solvabilité le probléme aux limites
suivant

{—Au:f R 2.1)

u=0 r e o)’

ot Q2 est un domaine borné dans RY, et f est un second membre qui appar-
tient a I'espace L?(12).

Dans cette étude, notre objectif principal inspiré par [7], est de montrer I'existence
d’au moins une solution en utilisant le Théoréme du Lax-Milgrame (1.3.1).
L’approche variationnelle pour étudier (2.1) est constituée de trois étapes que
nous détaillons.

Etape 1 : établissement d’une formulation variationnelle.

Dans une premiére étape il faut proposer une formulation variationnelle du
probléme aux limites (2.1), c’est-a-dire qu’il faut trouver une forme bilinéaire
a(-,+), une forme linéaire L(-), et un espace de Hilbert V' tels que (2.1) soit
équivalent a :
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Trouver

u eV tel que a(u,v) = L(v) pour toutv € V. (2.2)

Le but de cette premiére étape est seulement de trouver la formulation varia-
tionnelle

(2.2); on vérifiera ’équivalence précise avec (2.1) plus tard au cours de la troisieme
étape.

Pour trouver la formulation variationnelle on multiplie I’équation (2.1) par une
fonction test réguliére v et on intégre par parties. Ce calcul est principalement
formel au sens ot I’on suppose ’existence et la régularité de la solution u afin

que tous les calculs effectués soient licites. A 'aide de la formule de Green

(1.7) (voir aussi (1.7)) on trouve

/fvdm:—/Auvdx:/Vu-Vvdx—/ @vds. (2.3)
Q Q Q a0 On

Comme u doit satisfaire une condition aux limites de Dirichlet, u = 0 sur 0f2
, on choisit un espace de Hilbert V' tel que toute fonction v € V' vérifie aussi
v = 0 sur 0. Dans ce cas, I’égalité (2.3) devient

/QVu(a:) -Vou(z) de = /Qf(a:)v(a:) dx (2.4)

Pour que le terme de gauche de (2.4) ait un sens il suffit que Vu et Vv appar-
tiennent & L%() (composante par composante), et pour que le terme de droite
de (2.4) ait aussi un sens il suffit que v appartienne a L?(Q2) (on a supposé que
[ € 13(9)).

Par conséquent, un choix raisonnable pour 1'espace de Hilbert est V = H{ (),
le sous-espace de H'(2) dont les éléments s’annulent sur le bord 9.

En conclusion, la formulation variationnelle proposée pour (2.1) est trouver

u € H () tel que/

Vu - Vovdr = / fodz Vv € Hy(9). (2.5)
Q Q

Evidemment, nous avons fait un certain nombre de choix pour arriver a (2.5)

; d’autres choix nous auraient conduit & d’autres formulations variationnelles
possibles. La justification de (2.5) s’effectuera donc a posteriori : tout d’abord,
la deuxiéme étape consiste a vérifier que (2.5) admet bien une unique solution,
puis la troisieme étape que la solution de (2.5) est aussi une solution du prob-
léme aux limites (2.1) (dans un sens a préciser).

Etape 2 : Résolution de la formulation variationnelle.

Dans cette deuxiéme étape nous vérifions que la formulation variationnelle
(2.5) admet une solution unique. Pour cela nous utilisons le Théoréme de Lax-
Milgram (1.3.1) dont nous vérifions les hypotheses avec les notations
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a(u,v) = /QVu(x) -Vou(zx) dr et L(v) = /Qf(as)v(az) dzx.

On voit facilement en utilisant I'inégalité de Cauchy-Schwarz que a est une
forme bilinéaire continue sur HJ(£2) et que L est une forme linéaire continue
sur H}(Q).

De plus, en vertu de I'inégalité de Poincaré (voir le Corollaire (1.1.2)); on utilise
ici le caractére borné de 'ouvert (), la forme bilinéaire a est coercive, c’est-a-
dire qu’il existe v > 0 tel que

o, v) /Q V@) de > vljolly g Yo € HAQ).

Comme H}(Q) est un espace de Hilbert, toutes les hypothéses du Théoréme de
Lax-Milgram (1.3.1) sont satisfaites et on peut donc conclure qu'il existe une
unique solution u € H} () de la formulation variationnelle (2.5).

Etape 3: Equivalence avec 1’équation.

La troisieme étape (la derniére et la plus délicate) consiste a vérifier qu’en ré-
solvant la formulation variationnelle (2.5) on a bien résolu le probléme aux
limites (2.1), et a préciser dans quel sens la solution de (2.5) est aussi une so-
lution de (2.1). En d’autres termes, il s’agit d’interpréter la formulation vari-
ationnelle et de retourner a ’équation. Pour cela on procéde aux mémes in-
tégrations par parties qui ont conduit a la formulation variationnelle, mais en
sens inverse, et en les justifiant soigneusement.

Cette justification est tres facile si ’on suppose que la solution u de la for-
mulation variationnelle (2.5) est réguliére (précisément si u € H?(2)) et que
Iouvert €2 est aussi régulier, ce que nous faisons dans un premier temps. En
effet, il suffit d’invoquer la formule de Green (1.18) qui nous donne, pour v €

Hy (),

/Vu-Vvdm:—/vAud:U,
Q Q

puisque v = 0 sur le bord 92. On en déduit alors

/(Au+f Jvdr =0 Yve Cr(Q),
0

ce qui implique, en vertu du Corollaire (1.3.3), que —Au = f dans L*(2) et
on a l’égalité

—Au = f presque partout dans 2 (2.6)

De plus, si est un ouvert borné régulier de classe C*, alors le Théoréme de
trace (1.10) affirme que toute fonction de Hg(2) a une trace sur 92 nulle dans
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L?(Q). On en déduit, en particulier, que
u = 0 presque partout sur 0f). (2.7)

On a donc bien retrouvé 1’équation et la condition aux limites de (2.1).

Si I’on ne suppose plus que la solution u de (2.5) et 'ouvert €2 sont réguliers,
il faut travailler davantage (on ne peut plus utiliser la formule de Green (1.18)
qui nécessite que u € H?(f2)). On note ¢ = Vu qui est une fonction a valeurs
vectorielles dans L?(Q)" . Par I'inégalité de Cauchy-Schwarz, on déduit de la
formulation variationnelle (2.5) que, pour tout v € H}(Q)

/U-Vvdm —‘/fvdx
Q Q

Comme C°(Q)) C Hj(9), (2.8) n’est rien d’autre que le critere d’existence
d’une divergence faible de o dans L?(Q) qui vérifie, pour tout v € H} (),

/U-Vvdx:—/divavdx.
Q Q

/(diva +flvdr=0 Yo € C(Q)
Q

< Cloll sy (23)

On en déduit donc que

ce qui implique, en vertu du Corollaire (1.3.3), que —dive = f dans. Par
conséquent divo = Awu appartient a L?(2) (rappelons que divV = A ), et
on retrouve ’équation (2.6). On retrouve la condition aux limites (2.7) comme
précédemment si 'ouvert Q est régulier de classe C. Si Q n’est pas régulier,
alors on ne peut pas invoquer le Théoréme de trace (1.10) pour obtenir (2.7).
Néanmoins, le simple fait d’appartenir & H} () est une généralisation de la
condition aux limites de Dirichlet pour un ouvert non régulier, et on contin-
uera & écrire formellement que u = 0 sur 0€).

En conclusion nous avons démontré le résultat suivant.

Théoréme 2.1 Soit Q un ouvert borné de RN . Soit f € L*(Q). Il existe une
unique solution u € H(Q) dela formulation variationnelle (2.5). De plus, u
vérifie
—Au = f presque partout dans (2,
u = 0 presque partout sur OS).

On appelle la solution u € Hj () de la formulation variationnelle (2.5)
solution variationnelle du probléme aux limites (2.1). Par un raccourci de lan-
gage bien commode, on dira que 'unique solution u € H{(2) de la formulation
variationnelle (2.5) est 'unique solution du probléme aux limites (2.1).
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Cette appellation est bien sir justifiée par le Théoréme(2.1). La solution de
(2.1), que nous venons d’obtenir, ne vérifie a priori ’équation et la condition
aux limites que dans un sens “faible”, c’est-a-dire presque partout (ou méme
pire pour la condition aux limites si 'ouvert n’est pas régulier). On parle alors
de solution faible par opposition aux solutions fortes qu’on aurait pu espérer
obtenir dans une formulation classique de (2.1). De méme, on appelle parfois
la formulation variationnelle formulation faible de I’équation.

Remarque 4 FEn fait, la solution faible peut étre une solution forte si le sec-
ond membre f est plus régqulier. Autrement dit, I’équation et la condition aux
limitesde (2.1) peuvent étre vérifiées en un sens classique, c’est-a-dire pour tout
x € Q, ettout x € 0N, respectivement. C’est ce qu’on appelle un résultat de
régularité pour la solution.

Pour que le probléme aux limites (2.1) soit bien posé (au sens de Hadamard,
il faut en plus de l'existence et de I'unicité de sa solution, montrer que la so-
lution dépend contintiment des données. C’est une conséquence immédiate du
Théoréme de Lax-Milgram (1.3.1) mais nous en donnons un nouvel énoncé et
une nouvelle démonstration.

Proposition 2.1.1 Soit Q un ouvert borné de RN, et soit f € L*(Q) L’application
qui o f € L*(Q) fait correspondre la solution unique v € H} () de la formula-
tion variationnelle de (2.1) est linéaire et continue de L*(Q2) dans H'(Q2) . En

particulier,il existe une constante C > 0 telle que, pour tout f € L*(2), on a

||U||H1(Q) <Cl|f ||L2(Q). (2.9)

Remarque 5 L’inégalité (2.9) est ce qu’on appelle une estimation d’énergie.
Elle garantit que [’énergie de la solution est contrélée par celle de la donnée.
Les estimations d’énergie sont trés naturelles d’un point de vue physique et trés
utiles d’un point de vue mathématique.

Preuve: La linéarité de f — wu est évidente. Pour obtenir la continuité on
prend v = u dans la formulation variationnelle (2.5)

/|Vu|2dx:/fu dx
Q Q

On majore le terme de droite o l’aide de l'inégalité de Cauchy-Schwarz, et on
minore celui de gauche par la coercivité de la forme bilinéaire

2
v HuHHl(Q) <|f HL?(Q) HuHLQ(Q) <|f HL2(Q) Hu”Hl(Q)

d’ot Uon déduit le résultat. m
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Nous avons déja dit que la formulation variationnelle posséde souvent une in-
terprétation physique (c’est, par exemple, le principe des travaux virtuels en
mécanique). En fait, la solution de la formulation variationnelle(2.5) réalise le
minimum d’une énergie (trés naturelle en physique ou en mécanique).

Proposition 2.1.2 Soit J(v) l’énergie définie pour H}(Q) par

J(v):%/Q|Vv|2dx —/va dz.

Soit u € H(Q) la solution unique de la formulation variationnelle (2.5).
Alors u est aussi 'unique point de minimum de [’énergie, c’est-a-dire que

J(u) = min J(v)

veH&

Réciproquement, si u € H(Q) est un point de minimum de l'énergie J(v),
alors u est la solution unique de la formulation variationnelle (2.5)

Exemple 2.1.1 A [l'aide de l’approche variationnelle démontrer ’existence et
l'unicité de la solution de

{—Au+u:f x €

u=0 €0 (2.10)

ot Q) est un ouvert quelconque de l'espace RN, et f € L?(Q2). Montrer en parti-
culier que l’ajout d’un terme d’ordre zéro au Laplacien permet de ne pas avoir

besoin de I’hypothést que ) est borné.

1ér étape. Recherche de la formulation variationnelle.

On multiplie I’équation vérifiée par u par une fonction test v nulle sur 0S2. Par
intégration par partie, on obtient que

/Q(VU'VU —l—uv)da::/ﬂfvdx.

Afin que cette expression ait un sens, il sufit de choisir u et v dans Hj(2). Le

probléme variationnel associée a I'équation (2.5) consiste donc a déterminer
u € HY Q) tel que

a(u,v) = L (v) pour tout v € Hy(Q),

2éme étape. Résolution du probléeme variationnel.
La continuit e de a(.,.) et L(,)est evidente de mme que la coercivité de la forme
bilinéaire a(,). En effet,

2
a(u,u) = ||u||H1(R2)‘
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Les hypothéses du Théoréme de Lax-Milgram sont réunies. Il existe donc une
solution unique au probléme variationnel. On vérifie enfin en effectuant les

meme integrations par partie que lors de la premiere étape que Vu est un élé-
ment de H(div) et que —Au + u = f en tant qu’ éléments de L*(Q) et donc
presque partout dans 2. Enfin, comme u € H(Q), et que Q est un ouvert
réqulier, la trace de u est bien définie et u = 0 presque partout sur OS).

Exemple 2.1.2 Soit Q un ouwvert borné de RN. A l'aide de l’approche varia-
tionnelle démontrer l’existence et ['unicité de la solution du probléeme suivant
de convection diffusion

(2.11)

V-Vu—Au=f x e
u=20 x € 0N}

ou f € L*(Q) et V est une fonction réguliére & valeurs vectorielles telle que
divV = 0 dans €.

1ér étape. Recherche de la formulation variationnelle.

On multiplie I’équation vérifiée par u par une fonction test v nulle sur 0S2. Par
intégration par partie, on obtient la formulation variationnelle suivante :
Trouver u € H}(Q) tel que

a(u,v) = L (v) pour tout v € Hy(R),
a(u,v) = / Vu(z) - Vo(z) + (V (z) - Vu(z)) v (z) dx

Q
L(v) = f(x)v(x) dx

Q

2 éme étape. Résolution du probléme variationnel.

Affin d’appliquer le Théoréme de Lax-Milgram, la seule hypothése non triviale
a

vérifier est la coercivité de la forme bilinéaire af, ).

alu, u) = /Q Vule) - V(@) + (V (@) - Va(e)) u (2) do .
La diveregnee de V' étant nulle, on a
/Q(V(a;)-vu(x))u(x) o — /Q(div(u\/)u—div(V)W) dz
_ /Q div (u V) udz.

Par intégration par partie et comme u = 0, il vient
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[0 @ vue)u a = [ @) )l .
Ainsi,
/Q(V () - Vu(z))u(x) dv =0

et
2
a(u,u) = HVUHLz(Q)

La coercivité de a(,)se déduit alors de l'inégalit e de Poincaré.
3 éme FEtape. Fquivalence avec l’équation.

/QVU () Vv (z)dr = /Qf (x)v(z) — (V (z) Vu (z)v (x)) dz.

Ainsi, en majorant le membre de droite,

/QVu () - Vo (x)dz

< (Hf HLQ(Q) + HV”LOO(Q) HUHH1(9)> HUHLQ(Q)’
et Vu est un élément de H(div). On en déduit donc par intégration par partie
que

—Au+V -Vu=f en tant qu'éléments de L*(Q).

Enfin, comme u € H} (), on a u = 0 sur 9.
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Chapitre 3

Problémes elliptiques non-linéaires
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3.1 Le Lemme du Col

3.1.1 Application du lemme du col

Ce chapitre est consacré a I’étude de la solvabilité du probléme de Dirichlet
suivant

Au = g(u) dans Q
{ u=>0 sur 02 (3-1)
ou © un domaine borné et régulier de RY, et g une fonction vérifier les hy-
pothéses suivantes
! t
lim 9(t) =0 (3.2)
t—0 t
En particulier g(0) = 0 et g dérivable en 0 de dérivée nulle.
2 Il existe 2 < p < 2* tel que :
g < A+ "), vt eR (3.3)
ou 2* = % est 'exposant critique de Sobolev de I'injection Hj () —
L (Q)

3 Soit, pour t € R, G(t) = f(fg(s)ds. Il existe ¢ > 2, et Ry > 0 tels que :
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0 < qG(t) < g(t)t si|t| > Ro (3.4)

L’hypothese (3.3) exprime le fait qu” a U'infini. L’hypothése (3.4) en revenche
montre (d’une certaine fagon) que g croit au moins aussi vite qu’une fonction
de la forme

t— C|t|"*t; C constanteet 2<q< 2.

Proposition 3.1.1 Les solutions u € H} () sont les points critiques de la
fonctionnelle F, de classe C' sur H} (Q) définie par:

:%/ﬂ\wﬁ—/gc:(v), Vo € H(Q)

Afin de pouvoir appliquer les théorémes du calcul des variations, il est tout
d’abord important de se demander comment se comportent les suites de Palais-

Smale de F.

Proposition 3.1.2 Les suites de Palais-Smale de F sont bornées dans H}

().

Preuve: Soit u, une suite de Palais-Smale de F, i.e telle qu’il existe C > 0
vérifiant

|F(un)| < C Vn € N (3.5)

|dF (up)| — 0 dans H™', lorsque n — 400 (3.6)
La relation (3.6)signifie que :

Au, + g(up) — 0, dans  H () (3.7)
En multipliant par u,, et en intégrant on trouve :

(dF (un), un) = (=Au, — g(un), un)

= [ vl = [ g,

Par (3.6)
(AP (). 102) = o(1) [,y 08 lim_o(1) =0
et par (3.4)
[t = q [ 6w
Q Q
On a donc

_ / IVl + ¢ / Gtm) < 0(1) luall -
Q Q
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Par ailleurs par (3.5) on a

‘g/ |Vun|2 —q/G(un)
Q Q

En ajoutant ces deux derniéres relations, le terme q / G(uy,) disparait et on
Q

<C,

obtient
¢ _q) / Vtl® < Cy + 0(1) lttn]l 1 -
2 0 0

Comme q > 2, (% — 1) > 0, et il résulte de linégalité ci-dessus que:

1
2
2
ol gy = ( e )

reste borné lorsque n — +oo. ®
Nous sommes maintenant préts pour etudier la condition de Palais-Smale.

Théoréme 3.1.1 Sip < 2* alors I vérifie la condition de Palais-Smale.

Preuve: Soit u,, une suite de Palais-Smale. D’aprés la proposition (3.1.2),
(Un)nen est bornée dans H}(Q2). On peut donc extraire une suite qui converge
faiblement dans H} () vers un élément u € H (), i.e

u, — u dans H}(Q)(pour une sous-suite, encore notée u,,)

Afin de prouver le théoréme, montrons que si u,, — u dans H}(Q) et p < 2,
alors
g(un)u, — g(u)u fortement dans L' (Q) (3.8)

En effet par injection compacte de Sobolev
Un, — u fort dans LP(Q)(p < 2¥)

Par ailleurs, Yo € C3(2) on a par (3.6)

| 056 = [ gt -+ o0 ey (3.9)
On peut passer a la limite dans (3.9) pour conclure que
/QVu -V = /Qg(u)go,‘v’go € C3(Q) (3.10)
et donc
—Au = g(u) dans 2 (3.11)
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En fait, on peut prendre ¢ € H(Q) dans (3.9) et (3.10). En prenant ¢ = u,,
(res.o = u) dans (3.9) (resp. (3.10)), on a

V| = | glun)un + o(1)
I
1w = [ gt

/|wn| —>/|vuy

et donc u, — u fortement dans Hg ().

Par (3.8)il vient

Remarque 3.1.1 Dans l’énoncé du théoréme (3.1.1), le cas p = 2* est exclu.
C’est lassertion (3.8)qui n'est plus valable, car l'injection H} — L?" n’est pas
compacte.

En fait, dans le cas ou

22,
g(t) = |t]

nous montrerons que la condition de Palais-Smale n’est pas satisfaite. Nous

ferons en particulier une étude détaillée du mécanisme de perte de compacité

dans ce cas-la.

Nous sommes maintenant en mesure de démontrer un résultat d’existence.

Théoréme 3.1.2 Si g vérifie (3.2), pour p < 2* et (3.4) alors il existe une
solution positive u™, non nulle, dans H} () a U'équation (3.1).

Preuve: Nous allons appliquer le lemme du col (théoréme 10.1.1) a la fonc-
tionnelle F'. 1l s’agit alors de trouver une "cuvette”, et un point bas.

1°¢ etape Existence d’une cuvette.

Il est clair, comme g(0) = 0, que la fonction nulle uw = 0 est solution de
l’équation et donc point critique. Afin de voir s’il y a une cuvette autour de
0, nous étudions le développement a l’ordre 2 autour de 0, de la fonctionnelle
F (en fonction de la norme ||||Hé ).

Comme @ — 0 lorsque t — 0, on vérifie par (3.2) et (3.3) que, pour tout
e > 0 il existe une constante C(c) telle que

g < et +Ce) [t

d’ot il résulte que
Cle)

GO <5 Itl +—— [t

On a donc
1 1

1
2 2
Fu) 2 5l = 3¢ llullze = O lullL,
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Comme 2 < p < 2* , on a par injection de Sobolev
[ull Lp < Cp llull g
et par inégalité de Poincaré
[ull 2 < Co [Jull g

Il vient alors

1

1 1
F 2 Il = 5eCallully = ~C,0@)

v

1 1 1 -2 2
. {(5 _ 5502) ~ G006 lull?| Il

11 suffit alors de choisir € tel que

11 1
S (e ==
9 9%

W

Comme p > 2, il existe p, > 0 tel que si ||ul| < py, alors:

Ainsi

Cela établit le point 1 du lemme du col.

22me etape Erxistence du point bas.

Nous allons établir que F' n’est pas minorée, ce qui fournit automatiquement le
point bas uq.

Montrons tout d’abord que G croit au moins aussi vite que |t|?, ¢’est-a-dire

qu’il existe C' > 0 tel que
Gt =C [t (3.12)

Cela résulte en fait de I’hypothése (3.4). En effet:
0<qG(t) <Gt silt| > Ry

qui implique

d
£(|t|*qG(t) >0 si|t| > R
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(3.12)en découle aisément.
On peut alors utiliser un argument d’homogénéité. On a, pour u € H} |

F(\w) = %Q/Q\WE—/QG(M)

<)‘2 V2 Al¢ q
< 2 [1vep = [ u
Q Q

Comme q <2, siv+#0, on voit que

lim F(\v)=—00

[A|—+00
1l suffit alors de choisir un vecteur v non nul, quelconque, et de poser u; = v,
pour \ assez grand.
Fme étape Application du lemme du col.
Par le théoréme (3.1.1), F satisfait (P.S). Nous venons de vérifier que les hy-
pothéses 1, 2 du théoréme 10.1.1 sont satisfaites. On peut donc appliquer ce
résultat, qui nous dit que B > o > 0 est une valeur critique. Nous avons donc
obtenu une solution non triviale de l’équation (3.1). m

Conclusion

Une étude variationnelle de certains problémes faisant intervenir 'opérateur
Laplacien a été présentée dans cette thése. Nous avons été essentiellement con-
cernées par ’étude de I’ existence et la multiplicité de solutions de probléme

de Dirichlet [8]. Les résultats ont été établis par minimisation variationnelle en
utilisant le Théoréme du Lax-Milgrame.

Dans une autre direction nous avons abordé un probléeme elliptiques non-linéaires.
Nous avons déterminé des conditions suffisantes permettant ’existence de solu-
tions en utilisant le lemme du col.
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