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Introduction

Le calcul différentiel est un outil dont tout mathématicien, quelle que soit spécialité,

doit en posséder les rudiments.

Pour celui qui ne les a rencontrées qu’au lycée et en première année d’université, les

équations différentielles sont généralement synonymes de calcul très peu conceptuels abou-

tissant à des expressions algébriques ou analytiques constituant la " solution générale "

de l’équation considérée. Au moment d’abord un enseignement spécifique d’équations dif-

férentielles, il est donc fondé à croire (et à redouter) que ledit enseignement va consister

à lui inculque de nouvelles méthodes (dites de résolution par quadrature) qui lui permet-

tront de déterminer les solutions de classes de plus en plus larges d’équations différentielles.

Il convient donc d’unique tout de suite que très rares sont les équations différentielles

dont les solutions peuvent s’exprimer à l’aide des fonctions usuelles telles que sinx ou log x,

ou de primitive (= quadratures) de telles fonctions. Aussi sera-t-on intéressé à formuler

des théorèmes d’existence et d’unicité de solution : l’unique solution constitue alors une

(nouvelle) fonction dont on peut envisager d’étudier les propriétés (périodicité, monotonie,

comportement à l’infini) aussi bien que les fonctions trigonométriques par exemple.

Un problème aux limites est constitué d’une équation différentielle dont on recherche

une solution prenant des valeurs imposées en des limites du domaine de résolution.

Contrairement au problème de Cauchy, où une ou plusieurs conditions en un même endroit

sont imposées, auquel le théorème de Cauchy-Lipschitz apporte une réponse générale, les

problèmes aux limites sont souvent des problèmes difficiles, et dont la résolution peut à
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chaque fois conduire à des considérations différentes.

l’objectif de ce travail consiste a étudier un ensemble de résultats concernant les pro-

blèmes aux limites associées à certaines équations différentielles du second ordre.

Ce mémoire comporte trois chapitres organisés comme suit :

Tout d’abord de ce premier chapitre intitulé " Préliminaires" est d’introduire quelque no-

tions et résultats utilisés dans les chapitres suivants (Quelques résultats sur les E.D.O.

linéaires du second ordre, Définition d’un problème avec condition initiale (probléme de

Cauchy), Définition du problèmes aux limites avec des exemples simples, Définition de l’ac-

tion de Green avec des exemples simples,... ) qui nous permettra d’étudier les problèmes

aux limites pour les EDO et EDP.

Dans le deuxième chapitre est consacré aux problèmes linéaires pour les équations diffé-

rentielles ordinaires. Nous commençons par discuter les différents types de conditions aux

bords, des conditions qui ne sont pas les mêmes que celles intervenant dans le problème de

Cauchy et qui ont des propriétés particulières (l’alternative de Fredholm). Ensuite, nous

donnons la définition ainsi que les propriétés d’une fonction qui joue un rôle fondamental

dans la représentation des solutions de tels problèmes. Cette fonction est appelée fonction

de Green qui porte le nom du mathématicien anglais George Green (1793-1841). Nous pré-

sentons aussi des méthodes pratiques permettant le calcul de cette fonction. La dernière

partie de ce chapitre est consacrée à l’étude d’une EDO associée à des conditions aux bords

linéaires séparées.

Dans le dernier chapitre nous étudions certains résultats et théorèmes sur l’existence et

l’unicité des solutions de problèmes aux limites pour les EDP. La premiere section traite

de l’équation des ondes. Le deuxième chapitre traite l’équation de la chaleur unidimen-

sionnelle (Diffusion). La derniere section traite de l’équation bidimensionnelle l’équation

de Laplace et l’équation de Poisson.



Chapitre 1

Préliminaires

Dans ce chapitre, nous introduisons des notations, des définitions et certaines lemmes

préliminaires qui seront utilisées dans le reste de ce mémoire.

1.1 Notations et Définitions

1.1.1 Espace de Banach

Définition 1.1.1. Soit (E, ‖ . ‖) un espace vectoriel normé et (xn)n une suite d’éléments

de E. On dira que la suite (xn)n converge vers un élément a ∈ E, si :

∀ ε > 0,∃ N0 ∈ N : ∀ n ∈ N, n > N0 ⇒‖ xn − a ‖6 ε.

Définition 1.1.2. La suite (xn)n est dite de Cauchy, si :

∀ ε > 0,∃ N0 ∈ N : ∀ p, q ∈ N, p, q > N0 ⇒‖ xp − xq ‖6 ε.

Définition 1.1.3. On dit qu’un espace métrique (E, ‖ . ‖) est complet si toute suite de

Cauchy de E est convergente.

Définition 1.1.4. On appelle espace de Banach tout espace vectoriel normé complet.
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Exemples

1 - Pour tout ensemble non vide X, L’ensemble B(X,R) des applications bornées de

X dans R muni de la norme de la convergence uniforme est un espace de Banach.

2 - (R, | . |) est complet.

3 - B(A,F ) l’espace des applications bornées de A→ F où A est un ensemble muni de

la norme du sup :

‖ f ‖B= sup
x∈A
| f(x) |F

1.1.2 Equations différentielles

Définition 1.1.5. Une équation différentielle est une équation dont la ou les inconnues sont

des fonctions, elle se présente sous la forme d’une relation entre ces fonctions inconnues

et leurs dérivées successives. C’est un cas particulier d’équation fonctionnelle.

On distingue généralement deux types d’équations différentielles :

1) les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues ne

dépendent que d’une seule variable.

2) les équations différentielles partielles, plutôt appelées équations aux dérivées par-

tielles (EDP), où la ou les fonctions inconnues peuvent dépendre de plusieurs variables

indépendantes.

Définition 1.1.6. Une équation différentielle est une équation contenant une ou des déri-

vées d’une fonction à une ou plusieurs variables.

L’ordre d’une équation différentielle est l’ordre de la plus haute dérivée apparaissant

dans l’équation.

Une équation différentielle linéaire homogène est une équation différentielle linéaire dans

laquelle F (x) = 0. On dit aussi qu’elle est « sans second membre ».

Exemple

• x2y′′ + 2 = 5x avec y(1) = 3 y′(1) = −1

• y′′ + xy′ − y = 0
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• y′′ + 2y′ + 4y = cosx

Une équation différentielle linéaire d’ordre n est une équation différentielle qui peut

s’écrire sous la forme générale suivante :

a0(x)y(n) + a1(x)y(n−1) + . . .+ an−1 (x)y′ + an(x)y = F (x) a0(x) 6= 0.

telle que ai = 0, . . . , n est une composante d’équation différentielle d’ordre n.

1.2 Quelques résultats sur les E.D.O. linéaires du second

ordre

(Voir : [1] page 35, [2],[7]).

Soit l’équation différentielle du second ordre à coefficient variable suivante :

p(x)y′′ + q(x)y′ + r(x)y = 0, x ∈ [a, b], (1.1)

où p(x) > 0, q(x) et r(x) sont continues sur [a, b].

Théorème 1.2.1. Il existent exactement deux solutions y1 et y2 de l’équation (1.1) qui sont

linéairement indépendantes sur [a, b], i.e. il n’existe pas une constante c tel que y1(x) =

cy2(x), ∀x ∈ [a, b].

Théorème 1.2.2. Soient y1 et y2 deux solutions de l’équation (1.1). Alors y1 et y2 sont

linéairement indépendantes sur [a, b] si et seulement si leurs Wronskien défini par

W (x) = W (y1, y2)(x) =

∣∣∣∣∣∣∣
y1(x) y2(x)

y′1(x) y′2(x)

∣∣∣∣∣∣∣
est différent de zéro pour tout x ∈ [a, b].
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Théorème 1.2.3. ( l’identité d’Abel ou formule d’ostrogradsky-Liouville) Pour

tout x ∈ [a, b], on a

W (x) = W (x0) exp

(
−
∫ x

x0

q(t)

p(t)
dt

)
, x0 ∈ [a, b].

Par conséquent, si le Wronskien s’annule en un point x0 de [a, b] alors il s’annule sur tout

l’intervalle [a, b].

Théorème 1.2.4. Si y1 et y2 sont deux solutions de l’équation (1.1), c1 et c2 sont deux

constantes arbitraires alors c1y1 + c2y2 est aussi solution de l’équation (1.1). De plus si y1

et y2 sont linéairement indépendantes alors toute solution y de (1.1) peut s’écrire sous la

forme

y(x) = k1y1(x) + k2y2(x), x ∈ [a, b] et k1, k2 sont des constantes.

Remarque 1.2.1. Si on connait une solution y1 de l’equation (1.1) alors on peut déter-

miner une solution y2 telles que, y1 et y2 sont linéairement indépendantes ; en utilisant la

méthode de la variation de la constante. On obtient une solution de la forme

y2(x) = y1(x)

∫ x 1

y2
1(t)

exp

(∫ t q(s)

p(s)
ds

)
dt (1.2)

Exemple 1.2.1. Soit l’équation

x2y′′ − 2xy′ + 2y = 0, x ∈ R∗

Il est facile de vérifier que y1(x) = x2 est une solution de l’équation donnée et d’après la

formule (1.2) sa deuxième solution est

y2(x) = x2

∫ x

a

1

t4
exp

(
−
∫ t

a

(−2s)

s2
ds

)
dt =

x2

a2

∫ x

a

1

t4
t2dt = − 1

a2
x+

x2

a3
, a > 0

Remarque 1.2.2. Considérons l’équation

p(x)y′′ + q(x)y′ + r(x)y = f(x), x ∈ [a, b]. (1.3)
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Soient y1 et y2 deux solutions linéairement indépendantes de l’équation (1.1). En utilisant

de variation des constantes on trouve que la fonction yp définie par

yp(x) =

∫ x

H(x, t)
f(t)

p(t)
dt

où

H(x, t) =

∣∣∣∣∣∣∣
y1(t) y2(t)

y′1(x) y′2(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y1(t) y2(t)

y′1(t) y′2(t)

∣∣∣∣∣∣∣
est une solution particulière de l’équation (1.3), donc la solution de cette dernière est

y(x) = yg(x) + yp(x)

= c1y1(x) + c2y2(x) +
∫ x

H(x, t)
f(t)

p(t)
dt.

Formule de dérivation d’une intégrale

Si u, v et f des fonctions dérivables, alors

∂

∂x

∫ v(x)

u(x)

f(x, t)dt = v′(x)f(x, x)− u′(x)f(x, x) +

∫ v(x)

u(x)

∂f(x, t)

∂x
dt

Critère de compacité d’Ascoli-Arzéla

Théorème 1.2.5. Soit X un espace métrique compact, Y un espace de Banach et H ⊂

C(X, Y ) un sous-espace muni de la norme sup. Alors H est relativement compact si et

seulement si :

1. H est uniformément borné, i.e.

∀x ∈ X, l’ensemble {f(x) : f ∈ H} est borné dans Y .

2. H est équicontinu, i.e.

∀ε > 0,∃V ∈ υ(x),∀y ∈ X; y ∈ V =⇒‖ f(y)− f(x) ‖Y≤ ε,∀f ∈ H.
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Dans le cas où X = [a, b] ⊂ R et Y = R, on a le théorème suivant.

Théorème 1.2.6. Soit (fn)n∈N ⊂ C([a, b],R) une suite vérifiant :

1. (fn)n∈N est uniformément borné,i.e.∃c > 0,∀n ∈ N :‖ fn ‖≤ c.

2. (fn)n∈N est équicontinue, i.e. ∀ε > 0,∃δ = δ(ε), ∀x, y ∈ [a, b] :

| x− y |≤ δ =⇒| fn(x)− fn(y) |≤ ε,∀n ∈ N.

Alors, (fn)n∈N admet une sous-suite convergente. (i.e. (fn)n∈N est relativement compacte).

Corollaire 1.2.1. Si (fn)n∈N est borné dans Ck+1([a, b],Rn), i.e. (fn)n∈N et (f ′)n∈N sont

bornées dans C([a, b],Rn), indépendamment de n, alors elle admet une sous-suite conver-

gente dans Ck([a, b],Rn).

Théorème de la convergence dominée de Lebesgue

Théorème 1.2.7. Soit (fn)n∈N une suite de fonctions appartenant à L1(Ω) avec Ω ∈ R.

On suppose que :

1. (fn)(x)→ f(x) p.p sur Ω ;

2. Il existe une fonction g ∈ L1(Ω) telle que ∀n ∈ N, | fn(x) |≤ g(x) p.p sur Ω. Alors,

f ∈ L1(Ω) et ‖ fn − f ‖L1(Ω)→ 0.

Théorème du point fixe de Schauder

Théorème 1.2.8. Soit C un sous ensemble non vide, fermé, borné et convexe d’un espace

de Banach E. Supposons que f : C → C une application continue et compacte. Alors f

admet un point fixe dans C.

Théorème de contraction de Banach

Théorème 1.2.9. (Principe de contraction de Banach, 1992) Soient (X, d) un espace

métrique complet et f : X → X une application contractante. Alors f admet un unique

point fixe y ∈ X.
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1.3 Probléme de Cauchy

En analyse, un problème de Cauchy est un problème constitué d’une équation dif-

férentielle dont on recherche une solution vérifiant une certaine condition initiale. Cette

condition peut prendre plusieurs formes selon la nature de l’équation différentielle. Pour

une condition initiale adaptée à la forme de l’équation différentielle, le théorème de Cauchy-

Lipschitz assure l’existence et l’unicité d’une solution au problème de Cauchy.

Dans le cas d’une équation différentielle d’ordre 1, de la forme y′(t) = f(t, y(t)), la condition

initiale adaptée sera la donnée d’une valeur initiale pour la fonction inconnue y, et pren-

dra la forme d’une équation y(t0) = y0. Les hypothèses du théorème de Cauchy-Lipschitz

exigent une certaine régularité de la fonction f .

Dans le cas des équations d’ordre supérieur, la condition initiale portera sur une hypersur-

face du domaine de définition : par exemple, dans le cas réel, les conditions se porteront

non seulement sur une valeur initiale pour y, mais aussi pour toutes ses dérivées jusqu’à

la dérivée n − 1e pour une équation d’ordre n. Ainsi, pour une équation d’ordre 2 de la

forme y′′(t) = f(t, y′(t), y(t)) seront imposées la valeur initiale de y sous la forme d’une

équation y(t0) = y0, mais aussi la valeur initiale de sa dérivée sous la forme d’une équation

y′(t0) = y0,1. Ceci ne généralise toutefois pas réellement le point précédent dans le sens

que toute équation d’ordre supérieur se ramène à une équation d’ordre 1 en prenant pour

inconnue une fonction à valeurs vectorielles.

Des problèmes analogues, qui ne font toutefois pas l’objet d’une réponse aussi générale que

le problème de Cauchy, sont les problèmes aux limites.

Définition 1.3.1. Soit f(t, x) une application continue de [0, T ] × Rn dans Rn et x(t) ∈

C1([0, T ]→ Rn).

On appelle problème de Cauchy ou à valeurs initiales le problème différentiel


x′(t) = f(t, x(t))

x(0) = x0

(1.4)
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Les hypothèses peuvent être adaptée à des fonctions définies sur un ouvert de Rn. Énon-

çons le théorème fondamental d’existence locale d’une solution de ( 1.4) sous une forme

simplifiée.

Théorème 1.3.1. (Cauchy-Lipschitz) Si f(t, x) est une fonction continue par rapport

à (t, x) et C1 par rapport à x, alors le problème ( 1.4) admet au plus une solution et il

existe θ 6 T tel qu’il existe une solution sur [0, θ[.

On peut compléter cet énoncé par la proposition :

Proposition 1.3.1. Si la solution x(t) de ( 1.4) est bornée sur [0, θ], cette solution peut

être prolongée sur [0, θ′[ avec θ′ > θ. (intuitivement, ou bien la solution explose en θ ou

bien elle peut être prolongée) on en déduit le théorème :

Théorème 1.3.2. Si f(t, x) est continue par rapport à (t, x), C1 par rapport à x, et à

croissance au plus linéaire en x(i.e.;∃M, c : ‖f(t, x)‖ 6M‖x‖+c), alors le problème ( 1.4)

admet une solution et une seule sur [0, T ].

On montre également que la solution de ( 1.4) dépend continûment de x0 ainsi que de

tout paramètre par rapport auquel f(t, x) est continu.

Autrement dit la solution de( 1.4) est stable vis à vis des données du problème. La solution

"générale" d’un système différentiel dans Rn existe donc localement sous des hypothèses

très faibles et elle dépend de n paramètres que l’on peut choisir comme les valeurs initiales

d’un problème de Cauchy. Le deuxième théorème de cette section est un outil puissant

pour montrer l’existence globale de la solution. Nous n’aurons pas de résultat aussi général

pour les équations aux dérivées partielles.
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1.4 Les problèmes aux limites

Quelques définitions

On note J(v) une fonction définie sur un espace normé V , de norme ‖v‖.

Définition 1.4.1. La fonction J(v) est coercive si

∀v ∈ V lim
‖v‖→∞

J(v) = +∞

Définition 1.4.2. La fonction J(v) est convexe si

∀u, v ∈ V, ∀t, t ∈ [0, 1] =⇒ J(tu+ (1− t)v) 6 tJ(u) + (1− t)J(v)

Définition 1.4.3. La fonction J(v) est strictement convexe si

∀u, v ∈ V, ∀t ∈ [0, 1], J(tu+ (1− t)v) < tJ(u) + (1− t)J(v)

Définition 1.4.4. On suppose que V est un espace préhilbertien (c’est à dire muni d’un

produit scalaire).

Une application f(u) de V dans V est monotone (resp. uniformément monotone) si

< f(v)− f(u), v − u >> 0

(resp.s’il existe un réel α > 0 tel que

(f(v)− f(u), v − u) > α(v − u, v − u)

La monotonie de la différentielle caractérise les fonctions convexes :

Théorème 1.4.1. Sur un espace de Hilbert une fonction J(v) différentiable est convexe si

et seulement si (fv) = OJ(v) est monotone.
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Les problèmes aux limites

Les problèmes qui nous intéressent ici modélisent l’état d’un système représenté par p

fonction ui(x) qui dépendent de la position d’un point x. L’état du système est déterminé

par un système d’équations aux dérivées partielles, et par les échanges éventuels du sys-

tème avec l’extérieur. Traduisons cela en termes mathématiques : soit un domaine de Rn de

bord Γ ; on note −→n le vecteur normal unitaire extérieur en un point du bord,−→t le vecteur

tangent.

Problème aux limites pour une équation du second ordre à une inconnue :

Commençons par le cas particulier d’une équation du second ordre à une fonction incon-

nue. Le problème de référence est le problème de Poisson . L’inconnue est une fonction

u(x) de n variables x = (x1, ..., xn) et, bien sûr, on aura normalement n = 2 ou n = 3!

Nous utilisons parfois la notation uxi, uxixj... pour les dérivées partielles
∂u

∂xi
,
∂2u

∂xi∂xj
Nous

écrivons l’équation aux dérivées partielles générale du second ordre sous la forme

f(u, ..., uxi, ..., uxixj, ...) = 0 (1.5)

Nous définissons un problème aux limites sous la forme


f(u, ..., uxi, ..., uxixj, ...) = 0 si x ∈ Ω

g(u, ..., uxi, ...) = 0 si x ∈ Γ

(1.6)

où g(u, ..., uxi, ...) est une fonction connue. La condition sur le bord la plus générale fait

intervenir toutes les dérivées mais elle s’exprime souvent en fonction de la dérivée normale

d’une fonction auxiliaire. En pratique l’expression de la condition aux limites peut différer

entre les parties du bord. Définissons certaines conditions aux limites particulières :

Définition 1.4.5. Les conditions de Dirichlet sont les conditions aux limites du type

u = u0.

Les conditions de Neumann sont les conditions aux limites du type k
∂u

∂n
= g0 o g0 est fixé.

Les conditions mixte ou de Robin sont les conditions aux limites du type k
∂u

∂n
+ αu = g0.
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Si les constantes u0 et g0 sont nulles les conditions aux limites sont dites homogènes.

1.5 Fonction de Green.

Les fonctions de Green constituent une méthode assez général de résolution d’équation

différentielles, ou de transformation d’équations différentielles en équations intégrales. Elles

sont extrêmement utilisées en mécanique quantique, où on les appelle des propagateurs,

et en théorie des processus stochastiques. Nous n’aborderons ce sujet que très légèrement

ici, juste pour rappeler les grands principes de la méthode. Supposons que nous voulons

résoudre l’équation différentielle

a
d2x

dt2
+ b

dx

dt
+ cx = f(t) (1.7)

avec les conditions initiales x(0) = x0 et x′(0) = x̃0 . Ceci est par exemple l’équation

du mouvement d’une particule soumise à une force f(t) . a et b peuvent être fonction

du temps. Pour résoudre cette équation différentielle, il nous faut trouver la solution de

l’équation homogène, et lui ajouter une solution particulière. Nous cherchons justement

une solution particulière. Supposons que nous savons calculer la réponse de la particule à

une force impulsionnelle (genre δ de Dirac) appliquée au temps t′. Saurions nous calculer

la réponse de la particule à une force générale f(t) ? La réponse est oui : la force f(t) peut

être vue comme une superposition d’impulsions appliquées à différent temps. Il suffit donc

de superposer les réponses aux divers impulsions pour obtenir la réponse à la force f(t).

Plus exactement, on peut écrire

f(t) =

∫ ∞
0

f(t′)δ(t− t′)dt′ (1.8)

ce qui veut dire que la force f(t) est la superposition d’impulsions appliquées au temps t′,

avec le poids f(t′). Revenons à notre équation différentielle, et appelons Gt′(t) la réponse

à l’impulsion appliquée au temps t′. Comme mettre les indices est un peu lourd comme

notation, nous noterons cette fonction plutôtG(t, t′). De par sa définition, elle doit satisfaire
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à

a
d2G(t, t′)

dt2
+ b

dG(t, t′)

dt
+ cG(t, t′) = δ(t− t′)

Notez que toutes les dérivations sont faites par rapport à t. Multiplions les deux côtés de

l’équation par f(t′). Comme f(t′) ne dépend pas de t, on peut la rentrer à l’intérieur de

l’opérateur différentiel, et écrire :

a
d2[f(t′)G(t, t′)]

dt2
+ b

d[f(t′)G(t, t′)]

dt
+ cf(t′)G(t, t′) = δ(t− t′)f(t′)

Intégrons maintenant les deux cotés par rapport à t′. Comme la dérivation est par rapport

à t, nous pouvons (jetant par dessus bord la décence et l’exigence à priori de la convergence

uniforme) échanger la dérivation et l’intégration.

a
d2

dt2

∫ ∞
0

f(t′)G(t, t′)dt′+b
d

dt

∫ ∞
0

f(t′)G(t, t′)dt′+c

∫ ∞
0

f(t′)G(t, t′)dt′ =

∫ ∞
0

δ(t−t′)f(t′)dt′

(1.9)

Nous remarquons, d’après ( 1.8), que le côté droit de l’équation ci-dessus est juste f(t).

Appelons

y(t) =

∫ ∞
0

f(t′)G(t, t′)dt′ (1.10)

et nous voyons, d’après ( 1.9), que y(t) est solution de l’équation ( 1.7) ! Remarquez l’élé-

gance,nous devons calculer une seule fois la fonction de green pour une équation diffé-

rentielle. Ensuite, quelque soit le membre de droite, la solution s’obtient par une simple

intégration. La solution générale de l’équation différentielle s’écrit maintenant

x(t) = C1x1(t) + C2x2(t) + y(t)

où C1 et C2 sont choisit pour satisfaire les conditions initiales.

Nous avons occulté pas mal de point important. Voyons quelques exemples. Soit l’équation

dx/dt+ αx = f(t)
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La fonction de Green est la solution de

dG(t, t′)/dt+ αG(t, t′) = δ(t− t′)

Prenons la transformée de Fourier des deux côtés de l’équation (par rapport à t bien sûr)

G̃(ω, t′) =
e−iωt

′

iω + α

H(t) étant la fonction de Heaviside, nulle pour t < 0 et 1 pour t > 0. Comme vous vous

souvenez, la transformée de Fourier de H(t)e−αt est justement 1/(iω + α). Donc,

G(t, t′) = H(t− t′)e−α(t−t′)

Comme vous le remarquez, G(t, t′) = 0 si t′ > t. Cela est normal, puisque G(t, t′) est la

réponse, au temps t, à une impulsion au temps t′. Si t′ est plus tard que t, la réponse est

nulle. Prenons maintenant plusieurs formes de f .

1. f(t) = H(t)t. Alors,

y(t) =
∫∞

0
H(t′)t′H(t− t′)e−α(t−t′)dt′

=
∫∞

0
t′H(t− t′)e−α(t−t′)dt′

=
∫ t

0
t′e−α(t−t′)dt

= (1/α2)(e−αt − 1) + (1/α)t

2. f(t) = H(t) sin βt. Alors, en suivant les même étapes,

y(t) =
∫ t

0
sin(t′)e−α(t−t′)dt

=
1

α2 + β2
[βe−αt + β cos(βt) + α sin(βt)]

Vous voyez ici comment on résout une fois l’équation différentielle pour la fonction de Green,

et qu’ ensuite, il suffit d’appliquer une intégration pour trouver la solution générale. En
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langage opératoriel, on écrirai une équation différentielle comme

L[x] = f

où L est un opérateur différentiel (dans l’exemple ci-dessus d/dt + α ), c’est à dire qui

transforme une fonction en une autre fonction. La solution de cette équation s’écrira

x = L−1[f ]

Trouver la fonction de Green revient à trouver l’opérateur L−1 et ce n’est pas un hasard

donc qu’il comporte une intégration. Si on s’est donné une base, on peut représenter L par

une matrice (infinie) et trouver la fonction de Green revient à inverser cette matrice.

Nous n’avons pas fini avec les fonctions de Green. Supposons que notre équation est un

peu plus compliquée :

a
d2x

dt2
+ b

dx

dt
+ cx = f(t, x)

Le membre de droite comporte explicitement un terme en x, comme par exemple t.x1/2 ce

qui rend la résolution de l’équation nettement plus ardue par les techniques classiques.

Mais cela ne change rien pour les fonctions de green. La solution s’écrira toujours

x(t) = C1x1(t) + C2x2(t) +

∫ ∞
0

f(t′, x)G(t, t′)dt′ (1.11)



Chapitre 2

Problèmes aux Limites pour les

Equations Différentielles Ordinaires

2.1 Introduction

Lorsqu’on considère une équation différentielle ordinaire linéaire homogène du second

ordre,

(EH) p(x)y′′ + q(x)y′ + r(x)y = 0 ; a < x < b;

où p , q et r sont des fonctions continues sur [a; b] tel que [a, b] un intervalle (de R) ouvert ,

et y : [a, b] −→ E , avec E est un espace de Banach réel (de norme notée ‖ . ‖). On sait

très bien qu’il y-à 2 fonctions linéairement indépendantes, qui génèrent la solution générale

de cette équation, c’est-à-dire n’importe quelle solution de l’équation considérée est une

combinaison linéaire de telles fonctions. Quand une équation non homogène

(E) p(x)y′′ + q(x)y′ + r(x)y = f(x) ; x ∈ [a, b];

est considérée, nous devons trouver une solution particulière, pour chaque fonction f don-

née. En l’ajoutant à l’expression générale de la solution de l’équation homogène, nous

obtenons la solution générale de l’équation non homogène.

Si nous fixons les valeurs de y et de sa première dérivée au point de départ a , sous des
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conditions de régularité appropriées sur les données, nous savons qu’un tel problème de

Cauchy est uniquement soluble. De plus, nous aurons l’expression de sa solution unique en

obtenant les valeurs uniques des coefficients dans l’expression donnée pour le cas général.

Quand les coefficients dans l’EDO linéaire (E) sont des constantes, de telles valeurs sont

calculées en résolvant un système algébrique linéaire d’ordre 2.

Cependant, lorsque nous traitons le problème dans lequel la fonction y, et/ou sa première

dérivée , atteignent leurs valeurs en deux points extrêmes a et b, nous savons que l’existence

de solution d’un tel problème aux limites à deux points, en général, n’est pas assurée. Pour

cette raison il est très important de développer des outils qui nous permettent d’assurer

l’existence et l’unicité de la solution de ce type de problèmes, et encore de calculer son

expression exacte.

Parmi les méthodes utilisées pour résoudre ce type de problèmes, on trouve l’Alternative

de Fredholm et le calcul de la fonction de Green : en général, si l’équation (E) associée à

des conditions aux bords homogènes, a seulement la solution triviale y ≡ 0 pour f ≡ 0, La

solution du problème posé est appelé fonction de Green G(t ; s) donnée par :

y(x) =

∫ b

a

G(x, s)f(s)ds, x ∈ [a, b]

Dans ce chapitre, on s’intéresse au équations différentielles ordinaire du second ordre

(E) p(x)y′′ + q(x)y′ + r(x)y = f(x) ; x ∈ [a, b];

où p , q , r et f sont des fonctions continues sur [a, b], associée à des conditions aux bords

linéaires non séparées :

(L)


U1(y) = α1y(a) + α2y

′(a) + α3y(b) + α4y
′(b) = γ

U2(y) = β1y(a) + β2y
′(a) + β3y(b) + β4y

′(b) = δ

où αi , βi , i = 1, 4 et γ, δ. sont des constantes réelles données.

Définition 2.1.1. On appelle problème aux limites homogène associé au problème (E)+(L)
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le problème (EH) + (LH) tel que

(EH) p(x)y′′ + q(x)y′ + r(x)y = 0 ; a < x < b;

(LH)


α1y(a) + α2y

′(a) + α3y(b) + α4y
′(b) = 0

β1y(a) + β2y
′(a) + β3y(b) + β4y

′(b) = 0

Si (f 6= 0 et γ = δ = 0) ou (f = 0et(γ 6= 0 ou δ 6= 0)), on dit que le problème (E) + (L) est

semi homogène.

Remarques 2.1.1. 1. Le problème aux limites (E) + (L) est dit régulier si a et b sont

des nombres finis et p, q , r sont des fonctions bornées sur [a, b] et p(x) 6= 0

∀x ∈ [a, b], sinon on dit qu’il est singulier.

2. Une solution d’un problème aux limites est une fonction qui satisfait l’équation et les

conditions aux limites associées.

3. Les conditions aux bords linéaires (L) sont générales, en particulier elles comprennent :

(a) les conditions de Dirichlet : y(a) = α, y(b) = β;

(b) les conditions de Neuman :y′(a) = α, y′(b) = β;

(c) les conditions mixte : y(a) = α , y′(b) = β ou y′(a) = α , y(b) = β;

(d) les conditions aux limites linéaires séparées


α1y(a) + α2y

′(a) = γ

β1y(b) + β2y
′(b) = δ,

où α2
1 + α2

2 6= 0 et β2
1 + β2

2 6= 0

(e) les conditions aux limites linéaires périodiques


y(a) = y(b)

y′(a) = y′(b).
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2.2 Existence de solutions

L’étude de l’existence et de l’unicité de la solution des problèmes aux limites est plus

difficile que celle des problèmes à valeurs initiales (problèmes de Cauchy). En fait, dans le

cas des problèmes aux limites, une légère modification dans les conditions aux limites ou

dans la longeur de l’intervalle d’étude peut conduire à des changements significatifs dans

le comportement des solutions.Par exemple, le problème à valeurs initiales


y′′(x) + y(x) = 0 ; 0 < x < π

y(0) = α , y′(0) = β;

a pour tout α, β ∈ R une unique solution définie par y(x) = αcosx+ βsinx. Cependant, le

problème aux limites 
y′′(x) + y(x) = 0 ; 0 < x < π

y(0) = 0 , y(π) = α; (α 6= 0)

n’admet pas de solutions et le problème


y′′(x) + y(x) = 0 ; 0 < x < b (0 < b < π),

y(0) = 0 , y(b) = α;

a pour tout α ∈ R une unique solution définie par y(x) = α
sinx

sinb

Alors que le problème 
y′′(x) + y(x) = 0 ; 0 < x < π

y(0) = 0 , y(π) = 0, ;

admet une infinité de solutions définies par y(x) = csinx, c ∈ R.

Le problème homogène (EH) + (LH) admet toujours la solution triviale y ≡ 0 . D’après

l’exemple précèdent il peut avoir une solution non triviale. Le théorème suivant donne

une condition nécessaire et suffisante pour que le problème (EH) + (LH) n’admet pas des

solutions non triviales.
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Théorème 2.2.1. Soient σ et ψ deux solutions linéairement indépendantes de l’équa-

tion (EH) Alors le problème homogène (EH)+(LH) a uniquement la solution triviale y ≡ 0

si et seulement si

∆ =

∣∣∣∣∣∣∣
U1(σ) U1(ψ)

U2(σ) U2(ψ)

∣∣∣∣∣∣∣ 6= 0

Démonstration . Toute solution de l’équation (EH) peut s’écrire sous la forme

y(x) = cσ(x) + dψ(x) ; c, d ∈ R

y est solution du problème (EH) + (LH) si et seulement si


U1(cσ + dψ) = 0

U2(cσ + dψ) = 0.

Ce qui donne le système linéaire

(S)


c U1(σ) + d U1(ψ) = 0

c U2(σ) + d U2(ψ) = 0.

Par suite, le système (S) admet uniquement la solution triviale si et seulement si son

déterminant ∆ est non nul.

Corollaire 2.2.1. Le problème aux limite homogène (EH) + (LH) dispose d’un nombre

infini de solutions non triviales si et seulement si ∆ = 0.

Exemple 2.2.1. Considérons le problème de Dirichlet

(PD1)


xy′′(x)− y′(x)− 4x3y(x) = 0, 1 6 x 6 2

U1(y) = y(1) = 0

U2(y) = y(2) = 0

On a y1(x) = cosh(x2 − 1) et y2(x) = 1
2
sinh(x2 − 1) deux solutions linéairement indépen-
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dantes de l’équation xy′′(x)− y′(x)− 4x3y(x) = 0 avec

∆ =

∣∣∣∣∣∣∣
y1(1) y2(1)

y1(2) y2(2)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1 0

cosh 3 1
2

sinh 3

∣∣∣∣∣∣∣ =
1

2
sinh 3 6= 0

Donc le problème (PD1) n’admet que la solution triviale y ≡ 0.

Exemple 2.2.2. Considérons le problème de Dirichlet

(PD2)


y′′(x) + 2y′(x) + 5y(x) = 0, 0 < x < π

2

U1(y) = y(0) = 0

U2(y) = y(π
2
) = 0

On a y1(x) = e−x cos(x2) et y2(x) = e−x sin(x2) deux solutions linéairement indépendantes

de l’équation y′′(x) + 2y′(x) + 5y(x) = 0 avec

∆ =

∣∣∣∣∣∣∣
1 0

−e−π2 0

∣∣∣∣∣∣∣ = 0

le problème (PD2) en plus d’avoir la solution triviale a aussi des solutions non triviales.

En effet, il existe un nombre infini de solutions y(x) = ce−x sin 2x , où c est une constante

arbitraire.

Maintenant, nous présentons un résultat, appelé Alternative de Fredholm, qui assure

l’existence et l’unicité des solutions du problème non homogène (E) + (L) dans le cas où

le problème homogène n’admet pas de solutions non triviales.

Théorème 2.2.2. (Alternative de Fredholm) Le problème non homogène (E) + (L) admet

une solution unique si et seulement si le problème homogène (EH)+(LH) admet uniquement

la solution triviale y ≡ 0.

Démonstration Soient σ1 et σ2 deux solutions linéairement indépendantes de l’équa-

tion (EH) et ψ une solution particulière de l’équation non homogène (E) Alors la solution
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générale de l’équation (E) s’écrit sous la forme

y(x) = c1σ1(x) + c2σ2(x) + ψ(x), c1, c2 ∈ R

y est solution du problème non homogène (E) + (L) si et seulement si


U1(c1σ1 + c2σ2 + ψ) = γ

U2(c1σ1 + c2σ2 + ψ) = δ

ce qui donne le système linéaire

(S ′)


c1U1(σ1) + c2U1(σ2) + U1(ψ) = γ

c1U2(σ1) + c2U2(σ2) + U2(ψ) = δ

Le système (S ′) admet une unique solution si et seulement si

∆ =

∣∣∣∣∣∣∣
U1(σ) U1(ψ)

U2(σ) U2(ψ)

∣∣∣∣∣∣∣ 6= 0

Par conséquent, le théorème 2.0.1 assure que le problème homogène admet que la solution

triviale.

Fonction de Green associée

Parmis les caractéristiques les plus importantes de la solution du problème aux limite

,Les fonctions de Green ont été introduites par George Green en 1828, ces fonctions inter-

viennent dans la résolution de certaines équations linéaires ainsi que dans la transformation

d’équations différentielles non linéaires en équations intégrales.

Dans ce qui suit on considère l’équation différentielle du second ordre (E) associée aux

conditions aux bords linéaires non séparées (L).



2.2 Existence de solutions 29

Définition 2.2.1. Soit le problème aux limites homogène

(PL)


(EH) p(x)y′′ + q(x)y′ + r(x)y = 0 ; a < x < b;

(LH)


α1y(a) + α2y

′(a) + α3y(b) + α4y
′(b) = 0

β1y(a) + β2y
′(a) + β3y(b) + β4y

′(b) = 0

On appelle fonction de Green associée au problème (PL) toute fonction

G : [a, b]× [a, b] −→ R vérifiant les propriétés suivantes :

(i) G est continue sur [a, b]× [a, b]

(ii)
∂G

∂x
est continue en tout point (x, s) ∈ [a, b]× [a, b] tel que x 6= s.

(iii)
∂G

∂x
(x, x−)− ∂G

∂x
(x, x+) = 1

p(x)
∀x ∈ [a, b]

Où
∂G

∂x
(x, x−) = lim

s−→x−

∂G

∂x
(x, s) et

∂G

∂x
(x, x+) = lim

s−→x+

∂G

∂x
(x, s) ;

(iv) ∀s ∈ (a, b) la fonction x 7→ G(x, s) vérifie l’équation homogène (EH) sur chacun des

intervalles [a, s) et (s, b] ;

(v) ∀s ∈ (a, b) la fonction x 7→ G(x, s) vérifie les conditions homogènes (LH).

Théorème 2.2.3. Supposons que le problème homogène (PL) a seulement la solution

triviale. Alors il existe une unique fonction de Green G, associée à (PL). De plus, pour

toute fonction continue f , la solution unique du problème semi-homogène (E) + (LH) est

donnée par l’expression

y(x) =

∫ b

a

G(x, s)f(s)ds

Démonstration : "Existence, unicité et construction de la fonction G" :

Soient σ1, σ2 deux solutions indépendantes de (EH). Par définition, la fonction partielle

x 7→ G(x, s) est une solution de l’équation (EH) dans chacun des intervalles [a, s[ et ]s, b],il

existe donc quatre fonctions dépendantes de la variable s telles que :

G(x, s) =


η1(s)σ1(x) + η2(s)σ2(x) si a < x < s

µ1(s)σ1(x) + µ2(s)σ2(x) si s < x < b
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Ensuite, les propriétés (i) et (iii) de G donnent le système :

G(x, s) =


η1(s)σ1(x) + η2(s)σ2(x) = µ1(s)σ1(x) + µ2(s)σ2(x)

µ1(s)σ′(x) + µ2(s)σ′(x)− η1(s)σ′(x) + η2(s)σ′(x) =
1

p(x)

(2.1)

Posant v1(s) = µ1(s)− η1(s)etv2(s) = µ2(s)− η2(s), le système ( 2.1) devient


v1(s)σ1(x) + v2(s)σ2(x) = 0

v1(s)σ′(x) + v2(s)σ′(x) =
1

p(s)

(2.2)

Comme W (σ1;σ2)(x) 6= 0 pour tout s ∈ [a, b] le système 2.2 admet une unique solution

(v1(s); v2(s)). En utilisant les relationsµ1(s) = η1(s) + v1(s) et µ2(s) = η2(s) − v2(s) , la

fonction de Green G devient :

G(x, s) =


η1(s)σ1(x) + η2(s)σ2(x) si a ≤ x ≤ s ≤ b

η1(s)σ1(x) + η2(s)σ2(x) + v1(s)σ1(x) + v2(s)σ2(x) si a ≤ s ≤ x ≤ b

Ensuite,la propriété (v) nous donne le système


U1(σ1)η1(s) + U1(σ2)η2(s) = k1(s)

U2(σ1)η1(s) + U2(σ2)η2(s) = k2(s)

(2.3)

oú


k1(s) = −v1(s)[α3σ1(b) + [α4σ

′(b)]− v2(s)[α3σ2(b) + [α4σ
′(b)]

k2(s) = −v1(s)[β3σ1(b) + [β4σ
′(b)]− v2(s)[β3σ2(b) + [β4σ

′(b)]

(2.4)
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En effet, on a

G(a, s) = η1(s)σ1(a) + η2(s)σ2(a), (a ≤ s)

∂G

∂x
(a, s) = η1(s)σ′(a) + η2(s)σ′(a)

G(b, s) = η1(s)σ1(b) + η2(s)σ2(b) + v1(s)σ1(b) + v2(s)σ2(b), (t ≤ b)

∂G

∂x
(b, s) = η1(s)σ′(b) + η2(s)σ′(b) + v1(s)σ′(b) + v2(s)σ′(b)

Comme la fonction x 7→ G(x, s) vérifie les conditions aux bords (LH) pour tout s ∈ [a, b],

alors

α1G(a, s) + α2
∂G

∂x
(a, s) + α3G(b, s) + α4

∂G

∂x
(b, s) = 0,

ce qui donne l’équation

η1(s)[α1σ1(a) + α2σ
′(a) + α3σ1(b) + α4σ

′(b)] + η2(s)[α1σ2(a) + α2σ
′(a) + α3σ2(b)+

α4σ
′(b)] + v1(s)[α3σ1(b) + α4σ′(b)] + v2(s)[α3σ2(b) + α4σ′(b)] = 0,

ce qui est équivalente à

η1(s)[α1σ1(a) + α2σ
′(a) + α3σ1(b) + α4σ

′(b)] + η2(s)[α1σ2(a) + α2σ
′(a) + α3σ2(b)+

α4σ
′(b)] = −v1(s)[α3σ1(b) + α4σ′(b)]− v2(s)[α3σ2(b) + α4σ′(b)] = k1(s),

De même on aura

β1G(a, s) + β2
∂G

∂x
(a, s) + β3G(b, s) + β4

∂G

∂x
(b, s) = 0,

ce qui donne la deuxième équation du système (2.3). Par hypothèse, le problème homogène

(PL) n’admet que la solution triviale donc, d’après le théorème 2.0.1 le déterminant du

système (2.3) est non nul. Ce qui entraîne que ce système admet une unique solution

(η1(s); η2(s)). Maintenant, pour montrer l’unicité de la fonction de Green, nous supposons

que R est une autre fonction vérifiant les conditions (i) − (v), puis pour tout t ∈ [a; b] et
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toute fonction continue f , on aura

∫ b

a

G(x, s)f(s)ds =

∫ b

a

R(x, s)f(s)ds

Alors

∫ b

a

[G(x, s)−R(x, s)]f(s)ds =

∫ b

a

G(x, s)f(s)ds−
∫ b

a

R(x, s)f(s)ds = 0

Pour x fixé, posons f(s) = G(x, s)−R(x, s) , on obtient
∫ b

a

[G(x, s)−R(x, s)]2ds = 0,∀x ∈

[a, b] Ce qui entraîne que G(x, s) = H(x, s) pour tout (x, s) ∈ [a, b]× [a, b].

Existence et unicité de la solution : Soit la fonction y définie par :

y(x) =

∫ b

a

G(x, s)f(s)ds =

∫ x

a

G(x, s)f(s)ds+

∫ b

x

G(x, s)f(s)ds

1. y est solution du problème (E) + (LH), En effet, grâce à la dérivabilité de G par

rapport à x dans chacun des intervalles (a, x]; [x, b) et de la relation suivante :

∂

∂x
(

∫ v(x)

u(x)

f(x, s)ds) = v′(x)f(x, x)− u′(x)f(x, x) +

∫ v(x)

u(x)

∂f(x, s)

∂x
ds

on aura

y′(x) = G(x, x)f(x) +

∫ x

a

∂G

∂x
(x, s)f(s)ds−G(x, x)f(x) +

∫ b

x

∂G

∂x
(x, s)f(s)ds

=

∫ b

a

∂G

∂x
(x, s)f(s)ds

Soit (z, z) un point de la diagonale du carré [a, b] × [a, b]. Par hypothèse
∂G

∂x
(x, s)

est continue en (x, s) dans les deux triangles a 6 s 6 x 6 b et a 6 x 6 s 6 b. Par

conséquent, les deux limites suivantes sont égales :


lim
x−→z

∂G

∂x
(x, z) =

∂G

∂x
(z+, z) si z < x

lim
x−→z

∂G

∂x
(x, z) =

∂G

∂x
(z, z−) si x < z
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Calculons y′′

y′′(x) =

∫ x

a

∂2G

∂2x
(x, s)f(s)ds+ f(x)

∂G

∂x
(x, x−) +

∫ b

x

∂2G

∂2x
(t, s)f(s)ds− f(x)

∂G

∂x
(x, x+)

=

∫ b

a

∂2G

∂2x
(x, s)f(s)ds− f(x)

[
∂G

∂x
(x, x+)− ∂G

∂x
(x, x−)

]

Or
∂G

∂x
(x, x+)− ∂G

∂x
(x, x−) = − 1

p(x)
(propriété (iii) de G) on en déduit l’expression

y′′(x) =

∫ b

a

∂2G

∂2x
(x, s)f(s)ds+

f(s)

p(x)

par suite,

p(x)y′′+q(x)y′+r(x)y =

∫ b

a

[
p(x)

∂2G

∂2x
(x, s) + q(x)

∂G

∂x
(x, s) + r(x)G(x, s)

]
f(s)ds+

f(x) = f(x) (car la fonction t 7→ G(x, s) est solution de l’équation (EH) pout tout

x 6= s).

2. La fonction y vérifie les conditions aux bords homogène. En effet,

U1(y) = α1
0y(a) + β1

0y(b) + α1
1y
′(a) + β1

1y
′(b)

=

∫ b

a

[α1
0G(a, s) + β1

0G(b, s) + α1
1

∂G

∂x
(a, s) + β1

1

∂G

∂x
(b, s)]f(s)ds

=

∫ b

a

U1(G(., s))f(s)ds

= 0 (car U1(G(., s)) = 0).

d’où l’existence de la solution y. L’unicité de la solution y résulte de l’hypothèse sur le

problème homogène ainsi que de l’alternative de Fredholm.
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2.3 Exemple

Considérons le problème aux limites périodique :

(Ω)


y′′ + k2y = 0, 0 < x < ω, k > 0

y(0)− y(ω) = 0

y′(0)− y′(ω) = 0; ω > 0.

Ici
U1(y) = y(0)− y(ω), (α1

0 = 1, α1
1 = 0, β1

0 = −1, β1
1 = 0

U2(y) = y′(0)− y′(ω), (α2
0 = 0, α2

1 = 1, β2
0 = 1, β2

1 = −1)

Cherchons la fonction de Green sous la forme :

G(x, s) =


r1(x− s), si 0 ≤ s ≤ x ≤ ω,

r1(ω + x− s), si 0 ≤ x ≤ s ≤ ω,

où r1 est l’unique solution du problème


z′′(s) + k2z(s) = 0

z(0)− z(ω) = 0

z′(0)− z′(ω) = 1

r′′1(s) + k2r1(s) = 0 =⇒ r1(s) = c1 cos ks+ c2 sin ks; c1; c2 ∈ R.

Puis 
r1(0)− r1(ω) = 0

r′1(0)− r′1(ω) = 1

=⇒


c1(1− c1 cos kω)− c2 sin kω = 0

kc1 sin kω + c2(k − k cos kω) = 1,

on obtient

c1 =

∣∣∣∣∣∣∣
0 − sin kω

1 (k − k cos kω)

∣∣∣∣∣∣∣
2k(1− cos kω)

=
sin kω

2k(1− cos kω)
,
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c2 =

∣∣∣∣∣∣∣
(1− cos kω) 0

sin kω 1

∣∣∣∣∣∣∣
2k(1− cos kω)

=
(1− cos kω)

2k(1− cos kω)
=

1

2k
,

Donc

r1(s) =
sin kω

2k(1− cos kω)
cos ks+

1

2k
sin ks =

cos k
2
ω

2k sin k
2
ω

cos ks+
1

2k
sin ks

D’où

G(x, s) =
1

2k sin k
2
ω


cos k

2
ω cos k(x− s) + sin k

2
ω sin k(x− s), si 0 ≤ s ≤ x ≤ ω

cos k
2
ω cos k(ω + x− s) + sin k

2
ω sin k(ω + x− s), si 0 < x < s ≤ ω

=
1

2k sin k
2
ω


cos(k

2
ω − k(x− s)), si 0 ≤ s ≤ x ≤ ω

cos(k
2
ω − k(ω − s+ x)), si 0 < x < s ≤ ω

=
1

2k sin k
2
ω


cos(k

2
ω − k(x− s)), si 0 ≤ s ≤ x ≤ ω

cos(k(x− s+ ω
2
)), si 0 < x < s ≤ ω

=
1

2k sin k
2
ω


cos(k(−x+ s+ ω

2
)), si 0 ≤ s ≤ x ≤ ω

cos(k(x− s+ ω
2
)), si 0 < x < s ≤ ω

=
1

2k


csc(k

2
ω) cos(k(s− x+ ω

2
)), si 0 ≤ s ≤ x ≤ ω

csc(k
2
ω) cos(k(x− s+ ω

2
)), si 0 < x < s ≤ ω



Chapitre 3

Problèmes aux Limites pour les

Equations Différentielles aux Dérivées

Partielles

3.1 Introduction

Les équations aux dérivées partielles, qui seront notées en abrégé "EDP" dans la suite,

constituent une branche importante des mathématiques appliquées. Elles sont utilisées dans

la modélisation de nombreux phénomènes de natures différentes.

Il est bien connu que la plupart des phénomènes physiques et d’ingénierie peuvent être

décrits dans des modèles mathématiques constitués d’équations aux dérivées partielles li-

néaires du second ordre.

Les EDP linéaires du second ordre peuvent être classées en trois types, les équations hyper-

boliques,les équations paraboliques et les équations elliptiques. Les trois types d’équations

peuvent être réduits aux formes canoniques. Les équations hyperboliques se réduisent à

une forme coïncidant avec l’équation des ondes dans les termes principaux, les équations

paraboliques se réduisent à une forme modélisée par l’équation de la chaleur, et l’équation

de Laplace modélise la forme canonique des équations elliptiques.

Ainsi, l’équation des ondes, la chaleur et les équations de Laplace servent de modèles cano-
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niques pour toutes les EDP de second ordre à coefficient constant. Pour cela, nous devons

étudier certains résultats et théorèmes sur l’existence et l’unicité des solutions des pro-

blèmes aux limites pour les EDPs linéaires du second ordre de type elliptique, parabolique

et hyperbolique.

3.2 EDP Hyperboliques

Dans cet section, on s’intéresse au l’équation des ondes

∂2u

∂t2
− c2∂

2u

∂x2
= 0 −∞ < x <∞, (3.1)

où c est la vitesse de propagation de l’onde le long de la corde. C’est l’équation d’onde

unidimensionnelle qui modélise les ondes sonores, les ondes d’eau, les vibrations dans les

solides et les vibrations de torsion dans une tige.

3.2.1 L’équation d’onde sur R

On peut écrire l’equation ( 3.1) comme

(
∂

∂t
− c ∂

∂x

)
(
∂

∂t
+ c

∂

∂x
)u = 0 −∞ < x <∞ (3.2)

Théorème 3.2.1. La solution générale de l’équation d’onde est donnée par

u(x, t) = f(x+ ct) + g(x− ct) (3.3)

où f et g sont deux fonctions rélles définie sur R.
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Preuve Pour obtenir la formule ( 3.3), nous introduisons les coordonnées caractéris-

tiques

ξ = x+ ct,

v = x− ct.

Selon la règle de la chaîne , nous avons

∂u

∂t
=
∂u

∂ξ

∂ξ

∂t
+
∂u

∂v

∂v

∂t
= c

∂u

∂ξ
− c∂u

∂v

∂u

∂x
=
∂u

∂ξ

∂ξ

∂x
+
∂u

∂v

∂v

∂x
=
∂u

∂ξ
+
∂u

∂v

Lors la substitution, on a

(
∂

∂t
− c ∂

∂x

)
(
∂

∂t
+ c

∂

∂x
)u =

(
−2c

∂

∂v

)(
2c
∂

∂ξ

)
u = 0

ce qui veut dire que

∂2u

∂ξ∂v
= 0 −→ ∂u

∂ξ
= F (ξ) −→ u(ξ, v) = f(ξ) + g(v)

Nous revenons aux variables initiales x et t , on obtient

u(x, t) = f(x+ ct) + g(x− ct).

3.2.2 Problème de valeur initiale

Le problème de valeur initiale consiste à résoudre l’équation d’onde avec des conditions

initiales 
utt(x, t)− c2uxx(x, t) = 0 ,−∞ < x <∞ , t > 0,

u(x, 0) = φ(x), ut(x, 0) = ψ(x),

(3.4)



3.2 EDP Hyperboliques 39

où φ et ψ sont deux fonctions réelles de x. u(x, 0) = φ(x) définit la position initiale de la

chaîne, alors ut(x, 0) = ψ(x) est la vitesse initiale.

Théorème 3.2.2. (La solution d’Alembert 1746) La solution unique au problème de

valeur initiale (3.4)est donnée par

u(x, t) =
1

2
(φ(x+ ct) + φ(x− ct)) +

1

2c

∫ x+ct

x−ct
ψ(τ)dτ (3.5)

Preuve :

Premièrement, en fixant t = 0 en l’equation ( 3.3)on obtient

φ(x) = f(x) + g(x), (3.6)

Puis,en utilisant la règle de la chaîne,nous différencions l’equation ( 3.3) ce qui concerne t

pour obtenir

ψ(x) = cf ′(x)− cg′(x). (3.7)

Résoudre les équations ( 3.6)-( 3.7) pour f ′ et g′

f ′ =
1

2

(
φ′ +

ψ

c

)
g′ =

1

2

(
φ′ − ψ

c

)

En intégrant, nous obtenons


f(s) = 1

2
φ(s) + 1

2c

∫ s
0
ψ(τ)dτ + A

g(s) = 1
2
φ(s)− 1

2c

∫ s
0
ψ(τ)dτ +B

où A et B sont des constantes, à cause de Eq( 3.6), on a A + B = 0. En rempla-

çant s = x + ct dans la formule de f et s = x − ct dans celui de g , on obtient
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u(x, t) = f(x+ ct) + g(x− ct)

=
[

1
2
φ(x+ ct) + 1

2c

∫ x+ct

0
ψ(τ)dτ + A

]
+
[

1
2
φ(x− ct)− 1

2c

∫ x−ct
0

ψ(τ)dτ +B
]

= 1
2
(φ(x+ ct) + φ(x− ct)) + 1

2c

∫ x+ct

x−ct ψ(τ)dτ.

3.2.3 L’équation des ondes avec une source

L’objectif de cette section est de résoudre


utt(x, t)− c2uxx(x, t) = f(x, t),−∞ < x <∞, t > 0,

u(x, 0) = φ(x), ut(x, 0) = ψ(x),

(3.8)

avec f(x, t) est une fonction donnée.

Théorème 3.2.3. La solution unique du problème( 3.8) est donnée par :

u(x, t) =
1

2
(φ(x+ct)+φ(x−ct))+

1

2c

∫ x+ct

x−ct
ψ(τ)dτ+

1

2c

∫ 0

t

1

2c

∫ x+c(t−τ)

x−c(t−τ)

f(y, τ)dydτ (3.9)
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Preuve : Soit Ω un intervalle bornné par un triangle avec une limite lisse dans le plan

xt avec des sommets sur (x0, t0), (x0 − ct0, 0) et (x0 + ct0, 0), et laisser ∂∆ être une limite

de ∆ telle que ∂∆ = γ1 + γ2 + γ3 (voir figure 1) donc,

1.png

∫ ∫
∆
fdtdx =

∫ ∫
∆

(−c2uxx + utt)dtdx

=
∫ ∫

∆
(−c2(ux)x − (−ut)t)dtdx

=
∫
∂∆

(−c2uxdt− utdx) (en utilisant le Théorème de Green)

=
∫
γ1

(−c2uxdt− utdx) +
∫
γ2

(−c2uxdt− utdx) +
∫
γ3

(−c2uxdt− utdx)

– Sur γ1 : t = 0→ dt = 0. donc,

∫
γ1

(−c2uxdt− utdx) = −
∫
γ1

ut(x, 0)dx = −
∫ x0+ct0

x0−ct0
ψ(x)dx.

– Sur γ2 : x+ ct = x0 + ct0 → dx+ cdt = 0. donc,

∫
γ2

(−c2uxdt− utdx) = c
∫
γ2

(uxdx− ut)dt

= c
∫
γ2
du. (la dérivée totale deu(x, t)),

= cu(x0, t0)− cφ(x0 + ct0).
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– Sur γ3 : x− ct = x0 − ct0 → dx− cdt = 0. donc,

∫
γ3

(−c2uxdt− utdx) = c
∫
γ3

(−uxdx− ut)dt

= −c
∫
γ3
du.

= cu(x0, t0)− cφ(x0 − ct0). ,

En additionnant ces trois résultats, on obtient

∫ ∫
∆

fdxdt = 2cu(x0, t0)− c [φ(x0 + ct0) + φ(x0 − ct0)]−
∫ x0+ct0

x0−ct0
ψ(x)dx.

Par conséquent, nous avons

u(x, t) =
1

2
(φ(x+ ct) + φ(x− ct)) +

1

2c

∫ x+ct

x−ct
ψ(τ)dτ +

1

2c

∫ 0

t

∫ x+c(t−τ)

x−c(t−τ)

f(y, τ) dydτ.

3.2.4 Problème de Goursat

Le problème de Goursat est donné sous la forme


utt(x, t)− c2uxx(x, t) = h(x, t), −∞ < x <∞, t > 0,

u(x, t) = f(x), pour x = ct,

u(x, t) = g(x), pour x = −ct.

(3.10)

Théorème 3.2.4. La solution unique du problème de Goursat ( 3.10) est donnée par

u(x, t) = f

(
x+ ct

2

)
+ g

(
x− ct

2

)
− u(0, 0)− 1

4c2

∫ x+ct

0

∫ x−ct

0

h

(
s+ v

2
,
s− v

2

)
dv ds
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Preuve :

Ici,les conditions sont données sur les caractéristiques (voir figure 2)

2.png

Introduire les coordonnées caractéristiques

ξ = x+ ct et v = x− ct.

Ensuite, ( 3.10) peut être transformé en le problème équivalent suivant :



−4c2 ∂
2u

∂ξ∂v
= h

(
ξ + v

2
,
ξ − v

2c

)
−∞ < ξ + v <∞, ξ > v,

u(ξ, 0) = f( ξ
2
), u(0, v) = g(v

2
),

u(0, 0) = f(0) = g(0).

(3.11)

La solution de ( 3.11) est donné sous la forme

u(ξ, v) = f

(
ξ

2

)
+ g

(v
2

)
− u(0, 0)− 1

4c2

∫ ξ

0

∫ v

0

h

(
ξ + v

2
,
ξ − v

2

)
dv ds

Retournez aux variables indépendantes originales

u(x, t) = f

(
x+ ct

2

)
+ g

(
x− ct

2

)
− u(0, 0)− 1

4c2

∫ x+ct

0

∫ x−ct

0

h

(
s+ v

2
,
s− v

2

)
dv ds
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3.2.5 L’équation d’onde dans R+ :

Essayons maintenant avec le même type de problème pour l’équation d’onde

Le problème de Dirichlet sur R+

Considérez le problème de Dirichlet sur R+
utt(x, t)− c2uxx(x, t) = 0, 0 < x <∞, t > 0,

u(x, 0) = φ(x), ut(x, 0) = ψ(x),

u(0, t) = 0.

(3.12)

de la même manière que précédemment ,

f(x) =
1

2
φ(x) +

1

2c

∫ 0

x

ψ(τ)dτ + A

g(x) =
1

2
φ(x)− 1

2c

∫ 0

x

ψ(τ)dτ +B, avec A+B = 0

Il faut connaître la fonction g(x−ct) pour x−ct < 0. Pour cela, en tenant en considération

la condition limite

u(0, t) = 0, ∀t > 0.

f(ct) + g(−ct) = 0 ou g(y) = −f(−y), ∀y < 0,

c’est-à-dire,

g(x− ct) = −f(−(x− ct)) = −f(ct− x), qui a défini sur R−.

Ensuite, la solution est donnée par

u(x, t) =


1
2
(φ(x+ ct) + φ(x− ct)) + 1

2c

∫ x+ct

x−ct ψ(τ)dτ, x > ct

1
2
(φ(x+ ct)− φ(x− ct)) + 1

2c

∫ x+ct

x−ct ψ(τ)dτ, x < ct
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Le problème de Neumann sur R+

Considérez le problème de Neumann sur R+
utt(x, t)− c2uxx(x, t) = 0, 0 < x <∞, t > 0,

u(x, 0) = φ(x), ut(x, 0) = ψ(x),

ux(0, t) = 0.

(3.13)

Encore, pour x − ct, nous utilisons la condition limite ux(0, t) = 0, et à partir de l’equa-

tion( 3.3), nous obtenons

f ′(ct) + g′(−ct) = 0.

Maintenant, en fixant y = −ct, on obtient

g′(y) = −f ′(−y), ∀y < 0.

Alors,

g(y) = f(−y) + C.

Par conséquent,

g(x− ct) = f(ct− x) + C =
1

2
φ(ct− x) +

1

2c

∫ ct−x

0

ψ(τ)dτ + A+ C

Depuis,

B +
1

2
φ(0) = g(0) = f(0) + C =

1

2
φ(0) + A+ C,

nous avons A+ C = B etA+B = 0

Par conséquent, la solution est trouvée comme :

u(x, t) =


1
2
(φ(x+ ct) + φ(x− ct)) + 1

2c

∫ x+ct

x−ct ψ(τ)dτ, x > ct

1
2
(φ(x+ ct)− φ(x− ct)) + 1

2c

(∫ x+ct

0
ψ(τ)dτ +

∫ ct−x
0

ψ(τ)dτ
)
, x < ct



3.2 EDP Hyperboliques 46

3.2.6 Existence de solutions

Soit H l’espace de toutes les fonctions φ définies sur R2 et de classe C2 qui sont nulles

à l’extérieur d’un intervalle bornnée de R2.

Théorème 3.2.5. Soit u ∈ C2,alors

∫ ∫
R2

u(x, t)

[
∂2φ

∂t2
− c2∂

2φ

∂x2

]
dxdt =

∫ ∫
R2

φ(x, t)

[
∂2u

∂t2
− c2∂

2u

∂x2

]
dxdt

Preuve : Soit φ ∈ H, il existe un rectangle Ω = (−a, a)× (−b, b) telle que φ est égal

3.png

à zéro à l’extérieur Ω (voir figure 3) Laissez

∫ ∫
Ω

u(x, t)

[
∂2φ

∂t2
− c2∂

2φ

∂x2

]
dxdt =

∫ ∫
Ω

u(x, t)
∂2φ

∂t2
dxdt− c2

∫ ∫
Ω

u(x, t)
∂2φ

∂x2
dxdt

mais , ∫ ∫
Ω

u(x, t)
∂2φ

∂t2
dxdt =

∫ a

−a

∫ b

−b
u(x, t)

∂2φ

∂t2
dxdt

avec double Intégration par parties par rapport à t de −b à b et en prenant en compte

φ(x, t) ∈ H, on obtient

∫ −b
−b u(x, t)

∂2φ

∂t2
dt =

[
u(x, t)

∂φ

∂t

]−b
b

−
∫ b
−b
∂u

∂t

∂φ

∂t
dt

=

[
u(x, t)

∂φ

∂t

]−b
b

−
[
∂u

∂t
φ(x, t)

]−b
b

+
∫ −b
−b φ(x, t)

∂2u

∂t2
dt

=
∫ −b
−b u(x, t)

∂2φ

∂t2
dt.



3.2 EDP Hyperboliques 47

Donc,

∫ ∫
Ω

u(x, t)
∂2φ

∂t2
dxdt =

∫ a

−a

∫ b

−b
φ(x, t)

∂2u

∂t2
dxdt =

∫ ∫
Ω

φ(x, t)
∂2u

∂t2
dxdt

De même, ∫ ∫
Ω

u(x, t)
∂2φ

∂x2
dxdt =

∫ a

−a

∫ b

−b
u(x, t)

∂2φ

∂x2
dxdt

Par une intégration par parties par rapport à x de −a à a,

∫ ∫
Ω

u(x, t)
∂2φ

∂x2
dxdt =

∫ a

−a

∫ b

−b
φ(x, t)

∂2u

∂x2
dxdt =

∫ ∫
Ω

φ(x, t)
∂2u

∂x2
dxdt

Donc,

∫ ∫
Ω

u(x, t)

(
∂2φ

∂t2
− c2∂

2φ

∂x2

)
dxdt =

∫ ∫
Ω

φ(x, t)

(
∂2φ

∂t2
− c2∂

2φ

∂x2

)
dxdt

Par conséquent,

∫ ∫
R2

u(x, t)

(
∂2φ

∂t2
− c2∂

2φ

∂x2

)
dxdt =

∫ ∫
R2

φ(x, t)

(
∂2φ

∂t2
− c2∂

2φ

∂x2

)
dxdt

Remarque 3.2.1. Si u est une solution de utt−c2uxx = 0 alors,
∫ ∫

Ω
u(φtt−c2φxx)dtdx = 0.

Corollaire 3.2.1. Pour l’équation d’onde

utt − c2uxx = 0. (3.14)

Une fonction de classe C2est une solution de l’équation ( 3.14) si et seulement si

∫ ∫
R2

u(x, t)

(
∂2φ

∂t2
− c2∂

2φ

∂x2

)
dxdt = 0, ∀φ ∈ H
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Définition 3.2.1. Une solution de l’équation ( 3.14), telle que

∫ ∫
R2

u(x, t)

(
∂2φ

∂t2
− c2∂

2φ

∂x2

)
dxdt = 0, ∀φ ∈ H

est appelé une solution faible.

3.2.7 Énergie et unicité

Énergie

Soit u une solution de l’équation d’onde ( 3.1). En multipliant des deux côtés de l’équation

( 3.1)par
∂u

∂t
et d’intégration par rapport à x, sur I = [a, b] ⊂ R, on obtient

∫ b

a

∂u

∂t

∂2u

∂t2
dx− c2∂u

∂t

∂2u

∂x2
dx = 0 (3.15)

depuis

∂u

∂t

∂2u

∂t2
dx =

1

2

∂

∂t

(
∂u

∂t

)2

,

∂u

∂t

∂2u

∂x2
=

∂

∂x

(
∂u

∂x

∂u

∂t

)
− ∂u

∂x

∂2u

∂x∂t
∂u

∂x

∂2u

∂x∂t
=

1

2

∂

∂t

(
∂u

∂x

)2

.

Ainsi, l’équation ( 3.15) devient

1

2

∫ b

a

∂

∂t

[(
∂u

∂t

)2

+ c2

(
∂u

∂x

)2
]
dx = c2∂u

∂x

∂u

∂t
||x=b
x=a (3.16)

Soit

E(t) =
1

2

∫ b

a

∂

∂t

[(
∂u

∂t

)2

+ c2

(
∂u

∂x

)2
]
dx (3.17)

Cette intégrale s’appelle l’intégrale de l’énergie de u.( Loi sur l’économie de l’énergie)

.
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Proposition 3.2.1. Soit I = [a, b] ⊂ R.

dE

dt
=

1

2

∫ b

a

∂

∂t

∂

∂t

[(
∂u

∂t

)2

+ c2

(
∂u

∂x

)2
]
dx = c2∂u

∂x

∂u

∂t
||x=b
x=a

Unicité de la solution

Nous allons établir le théorème de l’unicité

Théorème 3.2.6. Soient u1 et u2 sont deux solutions au problème suivant :


utt(x, t)− c2uxx(x, t) = f(x, t), a < x < b, t > 0,

u(x, 0) = φ(x), ut(x, 0) = ψ(x),

u(a, t) = α(t), u(b, t) = β(t), t > 0.

(3.18)

Alors u1(x, t) = u2(x, t), x ∈ [a, b], ∀t > 0.

Preuve

Soit v(x, t) = u1(x, t) − u2(x, t) est une solution de problème ( 3.18), alors nous avons

v(a, t) = 0 et v(b, t) = 0,

d

dt
v(a, t) = 0 et

d

dt
v(b, t) = 0

On Utilise la proposition ( 3.2.1),

dE

dt
= c2

[
∂

∂x
v(b, t)

∂

∂t
v(b, t)− ∂

∂x
v(a, t)

∂

∂t
v(a, t)

]
= 0.

où E est l’intégral de l’énergie de v, c’est-à-dire

E(t) =
1

2

∫ b

a

[(
∂

∂t
v(x, t)

)2

+ c2

(
∂

∂x
v(x, t)

)2
]
dx = A,

où A est une constante,depuis v(x, 0) = 0,
∂

∂x
v(x, 0) = 0

∂

∂t
v(x, 0) = 0, en évaluant E(0)
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pour obtenir

E(0) = 0 = A.

Ansi,

E(t) =
1

2

∫ b

a

[(
∂

∂t
v(x, t)

)2

+ c2

(
∂

∂x
v(x, t)

)2
]
dx = 0,

Il s’agit de

E(t) =
1

2

∫ b

a

(
∂

∂t
v(x, t)

)2

dx+
c2

2

∫ b

a

(
∂

∂x
v(x, t)

)2

dx = 0,

D’oú
d

dt
v(x, t) = 0 et

d

dx
v(x, t) = 0

c’est-à-dire

v(x, t) = B.

En utilisant v(x, 0) = 0 , on obtient B = 0 . Cela signifie que

v(x, t) = 0→ u1(x, t) = u2(x, t).

3.3 EDP Paraboliques

Dans cette section, nous commençons notre étude de l’équation unidimensionnelle de

la chaleur (Diffusion)

∂u

∂x
− k∂

2u

∂t2
= 0, a 6 x 6 b, 0 6 t 6 T, (3.19)

où k est appelé la diffusion thermique. L’équation parabolique générale peut être formulée

comme suit : Trouvez une solution générale u(x, t) de l’équation ( 3.19) qui satisfait

(i) CI : la valeur de u à t = 0 est une fonction connue.

(ii) CB : on nous donne pour tout t la valeur de u et
∂u

∂x
à x = a et x = b.
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La solution ( 3.19) dans le rectangle Ω = (a, b) × (0, T ) atteint son maximum ou son

minimum sur

∂Ω = (x = a, 0 6 t 6 T ) ∪ (x = b, 0 6 t 6 T ) ∪ (t = 0, a 6 x 6 b).

3.3.1 Le principe du maximum

1. Soient u1 et u2 sont deux solutions de

∂u

∂x
− k∂

2u

∂t2
= 0, sur Ω \ ∂Ω

si u1 6 u2 dans ∂Ω, alors u1 6 u2 on Ω.

2. u(x, t) atteint son extermum sur ∂Ω sim 6 u(x, t) 6M sur ∂Ω , alorsm 6 u(x, t) 6

M surΩ.

En particulier, si u(x, t) = 0 sur ∂Ω, alors u(x, t) = 0 sur Ω.

3.3.2 La solution fondamentale

La solution fondamentale de l’équation de la chaleur

ut(x, t)− kuxx(x, t) = 0,

est donnée par

θ(x, t) =
1

2
√
πkt

e−
x2

4kt .

Lemme 3.3.1. Si a > 0, alors

∫ +∞

−∞
e−au

2

du =

√
π

a
.
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Preuve :

I2 =

∫ +∞

−∞
e−ax

2

dx

∫ +∞

−∞
e−ay

2

dy =

∫ 2π

0

∫ ∞
0

re−ar
2

drdθ =
π

a
,

→ I =

√
π

a
.

3.3.3 L’équation de la chaleur sur R :

On considère le problème à valeur initiale suivant :


ut(x, t)− kuxx(x, t) = 0, −∞ < x <∞, t > 0,

u(x, 0) = ϕ(x).

(3.20)

Théorème 3.3.1. La solution unique du problème ( 3.20) est donnée par

u(x, t) =
1

2
√
πkt

∫ +∞

−∞
e
−(x−y)2

4kt ϕ(y)dy, t > 0. (3.21)

Preuve :

Soient ût(ω, t) et ûxx(ω, t) être la transformée de Fourier de ut(x, t) et uxx(x, t) respective-

ment. Ainsi

ût(ω, t) =
∫ +∞
−∞ ut(x, t)e

iωxdx

=
∂

∂t

∫ +∞
−∞ u(x, t)eiωxdx

=
∂

∂t
û(ω, t)

on impose u(x, t)→ 0 quand x −→ ±∞

ûxx(ω, t) =
∫ +∞
−∞ uxx(x, t)e

iωxdx

=
∂

∂x
u(x, t)e−iωx |+∞−∞ +iω

[
u(x, t)e−iωx |+∞−∞ +iω

∫ +∞
−∞ u(x, t)e−iωxdx

]
= −ω2û(ω, t)
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en prenant la transformation de Fourier des deux côtés de ( 3.20) on obtient une EDO en t


∂

∂t
û(ω, t) + kω2û(ω, t) = 0, t > 0

û(ω, 0) = φ̂(ω),

avec

û(ω, t) = φ̂(ω)e−kω
2t.

Maintenant , soit θ̂(ω, t) = e−kω
2t nous essayons de trouver θ(x, t) par Fourier inverse

θ(x, t) =
1

2π

∫ +∞
−∞ θ̂(ω, t)eixωdω

=
1

2π

∫ +∞
−∞ θ̂(ω, t)e−ktω

2+ixωdω

=
1

2π

∫ +∞
−∞ θ̂(ω, t)e

−kt

ω− ix
2kt

2

−

 ix

2kt

2
dω

=
1

2π

∫ +∞
−∞ θ̂(ω, t)e

−kt

ω− ix
2kt

2

e
−
x2

4kt dω

=
1

2
√
πkt

e
−
x2

4kt , (Lemme(3.2.1)).

Maintenant, par convolution, nous obtenons le résultat

u(x, t) =
∫ +∞
−∞ θ(x− y, t)ϕ(y)dy

=
1

2
√
πkt

∫ +∞
−∞ e−

(x−y)2
4kt ϕ(y)dy.

3.3.4 La chaleur en demi-ligne

Le problème de Dirichlet sur R+

Le problème est


ut(x, t)− kuxx(x, t) = 0, 0 < x < +∞, t > 0,

u(x, 0) = ϕ(x),

u(0, t) = 0.

(3.22)
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Théorème 3.3.2. La solution unique du problème ( 3.22) est donnée par

u(x, t) =
1

2
√
πkt

∫ +∞

0

e−(x− y)2

4kt − e
−(x+ y)2

4kt

ϕ(y)dy, t > 0. (3.23)

Preuve :

Prolongez ϕ à R

ϕimpaire(x) =


ϕ(x), x > 0

0, x = 0

−ϕ(−x), x < 0

Alors la solution sur R est

u(x, t) =
∫ +∞
−∞ θ(x− y, t)ϕimpaire(y)dy

=
∫ 0

−∞ θ(x− y, t)ϕimpaire(y)dy +
∫ +∞

0
θ(x− y, t)ϕimpaire(y)dy

=
∫ 0

−∞ θ(x− y, t)(−ϕ(−y))dy +
∫ +∞

0
θ(x− y, t)ϕ(y)dy,

=
∫ +∞

0
[−θ(x+ y, t) + θ(x− y, t)]ϕ(y)dy

=
1

2
√
πkt

∫ +∞
0

e−(x− y)2

4kt − e
−(x+ y)2

4kt

ϕ(y)dy

Le problème de Neumann sur R+

Considérez le problème de Neumann


ut(x, t)− kuxx(x, t) = 0, 0 < x < +∞, t > 0,

u(x, 0) = ϕ(x),

ux(0, t) = 0.

(3.24)

Théorème 3.3.3. La solution unique du problème ( 3.22) est donnée par

u(x, t) =
1

2
√
πkt

∫ +∞

0

e−(x− y)2

4kt + e

−(x+ y)2

4kt

ϕ(y)dy, t > 0. (3.25)
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Preuve :

Prolongez ϕ à R

ϕpaire(x) =


ϕ(x), x > 0

0, x = 0

ϕ(−x), x < 0

Alors la solution sur R est

u(x, t) =
∫ +∞
−∞ θ(x− y, t)ϕpaire(y)dy

=
∫ 0

−∞ θ(x− y, t)ϕpaire(y)dy +
∫ +∞

0
θ(x− y, t)ϕpaire(y)dy

=
∫ 0

−∞ θ(x− y, t)(ϕ(−y))dy +
∫ +∞

0
θ(x− y, t)ϕ(y)dy,

=
∫ +∞

0
[θ(x+ y, t) + θ(x− y, t)]ϕ(y)dy

=
1

2
√
πkt

∫ +∞
0

e−(x− y)2

4kt + e

−(x+ y)2

4kt

ϕ(y)dy

3.3.5 L’unicité :

Le principe du maximum peut être utilisé pour donner une preuve d’unicité pour le

problème de Dirichlet.

Théorème 3.3.4. Si u1 et u2 sont deux solutions aux problème de Dirichlet pour l’équation

de la chaleur 
ut(x, t)− kuxx(x, t) = h(x, t), a 6 x 6 b, t > 0,

u(x, 0) = ϕ(x), a 6 x 6 b,

u(a, t) = f(x), u(b, t) = g(x),

(3.26)

pour quatre fonctions données f, ϕ, g et h Alor,u1 = u2

Preuve :

Soit v(x, t) = u1(x, t) − u2(x, t) être une solution au problème ( 3.26), nous avons alors

vt(x, t)− kvxx(x, t) = 0, v(x, 0) = 0, v(a, t) = 0, v(b, t) = 0.



3.4 EDP Elliptiques 56

Cela signifie que v(x, t) = 0 sur Γ, par le principe de maximum v(x, t) = 0 sur Ω,

de sorte que u1(x, t) = u2(x, t), ∀a 6 x 6 b, t > 0.

3.4 EDP Elliptiques

L’équation de Laplace

L’équation de Laplace, également appelée équation potentielle, peut être écrite comme suit

∂2u

∂x2
+
∂2u

∂y2
= 0 (3.27)

qui est l’équation bidimensionnelle de Laplace. aussi

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0

n∑
i=1

∂2u

∂x2
i

= 0

sont respectivement l’équation de Laplace à trois et à n dimensions. Pour l’équation de

Laplace sur Ω , un problème complet bien posé consiste en une équation potentielle avec

des conditions limites appropriées sur ∂Ω.

3.4.1 L’équation de Laplace en coordonnées polaires :

On peut écrire l’equation( 3.27) en coordonnées polaires u(x, y)→ u(r, θ) on obtient

∂u

∂x
=
∂u

∂r

∂r

∂x
+
∂u

∂θ

∂θ

∂x
,

∂2u

∂x2
=

∂

∂x

(
∂u

∂r

∂r

∂x
+
∂u

∂θ

∂θ

∂x

)
=

(
∂r

∂x

)2
∂2u

∂r2
+
∂2r

∂x2

∂u

∂r
+
∂2θ

∂x2

∂u

∂θ
+

(
∂θ

∂x

)2
∂2u

∂θ2
.

De même,
∂2u

∂y2
=

(
∂r

∂y

)2
∂2u

∂r2
+
∂2r

∂y2

∂u

∂r
+
∂2θ

∂y2

∂u

∂θ
+

(
∂θ

∂y

)2
∂2u

∂θ2
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Nous avons

∂2u

∂x2
+
∂2u

∂y2
=

[(
∂r

∂x

)2

+

(
∂r

∂y

)2
]
∂2u

∂r2
+

[
∂2r

∂x2
+
∂2r

∂y2

]
∂u

∂r

+

[
∂2θ

∂x2
+
∂2θ

∂y2

]
∂u

∂θ
+

[(
∂θ

∂x

)2

+

(
∂θ

∂y

)2
]
∂2u

∂θ2

= 0

Maintenant, nous calculons les dérivés de r =
√
x2 + y2 et θ = tan−1

(
x
y

)
,pour obtenir

∂r

∂x
=

x√
x2 + y2

,
∂2r

∂x2
=

y2√
(x2 + y2)3

,
∂r

∂y
=

y√
x2 + y2

,
∂2r

∂y2
=

x2√
(x2 + y2)3

∂θ

∂x
= − y

x2 + y2
,

∂2θ

∂x2
=

2xy

(x2 + y2)2
,

∂θ

∂y
= − x

x2 + y2
,

∂2θ

∂x2
= − 2xy

(x2 + y2)2

On obtient l’équation de Laplace en coordonnées polaires

∂2u

∂r2
+

(
1

r

)
∂u

∂r
+

(
1

r2

)
∂2u

∂θ2
= 0, 0 6 θ 6 2π, 0 < r <∞ (3.28)

3.4.2 L’equation de Laplace sur un rectangle

Le problème de Dirichlet

Considérez Ω = (a, b)× (s, d).Le problème de Dirichlet


uxx(x, y) + uyy(x, y) = 0, sur Ω

ux(a, y) = φ(y), ux(b, y) = ψ(x), c < y < d,

uy(x, c) = α(x), uy(x, d) = β(x), a < x < b,

(3.29)
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Le problème de Neumann

Considérez Ω = (a, b)× (s, d).Le problème de Neumann


uxx(x, y) + uyy(x, y) = 0, sur Ω

u(a, y) = φ(y), u(b, y) = ψ(x), c < y < d,

u(x, c) = α(x), u(x, d) = β(x), a < x < b,

(3.30)

3.4.3 Le principe du maximum

Soit u(x, y) est une solution de l’équation de Poisson

∂2u

∂x2
+
∂2u

∂y2
= f(x, y), sur Ω \ ∂Ω.

Ensuite, u(x, y) atteint ses bornes sur ∂Ω , si m 6 u(x, y) 6M alors m 6 u(x, y) 6M sur

Ω. En particulier, si u(x, y) = 0 sur ∂Ω , alors u(x, y) = 0 sur Ω.

3.4.4 Unicité

Théorème 3.4.1. Soit Ω = (a, b) × (c, d) , si u1 et u2 sont deux solutions aux problème

suivant 
∂2u

∂x2
+
∂2u

∂y2
= 0 sur Ω \ ∂Ω.

u(x, y) = 0, sur ∂Ω.

(3.31)

Alors u1 = u2, cela signifie que la solution au problème du Laplace est unique.
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Preuve :

Soit v(x, y) = u1(x, y)−u2(x, y) être une solution au problème ( 3.31) , puis en multipliant

les deux côtés de
∂2v

∂x2
+
∂2v

∂y2
= 0 par v et intégrant sur Ω.

0 =
∫ ∫

Ω
v

[
∂2v

∂x2
+
∂2v

∂y2

]
dxdy

=
∫ d
c

[∫ b
a
v
∂2v

∂x2

]
dy +

∫ b
a

[∫ d
c
v
∂2v

∂y2

]
dx

= −
∫ ∫

Ω

[(
∂v

∂x

)2

+

(
∂v

∂y

)2
]
dxdy +

∫ d
c
v
∂v

∂x
|ba dy +

∫ b
a
v
∂v

∂y
|dc dx.

C’est-à-dire

∫ ∫
Ω

[(
∂v

∂x

)2

+

(
∂v

∂y

)2
]
dxdy =

∫ d

c

v
∂v

∂x
|ba dy +

∫ b

a

v
∂v

∂y
|dc dx

Pour le problème de Dirichlet ( 3.29) et le problème de Neumann ( 3.30), nous avons

∫ d

c

v
∂v

∂x
|ba dy +

∫ b

a

v
∂v

∂y
|dc dx = 0

d’où ∫ ∫
Ω

[(
∂v

∂x

)2

+

(
∂v

∂y

)2
]
dxdy = 0

on trouve
∂v

∂x
= 0 et

∂v

∂y
= 0 =⇒ v(x, y) = c,

c = 0 parce que v(x, y) = 0 sur ∂Ω.

Par conséquent,

v(x, y) = u1(x, y)− u2(x, y) = 0 =⇒ u1(x, y) = u2(x, y).
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Le problème ( 3.31) est un cas particulier du problème suivant


∂2u

∂x2
+
∂2u

∂y2
= f(x, y) sur Ω \ ∂Ω.

u(x, y) = g(x, y), sur ∂Ω.

(3.32)

Théorème 3.4.2. Le problème ( 3.32) a une seule et unique solution sur Ω.

Preuve :

Soit v(x, y) = u1(x, y)− u2(x, y) être une solution au problème ( 3.32) nous avons alors


∂2u

∂x2
+
∂2u

∂y2
= f − f = 0 sur Ω \ ∂Ω.

u(x, y) = g − g = 0, sur ∂Ω.

v(x, y) = 0 sur ∂Ω, par le principe du maximum v(x, y) = 0 sur Ω de sorte que

u1(x, y) = u2(x, y).



Conclusion

Dans ce mémoire, nous avons présenté un ensemble de résultats concernant les pro-

blèmes aux limites associés aux E.D.O et E.D.P du second ordre.

Nous avons trouvé de manière progressive des résultats permettant de bien maitriser

quelques outils de base notamment la théorie fondamentale de la fonction de Green, néces-

saires à une étude plus approfondie des problèmes aux limites. Il présente aussi quelques

résultats d’existence classiques datant, pour certains, des années 70. Pour montrer ces re-

sultats, ce travail fait appel à la théorie du point fixe.

Ainsi, nous avons pris en compte l’équation d’onde, de la chaleur et l’équation de La-

place. Nous avons démontré que la solution exacte peut être obtenue de manière simple en

utilisant une méthode directe.
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