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Introduction

Le calcul différentiel est un outil dont tout mathématicien, quelle que soit spécialité,
doit en posséder les rudiments.
Pour celui qui ne les a rencontrées qu’au lycée et en premiére année d’université, les

équations différentielles sont généralement synonymes de calcul trés peu conceptuels abou-

tissant a des expressions algébriques ou analytiques constituant la " solution générale
de I’équation considérée. Au moment d’abord un enseignement spécifique d’équations dif-
férentielles, il est donc fondé a croire (et a redouter) que ledit enseignement va consister

a lui inculque de nouvelles méthodes (dites de résolution par quadrature) qui lui permet-

tront de déterminer les solutions de classes de plus en plus larges d’équations différentielles.

Il convient donc d’unique tout de suite que trés rares sont les équations différentielles
dont les solutions peuvent s’exprimer & ’aide des fonctions usuelles telles que sin x ou log x,
ou de primitive (= quadratures) de telles fonctions. Aussi sera-t-on intéressé a formuler
des théorémes d’existence et d’unicité de solution : I'unique solution constitue alors une
(nouvelle) fonction dont on peut envisager d’étudier les propriétés (périodicité, monotonie,

comportement & l'infini) aussi bien que les fonctions trigonométriques par exemple.

Un probléme aux limites est constitué d’une équation différentielle dont on recherche
une solution prenant des valeurs imposées en des limites du domaine de résolution.
Contrairement au probléme de Cauchy, ot une ou plusieurs conditions en un méme endroit
sont imposées, auquel le théoreme de Cauchy-Lipschitz apporte une réponse générale, les

problémes aux limites sont souvent des problémes difficiles, et dont la résolution peut a
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chaque fois conduire a des considérations différentes.

I’objectif de ce travail consiste a étudier un ensemble de résultats concernant les pro-
blémes aux limites associées a certaines équations différentielles du second ordre.

Ce mémoire comporte trois chapitres organisés comme suit :
Tout d’abord de ce premier chapitre intitulé " Préliminaires" est d’introduire quelque no-
tions et résultats utilisés dans les chapitres suivants (Quelques résultats sur les E.D.O.
linéaires du second ordre, Définition d’un probléme avec condition initiale (probléme de
Cauchy), Définition du problémes aux limites avec des exemples simples, Définition de I'ac-
tion de Green avec des exemples simples,... ) qui nous permettra d’étudier les problémes
aux limites pour les EDO et EDP.
Dans le deuxiéme chapitre est consacré aux problémes linéaires pour les équations diffé-
rentielles ordinaires. Nous commencons par discuter les différents types de conditions aux
bords, des conditions qui ne sont pas les mémes que celles intervenant dans le probléme de
Cauchy et qui ont des propriétés particuliéres (I’alternative de Fredholm). Ensuite, nous
donnons la définition ainsi que les propriétés d’une fonction qui joue un role fondamental
dans la représentation des solutions de tels problémes. Cette fonction est appelée fonction
de Green qui porte le nom du mathématicien anglais George Green (1793-1841). Nous pré-
sentons aussi des méthodes pratiques permettant le calcul de cette fonction. La derniére
partie de ce chapitre est consacrée a 1’étude d’'une EDO associée a des conditions aux bords
linéaires séparées.
Dans le dernier chapitre nous étudions certains résultats et théorémes sur 'existence et
I'unicité des solutions de problémes aux limites pour les EDP. La premiere section traite
de I'équation des ondes. Le deuxiéme chapitre traite I’équation de la chaleur unidimen-
sionnelle (Diffusion). La derniere section traite de 1’équation bidimensionnelle I’équation

de Laplace et I’équation de Poisson.



Chapitre 1

Préliminaires

Dans ce chapitre, nous introduisons des notations, des définitions et certaines lemmes

préliminaires qui seront utilisées dans le reste de ce mémoire.

1.1 Notations et Définitions

1.1.1 Espace de Banach

Définition 1.1.1. Soit (E,|| . ||) un espace vectoriel normé et (x,), une suite d’éléments

de E. On dira que la suite (x,), converge vers un élément a € E, si :
Ve>0,3NoeN:VneNn>Ny=|z,—al<e
Définition 1.1.2. La suite (x,,), est dite de Cauchy, si :
Ve>0,3NoeN:VpgeN, pg=>Ny=|x,—z,|<e.

Définition 1.1.3. On dit qu’un espace métrique (E,|| . ||) est complet si toute suite de

Cauchy de E est convergente.

Définition 1.1.4. On appelle espace de Banach tout espace vectoriel normé complet.
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Exemples

1 - Pour tout ensemble non vide X, L’ensemble B(X,R) des applications bornées de
X dans R muni de la norme de la convergence uniforme est un espace de Banach.

2 - (R,| . ) est complet.

3 - B(A, F) l'espace des applications bornées de A — F ou A est un ensemble muni de

la norme du sup :

I = sup [ f(x) [
€A

1.1.2 Equations différentielles

Définition 1.1.5. Une équation différentielle est une équation dont la ou les inconnues sont
des fonctions, elle se présente sous la forme d’une relation entre ces fonctions inconnues

et leurs dérivées successives. C’est un cas particulier d’équation fonctionnelle.

On distingue généralement deux types d’équations différentielles :

1) les équations différentielles ordinaires (EDO) ou la ou les fonctions inconnues ne
dépendent que d’une seule variable.

2) les équations différentielles partielles, plutot appelées équations aux dérivées par-
tielles (EDP), ou la ou les fonctions inconnues peuvent dépendre de plusieurs variables

indépendantes.

Définition 1.1.6. Une équation différentielle est une équation contenant une ou des déri-
vées d’une fonction a une ou plusieurs variables.

L’ordre d’une équation différentielle est ['ordre de la plus haute dérivée apparaissant
dans ’équation.

Une équation différentielle linéaire homogene est une équation différentielle linéaire dans

laquelle F(z) = 0. On dit aussi qu’elle est « sans second membre ».

Exemple
o 2%y +2=5x avec y(1)=3 ¢(1)=-1

oy +ay —y=0



1.2 Quelques résultats sur les E.D.O. linéaires du second ordre 10

o y' 4+ 2y + 4y = cosx

Une équation différentielle linéaire d’ordre n est une équation différentielle qui peut

s’écrire sous la forme générale suivante :
ao(2)y™ + a1 (2)y" YV + . F anoy ()Y + an(z)y = F(z)  ao(z) # 0.

telle que a; = 0,...,n est une composante d’équation différentielle d’ordre n.

1.2 Quelques résultats sur les E.D.O. linéaires du second
ordre
(Voir : [1] page 35, [2],[7]).

Soit ’équation différentielle du second ordre a coefficient variable suivante :

p(@)y" +q(@)y’ +r(x)y =0, =€ a,b], (1.1)

ou p(x) >0, q(z) et r(x) sont continues sur [a, b].

Théoréme 1.2.1. [l existent exactement deuz solutions y, et ys de l’équation (1.1) qui sont
linéairement indépendantes sur [a,b], i.e. il n’existe pas une constante c tel que y;(x) =

cy2(x), Vo € [a,b].

Théoréme 1.2.2. Soient y; et yo deux solutions de I’équation (1.1). Alors y; et yo sont

linéairement indépendantes sur |a,b] si et seulement si leurs Wronskien défini par

est différent de zéro pour tout x € [a,b].
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Théoréme 1.2.3. ( lidentité d’Abel ou formule d’ostrogradsky-Liouville) Pour

tout x € [a,b], on a

W (x) = W (zo) exp (— / %dt) moclal.

Par conséquent, si le Wronskien s’annule en un point xy de [a,b] alors il s’annule sur tout

Uintervalle [a, b].

Théoréme 1.2.4. Si y; et yy sont deux solutions de l’équation (1.1), c¢1 et ¢y sont deux
constantes arbitraires alors c1y; + coyo est aussi solution de l’équation (1.1). De plus si y;
et yo sont linéairement indépendantes alors toute solution y de (1.1) peut s’écrire sous la
forme

y(x) = kryi(z) + kaya(x), x € [a,b] et ki, ko sont des constantes.

Remarque 1.2.1. Si on connait une solution y1 de l’equation (1.1) alors on peut déter-
mainer une solution yo telles que, y, et yo sont linéairement indépendantes; en utilisant la

méthode de la variation de la constante. On obtient une solution de la forme
Tl "q(s)
ya(x) = yl(x)/ —— exp (/ ——ds | dt (1.2)
vi(t) p(s)
Exemple 1.2.1. Soit I’équation
22y —2xy +2y =0, r € R*

Il est facile de vérifier que y,(x) = x? est une solution de ’équation donnée et d’apres la

formule (1.2) sa deuxiéme solution est

2 [T1 ( 2 a?
yo(z) = x el dt = — —tdt 2:c+$,a>0

Remarque 1.2.2. Considérons l’équation

p(2)y" +q(z)y +r(z)y = f(z), x € [a, 0] (1.3)
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Soient yy et ys deuz solutions linéairement indépendantes de l’équation (1.1). En utilisant

de variation des constantes on trouve que la fonction y, définie par
v 0
yp(x) :/ H(x,t)—=dt
' p(t)

ol

est une solution particuliére de ’équation (1.3), donc la solution de cette derniére est

y(@) = yy(z) + yp(z)

= 11 (z) + caya() + [ H(z, t)@dt.

p(t)
Formule de dérivation d’une intégrale

Si u,v et f des fonctions dérivables, alors

% /u<:) fla t)dt = ' (2) f (z, x) = /(@) f (2, 7) + /vu) %?t)dt

u(z)

Critére de compacité d’Ascoli-Arzéla

Théoréme 1.2.5. Soit X un espace métrique compact, Y un espace de Banach et H C
C(X,Y) un sous-espace muni de la norme sup. Alors H est relativement compact si et

seulement si :

1. H est uniformément borné, i.e.

Ve € X, Uensemble {f(x): f € H} est borné dans Y .

2. H est équicontinu, i.e.

Ve > 0,3V ev(x),Vy e X;y eV —| f(y) = f(z) [[y< e VfeH.
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Dans le cas ot X = [a,b] C Ret Y =R, on a le théoréme suivant.

Théoréme 1.2.6. Soit (f,)nen C C([a, b],R) une suite vérifiant :
1. (fu)nen est uniformément borné,i.e.3c > 0,Yn € N:|| f,, ||< c.

2. (fn)nen est équicontinue, i.e. Ve > 0,30 = d(e),Vx,y € [a,b] :

|z —y |< 0 = fulz) — fuly) |< e,Vn € N.

Alors, (fn)nen admet une sous-suite convergente. (i.e. (fn)nen est relativement compacte).

Corollaire 1.2.1. Si (f,)nen est borné dans C**1([a, b, R"), i.e. (fn)nen et (f)nen sont
bornées dans C([a,b],R™), indépendamment de n, alors elle admet une sous-suite conver-

gente dans C*([a, b], R").

Théoréme de la convergence dominée de Lebesgue

Théoréme 1.2.7. Soit (f,)nen une suite de fonctions appartenant o L*(Q2) avec € R.

On suppose que :

1. (fo)(x) = f(z) p.p sur Q;
2. 1l existe une fonction g € L'(Q) telle que Vn € N,| fu(z) |< g(z) p.p sur Q. Alors,

f € LI(Q) et H fn — f HLl(Q)—> 0.

Théoréme du point fixe de Schauder

Théoréme 1.2.8. Soit C' un sous ensemble non vide, fermé, borné et convexe d’un espace
de Banach E. Supposons que f : C — C une application continue et compacte. Alors f

admet un point fixe dans C'.

Théoréme de contraction de Banach

Théoréme 1.2.9. (Principe de contraction de Banach, 1992) Soient (X, d) un espace
métrique complet et f : X — X une application contractante. Alors f admet un unique

point five y € X.
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1.3 Probléme de Cauchy

En analyse, un probléme de Cauchy est un probléme constitué d’une équation dif-
férentielle dont on recherche une solution vérifiant une certaine condition initiale. Cette
condition peut prendre plusieurs formes selon la nature de ’équation différentielle. Pour
une condition initiale adaptée a la forme de I’équation différentielle, le théoréme de Cauchy-
Lipschitz assure I'existence et 'unicité d’une solution au probléme de Cauchy.

Dans le cas d’une équation différentielle d’ordre 1, de la forme /(¢) = f(¢,y(t)), la condition
initiale adaptée sera la donnée d’une valeur initiale pour la fonction inconnue y, et pren-
dra la forme d’une équation y(ty) = yo. Les hypothéses du théoréme de Cauchy-Lipschitz
exigent une certaine régularité de la fonction f.

Dans le cas des équations d’ordre supérieur, la condition initiale portera sur une hypersur-
face du domaine de définition : par exemple, dans le cas réel, les conditions se porteront
non seulement sur une valeur initiale pour y, mais aussi pour toutes ses dérivées jusqu’a
la dérivée n — 1° pour une équation d’ordre n. Ainsi, pour une équation d’ordre 2 de la
forme y"(t) = f(t,y/(t),y(t)) seront imposées la valeur initiale de y sous la forme d’une
équation y(ty) = yo, mais aussi la valeur initiale de sa dérivée sous la forme d’une équation
y'(to) = yo1. Ceci ne généralise toutefois pas réellement le point précédent dans le sens
que toute équation d’ordre supérieur se raméne a une équation d’ordre 1 en prenant pour
inconnue une fonction a valeurs vectorielles.

Des problémes analogues, qui ne font toutefois pas ’'objet d’une réponse aussi générale que

le probléme de Cauchy, sont les problémes aux limites.

Définition 1.3.1. Soit f(t,x) une application continue de [0,T] x R™ dans R" et z(t) €
CH[0,T] = R™).

On appelle probléme de Cauchy ou a valeurs initiales le probléme différentiel
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Les hypothéses peuvent étre adaptée a des fonctions définies sur un ouvert de R™. Enon-
¢ons le théoréme fondamental d’existence locale d’une solution de ( 1.4) sous une forme

simplifiée.

Théoréme 1.3.1. (Cauchy-Lipschitz) Si f(t,z) est une fonction continue par rapport
a (t,x) et C* par rapport a x, alors le probléme ( 1.4) admet au plus une solution et il

existe 0 < T tel qu’il existe une solution sur [0, 0].
On peut compléter cet énoncé par la proposition :

Proposition 1.3.1. Si la solution x(t) de ( 1.4) est bornée sur [0,0], cette solution peut
étre prolongée sur [0,0'] avec 0" > 6. (intuitivement, ou bien la solution explose en 0 ou

bien elle peut étre prolongée) on en déduit le théoreme :

Théoréme 1.3.2. Si f(t,x) est continue par rapport a (t,z),C' par rapport a x, et a
croissance au plus linéaire en x(i.e.; IM,c: ||f(t,z)|| < M||x|+¢), alors le probléme (1.4)

admet une solution et une seule sur [0,T].

On montre également que la solution de ( 1.4) dépend contintiment de z, ainsi que de
tout paramétre par rapport auquel f(¢,x) est continu.
Autrement dit la solution de( 1.4) est stable vis a vis des données du probléme. La solution
"générale" d’un systeme différentiel dans R,, existe donc localement sous des hypotheéses
trés faibles et elle dépend de n paramétres que ’on peut choisir comme les valeurs initiales
d’un probléme de Cauchy. Le deuxiéme théoréme de cette section est un outil puissant
pour montrer 'existence globale de la solution. Nous n’aurons pas de résultat aussi général

pour les équations aux dérivées partielles.
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1.4 Les problémes aux limites

Quelques définitions

On note J(v) une fonction définie sur un espace normé V', de norme ||v]|.

Définition 1.4.1. La fonction J(v) est coercive si

VoeV  lim J(v) =400

[[vll—o0

Définition 1.4.2. La fonction J(v) est convexe si
Vu,vo eV, Vt, t € [0,1] = J(tu+ (1 —t)v) <tJ(u)+ (1 —1)J(v)
Définition 1.4.3. La fonction J(v) est strictement convexe si
Vu,v € V, Vt € [0,1], J(tu+ (1 — t)v) < tJ(u) + (1 — t)J(v)

Définition 1.4.4. On suppose que V est un espace préhilbertien (c’est & dire muni d’un
produit scalaire).

Une application f(u) de V' dans V' est monotone (resp. uniformément monotone) si
< flv)=flu),v—u>=0
(resp.s’il existe un réel a > 0 tel que
(f(0) = f(u), v —u) = a(v—u,v—u)

La monotonie de la différentielle caractérise les fonctions convexes :

Théoréme 1.4.1. Sur un espace de Hilbert une fonction J(v) différentiable est conveze si

et seulement si (fv) = V.J(v) est monotone.
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Les problémes aux limites

Les problémes qui nous intéressent ici modélisent 1’état d'un systéme représenté par p

fonction w;(z) qui dépendent de la position d’un point z. L’état du systéme est déterminé
N 92 . s s . 2 P

par un systéme d’équations aux dérivées partielles, et par les échanges éventuels du sys-
téeme avec 'extérieur. Traduisons cela en termes mathématiques : soit un domaine de R™ de
bord I'; on note 7 le vecteur normal unitaire extérieur en un point du bord, ¢ le vecteur
tangent.
Probléme aux limites pour une équation du second ordre & une inconnue :
Commencons par le cas particulier d’une équation du second ordre a une fonction incon-
nue. Le probléme de référence est le probléme de Poisson . L’inconnue est une fonction

u(z) de n variables x = (1, ...,x,) et, bien str, on aura normalement n = 2 ou n = 3!

0%u
Nous utilisons parfois la notation g, Uyizj... pour les dérivées partielles —, ——— Nous
écrivons 1’équation aux dérivées partielles générale du second ordre sous la forme
f(u,...,um,...,umzj,...) =0 (15)
Nous définissons un probléme aux limites sous la forme
F(Uy ooy Uy ooy Ugigjy ) =0 51 € Q)
(1.6)

g(Uy oy Upiy...) =0 si x el

ot g(u, ..., Uy, ...) est une fonction connue. La condition sur le bord la plus générale fait
intervenir toutes les dérivées mais elle s’exprime souvent en fonction de la dérivée normale
d’une fonction auxiliaire. En pratique ’expression de la condition aux limites peut différer

entre les parties du bord. Définissons certaines conditions aux limites particuliéres :

Définition 1.4.5. Les conditions de Dirichlet sont les conditions aux limites du type
U = Ug-

U

Les conditions de Neumann sont les conditions aux limites du type ka— = gy 0 go est fixé.
n

ou

on

Les conditions mizte ou de Robin sont les conditions aux limites du type k— + au = gq.
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Si les constantes ug et go sont nulles les conditions aux limites sont dites homogénes.

1.5 Fonction de Green.

Les fonctions de Green constituent une méthode assez général de résolution d’équation
différentielles, ou de transformation d’équations différentielles en équations intégrales. Elles
sont extrémement utilisées en mécanique quantique, ou on les appelle des propagateurs,
et en théorie des processus stochastiques. Nous n’aborderons ce sujet que trés légérement
ici, juste pour rappeler les grands principes de la méthode. Supposons que nous voulons
résoudre I'équation différentielle

d2 dx

+b—+cx=f

“Car dt (t) (L.7)

avec les conditions initiales z(0) = z¢ et 2/(0) = Zo . Ceci est par exemple ’équation
du mouvement d’une particule soumise a une force f(t) . a et b peuvent étre fonction
du temps. Pour résoudre cette équation différentielle, il nous faut trouver la solution de
I’équation homogeéne, et lui ajouter une solution particuliere. Nous cherchons justement
une solution particuliére. Supposons que nous savons calculer la réponse de la particule a
une force impulsionnelle (genre 6 de Dirac) appliquée au temps t'. Saurions nous calculer
la réponse de la particule & une force générale f(t)? La réponse est oui : la force f(t) peut
étre vue comme une superposition d’impulsions appliquées a différent temps. Il suffit donc
de superposer les réponses aux divers impulsions pour obtenir la réponse a la force f(t).

Plus exactement, on peut écrire

/ FE)S(t — )t (1.8)

ce qui veut dire que la force f(t) est la superposition d’impulsions appliquées au temps t/,
avec le poids f(t'). Revenons a notre équation différentielle, et appelons Gy (t) la réponse
a l'impulsion appliquée au temps t'. Comme mettre les indices est un peu lourd comme

notation, nous noterons cette fonction plutot G(¢,t’). De par sa définition, elle doit satisfaire
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2 / /
LEC(L) | dG(L )

e Gt t) = ot~ t)

Notez que toutes les dérivations sont faites par rapport a t. Multiplions les deux cotés de
I'équation par f(t'). Comme f(¢') ne dépend pas de t, on peut la rentrer a l'intérieur de
I'opérateur différentiel, et écrire :

PG, )] | dIf([t)G(t, )]
“ a2 o dt

+cf(t)G(t, ) =6t —t)f(t)

Intégrons maintenant les deux cotés par rapport a t’. Comme la dérivation est par rapport
a t, nous pouvons (jetant par dessus bord la décence et I’exigence a priori de la convergence

uniforme) échanger la dérivation et I'intégration.

d2 * / / / d > / / / > / / ! * . ! / /
a@/o FEVG )t +b%/0 FIOVG(E )t +c/0 FIVG(E )t _/0 S(t—t) F(t')dt

(1.9)
Nous remarquons, d’aprés ( 1.8), que le coté droit de 'équation ci-dessus est juste f(t).

Appelons
y(t):/o FEHG(t, t")dt (1.10)

et nous voyons, d’aprés ( 1.9), que y(t) est solution de I’équation ( 1.7)! Remarquez 1’élé-
gance,nous devons calculer une seule fois la fonction de green pour une équation diffé-
rentielle. Ensuite, quelque soit le membre de droite, la solution s’obtient par une simple

intégration. La solution générale de I’équation différentielle s’écrit maintenant

ou (' et 5y sont choisit pour satisfaire les conditions initiales.

Nous avons occulté pas mal de point important. Voyons quelques exemples. Soit 1’équation

dx/dt + ax = f(t)
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La fonction de Green est la solution de

AG(t, ) /dt + aG(t, 1) = 8(t — t')

Prenons la transformée de Fourier des deux cotés de I’équation (par rapport a ¢ bien siir)

5 —iwt’
Gw,t) =

1w+ «

H(t) étant la fonction de Heaviside, nulle pour ¢ < 0 et 1 pour ¢ > 0. Comme vous vous

souvenez, la transformée de Fourier de H(t)e™* est justement 1/(iw + «). Donc,
G(t,t") = H(t —t")e o)

Comme vous le remarquez, G(t,t') = 0 si t' > t. Cela est normal, puisque G(¢,t') est la
réponse, au temps £, & une impulsion au temps t'. Si ¢’ est plus tard que ¢, la réponse est

nulle. Prenons maintenant plusieurs formes de f.

1. f(t) = H(t)t. Alors,

y(t) = [[CH)H(t —t)eet="at
= [[CUH(t—t)et=at
_ fot te—alt=t) gt
= (1/a®)(e™@ — 1) + (1/a)t

2. f(t) = H(t)sin ft. Alors, en suivant les méme étapes,

y(t) = fg sin(t)e =) dt

1

— m [Be™ + B cos(ft) + asin(ft)]

Vous voyez ici comment on résout une fois I’équation différentielle pour la fonction de Green,

et qu’ ensuite, il suffit d’appliquer une intégration pour trouver la solution générale. En
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langage opératoriel, on écrirai une équation différentielle comme

Lz = f

ot L est un opérateur différentiel (dans 'exemple ci-dessus d/dt + « ), c’est a dire qui

transforme une fonction en une autre fonction. La solution de cette équation s’écrira
r=L"
L 1

Trouver la fonction de Green revient a trouver I'opérateur L™! et ce n’est pas un hasard
donc qu’il comporte une intégration. Si on s’est donné une base, on peut représenter L par
une matrice (infinie) et trouver la fonction de Green revient a inverser cette matrice.
Nous n’avons pas fini avec les fonctions de Green. Supposons que notre équation est un
peu plus compliquée :

d*x

dx
aﬁ + ba +cxr = f(t,{L')

Le membre de droite comporte explicitement un terme en z, comme par exemple t.2'/? ce
qui rend la résolution de 1’équation nettement plus ardue par les techniques classiques.

Mais cela ne change rien pour les fonctions de green. La solution s’écrira toujours

x(t) = Cha1(t) + Coxa(t) + /OO f(t,x)G (¢, t)dt (1.11)



Chapitre 2

Problémes aux Limites pour les

Equations Différentielles Ordinaires

2.1 Introduction

Lorsqu’on considére une équation différentielle ordinaire linéaire homogéne du second
ordre,

(Eg)  p)y" +q@)y +r(@)y=0 ; a<z<b

ou p,qetr sont des fonctions continues sur [a; b] tel que [a, b] un intervalle (de R) ouvert ,
et y: [a,b] — E , avec F est un espace de Banach réel (de norme notée || . ||). On sait
trés bien qu’il y-a 2 fonctions linéairement indépendantes, qui générent la solution générale
de cette équation, c’est-a-dire n’importe quelle solution de I’équation considérée est une

combinaison linéaire de telles fonctions. Quand une équation non homogéne

(E)  plx)y" +q@)y +r(@)y = flzr) ; x¢cla,b];

est considérée, nous devons trouver une solution particuliére, pour chaque fonction f don-
née. En 'ajoutant a l'expression générale de la solution de I’équation homogéne, nous
obtenons la solution générale de 1’équation non homogene.

Si nous fixons les valeurs de y et de sa premiére dérivée au point de départ a , sous des
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conditions de régularité appropriées sur les données, nous savons qu’'un tel probléme de
Cauchy est uniquement soluble. De plus, nous aurons I’expression de sa solution unique en
obtenant les valeurs uniques des coefficients dans I’expression donnée pour le cas général.
Quand les coefficients dans 'EDO linéaire (F) sont des constantes, de telles valeurs sont
calculées en résolvant un systeme algébrique linéaire d’ordre 2.

Cependant, lorsque nous traitons le probléme dans lequel la fonction ¥, et/ou sa premiére
dérivée , atteignent leurs valeurs en deux points extrémes a et b, nous savons que l’existence
de solution d’un tel probléme aux limites & deux points, en général, n’est pas assurée. Pour
cette raison il est trés important de développer des outils qui nous permettent d’assurer
I’existence et 1'unicité de la solution de ce type de problémes, et encore de calculer son
expression exacte.

Parmi les méthodes utilisées pour résoudre ce type de problémes, on trouve I’Alternative
de Fredholm et le calcul de la fonction de Green : en général, si I’équation (E) associée a
des conditions aux bords homogénes, a seulement la solution triviale y = 0 pour f =0, La

solution du probléme posé est appelé fonction de Green G(t; s) donnée par :
b
o) = [ Gls)f(e)ds, e lad
Dans ce chapitre, on s’intéresse au équations différentielles ordinaire du second ordre
(E)  pl)y +a@)y +r@y=flz) ; x€lab];

ou p,q,r et f sont des fonctions continues sur [a, b], associée & des conditions aux bords

linéaires non séparées :

Ui(y) = any(a) + awy'(a) + azy(b) + auy'(b) = v

Us(y) = Bry(a) + Boy/(a) + B3y (b) + Bay'(b) =6

(L)

ol «;, B;,t=1,4et~,d. sont des constantes réelles données.

Définition 2.1.1. On appelle probleme aux limites homogéne associé au probleme (E)+(L)
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le probleme (Ey) + (Ly) tel que

(Bu)  p@)y +q@)y +r@)y=0 ; a<z<b

ary(a) + azy'(a) + asy(b) + asy'(b) = 0
(Lu)
Bry(a) + B2y'(a) + B3y (b) + Bay'(b) = 0
Si(f#0ety=09=0)ou(f=0et(y#0o0ud #0)), on dit que le probléeme (E) + (L) est

semi homogeéne.

Remarques 2.1.1. 1. Le probléme aux limites (E) + (L) est dit régulier si a et b sont
des nombres finis et p, q,r sont des fonctions bornées sur [a,b] et p(zx)#0

YV € [a,b], sinon on dit qu’il est singulier.

2. Une solution d’un probleme aux limites est une fonction qui satisfait I’équation et les

conditions auz limites associées.
3. Les conditions auz bords linéaires (L) sont générales, en particulier elles comprennent :
(a) les conditions de Dirichlet : y(a) = «, y(b) = 3;
(b) les conditions de Neuman :y'(a) = a,y'(b) = 5;
(c) les conditions mixte : y(a) =, y'(b) =5 ou ¥y'(a) =a, y(b) = 5;

(d) les conditions aux limites linéaires séparées

oy(a) + azy'(a) =~

Bry(b) + Bay'(b) = 0,

ou af+ai#£0et B+ 5540

(e) les conditions aux limites linéaires périodiques
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2.2 Existence de solutions

L’étude de l'existence et de 1'unicité de la solution des problémes aux limites est plus
difficile que celle des problémes & valeurs initiales (problémes de Cauchy). En fait, dans le
cas des problémes aux limites, une légére modification dans les conditions aux limites ou
dans la longeur de l'intervalle d’étude peut conduire a des changements significatifs dans

le comportement des solutions.Par exemple, le probléme a valeurs initiales

y'(x)+ylx)=0 ; O0<z<m

a pour tout «, 5 € R une unique solution définie par y(x) = acosz + fsinz. Cependant, le
probléme aux limites

y'(z)+ylz)=0 ; O<z<m

n’admet pas de solutions et le probleme

y'(x)+ylx)=0 ; 0<z<b (0<b<m),

SINT

a pour tout a € R une unique solution définie par y(x) = a— 2
sin

Alors que le probléme

admet une infinité de solutions définies par y(z) = csinz, ¢ € R.

Le probléme homogéne (Ey) + (Ly) admet toujours la solution triviale y = 0 . D’aprés
I’exemple précédent il peut avoir une solution non triviale. Le théoréme suivant donne
une condition nécessaire et suffisante pour que le probléme (Ey) + (Ly) n'admet pas des

solutions non triviales.
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Théoréme 2.2.1. Soient 0 et 1 deux solutions linéairement indépendantes de I’équa-
tion (Eg) Alors le probléme homogeéne (Eg)+ (Ly) a uniquement la solution triviale y = 0

st et seulement si

A Ui(o) Ui() £0

Uas(o) Us(v)

Démonstration . Toute solution de I’équation (Ey) peut s’écrire sous la forme

y(x) = co(z) +di(z); c,d € R

y est solution du probléme (Eg) + (Ly) si et seulement si

Ui(co +dy) =0

Us(co +dy) = 0.

Ce qui donne le systéme linéaire

cUy(o)+d Ui () =0
(5)
CUQ(O’) + dU2(¢) = 0.

Par suite, le systéme (S) admet uniquement la solution triviale si et seulement si son

déterminant A est non nul.

Corollaire 2.2.1. Le probléeme auz limite homogéne (Ey) + (Ly) dispose d’un nombre

infint de solutions non triviales si et seulement si A = 0.

Exemple 2.2.1. Considérons le probleme de Dirichlet

(

vy"(x) —y'(x) — 4a’y(x) =0, 1

N
8

N
N\

On a yy(z) = cosh(z® — 1) et ys(x) = 1sinh(2® — 1) deux solutions linéairement indépen-
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dantes de ’équation xy"(x) — ' (z) — 423y(z) = 0 avec

1 1 1 0 1
A:y1<) 2(1) = zésinh?);é()

1(2) 12(2) cosh 3 %sinh?)

Donc le probleme (PDy) n'admet que la solution triviale y = 0.

Exemple 2.2.2. Considérons le probléme de Dirichlet

4

y'(z) + 2y () +5y(z) =0, 0<z<3F

(PDy) Ui(y) = y(0) =0

On a y(x) = e " cos(x2) et yo(x) = e " sin(x2) deux solutions linéairement indépendantes

de l'équation y"(x) + 2y (x) + by(z) = 0 avec

le probléeme (PDs) en plus d’avoir la solution triviale a aussi des solutions non triviales.
En effet, il existe un nombre infini de solutions y(x) = ce " sin2x , ow ¢ est une constante

arbitraire.

Maintenant, nous présentons un résultat, appelé Alternative de Fredholm, qui assure
'existence et 'unicité des solutions du probléme non homogéne (E) + (L) dans le cas ou

le probléme homogeéne n’admet pas de solutions non triviales.

Théoréme 2.2.2. (Alternative de Fredholm) Le probléme non homogéne (E)+ (L) admet
une solution unique si et seulement si le probléme homogéne (Ex)+ (L) admet uniquement

la solution triviale y = 0.

Démonstration Soient 0y et 09 deux solutions linéairement indépendantes de ’équa-

tion (Fy) et ¢ une solution particuliére de 1’équation non homogeéne (E) Alors la solution
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générale de I'équation (F) s’écrit sous la forme

y(x) = c1o1(x) + coa(x) + Y(x), 1,00 € R

y est solution du probléme non homogene (E) + (L) si et seulement si

Ui(cro1 + coog +00) =7

U2<610'1 + co09 + 1/1) =0

ce qui donne le systéme linéaire

(S") a1 Ui(o1) + coUy(02) + U () =

ClUQ(O'l) + CQUQ(O'Q) + U2(¢) =0

Le systéme (S’) admet une unique solution si et seulement si

A U1(<7) Ul(w £0
Us(o) Us(2)

Par conséquent, le théoréeme 2.0.1 assure que le probléme homogéne admet que la solution

triviale.

Fonction de Green associée

Parmis les caractéristiques les plus importantes de la solution du probléme aux limite

,Les fonctions de Green ont été introduites par George Green en 1828, ces fonctions inter-

viennent dans la résolution de certaines équations linéaires ainsi que dans la transformation

d’équations différentielles non linéaires en équations intégrales.

Dans ce qui suit on considére 1'équation différentielle du second ordre (FE) associée aux

conditions aux bords linéaires non séparées (L).
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Définition 2.2.1. Soit le probleme auz limites homogene

(

(Ey)  p)y +qx)y +r(x)y=0 ; a<z<b;

(PL) ary(a) + azy'(a) + asy(b) + auy'(b) = 0
(L)

Bry(a) + Bay'(a) + Bsy(b) + Bay'(b) =0

On appelle fonction de Green associée au probleme (PL) toute fonction

G : [a,b] X [a,b] — R wérifiant les propriétés suivantes :
(i) G est continue sur |a,b] X [a,b]

0
(i) —— est continue en tout point (x,s) € [a,b] X [a,b] tel que x # s.

Ox
., 0G . 0G .
(1i1) %(x,x ) — %(x,ﬁ)aZmVx € éa(,;b] o
|, —— ) = 1 R R + e 1 R :
Ot Ox (z,27) 51—1{2* Oz (,5) et Ox (z,27) slnalﬁ Ox (,5);

(iv) ¥s € (a,b) la fonction x — G(x, s) vérifie [’équation homogéne (Ey) sur chacun des

intervalles [a, s) et (s,b] ;

(v) Vs € (a,b) la fonction x +— G(x,s) vérifie les conditions homogénes (Ly).

Théoréme 2.2.3. Supposons que le probléme homogéne (PL) a seulement la solution
triviale. Alors il existe une unique fonction de Green G, associée a (PL). De plus, pour
toute fonction continue f, la solution unique du probléme semi-homogene (E) + (L est

donnée par l’expression

b
y(z) = / G, 5) f(3)ds

Démonstration : "Existence, unicité et construction de la fonction G" :
Soient oy, 05 deux solutions indépendantes de (Fp). Par définition, la fonction partielle
x +— G(x,s) est une solution de I’équation (Ey) dans chacun des intervalles [a, s| et |s, b],il

existe donc quatre fonctions dépendantes de la variable s telles que :

G(z,s) = m(s)or(xz) +na(s)oa(z) sia <z <s

pi(s)or(x) + pa(s)oz(x) sis <x < b
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Ensuite, les propriétés (i) et (iii) de G donnent le systéme :

m(s)or(x) + na(s)oa(z) = pa(s)or(z) + pa(s)oz(z)
G(z,s) = ] (2.1)
pa(s)o’(x) + pa(s)o’(x) = m(s)o’ () + ma(s)o’ (x) = o)
Posant vy (s) = p1(s) — mi(s)etva(s) = pa(s) — n2(s), le systéme ( 2.1) devient
v1(8)o1(x) + va(s)oz(z) =0
. (2.2)
v1(8)o’ (z) + ve(s)o’(x) = o)

Comme W (oy;09)(z) # 0 pour tout s € [a,b] le systéme 2.2 admet une unique solution
(v1(s);v2(s)). En utilisant les relationspuy(s) = n1(s) + v1(s) et ua(s) = na(s) — va(s) , la

fonction de Green GG devient :

Gz, s) = {771(3)01(1:) +ma(s)oe(z) sia <z <s<b

m(s)or(z) + na(s)oa(x) + vi(s)or(z) + va(s)oa(x) sia < s <x <b

Ensuite,la propriété (v) nous donne le systéme

Ur(o1)m(s) + Ur(oa)na(s) = ki(s)
(2.3)
Us(o1)mi(s) + Ua(o2)ma(s) = ka(s)
ki(s) = —vi(s)azo1(b) + (o’ (b)] — va(s)[azoa(b) + [aso’(D)]
(2.4)
ka(s) = —v1(s)[B301(b) + [Bao’ ()] — v2(s)[B302(b) + [Bao’ (b)]
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En effet, on a

Clas) =) 0) + ), (a<s)

20 a5) = m(s)o'(a) + mls)o'(a)

G(b,s)  =m(s)or(b) + nas)oa(b) + vi(s)or(b) + va(s)o2(b), (t <b)
D000,5) = m(s)0' () + m(3)0' () + 1a(3)0"(5) + 2 (3)0" ()

Comme la fonction x — G(z, s) vérifie les conditions aux bords (Ly) pour tout s € [a,b],

alors

oG oG
a1G(a, s) + 042%(@, s) + asG(b, s) + 044%(1), s) =0,

ce qui donne I’équation
n(s)[aroi(a) + axa’(a) + azor(b) + aso’ ()] + na(s)[aroa(a) + azo’(a) + azos(b)+

a0’ ()] + vi(s)[azor(b) + ada’ (b)] + va(s)[azoz(b) + ada’(b)] = 0,

ce qui est équivalente a
m(s)[aroi(a) + azo’(a) + azor(b) + aso’ ()] + n2(s)[aroa(a) + azo’(a) + azoz(b)+

ay0’ (b)] = —vi(s)[azo1(b) + ada’(b)] — va(s)[azoa(b) + ada’(b)] = ki(s),

De méme on aura
oG oG
61G(CL, S) + 62%(a7 S) + ﬁ3G(b7 S) + 64%(1)7 S) = 07

ce qui donne la deuxiéme équation du systéme (2.3). Par hypothése, le probléme homogéne
(PL) n’admet que la solution triviale donc, d’aprés le théoréme 2.0.1 le déterminant du
systéme (2.3) est non nul. Ce qui entraine que ce systéme admet une unique solution
(m1(s);m2(s)). Maintenant, pour montrer I'unicité de la fonction de Green, nous supposons

que R est une autre fonction vérifiant les conditions (i) — (v), puis pour tout ¢ € [a;b] et
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toute fonction continue f, on aura

/abG(:v,S)f(S)ds = /abR(a:, §) f(s)ds

Alors
/ G (z,s) — R(x,s)]f(s)ds = / G(z,s)f(s)ds —/ R(z,s)f(s)ds =0

b
Pour z fixé, posons f(s) = G(z,s)— R(x, s) , on obtient / [G(x,8)— R(z,s)]*ds = 0,Vx €
la,b] Ce qui entraine que G(x,s) = H(z,s) pour tout (z,s) € [a,b] x [a, b].

Existence et unicité de la solution : Soit la fonction y définie par :

y(x):/abG(a:,s)f(s)ds:/azG(x,s)f(s)ds—k/:G(m,s)f(s)ds

1. y est solution du probléme (E) + (Ly), En effet, grace a la dérivabilité de G par

rapport a x dans chacun des intervalles (a, z|; [z, b) et de la relation suivante :

o (@

o , v(z) Of(z, s)
%( f(z,8)ds) =V (z) f(z,z) —u'(x) f(z, x) +/ gz, s)

ds
u(z) wzy 0%

on aura

oG
Soit (z,z) un point de la diagonale du carré [a,b] X [a,b]. Par hypothése —(z, s)

or
est continue en (x,s) dans les deux triangles a < s < x < beta <z < s < b. Par

conséquent, les deux limites suivantes sont égales :

oG oG, | .
a:linz p (x,2) = e —(z",2)siz<zx
oG oG
xlinza(x,z) e —(z,27)siz <z
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Calculons 1"

v@ = [ T+ 1@ @+ [ T8 s - s
= [ oyt = 1) [S )~ S0
Or g—i(x, o) — Z_i(‘”’ r7) =~ (propricté (i) de ) on en déduit Pexpression
v = [ s s+ 1)
par suite,
o +alaly +r(aly = [ o0 G ) + )G9+ )G )] s(ohts+

f(z) = f(z) (car la fonction ¢ — G(z,s) est solution de 'équation (Ey) pout tout
T # s).

2. La fonction y vérifie les conditions aux bords homogéne. En effet,

Ui(y) = agy(a) + Boy(b) + a1y/(a) + Biy/(b)
= [ 000, + B360.9) + a0 a,) + 0 0, ) s
- /ab UL (G(., 5))(s)ds
— 0 (car Uy(G(., 5)) = 0).

d’ou l'existence de la solution y. L’unicité de la solution y résulte de ’hypothése sur le

probléme homogeéne ainsi que de I’alternative de Fredholm.
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2.3 Exemple

Considérons le probléme aux limites périodique :

i

Y'+ky=0, 0<z<w, k>0

Ici
Ui(y) =y(0) —y(w), (ag=1,00=0,6=-1,8 =0

Ua(y) =¢'(0)—¢(w),  (eg=0,0f =15 =15 =—1)

Cherchons la fonction de Green sous la forme :

r(s) + k*ri(s) =0 = ri(s) = cicosks + cysinks; ci;cp € R.

Puis
r1(0) =7 (w) =0 c1(1 — ¢y coskw) — e sinkw = 0
r(0) —rj(w) =1 keysinkw + co(k — kcoskw) = 1,
on obtient
0 — sin kw
1 (k—kcoskw)

B B sin kw
“a= 2k(1 —coskw)  2k(1 — coskw)’
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(1 —coskw) 0

sin kw 1 (1—coskw) 1

2= 2k(1 — cos kw) - 2k(1 — coskw) 2k’
Donc
sin kw 1 cos Fw 1
— ks + —sinks = —— 2" cosks + — sink
r1(s) (1 — cos ) cos 3+2ksm s Dhsin b cos s+2ksm s
D’ou
)
1 cos fwcosk(z — s) +sin fwsink(z —s), si0<s<z<w
G(z,s) = ——7—
(@) kaingw & k. ,
cos swcosk(w +x —s) +sinfwsink(w+x—s), si0<zr<s<w
’
B 1 cos(bw —k(z —s5)), si0<s<z<w
~ 2ksink
it cos(fw —k(w—s+12)), si0<z<s<w
’
B 1 cos(bw —k(z —5)), si0<s<z<w
 2ksin Ew

27 fcos(k(z —s+%)), si0<zr<s<w
0

1 cos(k(—z+s+%)), si0<s<zr<w
= Shon ks
S W cos(k(z —s+%)), si0<z<s<w

\

Ed

1 | esc(

2k

sw)cos(k(s —r+7%)), si0<s<z<w

csc(fw)cos(k(z —s+4)), si0<z<s<w



Chapitre 3

Problémes aux Limites pour les
Equations Différentielles aux Dérivées

Partielles

3.1 Introduction

Les équations aux dérivées partielles, qui seront notées en abrégé "EDP" dans la suite,
constituent une branche importante des mathématiques appliquées. Elles sont utilisées dans
la modélisation de nombreux phénomeénes de natures différentes.

Il est bien connu que la plupart des phénomeénes physiques et d’ingénierie peuvent étre
décrits dans des modeéles mathématiques constitués d’équations aux dérivées partielles li-
néaires du second ordre.

Les EDP linéaires du second ordre peuvent étre classées en trois types, les équations hyper-
boliques,les équations paraboliques et les équations elliptiques. Les trois types d’équations
peuvent étre réduits aux formes canoniques. Les équations hyperboliques se réduisent a
une forme coincidant avec ’équation des ondes dans les termes principaux, les équations
paraboliques se réduisent a une forme modélisée par I’équation de la chaleur, et ’équation
de Laplace modélise la forme canonique des équations elliptiques.

Ainsi, I’équation des ondes, la chaleur et les équations de Laplace servent de modéles cano-
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niques pour toutes les EDP de second ordre a coefficient constant. Pour cela, nous devons

étudier certains résultats et théoréemes sur 'existence et 'unicité des solutions des pro-

blemes aux limites pour les EDPs linéaires du second ordre de type elliptique, parabolique

et hyperbolique.

3.2 EDP Hyperboliques

Dans cet section, on s’intéresse au l’équation des ondes

Pu 0%
W_C@:O —o0 < T <00,

(3.1)

ou c est la vitesse de propagation de 'onde le long de la corde. C’est I’équation d’onde

unidimensionnelle qui modélise les ondes sonores, les ondes d’eau, les vibrations dans les

solides et les vibrations de torsion dans une tige.

3.2.1 L’équation d’onde sur R

On peut écrire I'equation ( 3.1) comme
0 0 ( 0 + 0 Ju=0 <r<oo
— —c— | (=4+c=—)u= —oco<zx
ot ox ) "ot Ox
Théoréme 3.2.1. La solution générale de l’équation d’onde est donnée par
u(x,t) = f(x +ct) + g(x — ct)

ou f et g sont deux fonctions rélles définie sur R.

(3.2)
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Preuve Pour obtenir la formule ( 3.3), nous introduisons les coordonnées caractéris-

tiques

E=ux+ ct,

v =x — ct.

Selon la régle de la chaine , nous avons

Ju  Oud§ OJudv  Ou ou
o " ocor Tawor o ‘o
Ou  Oudf Oudv Ou  Ou
oz 0for  ovdr 0t ow

Lors la substitution, on a

0 0 0 0 0 0

ce qui veut dire que

0%u ou
5eas =0 3¢ = FO — (&) = f(©) +9(v)

Nous revenons aux variables initiales x et ¢ , on obtient

u(z,t) = f(x +ct) + gl — ct).

3.2.2 Probléme de valeur initiale

Le probléme de valeur initiale consiste a résoudre ’équation d’onde avec des conditions
initiales

Ugt (2, 1) — PUge(x,t) =0 ,—c0o<x <00, t>0,
(3.4)

u(z,0) = ¢(x), w(x,0) = P(z),
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ol ¢ et 1 sont deux fonctions réelles de z. u(z,0) = ¢(x) définit la position initiale de la

chaine, alors u:(z,0) = 1(x) est la vitesse initiale.

Théoréme 3.2.2. (La solution d’Alembert 1746) La solution unique au probléme de

valeur initiale (3.4 )est donnée par

z+ct

u(, 1) = S (8o +ct) + 6z — ct)) + o (e (3.5)

T—Ci

Preuve :

Premiérement, en fixant ¢ = 0 en I'equation ( 3.3)on obtient

¢(z) = f(z) + g(z), (3.6)

Puis,en utilisant la régle de la chaine,nous différencions 'equation ( 3.3) ce qui concerne ¢

pour obtenir

b(a) = of (2) - eg (@), (3.7)

Résoudre les équations ( 3.6)-( 3.7) pour f’ et ¢’

En intégrant, nous obtenons

f(s) =30(s) + 5 Jy Y(r)dr + A

9(s) = 30(5) = & Jy w(r)dr + B

o A et B sont des constantes, & cause de Eq( 3.6), on a A+ B = 0. En rempla-

cant s = x + ct dans la formule de f et s = x — ¢t dans celui de g , on obtient
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u(z,t) (x+ct) 4+ g(x — ct)

(P(x +ct) + dlx —ct)) + £ [T a(r

3.2.3 L’équation des ondes avec une source

L’objectif de cette section est de résoudre

=f
[% T+ ct) + 5 fIJrCt T)dT + A] [ Pz — ct) — o
1
2

T y(r)dr + B

U (1) — Puge(z,t) = f(z,t), —00 < & < 00,t > 0,

u(z,0) = ¢(x), u(z,0) = (),

avec f(z,t) est une fonction donnée.

Théoréme 3.2.3. La solution unique du probleme( 3.8) est donnée par :

x+ct
u(z,t) = %(gb(x%—ct)+<Z5(€lﬂ—075>)+2i w(r 7_%—20/ 20/

x—ct

z+e(t— ’T)

T)dydr (3.9)

c(t—T)
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Preuve : Soit ) un intervalle bornné par un triangle avec une limite lisse dans le plan
xt avec des sommets sur (o, o), (zo — cto,0) et (xg + cto,0), et laisser OA étre une limite

de A telle que OA = 71 + 73 + 3 (voir figure 1) donc,

(%o — ¢y, 0)

p

= f fA(_CQ(uaz)x - (_Ut)t)dtdl‘

= [on(—CPugdt — uydz) (en utilisant le Théoréme de Green)

I JA fdtld:r;ng: [ JA (=g + uy)dtda

= [, (=uydt — wdz) + [ (=Pugdt — wdz) + [ (=cPugdt — uydr)
— Sur v :t=0— dt =0. donc,

/ (—Cugdt — uydz) = — / ug(w, 0)dz = — / e,

ait Y1 o—cto
— Sur vy, : x4 ct = xg+ cty — dx + cdt = 0. donc,
fw(—CQu,}dt —wdx) =c [ (uzdr —u)dt

=c [ du. (la dérivée totale deu(x,t)),

= cu(xo, to) — cP(xg + cto).
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— Sur 3 : x — ct = xg — cty — dxr — cdt = 0. donc,

f%(—CZledt —udr) = cf%(—uxdﬁ — uy)dt

= cu(xo, tg) — cP(xg — ctp). ,

En additionnant ces trois résultats, on obtient

//Afda:dt = 2cu(xo, to) — c[p(zo + cto) + d(xo — cto)] — /xo+:to Y(z)de.
o—cto
Par conséquent, nous avons
1 1 [otet ote(t— T)
u(z,t) = §(q§(x +ct) + ¢z —ct)) + %] Y(r)dr + —/ /x e T) dydr.
3.2.4 Probléme de Goursat
Le probléme de Goursat est donné sous la forme
e
gt (2, 1) — Cuge(x,t) = h(x,t), —oco<x <00, t>0,
§ u(z,t) = f(x), pour x = ct, (3.10)
u(z,t) = g(x), pour x = —ct.

\

Théoréme 3.2.4. La solution unique du probleme de Goursat ( 3.10) est donnée par

T+ ct T —ct 1 atet - pr—cl s+v s—v
u(m,t):f( 5 )—i—g( 5 )—U(O,O)—@/O /0 h( 5 g )dvds
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Preuve :

Ici,les conditions sont données sur les caractéristiques (voir figure 2)

[
L4

Frgurs 2
2.png

Introduire les coordonnées caractéristiques

E=x+ct et v=2x—ct.

Ensuite, ( 3.10) peut étre transformé en le probléme équivalent suivant :

—o0o<EF+v<oo, >,

r 9 _
428u _ 5—1—1)75 v
0&dv 2 2c

u(f,O) = f(g)’u<oav> = g(§>7
4(0,0) = 7(0) = (0).

La solution de ( 3.11) est donné sous la forme

u({,v):f(§)+g(g>—u00 402// ( 2“>dvds

Retournez aux variables indépendantes originales

x+ct x —ct ot S+v sS—v
u(x,t):f( 5 )—I—g( 5 )—u()() 402/ / ( 5

(3.11)

) dvds
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3.2.5 L’équation d’onde dans R, :

Essayons maintenant avec le méme type de probléme pour I’équation d’onde
Le probléme de Dirichlet sur R

Considérez le probléme de Dirichlet sur R

(

g (2,1) — Cuge(z,t) =0, 0<z<oo,t>0,
Y w@,0) = d(x), u(x,0) = ¥(z), (3.12)
u(0,t) = 0.

\

de la méme maniére que précédemment ,

1
)—5 2c/w ydr + A
g(x) = /1/) )dt + B, avec A+ B =0

Il faut connaitre la fonction g(x — ct) pour x —ct < 0. Pour cela, en tenant en considération

la condition limite

u(0,t) = 0, vt > 0.

flet) +g(—ct) =00ugly) = —f(~y),  Vy<O,

c’est-a-dire,
glx —ct) = —f(—(x —ct)) = —f(ct — x), qui a défini sur R™.

Ensuite, la solution est donnée par

30+ ct) + oz — ct) + 5. [ w(r)dr, @ > et
u(z,t) =

30 +ct) = ol —ct) + 5, [T 0(r)dr, @<t
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Le probléme de Neumann sur R,

Considérez le probléme de Neumann sur R

(

gt (1, 1) — Puge(x,t) = 0, 0<a<oo,t>0,
u(:c, O) = ¢($), ut(xu 0) = w(x)u (313)
u.(0,t) = 0.

\

Encore, pour x — ct, nous utilisons la condition limite u,(0,¢) = 0, et & partir de I'equa-

tion( 3.3), nous obtenons

f'(ct) + ¢'(—ct) = 0.

Maintenant, en fixant y = —ct, on obtient

Alors,

Par conséquent,
1 1 ct—x
g(x—ct):f(ct—x)—irC:§¢(ct—:c)+§/ Y(r)dr+A+C
0

Depuis,
B+ 50(0) = 9(0) = f(0) + C = 36(0) + A+ C.

nous avons A+ C =BetA+ B =0

Par conséquent, la solution est trouvée comme :

x+ct

%((ﬁ(x +ct) + ¢(x —ct)) + % fw—ct W(T)dr, x>ct

u(z,t) =
Jo T p(rydr + [ w(T)dT> L ox<ct

N [—=

(¢(x +ct) — d(z — ct)) + o <
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3.2.6 Existence de solutions

Soit H l'espace de toutes les fonctions ¢ définies sur R? et de classe C? qui sont nulles

a Pextérieur d’un intervalle bornnée de R2.

Théoréme 3.2.5. Soit u € C?,alors
*¢ 0% 0*u 0%u
t) drdt = t) — | dudt
//R - [aﬂ “ ou 2] / o O [aﬁ Ca:&] ’
Preuve : Soit ¢ € H, il existe un rectangle ) = (—a,a) x (—b,b) telle que ¢ est égal

)
b

>y

Figure 3

3.png

a zéro a 'extérieur €2 (voir figure 3) Laissez

*¢ 0%
//Qu(x,t {8152 }d dt = // (x,t) atzalyﬁdzf—c // xt dxdt
mais ,
// xt da:dt / / xt dwdt

avec double Intégration par parties par rapport a t de —b a b et en prenant en compte

¢(x,t) € H, on obtient

- o 9 Ou d
[ ate.0 5zt [u(:x,t)a—ﬂb g,
_ 8¢ a ou o 82u
= u(x,t)a] - {Egzﬁ(x,t)}b + [ 8t2 ey 7
o

-b
= f—b U(l', t)wdt
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Donc,

// u(x,t) t d:vdt / qb x, t dxdt // o(z,t) —dxdt
De méme,
// u(z,t) wdmdt /a/ (z,1) —dxdt

Par une intégration par parties par rapport a z de —a a a,

f e [ [ o | [t
f e (52 -258) - f e (5~ 255) o
f e (5 -52) - | [t (-5

Remarque 3.2.1. Siu est une solution de uy—c*u,, = 0 alors, [ fQ (¢t — Py )dtdz = 0.

Corollaire 3.2.1. Pour l’équation d’onde
U — Uy = 0. (3.14)

Une fonction de classe C*est une solution de I’équation ( 3.14) si et seulement si

o ,0%
//RQu(x,t)<W— 62)ddt—O Vo e H
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Définition 3.2.1. Une solution de l’équation ( 3.14), telle que

Po 0%
//Wu(:z:,t)(W— 32)ddt—0 Vo € H

est appelé une solution faible.

3.2.7 Energie et unicité

Energie
Soit u une solution de ’équation d’onde ( 3.1). En multipliant des deux cotés de I’équation

ou . . :
( 3.1)par N et d’intégration par rapport a x, sur I = [a,b] C R, on obtient

b Ou O%u 8u 0%u
TUT U gy~ 22T gy 1
5% 08 dx 815 e de 0 (3.15)

a

depuis

udu 10 (au ?
=55 (5

oo™ 2o \ot)
a0 (udu) o o
ot 0z2 ~ Ox \ Oz Ot Ox 0xot
ouiFu 10 (0
dx dxdt 20t \ox )
Ainsi, I'équation ( 3.15) devient
l/bg @2+2@2d—8“6““ (3.16)
2 ). ot |\ot) T \ox 1= ol ‘

Soit

w5 [l (5) <2 (5) ] 3)

Cette intégrale s’appelle l'intégrale de I’énergie de u.( Loi sur I’économie de I’énergie)
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Proposition 3.2.1. Soit I = [a,b] C R.

d_E—l/bgg %24_2 @Qd_Q%@Hx:b
at 2 ), otor |\ae) T \ox) | T daan =

Unicité de la solution

Nous allons établir le théoréme de 'unicité

Théoréme 3.2.6. Soient uy et us sont deux solutions au probléme suivant :

g (7,1) — Cuge(x,t) = f(z,1), a<z<bt>0,

U(ZE, O) = gb(l]), ut('r’ 0) = 77/)(.17), (318)

u(a,t) = a(t), u(bt)=p(), t=0.

\

Alors uy(x,t) = ug(z,t), x € la,b], Vt=D0.

Preuve
Soit v(x,t) = uy(x,t) — ug(x,t) est une solution de probléme ( 3.18), alors nous avons
v(a,t) =0 et wv(b,t)=0,
d d
—v(a,t) =0 et —uv(bt)=0

dt dt

On Utilise la proposition ( 3.2.1),

dE [0 9
“ oz ot ot

0 0
= —v(b, t)=wv(b, t) — gv(a, t)—wv(a, t)] = 0.

ou F est I'intégral de I'énergie de v, c’est-a-dire

Blt) = %/b [(%U(fv,t))Q 4 (%U(x, t))2] do = A,

0 0
ot A est une constante,depuis v(z,0) = 0, a—v(x, 0)=0 gv(m, 0) = 0, en évaluant E£(0)
x
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pour obtenir

E0)=0=A
Ansi,
1 b a 2 ) 8 2
E(t) §/a [(av(x,t)) +c (8 U(m,t)) dr =0,
Il s’agit de
1 /[ 2 2 b 2
E(t) = 5/ (a—v(ﬂ:,t)) do + (&Bv(x,t)) dz =0,

D’ou

c’est-a-dire

v(x,t) = B.

En utilisant v(z,0) =0 , on obtient B = 0 . Cela signifie que

v(z,t) =0 — ui(z,t) = ug(x, t).

3.3 EDP Paraboliques

Dans cette section, nous commencons notre étude de 1’équation unidimensionnelle de

la chaleur (Diffusion)

ou 0%u

5 ~hom =0 a<e<b 0<t<T, (3.19)
X

ol k est appelé la diffusion thermique. L’équation parabolique générale peut étre formulée

comme suit : Trouvez une solution générale u(z,t) de I'équation ( 3.19) qui satisfait
(i) CI: la valeur de u & t = 0 est une fonction connue.

ou
(ii) CB : on nous donne pour tout ¢ la valeur de u et 7 ar=aetzr =0
x
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La solution ( 3.19) dans le rectangle Q = (a,b) x (0,7T) atteint son maximum ou son

minimum sur

3.3.1 Le principe du maximum

1. Soient u; et uy sont deux solutions de

ou 0%u

%— WZO, SUTQ\@Q

si up < ug dans 052, alors up < ug on 2.

2. u(x,t) atteint son extermum sur 9 sim < u(z,t) < M sur 092 , alors m < u(z,t) <
M sur €.

En particulier, si u(x,t) = 0 sur 0S, alors u(z,t) = 0 sur Q.

3.3.2 La solution fondamentale

La solution fondamentale de 1’équation de la chaleur

up(x,t) — kg, (z,t) =0,

est donnée par

2vrkt

Lemme 3.3.1. Sia > 0, alors

BE

+0c0 )
/ e "du =
—0o0
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Preuve :

5 +o0 o +o00 o 21 poo - -
I° = e “dx e Wdy = re” " drdf = —,
— 0o —00 0 0 a

7

— 1 =4/—.

\/;

3.3.3 L’équation de la chaleur sur R :

On considére le probléme & valeur initiale suivant :

ur(z,t) — kg, (x,t) =0, —oco <z <oo, t>0,

(3.20)
u(z,0) = ¢(x).
Théoréme 3.3.1. La solution unique du probléme ( 3.20) est donnée par
+oo _ 2
u(z, t) = G dy, t>0. 3.21
( 2V mkt / )y ( )

Preuve :
Soient s (w,t) et Uy, (w,t) étre la transformée de Fourier de w;(z,t) et uy.(x,t) respective-

ment. Ainsi

= f w(z, 1) e dy

:% Tl t)erda
= 2u(cu t)
ot

on impose u(z,t) - 0 quand x — Fo0

Uge(w, 1) = fj;o Uge (T, 1) dx
0 .
= a—u(m,t)e‘“‘ch |1 +iw |u(w, t)e ™ | T2 +zwf u(x, t)e”“*dx
T

= —w?i(w, t)
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en prenant la transformation de Fourier des deux c6tés de ( 3.20) on obtient une EDO en ¢

%ﬂ(w,t} + kw?i(w,t) =0, t>0

avec

a(w,t) = d(w)e ™,

—k

. . A 2 . .
Maintenant , soit 6(w,t) = e "t nous essayons de trouver 6(z,t) par Fourier inverse

1 ieo A |
O(x,t) = — joo O(w, t)e™dw

= — [T20(w, t)e F iz gy

“[(35) ().
kit [w—=—| [ =
_ L j;oé(w,t)e 2kt 2kt) | gy

2m Ly
1T 72
1 - - —kt <w—) _
= — [T 0w, e N 2R Tkt dw
2 7T )
T
1 o

e 4kt, (Lemme(3.2.1)).

Maintenant, par convolution, nous obtenons le résultat

u(z,t) = [T70(x—y,t)e(y)dy

1 o _ (z—)?
= fj_oo ef( 4kt) Qp(y)dy_

2vrkt

3.3.4 La chaleur en demi-ligne
Le probléme de Dirichlet sur R,

Le probleme est

up(x,t) — kug,(x,t) =0, 0<x < +oo,t>0,
u(z,0) = p(z), (3.22)

u(0,t) = 0.
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Théoréme 3.3.2. La solution unique du probléme ( 3.22) est donnée par

@—yV —(z 4 y)?

u(z,t) =

2V kt

Preuve :

Prolongez ¢ a R

Qoimpaire(x) = 0’ =0

Alors la solution sur R est

u(z,t) = erOO O(r —y, t)‘zpimpaire(y)dy

- f x - y7 Sozmpazre dy + f+ 6 LE — Y, t)goimpaire(y)dy

= [° 0z —y.t)(—p(—y))dy + [ 0(z — y, t)p(y)dy,

= [0 + y,0) + 0(z — y,1)] o(y)dy
) —(z—y)® —(z+y)’
BN R dht —e ARt p(y)dy

Le probléme de Neumann sur R,

Considérez le probléeme de Neumann

(

ug(z,t) — kg (z,t) =0, 0<z < 4o00,t>0,

Y ulz,0) = o(x),

u.(0,t) = 0.

\

Théoréme 3.3.3. La solution unique du probléme ( 3.22) est donnée par

—@—yV —(z+y)?

u(z,t) =

2vrkt

+oo
/ 4kt —e 4kt o(y)dy, t>0.

+oo
/ 4kt +e A4kt o(y)dy, t > 0.

(3.23)

(3.24)

(3.25)
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Preuve :

Prolongez ¢ a R

¢pair6<$> =40, z=0

Alors la solution sur R est

wz,t) = [0 — y, ) paire(y)dy
= [ 00z — 4, )Ppaire(W)dy + [ 0( — Y. ) @paire (y)dy

= [0 _0(x —y.t)(o(—y))dy + [70(x — y, t)p(y)dy,

= [0 +y,t) + 0(z — y. )] 0(y)dy

—(z—y)? —(z+y)?
7 e 4kt e 4kt | o(y)dy

1
2vVrkt

3.3.5 L’unicité :

Le principe du maximum peut étre utilisé pour donner une preuve d’unicité pour le

probléme de Dirichlet.

Théoréme 3.3.4. Siuy et uy sont deux solutions aux probleme de Dirichlet pour I’équation

de la chaleur

ug(x,t) — kg (z,t) = h(z,t), a<ax<b >0,
u(z,0) =p(x), a<z<b,

u(avt) = f(l'), u(b’ t) = g([E),

\
pour quatre fonctions données f,p, g et h Alor,u; = us

Preuve :

(3.26)

Soit v(x,t) = ui(x,t) — ug(x,t) étre une solution au probléme ( 3.26), nous avons alors

vp(z,t) — kvge(x,t) =0, wv(z,0) =0, wv(a,t) =0, wv(bt)=0.



3.4 EDP Elliptiques 56

Cela signifie que v(z,t) = 0 sur I', par le principe de maximum v(x,t) = 0 sur {2,

de sorte que uq(z,t) = ug(z,t), Va<x<b t=0.

3.4 EDP Elliptiques

L’équation de Laplace

L’équation de Laplace, également appelée équation potentielle, peut étre écrite comme suit

Pu  0*u
@ + 8_y2 =0 (3.27)

qui est 1’équation bidimensionnelle de Laplace. aussi

’u  0*u  O%*u
—|— frg

0x? * oy 022 0

"L 0%

— =
— ox;

0

sont respectivement 1’équation de Laplace a trois et a n dimensions. Pour I'équation de
Laplace sur €2 , un probléme complet bien posé consiste en une équation potentielle avec

des conditions limites appropriées sur 0f).

3.4.1 L’équation de Laplace en coordonnées polaires :
On peut écrire 'equation( 3.27) en coordonnées polaires u(z,y) — u(r,#) on obtient

Ou  OQudr Judl

9 arop 900z

0w 0 (Oudr Oudl

% _%(Ea_x+%%>
O\ Pu Prou 00ou (00 0%u
—(%) o2 "o or o2 00 (a—) 0

De méme,

~\oy) a2 T agar "oz \ay) o

Pu or\? 0% rou 0% ou 90\ * 0%u
oy?
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Nous avons

Py 2u_[(0r : oy o oo
ox2 oy or? ox?  Oy?| or

a?e 829 o0\* (0]
(9&:2 ox dy 00?

=0

. Lo, o 2 2 _ —-1(z .
Maintenant, nous calculons les dérivés de r = /22 4+ y? et § = tan (y) ,pour obtenir

or x o’r > ar Y o*r x?
or /22 + Y2 o2 \/@a + y2>3’ oy /22 + Y2 ’ oy? \/(3:2 + y2)3
a0 Y 020 2zy 00 x 020 2zy

dr a2+ y? 022 (a2+y)? Oy a?+y? a2 (a2 +y2)?

On obtient ’équation de Laplace en coordonnées polaires

0%u 1\ Ou 1\ 0%u
. B | — = <O KL .
8T2+(r) 8T+<r2) 502 0, 0<0<2r, 0<r<oo (3.28)

3.4.2 L’equation de Laplace sur un rectangle
Le probléme de Dirichlet

Considérez 2 = (a,b) x (s,d).Le probléme de Dirichlet

(

Uge (7, ) + uyy(z,y) =0, sur §

§ tz(a,y) = 6(y), ua(b,y) = ¥(x), c<y<d, (3.29)

\uy(x,c) = a(x),uy(z,d) = B(z), a<z<b,
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Le probléme de Neumann

Considérez 2 = (a, b) x (s, d).Le probléme de Neumann

;

Uz (T, Y) + yy(z,y) =0, sur

u(a,y) = é(y),u(d,y) = ¢(z), c<y<d, (3.30)

u(z,c) = a(x),u(z,d) = f(x), a<z<b,

3.4.3 Le principe du maximum

Soit u(x,y) est une solution de I’équation de Poisson

u  O%*u

922 + 8_312 = f(z,y), surQ\oQ.

Ensuite, u(z,y) atteint ses bornes sur 092 , si m < u(z,y) < M alors m < u(z,y) < M sur

Q2. En particulier, si u(z,y) = 0 sur 082 , alors u(z,y) = 0 sur 2.

3.4.4 Unicité

Théoréme 3.4.1. Soit 2 = (a,b) X (¢,d) , si uy et us sont deuz solutions auz probléme

sutvant
2 2
6—2 6—2 =0 surQ\ oS
Ox* — y (3.31)

u(z,y) =0, sur 0.

Alors uy = us, cela signifie que la solution au probléme du Laplace est unique.
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Preuve :

Soit v(z,y) = ui(z,y) — uz(z,y) étre une solution au probléme ( 3.31) , puis en multipliant

0? 0?
les deux cotés de a—z + a—z 0 par v et intégrant sur €.
2U 82
:ffgv[ 82] dxdy

y O0%v

d d 821)
[
=—[Jo |5 2+ o0 dady + [ v—|”dy+f —Iddl“
@ Ox dy Oy '
C’est-a-dire
ov\ 2 ov\ 2 4 b b v d
/L[(%) +<a—y)]d:vdy—/cv%|ady+/QUa—y|Cda:

Pour le probléme de Dirichlet ( 3.29) et le probléme de Neumann ( 3.30), nous avons

/Cdv@ P dy+/abvg—z 9 de = 0
JLLGE) () -

ov ov
E Oeta_y 0 = v(z,y) =c,

d’ou

on trouve

¢ = 0 parce que v(x,y) = 0 sur 0.

Par conséquent,

v(x,y) =ui(z,y) —us(z,y) =0 =  wi(z,y) = us(z,y).
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Le probléme ( 3.31) est un cas particulier du probléme suivant

o o
gu —1—8—;; = f(xz,y) surQ\ 0N,

Ox? (3.32)

u(z,y) = glz,y), sur 9.

Théoréme 3.4.2. Le probléeme ( 3.32) a une seule et unique solution sur .

Preuve :

Soit v(z,y) = ui(x,y) — us(x,y) étre une solution au probléme ( 3.32) nous avons alors

*u  *u
@—f‘a—w—f—f—o SU’/‘Q\@Q

u(z,y) =g—9g=0, sur .

v(z,y) = 0 sur 0F, par le principe du maximum v(z,y) = 0 sur € de sorte que

ul(x7y> = u2(a:,y).



Conclusion

Dans ce mémoire, nous avons présenté un ensemble de résultats concernant les pro-
blémes aux limites associés aux E.D.O et E.D.P du second ordre.
Nous avons trouvé de maniére progressive des résultats permettant de bien maitriser
quelques outils de base notamment la théorie fondamentale de la fonction de Green, néces-
saires a une étude plus approfondie des problémes aux limites. Il présente aussi quelques
résultats d’existence classiques datant, pour certains, des années 70. Pour montrer ces re-
sultats, ce travail fait appel & la théorie du point fixe.
Ainsi, nous avons pris en compte 1’équation d’onde, de la chaleur et 1’équation de La-
place. Nous avons démontré que la solution exacte peut étre obtenue de maniére simple en

utilisant une méthode directe.
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