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Introduction

Les équations différentielles stochastiques rétrogrades, notées EDSR ou en anglais BSDE
(Backwards stochastics differentials equations) sont une nouvelle classe d’équations différen-
tielles stochastiques, leurs valeur est donnée en temps terminale 7" Les EDSR ont recevé une
attention considérable dans la recherche en probabilité car les EDSR fournissent une représen-
tation probabiliste pour les solutions de certaine classe d’équations aux dérivées partielles (EDP
en abrégé) quasi-linéaires parabolique de second ordre, et ont une relation avec les solutions de

viscosité des EDP. La théorie des EDSR a trouvé beaucoup d’applications telles que :

v' la théorie du controle stochastique,
v I'économie,
v' des problémes de mathématiques financiéres.

Commencée en 1973, les équations différentielles stochastiques linéaires ont été d’abord
introduite par (Bismut, 1973) [1], qui a utilisé ces EDSR pour étudier les problémes de controle
optimal stochastique dans la version stochastique du principe de maximum de Pontryagin. Cinqg
ans plus tard, (Bismut, 1978) [2] a prolongé sa théorie et il a montré I'existence d’une solution
unique bornée de ’'EDSR de Riccati.

Les équations différentielles stochastiques rétrogrades, dans le cas non linéaire, ont été in-

troduites par Pardoux et Peng [29], qui ont considéré des EDSR générales de la forme suivante :
Y, = *f(/r; Y, Z»,-)dT' + Z,dB,, Yr = 57

avec la condition finale Y7 = £ (c’est pour cela que l'on dit rétrograde) ou & est une variable
aléatoire de carré intégrable. Pardoux et Peng [29] ont prouvé le résultat d’existence et d’unicité
sous 1’hypothése suivante : f est Lipschitz continue dans les deux variables y et z et les deux

données, £ et le processus {f(t,0,0)}secp,1), sont de carrés intégrables.



Depuis ces premiers résultats d’existence et d’unicité, de nombreux articles ont été consa-
crés aux résultats d’existence et /ou d’unicité sous des hypothéses plus faibles sur les coefficients
pour prolonger le résultat initial de Pardoux-Peng. On peut se référer a Pardoux-Peng [31], El
Karoui [13], Lepeltier-San Martin [25], [26], Kobylanski [22], Chen [7], Briand-Delyon-Pardoux-
Hu-Stoica [5], Hu-Peng [18], Hu-Yong [19] El Karoui-Kapoudjian-Pardoux-Peng-Quenez [13],
Kobylanski-Lepeltier-Quenez-Torres [23], Matoussi [28|, Hamadéne-Lepeltier- Matoussi [15],
Hamadéne [17], Hamadéne-Lepeltier-Wu [16] et les références la-dedans. Parmi ces articles,
on peut distinguer deux classes différentes : les EDSRs scalaires et les EDSRs multidimension-
nelles. Dans le premier cas, nous pouvons bénéficier du théoréme de comparaison : on se référe a
El Karoui et autre. [13] pour ce résultat. Dans cet esprit, citons les contributions de Kobylanski
[21] et de Lepeltier et San Martin [26], qui traitent des générateurs de croissance quadratique
en z. Pour les EDSRs multidimensionnelles, il n’y a pas de théoréme de comparaison et pour
surmonter cette difficulté, une hypothése de monotonicité sur le générateur f de la variable y
est utilisée. Cette condition est essentielle dans 'étude des EDSRs avec temps terminal aléa-
toire et apparait pour la premiére fois dans ce contexte dans un article de Peng [33]. Lorsque le
temps terminal est déterministe, cette condition permet de se éliminer la condition de croissance
dans la variable y : voir les travaux de Briand et Carmona [3]| pour une étude de la croissance
polynomiale de LP avec p > 2 et les travaux de Pardoux [32] pour une croissance arbitraire.

Signalons également que lorsque le générateur est Lipschitz continue, le résultat de El Karoui
et autre. [13], fournit 'existence d’une solution lorsque les données & et {f(¢,0,0)}co,) sont
dans LP méme pour p € (1,2). Notre travail est consacrée a une généralisation de ce résultat
au cas d'un générateur monotone, a la fois pour des équations sur un intervalle de temps fixe
et aléatoire.

L’objectif de ce mémoire est d’établir I'existence et 1'unicité des solutions pour les équations
différentielles stochastiques rétrogrades avec des conditions faibles dans LP, lorsque & et le
processus { f(t,0,0) }e,7) ne sont que intégrables avec f seulement monotone dans la variable

y, du type suivant :
T T
Y, =§+/ f(r,Yr,ZT)dr—/ Z.dB,, 0<i<T,
t t

ol B est un mouvement brownien standard et £ est une variable aléatoire mesurable par rapport
au passé de B jusqu’au temps T', avec la condition terminale ¢ et le coefficient f (appelé aussi le
générateur) sont dans LP. Les inconnues sont les processus {Y; }iejo,r) €t {Z: }iepo,r), qui doivent

étre adaptés par rapport a la filtration du mouvement brownien : c¢’est un point crucial.



Ce mémoire est composé de trois chapitres :

v' Le premier chapitre : On introduit quelque notions préliminaires sur les équations diffé-
rentielles stochastiques rétrogrades, puis on va présenter un résultat classique d’existence

et d’unicité pour les solutions des EDSR.

v Le deuxiéme chapitre : On étudie l'existence et I'unicité des équations différentielles
stochastiques rétrogrades dans LP avec p € (1,2) sur un intervalle de temps fixe. On le
termine par une étude sur l'existence et 1'unicité des solutions dans le cas p = 1 ot une

hypothése supplémentaire sur le coefficient est requise.

v' Le troisiéme chapitre : On démontre le résultat d’existence et d’unicité ou les données

sont dans LP sur un intervalle de temps aléatoire.



Chapitre 1

Equations différentielles stochastiques

rétrogrades

Le but de ce chapitre est de présenter le résultat d’existence et d’unicité des équations
différentielles stochastiques rétrogrades dont les coefficients sont globalement lipschitziens, et
de préciser la terminologie employée dans ce contexte. Nous montrerons le résultat classique
d’existence et d’unicité qui a été obtenu par Pardoux et Peng [29] avec un générateur non
linéaire et une donnée terminale de carré intégrable.

Résoudre une EDSR, ¢’est trouver un couple de processus adaptés par rapport a la filtration

du mouvement brownien (By)o<i<r, (Y, Zt)icjo.r) vérifiant 'équation différentielle stochastique
—dY, = f(t. Y, Z)dt — ZdB,  avec  0<t<T,

avec la condition finale Y, = £ o £ est une variable aléatoire de carré intégrable. Comme les

EDS, ces équations doivent étre comprise au sens intégral i.e.

T T
yt:ng/ f(r,K,Zr)dr—/ Z,dB,, 0<t<T.
t t

Depuis de nombreux travaux qui ont été effectués; la théorie n’a cessé de se développer en
raison de ses relations étroites avec les équations aux dérivées partielles (EDP en abrégé) et
les mathématiques financiéres. Nous allons donner deux exemples empruntés pour chacun des
deux sujets précédents.

En finance, une question importante est de déterminer le prix d’option d’un produit finan-

cier. Prenons le cas le plus simple, celui du modéle de Black-Scholes et d’un "call européen".
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Le prix de ce produit financier, (V;)o<i<r satisfait I’équation :

ou  est la prime de risque (premium risk en anglais) et r est le taux d’intérét a court terme,
avec la condition finale Vi = (Sp — K)* ou S, est le prix de l'action sous-jacente et K une
constante, un prix fixé a I’avance. Nous voyons dans ce modéle simple que 'EDSR est linéaire
mais que dans les modeéles financiers plus complexes elle peut étre non linéaire.

Quant au deuxiéme exemple. Considérons ’'EDP suivante

Ou(t, z) + %c‘)imu(t, x)+ f(u(t,z)) =0, u(T,x) = g(x).

Supposons que cette équation posséde une solution réguliére, u. Appliquons la formule d’It6 a

u(r, B;); on obtient

1
du(r,B,) = {0u(r,B,)+ §8§~xu(r, B,)}dr + Oyu(r, B,)dB,

= —f(u(r, B,))dr + O,u(r, B,)dB,.

Nous obtenons encore une EDSR qui est non-linéaire si f l'est- en posant Y, = u(r, B,) et

Z, = O,u(r, B,) puisque

—dY, = f(Y,)dr — Z.dB, avec  Yr = g(Br).

1.1 Vocabulaire et notations

1.1.1 Présentation du probléme

Soient (2, F, {F; }+>0, P) un espace de probabilité filtré et £ une variable aléatoire mesurable
par rapport a Fr.

Considérons 1'équation suivante :

dY;
_d_tt = f(Y,), te]0,t] avec  Yp=¢. (1.1)
Supposons que pour tout ¢ € [0,77], le processus (Y;);>o soit adapté a la filtration {F;}i>o;
c.a.d pour tout ¢ € [0,7], (Y;);>0 ne dépend pas du futur aprés 'instant ¢ (ne dépend que
de I'information connue jusqu’a U'instant t). Si f = 0, la solution de I’équation précédente est

Y, = £ qui n’est pas adapté si £ n’est pas déterministe.
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Mais € est aléatoire par hypothése donc la solution n’est pas adapté a la filtration {F;}i>0
et la meilleure approximation de la solution, adapté qu'on peut prendre (par exemple dans
L?) est la martingale Y; = E(£/F;) ce qui implique que Yy = E(£/F,) = E(£), le théoréme de
représentation des martingales browniennes, prouve l'existence d’un processus (Z;)i>o de carré
intégrable, tel que :

Vi=B(e/F) =Bl + [ Z,dB.

On peut écrire ceci autrement, en effet :

t
Y, = B[] + / 7.dB,. vt [0,7]
0
d’ou
T
Y, = E[§]+/ Z.dB,
0
t T
¢ = B+ [ zas,+ [ zas,
0 t
T
£ = Yt+/ 7.dB,
3
On a alors

T
Y, =¢& —|—/ ZdB,., 1.e. —dY,=—-ZydB;, avec, Yp=E¢.
t

On voit donc apparaitre sur 'exemple le plus simple une seconde inconnue qui est le
processus Z dont le role est de rendre le processus Y adapté.
Par conséquent, comme une seconde variable apparait, pour obtenir la plus grande géné-

ralité, on permet & f de dépendre du processus Z; ’équation devient donc :
—dY; = f(t,Ys, Zy)dt — Z,d By, avec, Yr=E¢&.

En pratique, dans le domaine financier par exemple, £ peut présenter une fonction du prix
d’une action a I'instant T et la filtration représente dans ce cas les informations existantes sur
le marché a chaque instant ¢.

Résoudre I'équation (1.1), c’est trouver une stratégie de couverture en utilisant un actif
sans risque [8]. Si cette équation admet une solution, elle ne sera qu’aléatoire, car il dépend de
¢ et & un instant ¢ € [0, 7] , elle est Fr mesurable c’est a dire il dépend du futur 7', ce qui est
contre les régles dans les marchés financiers, d’oti la nécessité de trouver des solutions avec la
condition supplémentaire tel que ces derniéres n’anticipent pas sur le futur c¢’est-a-dire qu’elles

solent adaptées a la filtration {F;}¢>0, ¢’est pour cela qu’on a introduit les EDSR.
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Remarque : Cette appellation (rétrograde), provient de fait que le processus (contrairement

a d’autres EDS) est déterminé & partir de la condition terminale Y; = &.

1.1.2 Notations et définition d’une solution

Dans toute la suite nous considérerons un espace de probabilité complet (2, F,P) et
(Bi)iejo,r) un mouvement brownien (MB) de dimension d défini sur cet espace avec T' est un
réel strictement positif. On notera {F;};>¢ la filtration naturelle augmentée, c’est-a-dire la o-
algebre générée par le mouvement brownien (By)¢cjo,r) et les ensembles de probabilitée nulle.

Nous allons définir deux espaces fonctionnels de processus SP(R") et MP(R™*?).

1. S*(R") : est I'espace vectoriel formé par des processus {Y; },ep0,r], progressivement mesu-

rables, a valeurs dans R", telles que :

||Y||§2 = E[ sup |Y;]*| < oo,

te[0,7

et S2(IR¥) le sous-espace formé par les processus continus. Deux processus indistinguables

seront toujours identifiés et nous garderons les mémes notations pour les espaces quotients.

2. MZ(R™?) : désigne lespace vectoriel formé par des processus {Z; }1e(o,7], progressivement

mesurables, & valeurs dans R™ ¢, telles que :

121 = E{ / ||Zt||2dt] < .
0

ot si z € R ||2]|2 = trace(z2*). M?(R¥*?) désigne 'ensemble des classes d’équivalence
de M € RO,

R* et R¥*4 seront souvent omis; les espaces SP, SP et MP sont des espaces de Banach pour
les normes définies précédemment. Nous désignerons B? 1'espace de Banach S2(IR¥) x M?(RF*?),

Dans tout ce chapitre, application aléatoire f est défini sur Q x [0, 7] x R¥ x R¥*4 et sera

#*d) De plus pour tout

toujours supposé mesurable par rapport a F x B([0,T]) x B(R*) x B(R
(Y, 7) € R* x R¥*4 e processus {f(t,y, 2) }o<i<r est progressivement mesurable. On considére
également une variable aléatoire &, mesurable par rapport a Fr et a valeurs dans R*.

Dans ce contexte, on veut résoudre I'équation différentielle stochastique rétrograde sui-

vante :

—dYy = f(t, Y, Zy)dt — Z,d By, 0<t<T, Yr=¢,

ou, de la méme maniére, sous forme intégrale,
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T T
Y, =¢ +/ f(r, Y., Z)dr — / Z,.dB,, 0<t<T. (1.2)
t t

La fonction f s’appelle le générateur de 'EDSR et £ la condition terminale. Sans plus tarder,

précisons ce que I'on entend par solution de 'EDSR (1.2).

Définition 1.1.1. Une solution de I’EDSR (1.2) est un couple de processus (Y, Zi)icpo,r) @

valeur dans R* x R¥*? tel que

1. (Yi)iep) est a trajectoires continues P-p.s. et adapté, (Z)iejo.r) est prévisible,

T
2. / {1f(r,Y,, Z,)| + HZTHQ}dr < 00, P— p.s.,
0

3. P—p.s;ona:
T T
Yt:§+/ f(r,YT,Zr)dr—/ Z.dB,, 0<t<T.
t t

Remarque 1.1.1. Nous nous souviendrons les deuz points suivants car ils sont importants :
comme les intégrales de l’équation précédente sont bien définies, (Y3)icjo,1] est une semi-martingale
continue ; ensuite, comme (Y)icjor) est un processus progressivement mesurable, il est adapté,

et en particulier Yy est une quantité déterministe.

Avant de donner un premier théoréme d’existence et d’unicité, nous allons montrer, que sous

une hypothése relativement faible sur le générateur f, le processus (Y;),e(0.17 appartient a S,

Proposition 1.1.1. Supposons qu’il existe un processus { f; }o<i<r, positif, appartenant a M*(R)

et une constante positive X\ tels que
V(t,y,2) € [0.T] x R® x R [f(t,y, 2)| < fo+ Allyl + [12])-
Si {(Yy, Zy) Yo<i<r est une solution de ’EDSR (1.2) telle que Z € M? alors Y appartient a S2.

Preuve. Nous allons conclure le résultat principalement du lemme de Gronwall et du fait

que Yj est déterministe. En effet, on a, pour tout ¢ € [0, 7],

t t
}/;5 - % - / f(r7 Y;‘a Z'r‘>dT +/ Z'r‘dBra
0 0

en utilisant I’hypothése sur f; on obtient :
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T T
vl < rYo|+/ |f<r,1¢,zr>|dr+‘/ Z,dB,
0 0

t t
/ZTdBT +>\/ Y, |dr
0 0
t
/ZTdBT
0

Par hypothése, Z appartient & M? et donc, via 'inégalité de Doob, le troisiéme terme est

IN

T
Yol + / (f. + M Z:])dr + sup
0

0<t<T

posons

.
g:\YOH/ (o + M| Z)dr + sup
0

0<t<T

de carré intégrable; il en est de méme pour {f;}o<i<r, et Yy est déterministe donc de carré
intégrable ; il s’en suit que ¢ est une variable aléatoire de carré intégrable.

Comme Y est un processus continu qui vérifié,

|Yt|g<+x/
0

Par le lemme de Gronwall, on aura

t

|Y,ldr.

IV;| < ge,

et donc

sup |V;| < e,
0<t<T

comme ¢ est de carré intégrable, ce qui prouve que Y est dans S%*(R).

O

Remarque 1.1.2. Le résultat est encore valable lorsque ||f.||1 est une variable aléatoire de

carré intégrable.

t
Lemme 1.1.1. Soient Y € S*(R¥) et Z € M*(R¥*4). Alors {/ Y. Z,dB,, t € [O,T]} est
0

une martingale uniformément intégrable.

Preuve. En effet les inégalités de Burkholder-Davis-Gundy (BDG) donnent :

T 3
| < ce|( [ mpizra)
0
. )
< cu| s il [ zipar) ],
0<t<T 0

t
E{ sup /(Y},ZTdBT)
0

0<t<T
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. 2 2
et par suite, comme ab < % + %,

T
| < 58| s ] +8] [ 1zea])
0<t<T 0
T
< C (E{ sup ]Y}]Q] —i—E[/ ]|Zr]|2d7"}) < 00.
0<t<T 0

Puisque cette derniére quantité est finie par hypothése ; d’ou le résultat.

t
E[ sup /(Y},ZrdB,)
0

0<t<T

1.2 Le cas Lipschitz

1.2.1 Le résultat de Pardoux-Peng.

Ce résultat est dit & E. Pardoux et S. Peng [29]; c’est le premier résultat d’existence et
d’unicité pour les EDSR dans le cas ol le générateur est non-linéaire et lipschitzien par rapport
aux deux variables y et z, le processus {f(t, v, 2) }o<t<r soit progressivement mesurable. On
considére également ¢ une variable aléatoire, Fr-mesurable, a valeurs dans R*.

Nous travaillerons plus tard sous les hypothéses suivantes :

(L) 11 existe une constante A telle que P-p.s.,

1. condition de Lipschitz en (y, 2) : pour tout y, ¥y € R¥, z, 2 € RF*?,
fty,2) = f6y, 2 < Mly =y + 12 = 2],
2. condition d’intégrabilité :

T
E[|s|2+ / If(r70,0)|2d7} < o0,
0

Commencons par le cas simple ou f ne dépend ni de y ni de z i.e. on se donne £ de carré

intégrable et un processus {F}o<i<r dans M?(R¥) et on veut trouver une solution de 'EDSR
T T
m:§+/ Frdr—/ Z,dB,, 0<t<T. (1.3)
t t

Lemme 1.2.1. Soient £ € L*(Fr) et {F,}o<i<r € M?*(R¥). UEDSR (1.3) possede une unique
solution (Y, Z) telle que Z € M?>.
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Un outil-clé dans la démonstration est le théoréeme de représentation des martingales brow-
niennes (voir [20] théoréme I11.4.15).

Preuve.

1. L’existence : Supposons dans un premier temps que (Y, Z) soit une solution de (1.3) qui

vérifiant Z € M?2. Si on prend l'espérance conditionnelle sachant F;, on a nécessairement,

T T
Y, = E(Y\F,) = E{g +/ Fodr —/ ZrdBr\]-}}, 0<t<T.
t t
T T
puisque / Z,.dB, est une martingale on a E( / ZrdBT\]-"t> = 0. On définit donc Y
0 0
a l'aide de la formule précédente et il reste & trouver Z. Remarquons que, d’apreés le
t
théoréme de Fubini, comme F' est progressivement mesurable, / F.dr est un processus
0

adapté a la filtration {F;}iejo] en fait dans S7 puisque F est de carré intégrable. On a

alors, pour tout ¢ € [0, 7],

- T ' T t
Y, = E g+/ Frdr—/ Frdr\]-"t} —EV ZTdBr—/ ZTdBT\]-"t}
L 0 0 0 0

- T ¢
= E £+/ Frdr\.}’i} —/ F.dr.
L 0 0

T
MtzE{u / Frdr\]-“t}
0

on pose :

t
K = Mt — / Frdr,
0
M, est une martingale brownienne carré intégrable.

D’apres le théoréme de représentation des martingales il existe un processus prévisible

Z carré intégrable appartenant a M?2. tel que
t
M, = E[M,] +/ Z,dB,, t €[0,7].
0

Donc

t t t
Y, =M, — / Fodr = E[M] + / Z.dB, — / F.dr,

0 0 0
t t t

Y, =M, — / FE.dr = M, +/ ZdB, — / F.dr.
0 0 0

On vérifie facilement que (Y, Z) est une solution de 'EDSR comme Y = €,

0 ¢ T T
Yt—YT—Y}—ﬁ—MO—I—/ ZrdBT—/ F.dr — <MO—|—/ ZTdBT—/ F,dr),
0 0 0 0
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T T
Yt—g:/ Frdr—/ Z,.dB,
t t
T T
Yt:§+/ FTdr—/ Z,dB,.
t t

2. L’unicité : est évidente pour les solutions vérifiant Z € S2.

Si (Y, Z) est une autre solution,

T
?:1@:E(g+/ Frdr\]-})

d’ou I'unicité de Y.
En ce qui concerne 1'unicité de 7, elle est garantie par le théoréme de représentation des

martingales.

Nous montrons a présent le théoréme d’existence de Pardoux et Peng.

Théoréme 1.2.1. (Pardoux-Peng 90) On considére ’EDSR suivante :

T T
3/;? :§+/ f(TaYraZr)dT—/ Z?“dBT'
¢ t
avec Uhypothese (L), ’EDSR admet une solution unique (Y, Z) telle que 7 € M?(R**9).

Preuve. On utilise 'argument de point fixe dans 'espace de Banach B? = S?*(R*) x
M?(R¥*?) en construisant une application ¥ de B? dans lui-méme de sorte que (Y, Z) € B? est
solution de PEDSR (1.2) si et seulement si ¢’est un point fixe de ¥. Pour (U, V') élément de B2,
on définit (Y, Z) = (U, V) comme étant la solution de 'EDSR :

T T
Yt:§+/ f(r,UT,VT)dr—/ Z.dB,, 0<t<T.
t t

Remarquons que cette derniére EDSR posséde une unique solution qui est dans B%. En effet,

posons F, = f(r,U,,V,). Ce processus appartient a M?(R¥) puisque, f étant Lipschitz,

[El < 1f(r U, Vi) = f(r,0,0)[ + [ £(r,0,0)]
< (0,0 + AU + AIVA]],

et ces trois derniers processus sont de carré intégrable. Par suite, nous pouvons appliquer le
Lemme (1.2.1) pour obtenir une unique solution (Y, Z) telle que Z € M?*(RF). (Y, Z) appartient
a B2
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I'intégralité de Z est obtenue par construction et, d’aprés la Proposition (1.1.1), Y appartient
5 S2.

L’application ¥ de B? dans lui-méme est donc bien définie.

Soient (Uy, V1) et (Us, V) deux éléments de B?; et (Y1, Z,) = W(Uy, V1), (Ya, Z3) = U(Us, Vs).
Notonsy =Y, — Y5, 2=241 —Zyet ypr =6 —E=0et

df&t - _{f(t* U17 ‘/1) - f(t/ U27 %)}dt + éTdBT-

On applique la formule d’'Tt6 & e®|§|? pour obtenir :
d(e|g.*) = ae™|goPdt + 2e(gi|dg, + (e[3:|*)dt
= ae™|g|2dt + || 2 ||2dt + 2™ |G, |dt[f (¢, U, Vi) — f(t, Uz, Va)dt + 2,dBy]
= Oze"t@t|2dt + 2€at|gt|2tdBt + €at||7:'t||2dt — 2€at|@t|dt[f(t, Ul, ‘/1) — f(t, UQ, ‘/2)]
Par conséquent, intégrant entre ¢ et T, on obtient :
T T T
Ul [ e = [ e (=alg P20 £ UL Vi) = Sl Un Val)dr [ 2613,
t t t
Et comme f est Lipschitz il vient, notant u et v pour U; — Us et V; — V5 respectivement,
T T T
L +/ oo |12, 2dr < / e (— gy [2 + 273, 1] + 27, [0l — / 267 |, d B
t t t
Pour tout ¢ > 0 on a 2ab < 2a? + b? et donc, I'inégalité précédente donne
|f(t, U, Vi) — f(t, Uz, Va)| < K[[UL — Us| + [Vi = V2]
T T T
et} +/ 13 Pdr < / e (= + 202 /2) i |2dr — / 2", 5, d B,
t t t

T
te / e (it + 0]
t

T
et prenant o = 2)\?/e, on a, notant R, = 5/ e (|, |* + |6, |*)dr,
0

T T
vt € (0,77, |42 +/ e |2, |?dr < R. — 2/ e §y.2,dB,. (1.4)
t t

t
D’aprés le Lemme (1.1.1), la martingale locale < / eo"”gjr.,érdBr> est en réalité une
0 t€[0,1]

martingale nulle en 0 puisque Y7, Y, appartiennent a S? et Z;, Z, appartiennent a M?2.
En particulier, prenant I’espérance - ce qui fait partir I'intégrale stochastique via la remarque

précédente -, on obtient facilement, pour t = 0,

E{ / Te“HéTH?dr} <E[R.] (15)
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Revenant a l'inégalité (1.4), les inégalités BDG fournissent - avec C' universelle -,

r T 1/2
]E{ sup e”ﬂg]ﬂﬂ < E[R.]+ CE </ eQ“T]g]T\QHirHer) ]
L\ Jo

0<t<T

r T 1/2
< E[R]+CE| sup e“/2|m|( / e“’nzu?dr) ]
0

L o<t<T
puis, comme ab < a?/2 + b*/2,

1 02 T
B sw el < B+ B[ s etil] + SB[ [ et par]
0

0<t<T 0<t<T 2

1 at|n~ |2 CQ r ar|l 2 (12
SE| sup e®[g ") < E[R]+ B\ [ |5 dr
0

0<t<T 2

T
E[sup eaw] < QE[&HCQE[ / emnzrnzdr]
0

0<t<T

T T T
E[ sup eo‘t’]g)tﬂ —HE{/ ea’"||2rH2dr] < QE[RE]+CQE{/ e"”\|,§r\|2dr} —HE{/ e‘”"||2rH2dr].
0 0 0

0<t<T
T
]E[ sup eat|yft|2} + C’E[/ e“’”HETHer} < 3E[R.] + C°E[R.]
0<t<T 0
Prenant en considération I'inégalité (1.5), on obtient finalement

"
E{ sup eO‘L|g]t|2+/ em||£’T||2dr] < (3+ CHE[R.],
0

0<t<T

et par suite, revenant a la définition de R.,

T
ER.] = E 6/0 eo‘r(\ﬁr|2+|]@||2)dr]

T T
= E z—:/ em'|1lr|2dr} +E|:€/ e’”||ﬁr||2)dr}
0 0

Alors

0<t<T

T r T T
E[ sup eat|gt|2+/ eo”"||ér||2dr} < s34 CAE / eo‘t|'&t|2dr+/ eo”"||/z§,.||2dr]
0 0 0

T
< 3+ CHE|T( sup ew|ar|2)+1/ ear||ﬁr||2dr]
L 0

0<t<T

T
< 5(3+C’2)(1\/T)E{ sup eo‘t|7lt|2+/ ew||17,«||2d7’].
0

0<t<T
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Prenons ¢ tel que £(3+C?)(1VT) = 1/2, de sorte que I'application ¥ est alors une contraction

stricte de B2 dans lui-méme si on le munit de la norme

T 1/2
(U1, Vi)lla =E| sup e"t|(U1)r\2+/ 6“”‘H(Vl)r\|2d7"} ,
0

0<t<T

qui en fait un espace de Banach. Cette derniére norme étant équivalente a la norme usuelle
correspondant au cas a = 0.

¥ posséde donc un unique point fixe, ce qui assure ’existence et 'unicité d’une solution de
I'EDSR (1.2) dans B2

On obtient ensuite une unique solution vérifiant Z € M? puisque la Proposition (1.1.1)

implique qu'un telle solution appartient a B2.

Remarque 1.2.1. A partir de maintenant et sans plus insister, I'expression "la solution de

I'EDSR " signifiera la solution de 'EDSR vérifiant Z € M?2.

1.2.2 Le role de 7.

"
Nous allons voir que le role de Z, plus précisément celui du terme / Z.dB, est de rendre
t

le processus Y adapté et que lorsque ceci n’est pas nécessaire Z est nul.

Proposition 1.2.1. Soit (thZt)te[o,T} la solution de I’EDSR (1.2). Supposons que pour un
temps d’arrét T < T p.s, outre Uhypothése (L), que & est F,-mesurable et que f(t,y,z) =0 dés
quet > T.

Alors Y, =Y, et Z, =0 si t > 7.

En bref si Z n’est pas nécessaire pour adapter la solution, Z est nul.

Preuve. Soit t € [0,7]. On a P — p.s.,
T T
Yt:u/ f(r,K,ZT)dr—/ 7.dB, 0<t<T
t t
et donc, pour t = 7 comme f(t,y,2) =0 dés que t > 7,
T T T
Y, =§+/ f(fr,Yr,ZT)dr—/ 7,dB, :g—/ 7,dB,.

Il vient alors Y, = E(&|F,) = £ et par suite fTT Z.dB, = 0 d’ou 'on tire que

]EK/TTZTdBT)T _E[/TTHZTHer] 0,
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et finalement que Z,1,>, = 0.

Il s’en suit immédiatement que, si ¢t > 7,Y; = Y,, puisque par hypothése,

T T
Y., = 5+/ f(r,Yr,Zr)dr—/ Z,dB,

T

t T t ,
_ 5+/ f(r,Y},ZT)dr—i—/ f(r,m,zr)dr_/ ZTdBT—/ Z,dB,
T t T t
T T t t
= 5—|—/ f(r,YT,ZT)dT—/ ZrdBr—i—/ f(r,YT,ZT)dT—/ Z,dB,
t t T T

i i
= Vit [ sy zir [ zap,

- Y,

ce qui termine la preuve.

Dong, le role de (Z;);>0 est de rendre le processus (Y;);>0 adapteé.
Notons que dans le cas ou £ et f sont déterministes alors Z est nul et Y est la solution de

I’équation différentielle
dY;

%:f(tvy;no)a Yrtzg

1.3 EDSRs linéaires et théoréme de comparaison

1.3.1 EDSR linéaires

Nous étudions le cas particulier des EDSR linéaires pour lesquelles nous allons donner une
formule explicite.
On se place dans le cas k = 1; Y est donc un réel et Z est une matrice de dimension 1 x d

c’est a dire un vecteur ligne de dimension d.

Proposition 1.3.1. Soit {(at, b)}iepor] un processus a valeur dans R x R* progressivement
mesurable et borné. Soient {Cy}licpor) un €lément de M?*(R) et & une variable aléatoire Fp-

mesurable, de carré intégrable, a valeur réelles.

L’EDSR linéaire

T T
Y, =€+ / {a,Y, + Z,b, + C, }dr — / Z,.dB,.
t L
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posséde une unique solution qui vérifie :
T
Y, = Ft—llE(gFT + / C.Iydr \ J-“t), vVt € (0,77,
t

avec, pour tout t € [0, 7],

t 1 t t
Ft:exp{/ deBT—E/ ]br\2dr+/ ardr}.
0 0 0

Preuve : les hypothéses de cette proposition assure l’existence d’une unique solution (Y, 7)
a 'EDSR linéaire; il suffit de poser f(r, B,Y,,Z,) = a.Y, + b, Z, + C,. est Lipschitzien et de
vérifier que (L) est satisfaite. Y appartient & S§? par la Proposition (1.1.1)

f(r. Y, Z) — f(r, Yt, Zt) ar(Yy — Yt) + b (2 — Zt)

< |at|Yt—Yt + |by| Zt_Zt

Ml}/;j_}\/;j +M2Zt_Zt

IN

< (M +Mz)( Y - Y

< o

(YL Z)| < ad|Yel + b 2] + | Cil
MY| + M| Zi| + |Cy,

+‘ZL_ZL

)

)

Y;t_}\/;t + Zt—Zt

et on a

N

Yillf(r,Yi, Zy)] < MYy [* + Mol Y| Zi] + Vi |Cyl.

Donc f et € vérifiant les conditions du Théoréme de 'existence et 'unicité.

D’autre part, commengons par remarquer que le processus I' vérifie :
dFt = Ft(atdt + btdBt), F() = 1
Comme a; et b; sont FP adapté et borné alors 'EDSR linéaire

t t
=1+ / I,b.dB, + / [ya.dr.
0 0
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I'inégalité de Doob montre que I' appartient & S2. Posséde une unique solution dans S? telle

que :

I, e &, E{ sup |Ft]2} < 00.
te[0,717

On pose : I';b, = o(r,T}) et T'va, = p(r,T,). Donc :

b, (r,, — fr) ‘

o(r,I,) —oa(r, TT)

N

S ‘br’Fr_Fr SerT_]t—‘T'
‘,u(r, L) — w(r, FT) = |a, (Fr—fr>‘
< Ja||Ty = Tv| < Mu|D, — T, .

Donc ¢ et p sont Lipschitz, on écrit I' sous la forme :
t 1 [t t
I' = exp (/ b.dB, — —/ |br‘2d7“ —i—/ CLTdT>.
0 2 Jo 0

On a I';Y; est F; adapté puisque Y; existe et F; adapté et I'; existe et F; adapté. La formule

d’intégration par parties donne
dilY), = TdY;+ Yidly +d(I,Y),
= —FtC’tdt + FtthBt + FthbtdBt‘

t
Ce qui montre que le processus I';Y; + / C,.I'.dr est une martingale locale qui est en fait
0
une martingale car C' € M? et I, Y sont dans S2.

Par suite, on intégrer de 0 a ¢

t T
FtY;g + / FrCrdT =K (FTYT + / FTCTdT/]:t)
0 0

r T t
Iy, = E (FTYT+/ FTCrdr—/ FTCTdr)/]-}]
L 0 0

r T
= E (FTYT + / FTCTdT’) /.Ft:|
L t

.
Yy, = r;lE[<FTYT+ / FTCrdr)/ft}.
t
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ce qui donne la formule annoncée.
OJ
Remarque. Notons que si &€ > 0 et si (; > 0 alors la solution de 'EDSR linéaire vérifie
Y; > 0. Cette remarque va nous permettre d’obtenir le théoréme de comparaison au paragraphe
suivant.

Pour illustrer ce résultat prenons le cas ou a et C sont nuls. On a alors

T T
Y, = ]E{ﬁexp (/ b.dB, — %/ ‘br‘QdT) ’Ft] =E*(¢| 7).

ol P* est la mesure de densité par rapport a P

T 1 (7
Ly = exp/ b,.dB, — —/ b, [*dr.
0 2 o

Une autre fagon de voir cela, plus dans 'esprit « probabilité risque neutre », est de regarder
t

I’EDSR sous P. En effet, sous P. A, = B, — / b,.dr est un MB -c’est le théoréme de Girsanov.
0

Or I’équation peut s’écrire
_d}/t - thtdt - thBt - _thAta YT - €
Dongc, sous P, Y est une martingale, ce qui montre aussi la formule.

On retrouve ainsi les changements de mesures de probabilité du type « transformation de

Girsanov ».

1.3.2 Théoréme de comparaison

Ce paragraphe est consacré au « théoréeme de comparaison » qui permet de comparer les
solutions de deux EDSR (dans R) dés que 'on sait comparer les conditions terminales et les

générateurs. Ce théoréme est di a lorigine a S. Peng [34].

Théoréme 1.3.1. Supposons que k =1 et que (&, f), (5,, 1) vérifient Uhypothese (L). On note
(Y, Z) et (Y', Z') les solutions des EDSR correspondantes. On suppose également que :
P—p.s., ¢<& et f(t.Y1,2) < f(t.Ye Z2),
m & P-P.s. (m mesure de Lebesgue). Alors,
P—p.s vt €[0,7) Y, <Y,.

Si de plus, Yo =Yy, alors P-p.s, Y, =Y, , 0 <t < T et f(t,Y}, Z) = [ (t.Yi. Z,), m@P-p.s. En
particulier, dés que P(€ < &) > 0 ou f(t,Y,, Z,) < f(t,Yy, Z,) sur un ensemble de m@P-mesure

strictement positive alors : Yy < Y.
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Preuve La preuve s’effectue par linéarisation. On cherche une équation satisfaite par :

S,=Y ~Y,E, =7 —Zet (=€ —¢,

T T
Sy =C+ / (f (Y., 2) = f(r,Y,, Z,))dr — / E,dB,.

On découpe l'accroissement des f en trois morceaux en écrivant

/

f/(rv Y'r ) quﬂ) - f(?”, K”: Zr) = fl(rv Y;:v Z;) - f/(ra Y;“u Z;ﬂ) + f/<7’, Y;”a Z;) - fl(rv )/:r’a ZT)
Hf (1Y, Z0) = f(r,Yy, Z,) (qui est positif ici).

On introduit deux processus a et b : a est a valeurs réelles et b est un vecteur (colonne) de

dimension d. On pose :

f/<’f',}/:, Z;) - f,(ra}/;“a Z'//")

ayp = S si Sy #0

ar =0 sinon.

Pour définir b, on doit introduire une autre notation : pour 0 <1 < d, 7 est la ligne dont les

d — 7 derniéres composantes sont celles de Z; et les ¢ premiéres celles de Z,. Pour 1 <7 < d, on

pose :
) ! Y;« Zifl g }/T Zz )
oY) Y Z) si A0
E;
bl =0 sinon.

T

. / . . .
Remarquons que, puisque [ est Lipschitz, ces deux processus sont progressivement mesurables
et bornés.

Avec ces notations, on a,

T T
S;=(+ / (ar Sy + by By + ¢, )dr — / E.dB,,
t t

ou:e = f (r,Y,, Z,) — f(r,Y,, Z.). Par hypothése, on a ( > 0 et ¢, > 0. Utilisant la formule

«explicite» pour les EDSR linéaires- Proposition (1.3.1), on a,
"
S, =T;'E ((FT ~|—/ cTFTdT'\.E>, t€0,1,
t

avec, pour 0 <n < T

n 1 n n
I, =exp { / bydBs — 5/ |bs|*ds +/ asds}.
0 0 0

Cette formule montre que S; > 0 dés que ( > 0 et ¢, > 0.
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Pour la seconde partie du résultat, si de plus Sy =0 on a :

T
0= E<§FT + / cTF,dr>,
0

et la variable aléatoire intégrée est positive. Par conséquent, elle est nulle P—p.s. ce qui termine

la preuve de ce théoréme en remarquant que dans ce cas ( =0 et ¢, = 0.

Remarque.
On peut supposer que f(t,Y;, Z,) < f (t,Y;,Z,) au lieu de f(t,Y;, Z,) < f'(t,Ys, Z;) pour
obtenir le résultat précédent. Il suffit de faire une linéarisation en partant de I’écriture :

i !

FOYLZ) = (Y, 24,) = f(rY,. 2) = [0, Z)+ f(rY,. Z,) = (Y. Z,)
—i—f(T‘, Yo, Z;) - f(?‘, Y, Z'r)-



Chapitre 2

Les solutions L des EDSRs sur un

intervalle de temps fixe

Dans ce chapitre, nous nous intéressons aux équations différentielles stochastiques rétro-

grades du type suivant :

T T
Y, =§+/ f(r,YT,ZT)dr—/ Z,dB,,  0<t<T (2.1)
t t

ot les données & et {f(£,0,0)}icpm sont dans LP avec p € (1,2). Notre activité principale est
de trouver l'existence et 1'unicité des processus inconnues {Y; }icpo,r) et {Z; }iepo,r), qui doivent
étre adaptés par rapport a la filtration du mouvement brownien : ¢’est un point crucial.

Nous fournissons également ce résultat dans le cas d’'un générateur monotone pour des
équations sur un intervalle de temps fixe.

Notre objectif dans ce chapitre est de prouver le résultat d’existence et d’unicité pour les
équations différentielles stochastiques rétrogrades dans R? lorsque € et le processus { f (¢, 0, 0) }tefo.1]
ne sont que intégrables avec f seulement monotone dans la variable vy.

Avant de présenter le résultat d’existence et d’unicité, nous allons donné quelques notations

et identités de base et les hypothéses nécessaire.

27
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2.1 Préliminaires

2.1.1 Notations et définition d’une solution

Tout d’abord, B = {B;};>¢ est un mouvement brownien standard avec des valeurs dans
R? définies sur un espace de probabilité complet (Q, F,P). {F;}i>o est la filtration naturelle
augmentée de B qui satisfait les conditions usuelles. Dans ce chapitre, nous utiliserons toujours
cette filtration.

Dans la plupart de ce travail, les processus stochastiques seront définis pour ¢ € [0, 7], ou
T est un nombre réel positif et prendront leurs valeurs dans R™ pour certains entier positif n.
Si X = {Xi}ieo1) est un tel processus, nous écrirons simplement X, ou sgp | X¢| au lieu de

sup |X;| ou |z| dénote la norme euclidienne de = € R™.
te[0,1]

1. Pour n’importe quel réel p > 0, SP(R") est I'ensemble des processus {X;}iepo,7), adaptés
et cad-lag a valeur dans R”, tels que :

1A1/p
|

Il = E| sup |
t
Sip>1,|.|se est une norme sur SP(R") et si p € (0,1), (X, X') — || X — X'||s» définit

une distance sur SP. Sous cette métrique, SP(R™) est complet.

2. MP?(R™) dénote I'ensemble de (classes équivalentes) de processus prévisible { X} },¢(0.7] avec

des valeurs dans R” tels que :

T p/271A1/p
| X || are = El(/ |X,,|2d7") 1 < 00.
0

Pour p > 1, MP(R™) est un espace de Banach muni de cette norme et pour p € (0,1), M?

est un espace métrique complet avec la distance résultante.

On considére une fonction aléatoire f : [0,7] x Q x R* x R*¥*4 s R* mesurable par rapport
a Prog x B(R¥) x B(R¥*9), ott Prog dénote le sigma algébre de sous-ensembles progressive sur
[0,7] x Q, et £ un vecteur aléatoire F; mesurable a valeur dans R*.

R¥*4 est identifié avec 1’espace des matrices réelles avec k lignes et d colonnes. Si z € R¥*4,
nous avons |z|? = trace(zz*).

On rappele ce que nous entendons par une solution d'une EDSR (2.1).
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Définition 2.1.1. Une solution de I’EDSR (2.1) est un couple de processus (Y, Z) progressive-
ment mesurables avec des valeurs dans R* x R¥*4 telles que :

P-p.s., t = Z; appartient ¢ L*(0,T), t — f(t,Ys, Z;) appartient o L*(0,T)P-p.s., et

T T
Y;‘/ = 5 +/ f(ra 1/;“7 ZT)d,r - / ZTdBTv 0 S l S T.
t t

2.1.2 Une identité de base

Comme expliqué dans I'introduction, nous voulons traiter les EDSRs avec des données dans
LP avec p < 2 et utiliser la formule d’It6 appliquée a la fonction x +— |x|P qui n’est pas assez
lisse. C’est pourquoi nous commencons par une généralisation au cas multidimensionnel de la
formule de Tanaka. Introduisons maintenant la notation & = |z|'z1,4. Le lemme suivant
sera notre outil principal dans le traitement des solutions dans LP. Il est trés probable que ce

résultat est déja apparu quelque part, mais nous avons pas vu, donc nous fournir une preuve.

Lemme 2.1.1. Soient {K;}icpo,r) et {H}iepo,r) deus processus progressivement mesurables avec

des valeurs respectivement dans R* et R¥*? telles que P-p.s.,
T
/ (| + |H,P)dt < +o.
0
Nous considérons la semi-martingale { X }ieom) @ valeur dans R¥ définie par
t t
Xt:Xo—i—/sts—l—/Hsst, 0<t<T.
0 0
Donc, pour tout p > 1, nous avons

t t
XP =1, L = [ Xl +p / XL, K ds + p / XU, HodB)
. 0 0

p - > %O
B [P P o (2 - p) (L — (S HH )
0

+(p — 1) H|}ds,
ot {Lt}te[o,T] est un processus croissant continu avec Ly = 0, ce qui n’augmente que sur la

limite de ’ensemble aléatoire {t € [0,T], X; = 0}.

Preuve.
Puisque la fonction x +— |z|? n’est pas assez lisse (pour p € [1,2)) pour appliquer la formule

d’Ttd, nous utilisons une approximation. Soit ¢ > 0 et considérons la fonction u.(x) = (|z|* +
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£2)1/2. C’est une fonction lisse et nous avons, notant I la matrice d’identité de RF. On a

2(x) = (af? + 2
21
vi(e) = &(2el) (1l + )

P

-2
2
— p\x\(!xP +52)

37P2
D*(z) = p <|a:|2+s ] Tt

|
- o] o) T
¥ ) e )

= pu?*(z) + p(p — 2w (x)a”

= pul=*(x)I +p(p — 2)ul ™ (z)(z © 2).
La formule d’It6 conduit a ’égalité
t t
wP(X,) = uP(Xo) +p / WP (X ) (X, Ke)ds +p / u?™?(X)(Xs, HydBy)
t 0 0 (2.2)

1
-1—5/ trace(D*uP (X, ) H HY)ds.
0

Il reste essentiellement & passer & la limite lorsque ¢ — 0 dans cette identité. Pour faire ca,

remarquons d’abord que

t t
[0 s =[x 0k s
0 0

P-p.s., et que, au moins uniformément sur [0, 7'] P-probabilité P-p.s., nous avons

t t
[ many > [P R B
0 0
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cette convergence des intégrales stochastiques découle de la convergence suivante :

T
/ | XLy 0| Ho (|1 X P72 — w2 72(X,))%ds — 0,
0

ce qui ressort clairement du théoréme de convergence dominé.

Il reste a étudier la convergence du terme incluant la dérivée seconde de u.. On écrivons
trace(D*ul(X)HHY) = p(2 = p)(|Xs|us (X)) P IXP 2 Dx,z0(|HLP = (X, HHE X))
+p(p — D (X |uz (X)) 7P IX P L 0| HL* + 5 (p),

ou C¢(p) = pe?|Hy|*ul™*(X5).

On a
|H,|* > (X, H.H;X,). (2.3)
En outre,
| X
1
ug(Xg) /\ {Xs#0}>

comme ¢ — 0. Donc par convergence monotone, comme € — 0,
/Ot(le|u51(Xs))p4|Xs|”2]lxs¢o{(2 = p) ([, — (X, HHX,)) + (p — 1)|H,[*}ds,
converge Vvers
/UL X2 Lx 20 {(2 = p) (| Ho P = (X, HAHI X)) + (p — 1)y s,

P-p.s., pour tous 0 <t < T

t
Il découle maintenant de (2.2) que (Lf (p) = / Cj(p)ds) converge comme £ — 0
0 te[0,7)
vers un processus croissant continu {L;(p) }sejo,17, et le résultat suit.

Pour p > 4, L(p) = 0 puisque C*(p) converge vers 0 dans L*(0, 7). Maintenant, si p € (1,4),
on écrit
C5(p) = p( | HyPu (X)) ([ H )7,

ou = (4—p)/3€(0,1), et puis, nous obtenons, en utilisant 1'inégalité de Holder,

T 1-0
L) <o ([ i)
0
qui tend vers 0 comme £ — 0 de sorte que L(p) = 0.
Notons par L le processus L(1) et posons A = {t € [0,7], X; = 0}.
1. Sit est al'intérieur de A, alors il existe d > 0 tel que X, = 0 a chaque fois que [t —s| < 6;
la variation quadratique de X est constante sur l'intervalle [t — d,¢ + 6] et donc Hy = 0

presque partout sur cet intervalle.
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2. Sit est dans le complément de 'ensemble A, il existe § > 0 tel que X # 0si |t —s| <.

Dans les deux cas, C¢(1) converge vers 0 en L'(t — §,t + 9) et
t46
Lt+6 — Lt,(g = hm/ Cs(l)ds =0.
e—0 L6

Ceci conclut la preuve du lemme.

O

Corollaire 2.1.1. Si (Y, Z) est une solution de ’EDSR (2.1), p > 1, ¢(p) = p[(p — 1) A1]/2 et

0<t<u<T, alors

Y+ elp) / Yo Ly sl ZPds < Vil +p / Yo (T, (5, Y, Z2)ds
t t

(2.4)
- / V[P~ H(Ys, Zod By).
t
Preuve. La preuve découle de la conséquence suivante du lemme précédent.
XulP > X7 +p / X [PTHKS, Ko)ds +p / | X [PH(X, HodBy)
2 4
selp) [ 1XP ol s
t
O

2.2 Estimations & priori

Tout d’abord, nous présentons quelques estimations concernant les solutions de 'EDSR
(2.1). Dans ce qui suit, nous supposons que p > 1, £ est un vecteur aléatoire Fr-mesurable
a valeur dans R”* et f est une fonction aléatoire de [0,77] x  x RF x R**? dans R¥, qui est
mesurable par rapport a prog x B(R¥) x B(R**9). Nous allons utiliser I’hypothése suivante :

P-p.s.,
(t.y,2) € [0,T] x R¥ x R, (0, f(t,y,2)) < fe+ulyl+Alz, (A

ot p € R, A >0 et {f;}iepo,r) est un processus progressivement mesurable positif.

T
Posons F' = / frdr.
0
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Ici, nous souhaitons obtenir des estimations pour des solutions de 'EDSR dans LP dans
Pesprit du travail (El Karoui et autre, [13]), ce qui montre que ces estimations sont trés utiles
pour I'étude de I'existence et I'unicite des solutions. La difficulté provient ici de deux faits :
premiérement, la fonction f n’est pas supposée étre continuement Lipschitz et deuxiémement,
nous voulons obtenir des estimations LP pour p € (1,2).

Nous commengons par montrer comment controler le processus Z en termes de données et

Y.

Lemme 2.2.1. Soit l’hypothése (A) vérifiée et soit (Y, Z) une solution de 'EDSR (2.1). Sup-
posons de plus que, pour certaines p > 0, FP soit intégrable.
SiY € 8P alors Z appartient a MP et qu’il existe une constante C), ne dépendant que de p

telle que pour tout u+ \? < a,

T p/2 T P
E[(/ 62Qt|ZT|2dT’> } < CpE[sup Y|P + (/ e“Tfrdr) }
0 ¢ 0

Preuve. Fixons ;i 4+ A\? < a et définissons Y; = e™Y;, Z, = e Z,. (Y, Z) résout 'EDSR

T
vi-éx Ry 2 /QZABW 0<t<T
t

ou € = e et f(t,y,2) = e f(t, e "y, e z) — ay qui satisfait ’hypothése (A) avec f, = e®f,,
A= )et it = p — a. Puisque nous travaillons sur un intervalle de temps compact, les conditions
d’intégrabilité sont équivalentes avec ou sans le superscript ~ . Ainsi, avec ce changement de
variable, nous réduisons au cas a = 0 et u + A2 < 0. Nous oublions le superscript ~ pour la
convenable de la notation.

Pour chaque entier n > 1, introduisons le temps d’arrét

t
7, = inf {t € [O,T],/ | Z,|2dr > n} AT.
0

La formule d’Itd6 nous donne
t n t
fmmzfm%w/mmmm+z/%mxmm
i=1 Y0

e Z/ X,)d(X?, X7),,

t,j=1

f(t7 Xt) =Y.
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/O O f(r, X, )dr = /0 O£ (t, Yo)dr = /0 (Y. f,(r, Yy, Z,))dr

t t Tn
[ outrxixi = oy xgax. = [0 z)ab,
0 0 0

/ Zydy,
0

DN | —

‘Z/ X )d(X', X7), = —Z/ Y (t, X;)d(X", X7), =

1,j=1 2,j=1

n Tn 1 n
V=Yoo [ Ws 2o+ [ 2048+ 5 [z
0 0 0

Tn

|14n|2=|Y0|2—2/ m,f(r,n,zr»drm/ <YT,ZT>dBT+/ 17, 2dr,
0 0 0

alors

Tn

Yol + / Z,2dr = |V, 2+ 2 / (Y, f(r, Yy, Z,))dr — 2 / ;. Z,dB,).
0 0

0
Mais, & partir de 'hypothése sur f, nous avons, puisque p + A2 <0,

2y, f(ry,2)) < 20ylfe + 2ulyl* + 22|y > + |2/2
< 2ylfe + |2P/2.

Donc, puisque 7, < T', nous déduirons que

A\

Tn T 1 T Tn
|Y0|2+/ |ZT|2drerTn|2+2m/ frdr+§/ |ZT|2dr—2/ Vi, Z,dB,),
0 0 0 0

et on a

1 Tn T Tn
-/ | ZPdr < Y72+ 2}/*/ frdr + 2‘ / Yy, Z,dB,)|.
0 0 0

5
/n]ZT|2dr§4[Yf+( frd7) ‘/ (Y, Z,dB,) }
0
/m,zrdm
0

Tn p/2 T P
(/ |ZT|2dT) <e¢ lYf + (/ frdr) +
0 0

Mais par I'inégalité BDG, nous obtenons

Tn p/2 r ™ p/4q
c,,EH/O (Y, Z,dB,) ] < dE (/0 \mﬂzry?dr)

r Tn p/47
d,E|Yr/? ( / |Zr|2dr)
L 0 i

Il s’ensuit que

et donc que

p/T . (2.5)

IN
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n p/2 d2 1 Tn p/2
cpEH/ Yy, Z.dB,) ] < QPE[Y ]+2EK/ |Zr]2dr) }
0 0

En revenant a Iestimation (2.5), nous obtenons, pour chaque n > 1,
p/Q}

EK/OM|ZT|2dr>p/T < CpE:Kp—Ir(/OTfrdr)p—i—
o ([ 10 b )]
<ol By () 3 ) ]
(B ([ )]
oo o ([ 1)
([mte)] = osbe ([ 50)]

et le lemme de Fatou implique que

() s ([ 50)]

Ce qui terminer la preuve.

et ainsi

/ ;. Z,dB,)
0

IN
Ky
=

N | —
=
1
N
C\

ﬁ

3
N
T
QU
S

~_

3

~

no

| I
A

O

Nous gardons cette étude en énoncant 'estimation standard dans notre contexte. La diffi-
culté vient du fait que f n’est pas Lipschitz dans y et aussi du fait que la fonction y — |y[P

n’est pas C? puisque nous allons travailler avec p € (1,2).

Proposition 2.2.1. Soit l’hypothése (A) satisfaite et supposons que, pour certains p > 1, F
appartient a LP. Soit (Y, Z) une solution de 'EDSR (2.1) o0 Y appartient & SP. Donc, il existe

une constante C,,, ne dépend que de p, telle que pour tout a > p+ N/[1 A (p—1)],

T p/2 T P
B[sw e+ ([ iz par)” | < cpleieps ([ ergar)]
t 0 0
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Preuve. On fixe a > p+A?/[1 A (p—1)]. Comme dans la preuve du lemme précédent, nous
fait le changement de variables Y/t = Y], Zt = e 7Z,. Cela réduit la preuve aux cas a = 0 et

0> p+ A2/[1A(p—1)]; omettant le superscript ~, nous devons prouver que

E{Y ¥ ( / T|Zr|2dr)p/2] < CPE{W ¥ ( / ' frdr>p]

A partir du Corollaire (2.1.1) nous obtenons 'inégalité suivante :

T T T
ViP+e(p) / Yo P 2y, s0| 2, P < |€P4p / P Vs f (Y Z)))dr—p / VP (Y, Z,dB,).
t

t t

L’hypothése sur f engendre 'inégalité

(@, f(r,y,2)) < fo 4+ plyl + A2l

a partir de laquelle nous déduisons, avec probabilité un, pour tout ¢t € [0, 77,

T T
WP+ c(p) / Vo yol Zo2dr < €] +p / (\m“(fr+urm+A|Zr|>)dr
t t
T A
[ WP 2,
A

T T T
Y+ c(p) / Yoy ol Zo2dr < [€P +p / (Yol f, + ul V[P )dr + pA / Y, [P Z,|dr
t t

t

T

~p [ PG, 2.dB,). (B)

t
Tout d’abord, nous déduisons de I'inégalité précédente que, P-p.s.,
T
/ |Y;|p—21yﬁgo|ZT|2dT < +o00.
0

De plus, nous avons

C _
vip - Dy 2y, gz

)\2
Y P2z < —L
1A 2

(p—1)

Revenant a l'équation (B)

g -2 2 g -1 P)\Z 4
YiP +clp) | Py, 0l Z2dr < [EP4p | (VP fr +plYP)dr + —F—— [ |Yi|Pdr
t t LA (p - 1) t

c(p) g 2 2 g 1%
S [ Wtz <y [P 2,
t t
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) T T
c(p _ _
i+ 22 [tz < lerep [P+ Y
t t

pA?

A1)

T T A
/\Yr\pdr—p/ Y, [P~HY,, Z.dB,),
t

t

) C<p) ’ p—2 2 D ! p—1 ! D
Vil + =7 | W vl Z Pdr < [P p | YPT fdr - p [ plYo[Pdr
3 t t

p/\Z T T 18
F— erdT—p/ Y "7 Y., Z,dB,),
1A<p—1>/t" R )

T
c _
e+ 22 [tz

t

IN

T . T p/\Q
pp [ b en [ W
e [ [ Wi+

T A
[ WP 248,
t
et donc, puisque g+ A?/[1 A (p — 1)] < 0, nous obtenons 'inégalité

T T T
i+ S [ty ol P <4 p [P e —p [V 28,

t t t

T
Posons X = [¢]P +p/ |Y,.[P~! f,dr; alors, nous avons, p.s., pour chaque ¢ € [0,7],
0

T T
w2 [Ptz i < x - p [ WP Zas). 2
t A
Il découle de l'inégalité BDG que <J\It = / |YT|7’_1(Y},Z7.dBT)) est une martingale
0 0<t<T

uniformément intégrable. En effet, nous avons, par I'inégalité de Young

E[(M, M)}?] < E[YP( /OT|ZT|2d7‘)1/T

. (p; Dy + %E[(/OT |Zr|2dr)p/2},

le dernier terme étant fini puisque Y appartient & SP et alors Z appartient & MP? par le lemme

(2.2.1).

Revenons a 'inégalité (2.6), et en prenant l’esperence pour ¢ = 0, nous obtenons a la fois

)y

De| [ wp -ty alz i <Eix] (2.7

0
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et,
E[Y?] < E[X] + k,E[(M, M)},

D’autre part, nous avons aussi,
T 1/21
BEM L < wE|v22( [ 1Pl ar)
0 i

2

2

Revenant aux inégalités (2.7) et (2.8), on obtient
E[Y?] < d,E[X].
En appliquant encore une fois 1'inégalité de Young, nous obtenons

T T
pd,,]E[/ |§/:r|7)1f'rd7{| < pdyE {Y*Pl/ frd?”:|
0 0

1 ) , T p

a partir de la quelle on déduit, en venant a la définition de X, que

Ev?) < 68|+ ([ ' pr) |

Le résultat découle du le lemme (2.2.1).

2.3 Existence et unicité d’une solution

]‘ kp ’ —2 2 ]
< GEWI+2E| [ WPl
0 |

(2.8)

Avec l'aide des estimation & priori ci-dessus, nous pouvons obtenir un résultat d’existence

et d’unicité.

Comme précédemment, considérons un vecteur aléatoire £ mesurable par rapport Fp a valeur

dans R* et une fonction aléatoire f : [0, 7] x Q x R¥ x R¥*4 — R* qui est prog x B(R) x B(RF*4)

mesurable.

Nous allons travailler sous les hypothéses suivantes : pour certains p > 1,

(E1) i+ ([ 1760.00as)

il existe des constantes A > 0 et € R telles que, P-p.s. pour chaque

< 400,
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(t?yvylazazl) € [O,T] X Rk X Rk X RkXd % kad .

(H2) : [ty 2) = flty.2)] < Az = 2,

(H3) : (y—y, f(t,y,2) = f(ty' 2) < uly—y

Nous supposons aussi que,

(H4) : P-p.s., V(t,2)€[0,T] x R*> 41— f(t,y,2) est continue

et enfin que

(H5) : Vr >0, ()= |s1|1<p |f(t,9,0) — f(,0,0)] € L*([0,T] x Q,m 2 P).
Jl<r

Nous voulons obtenir un résultat d’existence et d’unicité pour PFEDSR (2.1) sous les hypo-
theses précédentes pour tous p > 1.

Rappelons tout d’abord le résultat de Pardoux ([32], Théoréme 2.2). Pour cela, introduisons
I’hypothese suivante :
(H5") : P—p.s., V(t,y) €[0,TIxR", |f(t.y,0)| <[f(t,0,0)[+¢(|y]), ot : Ry — Ry

est une fonction déterministe croissante continue.

Théoréme 2.3.1. Soit p = 2. Sous les hypotheses (H1) — (H4) et (H5’), 'EDSR (2.1) a une

unique solution dans 8% x M?2.
Nous prouvons maintenant notre résultat d’existence et d’unicité.

Théoréme 2.3.2. Sous les hypothéses (H1) — (H5), 'EDSR (2.1) a une unique solution dans
SP x MP.

Preuve. Commencons par étudier la partie unicité.
Considérons (Y, Z) et (Y', Z') deux solutions de notre EDSR dans l'espace approprié. Nous
notons par (U, V) le processus (Y =Y, Z—Z'); ce processus est la solution de "EDSR suivante :

Ut:/Tg(s,Us,Vs)ds—/TV;st, 0<t<T,
¢ ¢
ou g représente la fonction aléatoire
9(t.y.2) = f(by + Y02+ Z) = [(1Y]. Z,).
Gréace aux hypothéses (H2) et (H3), la fonction g vérifie ’hypothése (A) avec f = 0. En effet

(G, 9(t,y,2)) <0+ ulyl + Az,
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@, fty+Y, 2+ Z) = f(t.Y).2)) = (@, fty+Y,. 2+ 2) — f(t.Y, .2+ Z,)
HF(EY 2+ Z) — f(1.Y]. Z)))
= (0, [y +Y,, 2+ Z) = f(t.Y,, 2+ Z,))
G, (Y 2+ 2,) = [(1,Y], Z,))
= G+Y, =Y fty+Y, 2+ 2) - (.Y, 2+ Z,))
@, f(6Y 2+ Z,) = [(Y], Z,)),

@, fty+Y, 2+ Z) = f(.Y,Z) = @ f(ty+Y,,2+2) = f(t,Y,,2+ )
<@7 f(taylv Z+ Zt/) - f(t7Y;/7 Zt/)>
< 0+ plyl + Alzl.

Par la Proposition (2.2.1), nous obtenons immédiatement que (U, V') = (0,0).
Passons a la partie existence. Afin de simplifier les calculs, nous supposerons toujours que
la condition (H3) est satisfaite avec p = 0. S’il n’est pas vrai, le changement de variables
Y, = MY, Z, = "7, se réduit a ce cas . Nous mettons f0 = f(t,0,0).

La preuve sera divisé en deux étapes.

Premiére étape : Nous supposons que & et sgp | ftO] sont des variables aléatoires bornées.

Soit r un réel positif tel que
Vet (||g]loe + TN floo) < 7

Soit 6, une fonction lisse telle que 0 < 6, < 1, 6,(y) = 1 pour |y| < r et 6,(y) = 0 dés que

ly| > r 4 1. Pour chaque n € N*, on note ¢,(z) = zn/(|z| Vn) et on définit

oty 2) = 0,(9)(F (9,00 () = J) e+ Y-

Uria(t) V
Cette fonction encore satisfait la condition quadratique (H3) mais avec une constante positive.
En effet, choisissons y et y' dans R*. Si |y| > 7+ 1 et |y'| > r + 1, I'inégalité est trivialement
satisfaite et nous réduisons donc au cas ou |y | < r 4 1. Nous écrivons

n

m(y — 4ty qn(2) — F(6,Y 5 qa(2)))

<y_yl7hn(tvy7 2) - hn(t,y/,Z)> = QT(y)

n ’

+n V Ui (£) (0r(y) = 0.:(y )y — y/7 Lf(t, ?//, qn(2)) —. ,?])

Le premier terme du coté droit de ’égalité précédente est négatif puisque la condition (H3)

est en force pour f avec p = 0. Pour le second terme, on peut utiliser le fait que 6, est C'(r)-
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Lipschitz, pour obtenir, puisque |y'| < r + 1,

Cr)ly —y PIEt Y an(2) — £
< COn+ e ()y — v %

(Qr(y) - Qr(y/))@ - y/a [f(t,y/, Qn(z)) - ffo]>

IN

et donc

n ’

T ) o Ny =y [f 6y au(2) — £]) n

m@(r)(}m + o ()ly —y

< Cr) A+ Dnly -y

Alors le couple (&, h,,) satisfait les hypothéses du Théoréme (2.3.1). Par conséquent, pour
chaque n € N*, 'EDSR associé¢ a (&, h,) a une solution unique (Y™, Z") dans l'espace 8 x M?.
Puisque

(Y hu(t,y, 2)) < [yl F0]loo + Alyl|2],

et £ est borné, le Lemme (2.1.1) de Briand et Carmona [3] montre que le processus Y vérifie

I'inégalité ||Y"||« < r. De plus, & partir de la Proposition (2.2.1),
12" a2 < 7, (2.9)

oil 7 est une autre constante. En tant que sous-produit (Y™, Z") est une solution de 'EDSR

associé a (&, fn) on

Falt,y,2) = (F(8.9,00(2)) = ) m—peo - .

Vrya(t) V
pour cette fonction (H3) est satisfaite avec " = 0.
Nous avons maintenant, pour ¢ € N, réglage de U = Y" ™ + Y™ V = Z"" 4+ 7" en utilisant

les hypotheses (H2) et (H3) sur f,4

2 1 T 2 T 2
NP4 [P <2 [ UL fss V2 = s Y 2N
t t

T
2/ (U, VidB).
2
Mais ||U]|o < 2r donc

2 1 T 2 T 2
PP + / PNV Pds < 4 / 2 furi(s, Y2, Z2) — fuls. Y, Z0)ds
t 0

T
—2 / (UL, V,dB,),
t
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et en utilisant 'inégalité de BDG, nous obtenons, pour une constante C' ne dépendant que de

Aet T,
T T
w0+ [ Wias] < 0| [, 2 - fs v 20
t 0 0
D’autre part, puisque ||Y"||o < 7, nous avons
|fn+i(5: Y:sn-/ Z)? - fn(sa Y?? Zg)| < 2)‘|Z?|]IIZ§‘|>H + 2)\|Z;L|]lwr+1(5)>n + 22/)7‘+1(3)]lwr+1(8)>m

dont on déduit, a l'aide de l'inégalité (2.9) et de I'hypothése (H5), que (Y, Z™) est une suite
de Cauchy dans S? x M?2. 1l est facile de passer a la limite dans 1’équation d’approximation,
pour donner une solution de EDSR (2.1).

Deuxiéme étape : nous traitons maintenant le cas général. Pour chaque n € N*, définissons

& = qa(8), falty, 2) = f(toy,2) — [+ a(fD).

Pour chaque couple (&,, f,), TEDSR (2.1) a une solution unique (Y™, Z") en L? grace a la
premiére étape de cette preuve, mais en fait aussi dans tout LP, p > 1 d’aprés le Lemme (2.2.1).

Maintenant de la Proposition (2.2.1), pour (i,n) € N x N*,

T p/2 T p
B sw iy ([ izezpas) | <08l ([ lnt)-ml) |
ou C dépend de T et .

Le coté droit de la derniére inégalité clairement tend vers 0, comme n — co, uniformément
dans 7, nous avons donc de nouveau une suite de Cauchy et la limite est une solution de ’'EDSR
(2.1).

OJ

Remarque 2.3.1. Dans le cas k = 1, le Théoréme (2.3.2) reste valable si l’on remplace (HS5)

par la condition faible
¥, € LY0,T), p.s.  ¥r>0.

L’estimation supplémentaire dans ce cas, ce qui permet que la généralisation est la suivante :

([ vz | < e+ ([ )],

pour une certaine constante ¢ ne dépendant que de T, p et A. En effet, il résulte de (2.4), que

T T T
e Y| —l—/ e’ f(s, Y5, 0) — 2 — pYs|ds < ¢ +/ 5| £2lds + )\/ e"*| Z4|ds
t t t

T
— / et sgn(Yy) Z4d By,
(
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et il reste a combiner cette derniére inégalité avec la Proposition (2.2.1).

2.4 Paramétres intégrables

Dans cette section, nous traiterons du cas p = 1 qui semble trés différent du précédent.
Nous supposons ici que 1" est un temps terminal fixé. Notons X7 'ensemble de tous les temps
d’arrét 7 tels que 7 < T'; nous rappelons que, pour un processus Y = {Y; }o<;<1, Y appartient
a la classe (D) si la famille {Y;, 7 € X7} est uniformément intégrable.

Pour un processus Y en classe (D), on met
Y1y = sup{E[|Yz[], 7 € X}

L’espace des processus continus progressivement mesurables qui appartiennent & la classe (D)
est complet sous cette norme, voir Dellacherie et Meyer ([11], p. 90).
Nous aurons besoin d’'une autre hypothése sur la fonction f : nous supposerons qu’il existe

deux constantes v > 0, @ € (0,1) et un processus progressivement mesurable non négatif

{9:}reo.m) tel que
(H7) : Y(t,y,2) € [0,T] x RF x R¥*4, |f(t,y,z) — f(t,y,0)] < (g + |y] + |2])"

Notez que cette hypothése est trivialement satisfaite si f ne dépend pas de z.

Nous supposerons également que

T
(H17) - E[Ifl +/ (fi +gt)dt} < +o0.
0
Tout d’abord, rappelons-nous le résultat suivant qui se trouve dans Revuz et Yor [36] avec

une constante différente, mais dans un contexte plus général.
Lemme 2.4.1. Soit {M,}cjo,r) une martingale. Alors, pour tout 3 € (0,1),

1
EDM] < Bl

Preuve. Notons ¢ = E[|My|]. Nous avons, par 'inégalité de Doob, pour chaque x > 0,

xP(M, > z) < c. Ensuite,

E[MP] = IE‘[ 0+°°1M*>mﬁx5*1dx

IN

/O+OO min(1, ¢/z)Bx""tdr = * /(1 — B).
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Nous principaux résultats sont les Théorémes (2.4.1) et Théorémes (2.4.2) ci-dessous.

O

Théoréme 2.4.1. Soient les hypotheses (H1”), (H2)— (H5) and (H7) satisfaite. Alors 'EDSR
(2.1) comporte au plus une solution (Y, Z) de telle sorte que Y appartient a la classe (D) et Z

appartient a l’espace U6>a M?.

Preuve. On peut supposer sans perte de généralité que pu = 0.
Considérons (Y, Z) et (Y',Z') deux solutions de 'EDSR (2.1) avec les conditions appro-

priées. Nous introduisons, pour n € N*,
T
7, = inf {te 0, 7], / (|ZT|2+|Z,:|2)dr2n}/\T.
0
Fixer y, =Y, - Y, 2, = Z; — Z,, la formule (2.4) donne l'inégalité

onma| < [y + /

tATh

Tn Tn

<grvf(T7Y;“7ZT) - f(T,Y:,Z;»dT’— / <@T72TdB'f">'

tATh

Ainsi, en utilisant la monotonicité de f en vy, nous obtenons

Tn

T
‘yt/\’rn| S ’y7n| + / |f(7”7 Y;"a ZT') - f(T', }/;“7 Z'r)‘d/’ - / <g1”7 ZrdBT>J
0 t

NTn

et le conditionnement par rapport a JF; nous avons

T
ol Bl [ 170752 = S, Z)lar ).
0

Bien stir, Enfait tendre n a 'infini. Pour ce faire, mentionnons que le processus y est continu
et appartient a la classe (D). Il en résulte que, P-p.s., 4., = yran, — yr = 0 et, par ailleurs,
cette convergence a lieu en L!. En tant que sous produit, nous en déduisons que la martingale

continue E(y,, |F;) converge vers 0 dans ucp. En extrayant une sous-suite, on obtient, P-p.s.,

T
vt € [0,7], || < E(/ \£(r, Y, Z,) —f(r,n,z;)ydmft), (2.10)
0

et de 'hypothése (H7) nous obtenons, P-p.s.,

T
vie 0.7),  |ul< m( / (60 + V3] +12] + |Z;|>adv~|ft).
0

Comme il existe § > « tel que Z et Z' appartiennent & M* et puisque Y est de classe
(D), on déduit immédiatement de 'inégalité précédente et ’hypothése (H3) que y appartient
a 'espace 87 pour certain ¢ > 1. Le Lemme (2.2.1) et la Proposition (2.2.1) impliquent que
(y,2) = (0,0) € ST x M.
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2.4.1 Existence et unicité de la solution
Nous passons maintenant au cas ot le générateur est indépendant de la variable z.

Proposition 2.4.1. Soient les hypothéses (H1”),(H3) — (H5) satisfaite et supposons que f
ne dépend pas de z. Donc, UEDSR (2.1) a une solution (Y, Z) de telle sorte que Y appartient
a la classe (D). De plus, pour chaque 8 € (0,1), (Y, Z) appartient & l'espace S® x MP.

Preuve. Nous utilisons une méthode de troncature standard en supposant toujours que u =
0. Introduisons, pour chaque entier n > 1, &" = ¢,,(&) et f"(t,y) = f(t,y) — f(t,0) + ¢.(f(¢,0))
avec ¢,(y) = yn/(Jy| V n). Nous savons de notre résultat précédent (Théoréme (2.3.2)) que
I'EDSR associé¢ au paramétre (£, /) a une unique solution dans 'espace 8? x M?2.

Nous mettons Y = Y™t — Y §7 = Z" — Z¢ En utilisant le méme calcul que dans la

partie unicité, voir (2.10), nous avons

T
5] < E(wa i / P Y — mwm),

a partir de laquelle nous tirons 'inégalité

T
|0y < IE(|§|]lg|>n +/ |f(r, O>|]l|f(r,0)|>ndr|]:t)' (2.11)
0

On déduit immédiatement de cette inégalité que

T
[6Y ]| < E{|£|]1£|>n +/O |f(r, 0)\]1f(r,0)|>nd7”}

et du lemme (2.4.1) que, pour tout 3 € (0,1),
1 B

T
B sup 0% < 2o+ [ 100 Typonde]
0

Ainsi (Y")y est une suite de Cauchy pour la norme ||.||; et pour la distance naturelle sur
SP pour chaque 3 € (0,1). Soit Y la limite de processus continue progressivment mesurable de
cette suite : Y appartient a la classe (D) et & S° pour chaque 8 € (0, 1).

Maintenant, (dY,67) résout 'EDSR suivante :

T T
gY, = ¢ntt —¢n +/ F(r,0Y,)dr — / 0Z,.dB,,
t t
ou F représente la fonction aléatoire

F(ty) = "ty +Y") = ["(L.Y));
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puisque f™* est monotone, I satisfait 1'inégalité

(y, F(t,y)) < lyllf(t 0)1501,0)[>n-

Ainsi, en utilisant le Lemme (2.1.1), on en déduit que, pour g € (0,1),

T B/2 T 8
E|:(/ ’(SZTIZCZT) } < CQE[SUP‘(SS/L’/B—F (/ ’f(T, O)I]If(r70)>nd?”) }
0 t 0

Il en résulte que, pour chaque 3 € (0,1),(Z%); est une suite de Cauchy dans M”? pour la
métrique naturelle et converge ensuite dans cet espace vers un processus progressivement me-
surable Z. ) t
Puisque / Z'dB, converge vers / Z,dB, dans ucp et puisque 'application y — f(¢,y)
est continue, r?ous vérifions facilement e(;l prenant une limite dans ucp que (Y, Z) résout 'EDSR
correcte .
O
Avec cette Proposition entre les mains, nous pouvons donner la partie d’existence de notre

étude. Nous allons prouver le résultat suivant.

Théoréme 2.4.2. Soient les hypotheses (H1”), (H2)— (H5) et (H7) satisfaite. Donc, ’EDSR
(2.1) a une solution (Y, Z) telle que Y appartient a la classe (D).
De plus, pour chaque B € (0,1), (Y, Z) appartient & l'espace S® x MP.

Preuve. Encore une fois, nous pouvons supposer que p = 0 sans perte de généralité. Nous
allons utiliser une sorte de procédure itérative de Picard. Posons comme d’habitude (Y, Z%) =

(0, 0) et définissons récursivement, compte tenu de la proposition précédente, pour chaque n > 0,

T T
thn—i-l —¢ +/ f(T’, an—l—l7 Z;L)dr B / Z'Tn—l-ldBr7 0<t<T.
t

t

Pour chaque n, Y™ appartient a la classe (D) et (Y™, Z") appartient a S® x MP? pour tous
g€ (0,1).

Pour n > 1, en faisant valoir que la preuve de I'unicité, on en déduit que
T
el =y < mE( [z 1z,
0

Z" et Z"! appartiennent & M”? pour chaque 8 € (0,1), Y™ appartient a la classe (D) et

{9+ }reo.1) est intégrable. Ainsi la variable aléatoire

T
m_/km+MHﬂzwwm*wm
0
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appartient a l'espace L? dés que ag < 1. Fixons ¢ € (1,2) tel que ag < 1. Alors, pour
n > 1,y" = Y™ — Y™ appartient a lespace S9. Posons 2" = Z"1 — Z" (y" 2") est la

solution de 'EDSR suivante :

T T
g = / Falr ) — / 21dB,.
t t

Falroy) = FOry + Y, Z0) = f(r, Y, 2070,

ou

Puisque f est satisfait & la condition (H3) avec p = 0, f,, satisfait hypothése a (A) et, en

utilisant (H7), nous avons l'inégalité
(@ falry)) < |F Y Z0) = f(r, Y 2070 < 29(g, + Y7+ 127+ [ 2071

Le lemme (2.2.1) montre que 2" est dans l'espace MY puisque I,, est dans LY.
La Proposition (2.2.1) implique qu’il existe une constante C, ne dépendant que de ¢ telle

que pour n > 1,

T q
I =) < ¢, [( /0 Y 20— fr Y, Z?-1)|dr) }

ot ||.|| représente la norme suivante sur S x M9 :
T a/27\ /4
v 20 = (& swivir+ ([ 1zkar) " ])
t 0

Pour n > 2, nous utilisons le fait que f est \-Lipschitz dans z pour obtenir, en utilisant

T q/2
I, )|l < E[( / |zf-|2dr) ]

ou ¢ = C’q)\qTq/Q. Ainsi, nous avons, pour n > 2,

I'inégalité de Holder,

1™, 2" < e iy, 21"

Supposons d’abord que ¢ = C,AT%? < 1. Etant donné que ||(y*,2)[|? est fini, il s’ensuit
immédiatement que (Y™ — V! Z" — Z1) converge dans l'espace 8¢ x MY vers certains (U, V).
On en déduit que (Y™, Z") converge vers (Y = U+Y!, Z =V + Z1) dans §” x M? pour chaque
B € (0,1) puisque (Y'!, Z1) qui lui appartient. De plus, Y™ converge vers Y pour la norme ||.||;
puisque Y'! appartient a la classe (D) et la convergence dans S avec g > 1 est plus forte que

la convergence en ||.||;.
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Pour conclure la preuve dans ce cas, il reste a passer a la limite dans I’équation satisfaite
par (Y™, Z™) pour voir que (Y, Z) de résoudre 'EDSR (2.1). Cela se fait facilement dans ucp.
Pour le cas général, il suffit de subdiviser Iintervalle de temps [0, 7] en un nombre fini de

petits intervalles. Ceci compléte la preuve.



Chapitre 3

Les solution L des EDSRs avec un temps

terminal aléatoire

Nous allons affaiblir la condition de Lipschitz de f dans la variable y pour la remplacer
par une condition de monotonie. Ce type d’hypothése est apparu dans article de S. Peng [32]
pour traiter le cas des équations différentielles stochastiques rétrogrades avec un temps terminal
aléatoire c’est a dire des EDSR pour lesquelles on impose la condition Y, = & avec 7 temps
d’arrét. Le résultat que nous présentons ici est di & R. Darling et E. Pardoux [10]. L’hypothése
de monotonie est trés employée : elle permet, comme déja dit, de traiter les équations différen-
tielles stochastiques rétrogrades avec temps final aléatoire, voir par exemple [33], [5] et d’autre
part d’affaiblir 'hypothése de croissance sur f en y, voir [3] et surtout le résultat de E. Pardoux

32].

3.1 Formulation du probléme

Considérons B un mouvement brownien d-dimensionnel défini sur un espace de probabilité
(£, F,P) complet. Soit f: [0,T] x Q x R* x R¥*? — R¥ une fonction aléatoire telle que pour
tout (v, 2), le processus {f(t,y, z) }o<i<7 soit progressivement mesurable et soit £ une variable
aléatoire Fr-mesurable (F; est, comme au chapitre précédent, la filtration augmentée de B).

Les hypothéses (H2) — (H4) sont toujours valables. Nous supposerons dans ce chapitre que
p > 1. Nous suivrons de prés 'approche de Pardoux [32] qui traite le méme probléme dans le

cas p = 2.

49
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L’hypothése (H1) sera remplacée par la condition suivante. Pour certain

p>vi=p4 —,
2(p—1)

(ou 11 et A sont les constantes qui apparaissant dans les conditions (H3) et (H2), respective-

ment), -

(H1) : E{e?’f’T|§|p + /1 e”f’t|f(t,0,0)|7’dt] < +o00.
L’hypothése (H5) est remplacée par ’

(H5”) : Y, € L'((0,n) x Q,m @ P) Vn € N* Vr >0,

et nous aurons besoin de I'’hypothése supplémentaire suivante : £ est Fp-mesurable et

T
(H6) - EU P F(t, e, e Pt
_ _ 0
ou £ = "¢, &, = E(e"T€|F,) et 7 est prévisibles et tels que

+o0 +00 p/2
£ = E[¢] +/0 M d By, E[(/o |77t|2dt> } < +o0.

3.2 Définition d’une solution

< 400,

Définition 3.2.1. Un couple (Y;, Z;);>0 de processus progressivement mesurables avec des va-

leurs dans RF x R¥*9 est une solution de I’EDSR avec un temps terminal aléatoire T avec
des données (&, f) si sur Uensemble {t > T} Y, =& et Z; =0, P—p.s., t = Li<rf(t, Y2, Z4)
appartient o L} (0,00), t +— Z; appartient a L2 (0,00) et, P-p.s., pour tout 0 <t < T,

loc loc

uNT’ uNT’

F(5, Y, Z2)ds — / Z.dB,. (3.1)

tAT

Yinr = Yurr + /

tAT
Une solution est dite en LP si nous avons d’ailleurs

T T
E{ sup eppt|Yt|p+/ ep”t\Yt\pdt—l—/ eppt|Yt|p_2|Zt|2dt} < +o00.
0 0

0<t<T

3.3 Existence et unicité

Théoréme 3.3.1. Sous les hypothéses (H1'), (H2)-(H4), (H5”) et (H6), ’EDSR (3.1) avec

un temps terminal aléatoire a une solution unique satisfaisant
T

T
E[ sup eppt!Yt!“r/ ey Y + ’Zt’2}dt} < CE[ep”t\§!p+/ e |f(t,0,0)[Pdt |,
0 0

0<t<T'

pour certain constante ¢ dépendant de p, \, p et L.
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Preuve. La preuve suit les étapes de la preuve de Pardoux (|32], Théoréme (2.3.1)).

D’abord, nous faisons le changement de variable Y, = ey, pour réduire a la condition
terminale £ qui appartient & L?. Nous dérivons 'estimation & priori en LP avec p € (1,2), qui
est la seule différence avec la preuve dans Pardoux [32]. Il en résulte facilement de I'inégalité
(2.4) que, pour

Il en résulte facilement de I'inégalité suivante : pour 0 < t < u,

VAP + e(p) / Yol yso| ZoPds < |Yal? +p / VPV, f(s, Yy, Z,))ds
t t

_p/ ’Yg‘[)*1<f/s’ stB€>7
t

unT

6zvp(lt/\T)|y%/\T|p +p/

-1 Y
ebPs (p_2 Y [P=2| Z, ] + P|5$|p> ds < "N Y, np|?
AT

uNT’ uNT’
+p / YL P LY, [ (s, Yoo Zs)) s — / Y, P U(Ys Z.dB.).
t

INT tAT

Les hypotheses sur f ainsi que 'inégalité de Young méne a 'inégalité, et en déduire comme

précédemment [0 = f(s,0,0), pour tout 0 < § < (p—1)/2,

1/~ 2 _ - _
Py, f(s,y,2)) < <u+5+m)ly|p+<%—0)ly|p 2|

1 j2) 1=r
+—|f§)|p<j) :
p p

Nous choisissons d > 0 assez petit donc que p+ 25 + A\?/(2(p — 1 — 20)) < p et déduisons des
inégalités précédentes que

uNT

epp(tAT)|y;AT|p + p/

tAT

—1
o (L2 + v ) as < 6.

avec

uNT

2 p—1
— PP )|y P Dps 5 p Y p—2|,2
o e |Yurr| +p/m e Ku+ +2<p_1_25))|y| +( 5 )|y| 2]

1 p(S 1-p uNT' R
+=| 2P (—) ] ds +p / PP |Y, [P HY,, Z,dB,),
p p 1 tA\T
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on a
(wAT) uNT )\2
B = eprlvMly, p—l—p/ ep”s<u—|—5—|——)ypds
Yol AT 2(p —1—29) v
uNT uNT 1-p
—1 1 0
b [ e (P s e+ [ by (20)
AT 2 INT p p—1
uNT R
“p [ e 2B,
AT
par suite
uNT’ p— 1 uNT’
epp(t/\T)|yMT|P +p/ ep”s—|Y;|7’_2|Z5\2ds +p/ eppspDQ]pds
tAT 2 AT

unT o 5 \2 ‘ |pd uNT o p—1 5 | |p 2| |2d
—l—p/ es(u—l— —l——)y s—l—p/ 65(——>y_z s
tAT 2(p —1—26) tAT 2

p(s 1-p uNT uNT .
< Dy, (—) [ emigras—p [ ey zas,),
p ¢

—1 AT tA\T

uNT
PPN Y, [P + po / P (|Ys[? + |Ye[P 721 Z,P)ds < DY, P
tAT
uAT uNT ~
+C.0) [ e \ppds—p [ ey, ZaB)
tANT tAT

En prenant 'espérance et faisant tendre u a I'infini dans la derniére inégalité, nous obtenons

T

T
E[epﬂmmww / e”p8<m|p+m|p—2wzs|2>ds}§c<p,6>E[epﬂT|§rp+ / epﬂﬂfflpds].
0 0

En utilisant un argument standard basé sur I'inégalité de Burkholder-Davis-Gundy, nous pou-

vons en outre inclure un sup dans ’esperence du cété gauche.
t

T T
| sup oy [ R+ 2 s < [oiep + [ enlre,0.0pa
0 0

0<t<T

O

Remarque 3.3.1. Dans la plupart des applications intéressantes, en particulier a les EDPs

elliptiques, si T est un temps d’arrét non borne (i.e.,= +o00), (H1’) ne peut pas étre satisfait
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que si p < 0. Cela implique, en particulier que p < 0, qui devrait étre prévu, de la relation avec
PDEs elliptiques, voir Pardouz [32].
Dans le cas p = 2, la condition p > p+ (2(p — 1))\ réduit a p > p+ N?/2, qui est la

condition dans Pardouz [32]. D’autre part, comme p — 1, la condition

—— < p <0
2p—1) "

1 nécessite d’étre négatif, avec une valeur absolue plus grande et plus large. Aucun résultat pour

le cas p =1 peut étre déduit de ce qui précéde.



Conclusion

Dans ce mémoire, on a réalisée une étude sur les solutions L” pour les équations différentielles
stochastiques rétrogrades.

En premier lieu, on a présenté quelque notions des bases sur les EDSR, Puis, on a étudie
le premier résultat d’existence et d’unicité dans le cas ou le générateur est non-linéaire et
lipschitzien par rapport aux deux variables y et z.

Ensuite, on a effectué une étude sur l’existence et d’unicité pour les EDSR dans R? lorsque
¢ et le processus { f;}+>0 ne sont que intégrables avec p € (1,2) sur un intervalle de temps fixe.
Egalement, on a étudié 'existence et 1'unicite des solutions LP dans le cas p = 1.

Enfin, on a exécuté une étude sur les solutions des EDSR sur un intervalle de temps aléatoire.

o4



Annexe

Théoréme .1. (Représentation des martingales browniennes) Soit M une martingale (cad-lag)
de carré intégrable pour la filtration {F} }icom. Alors il existe un unique processus (Hy)icpo,r]

appartenant o M2 (RF), tel que
t
P—p.s. vt € [0,7] M, = M, —|—/ H..dB,.
0

On déduit de ce résultat que si & est une variable aléatoire de carré intégrable, F.¥-mesurable,

il existe un unique processus (H,)iepr) € M?*(R?) tel que
T
¢ =E[¢] —I—/ H,.dB,.
0
Preuve : voir [4].

Théoréme .2. (Inégalité de Doob) Si X = (X,);>0 une martingale continue a droite, alors

vp s 1, (En sup XTM) <P (Enxrm).
p—1o<r<t

0<r<t
Soit (M;) une martingale (par rapport a une filtration (Fr)) continue, de carré intégrable et

telle que Moy =0 p.s. Alors

E(|M,
1. P(sup |M,| > \) < M, Vt>0,\>0.
0<r<t A
2. E( sup |M,|?) < 4E(|M;]?), Vit>0.
0<r<t

Preuve : voir [37].

Lemme .1. (De Gronwall) Soit g : [0,7] — R une fonction continue telle que, pour tout t,
t
g(t)§a+b/ g(r)dr a€ceR, b>0.
0

Alors
vVt e R, g(t) = ae’.
Preuve : voir [14].

Théoréme .3. (Inégalité Burkholder-Davis-Gundy (BDG)) Soit p > 0 un réel. 1l existe deux

constantes ¢, et C), telles que, pour toute martingale locale continue X, nulle en zéro,

cp]E{(X,X)géz} < E[sup ]Xt]p} < CPE{<X, X}{.’f].

t>0

Remarque. En particulier, si T" > 0,

CPE{<X, X)Z}/Q} < E[ sup |Xt|p} < O,JE[(X,XY}M]

0<t<T
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Preuve : voir [4].

Théoréme .4. (Formule d’It6) La formule d’Ité est l'un des principauz résultats de la théorie
du calcul stochastique. Cette formule offre un moyen de manipuler le mouvement Brownien ou
les solutions d’équations différentielles stochastiques (EDS).

Soit X un processus d’Ité a valeurs dans R" : pouri=1,...,n,

t d t
:Xg+/ K}er+2/ H*dB".
0 k=170

Si f est deux fois différentiable en x et une fois ent on a :
t n t
f(t. Xy) = f(O,XO)—i-/ &f(r,Xr)derZ/ Oy, f(r, X, )d X}
i=1 70

+z Z/ X,)d(X", X7),,

z]l

avec dX? = Kidr + Z H* dBF et d(X', X7), Z HY*Hk .
k=1 k=1
Le résultat est plus simple a retenir sous forme vectorielle. Pour cela, on note X le vecteur
colonne de R™ de coordonnées X', K le vecteur de R de coordonnées K' et W le vecteur de R?

de coordonnée WJ. On introduit alors la matrice de taille n x d, H = (Hi’j)igigmlggd. Avec

ces notations, on a :
{ ¢
Xy :X0~|—/ KTder/ H.dB,,
0 0

ou H.dB, est un produit matrice-vecteur colonne. La formule d’Ito s’écrit sous la forme, notant

x.y le produit scalaire dans R™ et H* la transposée de H
t t 1 [t .
f(t, Xe) = £(0, Xo) +/ O f(r, X, )dr —I—/ Vf(r,X,).dB, + 5/ trace(D*f(r, X,)H, H*)d",
0 0 0
s0it encore

t

F0X) = JOX0)+ [ (0. X) + VI XK
t 0 .
-l—%/o traCE(D%f(T,Xr)HTH:)divL/0 Df(r,X,)H,dB,.

Preuve : voir [4].

Théoréme .5. (Girsanov) Soit (hy)o<i<r un processus progressivement mesurable, a valeurs

T
dans R? tel que P-p.s. / \h,|*dr < +o00. On suppose que le processus (Dy)o<i<r défini par

0
t 1 t
D, = exp </ h,.dB, — —/ |hr|2dr)
0 2 /o
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est une martingale. Soit P* la mesure de densité Dy par rapport a P sur Fp. Introduisons
t

le processus By = W, — / h,dr. Alors, sous la probabilité P, B est un mouvement brownien
0

standard.
Preuve : voir [24].

Théoréme .6. (Théoréeme stochastique de Fubini) Supposons que (E,E) est un espace mesu-
rable et soit

¢ (tw,z) = P(t,w, x)

une application mesurable de (Qp x E, Py x B(E)) dans (LY, B(LY)). On suppose en outre que

/E 112 - 2)[[rpa(dar) < +o0

/E [ /0 : (t, w)dB(t)} pldr) = /0 ) [ /E o(t, x)u(dx)} dB(t).

Preuve : voir [12].

alors P-P.s.

Théoréme .7. (inégalité de Young) Soit f : R — R, continue, strictement croissante et
surjective, vérifiant f(0) = 0. On note g = f~1, F et G, respectivement, les applications qui a

a associent [ f(t)dt et [, g(t)dt. On a alors
Vr,y € R, Fz)+Gy) > z.y
et I’égalité est vérifiée pour y = f(x).
Preuve : voir [38].

Théoréme .8. (Formule de Tanaka) Soit X une semimartingale continue. Il existe (L )i>0,a €

R processus croissant continu, appelé temps local en a de la semimartingale X, tel que

t
1
(Xt — a)+ — (XO - a)+ +/ ]l{Xs>a}dXs —+ 5[/?
0

t
1
(Xt — a)i = (XO — a)f — / ]l{Xs>a}dXs + EL?
0

t
| Xy —a|l =Xy — a +/ sgn(Xs — a)dXs + L
0

o

—1 r <0,
sgn =
1 z > 0.

De plus, la mesure (de Stieltjes) dL§ associée LY est portée par {t € R: X; = a}.
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Preuve : voir [4].

Théoréme .9. (De convergence monotone (TCM)) Soit { f,} une suite de fonction mesurables

telle que
lim fu(e) = f(z),  |ful0)l <g(s)  pour tout 3 € X,

n—o0

ou g est une fonction intégrable. Alors f est intégrable et

im [ fudp = / Fudp.
X X

n—oo

Preuve : voir [9].

Théoréme .10. (Inégalité de Hélder) Pour tous vecteurs x,y dans C" on a :

n 1 n 1
P q
< (k) (Xl
i=1 =1

n

Z TiYi

i=1

L’inégalité de Hélder s’écrit, en notant (x|y) le produit scalaire hermitien canonique de C",

[{zlg)| < llllpllylly

et cette inégalité est encore valable pour p =1 et ¢ = 400.

Pour p = q = 2 on retrouve l'inégalité de Cauchy-Schwarz.
Preuve : voir [9].
Lemme .2. (De Fatou). Soit f, > 0 une suite. Alors

/ (lim inf fn)d,u:lim inf / frndp.
X n—oo n—oo X

Preuve : voir [6].
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