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Introduction

La géométrie lorentziéne est est champ particulier et spécifique de la
géométrie pseudo-riemannienne. Son importance vient du fait qu’elle aborde
d’une façon rigoureuse les questions qui dépassent la mécanique classique,
cela s’agit bien de la mécanique relativiste et la théorie générale de l’optique.
Une variété lorentzienne est une variétém-dimensionnelle munie d’un tenseur
symétrique g tel que la forme quadratique gx soit en tout point de type
(m−1, 1). L’exemple le plus Simple est 1’exemple des espaces de Minkowski.
Leur importance vient de ce qu’elles modélisent 1’espace temps de la relativité
générale.
II y a des différences importantes avec le cas riemannien : une variété donnée
n’a pas forcément de structure lorentzienne la restriction du tenseur g a
une sous-variété est suivant les cas riemannienne, lorentzienne ou singulière.
Par centre, les variétés riemanniennes, lorentziennes et plus généralement les
variétés Pseudo-riemanniennes ont en commun trois propriétés importantes :

1. Le tenseur g définit une mesure (plus précisément une densité) sur la
variété.

2. Il définit un isomorphisme de fibres entre TM et T ∗M , qui permet
d’identifier formes différentielles et champs de vecteurs. Cet isomor-
phisme est utilisé par exemple dans le cas euclidien, pour définir le
gradient d’une fonction. Le gradient se définit plus généralement dans
le cadre pseudo-riemannien.

3. Le tenseur g permet enfin de définir canoniquement une connexion sur
le fibré tangent, c’est-a-dire une dérivée directionnelle des champs de
vecteurs.
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Ainsi, l’étude de ces variétés impose l’étude de leurs groupes de symétrie,
il s’agit dans notre cas particulier du groupe de Lorentz (noté généralement
O(3, 1) ou bien L dans ce document). C’est le groupe des automorphismes de
la forme quadratique x2 + y2 + z2− t2. C’est un groupe de Lie non compact,
non connexe. Le groupe de Lorentz L possède quatre composantes connexes.
L’étude de ce groupe et son algèbre de Lie passe obligatoirement par la
théorie de représentation des groupes. Notre mémoire envisage cet étude, et
la décompose en trois chapitre :
Le premier chapitre traite les généralités de la théorie des représentations,
une attention spéciale est donnée au cas des groupes finis et compacts, le cas
des groupes de Lie localement compacts hérite bien de cette théorie. Dans
le deuxième chapitre on définit explicitement le groupe de Lorentz L. Le
troisième chapitre est consacré à l’étude des représentations du groupe de
Lorentz a partir de celles des groupes SO(3) et SU(2) et de leurs algèbres de
Lie.



Chapitre 1

Théorie des représentations des
groupes

1.1 Représentations des groupes finis

1.1.1 Généralités

Si E est un espace vectoriel sur K, (K = R ou C), On désigne par GL(E)

le groupe des isomorphismes K-linéaire de E.

Définition 1.1.1. Une représentation d’un groupe G (fini ou non) est la
donnée d’un espace vectoriel complexe de dimension finie E, et d’un mor-
phisme de groupes, ρ : G −→ GL(E).

Donc, pour tous g, g′ ∈ G,

ρ(gg′) = ρ(g)ρ(g′), ρ(g−1) = (ρ(g))−1, ρ(e) = IdE

.
L’espace vectoriel E est appelé le support de la représentation et sa dimension
s’appelle la dimension de la représentation. On désigne une telle représenta-
tion par (E, ρ) ou simplement ρ.

Si en particulier, E = Cn, on dit que la représentation est une représen-
tation matricielle de dimension n.

7
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la représentation standard ou fondamentale d’un sous groupe G de GL(E)

est la représentation de G dans E définie par l’injection canonique de G dans
GL(E).

On appelle représentation triviale toute représentation telle que ρ(g) =

IdE pour tout g ∈ G.

Exemple 1.1.1. (Groupe de permutations).
Soit G = S3 le groupe des permutations de l’ensemble {1, 2, 3} et t ∈ S3
la transposition 123 7−→ 132 et c la permutation circulaire 123 7−→ 231 qui
engendrent S3. On pose j = e

2iπ
3 . On peut représenter S3 dans C en posant

ρ(e) = I, ρ(t) =

(
0 1

1 0

)
, ρ(c) =

(
j 0

0 j2

)
Définition 1.1.2. Soit <,> un produit scalaire sur E. On dit que la repré-
sentation est unitaire si ρ(g) est unitaire ∀g, c’est-à-dire,

∀g ∈ G,∀x, y ∈ E, 〈ρ(g)x, ρ(g)y〉 = 〈x, y〉

. Une représentation est dite unitarisable s’il existe un produit scalaire sur E
tel que (ρ, 〈, 〉) est unitaire.

Lemme 1.1.1. Soit G un groupe fini. Pour toute fonction ϕ sur G à valeurs
dans un espace vectoriel

∀g ∈ G,
∑
h∈G

ϕ(gh) =
∑
h∈G

ϕ(hg) =
∑
k∈G

ϕ(k). (1.1)

Démonstration En effet, g est fixé, tout élément de G s’écrit d’une
manière et d’une seule sous la forme gh (resp., hg), ou h ∈ G.

Théorème 1.1.1. Toute représentation d’un groupe fini G est unitarisable.
Démonstration Soit (E, ρ) une représentation d’un groupe fini, G, et soit
〈, 〉 un produit scalaire sur E considérons :

〈, 〉′ =
1

|G|
∑
g∈G

〈ρ(g)x, ρ(g)y〉

qui est un produit scalaire sur E. En effet, supposons 〈, 〉′ = 0,
⇒ 1
|G|
∑

g∈G〈ρ(g)x, ρ(g)y〉 = 0
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⇒ 〈ρ(g)x, ρ(g)y〉 = 0 ∀g ∈ G
en particulier pour g=e ρ(g) = idE donc : 〈x, x〉 = 0⇒ x = 0

Montrons que 〈, 〉′ est invariant par ρ (ρ unitaire par rapport à 〈, 〉′)
En effet :

〈ρ(g)x, ρ(g)y〉′ = 1
|G|

∑
h∈G

〈ρ(h)ρ(g)x, ρ(h)ρ(g)y〉

= 1
|G|

∑
h∈G

〈ρ(hg)x, ρ(hg)y〉

= 1
|G|

∑
k∈G

〈ρ(k)x, ρ(k)y〉

= 〈x, y〉′

donc ρ est unitaire par rapport à 〈, 〉′

1.1.2 Représentations irréductibles

Définition 1.1.3. Soit (E, ρ) une représentation d’un groupe G, F ⊂ G un
sous espace vectoriel de E, On dit que F est invariant par ρ (stable) si est
seulement si :

ρ(g)F ⊂ F, ∀g ∈ G

ce qui entraine ρ(g)F = F, ∀g
Donc on peut parler d’une représentation ρ restreinte à F : c’est une repré-
sentation de G dans F
ρ|F est appelée sous représentation.

Définition 1.1.4. Une représentation (E, ρ) de G est dite irréductible.
Si E 6= {0} et les seules sous espaces vectoriels de E invariants par ρ sont 0
et E

Exemple La représentation de dimension 2 de S3 dans l’exemple précé-
dent 1.1.1 est irréductible, car les sous espaces propres de ρ(t) et de ρ(c) sont
d’intersection nulle.

Proposition 1.1.1. Toute représentation irréductible d’un groupe fini G est
de dimension finie.
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Démonstration Soit (E, ρ) une représentation irréductible d’un groupe
fini G et soit x ∈ E. Le sous ensemble {ρ(g)x/g ∈ G} étant fini, Cette
ensemble engendre un sous espace vectoriel de dimension fini de E. Si x 6= 0,
ce sous-espace vectoriel de E n’est pas réduit à {0} et c’est un espace invariant
par ρ. il coincide donc avec E, qui est donc dimE <∞.

1.2 Opérations sur les représentations

1.2.1 Somme directe de représentations

Définition 1.2.1. Soient (E1, ρ1) et (E2, ρ2) des représentations de G. Alors
on définit (E1 ⊕ E2, ρ1 ⊕ ρ2) par :

(ρ1 ⊕ ρ2)(g)(x1, x2) = (ρ1(g)x1, ρ2(g)x2),∀g ∈ G, x1 ∈ E1, x2 ∈ E2

Exemple 1.2.1. Si ρ1 et ρ2 sont matricielles, Alors la matrice de ρ1⊕ ρ2(g)

est : (
ρ1(g) 0

0 ρ2(g)

)
Plus généralement si m > 0 on définit ρ1 ⊕ ρ2 ⊕ ...⊕ ρm
En particulier : Si (E, ρ) est une représentation de G, On note :

ρ⊕ ρ⊕ ...⊕ ρ︸ ︷︷ ︸
mfois

= ⊕mρ = mρ

Définition 1.2.2. Une représentation est dite complètement réductible si elle
est somme directe de représentation irréductible.

Lemme 1.2.1. Soit ρ une représentation unitaire d’un groupe G dans (E, 〈, 〉).
Si F ⊂ E est invariant par ρ.

Démonstration Soit y ∈ F⊥ = {y ∈ E/〈x, y〉}
〈x, ρ(g)y〉 = 〈ρ(g−1)x, y〉 = 0, ∀x ∈ F, ∀g
car F est invariant par ρ
⇒ ρ(g)y ∈ F⊥

⇒ F⊥ est invariant par ρ
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Théorème 1.2.1. (Théorème de Maschke) Toute représentation de di-
mension finie d’un groupe fini est complètement réductible.

Démonstration Soit (E, ρ) une représentation de G d’après le théorème
1.1.1, ρ est supposé unitaire. Si ρ n’est pas irréductible.
Soit F un sous espace vectoriel invariant par ρ avec F 6= {0} et F 6= E

Alors : E = F ⊕ F⊥

F⊥ aussi invariant par ρ et dimF < dimE et 0 < dimF⊥ < dimE

par récurrence sur la dimension de E, on obtient le résultat :
ρ = ρ1 ⊕ ρ2 ⊕ ...⊕ ρm
Remarque Le théorème de Maschke est aussi vrai dans le cas des groupes
compacts, mais il faut signaler que la démonstration nécessite plus de tech-
nique.

1.2.2 Produit tensoriel

Définition 1.2.3. Si (E1, ρ1) et (E2, ρ2) sont des représentations d’un même
groupe G, on définit leur produit tensoriel (E1 ⊗ E2, ρ1 ⊗ ρ2) par

(ρ1 ⊗ ρ2)(g) = ρ1(g)⊗ ρ2(g)

1.2.3 Opérateurs d’entrelacement et lemme de Schur

Définition 1.2.4. Soient (E1, ρ1) et (E2, ρ2) des représentation de G. On
dit qu’une application linéaire, T : E1 −→ E2, entrelace ρ1 et ρ2 si

∀g ∈ G, ρ2(g) ◦ T = T ◦ ρ1(g)

et T s’appelle alors opérateur d’entrelacement entre ρ1 et ρ2.
La définition exprime la commutativité du diagramme suivant, ∀g ∈ G,

E1
T−→ E2

ρ1(g) ↓ ↓ ρ2(g)

E1
T−→ E2

Les expressions suivantes sont diversement utiliser pour exprimer cette
même propriétés :
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• T est équivariant ρ1 et ρ2

• T est un morphisme de G-espaces vectoriels

• T ∈ HomG(E1, E2)

Cas particulier : Si E = E1 = E2 et ρ = ρ1 = ρ2, un opérateur T qui
entrelace ρ1 et ρ2 est simplement un opérateur qui commute avec ρ.

Définition 1.2.5. Les représentations ρ1 et ρ2 sont équivalentes s’il existe
un opérateur d’entrelacement bijective entre ρ1 et ρ2
Dans ce cas :

∀g ∈ G, ρ2(g) = T ◦ ρ1(g) ◦ T−1 (1.2)

La relation définie par (1.2) est bien une relation d’équivalence sur les repré-
sentation En particulier pour des représentations matricielles on obtient des
matrices semblables : ie :
∀g ∈ G : [ρ1(g)] est semblable à [ρ2(g)] avec la même matrice de passage.

Lemme 1.2.2. Si T entrelace ρ1 et ρ2 le noyau de T , KerT est invariant
par ρ1, et l’image de T ,ImT , est invariant par ρ2.

Démonstration

– Si x ∈ E1 et Tx = 0, Alors

T (ρ1(g)x) = ρ2(g)(Tx) = ρ2(g)(0) = 0

Donc :
Ker T est invariant par ρ1

– Si y ∈ ImT, ∃x ∈ E1 tel que y = Tx

Alors :

ρ2(g)y = ρ2(g)Tx = T (ρ1(g)x)

⇒ ρ2(g)y ∈ Im(T )

Donc ImT est invariant par ρ2

Lemme 1.2.3. Si T commute avec ρ, tout sous espace propre de T est in-
variant par ρ
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Démonstration En effet, si Tx = λx, λ ∈ C, alors T (ρ(g)x) = λρ(g)x.
Donc le sous espace propre de T correspondant à la valeur propre λ est in-
variant par ρ.

Théorème 1.2.2. (Lemme de Schur)
Soit T un opérateur entrelacant des représentation irréductibles de G : (E1, ρ1)

et (E2, ρ2)

– Si ρ1 et ρ2 ne sont pas équivalentes, alors T = 0.
– Si E1 = E2 = E et ρ1 = ρ2 = ρ, alors T est un multiple scalaire de
l’identité de E.

Démonstration Si ρ1 et ρ2 ne sont pas équivalentes, T n’est pas bijectif,
donc KerT 6= {0} ou bien ImT 6= E2

D’après le lemme (1.2.2), Ker T est invariant par ρ1, comme ρ1 est irréduc-
tible alors : KerT = E1 si Ker T 6= {0}, donc T = 0.
D’après le lemme (1.2.2) aussi Im T est invariant par ρ2, comme ρ2 est ir-
réductible alors : ImT = {0}, donc T = 0.
Si E1 = E2 = E et ρ1 = ρ2 = ρ, alors :ρ(g) = T ◦ ρ(g) ◦ T−1, ∀g ∈ G
Soit λ une valeur propre de T
Soit Eλ l’espace propre associée à λ, d’après le lemme (1.2.3) l’espace propre
Eλ est invariant par ρ,Eλ 6= {0} car T 6= 0.
Alors puis que ρ est irréductible on a : Eλ = E,∀x ∈ E, Tx = λx

donc T = λ.IdE

1.3 Caractères et relations d’orthogonalité

1.3.1 Fonctions sur un groupe, coefficients matriciels

Définition 1.3.1. Sur L2(G), le produit scalaire est défini par

〈f1, f2〉 =
1

|G|
∑
g∈G

f1(g)f2(g)

. On va s’intéresser aux coefficients matriciels des représentations.

Définition 1.3.2. Si ρ est une représentation de G dans Cn,∀(i, j), 1 6 i 6

n, 1 6 j 6 n, la fonction ρij ∈ L2(G) qui associe à g ∈ G la coefficient de la
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matrice ρ(g) situé sur la i ligne et la j colonne, (ρ(g))ij ∈ C, est appelée un
coefficient matriciel de ρ.

Pour une représentation ρ dans un espace vectoriel E, on définit les coef-
ficients matriciels ρij relativement à une base (ei), qui vérifient

ρ(g)ej =
∑
i

ρij(g)ei

(i est l’indice de ligne et j l’indice de colonne). Si ρ est une représentation
unitaire dans un espace de Hilbert de dimension finie, alors

ρ(g−1) = (ρ(g))−1 = t(ρ(g))

, d’où, dans une base orthonormale,

ρij(g
−1) = ρij(g)

et, en particulier, les coefficients diagonaux de ρ(g) et ρ(g−1) sont des nombres
complexes conjugués.

1.3.2 Caractère d’une représentation, relations d’ortho-
gonalité

Définition 1.3.3. Soit (E, ρ) une représentation de G. On appelle caractère
de ρ la fonction χρ sur G à valeurs complexes définie par

∀g ∈ G,χρ(g) = Tr(ρ(g))

. Des représentations équivalentes ont même caractère.
Pour une représentation matricielle de dimension n,

χρ(g) =
n∑
i=1

(ρ(g))ii (1.3)

Sur chaque classe de conjugaison de G, la fonction χρ est constante.

Définition 1.3.4. On appelle fonction centrale sur G une fonction constante
sur chaque classe de conjugaison.
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Proposition 1.3.1. Les propriétés élémentaires des caractères sont les sui-
vantes :

• χρ(e) = dimρ.

• ∀g ∈ G,χ(g−1) = χρ(g).

• Le caractère d’une somme directe de représentation est de la somme des
caractères, χρ1⊕ρ2 = χρ1 + χρ2.

• Le caractère d’un produit tensoriel de représentation est le produit des ca-
ractères,

χρ1⊗ρ2 = χρ1χρ2

Démonstration La première propriété est conséquence de la formule (1.3).
Pour démontrer la seconde formule, on peut supposer que ρ est unitaire pour
un certain produit scalaire et choisir une base orthonormal. La propriété des
sommes directes est évidente.
La relation suit du fait que la trace d’un produit tensoriel de matrices est le
produit des traces.

Proposition 1.3.2. Soient (E1, ρ1) et (E2, ρ2) des représentation de G et
soit u : E1 → E2 , une application linéaire. Alors l’application linéaire,
Tu : E1 → E2, définie par :

Tu =
1

|G|
∑
g∈G

ρ2(g)uρ1(g)−1 (1.4)

entrelace ρ1 et ρ2
Démonstration Calculons

ρ2(g)Tu = 1
|G|
∑

h∈G ρ2(gh)uρ1(h
−1)

= 1
|G|
∑

k∈G ρ2(k)uρ1(k
−1g)

d’après la relation fondamentale (1.1). D’où,

ρ2(g)Tu = Tuρ1(g)

L’opérateur Tu est donc un opérateur d’entrelacement entre ρ1 et ρ2.

Proposition 1.3.3. Soient (E1, ρ1) et (E2, ρ2) des représentations irréduc-
tibles de G, On choisit des bases dans E1 et E2.
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(i) Si ρ1 et ρ2 sont inéquivalentes,

∀i, j, k, l,
∑
g∈G

(ρ2(g))kl(ρ1(g
−1))ji = 0

(ii) Si E1 = E2 = E et ρ1 = ρ2 = ρ,

1

|G|
∑
g∈G

(ρ(g))kl(ρ(g−1))ji =
1

dimE
δkiδlj

Théorème 1.3.1. Les caractères irréductibles de G forment un système or-
thonormal dans L2(G)

Corollaire 1.3.1. Les représentations irréductibles inéquivalentes d’un groupe
fini G sont en nombre fini.

On désigne par Ĝ l’ensemble des classes d’équivalence de représentations
irréductibles de G.

1.4 Représentations des groupes compacts

Définition 1.4.1. Rappelons qu’un groupe topologique est un groupe muni
d’une structure d’espace topologique séparé (par exemple un sous-ensemble
d’un espace vectoriel normé) telle que la multiplication et le passage à l’in-
verse soient des application continue. Un espace topologique est localement
compact si tout point possède un voisinage compact. On appelle groupe com-
pact (resp., localement compact) un groupe topologique qui est un espace com-
pact (resp., localement compact).
Si E est un espace de Banach sur le corps des réels ou des complexes (espace
vectoriel normé complet), on désigne par L(E,E) l’espace vectoriel des ap-
plications linéaires continues de E dans E (encore appelées endomorphismes
de E ou opérateurs linéaires continues ou opérateurs bornés sur E). On le
munit de la norme des applications linéaires qui, pour u : E −→ E, linéaire
et continue, est définie par

‖u‖ = sup
‖x‖61

‖u(x)‖
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Pour tout espace de Banach,E, on désigne par GL(E) ⊂ L(E,E) le groupe
des isomorphismes de E, c’est-à-dire des endomorphismes bijectifs et bicon-
tinus de E. On sait qu’il suffit qu’une application linéaire continue entre
espaces de Banach soit bijective pour que son inverse le soit. On considère
GL(E) comme sous espace topologique de l’espace vectoriel normé L(E,E).
La boule unité dans un espace vectoriel normé est compacte si et seulement
si l’espace est de dimension finie. Donc tout sous-ensemble fermé est borné
de GL(E), où E est un espace vectoriel de dimension finie, est compact.Par
exemple U(n) ⊂ GL(n,C) et O(n) ⊂ GL(n,R) sont compacts. De même,
SU(n) et SO(n) sont compacts. Le groupe abélien R muni de sa métrique
usuelle est un groupe localement compact mais non compact.

1.4.1 Mesure de Haar

Sur un groupe fini G, on sait que pour toute fonction f ∈ F(G) et ∀g ∈ G,∑
h∈G

f(h) =
∑
h∈G

f(gh) =
∑
h∈G

f(hg)

Si l’on désigne par lg (resp.,rg) la multiplication à gauche (resp., droite) par
g ∈ G, on a par définition f(gh) = (f ◦ lg)(h) et f(hg) = (f ◦ rg)(h). Par
conséquent, l’opération de moyenne,

M : f 7−→M(f) =
1

|G|
∑
g∈G

f(g)

, vérifie
– M est une forme linéaire sur F(G), positive, c’est-à-dire prenant des

valeurs positives sur les fonctions réelles positives.
– M est invariante à gauche et à droite, c’est-à-dire

∀g ∈ G,M(f ◦ lg) = M(f ◦ rg) = M(f)

– M(1)=1
Sur les groupes compacts, il existe une mesure, la mesure de Haar, qui

possède des propriétés analogues. Plus généralement sur un groupe locale-
ment compact, il existe des mesures ayant une propriété d’invariance soit à
gauche, soit à droite (mais pas les deux en général).
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Théorème 1.4.1. Soit G un groupe localement compact.

(i) Il existe sur G une mesure positive, finie sur les compacts, non identi-
quement nulle et invariante à gauche, i.e., pour toute fonction intégrable
f et pour tout h ∈ G,∫

G

f(hg)dµ(g) =

∫
G

f(g)dµ(g)

Une telle mesure est unique à un facteur scalaire réel positive près. Si
f est continue, f > 0 et

∫
G
f(g)dµ(g) = 0, alors f=0.

(ii) Si G est compact, il existe sur G une unique mesure invariante à gauche
µ telle que

∫
G
dµ(g) = 1.

(iii) Sur un groupe compact, toute mesure invariante à gauche est invariante
à droite.

Démonstration

(i) Nous admettrons ce résultat.

(ii) Si µ0 est une mesure invariante à gauche sur G compact et si
∫
G
dµ0(g) =

m, on pose µ = 1
m
µ0 et µ est clairement l’unique mesure invariante à

gauche telle que
∫
G
dµ(g) = 1.

(iii) Soit µ une mesure invariante à gauche sur G localement compact. Pour
f continue à support compact, posons µ(f) =

∫
G
f(g)dµ(g). Soit h ∈ G

et considérons µh(f) =
∫
G
f(gh)dµ(g), c’est-à-dire µh(f) = µ(f ◦ rh).

Alors,

∀k ∈ G, µh(f ◦ lk) =

∫
G

f(kgh)dµ(g) =

∫
G

f(gh)dµ(g) = µh(f)

, donc, d’après l’unicité des mesures invariantes à gauche à un facteur
prés, il existe un scalaire ∆(h) ∈ R+ vérifiant

µh(f) = ∆(h)µ(f)

Si G est compact, on peut intégrer la fonction constante 1. On obtient
µh(1) = µ(1) = ∆(h)µ(1). D’où ∆ = 1 et µ est donc aussi invariante
à droite, i, e., ∫

G

f(gh)dµ(g) =

∫
G

f(g)dµ(g), ∀h ∈ G
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Définition 1.4.2. Sur un groupe compact, l’unique mesure invariante à
gauche et à droite, et de masse totale 1, s’appelle la mesure de Haar.

Sur un groupe localement compact G, la fonction ∆ : h ∈ G 7−→ ∆(h) ∈
R+ est appelée la fonction modulaire de G. Elle vérifie

∆(hh′) = ∆(h)∆(h′)

car ∆(hh′)µ(f) = µhh′(f) = µ(f ◦ rhh′) = µ(f ◦ rh′ ◦ rh) = ∆(h)µ(f ◦ rh′) =

∆(h)∆(h′)µ(f). On dit que le groupe localement compact G est unimodulaire
si ∆ = 1.
Le théorème précédent dit que si G est compact, alors G est unimodulaire.
On écrit souvent

∫
f(g)dg ou lieu de

∫
f(g)dµ(g). Ainsi, si G est compact,

pour toute fonction mesurable f,

∀h ∈ G,
∫
G

f(g)dg =

∫
G

f(hg)dg =

∫
G

f(gh)dg

et l’on impose à µ de satisfaire la condition de normalisation,
∫
G
dg = 1

1.4.2 Complète réductibilité

Théorème 1.4.2. Toute représentation d’un groupe compact est unitari-
sable.

Schéma d’une démonstration. Soit G un groupe compact, et soit (E, ρ)

une représentation de G. On pose, pour x, y ∈ E,

〈x, y〉′ =
∫
G

〈ρ(g)x, ρ(g)y〉dg

où dg est la mesure de Haar sur G. C’est bien un produit scalaire car, si
〈x, x′〉 = 0, alors d’après le théorème (1.4.1) ,〈ρ(g)x, ρ(g)x〉 = 0,∀g ∈ G, et
par conséquent, x=0. D’autre part,

〈ρ(g)x, ρ(g)y〉′ =
∫
G

〈ρ(hg)x, ρ(hg)y〉dh =

∫
G

〈ρ(h)x, ρ(h)y〉dh = 〈x, y〉′

Ainsi ρ(g) est unitaire pour 〈, 〉′.
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Corollaire 1.4.1. Toute représentation de dimension finie d’un groupe com-
pact est complètement réductible.

Théorème 1.4.3. Toute représentation irréductible d’un groupe compact est
de dimension finie.

Remarque Cet énoncé, comme spécifié plus haut, sous-entend qu’il s’agit
de représentations continues dans des espaces de Hilbert complexes séparables.
Il n’est pas vrai en toute généralité, mais reste vrai pour des représentations
continues à valeurs dans certains espaces vectoriels topologiques plus généraux
que les espaces de Hilbert.

1.4.3 Relations d’orthogonalité

Définition 1.4.3. On définit un produit scalaire sur l’espace vectoriel des
fonctions continues à valeurs complexes sur G par

〈f1, f2〉 =

∫
G

f1(g)f2(g)dg

où dg est la mesure de Haar. On désigne par L2(G) l’espace de Hilbert obtenu
en complétant cet espace préhilbertien pour la norme définie par ce produit
scalaire. C’est l’espace de Hilbert des classes d’équivalences (pour la relation
d’égalité presque par tout) de fonctions de carré intégrable sur G.

On sait que les représentations irréductibles de G sont de dimension finie.
Les relations d’orthogonalité des caractères des représentations irréductibles
des groupes finis s’étendant au cas compact.

Théorème 1.4.4. Soit G un groupe compact et soient (E1, ρ1) et (E2, ρ2)

des représentations unitaires irréductibles de G. ∀x1, y1 ∈ E1 et ∀x2, y2 ∈ E2,

〈ϕρ1x1y1 , ϕ
ρ2
x2y2
〉 =

{
0 si ρ1 � ρ2

1
dimE
〈x2, x1〉〈y1, y2〉 si E1 = E2 = Eetρ1 = ρ2 = ρ

Démonstration En généralisant le procédé utilisé dans la proposition 1.3.2

et 1.3.3, pour toute application linéaire continue u : E1 → E2 , on définit
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l’opérateur qui entrelace ρ1 et ρ2,

Tu =

∫
G

ρ2(g)uρ1(g)−1dg

On considère l’application linéaire uy1y2 : E1 −→ E2 définie par uy1y2(x) =

〈y1, x〉y2 pour x dans E1. En utilisant le fait que ρ1 est unitaire, on obtient
alors la relation 〈ϕρ1x1y1 , ϕ

ρ2
x2y2
〉 = 〈x2, Tuy1y2x1〉.

On applique ensuite le lemme de Schur. Cette quantité est nulle si ρ1
n’est pas équivalente à ρ2. Si E1 = E2 = E et ρ1 = ρ2 = ρ, alors Tuy1y2 =

τ(y1, y2)IdE, où τ(y1, y2) est antilinéaire en x1 et linéaire en x2. On calcule
τ(y1, y2) en calculant la trace de Tuy1y2 . Celle-ci est égale à la trace de uy1y2
car, pour toute application linéaire u, TrTu =

∫
G
Tr(ρ(g) ◦ u ◦ ρ(g−1))dg =∫

G
Trudg = Tru. Comme on a Truy1y2 = 〈y1, y2〉, on obtient le résultat cher-

ché.

En particulier, si ρ1 et ρ2 ne sont pas équivalentes, dans toute bases or-
thonormales,

〈ϕρ1ij , ϕ
ρ2
kl 〉 = 0 (1.5)

et, si ρ1 = ρ2 = ρ, alors

〈ϕρij, ϕ
ρ
kl〉 =

1

dimE
δikδjl (1.6)

On désigne par Ĝ l’ensemble des classes d’équivalence de représentations ir-
réductibles d’un groupe compact G. Lorsque L2(G) est séparable, ce qui a lieu
dans les cas que l’on rencontre en pratique, les relations d’orthogonalité ci-
dessus impliquent que Ĝ est dénombrable.

D’après (1.5) et (1.6) les coefficients matriciels dans des bases orthonor-
males des représentations unitaires irréductibles inéquivalentes de G forment
un système orthogonal dans L2(G). On démontre qu’ils forment une base or-
thogonale de L2(G) au sens hilbertien. Ce résultat constitue le théorème de
Peter-Weyl qui peut s’énoncer :

Théorème 1.4.5. (Théorème de Peter-Weyl pour les groupes com-
pacts) Toute fonction f ∈ L2(G) admet un développement de Fourier convergent
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au sens de L2,

f =
∑
α∈Ĝ

dimρα∑
i,j=1

cαijρ
α
ij (1.7)

où les ρα sont des représentants unitaires des classes de représentations ir-
réductibles inéquivalentes de G, les ραij sont leurs coefficients matriciels dans
des bases orthonormales, et

cαij = (dimρα)〈ραij, f〉 = (dimρα)

∫
G

f(g)ραij(g)dg (1.8)

Théorème 1.4.6. (Relation d’orthogonalité) Soient ρ1 et ρ2 des représenta-
tions irréductibles de G. Alors

〈χρ1 , χρ2〉 =

{
0 si ρ1 � ρ2

1 si ρ1 ∼ ρ2

Démonstration Compte tenu du théorème (1.4.2), ces relations sont une
conséquence des formules précédentes (1.5) et (1.6).

Une représentation ρ est irréductible si et seulement si 〈χρ1 , χρ2〉 = 1

Si ρ est une représentation de G, on peut la décomposer en somme hil-
bertienne de représentations irréductibles, ρi ∈ Ĝ. On écrira

ρ = ⊕̂ρi∈Ĝmiρi

où
mi = 〈χρi , χρ〉

On peut avoir mi =∞



Chapitre 2

Groupe de Lorentz

2.1 Groupe de Lorentz

2.1.1 Définition

Nous considérons dans R4 la forme quadratique

S2(x) = x21 + x22 + x23 − x20 (2.1)

Une transformation générale de Lorentz est une transformation linéaire x′ =
gx laissant invariante cette forme quadratique.
On note l la matrice de la forme quadratique S2(x) :

l =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


Sous toute transformation linéaire avec la matrice g la matrice l la forme
quadratique se transforme en gtlg. où gt est la matrice transposée de la
matrice g. Par conséquent pour une transformation de Lorentz générale, nous
avons l’équation

gtlg = l (2.2)

Cela implique clairement que det g = ±1, et donc g est inversible. Il est clair
que g−1 est aussi une transformation générale de Lorentz. Le produit de deux

23
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transformations générales de Lorentz est clairement une transformation de
Lorentz. Par conséquent l’ensemble des transformations linéaires dans R4 qui
laissent invariant S2 est un sous groupe du groupe linéaire Gl(R4), c’est le
groupe général de Lorentz notée par suit L.

L’équation S2(x) = x21 + x22 + x23 − x20 = 0 définit dans R4 un cône (ap-
pelé cône de lumière) dont l’axe est le x0-axe (l’axe du temps) Le cône lu-
mineux divise l’ensemble de l’espace R4 en trois régions : un région exté-
rieure. où S2(x) > 0, et deuxième régions internes S2(x) < 0, x0 > 0 et
S2(x) < 0, x0 < 0 Toute transformation générale de Lorentz transforme la
lumière cône et sa région interne (c’est-à-dire la région où S2(x) < 0) en
eux-mêmes.
Une transformation générale de Lorentz sous laquelle chaque région du cône
de lumière reste également en place, nous appellerons simplement une trans-
formation de Lorentz. Il est clair que les transformations de Lorentz ne modi-
fient pas la direction positive de la axe du temps. Les transfusions de Lorentz
forment également un groupe. connu comme le compléter le groupe Lorentz.
Nous appellerons les transformations de Lorentz avec un minant égal à 1
transformations de Lorentz propres. Ils forment également un groupe -le bon
groupe Lorentz. Nous notons que l’ensemble du groupe Lorentz est provenant
du groupe approprié par l’ajout d’une transformation spéciale - un réflexion
spatiale s avec la matrice

s =


−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1


et aussi toutes les transformations possibles de la forme sg, où g est un élé-
ment du groupe Lorentz approprié.

De même, le groupe de Lorentz général est obtenu à partir du groupe de
Lorentz complet par l’addition de la soi-disant réflexion temporelle, c’est-à-
dire de la transformation t avec la matrice
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t =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


x′1 = g11x1 + g12x2 + g13x3

x′2 = g21x1 + g22x2 + g23x3

x′3 = g31x1 + g32x2 + g33x3

x′0 = x0

(2.3)

Il est clair qu’il s’agit d’une transformation de Lorentz appropriée.

Si nous identifions chaque rotation en trois dimensions avec le correspon-
dant transformation de Lorentz indiquée ci-dessus, alors nous pouvons dire
que les rotations tridimensionnelles forment un sous-groupe du groupe de
lorentz approprié.
Enfin, nous faisons une observation concernant la réflexion spatiale et tem-
porelle.

Nous associons à chaque transformation de Lorentz propre g une autre
transformation de Lorentz selon la formule

∼
g= sgs−1 (2.4)

Il est clair que
∼
g est à nouveau une transformation de Lorentz appropriée.

La correspondance
∼
g∼ g satisfait clairement ce qui suit

1) e ∼ e (e est la transformation unitaire)
2) si

∼
g1∼ g2 alors

∼
g2∼ g2 et

∼
g1
∼
g2∼ g1g2 Toute correspondance individuelle

∼
g∼ g entre les éléments d’un même groupe qui satisfait ces conditions
sont connues comme un automorphisme du groupe. De cette façon une
réflexion spatiale produit selon la formule (2.4) un automorphisme du
groupe Lorentz approprié. La réflexion temporelle également un auto-
morphisme

∼
g= tgt−1 (2.5)
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Cet automorphisme coïncide avec le précédent, car on voit facilement
que

tgt−1 = sgs−1

On note que la matrice de la transformation t coïncide avec la matrice
l de la forme quadratique S2(x). Il résulte donc de l’équation (2.2) que

tg−1 = lgl−1 = tgt−1

De cette manière, la matrice
∼
g de la transformation sgs−1 = tgt−1 est

égale à
∼
g=t g−1

Soit g un élément arbitraire d’un groupe, et g0 va être un élément fixe de
ce même groupe. Il est clair que la correspondance g ∼ g0gg

−1
0 est une

automorphisme du groupe. Un tel automorphisme est appelé intérieur.
Tout autre l’automorphisme est appelé extérieur. Automorphisme (2.5)
du bon groupe de Lorentz

∼
g= sgs−1 =t g−1

généré par la réflexion spatiale s. ne peut pas être représenté sous la
forme

∼
g= g0gg

−1
0

où g0 est un élément du groupe approprié. Cette simple circonstance
peut être facilement vérifié par le lecteur. De cette façon, nous voyons
que l’automorphisme

g = sgs−1

est un automorphisme externe du groupe propre (pour le groupe com-
plet et le groupe général cet automorphisme est, évidemment, interne).
On peut prouver que tout automorphisme externe du groupe de Lorentz
propre est donné sous la forme

∼
g= g0sgs

−1g−10

où g0 est une transformation de Lorentz propre. Cela signifie que l’au-
tomorphisme g = sg0s

−1 est en un certain sens le seul automorphisme
externe du groupe de Lorentz propre.
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2.1.2 Systèmes de coordonnées orthogonales

Lors du transfert du repère (x0, x1, x2,3 ) aux coordonnées (x′0, x
′
1, x
′
2, x
′
3)

à l’aide de la transformation linéaire g la matrice I de forme quadratique

S2(x) = x21 + x22 + x33 − x20

se transforme, comme nous le savons, en

l′ = gtlg

Voici la matrice l′ de la forme quadratique S2(x) dans le repère (x′0, x
′
1, x
′
2, x
′
3)

coïncide avec la matrice l si et seulement si g est une transformation générale
de Lorentz. Les repères (x′0, x

′
1, x
′
2, x
′
3) dans la forme quadratique S2(x) est

représentée par la matrice l sont appelés systèmes de coordonnées orthogo-
nales dans l’espace à quatre dimensions R4.

Il est clair qu’une transformation linéaire effectuant une transformation
d’un système de coordonnées orthogonales à un autre, est une transformation
générale de Lorentz. Inversement, toute transformation générale de Lorentz
porte un système de coordonnées orthogonales dans un autre (système de
coordonnées orthogonales). Dans ce qui suit, nous n’utiliserons que des sys-
tèmes de coordonnées orthogonales, sans le déclarer explicitement à chaque
fois.

Il est bien connu que toute route de l’espace tridimensionnel porte chaque
sphère centre l’origine en elle-même ; et que tout point sur une telle sphère
peut être porté en tout autre point par une rotation suiuble.

Pour décrire cela, nous disons que les sphères (avec le centre à l’origine)
sont des surfaces transitives par rapport au groupe de rotations.

En général, si un groupe G de transformations agit dans un espace R alors
une surface est connue comme une surface de transitivité pour le groupe G,
à condition que toute transformation de G porte cette surface en elle-même
et que l’un de ses points puisse être porté par une transformation de G à une
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autre.

Dans la mesure où la forme

S2(x) = x21 + x22 + x23 − x20

n’est pas altérée sous une transformation de Lorentz, les surfaces

x20 − x21 − x22 − x23 = cont (2.6)

se transforment en eux-mêmes sous les transformations de Lorentz.

Les surfaces (2.6) sont des types suivants :

1. S2(x) = c < 0, x0 > 0 est la branche supérieure d’un hyperboloïde de
deux feuilles.

2. S2(x) = c < 0, x0 < 0 est la branche inférieure de cet hyperboloïde.

3. S2(x) = 0, x0 > 0 est la branche supérieure du cône de lumière.

4. S2(x) = 0, x0 < 0 est la branche inférieure du cône de lumière.

5. S2(x) = c > 0 est un hyperboloïde d’une feuille.

L’origine des coordonnées x0 = x1 = x2 = x3 = 0

Nous allons maintenant montrer que chacune de ces surfaces est une surface
transitive avec respect pour le bon groupe de Lorentz.
On note tout d’abord qu’il est possible de porter n’importe quel pointA(x0, x1, x2, x3)

par une rotation (c’est-à-dire par une transformation de Lorentz appropriée
qui ne modifie pas la quatrième coordonnée x0). à droite de l’avion (x0, x3), x3 >

0

Maintenant, Soient A1 et A2 être deux points dans l’espace à quatre di-
mensions qui se trouvent sur une seule et même surface (1-5).

Nous faisons tourner chacun de ces éléments de façon à ce qu’ils coïncident
avec les points B1 et B2 ,le demi-plan droit (x0, x3) : B1 = u1A1, B2 =

u2A2 (u1 u2 sont rotations). Sous les rotations, chacune des surfaces (1-5)
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est transportée en lui-même. Il s’ensuit que les points B1 et B2 se trouvent
sur une même courbe et cela signifie que chacun peut être porté par une
transformation appropriée g03 dans l’avion (x0, x3) à l’autre :

B2 = g03B1

Il est clair que la transformation g = u−12 g03u1 porte A1 en A2 . Dans ce
manière, nous voyons que les surfaces (1-5) sont des surfaces de transitivité
pour la groupe Lorentz approprié.

Il est clair que la réflexion spatiale transforme chacune des surfaces (1-5)
en elle-même. Cela signifie que les surfaces de transitivité pour le groupe
de Lorentz complet sont les mêmes que pour le groupe propre. La réflexion
temporelle intervertit les deux branches de l’hyperboloïde de deux feuilles et
branches du cône lumineux. Par conséquent, les surfaces de transitivité pour
le groupe général de Lorentz ne sont que de quatre types :

1. Hyperboloïde de deux feuilles :x20 − x21 − x22 − x23 = c > 0

2. Le cône lumineux :x20 − x21 − x22 − x23 = 0

3. Hyperboloïde d’une feuille :x20 − x21 − x22 − x23 = c < 0

4. L’origine des coordonnées :x20 = x21 = x22 = x23 = 0

Nous faisons maintenant quelques observations importantes pour la suite.
Comme nous l’avons montré, tout point A de la branche supérieure de l’hy-
perboloïde

x20 − x21 − x22 − x23 = 1, x0 > 0 (2.7)

peut être porté par des transformations de Lorentz appropriées à tout
autre point sur ce branche, en particulier à son sommet O(1, 0, 0, 0)

La plus simple de ces transformations est la vis hyperbolique gOA dans
le plan (x0, A), qui passe par le point A et l’axe x0. Mais il n’y a pas de
transformation de Lorentz propre unique qui transfère le point A au point
O.
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Il est clair que deux de ces transformations diffèrent l’une de l’autre par
une transformation u qui laisse le point O en place : uO = O. Toute trans-
formation u qui laisse O(et avec elle aussi l’axe x0) en place est clairement
une rotation.

De cette manière, nous voyons que toute transformation de Lorentz qui
transfère le point A au point 0 à la forme

g = ugOA

où u est une rotation et gOA est une vis hyperbolique dans le plan (x0, A).

On voit donc que pour spécifier une transformation de Lorentz propre, il
faut indiquer un point A sur la branche supérieure de l’hyperboloïde (2.7)
qui est transféré par cette transformation à l’apex O de l’hyperboloïde. puis
à l’aide d’une vis hyperbolique dans le plan (A, x0) pour transférer du point
A vers le point O, et enfin pour effectuer une rotation u. En d’autres termes.
chaque transformation de Lorentz propres est définie par une paire g ∼ (u,A)

où u est une rotation et A est un point sur l’hyperboloïde (2.7).

De cette observation, il résulte immédiatement que

1) Chaque élément du groupe de Lorentz approprié est donné par six pa-
ramètres indépendants (c’est-à-dire que le groupe de Lorentz approprié
est un groupe de six paramètres). En fait, le point A sur l’hyperboloïde
fournit trois paramètres indépendants (par exemple ses coordonnées
x1, x2, x3) et la rotation u de trois autres paramètres (par exemple les
angles eulériens) ;

2) Le groupe de Lorentz approprié est connecté, c’est-à-dire deux de ses
éléments g1 et g2 peuvent être reliés par un chemin continu. En fait
soit g1 ∼ (u1, A1) et g2 ∼ (u2, A2). Si maintenant les rotations : u1 et
u2 sont jointes par un chemin continu, ainsi que A1 et A2 (la branche
supérieure de hyperboloïde est également connecté), alors g1 lui-même
sera rejoint par un chemin continu vers g2.

En ce qui concerne cette dernière observation, nous déterminons main-
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tenant le nombre de composants connectés des groupes Lorentz complets et
généraux.

Le groupe propre est une composante connexe du groupe général de Lo-
rentz. En fait, toute transformation de Lorentz g non incluse dans le groupe
approprié non plus modifie la direction positive de l’axe du temps x0, ou
satisfait detg = −1 et par conséquent, elle ne peut pas être rejoint par un
chemin continu vers une transformation de Lorentz propre. De cette manière,
nous voyons que le groupe propre est connecté mais que toute extension de
celui-ci ne l’est pas, c’est-à-dire que les formes de groupe de Lorentz propres
une composante connectée du groupe général.

Il est clair que toutes les transformations de la forme sg où (s est une
réflexion spatiale et g est une transformation propre). Forment également un
composant connexe. Cela signifie que le groupe Lorentz complet est constitué
de deux composants.

La réflexion temporelle t produit deux autres composants : une compo-
sante constitué des éléments de la forme tg. et une composante constituée
des éléments de la forme tsg = jg (j est une réflexion complète dans R4).
De cette manière, le groupe général se compose de quatre composants connec-
tées :

1) Le groupe approprié, que nous désignons par G0.
2) Le composant sG0 constitué d’éléments de la forme sg (g une trans-

formation appropriée).

Ces deux composantes forment le groupe de Lorentz complet.
3) La composante tG0 (des éléments tg).
4) Le composant tsG0 (dans lequel tous les éléments stg se produisent).
Dans l’étude des représentations du groupe de rotations tridimension-

nelles un rôle important a été joué par le fait que chaque rotation peut
correspondre à une transformation bilinéaire unique du plan complexe :

z → αz + β

γz + δ
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ayant une matrice unitaire a =

(
α γ

β δ

)
avec deta = 1. À chaque rota-

tion g a reçu une matrice unitaire du second ordre de signe indéfini ±a =

±

(
α γ

β δ

)
avec un déterminant égal à l’unité. En revanche, à chaque ma-

trice unitaire a avec déterminant égal à l’unité correspond une rotation com-
plètement définie ga, a→ ga tel que :

1. à l’aide au produit a1a2 de deux matrices correspond au produit ga1ga2
des rotations ga1ga2 = ga1a2

2. la matrice unitaire

(
1 0

0 1

)
définit la rotation unitaire e.

3. deux matrices distinctes a1 et a2 définissent une même rotation g si et
seulement si, ces matrices ne diffèrent que par leur signe, a1 = −a2

Cette correspondance entre le groupe U de matrices unitaires de la se-
conde ordre avec déterminant égal à 1 et le groupe de rotations nous a permis
de considérer toute représentation g → Tg du groupe de rotations comme une
représentation du groupe U, a → Tga = Ta et inversement, considérer la re-
présentation a → Ta du groupe U , en général, comme une représentation à
deux valeurs du groupe de rotations.

Il s’avère qu’il existe une correspondance analogue entre les Transforma-
tions de Lorentz et matrices complexes du second ordre. Nous allons main-
tenant établir cela. Incidemment. nous obtiendrons la correspondance entre
les rotations et les matrices unitaires une fois de plus et de façon plus simple.
On considère l’ensemble des matrices hermitiennes du second ordre

c =

(
x0 − x3 x2 + ix1

x2 − ix1 x0 + x3

)
A chacune de ces matrices c, nous associons un vecteur x de R4 aux coor-
données x0, x1, x2, x3 :

c←→ x

On remarque que

detc = x20 − x21 − x22 − x23 = −S2(x)



2.1.2 Systèmes de coordonnées orthogonales 33

La correspondance entre les matrices c et les vecteurs x est une. bi-unique
et linéaire. Par conséquent. toute transformation linéaire dans l’espace des
matrices c peuvent être considérées comme une transformation linéaire dans
R4.

On spécifie une transformation linéaire dans l’espace des matrices c avec
la formule

c′ = aca∗ (2.8)

où a est une matrice du second ordre avec un déterminant égal à 1
(l’astérisque désigne la transposition conjuguée). Il est clair que pour que
(c′)∗ = ac′a∗ = aca∗ = c′, soit c′ une matrice hermitienne.

On notera par la transformation linéaire correspondante en R4 obtenue à
l’aide de la formule c←→ x

Depuis detc′ = detc(deta = deta∗ = 1), S2(x′) = S2(x) c’est-à-dire que la
transformation ga est une transformation générale de Lorentz.

La correspondance a ∼ ga satisfait clairement ga1ga2 = ga1a2 . c’est-à-dire
le produit des matrices a1a2 correspond le produit ga1ga2 des transformations
de Lorentz spécifiées par celles-ci. Nous trouverons quelles matrices a corres-
pond à la transformation identitaire.
Il est clair qu’une telle matrice doit satisfaire l’équation, Pour toute c

c = aca∗ (2.9)

Si nous prenons c =

(
1 0

0 1

)
= E alors on obtient

aa∗ = E

Ou
a∗ = a−1

Nous pouvons maintenant réécrire l’équation (2.9) sous la forme

c = aca−1
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Il apparaît donc que
ac = ca

c’est-à-dire que la matrice a est permutable avec chaque matrice hermitienne.
Une telle matrice est nécessairement un multiple de la matrice unitaire

a = λ

(
1 0

0 1

)
Depuis deta = 1, λ = ±1

De cette façon. la transformation de Lorentz identitaire correspond aux deux

matrices a = ±

(
1 0

0 1

)
qui ne diffèrent que par le signe.

Nous allons maintenant prouver qu’à deux matrices a1 et a2 leur corres-
pond une et la même transformation de Lorentz si et seulement si a1 = ±a2,
En fait, laissez. ga1 = ga2 , Cela signifie que pour tous les c.

a1ca
∗
1 = a2ca

∗
2

Où
a−12 a1c(a

−1
2 a1)

∗ = c

Il s’ensuit que la matrice correspond à la transformation identitaire.
Par conséquent

a−12 a1 = ±E

Où
a2 = ±a1

Ainsi, à chaque matrice complexe du second ordre avec déterminant égal à
nous avons associé une transformation de Lorentz la correspondance possède
les propriétés suivantes :

1.

(
1 0

0 1

)
∼ e

2. ga1ga2 = ga1a2

3. Deux matrices distinctes a1 et a2 correspondent à une même transfor-
mation ga1 = ga2 si et seulement si, ces matrices ne diffèrent que par le
signe a1 = −a2.
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Des deux premières propriétés, il s’ensuit que l’ensemble des transforma-
tions constitue un sous-groupe du groupe général de Lorentz.

Nous le désignons par Ga. Nous montrons maintenant que ce sous-groupe
coïncide avec le groupe Lorentz approprié.

On note que le groupe de toutes les matrices complexes du second ordre
avec déterminant égal à 1 est connecté.

Dans cette situation, le sous-groupeGa est également connecté. Par consé-
quent, ce sous-groupe est contenu dans cette composante connexe du groupe
général de Lorentz qui contient la transformation d’identification e. cette
composante est le groupe de Lorentz approprié. Ainsi le sous-groupe Ga des
transformations ga est contenu dans le groupe de Lorentz propre. Nous prou-
vons maintenant qu’ils coïncident. À cette effet, on dérive le nombre de pa-
ramètres indépendants par lesquels les éléments du groupe L sont définis (la
dimension du groupe L)

Chaque matrice complexe est spécifiée par huit nombres réels. Puisque
l’exigence que det a = 1 impose deux conditions à ces nombres : Re det a =

1, Im det a = 0. alors six d’entre eux restent indépendants.

Chaque élément du groupe L et, par conséquent, du sous-groupe Ga éga-
lement, est spécifié par six paramètres indépendants. Un élément du groupe
de Lorentz approprié, comme nous l’avons vu, dépend également de six para-
mètres. Il s’ensuit donc que le sous-groupe de transformations Ga et le groupe
propre ont la même dimension, et puisque le premier groupe est contenu dans
le second, ils coïncident.

Nous résumons nos résultats comme suit :
Nous avons construit une correspondance a ∼ ga entre le groupe de Lorentz
propre et le groupe L de matrices complexes a du second ordre (deta = 1) de
telle sorte qu’à chaque matrice a correspond une transformation de Lorentz
propre ga et à chacune de ces transformations g sont liées deux matrices
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différentes uniquement en signe. +a et −a. La correspondance construite est
telle que la matrice unitaire correspond à la transformation identitaire de
Lorentz et le produit des matrices a1a2 correspond le produit de Lorentz
transformations a1a2 ∼ ga1ga2 .
Nous faisons maintenant deux observations importantes :

I) Une réflexion spatiale s n’appartient pas au groupe de Lorentz propre
et par conséquent aucune matrice a ne lui correspond. Cependant,
nous pouvons nous associer à la réflexion s une certaine transforma-
tion (automorphisme) des matrices complexes à 2 rangées. En réalité.
nous avons vu plus haut qu’à l’aide d’une réflexion s il est possible de
construire un automorphisme du groupe de Lorentz propre

sgs−1 = (g∗)−1

Cet automorphisme du groupe propre se répercute naturellement dans
le groupe de matrices complexes a avec déterminant unitaire, à savoir.
si a un Lorentz approprié transformation g±a correspondent des ma-
trices du second ordre ±a, Puis à la transformation propre sg±as−1

correspondent les matrices ±(a∗)−1.
En d’autres termes

sgas
−1 = g(a∗)−1

C’est-à-dire,
(g∗a)

−1 = g(a∗)−1

En réalité. comme nous venons de le voir, une transformation de Lo-
rentz propre peut être considérée comme une transformation dans l’es-
pace des matrices hermitiennes de second ordre donné par la formule

c′ = aca∗ (2.10)

où a est une matrice complexe de second ordre, et deta = 1

Nous trouvons maintenant comment les matrices c se transforment en
réflexion spatiale

x0 → x0, x1 → −x1, x2 → −x2, x3 → −x3
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Il est clair que la réflexion porte la matrice c dans la matrice c′ comme

suit : c =

(
x0 − x3 x2 + ix1

x2 − ix1 x0 + x3

)
→

(
x0 + x3 −x2 − ix1
−x2 + ix1 x0 − x3

)
= c′

Il est facile de vérifier que c′ peut être écrit sous la forme :

c′ = τcτ−1 (2.11)

où , τ =

(
0 −1

1 0

)
et me bar désigne le conjugué complexe. Dans

ce manière. une réflexion spatiale génère la transformation (2.11) dans
l’espace des matrices hermitiennes.

Soit correspond à une transformation propre ga les matrices ±a. On
détermine maintenant les matrices qui correspondent à la transforma-
tion g∗−1 = sgas

−1. À cette fin, nous utilisons la formule (2.11) et
transformons tour à tour la matrice c par s−1, ga et s. on obtient

c′ = τ [a(τ−1cτ)a∗]τ−1

Ou

c′ = τaτ−1cτa∗τ−1

On voit donc que la transformation sgs−1 correspond à la matrice τaτ−1

i.e

sgas
−1 = gτaτ−1

Il est facile de vérifier que si deta = 1, alors

τaτ−1 = (a∗)−1 (2.12)

De cette façon on obtient :

sgas
−1 = g(a∗)−1

C’est

g∗−1a = g(a∗)−1
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II) Les rotations dans l’espace tridimensionnel x0 = 0 se forment. comme
nous savoir, un sous-groupe du groupe Lorentz approprié. Il s’ensuit
donc que ces matrices complexes a. qui dans notre correspondance
ga ∼ a correspondent aux rotations g, forment également un sous-
groupe dans le groupe de tous les complexes. matrices de second ordre
avec déterminant d’unité.
Nous allons maintenant prouver que ce sous-groupe coïncide avec le
groupe de toutes les matrices unitaires du second ordre avec un détermi-
nant égal à 1. En d’autres termes dans notre correspondance construite
ga ∼ a entre des matrices complexes de second ordre avec déterminant
égal à 1, et les transformations de Lorentz propres, les matrices uni-
taires a correspondent aux rotations

∼
ga dans l’espace tridimensionnel

x0 = 0, et inversement à chaque rotation
∼
g correspondent deux ma-

trices unitaires ±a un signe différent seulement, avec déterminant égal
à 1.

En fait, que la matrice complexe a soit unitaire. c’est-à-dire a∗−1 = a.
Alors la transformation (2.10) dans l’espace des matrices hermitiennes
peut s’écrire sous la forme

c = aca−1 (2.13)

Mais sous toutes les transformations possibles de la forme (2.13) la trace
(la somme des les éléments diagonaux) est conservé (reste constant)
c’est-à-dire

(x′0 + x′3) + (x′0 − x′3) = (x0 + x3) + (x0 − x3)

Par conséquent
x′0 = x0

Par conséquent, les transformations de Lorentz correspondantes ne mo-
difient pas la quatrième coordonnée x0 et sont des rotations dans l’es-
pace x0 = 0. Ainsi, nous avons a prouvé que les matrices unitaires
correspondent à des rotations dans l’espace tridimensionnel x0 = 0.
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Nous allons le prouver maintenant. inversement, à toute rotation
∼
g il

y a deux matrices unitaires du second ordre ±a avec déterminant uni-
taire. À cette fin, nous considérons les rotations qui correspondent à
des matrices unitaires.
Il est clair que toutes ces rotations

∼
ga forment un sous-groupe

∼
Ga du

groupe de rotations. La dimension (le nombre de paramètres indépen-
dants) de ce sous-groupe est clairement égale à trois. car elle coïncide
avec la dimension du groupe de matrices unitaires du second ordre avec
déterminant égal à un. La dimension du groupe de rotations dans l’es-
pace tridimensionnel. comme indiqué dans la partie I, est également
égal à trois.

De cette manière, le sous-groupe
∼
Ga a la même dimension que l’en-

semble du groupe de rotations. et par conséquent coïncide avec lui (en
raison du fait que le groupe de rotations est connecté). Ainsi, à chaque
rotation correspondent deux matrices. ne différant que par le signe, qui
sont du second ordre, avec un déterminant égal à 1.

2.1.3 le groupe général Lorentz

Il est bien connu que les lois de la mécanique classique ne dépendent du
choix de tout système de coordonnées fixe particulier, par rapport auquel le
mouvement est considéré comme ayant lieu ; de plus, les lois de la mécanique
classique ne sont pas altérées en passant d’un référentiel à un autre qui a
mouvement de translation uniforme, rectiligne par rapport au premier.

Le premier fait signifie que les lois de la mécanique classique sont inva-
riant par rapport aux transformations orthogonales des coordonnées x′i =∑3

k=1 aikxk, i = 1, 2, 3, à coefficients constants aik ; le deuxième fait peut
être représenté le plus simplement en choisissant les deux systèmes de coor-
données afin que les axes correspondants soient parallèles. Si vx, vy, vz, sont
les projections de la vitesse du deuxième système, x′, y′, z′, sur les axes de
coordonnées Ox,Oy,Oz du premier système, puis

x′ = x+ vxt, y
′ = y + vyt, z

′ = z + vzt (2.14)



40 2.1.3 le groupe général Lorentz

Une transformation de la forme (2.14) est appelée transformation gali-
léenne. Les lois de la mécanique classique doivent donc être invariantes avec
en ce qui concerne les transformations galiléennes.

Un système de coordonnées est dit inertiel si le mouvement de corps en
elle est rectiligne et uniforme en l’absence de externe les forces. La mécanique
classique affirme que les transformations galiléennes donner les formules pour
passer d’un système inertiel de coordonnées à un autre système inertiel de
coordonnées avec des axes correspondants parallèle.
En cela, la mécanique classique part de l’hypothèse que le temps t peut être
considéré comme le même pour les deux systèmes de coordonnées.
La théorie de la relativité rejette cette hypothèse et attribue à chaque système
inertiel x, y, z son propre temps t ; le passage d’un système inertiel x, y, z, dont
le temps est t, à un système inertiel x′, y′, z′, dont le temps est t′est accompli
par une transformation linéaire des variables x, y, z, t, qui laisse invariante la
forme quadratique :

x2 + y2 + z2 − c2t2 (2.15)

où c est la vitesse de la lumière dans le vide.

L’invariance de la forme (2.15) est une expression mathématique de la
fait, établi par l’expérience, que la vitesse de la lumière dans le vide est la
même pour tout système inertiel peu importe.
Une transformation linéaire des variables x, y, z, t qui laisse la forme x2 +

y2 + z2 − c2t2 invariante est appelée une transformation générale de lorentz.
Il sera pratique dans ce qui suit d’utiliser, au lieu de la variable t, une nouvelle
variable

x4 = ct (2.16)

Une transformation générale de Lorentz peut alors être décrite comme une
transformation linéaire.

x′i =
4∑
j=1

gijxj, i = 1, 2, 3, 4 (2.17)

des variables x1, x2, x3, x4, laissant invariant la forme

x21 + x22 + x23 − x24 (2.18)
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On note x et x′ les vecteurs dans un espace à quatre dimensions dont les pro-
jections sont x1, x2, x3, x4 et x′1, x′2, x′3, x′4 respectivement, et par g la matrice
de la transformation (2.17). Les relations (2.17) peuvent alors s’écrire sous
la forme

x′ = gx (2.19)

Trouvons les conditions que doit remplir la matrice g d’une transformation
de Lorentz. De la définition d’une transformation de Lorentz, il s’ensuit que
nous devons avoir

x′21 + x′22 + x′23 − x′24 = x21 + x22 + x23 − x24 (2.20)

En substituant aux x leurs valeurs de (2.17), nous obtenons :

3∑
i=1

(
4∑
j=1

gijxj)
2 − (

4∑
j=1

g4jxj)
2 =

3∑
i=1

x2i − x24 (2.21)

L’égalisation des coefficients des produits xjxk donne

3∑
i=1

gijgik − g4jg4k =


0 si j 6= k

1 si j = k 6 3

−1 si j = k = 4

(2.22)

Les conditions (2.22) peuvent également être écrites sous forme matricielle.
À cet effet, avec chaque matrice

g =


g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g41 g42 g43 g44

 (2.23)

On associe la matrice

g+ =


g11 g21 g31 −g41
g12 g22 g32 −g42
g13 g23 g33 −g43
g14 g24 g34 −g44

 (2.24)
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De plus, nous désignons par t la matrice

t =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 (2.25)

On voit alors facilement que les relations (2.22) sont équivalentes à l’équation
matricielle

g+g = t (2.26)

Donc :

1. La condition (2.22) ou la condition équivalente (2.26) est nécessaire
et suffisante pour que la transformation g soit une transformation de
Lorentz générale. Trouvons det g. A cet effet, nous notons que det g+ =

−det g, det t = −1 ; il résulte donc de (2.26) que

−det g det g = −1, c′est− − direque (det g)2 = 1

par conséquent,
det g = ±1 (2.27)

2. Le déterminant de chaque transformation de Lorentz générale est égal
à ±1. Il en résulte que

3. Chaque transformation générale de Lorentz a une transformation in-
verse. Bien sûr, cette transformation inverse est également une trans-
formation générale de Lorentz, car elle laisse également invariante la
forme

x21 + x22 + x23 − x24

On voit facilement que t2 = I, où I représente la matrice unitaire ;
donc, en multipliant les deux côtés de (2.26) à gauche par t, on obtient

tg+g = I

Cette relation signifie que

g−1 = tg+ (2.28)
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par conséquent,
gtg+ = I

En écrivant le dernier en termes d’éléments de matrice, nous obtenons :

3∑
j=1

gijgkj − gi4gk4 =


0 si i 6= k

1 si i = k 6 3

−1 si i = k = 4

(2.29)

Comme dans le cas des rotations, le produit g1g2 des transformations g1
et g2 est défini comme la transformation obtenue par l’application suc-
cessive de g2 et g1. Évidemment, la multiplication des transformations
correspond à la multiplication des matrices.

4. Le produit de deux transformations générales de Lorentz est également
une transformation générale de Lorentz. En effet, l’application succes-
sive de deux transformations qui ne changent pas la forme (2.18), laisse
également la forme invariante.

On note L l’agrégat de toutes les transformations générales de Lorentz. Les
propositions 3 et 4 montrent que cet agrégat est un groupe. De plus, l’élément
unitaire e du groupe L est la transformation unitaire.

x′1 = x1, x′2 = x2, x′3 = x3, x′4 = x4 (2.30)

Le groupe L est appelé le groupe Lorentz général.
De la relation (2.22) pour j = k = 4

g214 + g224 + g234 − g244 = −1 (2.31)

Il s’ensuit que
g244 = 1 + g214 + g224 + g234 > 1

Par conséquent,
g44 > 1 ou g44 6 −1 (2.32)

Une transformation de Lorentz générale satisfaisant la condition

g44 > 1

est appelé une transformation de Lorentz.
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Chapitre 3

Représentations des groupes de
Lorentz

3.1 Les algèbre de Lie su(2) et so(3)

3.1.1 Base de su(2)

L’algèbre de Lie su(2)={X ∈ gl(2,C)|tX+X = 0, T r X = 0 } est l’espace
vectoriel réel de dimension 3 des matrices complexes antihermitiennes 2× 2,
de trace nulle.
Les trois matrices linéairement indépendantes,

ε1 =
1

2

(
0 i

i 0

)
, ε2 =

1

2

(
0 −1

1 0

)
, ε3 =

1

2

(
i 0

0 −i

)
forment une base sur R de su(2), et satisfont les relations de commutation,

[εk, εl] = εm

où k, l,m est une permutation circulaire de 1,2,3.
On introduit encore les matrices

Jk = iεk

qui satisfont les relations de commutation

[Jk, Jl] = iJm

On considère aussi les matrices

45
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J3 = 1
2

(
−1 0

0 1

)
, J+ = J1 + iJ2 =

(
0 0

−1 0

)
, J− = J1 − iJ2 =(

0 −1

0 0

)
soit encore

ε3 = −iJ3, ε1 =
1

2
(J+ + J−), ε2 = −1

2
(J+ − J−)

Les matrices J3, J+, J− satisfont les relations de commutation,

[J+, J−] = 2J3, [J3, J±] = ±J±

Enfin, on introduit aussi la base

I =

(
0 i

i 0

)
, J =

(
0 −1

1 0

)
, K =

(
i 0

0 −i

)
de su(2), on vérifie immédiatement que

I3 = J 2 = K2 = −I

IJ = K = −JI, JK = I = −KJ , KI = J = −IK
et les relations de commutation de su(2) s’écrivent donc

[I,J ] = 2K, [J ,K] = 2I, [K, I] = 2J

3.1.2 Base de so(3)

L’algèbre de Lie so(3) est l’espace vectoriel des matrices réelles antisymé-
triques. On a déjà vu que les matrices

η1 =

 0 0 0

0 0 −1

0 1 0

, η2 =

 0 0 1

0 0 0

−1 0 0

, η3 =

 0 −1 0

1 0 0

0 0 0


forment une base de cette algèbre de Lie, avec les relations de commutation,

[ηk, ηl] = ηm

Il est clair que ηk 7→ ek, où (e1, e2, e3) est la base canonique de R3, définit un
isomorphisme de l’algèbre de Lie so(3) sur l’algèbre de Lie (R3,

∧
).

D’autre part,
su(2) ≈ so(3)
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3.1.3 Le morphisme de revêtement de SU(2) sur SO(3)

Nous allons voir que, bien que les algèbres de Lie des groupes de Lie
SO(3) et SU(2) soient isomorphes, les groupes eux-mêmes ne le sont pas.
L’un, SU(2), est connexe et simplement connexe, alors que l’autre, SO(3),
est connexe mais non simplement connexe, et il existe un morphisme de
groupes surjectif du premier sur le second, dont le noyau est constitué des
éléments I et −I ´

3.2 Le groupe de Lie SO(3)

Toute transformation orthogonale de R3 de déterminant +1 laisse fixe un
vecteur unitaire a de R3. C’est alors une rotation d’un angle t ∈ R/2πZ ,
notée Rot(a, t). Donc un élément de SO(3) est déterminé par a ∈ R3,‖a‖ = 1,
et t ∈ [0, 2π[. L’image d’un élément x ∈ R3 par Rot(a, t) est

Rot(a, t)(x) = x+ (1− cos t)a ∧ (a ∧ x) + sin ta ∧ x (3.1)

Pour le montrer, on observe d’abord que si x est orthogonale à a, et l’on
utilise la linéarité de Rot(a, t). D’où

Rot(a, t)(x) = cos tx+ (1− cos t)〈x, a〉a+ sin ta ∧ x

Enfin on utilise la formule du double produit vectoriel, u∧(v∧w) = 〈u,w〉v−
〈u, v〉w, qui donne 〈x, a〉a = x + a ∧ (a ∧ x), Il est claire que Rot(a, t) =

Rot(−a,−t).
Deux rotations Rot(a, t) et Rot(a′, t′) sont conjuguées dans SO(3) si et seule-
ment si t′ = ±t. En effet, si une rotation R laisse a invariant, alors pour tout
g ∈ SO(3), la rotation gRg−1 laisse ga invariant. Plus précisément, les for-
mules précédentes montrent que

∀g ∈ SO(3), gRot(a, t)g−1 = Rot(ga, t) (3.2)

(Il suffit d’évaluer les deux membres sur les éléments x ∈ R3). Donc si R′ =

Rot(a′, t′) est une rotation conjuguée à Rot(a, t) par un élément g ∈ SO(3),
alors Rot(a′, t′) = Rot(ga, t), et par conséquent R et R′ ont des angles égaux
ou opposés et, inversement, que a′ = ga, et toute rotation Rot(a′, t) est
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conjuguée à Rot(a, t) par un élément g ∈ SO(3) tel que a′ = ga, et toute
rotation Rot(a′,−t) est conjuguée à rot(a, t) par un élément g ∈ SO(3) tel
que −a′ = ga.
Surjectivité de l’application exponentielle de so(3) sur SO(3). Soient ηk les
générateurs infinitésimaux des groupes à un paramètre de rotation autour
des axes ek, k = 1, 2, 3.
Par définition

exp(tηk) = Rot(ek, t)

Soit a un vecteur unitaire quelconque de R3. Fixons k = 1, 2ou3 et soit g un
élément de SO(3) tel que a = g(ek). Alors

Rot(a, t) = gRot(ek, t)g
−1 = g exp(tηk)g

−1 = exp(tgηkg
−1)

.

3.3 Le groupe de Lie SU(2)

Le groupe de Lie SU(2) = {A ∈ GL(2,C)|AtA = I, detA = 1} est
difféomorphe à la sphère S3 ⊂ R4 car

SU(2) =

{(
a b

−b a

)
| a, b ∈ C, |a|2 + |b|2 = 1

}

En effet, pour une matrice A =

(
a b

c d

)
, des relations AtA = I et detA =

1, on déduit |a|2 + |b|2 = 1, |c|2 + |d|2 = 1, ad − bc = 1, ac + bd = 0, d’où
adc + bdd = 0, d’où c = −b et, de même, d = a. Les éléments du groupe de
Lie SU(2) dépendent donc de trois paramètres réels indépendants.

3.3.1 Projection de SU(2) sur SO(3)

On considère la représentation adjointe de SU(2) dans su(2),

Ad : SU(2) −→ Gl(su(2))

l’application Ad identifié a une application

ϕ : SU(2) −→ GL(3,R)
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Pour tout g ∈ SU(2), Adg : su(2) −→ su(2) est l’application X 7−→ gXg−1

qui conserve les déterminants. Puisque, dans l’identification de su(2) avec R3,
au déterminant d’une matrice correspond le carré de la norme euclidienne du
vecteur,∀g ∈ SU(2), ϕ(g) conserve les normes, donc ϕ(SU(2)) ⊂ O(3). En
fait, comme ϕ est continue et SU(2) connexe, ϕ(SU(2)) ⊂ SO(3) . On sait
que l’application ϕ : SU(2) −→ SO(3) est un morphisme de groupes. Nous
allons montrer que le morphisme ϕ est surjectif de SU(2) sur SO(3).

Proposition 3.3.1. Le groupe SU(2) est le revêtement universel, à deux
feuillets, du groupe SO(3).

3.4 les représentations de SU(2) et SO(3)

3.4.1 Représentations irréductibles de sl(2,C)

Les représentations de Dj

On considère sl(2,C) muni de la base H,X+, X− dans laquelle les rota-
tions de commutation s’écrivent

[H,X±] = ±2X± , [X+, X−] = H (3.3)

Soit (E,R) une représentions irréductible de dimension finie de sl(2,C).
L’opérateur R(H) admet au moins une valeur propre λ et un vecteur propre
v pour cette valeur propre satisfaisant v 6= 0 et

R(H)v = λv

D’après les rotations de (3.3)

R(H)R(X+)v = (R(X+)R(H) + 2R(X+))v = (λ+ 2)R(X+)v (3.4)

et

R(H)R(X−)v = (R(X−)R(H) + 2R(X−))v = (λ− 2)R(X−)v (3.5)
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3.4.2 Représentations de SU(2)

Les représentations de Dj

Nous allons étudier des représentations Dj de SU(2), montrer qu’elles ont
pour différentielles DDj les représentations Dj de su(2) étudiées ci-dessus,
et montrer que ce sont les seules représentations irréductibles de SU(2).
Le groupe sl(2,C) agit sur C2 par la représentation canonique, telle que(

a b

c d

)(
z1

z2

)
=

(
az1 + bz2

cz1 + dz2

)
Définition 3.4.1. De manière générale,si un groupe G agit sur un ensemble
M , alors G agit linéairement sur l’espace des fonctions sur M à valeurs dans
C, F(M) par (g, f) ∈ G×F(M) 7→ g.f ∈ F(M), où

∀ x M, (g.f)(x) = f(g−1x)

D’après la définition, il est naturel de faire agir SL(2,C) sur l’espace des
fonctions C2 à valeurs complexes par

ρ(g)f = f ◦ g−1

Pour toute fonction f sue C2. On définit une représentation de SL(2,C).(ici
représentation signifie seulement que ρ(gg′) = ρ(g) ◦ ρ(g′) si g et g′ ∈
SL(2,C)).

Si g =

(
a b

c d

)
pour déterminant 1, alors g−1 =

(
d −b
−c a

)
, donc expli-

citement
(ρ(g)f)(z1, z2) = f(dz1 − bz2,−cz1 + az2) (3.6)

On va étudier la représentation ρ en restriction à SU(2), mais elle n’est
certainement pas irréductible, et l’on va mettre en évidence des sous-espaces
vectoriels sur lesquels SU(2) agit de manière irréductible.

∀g ∈ SU(2), g−1 =t g, donc ρ(g)f = f ◦t g et si g =

(
a b

−b a

)

(ρ(g)f)(z1, z2) = f(az1 − bz2, bz1 + az2) (3.7)
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Soit V j l’espace vectoriel des polynômes homogènes à coefficients complexes
en deux variables, (z1, z2), de degré 2j, où j ∈ 1

2
N. Cet espace vectoriel

complexe est de dimension 2j + 1. Une base en est

z2j2 , z1z
2j−1
2 , ..., zj+m1 zj+m2 , ..., z2j1 , −j 6 m 6 j

Par exemple

si j =
1

2
, z2, z1

si j = 1, z22 , z1z2, z
2
1

si j =
3

2
, z32 , z1z

2
2 , z

2
1z2, z

3
1

3.5 Représentations de SO(3)

Rappelons l’existence du morphisme ϕ de SU(2) sur SO(3), de noyau
{I,−I},étudié au. Si (E, ρ) est une représentation de SU(2), alors ρ se fac-
torise par la projection ϕ si et seulement si

ρ(−I) = ρ(I) = IdE (3.8)

Si ρ se factorise en σ ◦ ϕ, où σ : SO(3) → GL(E), alors σ est une représen-
tation de SO(3), et ρ est irréductible si et seulement si σ est irréductible. La
représentation Dj de SU(2) satisfait la condition (3.8) si et seulement si j est
entier. En effet−I = gπ etDj(gπ)f jm = e−2imπf jm ; le facteur scalaire est 1 si et
seulement sim est entier, donc si et seulement si j est entier. On voit donc que
les représentations obtenues par factorisation de D0, D1, D2, ..., Dj..., sont les
représentations irréductibles de SO(3).

3.6 Définition des représentations du groupe
de Lorentz et concepts fondamentaux de la
théorie des représentations

Définition 3.4.1
Soit R un espace normé. et supposons qu’à chaque élément du groupe G
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3.6 Définition des représentations du groupe de Lorentz et
concepts fondamentaux de la théorie des représentations

on affecte un opérateur linéaire borné Tg dans R de telle manière que les
conditions suivantes soient remplies ;

1) Te = E (e est l’identité du groupe G, est l’opérateur de l’unité dans R)

2) Tg1g2 = Tg1 .Tg2

3) continuité : si F (f) est une fonctionnelle linéaire bornée sur R, alors
pour tout f fixe, F (Tgf) dépend continuellement de g.

Puis la correspondance g → Tg s’appelle une représentation linéaire du
groupe G dans l’espace R. La représentation est dite finie si l’espace R est
fini (dimensionnel).
Représentations unitaires :.La représentation g → Tg est dite unitaire si
l’espace R est un espace de Hilbert et le produit scalaire (ξ, η) dans R est
invariant par rapport à l’opérateur Tg, ie si

(Tgξ, Tgη) = (ξ, η)

Représentations équivalentes.Les représentations finies g → T
(1)
g et g → T

(2)
g

réagissant respectivement dans les espaces R(1) et R(2) sont dites équivalentes
s’il existe un opérateur B qui transpose R(1) sur R(2) de manière biunique
one-one, telle que pour tout élément g du groupe

BT (1)
g = T (2)

g B (3.9)

Plus graphiquement, cela signifie que les représentations sont équivalentes,
s’il est possible d’établir une correspondance linéaire h(1) → h(2) entre les
éléments h(1) de l’espace R(1) et les éléments h(2) de l’espace (2) tels que
h(1) ↔ h(2) alors T (1)

g h(1) = T
(2)
g h2. La définition générale de l’équivalence des

représentations, applicable à la fois au cas fini et au cas infini, diffère peu de
celle présentée ci-dessus. Les représentations g → T

(1)
g et g → T

(2)
g agissant

dans les espaces R(1) et R(2) sont dites équivalentes, si R(1) et R(2) contiennent
partout des variétés linéaires denses R(1) et R(2) qui sont invariants sous les
opérateurs T (1)

g et T (2)
g respectivement, et il y a un opérateur fermé B qui

mappe R(1) en R(2) bi-unique et satisfait l’équation :

T (1)
g B = BT (2)

g (3.10)
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Cette définition de l’équivalence revient à la condition qu’il soit possible de
choisir des bases dans les espaces R(1) et R(2) où les représentations équiva-
lentes g → T

(1)
g et g → T

(2)
g fait que les opérateurs T (1)

g et T (2)
g sont écrits en

termes d’entre eux par une seule et même matrice.
Il est clair que les représentations mutuellement équivalentes ne sont pas sub-
stantiellement différentes. Dans la théorie des représentations, on considère
généralement les représentations à l’intérieur de l’équivalence.

Représentations équivalentes aux représentations unitaires. De
telles représentations possèdent clairement la propriété suivante.
La représentation g → Tg dans l’espace normé R équivaut à une représen-
tation unitaire s’il existe dans l’espace R une forme bilinéaire hermitienne
définie positive qui est invariante sous les opérateurs Tg (cette forme peut
être définie soit sur tout l’espace R soit sur une sous-variété linéaire partout
dense , également invariante sous les opérateurs Tg.)

3.7 La relation entre les représentations du propre
groupe de Lorentz et les représentations du
groupe de matrices complexes

Ci-dessus, nous avons étudié en détail la correspondance ga → ±a un
entre les transformations propres de Lorentz et le groupe L de matrices com-
plexes du second ordre (det a = 1). Cette correspondance ga → ±a permet
évidemment de considérer toute représentation g → Tg du groupe propre
comme une représentation du groupe L, a → Ta ≡ Tga , l’équation Ta = T−a

est satisfaite. A l’inverse, il est clair que toute représentation du groupe L,
a → Ta telle que Ta = T−a. peut être considérée comme une représenta-
tion du groupe de Lorentz propre : ga → Tga ≡ Ta. Si une représentation
du groupe L (ne possède pas la propriété que Ta = T−a alors il n’est pas
possible, à proprement parler, de la considérer comme une représentation du
groupe de Lorentz, puisque dans ce cas chaque élément g = ga est mis en
correspondance avec deux opérateurs distincts Ta et T−a. Nous allons cepen-
dant considérons ces représentations du groupe L à égalité avec celles qui
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satisfont la condition Ta = T−a. Dans un souci de cohérence terminologique,
nous désignerons les représentations du groupe L, pour lesquelles Ta 6= T−a

comme représentations à deux valeurs du groupe de Lorentz, et celles pour
lesquelles Ta = T−a comme représentations uniques de ce groupe.

On peut prouver qu’il est impossible de rendre unique une représenta-
tion à deux valeurs du groupe propre en choisissant un opérateur de chaque
paire, Ta et T−a, de telle sorte que la correspondance g → Tg ainsi obtenue
soit continue.

Nous montrons maintenant que si une représentation à deux valeurs du
groupe de Lorentz est irréductible alors à chaque élément du groupe corres-
pondent précisément deux opérateurs qui ne diffèrent que par le signe ; la
situation est donc similaire au cas plus simple de la représentation bidimen-

sionnelle ga → ±a. En fait, T−a = T−eTa où −e =

(
−1 0

0 −1

)
, Puisque

la matrice −e commute avec toutes les matrices a, l’opérateur T−e commute
aussi avec tous les opérateurs Ta. En vertu de l’irréductibilité de la représen-
tation, il s’ensuit que T−e = λE est E l’opérateur unitaire.
Puisque, d’autre part (T−e)

2 = T(−e)2 = Te = E.λ2 = 1, il s’ensuit que
λ = +1 ou λ = −1. Dans le premier cas T−e = +E, Ta = T−a et nous avons
une représentation unique ; dans le second cas T−e = −E et T−a = −Ta, c’est-
à-dire que la représentation est à deux valeurs et les opérateurs T−a = Ta. Et
Ta diffèrent en signe seulement.

3.7.1 Représentations à deux valeurs du Groupe géné-
rale Lorentz

Le groupe général de Lorentz est obtenu à partir du groupe de Lorentz
propre G0 par l’addition de trois réflexions s, t, j (s est le spatial, t le tem-
porel et j la réflexion complète) et tous les éléments possibles de la forme
sg′, tg′, jg′,où g′ est un élément du groupe propre.
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On note que les transformations e, s, t, j (e est la transformation d’iden-
tité) forment un groupe commutatif avec la table de multiplication suivante :

e s t j
e e s t j
s s e j t
t t j e s
j j t s e

Nous appellerons ce groupe le groupe des réflexions.

Supposons maintenant qu’une représentation g → Tg du groupe général
soit spécifiée. Cette représentation génère une représentation g′ → Tg du
groupe propre, et une représentation τ → Tτ (τ = e, s, t, j) du groupe de
réflexions.
On considère tout d’abord le cas où la représentation g′ → Tg′ du groupe
propre (généré par la représentation du groupe général) vaut deux valeurs
g′ → ±Tg′ . Naturellement la représentation du groupe de réflexions est éga-
lement à deux valeurs :

e→ ±E, s→ ±S, t→ ±T, j → ±J

Les opérateurs S, T, J se combinent clairement de la manière suivante :

ST = ±J, SJ = ±T, TJ = ±J

S2 = ±E, T 2 = ±E, J2 = ±E

De ces équations, il résulte facilement que les opérateurs T, S, J font la na-
vette entre eux :

TS = ST, JS = SJ, TJ = JT

ou ils anticommute :

TS = −ST, JS = −SJ, TJ = −JT

En conséquence, nous considérons deux cas.
Premier cas. Les opérateurs S, T, J commute. Dans ce cas, nous pouvons
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choisir le signez pour ces opérateurs afin qu’ils se multiplient selon le tableau
précédente.

TS = ST = J, JS = S, J = T, JT = T, J = S

S2 = T 2 = J2 = E

Il est clair que dans ce cas les opérateurs E, S, T, J spécifient une représen-
tation unique du groupe de réflexions e → E, s → S, t → T , j → J , Une
représentation du général groupe qui conduit à cette représentation unique
du groupe de réflexions sera appelé une représentation unique du groupe
général (la nature à deux valeurs de cette représentation n’est liée qu’à la
nature à deux valeurs de la représentation du groupe propre).

Deuxième cas. Les opérateurs, S, T, J anticommute
On vérifie facilement que par un choix de signe pour les opérateurs il est
possible de s’assurer qu’ils combinent selon le tableau :

E S T J
E E S T J
S S E J T
T T -J E -S
J J -T S -E

opérateurs±E,±S,±T,±J qui forment une représentation unique du groupe
de réflexions ; en d’autres termes la représentation e→ ±E,s→ ±S,t→ ±T ,
j → ±J , de ce groupe est essentiellement à deux valeurs.
Une représentation du groupe général, conduisant à une telle représentation
à deux valeurs du groupe de réflexions est dite être une représentation à deux
valeurs du groupe général (sa nature à deux valeurs est liée non seulement
à la nature à deux valeurs de la représentation du groupe propre, mais aussi
avec la nature à deux valeurs de la représentation du groupe de réflexions).
Nous notons qu’une représentation du groupe général peut être à deux valeurs
même si la représentation du groupe propre généré par celui-ci est unique ; il
suffit que la représentation du groupe de réflexions soit à deux valeurs. Nous
décrirons ci-dessous la construction nécessaire.
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En conclusion, nous notons que, tout comme une représentation à deux
valeurs du groupe propre peut être considérée comme une représentation
fidèle et unique du groupe de matrices complexes du second ordre avec un
déterminant égal à 1, une représentation à deux valeurs du groupe de les
réflexions peuvent être considérées comme une représentation fidèle et unique
d’un groupe composé de huit éléments, e, e′, s, s′, t, t′, j, j′ avec la table de
multiplication suivante :

e′2 = s2 = s′2 = t2 = t′ = e, j2 = j′2 = e′

se′ = e′s = s′, te′ = e′t = t′, je′ = e′j = j′

st = t′s = j, sj = js′ = t, ts = s′t = j′

Les relations restantes sont déterminées par celles déjà écrites (voir le tableau
précédente). Les représentations uniques du groupe de réflexions ne sont pas
des représentations fidèles de ce groupe de huit éléments mais sont telles que
Te′ = Te, Ts′ = Ts etc. Cette connexion entre les représentations du groupe
de réflexions et le groupe de huit éléments que nous ont construit est tout
à fait analogue à ce qui existe entre les représentations du groupe propre de
Lorentz et le groupe des matrices complexes unimodulaires du second ordre.

3.8 Groupe de Lorentz L

R4 étant muni de la forme de Minskovski, de matrice Q =

(
c2 0

0 −I

)
dans sa base canonique, le groupe de Lorentz L est celui des matrices L des
endomorphisme de R4 laissant invariant la forme de Minkowski c’est à dire
vérifiant

tLQL = L (3.11)

On en déduit que si l’on écrit L sous la forme

L =

(
γ tU/c

cV A

)
(3.12)
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Son inverse est L−1 = Q−1tLQ soit L−1 =

(
γ −tV/c
−cU tA

)
, et ses coeffi-

cients vérifiant les relations si −γ 6= −1

γ2 = 1 +t UU = 1 +t V V,A = S +
V tU

1 + γ
(3.13)

S étant une matrice orthogonale telle que V = SU

Dans ce cas : det(L) = det(S).
Lors que γ est positif et S une rotation, L ∈ L+ (groupe spéciale de lorentz).
Sinon, dans l’interprétation physique, il y a renversement du temps ou re-
tournement de l’espace,

Si γ = −1, L est de forme L =

(
−1 0

0 S

)
où S est orthogonale.

Les matrices particulières de L+

L(R) =

(
1 0

0 R

)
, L(U) =

(
γ tU/c

cU I +
tUU
1+γ

)
Où R est une matrice de rotation et où γ positif et U sont liés par 3.13 sont
appelées matrice de rotation pure et matrice de Lorentz pure de vecteur U
(boost pour les anglo-saxons).

L = L(R)L(U) = L(V )L(R) (3.14)

L’algèbre de Lie de L

S’obtient de manière traditionnelle : soit L : I −→ L de classe C1 sur
l’intervalle réel I, et pour X fixé soit Xs = LsX. En dérivant il vient

.

Xs=
.

Ls X soit
.

Xs= ΣsXs avec Σs = LsL
−1
s

d’où puisque tLsQLs = Q :

ΣQ+QΣ = 0, et la forme de Σ : Σ =

(
0 tX/c

cX Ω

)
(3.15)

Réciproquement soit s −→ Σs continue sur I à valeurs une matrice réelle
d’ordre 4 telle que (∀s, tΣsQ + QΣs = 0). La solution de

.

Ls= ΣsLs pour
la condition initiale Ls0 ∈ L vérifie

d

dt
(tLsQLs) =t Ls(

tΣsQ+QΣs)Ls = 0
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elle a donc ses valeurs dans L étant de même nature que Ls0 , par exemple
appartenant comme elle à L+, ou présentant continûment un renversement
du temps ou un retournement de l’espace ou les deux par simple raison de
connexité, I étant un intervalle.

3.9 Algèbre de Pauli P
L’algèbre de Pauli P est tout simplement l’algèbre M2(C) des matrices

d’ordre deux sur C , considérée comme algèbre réelle de dimension huit, de
base engendrée par les matrices de Pauli

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
avecaussiσ0 =

(
1 0

0 1

)

Soit la base (σ0, σ1, σ2, σ3, σ2σ3, σ3σ1, σ1σ2, σ1σ2σ3) notée (σ0, σ1, σ2, σ3, iσ1, iσ2, σ3, iσ0)

en accord avec les notations dansM2C.
Rappelons les relations σiσj = σjσi = 2δijσ0

Un élément ξ de P s’écrit à priori

ξ = aσ0 + ibσ0 + u+ iv ou (a+ ib)σ0 + (u+ iv) (3.16)

où u =
∑3

k=1 u
kσk et v =∼3

k=1 v
kσk.

On décompose P en somme directe des scalaires, pseudoscalaires, vecteurs
et pseudovecteurs :

P = Sc(P)⊕ PsSc(P)⊕ V ec(P)⊕ PsV ec(P).

Le déterminant de ξ = aσ0 + ibσ0 + u+ iv s’obtient en multipliant ξ par
sa coadjointe ξc.

ξc = aσ0+ibσ0−u−iv ⇒ det(ξ)σ0 = ξξc = (a2−b2−−→u 2+−→v 2+2i(ab−−→u .−→v ))σ0

(3.17)
Remarquons

detξ = (a+ ib)2 + det(u+ iv), det(u+ iv)σ0 = −(u+ iv)2

.
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Conventions géométriques

1. Il est commode d’identifier un vecteur de V ecP avec celui de R3 eu-
clidien orienté de mêmes composantes dans la base canonique : x =

Σ3
k=1x

kσk ←→ −→x = Σ3
k=1x

k−→e k.
Ainsi écrit-on :

uv = (−→u .−→v ) + i−→u ∧ −→v

relation utile pour faciliter les calculs dans P

2. De manière analogue, identifions un élément de Sc(P) ⊕ V ec(P) avec
le vecteur de R4 muni de la forme de Minkovski Q, la base canonique
−→e 0,
−→e 1,
−→e 2,
−→e 3, vérifiant

Q(−→e 0) = c2 , k = 1, 2, 3 : Q(−→e k) = −1

, de sorte que

ctσ0 +
3∑

k=1

xkσk ←→ t−→e 0 +−→x = t−→e 0 +
3∑

k=1

xk−→e k (3.18)

D’après (3.17)
Q(t−→e 0 +−→x ) = det(ctσ0 + x)

Dans la suite nous noterons τ = ct+x , en omettant plus généralement
d’écrire σ0 unité de l’algèbre P (ce qui revient à écrire 1 à la place de
σ0) .
Notons que ξ ∈ Sc(P)⊕ V ec(P) si et seulement si ξ = ξ† hermitienne
de ξ :

(a+ ib+ u+ iv)† = a− ib+ u− iv

.

3.10 Représentation dans P du groupe de Lo-
rentz

L’application

τ = ct+ x 7→ τ ′ = ct′ + x′ = ξ(ct+ x)† = ξτξ† (3.19)
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est un endomorphisme de Sc(P)⊕ V ec(P) qui conserve Q ssi |det(ξ)|2 = 1.
Quitte à diviser ξ par l’une des racines carrées de son déterminant, on peut
supposer que ξ vérifier

det(ξ) = 1

ce dont nous conviendrons dans la suite et dirons que ξ est unitaire (unimo-
dulaire serait plus exact, mais unitaire a une connotation vectorielle).

Les représentations de L dans P

Car en supposant ξ sous la forme , son déterminant valant 1 on a d’après
(3.17)

a2 − b2 − u2 + v2 = 1 , ab−−→u−→v = 0

d’où la démarche

1. Si −→v = 0, nécessairement b = 0 et a2 − u2 = 1.
Il existe ϕ réel et

−→
l unitaire tels que

ξ = cosh
ϕ

2
+ sinh

ϕ

2
l

et en développant (3.19) on vérifie que ξ représente une transformation
de Lorentz pure de vecteur sinhϕ

−→
l . Il est commode d’écrire ξ selon

β sinh ϕ
2
l ; notons que β† = β.

2. Si −→v = 0, un calcul direct montre que

(a− iv)ξ = (a2 + v2) + (au+ bv +−→u ∧ −→v )

. Puisque (a− iv)−1 = (a+ iv)/(a2 + v2) :
a+ ib+ u+ iv = a+iv√

a2+v2
.
a2 + v2 + au+ bv +−→v ∧ −→u√

a2 + v2

ou encore
a2 + v2 + au+ bv +−→v ∧ −→u√

a2 + v2
. a+iv√

a2+v2

(3.20)

la seconde expression étant obtenue en considérant ξ.(a− iv) .
Il existe
theta réel et −→n unitaire tels que

rho = cos
θ

2
−i sin

θ

2
n avec cos

θ

2
=

a√
a2 + v2

, sin
θ

2
−→n = −

−→v√
a2 + v2

(3.21)
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et en développant (3.19) (pour ρ) on voit que ρ représente une rotation
pure d’angle θ autour de l’axe dirigé par −→n . Lorsque cette rotation est
un demi-tour (ssi a = 0) on choisit ρ = in, sinon on note ρ sous la
forme ρ(tan θ

2
n).

3. En conclusion selon (3.14), pour ξ unitaire, (3.19) correspond à un
élément L+ la réciproque est évidente, et les relations (3.20) sont les
transcriptions des relations (3.14) ( (décompositions polaires). Il est
intéressant de noter, si a 6= 0, que la rotation R figurent dans (3.14)
n’est pas un demi-tour et que −v/a (dans la représentation par ξ) est
le vecteur d’O.Rodrigues de R.

4. En considérant, ξ étant toujours unitaire

τ 7→ ξ(−τ c)ξ† , τ 7→ ξτ cτ † et τ 7→ −ξτξ†

on obtient alors les représentations dans P des transformations de Lo-
rentz changeant l’orientation du temps ou de l’espace ou des deux.

Remarques

1. La représentation précédente de L+ dans P donne immédiatement la
structure de groupe de L+. Avec les notations de (3.12) et (3.16) ,
le coefficient γ de la matrice L est le terme scalaire de ξξ† : γ =

a2 + b2 + u2 + v2 = 1 + 2(a2 + v2) > 1 car ξ est unitaire, et si γ =

coshϕ : a2 + v2 = cosh2 ϕ
2

2. Notons que x 7→ ρxρ† représente une rotation dans R3. D’ailleurs ρ† =

ρ−1.

3. Il est facile de passer de L ∈ L+ à ξ ∈ P unitaire la représentant, et
réciproquement ; il y a ambiguïté entre le choix de ξ ou celui de −ξ. A
partir de L, sa première ligne (avec γ = coshϕ) donne β(sinh ϕ

2
l), et la

matrice R donne ρ = in ou ρ(tan θ
2
n

4. Si ξ unitaire correspond à L(R)L(U) = L(V )L(R) selon (3.16).
alors ξc correspond à L(−U)L(R−1) et ξ† à L(R−1)L(V ) =t ((L(V )L(R)).

5. La connaissance de u+ iv entraîne celle de ±(a+ ib) (de carré 1 + (u+

iv)2) c’est à dire de ξ et de −ξc qui correspondent à L et L−1.
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Digression : les Quaternions Remarquons que la sous-algèbre de P engen-
drée par (σ0,−iσ1,−iσ2,−iσ3) de table de multiplication (en posant σ0 = 1

et −iσj = τj pour j = 1, 2, 3).

τ1 τ2 τ3

τ1 −1 τ3 −τ2
τ2 −τ3 −1 τ1

τ3 τ2 −τ1 −1

n’est autre que le corps des quaternions H
H étant la somme directe Sc(H) = V ec(H), on identifie les scalaires de H
aux réels et ses vecteurs aux vecteurs de R3 selon u =

∑3
k=1 u

kτk ←→ −→u =∑3
k=1 u

k−→e k. Remarquons que selon l’identification des vecteurs de P à ceux
de R3 : u←→ −→u , nous avons dans P : u = −iu en accord avec la définition
des τk.
C’est ainsi qu’une rotation d’axe orienté par −→n unitaire et d’angle θ est
représentée dans H par

x 7→ (cos
θ

2
+ sin

θ

2
n)x(cos

θ

2
− sin

θ

2
n)

Notons que det(x) = ‖−→x ‖2

3.11 Représentation dans P de l’algèbre de Lie
de L+

L’emploi de la représentation de L+ dans P permet d’obtenir aisément,
pour tout élément de L+ un élément de l’algèbre de Lie du groupe de Lorentz
dont le premier est l’exponentielle du second ; on dira que celui-ci est le
logarithme de celui-là. Ainsi peut-on obtenir certaines propriétés de L+.

3.11.1 Algèbre de Lie des matrices de P

1. Soit ξ : I −→ P de classe C1 sur l’intervalle réel I et à valeurs unitaires.
τ étant fixe de Sc(P) ⊕ V ec(P) , soit τs = ξsτξ

†
s : en dérivant et

exprimant
.
τ s à l’aide de τs on obtient

.
τ s= ηsτs + τsη

†
s avec ηs =

.

ξs ξ
−1
s



64 3.11.1 Algèbre de Lie des matrices de P

Si on considère τs = ξ(−τ cs )ξ† ou τs = ξτ cs ξ
† ou τs = −ξτsξ†, on

retrouve ηs.

2. Puisque ξ−1s = ξcs (ξs étant unitaire) , et que dans P : αβc = (βαc)c, d
ds

(ξsξ
c
s) =

0

entraîne :

ηs + ηcs = 0 donc ηs est de la forme ηs =
∼
u +i

∼
v

.
Ainsi η est à valeurs dans V ec(P)⊕ PsV ec(P) et l’endomorphisme de
R4 correspondant à τ 7→ ητ + τη s’écrit en utilisant (3.18)

t−→e 0 +−→x 7−→ t′−→e 0 +−→x ′ avec (t′ = 2

−→∼
u .−→x
c

,−→x ′ = 2ct
−→∼
u −

−→∼
v ∧ −→x

On retrouve la forme des matrices de l’algèbre de Lie de L+ : 0 2 t
∼
U /c

2c
∼
U −2Ω−→∼

v

 ou
−→
Ω∼
v

est la matrice de −→x 7−→
−→∼
v ∧ −→x

Exemples classiques : β = cosh s
2

+ sinh s
2
l : η = l

2
; ρ = cos s

2
−

i sin s
2
n : η = −in

2

3. Réciproquement soit η : I → P à valeurs dans V ec(P) ⊕ PsV ec(P),
continue sur cet intervalle réel, et soit ξ la solution de

.

ξ= ηξ pour la
condition initiale ξs0 .
Puisque d

ds
det(ξs) = d

ds
(ξsξ

c
s) = (ηs + ηcs)det(ξs) = 0 , ainsi det(ξs) =

det(ξs0) :
ξ est à valeurs unitaires si et seulement si ξ0 est unitaire .
de transformations de Lorentz de même nature (conservant ou non les
orientations du temps et/ou de l’espace).

4. En conclusion, V ec(P)⊕ PsV ec(P) est l’algèbre de Lie du groupe des
matrices de Pauli unitaires.
Le crochet de Lie de cette algèbre s’exprime selon

[u+iv, u′+iv′] = (u+iv)(u′+iv′)−(u′+iv′)(u+iv) = i(u+iv)∧(u′+iv′)

Dans H on retrouve le crochet de Lie de l’algèbre de Lie des matrices
orthogonales s’exprimant par un produit vectoriel.



Conclusion

Dans ce mémoire on a évoqué la notion de représentation des groupes
comme un élément essentiel de la théorie en géométrie différentielle. On a
donné un exemple de construction de représentation à partir d’autres. Cette
technique est un outil pratique pour comprendre la géométrie d’un groupe (le
groupe de Lorentz dans notre cas) ou d’une variété à un groupe de symétrie
donnée.

65
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