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Introduction

La géométrie lorentziéne est est champ particulier et spécifique de la
géométrie pseudo-riemannienne. Son importance vient du fait qu’elle aborde
d’une fagon rigoureuse les questions qui dépassent la mécanique classique,
cela s’agit bien de la mécanique relativiste et la théorie générale de I'optique.
Une variété lorentzienne est une variété m-dimensionnelle munie d’un tenseur
symétrique g tel que la forme quadratique g, soit en tout point de type
(m—1,1). L’exemple le plus Simple est 1’exemple des espaces de Minkowski.
Leur importance vient de ce qu’elles modélisent 1’espace temps de la relativité
générale.

IT y a des différences importantes avec le cas riemannien : une variété donnée
n’a pas forcément de structure lorentzienne la restriction du tenseur g a
une sous-variété est suivant les cas riemannienne, lorentzienne ou singuliére.
Par centre, les variétés riemanniennes, lorentziennes et plus généralement les

variétés Pseudo-riemanniennes ont en commun trois propriétés importantes :

1. Le tenseur g définit une mesure (plus précisément une densité) sur la

variété.

2. Il définit un isomorphisme de fibres entre T'M et T*M, qui permet
d’identifier formes différentielles et champs de vecteurs. Cet isomor-
phisme est utilisé par exemple dans le cas euclidien, pour définir le
gradient d’une fonction. Le gradient se définit plus généralement dans

le cadre pseudo-riemannien.

3. Le tenseur g permet enfin de définir canoniquement une connexion sur
le fibré tangent, c’est-a-dire une dérivée directionnelle des champs de

vecteurs.
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Ainsi, I’étude de ces variétés impose ’étude de leurs groupes de symétrie,
il s’agit dans notre cas particulier du groupe de Lorentz (noté généralement
O(3,1) ou bien L dans ce document). C’est le groupe des automorphismes de
la forme quadratique 22 + 3% + 22 — 2. C’est un groupe de Lie non compact,
non connexe. Le groupe de Lorentz £ posséde quatre composantes connexes.
L’étude de ce groupe et son algébre de Lie passe obligatoirement par la
théorie de représentation des groupes. Notre mémoire envisage cet étude, et
la décompose en trois chapitre :

Le premier chapitre traite les généralités de la théorie des représentations,
une attention spéciale est donnée au cas des groupes finis et compacts, le cas
des groupes de Lie localement compacts hérite bien de cette théorie. Dans
le deuxiéme chapitre on définit explicitement le groupe de Lorentz L. Le
troisieme chapitre est consacré a I’étude des représentations du groupe de
Lorentz a partir de celles des groupes SO(3) et SU(2) et de leurs algebres de
Lie.



Chapitre 1

Théorie des représentations des

groupes

1.1 Représentations des groupes finis

1.1.1 Généralités

Si E est un espace vectoriel sur K, (K = R ou C), On désigne par GL(FE)

le groupe des isomorphismes K-linéaire de F.

Définition 1.1.1. Une représentation d’un groupe G (fini ou non) est la
donnée d’un espace vectoriel complexe de dimension finie E, et d’un mor-
phisme de groupes, p : G — GL(E).

Done, pour tous g,q € G,

p(gg") = p(9)p(d). p(g™") = (p(g)) ", ple) = Idg

L’espace vectoriel E est appelé le support de la représentation et sa dimension
s’appelle la dimension de la représentation. On désigne une telle représenta-

tion par (E, p) ou simplement p.

St en particulier, E = C", on dit que la représentation est une représen-
tation matricielle de dimension n.
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la représentation standard ou fondamentale d’un sous groupe G de GL(FE)
est la représentation de G dans E définie par l’injection canonique de G dans
GL(E).

On appelle représentation triviale toute représentation telle que p(g) =
Idg pour tout g € G.

Exemple 1.1.1. (Groupe de permutations).
Soit G = 83 le groupe des permutations de ’ensemble {1,2,3} et t € S3
la transposition 123 — 132 et ¢ la permutation circulaire 123 — 231 qui

engendrent Ss. On pose j = e%". On peut représenter S dans C en posant

ple) = T.p(t) = (? ;>,p<c>= ({) ;)

Définition 1.1.2. Soit <, > un produit scalaire sur E. On dit que la repré-

sentation est unitaire si p(g) est unitaire ¥g, c’est-a-dire,

Vg € G,Vr,y € E,(p(g)7, p(9)y) = (z,y)

. Une représentation est dite unitarisable sl existe un produit scalaire sur E

tel que (p, (,)) est unitaire.

Lemme 1.1.1. Soit G un groupe fini. Pour toute fonction ¢ sur G a valeurs

dans un espace vectoriel
Vg e G, Y olgh) = wlhg) = ¢(k). (1.1)
heG heG keG

Démonstration En effet, g est fizé, tout élément de G s’écrit d’une

maniére et d’une seule sous la forme gh (resp., hg), ou h € G.

Théoréme 1.1.1. Toute représentation d’un groupe fini G est unitarisable.
Démonstration Soit (F,p) une représentation d’un groupe fini, G, et soit

(,) un produit scalaire sur E considérons :

1

() = il > p(9)z, p(9)y)

geG

qui est un produit scalaire sur E. En effet, supposons (,) =0,

= 1 2gec(p(9)z, p(g9)y) =0
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= (p(g)7,p(9)y) =0 VgeG
en particulier pour g=e p(g) = idg donc : (x,x) =0=2 =0
Montrons que {,) est invariant par p (p unitaire par rapport a (,)")
En effet :

L

@z, p(9)y) = &

(]

{(p(h)p(g)x, p(h)p(9)y)
{p(hg)z, p(hg)y)

(p(k)x, p(k)y)

e
m
@

I
al-
]

>
Q

€
= L
1G]

x>
A%
Q

= (z,y)

donc p est unitaire par rapport a {,)

1.1.2 Représentations irréductibles

Définition 1.1.3. Soit (E, p) une représentation d’un groupe G, F' C G un
sous espace vectoriel de E, On dit que F' est invariant par p (stable) si est
seulement st :

p(g)F C F.Nge G

ce qui entraine p(g)F = F,¥g
Donc on peut parler d’une représentation p restreinte a F : c’est une repré-
sentation de G dans F

plr est appelée sous représentation.

Définition 1.1.4. Une représentation (E, p) de G est dite irréductible.
Si E # {0} et les seules sous espaces vectoriels de E invariants par p sont 0
et &/

Ezxemple La représentation de dimension 2 de Sz dans [’exemple précé-
dent 1.1.1 est irréductible, car les sous espaces propres de p(t) et de p(c) sont
d’intersection nulle.

Proposition 1.1.1. Toute représentation irréductible d’un groupe fini G est

de dimension finie.
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Démonstration Soit (E, p) une représentation irréductible d’un groupe
fini G et soit x € E. Le sous ensemble {p(g)x/g € G} étant fini, Cette
ensemble engendre un sous espace vectoriel de dimension fini de E. Si x # 0,
ce sous-espace vectoriel de E n’est pas réduit a {0} et ¢’est un espace invariant

par p. il coincide donc avec E, qui est donc dimFE < oo.

1.2 Opérations sur les représentations

1.2.1 Somme directe de représentations

Définition 1.2.1. Soient (E1, p1) et (Ea, p2) des représentations de G. Alors
on définit (Fy & Ea, p1 & p2) par :

(p1 ® p2)(9) (21, 72) = (p1(9)71, p2(9)72), Vg € G, 21 € By, 22 € By

Exemple 1.2.1. Si py et py sont matricielles, Alors la matrice de p; @ p2(g)

(m(g) 0 )
0 pa(g)

Plus généralement si m > 0 on définit p1 @ ps & ... B pm

est :

En particulier : Si (E, p) est une représentation de G, On note :

PHPD .. p=Bup=mp
—_——

mfois

Définition 1.2.2. Une représentation est dite complétement réductible si elle

est somme directe de représentation irréductible.

Lemme 1.2.1. Soit p une représentation unitaire d’un groupe G dans (E, (,)).
Si F' C E est invariant par p.

Démonstration Soity € F+ = {y € E/{x,y)}
(z,p(9)y) = (plg~")z,y) =0, Vx € FVg
car F' est invariant par p
= plg)y € I+

= [+ est invariant par p
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Théoréme 1.2.1. (Théoréme de Maschke) Toute représentation de di-

mension finie d’un groupe fini est completement réductible.

Démonstration Soit (E, p) une représentation de G d’aprés le théoréme
1.1.1, p est supposé unitaire. Si p n’est pas irréductible.
Soit F' un sous espace vectoriel invariant par p avec F' # {0} et F # E
Alors : E=F @ F+
F* aussi invariant par p et dimF < dimE et 0 < dimF+ < dimFE
par récurrence sur la dimension de E, on obtient le résultat :
P=pn®p2® ... ® P,
Remarque Le théoréme de Maschke est aussi vrai dans le cas des groupes
compacts, mais il faut signaler que la démonstration nécessite plus de tech-

nique.

1.2.2 Produit tensoriel

Définition 1.2.3. Si (E\, p1) et (E2, p2) sont des représentations d’un méme
groupe G, on définit leur produit tensoriel (Ey ® Fa, p1 ® pa) par

(p1 @ p2)(9) = p1(g) @ pa(9)

1.2.3 Opérateurs d’entrelacement et lemme de Schur

Définition 1.2.4. Soient (E1,p1) et (Es, p2) des représentation de G. On

dit qu’une application linéaire, T' : Fy — Fs, entrelace p; et ps st

Vg€ G,pz(g) 0T =T o pi(g)

et T s’appelle alors opérateur d’entrelacement entre py et ps.

La définition exprime la commutativité du diagramme suivant, Vg € G,

E 5 B
pi(g) | L p(g)
B 5 R

Les expressions suivantes sont diversement utiliser pour exprimer cette

meme propriétés :



12 1.2.3 Opérateurs d’entrelacement et lemme de Schur

o 1" est équivariant p; et ps
o T est un morphisme de G-espaces vectoriels
o I'c Homg(FE1, E»)
Cas particulier : Si B = FEy = FEy et p = p1 = pa, un opérateur T qui

entrelace py et ps est simplement un opérateur qui commute avec p.

Définition 1.2.5. Les représentations py et ps sont équivalentes s’il existe
un opérateur d’entrelacement bijective entre p; et po

Dans ce cas :
Vg€ G,pa(g) =Topi(g)oT™ (1.2)

La relation définie par (1.2) est bien une relation d’équivalence sur les repré-
sentation En particulier pour des représentations matricielles on obtient des
matrices semblables : ie :

Vg € G : [p1(g)] est semblable a [pa(g)] avec la méme matrice de passage.
Lemme 1.2.2. S0 T entrelace py et ps le noyau de T, KerT est invariant
par py, et l'image de T, ImT, est invariant par ps.

Démonstration

- Six e By etTx =0, Alors

T(p1(g)x) = p2(9)(Tx) = p2(g)(0) =0

Donc :
Ker T est invariant par py

- SiyeImT,3x € Ey tel que y=Tx
Alors :

p2(9)y = p2(9)Tx = T(p1(g))

= pa(g9)y € Im(T)
Donc ImT est invariant par ps

Lemme 1.2.3. 5i T commute avec p, tout sous espace propre de T est in-

variant par p
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Démonstration En effet, si Tx = \x,\ € C, alors T(p(g)x) = A\p(g)x.
Donc le sous espace propre de T correspondant a la valeur propre \ est in-

vartant par p.

Théoréme 1.2.2. (Lemme de Schur)
Soit T un opérateur entrelacant des représentation irréductibles de G : (F1, p1)
et (Ea, p2)

— Si p1 et py ne sont pas équivalentes, alors T = 0.

- Si By = Ey = FE et p1 = ps = p, alors T est un multiple scalaire de

[identité de E.

Démonstration Si p, et py ne sont pas équivalentes, T n’est pas bijectif,
donc KerT # {0} ou bien ImT # E,
D’apres le lemme (1.2.2), Ker T est invariant par py, comme py est irréduc-
tible alors : KerT = Ey st Ker T # {0}, donc T = 0.
D’apres le lemme (1.2.2) aussi Im T est invariant par ps, comme py est ir-
réductible alors : ImT = {0}, donc T = 0.
Si By =Fy=FE et p =ps=p, alors ;p(g) =Top(g)oT™t, VgeG
Soit X une valeur propre de T’
Soit Ey ’espace propre associée a A, d’apres le lemme (1.2.3) l'espace propre
E\ est invariant par p,E\ # {0} car T # 0.
Alors puis que p est irréductible on a : By = E.Nx € E,Tx = \x
doncT = A.1dg

1.3 Caractéres et relations d’orthogonalité

1.3.1 Fonctions sur un groupe, coeflicients matriciels

Définition 1.3.1. Sur L*(G), le produit scalaire est défini par

(f1, f2) = ’—§;| mez(g)

geG

. On va s’intéresser aux coefficients matriciels des représentations.

Définition 1.3.2. Si p est une représentation de G dans C",¥(i,j),1 <1 <
n,1 < j < n, la fonction p;; € L*(G) qui associe a g € G la coefficient de la
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matrice p(g) situé sur la i ligne et la j colonne, (p(g))i; € C, est appelée un

coefficient matriciel de p.

Pour une représentation p dans un espace vectoriel E, on définit les coef-

ficients matriciels p;; relativement a une base (e;), qui vérifient
p(g)e; = Zpij(g)ei

(i est l'indice de ligne et j l'indice de colonne). Si p est une représentation

unitaire dans un espace de Hilbert de dimension finie, alors

p(g™") = (p(9) " =*p(g))

, d’ou, dans une base orthonormale,

pii(g™") = pii(9)

et, en particulier, les coefficients diagonauz de p(g) et p(g~') sont des nombres

complexes conjugués.

1.3.2 Caractére d’une représentation, relations d’ortho-

gonalité

Définition 1.3.3. Soit (E, p) une représentation de G. On appelle caractére

de p la fonction x, sur G' a valeurs complexes définie par

Vg € G, x,(9) = Tr(p(g))

. Des représentations équivalentes ont méme caractére.

Pour une représentation matricielle de dimension n,

=1

Sur chaque classe de conjugaison de G, la fonction x, est constante.

Définition 1.3.4. On appelle fonction centrale sur G une fonction constante

sur chaque classe de conjugaison.
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Proposition 1.3.1. Les propriétés élémentaires des caractéres sont les sui-

vantes :

X,(e) = dimp.
Vg € G,x(97") = Xo(9)-

Le caractere d’une somme directe de représentation est de la somme des

caracteres, Xpieps = Xpr T Xpo-

Le caracteére d’un produit tensoriel de représentation est le produit des ca-

racteres,

Xp1®p2 = Xp1 Xp2

Démonstration La premiére propriété est conséquence de la formule (1.3).
Pour démontrer la seconde formule, on peut supposer que p est unitaire pour
un certain produit scalaire et choisir une base orthonormal. La propriété des
sommes directes est évidente.

La relation suit du fait que la trace d’un produit tensoriel de matrices est le

produit des traces.

Proposition 1.3.2. Soient (Ey, p1) et (E2, p2) des représentation de G et
soit u : By — E5 , une application linéaire. Alors 'application linéaire,
T, : E1 — Es, définie par :

Ty= 151 2_r(9um(g)™ (1.4)

1
Gl 2=

entrelace py et py

Démonstration Calculons

p2(9) 1w = 1G Cnec P2(gh)upi(h™)
= &1 Lreq P2(k)upi (k')

d’apres la relation fondamentale (1.1). Do,
IOQ(Q)Tu = Tupl (g>
L’opérateur T, est donc un opérateur d’entrelacement entre py et ps.

Proposition 1.3.3. Soient (E1, p1) et (Ea, p2) des représentations irréduc-
tibles de G, On choisit des bases dans E; et Es.
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(i) Si p1 et py sont inéquivalentes,

Vi gk, (pa(g)m(pr(gh))e =0

geG
(ii) Si By = Ey = E et p1 = pa = p,

2 (il )i = ey

Théoréme 1.3.1. Les caracteres irréductibles de G forment un systéme or-
thonormal dans L*(Q)

Corollaire 1.3.1. Les représentations irréductibles inéquivalentes d’un groupe

fini G sont en nombre fini.

On désigne par G Uensemble des classes d’équivalence de représentations
irréductibles de G.

1.4 Représentations des groupes compacts

Définition 1.4.1. Rappelons qu’un groupe topologique est un groupe muni
d’une structure d’espace topologique séparé (par exemple un sous-ensemble
d’un espace vectoriel normé) telle que la multiplication et le passage a l'in-
verse soient des application continue. Un espace topologique est localement
compact si tout point posséde un voisinage compact. On appelle groupe com-
pact (resp., localement compact) un groupe topologique qui est un espace com-
pact (resp., localement compact).

Si E est un espace de Banach sur le corps des réels ou des complezes (espace
vectoriel normé complet), on désigne par L(E, E) l’espace vectoriel des ap-
plications linéaires continues de E dans E (encore appelées endomorphismes
de E ou opérateurs linéaires continues ou opérateurs bornés sur E). On le
munit de la norme des applications linéaires qui, pour v : E — E, linéaire

et continue, est définie par

[ull = sup [lu(z)]]
Jall<1
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Pour tout espace de Banach,E, on désigne par GL(E) C L(E, E) le groupe
des isomorphismes de E, c’est-a-dire des endomorphismes bijectifs et bicon-
tinus de E. On sait qu’il suffit qu’une application linéaire continue entre
espaces de Banach soit bijective pour que son inverse le soit. On considére
GL(E) comme sous espace topologique de [’espace vectoriel normé L(E, E).
La boule unité dans un espace vectoriel normé est compacte si et seulement
si l’espace est de dimension finie. Donc tout sous-ensemble fermé est borné
de GL(E), ou E est un espace vectoriel de dimension finie, est compact. Par
ezemple U(n) C GL(n,C) et O(n) C GL(n,R) sont compacts. De méme,
SU(n) et SO(n) sont compacts. Le groupe abélien R muni de sa métrique

usuelle est un groupe localement compact mais non compact.

1.4.1 Mesure de Haar

Sur un groupe fini G, on sait que pour toute fonction f € F(G) et Vg € G,

Y fhy=>_flgh)=>_ f(hg)

heG heG heG

Si l'on désigne par [, (resp.,r,) la multiplication & gauche (resp., droite) par
g € G, on a par définition f(gh) = (f ol,)(h) et f(hg) = (f ory)(h). Par

conséquent, 'opération de moyenne,

1
MﬁfHM(f)ZEZf(Q)
geG
, vérifie
— M est une forme linéaire sur F(G), positive, c’est-a-dire prenant des
valeurs positives sur les fonctions réelles positives.

— M est invariante & gauche et a droite, c’est-a-dire
Vge G,M(foly)=M(fory) =DM(f)

- M(1)=1

Sur les groupes compacts, il existe une mesure, la mesure de Haar, qui
posséde des propriétés analogues. Plus généralement sur un groupe locale-
ment compact, il existe des mesures ayant une propriété d’invariance soit a

gauche, soit & droite (mais pas les deux en général).
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Théoréme 1.4.1. Soit G un groupe localement compact.

(i) 1l existe sur G une mesure positive, finie sur les compacts, non identi-
quement nulle et invariante a gauche, i.e., pour toute fonction intégrable
f et pour tout h € G,

/fhgdu /f )dp(g

Une telle mesure est unique a un facteur scalaire réel positive pres. Si
[ est continue, f >0 et [, f(g)du(g) =0, alors f=0.

(11) Si G est compact, il existe sur G une unique mesure invariante a gauche
p telle que [, du(g) = 1.

(11i) Sur un groupe compact, toute mesure invariante & gauche est invariante
a droite.

Démonstration
(i) Nous admettrons ce résultat.

(i) Sipo est une mesure invariante & gauche sur G compact et si [, djo(g) =
m, on pose [i = %,uo et i est clairement ['unique mesure invariante a

gauche telle que [, du(g) = 1.

(111) Soit p une mesure invariante & gauche sur G localement compact Pour

f continue a support compact, posons u fG . Soit h e G
et considérons pp(f fG (gh)du(g), ¢ est—a—dzre Mh(f) = u(fory).
Alors,

Vk € G, pn(f oly) = /fkghdu /fghdu (/)

, donc, d’apres l'unicité des mesures invariantes a gauche a un facteur

prés, il existe un scalaire A(h) € RY vérifiant

St G est compact, on peut intégrer la fonction constante 1. On obtient
pn(1) = u(l) = A(h)u(1). D’ou A =1 et p est donc aussi invariante

a droite, i, e.,

/ (gh)du(g /f )du(g), YheG
G
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Définition 1.4.2. Sur un groupe compact, l'unique mesure invariante a

gauche et a droite, et de masse totale 1, s’appelle la mesure de Haar.

Sur un groupe localement compact G, la fonction A : h € G+—— A(h) €

R* est appelée la fonction modulaire de G. Elle vérifie
A(hR") = A(h)A(R)

car A(hR ) u(f) = paw (f) = p(f o ran) = p(f orp orp) = A(R)u(f orp) =
AR)AR ) u(f). On dit que le groupe localement compact G est unimodulaire
st A=1.

Le théoréeme précédent dit que si G est compact, alors G est unimodulaire.
On écrit souvent [ f(g)dg ou liew de [ f(g)du(g). Ainsi, si G est compact,

pour toute fonction mesurable f,

VheG,/Gf(g)dg—/Gf(hg)dg—/Gf(gh)dg

et l'on impose a i de satisfaire la condition de normalisation, fG dg=1

1.4.2 Compléte réductibilité

Théoréme 1.4.2. Toute représentation d’un groupe compact est unitari-

sable.

Schéma d’une démonstration. Soit G un groupe compact, et soit (E,p)

une représentation de G. On pose, pour x,y € F,

(o) = /G (p(9)z, p(g)y)dg

ot dg est la mesure de Haar sur G. C’est bien un produit scalaire car, si
(x,2') =0, alors d’apres le théoréme (1.4.1) (p(g)z, p(g)x) = 0,Vg € G, et

par conséquent, x=0. D’autre part,

(o(g)x. plg)y) = /G (p(hg)z, plhg)y)dh = / (o), p(R)y)dh = (z,y)

Ainsi p(g) est unitaire pour (,)".
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Corollaire 1.4.1. Toute représentation de dimension finie d’un groupe com-

pact est completement réductible.

Théoréme 1.4.3. Toute représentation irréductible d’un groupe compact est

de dimension finie.

Remarque Cet énoncé, comme spécifié plus haut, sous-entend qu’il s’agit
de représentations continues dans des espaces de Hilbert complexes séparables.
1l n’est pas vrai en toute généralité, mais reste vrai pour des représentations
continues a valeurs dans certains espaces vectoriels topologiques plus généraux

que les espaces de Hilbert.

1.4.3 Relations d’orthogonalité

Définition 1.4.3. On définit un prodwuit scalaire sur l’espace vectoriel des

fonctions continues a valeurs complexes sur G par

i fo) = /G Fi@)fal9)dg

ou dg est la mesure de Haar. On désigne par L*(G) Uespace de Hilbert obtenu
en complétant cet espace préhilbertien pour la norme définie par ce produit
scalaire. C’est l'espace de Hilbert des classes d’équivalences (pour la relation

d’égalité presque par tout) de fonctions de carré intégrable sur G.

On sait que les représentations irréductibles de G sont de dimension finie.
Les relations d’orthogonalité des caractéres des représentations irréductibles

des groupes finis s’étendant au cas compact.

Théoréme 1.4.4. Soit G un groupe compact et soient (Ey, p1) et (Ea, pa)

des représentations unitaires irréductibles de G. Vxy,y; € Ey et Vag, ys € o,

0 SL p1 % P2
(Phyrr Oag) =
191 2Y2 dirlnE<x2’x1><yl’y2> ) El = E2 = Eetm =p2=p

Démonstration En généralisant le procédé utilisé dans la proposition 1.3.2

et 1.3.3, pour toute application linéaire continue u : E1 — FEy , on définit



1.4.3 Relations d’orthogonalité 21

l'opérateur qui entrelace py et pa,

T, = /G pa(g)upy(g)tdg

On considére Uapplication linéaire w,,,, : £y — Ey définie par uy,,,(x) =
(y1,x)ys pour x dans Ey. En utilisant le fait que p; est unitaire, on obtient
alors la relation (O4t, ,@92,.) = (v2, Ty, ,,T1)-

On applique ensuite le lemme de Schur. Cette quantité est nulle si p;
n’est pas équivalente a ps. St By = Ey = E et p1 = py = p, alors Tuyyy =

T(y1,y2)Idg, ot T(y1,ys) est antilinéaire en 1 et linéaire en xo. On calcule

7(y1,y2) en calculant la trace de T,

gy, - Celle-ci est égale a la trace de uy,y,

car, pour toute application linéaire u, TrT, = [, Tr(p(g) cuo p(g~"))dg =
Jo Trudg = Tru. Comme on a Truy,y, = (y1,12), on obtient le résultat cher-
ché.

En particulier, si py et ps ne sont pas équivalentes, dans toute bases or-

thonormales,
(@i ) =0 (1.5)
et, st p1 = po = p, alors
1

<305j’ 90£1> =

On désigne par G Uensemble des classes d’équivalence de représentations ir-
réductibles d’un groupe compact G. Lorsque L*(G) est séparable, ce qui a lieu
dans les cas que l'on rencontre en pratique, les relations d’orthogonalité ci-

dessus impliquent que G est dénombrable.

D’apres (1.5) et (1.6) les coefficients matriciels dans des bases orthonor-
males des représentations unitaires irréductibles inéquivalentes de G forment
un systeme orthogonal dans L*(G). On démontre qu’ils forment une base or-
thogonale de L*(G) au sens hilbertien. Ce résultat constitue le théoréme de

Peter-Weyl qui peut s’énoncer :

Théoréme 1.4.5. (Théoréme de Peter-Weyl pour les groupes com-

pacts) Toute fonction f € L*(G) admet un développement de Fourier convergent
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au sens de L?,
dimp®

f= Z Z Py (1.7)

acG HI=1
ou les p® sont des représentants unitaires des classes de représentations ir-
réductibles inéquivalentes de G, les pf; sont leurs coefficients matriciels dans

des bases orthonormales, et

& = (dimp®) (o, f) = (dimp®) /G £(9)0%(9)dg (18)

Théoréme 1.4.6. (Relation d’orthogonalité) Soient py et ps des représenta-

tions 1rréductibles de G. Alors

0 st p1~ps
<Xp1> Xp2> = 1 )
St p1~ P2

Démonstration Compte tenu du théoreme (1.4.2), ces relations sont une

conséquence des formules précédentes (1.5) et (1.6).
Une représentation p est irréductible si et seulement si (Xpy, Xpo) = 1

Si p est une représentation de G, on peut la décomposer en somme hil-

bertienne de représentations irréductibles, p; € G. On écrira

P = éngémzpl

o
m; = <Xpi> Xp>

On peut avoir m; = oo



Chapitre 2

Groupe de Lorentz

2.1 Groupe de Lorentz
2.1.1 Définition
Nous considérons dans R* la forme quadratique
S%(x) = 2% + a5 + 23 — 7] (2.1)

Une transformation générale de Lorentz est une transformation linéaire ' =
gx laissant invariante cette forme quadratique.

On note [ la matrice de la forme quadratique S?(z) :

100 O
] 010 0
001 O
000 -1

Sous toute transformation linéaire avec la matrice g la matrice [ la forme
quadratique se transforme en ¢'lg. on ¢' est la matrice transposée de la
matrice g. Par conséquent pour une transformation de Lorentz générale, nous

avons 1’équation
g'llg=1 (2.2)

Cela implique clairement que det g = 41, et donc g est inversible. Il est clair

que g~! est aussi une transformation générale de Lorentz. Le produit de deux

23
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transformations générales de Lorentz est clairement une transformation de
Lorentz. Par conséquent I’ensemble des transformations linéaires dans R* qui
laissent invariant S? est un sous groupe du groupe linéaire GI(R?), c’est le

groupe général de Lorentz notée par suit L.

L’équation S?(x) = 2% + 23 + 23 — 22 = 0 définit dans R* un cone (ap-
pelé cone de lumiére) dont l'axe est le xp-axe (I'axe du temps) Le cone lu-
mineux divise I’ensemble de l'espace R* en trois régions : un région exté-
rieure. ou S?(z) > 0, et deuxiéme régions internes S*(x) < 0,79 > 0 et
S?(x) < 0,79 < 0 Toute transformation générale de Lorentz transforme la
lumiére cone et sa région interne (c’est-a-dire la région ou S?*(z) < 0) en
eux-memes.

Une transformation générale de Lorentz sous laquelle chaque région du cone
de lumiére reste également en place, nous appellerons simplement une trans-
formation de Lorentz. Il est clair que les transformations de Lorentz ne modi-
fient pas la direction positive de la axe du temps. Les transfusions de Lorentz
forment également un groupe. connu comme le compléter le groupe Lorentz.
Nous appellerons les transformations de Lorentz avec un minant égal a 1
transformations de Lorentz propres. Ils forment également un groupe -le bon
groupe Lorentz. Nous notons que ’ensemble du groupe Lorentz est provenant
du groupe approprié par I’ajout d’une transformation spéciale - un réflexion

spatiale s avec la matrice

-1 0 0 O

0 -1 0 0
S =

0O 0 —-10

0 0 0 1

et aussi toutes les transformations possibles de la forme sg, ot g est un élé-

ment du groupe Lorentz approprié.

De méme, le groupe de Lorentz général est obtenu a partir du groupe de
Lorentz complet par 'addition de la soi-disant réflexion temporelle, c’est-a-

dire de la transformation ¢ avec la matrice
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1 00 O
. 010 O
001 0
000 -1

/

T7 = 91121 + g12%2 + g13%3
/

Ty = 2171 + G22%2 + g23%3
!/

T3 = 3171 + g32%2 + g33%3

Ty = T

(2.3)

Il est clair qu’il s’agit d’une transformation de Lorentz appropriée.

Si nous identifions chaque rotation en trois dimensions avec le correspon-
dant transformation de Lorentz indiquée ci-dessus, alors nous pouvons dire
que les rotations tridimensionnelles forment un sous-groupe du groupe de
lorentz approprié.

Enfin, nous faisons une observation concernant la réflexion spatiale et tem-

porelle.

Nous associons a chaque transformation de Lorentz propre g une autre

transformation de Lorentz selon la formule

~

g=sgs™" (2.4)

Il est clair que g est & nouveau une transformation de Lorentz appropriée.

La correspondance aw g satisfait clairement ce qui suit

1) e ~ e (e est la transformation unitaire)

2) si §N71~ go alors §2~ go et §1§2~ 9192 Toute correspondance individuelle
g g entre les éléments d’'un méme groupe qui satisfait ces conditions
sont connues comme un automorphisme du groupe. De cette fagon une
réflexion spatiale produit selon la formule (2.4) un automorphisme du
groupe Lorentz approprié. La réflexion temporelle également un auto-
morphisme

g=tgt™! (2.5)
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Cet automorphisme coincide avec le précédent, car on voit facilement
que

tgt_l = sgs_l

On note que la matrice de la transformation t coincide avec la matrice

1 de la forme quadratique S?(z). Il résulte donc de I’équation (2.2) que
tg b =lgl™t = tgt™*

De cette maniére, la matrice g de la transformation sgs™t = tgt~! est
égale a

azt gfl
Soit g un élément arbitraire d’un groupe, et go va étre un élément fixe de
ce méme groupe. 11 est clair que la correspondance g ~ goggy * est une
automorphisme du groupe. Un tel automorphisme est appelé intérieur.
Tout autre 'automorphisme est appelé extérieur. Automorphisme (2.5)

du bon groupe de Lorentz

52 sgs_1 =t g_1

généré par la réflexion spatiale s. ne peut pas étre représenté sous la

forme

9= 90995 "
ol gg est un élément du groupe approprié. Cette simple circonstance
peut étre facilement vérifié par le lecteur. De cette fagcon, nous voyons

que 'automorphisme

g = sgs_1

est un automorphisme externe du groupe propre (pour le groupe com-
plet et le groupe général cet automorphisme est, évidemment, interne).
On peut prouver que tout automorphisme externe du groupe de Lorentz

propre est donné sous la forme

9= gosgs ‘g "
ol go est une transformation de Lorentz propre. Cela signifie que 1'au-
tomorphisme g = sgyps~' est en un certain sens le seul automorphisme

externe du groupe de Lorentz propre.
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2.1.2 Systémes de coordonnées orthogonales

Lors du transfert du repére (zg,x1, 22,3 ) aux coordonnées (g, ], T4, %)

a 'aide de la transformation linéaire g la matrice I de forme quadratique

S*(x) = 2% + a3 + 25 — x]

se transforme, comme nous le savons, en
I'=4g'lg

Voici la matrice I’ de la forme quadratique S?(z) dans le repére (zf, ¥, 25, 75)
coincide avec la matrice [ si et seulement si g est une transformation générale
de Lorentz. Les repéres (z(,x), x5, 74) dans la forme quadratique S*(z) est
représentée par la matrice [ sont appelés systémes de coordonnées orthogo-

nales dans l’espace a quatre dimensions R*.

Il est clair qu’une transformation linéaire effectuant une transformation
d’un systéme de coordonnées orthogonales & un autre, est une transformation
générale de Lorentz. Inversement, toute transformation générale de Lorentz
porte un systéme de coordonnées orthogonales dans un autre (systéme de
coordonnées orthogonales). Dans ce qui suit, nous n’utiliserons que des sys-
témes de coordonnées orthogonales, sans le déclarer explicitement & chaque

fois.

Il est bien connu que toute route de I’espace tridimensionnel porte chaque
sphére centre l'origine en elle-méme ; et que tout point sur une telle sphére

peut étre porté en tout autre point par une rotation suiuble.

Pour décrire cela, nous disons que les sphéres (avec le centre a I’origine)

sont des surfaces transitives par rapport au groupe de rotations.

En général, si un groupe G de transformations agit dans un espace R alors
une surface est connue comme une surface de transitivité pour le groupe G,
a condition que toute transformation de GG porte cette surface en elle-méme

et que 'un de ses points puisse étre porté par une transformation de G & une
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autre.

Dans la mesure ou la forme

S*(z) = a7 + 25 + 25 — x)

n’est pas altérée sous une transformation de Lorentz, les surfaces

2 2 .2 2 _
Ty — x] — Ty — T3 = cont (2.6)

se transforment en eux-mémes sous les transformations de Lorentz.

Les surfaces (2.6) sont des types suivants :

1. S%*(z) = ¢ < 0,79 > 0 est la branche supérieure d’un hyperboloide de

deux feuilles.

S?(x) = ¢ < 0,79 < 0 est la branche inférieure de cet hyperboloide.
S?(x) = 0,29 > 0 est la branche supérieure du cone de lumicre.
S%(z)

() = 0,29 < 0 est la branche inférieure du coéne de lumiére.

AN Sl S

S?(x) = ¢ > 0 est un hyperboloide d’une feuille.

L’origine des coordonnées g = x1 = x5 = x3 =0
Nous allons maintenant montrer que chacune de ces surfaces est une surface
transitive avec respect pour le bon groupe de Lorentz.
On note tout d’abord qu’il est possible de porter n’importe quel point A(zg, 1, 2, z3)
par une rotation (c’est-a-dire par une transformation de Lorentz appropriée
qui ne modifie pas la quatriéme coordonnée z;). a droite de I'avion (xg, x3), x5 >

0

Maintenant, Soient A; et Ay étre deux points dans ’espace & quatre di-

mensions qui se trouvent sur une seule et méme surface (1-5).

Nous faisons tourner chacun de ces éléments de facon a ce qu’ils coincident
avec les points By et By ,le demi-plan droit (zg,x3) : By = u A, By =

us Ay (u1 ug sont rotations). Sous les rotations, chacune des surfaces (1-5)
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est transportée en lui-méme. Il s’ensuit que les points By et By se trouvent
sur une méme courbe et cela signifie que chacun peut étre porté par une

transformation appropriée go3 dans l'avion (zo, z3) a autre :
By = gosB1

Il est clair que la transformation g = wu; 'gosu; porte A; en Ay . Dans ce
maniére, nous voyons que les surfaces (1-5) sont des surfaces de transitivité

pour la groupe Lorentz approprié.

Il est clair que la réflexion spatiale transforme chacune des surfaces (1-5)
en elleeméme. Cela signifie que les surfaces de transitivité pour le groupe
de Lorentz complet sont les mémes que pour le groupe propre. La réflexion
temporelle intervertit les deux branches de 'hyperboloide de deux feuilles et
branches du cone lumineux. Par conséquent, les surfaces de transitivité pour

le groupe général de Lorentz ne sont que de quatre types :

1. Hyperboloide de deux feuilles :22 — 22 — 23 — 22 =¢ >0

2. Le cone lumineux 23 — 23 — 23 — 23 =0

3. Hyperboloide d’une feuille :2} — 27 — 23 — 25 = ¢ < 0

4. L’origine des coordonnées :22 = 23 = 23 = 23 =0

Nous faisons maintenant quelques observations importantes pour la suite.
Comme nous ’avons montré, tout point A de la branche supérieure de I’hy-

perboloide
2 2 2

xh— 1t — a5 — a5 =1,20 >0 (2.7)
peut étre porté par des transformations de Lorentz appropriées a tout

autre point sur ce branche, en particulier & son sommet O(1,0,0,0)

La plus simple de ces transformations est la vis hyperbolique goa4 dans
le plan (xg, A), qui passe par le point A et l'axe 2. Mais il n'y a pas de
transformation de Lorentz propre unique qui transfére le point A au point

0.
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Il est clair que deux de ces transformations différent I'une de I’autre par
une transformation u qui laisse le point O en place : uO = O. Toute trans-
formation u qui laisse O(et avec elle aussi 'axe xy) en place est clairement

une rotation.

De cette maniére, nous voyons que toute transformation de Lorentz qui

transfere le point A au point 0 a la forme

g = ugoa

ol u est une rotation et goa est une vis hyperbolique dans le plan (zg, A).

On voit donc que pour spécifier une transformation de Lorentz propre, il
faut indiquer un point A sur la branche supérieure de I’hyperboloide (2.7)
qui est transféré par cette transformation a ’apex O de 'hyperboloide. puis
a l’aide d’une vis hyperbolique dans le plan (A, zg) pour transférer du point
A vers le point O, et enfin pour effectuer une rotation u. En d’autres termes.
chaque transformation de Lorentz propres est définie par une paire g ~ (u, A)

ol u est une rotation et A est un point sur ’hyperboloide (2.7).
De cette observation, il résulte immédiatement que

1) Chaque élément du groupe de Lorentz approprié est donné par six pa-
ramétres indépendants (c’est-a-dire que le groupe de Lorentz approprié
est un groupe de six paramétres). En fait, le point A sur 'hyperboloide
fournit trois parameétres indépendants (par exemple ses coordonnées
x1, %2, x3) et la rotation u de trois autres parameétres (par exemple les
angles eulériens) ;

2) Le groupe de Lorentz approprié est connecté, c’est-a-dire deux de ses
éléments g1 et go peuvent étre reliés par un chemin continu. En fait
soit g1 ~ (u1, A1) et go ~ (ug, A2). Si maintenant les rotations : u; et
ug sont jointes par un chemin continu, ainsi que A; et Ay (la branche
supérieure de hyperboloide est également connecté), alors g; lui-méme
sera rejoint par un chemin continu vers g».

En ce qui concerne cette derniére observation, nous déterminons main-
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tenant le nombre de composants connectés des groupes Lorentz complets et

généraux.

Le groupe propre est une composante connexe du groupe général de Lo-
rentz. En fait, toute transformation de Lorentz ¢ non incluse dans le groupe
approprié non plus modifie la direction positive de 'axe du temps zg, ou
satisfait detg = —1 et par conséquent, elle ne peut pas étre rejoint par un
chemin continu vers une transformation de Lorentz propre. De cette maniére,
nous voyons que le groupe propre est connecté mais que toute extension de
celui-ci ne l'est pas, c’est-a-dire que les formes de groupe de Lorentz propres

une composante connectée du groupe général.

I est clair que toutes les transformations de la forme sg ou (s est une
réflexion spatiale et g est une transformation propre). Forment également un
composant connexe. Cela signifie que le groupe Lorentz complet est constitué

de deux composants.

La réflexion temporelle ¢ produit deux autres composants : une compo-
sante constitué des éléments de la forme tg. et une composante constituée
des éléments de la forme tsg = jg (j est une réflexion compléte dans R?).
De cette maniére, le groupe général se compose de quatre composants connec-
tées :

1) Le groupe approprié, que nous désignons par Gy.

2) Le composant sGy constitué d’éléments de la forme sg (g une trans-

formation appropriée).

Ces deux composantes forment le groupe de Lorentz complet.
3) La composante tGy (des éléments tg).
4) Le composant tsGq (dans lequel tous les éléments stg se produisent).
Dans 'étude des représentations du groupe de rotations tridimension-
nelles un role important a été joué par le fait que chaque rotation peut

correspondre & une transformation bilinéaire unique du plan complexe :

_>ozz+6
vz 40
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avec deta = 1. A chaque rota-

. o o
ayant une matrice unitaire a = 5

B
tion ¢ a recu une matrice unitaire du second ordre de signe indéfini +a =
a 7y
g 0

trice unitaire a avec déterminant égal a I'unité correspond une rotation com-

+ avec un déterminant égal a I'unité. En revanche, a chaque ma-

plétement définie g,,a — g, tel que :

1. al'aide au produit a;ay de deux matrices correspond au produit g, ga,

des rotations ga, 9a, = Gajas
0
2. la matrice unitaire 01 définit la rotation unitaire e.

3. deux matrices distinctes a; et as définissent une méme rotation g si et

seulement si, ces matrices ne différent que par leur signe, a; = —as

Cette correspondance entre le groupe U de matrices unitaires de la se-
conde ordre avec déterminant égal a 1 et le groupe de rotations nous a permis
de considérer toute représentation g — 7T, du groupe de rotations comme une
représentation du groupe U,a — T'g, = T, et inversement, considérer la re-
présentation a — T, du groupe U, en général, comme une représentation a

deux valeurs du groupe de rotations.

Il s’avére qu’il existe une correspondance analogue entre les Transforma-
tions de Lorentz et matrices complexes du second ordre. Nous allons main-
tenant établir cela. Incidemment. nous obtiendrons la correspondance entre
les rotations et les matrices unitaires une fois de plus et de fagon plus simple.

On considére 'ensemble des matrices hermitiennes du second ordre

To— T3 Tz +1iT

To — i$1 To + T3

A chacune de ces matrices ¢, nous associons un vecteur x de R* aux coor-
données g, 1, T, T3 :

C<—— X

On remarque que

_ 2.2 2 2 q2
detc = x5 — o] — x5 — x5 = —S°(2)
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La correspondance entre les matrices ¢ et les vecteurs x est une. bi-unique
et linéaire. Par conséquent. toute transformation linéaire dans ’espace des

matrices ¢ peuvent étre considérées comme une transformation linéaire dans
R4

On spécifie une transformation linéaire dans ’espace des matrices ¢ avec
la formule
d = aca* (2.8)

ol a est une matrice du second ordre avec un déterminant égal a 1
(Pastérisque désigne la transposition conjuguée). Il est clair que pour que

(d) = ada* = aca®™ = ¢, soit ¢ une matrice hermitienne.

On notera par la transformation linéaire correspondante en R* obtenue &
I’aide de la formule ¢ +— =
Depuis detd = detc(deta = deta* = 1),5%(2') = S?(x) c’est-a-dire que la

transformation g, est une transformation générale de Lorentz.

La correspondance a ~ g, satisfait clairement g,, 94, = Ga,a,- C’est-a-dire
le produit des matrices ajas correspond le produit g,, gq, des transformations
de Lorentz spécifiées par celles-ci. Nous trouverons quelles matrices a corres-
pond & la transformation identitaire.

Il est clair qu'une telle matrice doit satisfaire ’équation, Pour toute ¢

c = aca” (2.9)
. 10 .
Si nous prenons ¢ = 0 1 = F alors on obtient
aa* = F
Ou
a*=a!

Nous pouvons maintenant réécrire I’équation (2.9) sous la forme

¢ =aca?
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Il apparait donc que

ac = ca

c’est-a-dire que la matrice a est permutable avec chaque matrice hermitienne.

Une telle matrice est nécessairement un multiple de la matrice unitaire

1
a =\ X
01
Depuis deta = 1, A = +1

De cette facon. la transformation de Lorentz identitaire correspond aux deux
1

matrices ¢ = £ ( 0

0 . s .
) qui ne différent que par le signe.

Nous allons maintenant prouver qu’a deux matrices a; et ay leur corres-
pond une et la méme transformation de Lorentz si et seulement si a; = +ao,

En fait, laissez. g4, = ¢a,, Cela signifie que pour tous les c.

ajca; = ascal

Yarc(aytar) = ¢

gy
Il s’ensuit que la matrice correspond a la transformation identitaire.

Par conséquent
ay'a; = +F

Ou

a9 = :l:CLl

Ainsi, a chaque matrice complexe du second ordre avec déterminant égal &
nous avons associé une transformation de Lorentz la correspondance posséde

les propriétés suivantes :

1
1. 0 ~e

2. 9ay9as = Yaras
3. Deux matrices distinctes a; et as correspondent & une méme transfor-
mation g,, = ga, Si et seulement si, ces matrices ne différent que par le

signe a; = —as.
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Des deux premiéres propriétés, il s’ensuit que ’ensemble des transforma-

tions constitue un sous-groupe du groupe général de Lorentz.

Nous le désignons par GG,. Nous montrons maintenant que ce sous-groupe

coincide avec le groupe Lorentz approprié.

On note que le groupe de toutes les matrices complexes du second ordre

avec déterminant égal & 1 est connecté.

Dans cette situation, le sous-groupe G, est également connecté. Par consé-
quent, ce sous-groupe est contenu dans cette composante connexe du groupe
général de Lorentz qui contient la transformation d’identification e. cette
composante est le groupe de Lorentz approprié. Ainsi le sous-groupe G, des
transformations g, est contenu dans le groupe de Lorentz propre. Nous prou-
vons maintenant qu’ils coincident. A cette effet, on dérive le nombre de pa-
rameétres indépendants par lesquels les éléments du groupe £ sont définis (la

dimension du groupe L)

Chaque matrice complexe est spécifiée par huit nombres réels. Puisque
I’exigence que det a = 1 impose deux conditions a ces nombres : Redeta =

1, Imdet a = 0. alors six d’entre eux restent indépendants.

Chaque élément du groupe L et, par conséquent, du sous-groupe G, éga-
lement, est spécifié¢ par six paramétres indépendants. Un élément du groupe
de Lorentz approprié, comme nous l’avons vu, dépend également de six para-
métres. Il s’ensuit donc que le sous-groupe de transformations G, et le groupe
propre ont la méme dimension, et puisque le premier groupe est contenu dans

le second, ils coincident.

Nous résumons nos résultats comme suit :
Nous avons construit une correspondance a ~ g, entre le groupe de Lorentz
propre et le groupe L de matrices complexes a du second ordre (deta = 1) de
telle sorte qu’a chaque matrice a correspond une transformation de Lorentz

propre g, et a chacune de ces transformations g sont liées deux matrices
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différentes uniquement en signe. +a et —a. La correspondance construite est
telle que la matrice unitaire correspond & la transformation identitaire de
Lorentz et le produit des matrices ajas correspond le produit de Lorentz
transformations ajas ~ ga, ga,-

Nous faisons maintenant deux observations importantes :

I) Une réflexion spatiale s n’appartient pas au groupe de Lorentz propre
et par conséquent aucune matrice a ne lui correspond. Cependant,
nous pouvons nous associer a la réflexion s une certaine transforma-
tion (automorphisme) des matrices complexes a 2 rangées. En réalité.
nous avons vu plus haut qu’a ’aide d’une réflexion s il est possible de

construire un automorphisme du groupe de Lorentz propre

Cet automorphisme du groupe propre se répercute naturellement dans
le groupe de matrices complexes a avec déterminant unitaire, a savoir.
si @ un Lorentz approprié transformation g., correspondent des ma-
trices du second ordre #a, Puis & la transformation propre sgi,s~!
correspondent les matrices & (a*) L.
En d’autres termes

Sgas_l = Y(a*)-1
C’est-a-dire,

(92)7" = glar)—

En réalité. comme nous venons de le voir, une transformation de Lo-
rentz propre peut étre considérée comme une transformation dans 'es-

pace des matrices hermitiennes de second ordre donné par la formule
d = aca* (2.10)

ou a est une matrice complexe de second ordre, et deta = 1

Nous trouvons maintenant comment les matrices ¢ se transforment en

réflexion spatiale

To — o, T1 — —T1,To — —T2,T3 — —IT3
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I1 est clair que la réflexion porte la matrice ¢ dans la matrice ¢’ comme

. To— T3 To+ ixl To + X3 —T9 — il’l ,
suit : ¢ = ] — ] =c
Ty —1T1 Ty + T3 —To +1T1  Xo— T3

I est facile de vérifier que ¢ peut étre écrit sous la forme :

d =rer? (2.11)

1
ce maniére. une réflexion spatiale génére la transformation (2.11) dans

0 —1
ou, 7= ( 0 et me bar désigne le conjugué complexe. Dans

I’espace des matrices hermitiennes.

Soit correspond & une transformation propre g, les matrices +a. On

détermine maintenant les matrices qui correspondent & la transforma-

tion ¢g*~! = sg,57'. A cette fin, nous utilisons la formule (2.11) et

1

transformons tour & tour la matrice ¢ par s™, g, et s. on obtient

/ —1

¢ = rla(r=1er)a*]T

1 1

d =rarteratT"

On voit donc que la transformation sgs~—! correspond a la matrice Tar—*
ie
—1 _
8GaS = Grar—!

Il est facile de vérifier que si deta = 1, alors
— -1 _ *\—1
Tar " = (a") (2.12)

De cette fagon on obtient :

SgaS_1 = g(a*)fl

C’est

9: = glar)
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IT) Les rotations dans l'espace tridimensionnel zy = 0 se forment. comme

nous savoir, un sous-groupe du groupe Lorentz approprié. Il s’ensuit
donc que ces matrices complexes a. qui dans notre correspondance
Jgo ~ a correspondent aux rotations g, forment également un sous-
groupe dans le groupe de tous les complexes. matrices de second ordre
avec déterminant d’unité.

Nous allons maintenant prouver que ce sous-groupe coincide avec le
groupe de toutes les matrices unitaires du second ordre avec un détermi-
nant égal & 1. En d’autres termes dans notre correspondance construite
Jo ~ a entre des matrices complexes de second ordre avec déterminant
égal a 1, et les transformations de Lorentz propres, les matrices uni-
taires a correspondent aux rotations 5@ dans 'espace tridimensionnel
ro = 0, et inversement a chaque rotation g correspondent deux ma-
trices unitaires +a un signe différent seulement, avec déterminant égal
al.

En fait, que la matrice complexe a soit unitaire. c’est-a-dire a*~' = a.
Alors la transformation (2.10) dans 'espace des matrices hermitiennes

peut s’écrire sous la forme
c=aca* (2.13)

Mais sous toutes les transformations possibles de la forme (2.13) la trace
(la somme des les ¢léments diagonaux) est conservé (reste constant)

c’est-a-dire
(25 + 25) + (20 — 23) = (20 + 23) + (T0 — T3)
Par conséquent
Ty = To

Par conséquent, les transformations de Lorentz correspondantes ne mo-
difient pas la quatriéme coordonnée x, et sont des rotations dans I’es-
pace ro = 0. Ainsi, nous avons a prouvé que les matrices unitaires

correspondent & des rotations dans I’espace tridimensionnel zy = 0.
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Nous allons le prouver maintenant. inversement, a toute rotation g il
y a deux matrices unitaires du second ordre +a avec déterminant uni-
taire. A cette fin, nous considérons les rotations qui correspondent &
des matrices unitaires.

Il est clair que toutes ces rotations 5a forment un sous-groupe E}a du
groupe de rotations. La dimension (le nombre de paramétres indépen-
dants) de ce sous-groupe est clairement égale & trois. car elle coincide
avec la dimension du groupe de matrices unitaires du second ordre avec
déterminant égal a un. La dimension du groupe de rotations dans 1’es-
pace tridimensionnel. comme indiqué dans la partie I, est également

égal a trois.

De cette maniére, le sous-groupe (N}a a la méme dimension que l’en-
semble du groupe de rotations. et par conséquent coincide avec lui (en
raison du fait que le groupe de rotations est connecté). Ainsi, a chaque
rotation correspondent deux matrices. ne différant que par le signe, qui

sont du second ordre, avec un déterminant égal a 1.

2.1.3 le groupe général Lorentz

Il est bien connu que les lois de la mécanique classique ne dépendent du
choix de tout systéme de coordonnées fixe particulier, par rapport auquel le
mouvement est considéré comme ayant lieu ; de plus, les lois de la mécanique
classique ne sont pas altérées en passant d’'un référentiel & un autre qui a

mouvement de translation uniforme, rectiligne par rapport au premier.

Le premier fait signifie que les lois de la mécanique classique sont inva-
riant par rapport aux transformations orthogonales des coordonnées x; =
Zizl airTr, 1 = 1,2,3, a coefficients constants a;; ; le deuxiéme fait peut
étre représenté le plus simplement en choisissant les deux systémes de coor-
données afin que les axes correspondants soient paralléles. Si v, vy, v, sont
les projections de la vitesse du deuxiéme systéme, 2’1/, 2/, sur les axes de

coordonnées Ox, Oy, Oz du premier systéme, puis

r=x+u ity =y+utd =z+ut (2.14)
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Une transformation de la forme (2.14) est appelée transformation gali-
léenne. Les lois de la mécanique classique doivent donc étre invariantes avec

en ce qui concerne les transformations galiléennes.

Un systéeme de coordonnées est dit inertiel si le mouvement de corps en
elle est rectiligne et uniforme en ’absence de externe les forces. La mécanique
classique affirme que les transformations galiléennes donner les formules pour
passer d'un systéme inertiel de coordonnées a un autre systéme inertiel de
coordonnées avec des axes correspondants paralléle.

En cela, la mécanique classique part de 'hypothése que le temps ¢ peut étre
considéré comme le méme pour les deux systémes de coordonnées.
La théorie de la relativité rejette cette hypothése et attribue a chaque systéme
inertiel z, y, z son propre temps ¢ ; le passage d’un systéme inertiel z, y, z, dont
le temps est ¢, & un systéme inertiel ', 7/, 2/, dont le temps est t’est accompli
par une transformation linéaire des variables x,y, z,t, qui laisse invariante la
forme quadratique :

N TR R (2.15)

ou ¢ est la vitesse de la lumiére dans le vide.

L’invariance de la forme (2.15) est une expression mathématique de la
fait, établi par 'expérience, que la vitesse de la lumiére dans le vide est la
méme pour tout systéme inertiel peu importe.

Une transformation linéaire des variables x,y, z,t qui laisse la forme z? +
y? + 2% — c*t? invariante est appelée une transformation générale de lorentz.
Il sera pratique dans ce qui suit d’utiliser, au lieu de la variable ¢, une nouvelle
variable

xy = ct (2.16)
Une transformation générale de Lorentz peut alors étre décrite comme une

transformation linéaire.

4
¥y = gyrji=123/4 (2.17)

Jj=1

des variables x1, xo, 3, x4, laissant invariant la forme

2+ 25+ 1i — 23 (2.18)
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On note x et 2’ les vecteurs dans un espace a quatre dimensions dont les pro-
jections sont w1, xq, T3, T4 €t &, x4y, x4, ) respectivement, et par g la matrice
de la transformation (2.17). Les relations (2.17) peuvent alors s’écrire sous

la forme
¥ =gz (2.19)

Trouvons les conditions que doit remplir la matrice ¢ d’'une transformation
de Lorentz. De la définition d’une transformation de Lorentz, il s’ensuit que

nous devons avoir

2 2 2 12 2 2 2 2

En substituant aux x leurs valeurs de (2.17), nous obtenons :

3 4 4 3
SO g = O gy = a2t — (2.21)
i=1 j=1 j=1 i=1
L’égalisation des coefficients des produits z;x; donne
3 0 si j#k
Zgijgik —g4jgu =4 1 si j=k<3 (2.22)
=1 -1 si j=k=4

Les conditions (2.22) peuvent également étre écrites sous forme matricielle.

A cet effet, avec chaque matrice

g11 912 913 Q14
g21 G22 G233 g24 (2'23>
g31 G932 933 g34
ga1 ga2 G433 Ga4

On associe la matrice

g1 g21 g3 —ga

+ | Y912 922 g3z —Ga2 (2.24)
913 923 G933 —G43
914 924 Gg3a —G44
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De plus, nous désignons par ¢ la matrice

. (2.25)

—1

o O O
o O = O
S = O O

On voit alors facilement que les relations (2.22) sont équivalentes a I’équation
matricielle
gtg=t (2.26)

Donc :

1. La condition (2.22) ou la condition équivalente (2.26) est nécessaire
et suffisante pour que la transformation g soit une transformation de
Lorentz générale. Trouvons det g. A cet effet, nous notons que det g7 =
—det g,dett = —1; il résulte donc de (2.26) que

—det gdet g = —1,cest — — direque (det g)* =1

par conséquent,
det g = +1 (2.27)

2. Le déterminant de chaque transformation de Lorentz générale est égal

a £1. Il en résulte que

3. Chaque transformation générale de Lorentz a une transformation in-
verse. Bien str, cette transformation inverse est également une trans-
formation générale de Lorentz, car elle laisse également invariante la
forme

2 2 2 2
]+ x5+ T3 — Xy

On voit facilement que t> = I, ou I représente la matrice unitaire

donc, en multipliant les deux cotés de (2.26) a gauche par ¢, on obtient
tgtg=1
Cette relation signifie que

g =tg" (2.28)
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par conséquent,
gtgt =1

En écrivant le dernier en termes d’éléments de matrice, nous obtenons :

3 0 si 1#k
Zgijgkj — GiaGk4 = 1 si 1=k<3 (2.29)
j=1 —1 si i=k=4

Comme dans le cas des rotations, le produit g; g, des transformations gy
et go est défini comme la transformation obtenue par I'application suc-
cessive de g, et g;. Evidemment, la multiplication des transformations

correspond & la multiplication des matrices.

. Le produit de deux transformations générales de Lorentz est également
une transformation générale de Lorentz. En effet, I'application succes-

sive de deux transformations qui ne changent pas la forme (2.18), laisse

également la forme invariante.

On note L l'agrégat de toutes les transformations générales de Lorentz. Les

propositions 3 et 4 montrent que cet agrégat est un groupe. De plus, I’élément

unitaire e du groupe L est la transformation unitaire.

Th=mx, Th=19, wy=1x3, T) =14 (2.30)
Le groupe L est appelé le groupe Lorentz général.
De la relation (2.22) pour j =k =4
9%4 + 934 + 9:?4 - 924 =1 (2.31)
Il s’ensuit que
2 _ 2 2 2
Jau =1+ 914+ 924 + 935 2 1
Par conséquent,
guu =1 ou gy < —1 (2.32)

Une transformation de Lorentz générale satisfaisant la condition

gaa =1

est appelé une transformation de Lorentz.
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Chapitre 3

Représentations des groupes de

Lorentz

3.1 Les algébre de Lie su(2) et so0(3)

3.1.1 Base de su(2)

L’algébre de Lie su(2)={X € gl(2,C)[X+X = 0,77 X =0 } est 'espace
vectoriel réel de dimension 3 des matrices complexes antihermitiennes 2 x 2,
de trace nulle.

Les trois matrices linéairement indépendantes,

1{0 i 1/0 -1 1{i 0
g1 = = 7€:_ 76‘:_ .
179\ o "2\l 1 o0 T2\l o —i

forment une base sur R de su(2), et satisfont les relations de commutation,

ek €1l = €m

ou k,l, m est une permutation circulaire de 1,2,3.

On introduit encore les matrices
Ji = i€
qui satisfont les relations de commutation
[Tk, Ji] = idm

On considére aussi les matrices

45
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J3:%<_01 ?),J+:J1+2'J2: _01 8) Jo=J — iy =
0 -1
(0 7)
soit encore
. 1 1
g3 = —iJ3, €1 = §(J+ +J), g9 = —§(J+ —J)

Les matrices Js, J,, J_ satisfont les relations de commutation,
[y, J_] = 2J3, [J3,J] = £J4
Enfin, on introduit aussi la base

()0 ) -0 %)

de su(2), on vérifie immédiatement que
P—g?=K>= I

IJ=K=-JL, JK=1T=-KJ, KI=J =-IK

et les relations de commutation de su(2) s’écrivent donc

IZ,7] = 2K, [7,K] = 2Z, [K,Z] = 27

3.1.2 Base de s0(3)

L’algebre de Lie s0(3) est I'espace vectoriel des matrices réelles antisymeé-

triques. On a déja vu que les matrices

0 00 0 0 1 0 -1 0
= 00 -1 y T = 0 0 0 , N3 = 10 0
010 —1 0 O 0 0 0

forment une base de cette algebre de Lie, avec les relations de commutation,

[nkv 77l] = Mm

Il est clair que 7y, +— e, ol (e, €2, €3) est la base canonique de R3, définit un
isomorphisme de I’algébre de Lie so(3) sur Palgebre de Lie (R3, \).
D’autre part,

su(2) =~ s0(3)
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3.1.3 Le morphisme de revétement de SU(2) sur SO(3)

Nous allons voir que, bien que les algébres de Lie des groupes de Lie
SO(3) et SU(2) soient isomorphes, les groupes eux-mémes ne le sont pas.
Lun, SU(2), est connexe et simplement connexe, alors que l'autre, SO(3),
est connexe mais non simplement connexe, et il existe un morphisme de
groupes surjectif du premier sur le second, dont le noyau est constitué des

éléments [ et —1

3.2 Le groupe de Lie SO(3)

Toute transformation orthogonale de R? de déterminant +1 laisse fixe un
vecteur unitaire a de R?. C’est alors une rotation d’un angle ¢t € R/27Z
notée Rot(a,t). Donc un élément de SO(3) est déterminé par a € R?,||a| = 1,
et t € [0,2n[. L’'image d’'un élément x € R? par Rot(a,t) est

Rot(a,t)(z) =z + (1 —cost)a A (a A z) +sinta A x (3.1)

Pour le montrer, on observe d’abord que si x est orthogonale a a, et 'on

utilise la linéarité de Rot(a,t). D’ou
Rot(a,t)(z) = costx + (1 — cost)(z,a)a + sinta A x

Enfin on utilise la formule du double produit vectoriel, uA (vAw) = (u, w)v—
(u,v)w, qui donne (x,a)a = x + a A (a A x), Il est claire que Rot(a,t) =
Rot(—a, —t).

Deux rotations Rot(a,t) et Rot(a’,t") sont conjuguées dans SO(3) si et seule-
ment si ¢’ = +¢. En effet, si une rotation R laisse a invariant, alors pour tout
g € SO(3), la rotation gRg ™! laisse ga invariant. Plus précisément, les for-

mules précédentes montrent que
Vg € SO(3),gRot(a,t)g”" = Rot(ga,t) (3.2)

(11 suffit d’évaluer les deux membres sur les éléments x € R3). Donc si R’ =
Rot(a’,t') est une rotation conjuguée & Rot(a,t) par un élément g € SO(3),
alors Rot(a’,t") = Rot(ga,t), et par conséquent R et R’ ont des angles égaux

ou opposés et, inversement, que a’ = ga, et toute rotation Rot(da’,t) est
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conjuguée a Rot(a,t) par un élément g € SO(3) tel que @’ = ga, et toute
rotation Rot(a’, —t) est conjuguée & rot(a,t) par un élément g € SO(3) tel
que —a’ = ga.
Surjectivité de l'application exponentielle de s0(3) sur SO(3). Soient 7 les
générateurs infinitésimaux des groupes & un paramétre de rotation autour
des axes e, k =1,2,3.
Par définition

exp(tng) = Rot(ey, t)
Soit @ un vecteur unitaire quelconque de R®. Fixons k = 1, 20u3 et soit g un
élément de SO(3) tel que a = g(eg). Alors

Rot(a,t) = gRot(ey, t)g~" = gexp(tny)g~" = exp(tgnrg™")

3.3 Le groupe de Lie SU(2)

Le groupe de Lie SU(2) = {A € GL(2,C)|A*A = I,detA = 1} est
diffeomorphe & la sphére S® C R* car

b
SU(2):{<_CLB a) la,b € C,]a\2+]b\2:1}

a b

En effet, pour une matrice A = ( J ) , des relations A"A = et det A =

c
1, on déduit |a]?2 + |b]> = 1, |c]> + |d|*> = 1, ad — bc = 1, a¢ + bd = 0, d’ou
adé + bdd = 0, d’ott ¢ = —b et, de méme, d = a@. Les éléments du groupe de

Lie SU(2) dépendent donc de trois paramétres réels indépendants.

3.3.1 Projection de SU(2) sur SO(3)
On considére la représentation adjointe de SU(2) dans su(2),
Ad : SU(2) — Gl(su(2))
I’application Ad identifié a une application

01 SU(2) — GL(3,R)
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Pour tout g € SU(2), Ad, : su(2) — su(2) est 'application X — gXg~*
qui conserve les déterminants. Puisque, dans I'identification de su(2) avec R?,
au déterminant d’une matrice correspond le carré de la norme euclidienne du
vecteur,Vg € SU(2), ¢(g) conserve les normes, donc ¢(SU(2)) € O(3). En
fait, comme ¢ est continue et SU(2) connexe, ¢(SU(2)) C SO(3) . On sait
que lapplication ¢ : SU(2) — SO(3) est un morphisme de groupes. Nous
allons montrer que le morphisme ¢ est surjectif de SU(2) sur SO(3).

Proposition 3.3.1. Le groupe SU(2) est le revétement universel, & deux
feuillets, du groupe SO(3).

3.4 les représentations de SU(2) et SO(3)

3.4.1 Représentations irréductibles de sl(2,C)

Les représentations de D’

On considére sl(2,C) muni de la base H, X, X_ dans laquelle les rota-

tions de commutation s’écrivent
[H, X+ =+2X, |, [X, X |=H (3.3)

Soit (E, R) une représentions irréductible de dimension finie de s((2, C).
L’opérateur R(H) admet au moins une valeur propre A et un vecteur propre

v pour cette valeur propre satisfaisant v # 0 et
R(H)v = v
D’aprés les rotations de (3.3)
RH)R(X)v=(R(X4{)R(H) 4+ 2R(X))v=(A+2)R(X;)v (3.4)

et
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3.4.2 Représentations de SU(2)

Les représentations de D’

Nous allons étudier des représentations D’ de SU(2), montrer qu’elles ont
pour différentielles DD? les représentations D7 de su(2) étudiées ci-dessus,
et montrer que ce sont les seules représentations irréductibles de SU(2).

Le groupe sl(2, C) agit sur C? par la représentation canonique, telle que

a b 21 B az1 + bzo
c d 29 B cz1 + dzo

Définition 3.4.1. De maniére générale,si un groupe G agit sur un ensemble
M, alors G agit linéairement sur ’espace des fonctions sur M a valeurs dans
C, F(M) par (g9, f) e GXx F(M) — g.f € F(M), ou

VaM, (9.f)(x) = flg~ ')

D’aprés la définition, il est naturel de faire agir SL(2,C) sur l'espace des

fonctions C? & valeurs complexes par

p(g)f =fog™!

Pour toute fonction f sue C2. On définit une représentation de SL(2, C).(ici
représentation signifie seulement que p(gg’) = p(g) o p(¢') si g et ¢ €
SL(2,C)).

—C a

b d —b
Sig= ( “ J > pour déterminant 1, alors ¢g=! = ( >, donc expli-
c

citement

(p(9) f)(21, 22) = f(dz1 — bza, —c21 + az) (3.6)

On va étudier la représentation p en restriction a SU(2), mais elle n’est
certainement pas irréductible, et 'on va mettre en évidence des sous-espaces

vectoriels sur lesquels SU(2) agit de maniére irréductible.

b
Vg e SU(2), g ='g, donc p(g)f = fo'getsig= ( ag _)
— a

(p(9)f) (21, 22) = f(@z1 — bz, b2y + az) (3.7)
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Soit V7 I'espace vectoriel des polynomes homogénes a coefficients complexes
en deux variables, (z1,22), de degré 2j, ou j € %N. Cet espace vectoriel

complexe est de dimension 27 + 1. Une base en est

2j 2j—1 j+m _j+m 2j . .
290, 21297 e 21 2y e 2, —J]SM K]
Par exemple
1
St ) = 5, 22, %1

st g =1, 23, 2129, 23

s 3 3 2 2 3

3.5 Représentations de SO(3)

Rappelons l'existence du morphisme ¢ de SU(2) sur SO(3), de noyau
{I,—1I},étudié au. Si (E, p) est une représentation de SU(2), alors p se fac-

torise par la projection ¢ si et seulement si
p(~I) = p(I) = Idy (3.8)

Si p se factorise en o o , ot 0 : SO(3) — GL(FE), alors ¢ est une représen-
tation de SO(3), et p est irréductible si et seulement si o est irréductible. La
représentation D7 de SU(2) satisfait la condition (3.8) si et seulement si j est
entier. En effet —I = g, et D7(g,)f? = e 2™ fJ - le facteur scalaire est 1 si et
seulement si m est entier, donc si et seulement si j est entier. On voit donc que
les représentations obtenues par factorisation de D°, D', D? ..., DJ.... sont les

représentations irréductibles de SO(3).

3.6 Définition des représentations du groupe
de Lorentz et concepts fondamentaux de la

théorie des représentations

Définition 3.4.1

Soit R un espace normé. et supposons qu’a chaque élément du groupe G
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on affecte un opérateur linéaire borné 7, dans R de telle maniere que les

conditions suivantes soient remplies;
1) T, = E (e est I'identité du groupe G, est I'opérateur de 'unité dans R)
2) T

gg = Ty Ty,
3) continuité : si F'(f) est une fonctionnelle linéaire bornée sur R, alors

pour tout f fixe, F'(T,f) dépend continuellement de g.

Puis la correspondance g — T, s’appelle une représentation linéaire du
groupe GG dans 'espace R. La représentation est dite finie si 'espace R est
fini (dimensionnel).

Représentations unitaires :.La représentation g — T, est dite unitaire si
I'espace R est un espace de Hilbert et le produit scalaire (£,7) dans R est

invariant par rapport a l'opérateur T}, ie si

(Tg& Tg??) =(&m)

Représentations équivalentes.Les représentations finies g — Tg(l) et g — Tg(2)
réagissant respectivement dans les espaces R et R®) sont dites équivalentes
s'il existe un opérateur B qui transpose R sur R de maniére biunique

one-one, telle que pour tout élément g du groupe
BTW =T13R (3.9)

Plus graphiquement, cela signifie que les représentations sont équivalentes,
s'il est possible d’établir une correspondance linéaire h() — A entre les
éléements h(Y) de l'espace R et les éléments h(?) de I'espace (¥) tels que
h) < h® alors Tg(l)h(l) =T, g(Q)hQ. La définition générale de ’équivalence des
représentations, applicable & la fois au cas fini et au cas infini, différe peu de
celle présentée ci-dessus. Les représentations g — T, g(l) et g — Tg(2) agissant
dans les espaces R et R sont dites équivalentes, si R et R(®) contiennent
partout des variétés linéaires denses R et R®) qui sont invariants sous les
opérateurs Tg(l) et Tg(2) respectivement, et il y a un opérateur fermé B qui

mappe RM en R® bi-unique et satisfait 1’équation :

T\VB = BT” (3.10)
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Cette définition de I’équivalence revient a la condition qu’il soit possible de
choisir des bases dans les espaces R(M et R?) ot les représentations équiva-
lentes g — Tg(l) et g — Tg(z) fait que les opérateurs Tg(l) et Tg(2) sont écrits en
termes d’entre eux par une seule et méme matrice.

Il est clair que les représentations mutuellement équivalentes ne sont pas sub-
stantiellement différentes. Dans la théorie des représentations, on considére

généralement les représentations a l'intérieur de I’équivalence.

Représentations équivalentes aux représentations unitaires. De
telles représentations possédent clairement la propriété suivante.
La représentation g — T, dans I'espace normé R équivaut a une représen-
tation unitaire s’il existe dans l’espace R une forme bilinéaire hermitienne
définie positive qui est invariante sous les opérateurs T, (cette forme peut
étre définie soit sur tout ’espace R soit sur une sous-variété linéaire partout

dense , également invariante sous les opérateurs 7,.)

3.7 Larelation entre les représentations du propre
groupe de Lorentz et les représentations du

groupe de matrices complexes

Ci-dessus, nous avons étudié en détail la correspondance g, — 4a un
entre les transformations propres de Lorentz et le groupe £ de matrices com-
plexes du second ordre (deta = 1). Cette correspondance g, — +a permet
évidemment de considérer toute représentation g — 7, du groupe propre
comme une représentation du groupe £, a — 1T, = T,,, 'équation T,, = T_,
est satisfaite. A l'inverse, il est clair que toute représentation du groupe L,
a — T, telle que T, = T_,. peut étre considérée comme une représenta-
tion du groupe de Lorentz propre : g, — 1T, = T,. Si une représentation
du groupe £ (ne posséde pas la propriété que T, = T_, alors il n’est pas
possible, & proprement parler, de la considérer comme une représentation du
groupe de Lorentz, puisque dans ce cas chaque élément g = g, est mis en
correspondance avec deux opérateurs distincts T, et T_,. Nous allons cepen-

dant considérons ces représentations du groupe L a égalité avec celles qui
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satisfont la condition 7, = T_,. Dans un souci de cohérence terminologique,
nous désignerons les représentations du groupe L, pour lesquelles T, # T,
comme représentations a deux valeurs du groupe de Lorentz, et celles pour

lesquelles T, = T"_, comme représentations uniques de ce groupe.

On peut prouver qu’il est impossible de rendre unique une représenta-
tion & deux valeurs du groupe propre en choisissant un opérateur de chaque
paire, Tj, et T, de telle sorte que la correspondance g — T}, ainsi obtenue

soit continue.

Nous montrons maintenant que si une représentation a deux valeurs du
groupe de Lorentz est irréductible alors a chaque élément du groupe corres-
pondent précisément deux opérateurs qui ne different que par le signe; la

situation est donc similaire au cas plus simple de la représentation bidimen-

0 -1
la matrice —e commute avec toutes les matrices a, I'opérateur 7_, commute

-1 0
sionnelle g, — +a. En fait, T_, = T_.T, ou —e = ), Puisque

aussi avec tous les opérateurs T),. En vertu de l'irréductibilité de la représen-
tation, il s’ensuit que T_, = AF est E l'opérateur unitaire.

Puisque, d’autre part (T_.)* = Ti_o2 = T. = E.X* = 1, il s'ensuit que
A=+1ou A= —1. Dans le premier cas T_, = +F, T, =T_, et nous avons
une représentation unique ; dans le second cas T, = —FE et T_, = —1T,, c’est-
a-dire que la représentation est a deux valeurs et les opérateurs 7, = T,. Et

Ta différent en signe seulement.

3.7.1 Représentations a deux valeurs du Groupe géné-

rale Lorentz

Le groupe général de Lorentz est obtenu a partir du groupe de Lorentz
propre G par I'addition de trois réflexions s,t¢,j (s est le spatial, ¢ le tem-
porel et j la réflexion compléte) et tous les éléments possibles de la forme

sg',tg’,jg’ ,ou ¢’ est un élément du groupe propre.
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On note que les transformations e, s, ¢, j (e est la transformation d’iden-

tité) forment un groupe commutatif avec la table de multiplication suivante :

e|ls|t|]
ele|s|t]]
s|s|le|j|t
tit|jlels

Jjliltls]e

Nous appellerons ce groupe le groupe des réflexions.

Supposons maintenant qu'une représentation g — 7, du groupe général
soit spécifiée. Cette représentation génére une représentation ¢’ — 7, du
groupe propre, et une représentation 7 — T.(7 = e,s,t,j) du groupe de
réflexions.

On considére tout d’abord le cas ot la représentation g — T, du groupe
propre (généré par la représentation du groupe général) vaut deux valeurs
g — £T,. Naturellement la représentation du groupe de réflexions est éga-

lement & deux valeurs :
e—+FE, s—4+5 t—-4£T, j—+J
Les opérateurs S, T, J se combinent clairement de la maniére suivante :
ST==+J, SJ=+£T, TJ=+J

S?=+F, T?=+E, J*=+4F

De ces équations, il résulte facilement que les opérateurs 7', .5, J font la na-

vette entre eux :
7s=85T, JS=SJ, TJ=JT
ou ils anticommute :
TS=-ST JS=-S5J, TJ=-JT

En conséquence, nous considérons deux cas.

Premier cas. Les opérateurs S,T,.J commute. Dans ce cas, nous pouvons
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choisir le signez pour ces opérateurs afin qu’ils se multiplient selon le tableau

précédente.
Ts=ST=J, JS=S5 J=T, Jr=17, J=S5
S2IT2:J2:E

Il est clair que dans ce cas les opérateurs E, .S, T, J spécifient une représen-
tation unique du groupe de réflexions e - F, s = S, t = T, 7 — J, Une
représentation du général groupe qui conduit a cette représentation unique
du groupe de réflexions sera appelé une représentation unique du groupe
général (la nature a deux valeurs de cette représentation n’est liée qu’a la

nature a deux valeurs de la représentation du groupe propre).

Deuxiéme cas. Les opérateurs, S, T, .J anticommute
On vérifie facilement que par un choix de signe pour les opérateurs il est

possible de s’assurer qu’ils combinent selon le tableau :

E|S|T|J
E|E|S|T]|]J
S|S|E|J
T|T|-J|E]|-S
J1J|-T|S|-E

opérateurs + F, +5, T, +.J qui forment une représentation unique du groupe
de réflexions ; en d’autres termes la représentation e — +F,s — £S5t — £7T,
7 — £J, de ce groupe est essentiellement a deux valeurs.

Une représentation du groupe général, conduisant a une telle représentation
a deux valeurs du groupe de réflexions est dite étre une représentation a deux
valeurs du groupe général (sa nature a deux valeurs est liée non seulement
a la nature a deux valeurs de la représentation du groupe propre, mais aussi
avec la nature a deux valeurs de la représentation du groupe de réflexions).
Nous notons qu’une représentation du groupe général peut étre a deux valeurs
méme si la représentation du groupe propre généré par celui-ci est unique ; il
suffit que la représentation du groupe de réflexions soit a deux valeurs. Nous

décrirons ci-dessous la construction nécessaire.
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En conclusion, nous notons que, tout comme une représentation a deux
valeurs du groupe propre peut étre considérée comme une représentation
fidéle et unique du groupe de matrices complexes du second ordre avec un
déterminant égal a 1, une représentation a deux valeurs du groupe de les
réflexions peuvent étre considérées comme une représentation fidele et unique
d’'un groupe composé de huit éléments, e, €', s, s’ t,t', 7,5 avec la table de

multiplication suivante :

Les relations restantes sont déterminées par celles déja écrites (voir le tableau
précédente). Les représentations uniques du groupe de réflexions ne sont pas
des représentations fidéles de ce groupe de huit éléments mais sont telles que
T, =T, Ty, =T, etc. Cette connexion entre les représentations du groupe
de réflexions et le groupe de huit éléments que nous ont construit est tout
a fait analogue a ce qui existe entre les représentations du groupe propre de

Lorentz et le groupe des matrices complexes unimodulaires du second ordre.

3.8 Groupe de Lorentz L

20
R* étant muni de la forme de Minskovski, de matrice Q = CO / )

dans sa base canonique, le groupe de Lorentz L est celui des matrices L des
endomorphisme de R* laissant invariant la forme de Minkowski c’est & dire

vérifiant

'‘LQL =L (3.11)

On en déduit que si I'on écrit L sous la forme

L= ( g/ t(il/c ) (3.12)
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_ty
Son inverse est L™ = Q7ML(Q soit L™ = ( ,YU tA/C > , et ses coeffi-
—c
cients vérifiant les relations si —y # —1
ViU

72:1+tUU:1+tVV,A:S+1 (3.13)

+7

S étant une matrice orthogonale telle que V' = SU

Dans ce cas : det(L) = det(S).

Lors que 7 est positif et S une rotation, L € LT (groupe spéciale de lorentz).
Sinon, dans l'interprétation physique, il y a renversement du temps ou re-

tournement de 'espace,

-1 0
Sivy=—1, L est de forme L = 0 S ) ou S est orthogonale.

Les matrices particuliéres de £

(3 )05,

Ot R est une matrice de rotation et ou ~ positif et U sont liés par 3.13 sont
appelées matrice de rotation pure et matrice de Lorentz pure de vecteur U

(boost pour les anglo-saxons).

L= L(R)L(U) = L(V)L(R) (3.14)

L’algébre de Lie de L

S’obtient de maniére traditionnelle : soit L : Z — £ de classe C' sur

I'intervalle réel Z, et pour X fixé soit X, = L, X. En dérivant il vient

Xe=Ls X soit Xs= 2. X, avec Y= LSL;1
d’ott puisque ‘L ,QL, = Q :

0 X
YQ+QX =0, et la forme de X: Y= /e (3.15)
cX Q
Réciproquement soit s — > continue sur Z a valeurs une matrice réelle
d’ordre 4 telle que (Vs, '2,Q + QY = 0). La solution de L,= ¥ L, pour
la condition initiale Ly, € L vérifie

%(thQLs) = Ls(tEsQ + QES)LS =0
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elle a donc ses valeurs dans £ étant de méme nature que L, par exemple
appartenant comme elle & £, ou présentant continiment un renversement
du temps ou un retournement de l'espace ou les deux par simple raison de

connexité, Z étant un intervalle.

3.9 Algébre de Pauli P

L’algeébre de Pauli P est tout simplement I’algébre My(C) des matrices
d’ordre deux sur C , considérée comme algébre réelle de dimension huit, de

base engendrée par les matrices de Pauli

01 0 —1 1 0 . 10
o1 = , 02 = ) ,03 = avecaussiog =
10 1 0 0 —1 01

Soit la base (0¢, 01, 09, 03, 0203, 0301, 0109, 010903) notée (oq, 01, 09, 03,107,109, 03,100)
en accord avec les notations dans M,C.
Rappelons les relations o,0; = 0;0; = 20;;00

Un élément ¢ de P s’écrit a priori

€ =aog+ibog+u+iv ou (a+ib)oy+ (u+iv) (3.16)
onu=>3"_uto, et v=~i_ vFoy.
On décompose P en somme directe des scalaires, pseudoscalaires, vecteurs

et pseudovecteurs :
P = Sc(P) @ PsSc(P) @ Vec(P) @ PsVec(P).

Le déterminant de & = aoy + 1boy + u + v s’obtient en multipliant £ par

sa coadjointe £°.

£¢ = aog+ibog—u—iv = det(€)og = £€¢ = (a®—0? =W+ V *+2i(ab— U .V ))oy
(3.17)

Remarquons

deté = (a +1ib)? + det(u + i), det(u + iv)og = —(u + iv)?
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Conventions géométriques

1. 11 est commode d’identifier un vecteur de VecP avec celui de R3 eu-
clidien orienté de mémes composantes dans la base canonique : x =
3 .k _y3 Lk
Yy 20y 7 = Y2y
Ainsi écrit-on :

w= (4. V)+id ANV

relation utile pour faciliter les calculs dans P

2. De maniére analogue, identifions un élément de Sc(P) @ Vec(P) avec

le vecteur de R* muni de la forme de Minkovski (), la base canonique

?07 €>1, ?2, ?3, vérifiant

Qo) =¢c , k=1,23:Q(¢y) =1

, de sorte que
3 3
ctoo—l—Zxkak (—)t?o—i‘? :t?o—FZ%k?k (318)
k=1 k=1
D’apres (3.17)
Q€+ ) = det(ctog + )
Dans la suite nous noterons 7 = ct+z , en omettant plus généralement
d’écrire o unité de 'algébre P (ce qui revient a écrire 1 a la place de
0'0) .
Notons que £ € Sc(P) @ Vec(P) si et seulement si & = ¢ hermitienne
de ¢ :
(a+ib+u+iv)l =a—ib+u—iv

3.10 Représentation dans P du groupe de Lo-

rentz
L’application

T=ctt+a 7 =ct' +2' =¢(ct+ ) =&rdd (3.19)
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est un endomorphisme de Sc(P) @ Vec(P) qui conserve @ ssi |det(€)]? = 1.
Quitte a diviser £ par 'une des racines carrées de son déterminant, on peut
supposer que & vérifier

det(¢) =1

ce dont nous conviendrons dans la suite et dirons que £ est unitaire (unimo-

dulaire serait plus exact, mais unitaire a une connotation vectorielle).

Les représentations de £ dans P

Car en supposant £ sous la forme , son déterminant valant 1 on a d’aprés
(3.17)
- -+t =1 ab—UT =0
d’out la démarche
1. Si ¥ =0, nécessairement b = 0 et a? — u? = 1.
Il existe ¢ réel et ? unitaire tels que

£ = coshg + sinh %l

et en développant (3.19) on vérifie que ¢ représente une transformation
de Lorentz pure de vecteur sinh ¢ [ . Il est commode d’écrire £ selon
Bsinh £1; notons que Bt = 4.

2. Si ¥ =0, un calcul direct montre que

(a —w)é = (a® +0°) + (au+bv+ U A V)

. Puisque (a —iv)™! = (a + ) /(a® +v?) :

. . i @V Fautbo+ T AT
a+ib+u+iv =

varte @ (3.20)

AL tautbv+ AU atin
Va2 + 12 "VaZ+v2

la seconde expression étant obtenue en considérant £.(a — ) .

ou encore

Il existe

theta réel et 7 unitaire tels que

) 0 .0 0 a AN [
rNO = COS ——17811l —N  avec COS— = —F———,S Il - N = ——F——
2 2 2 \/CL2+?}2’ 2 Va2 + 02

(3.21)
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et en développant (3.19) (pour p) on voit que p représente une rotation
pure d’angle 6 autour de 'axe dirigé par . Lorsque cette rotation est
un demi-tour (ssi @ = 0) on choisit p = in, sinon on note p sous la
forme p(tan én).

En conclusion selon (3.14), pour ¢ unitaire, (3.19) correspond & un
élément L7 la réciproque est évidente, et les relations (3.20) sont les
transcriptions des relations (3.14) ( (décompositions polaires). Il est
intéressant de noter, si a # 0, que la rotation R figurent dans (3.14)
n’est pas un demi-tour et que —v/a (dans la représentation par &) est
le vecteur d’O.Rodrigues de R.

En considérant, £ étant toujours unitaire
T E(=T)EN T &t et T —£7Ed

on obtient alors les représentations dans P des transformations de Lo-

rentz changeant 'orientation du temps ou de I’espace ou des deux.

Remarques

1.

La représentation précédente de LT dans P donne immédiatement la
structure de groupe de L. Avec les notations de (3.12) et (3.16) ,
le coefficient v de la matrice L est le terme scalaire de &7 @ v =
a?+ b +u?+v2 =1+42(a®> +v?) > 1 car £ est unitaire, et si v =

coshp : a? + v? = cosh® £

. Notons que z — pxp' représente une rotation dans R?. D’ailleurs pf =

-1

p
Il est facile de passer de L € £ & £ € P unitaire la représentant, et
réciproquement ; il y a ambiguité entre le choix de £ ou celui de —¢. A
partir de L, sa premiére ligne (avec v = cosh ¢) donne §(sinh £1), et la
matrice R donne p = in ou p(tan gn

Si € unitaire correspond a L(R)L(U) = L(V)L(R) selon (3.16).

alors £ correspond & L(—U)L(R™Y) et T a L(R"Y)L(V) = ((L(V)L(R)).
La connaissance de u + v entraine celle de (a +ib) (de carré 1+ (u+

iv)?) c’est a dire de £ et de —£¢ qui correspondent & L et L™t
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Digression : les Quaternions Remarquons que la sous-algeébre de P engen-
drée par (og, —ioy, —ioy, —ios3) de table de multiplication (en posant og = 1

et —io; = 7; pour j =1,2,3).

T1 T2 T3
T1 —1 T3 —T2
T2 —T3 —1 1
T3 T2 —T1 —1

n’est autre que le corps des quaternions H
H étant la somme directe Sc(H) = Vec(H), on identifie les scalaires de H
aux réels et ses vecteurs aux vecteurs de R? selon 7 = 22:1 Wy — W =
Zizl uFE . Remarquons que selon l'identification des vecteurs de P & ceux
de R? : u +— 7, nous avons dans P : w = —iu en accord avec la définition
des 7.
i

C’est ainsi qu’une rotation d’axe orienté par unitaire et d’angle 6 est

représentée dans H par

s ( 0+. 0_)_< 0 . 9_)
T cos 5 + sin 57)T(cos 5 — sin o7

Notons que det(T) = H7||2

3.11 Représentation dans P de ’algébre de Lie
de £*

L’emploi de la représentation de £ dans P permet d’obtenir aisément,
pour tout élément de £1 un élément de Palgeébre de Lie du groupe de Lorentz
dont le premier est 1’exponentielle du second; on dira que celui-ci est le

logarithme de celui-1a. Ainsi peut-on obtenir certaines propriétés de £+.

3.11.1 Algébre de Lie des matrices de P

1. Soit £ : T — P de classe C* sur I'intervalle réel Z et a valeurs unitaires.
T étant fixe de Sc(P) @ Vec(P) , soit 7, = &7El @ en dérivant et

exprimant 7, a l'aide de 7, on obtient

Ts= NsTs + 7?577;L avec 1 :és 5571
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Si on considére 7, = £(—7)ET ou T, = £7ET ou T, = €77, on

retrouve 7).

. Puisque ;' = £ (&, étant unitaire) , et que dans P : af° = (Bac)¢, L(£,£8) =

0

entraine :

ns+mns =0 donc ns est de la forme = +i v

Ainsi 7 est & valeurs dans Vec(P) @ PsVec(P) et I'endomorphisme de

R* correspondant & 7 — n7 + 77 s’écrit en utilisant (3.18)

=~
w7

= =
T =2ctu — 0 AT
c

tedo+ 7 —t' o+ 7" avec (t' =2

On retrouve la forme des matrices de I'algébre de Lie de L7 :

0 20 Je _ =

~ / ou QL est la matrice de T — v AT
20y —20= v

Exemples classiques : f = cosh 5 +sinh 3l : 7 = é; p = cosg —

isingn: n=—ig

. Réciproquement soit  : Z — P a valeurs dans Vec(P) @ PsVec(P),

continue sur cet intervalle réel, et soit £ la solution de &= n¢ pour la
condition initiale &, .

Puisque %det(&s) = %(5355) = (ns + nS)det(&s) = 0, ainsi det(&;) =
det(&s,) -

¢ est a valeurs unitaires si et seulement si & est unitaire .

de transformations de Lorentz de méme nature (conservant ou non les

orientations du temps et/ou de 'espace).

. En conclusion, Vec(P) @& PsVec(P) est algebre de Lie du groupe des

matrices de Pauli unitaires.

Le crochet de Lie de cette algébre s’exprime selon
[u+iv, u'+iv'] = (u+iv) (W' +iv") — (u' +iv") (u+iv) = i(u+iv) A(u'+iv")

Dans H on retrouve le crochet de Lie de I'algebre de Lie des matrices

orthogonales s’exprimant par un produit vectoriel.



Conclusion

Dans ce mémoire on a évoqué la notion de représentation des groupes
comme un élément essentiel de la théorie en géométrie différentielle. On a
donné un exemple de construction de représentation a partir d’autres. Cette
technique est un outil pratique pour comprendre la géométrie d’un groupe (le
groupe de Lorentz dans notre cas) ou d’une variété & un groupe de symétrie

donnée.
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