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Introduction

Le calcul différentiel est un outil dont tout mathématicien, quelle que soit
spécialité, doit en posséder les rudiments.

Pour celui qui ne les a rencontrées qu’au lycée et en premiére année d’univer-
sité, les équations différentielles sont généralement synonymes de calcul trés peu
conceptuels aboutissant a des expressions algébriques ou analytiques constituant
la "solution générale" de I’équation considérée. Au moment d’abord un enseigne-
ment spécifique d’équations différentielles, il est donc fondé a croire (et a redouter)
que ledit enseignement va consister a lui inculque de nouvelles méthodes (dites
de résolution par quadrature) qui lui permettront de déterminer les solutions de

classes de plus en plus larges d’équations différentielles.

Il convient donc d’inique tout de suite que trés rares sont les équations dif-
férentielles dont les solutions peuvent s’exprimer a ’aide des fonctions usuelles
telles que sin z ou log x, ou de primitive (= quadratures) de telles fonctions. Aussi
sera-t-on intéressé a formuler des théorémes d’existence et d’unicité de solution :
I'unique solution constitue alors une (nouvelle) fonction dont on peut envisager
d’étudier les propriétés (périodicité, monotonie, comportement & 'infini) aussi

bien que les fonctions trigonométriques par exemple.
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Les problémes de géométrie infinitésimale conduisent souvent a des équations
aux dérivées partielles. L’intégration de ces équations est un des problémes les plus
difficiles de I'analyse. Au XV I 1€ siécle, d’ Alembert donna la solution générale de
I’équation célebre des cordes vibrantes, qui régit aussi le mouvement de I’air dans
un tuyau sonore; les noms de Monge et d’Ampére sont liés ensuite a I’histoire
de I'intégration des équations aux dérivées partielles du second ordre. Pendant de
longues années apreés les recherches de ces deux grands géometres, aucun progreés
réel ne fut réalisé dans cette théorie. En 1870, Darboux fit connaitre une mé-
thode extrémement importante qui allait bien au dela des recherches antérieures.
Le champ des équations intégrables fut considérablement agrandi, comprenant en
particulier toute la premiére classe de la classification d’Ampére. Darboux n’a
pas poursuivi lui-méme les applications de sa méthode, mais nombreux ont été

ses éléves,en France et au dehors, qui en ont montré la fécondité.

Dans cette période, entre 1870 et 1880, 'activité scientifique de Darboux fut
prodigieuse. Un des d’objets de I'analyse abstraite est ’étude de 1'idée de fonc-
tion, ¢’est-a-dire de dépendance entre deux ou plusieurs grandeurs. Il a fallu long-
temps avant qu’on se rendit compte de ’étendue extraordinaire de cette notion.
Si Newton et Leibnitz avaient pensé que les fonctions continues n’ont pas né-
cessairement une dérivée, le calcul différentiel n’aurait pas pris naissance. Il est
indispensable qui les choses paraissent d’abord simple. Sans vouloir trop générali-
ser, on peut dire ’erreur quelque fois utile ; certaines époques, une vérité seulement

approché s’est montrée plus féconde que n’a été une connaissance plus compléte.
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Aussi Newton n’aurait probablement pas découvert les lois de la gravitation
universelle, si au début de ses travaux, il n’avait pas regardé les lois de Kepler

comme entiérement rigoureuses.

I'objectif de ce travail consiste a étudier 'existence et 'unicité des solutions
pour quelques classes d’équations différentielles implicites. Les résultats obtenus
sont basés sur quelques théorémes de point fixe. La théorie de point fixe est au
¢ 7ur de I'analyse non-linéaire puis qu’elle fournit les outils nécessaires pour avoir

des théorémes d’existence dans beaucoup de problémes non-linéaires.

Dans cette mémoire en utilisant les théoréme de point fixe suivantes (Le prin-
cipe de contraction de Banach, L’alternative non-linéaire de type Leray-Schauder

et le théoréme de Burton-Kirk).

Ce mémoire est composé d’une introduction et de trois chapitres.
Dans le premier chapitre, nous présentons des notations, des définitions, certaines
notions préliminaires et des théorémes principaux qui seront utilisé dans les autres

chapitres.

Dans le deuxiéme chapitre, on va étudier I'existence et 'unicité des solutions
d’équation différentielle hyperbolique implicite fonctionnelle.
Nous aurons deux résultats, le premier est basé sur le principe de contraction de
Banach par montré 'existence et 1'unicité des solutions et le deuxiéme résultat
basé sur le théoréme de Leray-Schauder pour prouver l'existence des solutions

avec un exemple.
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Dans le troisieme chapitre, nous présentons des résultats sur 'existence des
solutions pour la classe des équations différentielles perturbées du second ordre et
un résultat basé sur le théoréme de point fixe de Burton-Kirk pour la somme de

deux opérateurs, un contraction et I’autre complétement continu, avec un exemple.



Chapitre 1

Préliminaires

Dans ce chapitre, nous introduisons des notations, des définitions et des lemmes

préliminaires qui seront utilisés dans le reste de ce mémoire.

1.1 Espace de Banach

Définition 1.1.1. Soit E un espace vectoriel normé et (x,,), une suite d’éléments

de E.On dira que la suite (x,), converge vers un élément a € E, si :
Ve>0,3NgeN:VneNn>Ny=|z,—al<e.
Définition 1.1.2. La suite (x,,), est dite de Cauchy, si :
Ve>0,3NeN:VpgeN, pg=>Ny=|x,—2,|<e.

Définition 1.1.3. On appelle espace de Banach tout espace vectoriel normé dans

lequel toute suite de Cauchy est convergente.
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Remarque 1.1.1. [l est aisé de montrer que toute suite convergente est une suite

de Cauchy.

Exemple.
L’espace vectoriel R™ muni de I'une des norme équivalentes :
@ lh=max(| @1 [, @ ), | @ lla= Sy [ 25 )2, || @ [ls= i | @ | avec

r = (xg,21,...,2,) € R", est un espace de Banach.

1.1.1 Compacité

Définition 1.1.4. (E,d) désigne un espace métrique.
Une partie K de E est dite compacte si, de toute suite (u,) d’éléments de K, on
peut extraire une sous-suite convergente vers un élément de K.

En particulier, toute réunion finie ou toute intersection finie de parties com-

pactes est compacte.

Définition 1.1.5. Soient E un ensemble quelconque et A une partie de E. Un

recouvrement de A est une famille (B;)ic; des parties de E vérifiant :

Acl B.

i€l

Proposition 1.1.1. Toute partie compacte de E est fermée et bornée.

Corollaire 1.1.1. Un segment [a,b] est une partie compacte de R. En particulier,

les parties compactes de R ou de C sont les parties fermées et bornées.

Proposition 1.1.2. Si A est une partie compacte de E et si B C A est fermé,

alors B est compact.



1.1 Espace de Banach 12

Théoréme 1.1.1. (Théoréeme de la convergence dominée) [8/
Soit (fn)n>0 une suite de fonctions complexes mesurables sur X.

On suppose que :
1. fu(x) converge presque partout vers une limite f(x).

2. Il existe g € L'(u) telle que, pour tout n € N on ait : |fu(z)] < |g(z)]

presque partout en x.

Alors f € LY(u) et la suite (f,)n>0 converge vers f dans cet espace :

[ 102 = sidn—0.
X n oo

1.1.2 Applications continues sur une partie compacte

Soient (E,d) et (F,d) désignent des espaces métriques compacts.

Définition 1.1.6. On dit qu’un opérateur T' est compact ; si et seulement si pour
toute suite bornée (up)n=0 C X, la suite (Tuy)n>0 admet une sous suite conver-
gente dans Y. Dans le cas o X = C([a,b]); le théoréme suivant d’Ascoli-Arzela

est généralement utilisé pour prouver la compacité des opérateurs.

Théoréme 1.1.2. (Théoréme d’Ascoli-Arzela) [7]
Une famille de fonctions M C C([a,b]) est relativement compact (i.e M est com-

pact) si et seulement si :
1. M est uniformément bornée.
2. M est équicontinue.

Lemme 1.1.1. Soit f : K — F une application continue ou K est une partie

compacte de E. Alors f(K) est un compact de F'.
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1.2 Equations différentielles

Définition 1.2.1. En mathématiques, une équation différentielle est une équation
dont la ou les inconnues sont des fonctions, elle se présente sous la forme d’une
relation entre ces fonctions inconnues et leurs dérivées successives. C’est un cas

particulier d’équation fonctionnelle.

On distingue généralement deux types d’équations différentielles :

1) les équations différentielles ordinaires (EDQO) ot la ou les fonctions incon-
nues ne dépendent que d’une seule variable.

2) les équations différentielles partielles, plutot appelées équations aux déri-
vées partielles (EDP), ou la ou les fonctions inconnues peuvent dépendre de

plusieurs variables indépendantes.

Définition 1.2.2. Une équation différentielle est une équation contenant une ou
des dérivées d’une fonction a une ou plusieurs variables.

L’ordre d’une équation différentielle est l’ordre de la plus haute dérivée appa-
ratssant dans l’équation.

Une équation différentielle linéaire homogéne est une équation différentielle

linéaire dans laquelle. On dit aussi qu ?elle est 7 sans second membre Z.

Exemple
o 2%/ +2=5x avec y(1)=3 ¢ (1)=-1
o y'+uay —y=0

e ' + 2y + 4y = cosx

Une équation différentielle linéaire d’ordre n est une équation différentielle
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qui peut s’écrire sous la forme générale suivante :

ag()y™ + ar(2)y" Y + .+ an (2)y + an(x)y = F(z)  ag(z) # 0.

1.2.1 Equation différentielle implicite
Equations différentielles ordinaires implicites

Définition 1.2.3. Une équation différentielle ordinaires implicite du pre-
mier ordre est une équation de la forme y = F(x,y,y). Ou F est une
fonction continue sur un ouvert U de R x E X E, appelé domaine.

Soient y une fonction de x définie d’un intervalle I dans E et y',y", ..., y"

les dérivées successives de la fonction y. Cette fonction y est dite solution

st elle est de classe C™ et si

Ve el; F(z,yx),y(x),...,y"(x)) =0.

Notation Le probléme de Cauchy :

v =f(z,y.y), (z,y,y) € xR
(1.1)

y(zo) = yo € R,

alors, le probléme de Cauchy (1,1) admet une solution et une seule sur [/
de R (et ceci pour tout yg € R).

1) Pour tout z € I, (z,y(x),y'(z)) € I x R2.

2) pour tout z € I, ' = f(z,y,9).

3) y(wo) = vo-
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On suppose que f est continue sur I X R? et (xq,yo) est le point fixe.
Soit y une fonction définie sur I tell que zg € I et (y: I — R).

On dit y est une solution de (1,3) si et seulement si elle vérifie :

1) Pour tout z € I, (z,y(z),y'(z)) € I x R.

2) y est continue sur /.

3) Pour tout z € I

y(z) = yo + /ﬂﬂ f(s,y(s),y'(s))ds.

Remarque (L’importance de la condition de Lipschitz)

Soit le probléme de Cauchy :

(1.2)

la condition de Lipschitz n’est pas vérifiée au voisinage de 0 et y(x) = 23

est solution sur [0, 1], y(z) = 0 est solution sur [0, 1] également.

Equations différentielles implicites aux dérivées partielles

Le caractére particulier d’une équation aux dérivées partielles (EDP) est de

mettre en jeu des fonctions de plusieurs variables

(x,y,...) — u(z,y,...).

Une EDP est alors une relation entre les variables et les dérivées partielles

de w.
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Définition 1.2.4. Soit f : R — R et (x,y0) € R?, On appelle applica-
tions partielles associées a [ en (xg, o), les deuz applications de R dans R

obtenues en figeant l'une des variables :

firz— filz) = f(z,90) et faryr— faly) = f(@0,v).

La notion de dérivée partielle de f en un point (xg,yo) est alors particulie-
rement simple : il s’agit des dérivées des applications partielles associées a
fen (zo,v0)-

Notation 1.2.1. w,; est la dérivée partielle de u(t,z) par rapport soit avec

les motations habituelles du calcul différentiel :

_0Ou
ot

Uy

Soient Q2 :=]a, b[x]c, d[ une partie de R?* et f: QA xR? — R, ¢ :Jc,d[— R
deux fonctions. Considérons le probléeme de Cauchy suivant :

pour tout (t,x) € Q et u,u; € R?

%u(t,x) = f(t,z,u(t, z), u(t, z)),

uw(0,z) = ¢(x); € [c,d].

Ce probleme est appelé EDP implicite avec une condition initiale.

Exemple On considére le probléme suivant :

u(t, @) = dug,; t20; x€[0,1], 13)

u(t,0) =t wu(t,l)=2+t t=0.
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Dans cet exemple, nous avons :

et

1.3 Théorémes de point fixe

En analyse, un théoréme de point fixe est un résultat qui permet d’affir-
mer qu’une fonction f admet sous certaines conditions un point fixe. Ces
théoremes se révelent étre des outils treés utiles en mathématiques, princi-
palement dans le domaine de la résolution des équations différentielles.
Théoréme 1.3.1. (Théoréme de point fixe de Banach) [1]

Soient (E,||.||) un espace de Banach et G : E — E une application de E
dans E. Si G est une application contractante i.e. Il existe 0 < k < 1 telle

que pour tout u,v € F
(G (u) = G)[| < Ellu—wvl|.

Alors G admet un unique point fize ug(i.e), f(ug) = uo.

Théoréme 1.3.2. (Alternative non linéaire de type Leray-Schauder)
[6]

Soient X un espace de Banach, U un ouvert d’une partie convexe D de X

et 0 € U. Supposons que N : U — D est un opérateur continu et compact.

Alors une seule des propriétés suivantes est satisfaite,
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(S1) N admet un point five dans U, ou

(S2) 1l existe v € (0,1) et u € OU avec u = v N(u).

Théoréme 1.3.3. (Théoréeme de point fize de Burton-Kirk ) [4]
Soient X un espace de Banach et A, B : X — X deux application vérifient :
(1) A est une contraction.

(1) B est complétement continue.

Alors une seule des propositions suivantes est satisfaite,
(S1) léquation opérateur u = A(u) + B(u) a une solution, ou
(52) lensemble € = {u € X 1 u = I/A(E) +vB(u), v e (0,1)} nest pas
v

borné.

1.4 Lemmes Préliminaires.
Soit C':= C(J) l'espace de Banach de fonctions w : J :=[0,7] x [0,b] — R
continues de J dans R avec la norme

ullc = sup [u(t,z)].
(t,x)ed

Lemme 1.4.1. Soit h : J — R une fonction continue. La fonction u €

C(J,R) est une solution du probléme suivant :

.

(D2u)(t,z) = h(t,z); (t,z) € J:=1[0,T] x [0,]

u<07‘7;) = ¢($), T e [O,b],
(1.4)

u(t,0) = o(t);  te 0,7
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st et seulement si la fonction u vérifie [’équation intégrale suivante :

u(t, ) = p(t, x) —|—/0 /OI h(r,&)dédr, (1.5)

ol

p(t, x) = ¢(x) + 9(t) — ¢(0).

Preuve. Soit u(t, x) une solution du probléme (1.4). Alors
(Diu)(t, ) = h(t, ).

D’ou

/ot /om afggu(T’ §)dedr = /Ot /Oxh(n ¢)dedr.

Il s’ensuit alors

u(t, ) — u(0,z) — u(t,0) +u(0,0) = /o /OI h(r,&)dédr.

On trouve

ult,2) = dlx) + (1) — 6(0) + / / Ch(r, €)dedr.

Donc on obtient

u(t,z) = p(t,x) + /Ot /Ox h(T,&)d&dr.

Maintenant si u(t, z) vérifie (1,5). Il est claire que u(t, z) vérifie :
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u((),:v) = ¢($), u(tv O) = w(t)
et

(D} u)(t,z) = h(t,z); (t,z) € J.

Corollaire 1.4.1. Soit f € C une fonction et u € C(J,R) est un solution

de probléme suivant :
(D u)(t,x) = f(t,z,u(t,z), (DX u)(t,x)); (t,x) € J:=[0,T]x[0,b]. (1.6)

avec les conditions initiales

;

U(O,l’) = (b(x)a LS [O,b],

qu(t,0) =(t); telo,T], (1.7)

si et seulement si la fonction u vérifie I’équation intégrale suivante :

u(t,z) = plt, z) + /0 t /0 " h(r, €)dedr, (1.8)

ouh e C(J), avec

ht,z) = f <t,x, ult, ) + /0 t /0 " h(r, €)dedr, h(t,x)) .



Chapitre 2

Le Probléme de Darboux pour
les Equations Différentielles
hyperboliques implicites

fonctionnelles

Dans ce chapitre, nous présentons des résultats d’existence et d’unicité des
solutions de la classe d’équations différentielles hyperboliques du second

ordre.
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2.1 Introduction

Considérons I’équation différentielle hyperbolique implicite fonctionnelle sui-

vante :

(D} u)(t,z) = f(t,x,u(t,z), (Diu)(t,z)); (t,z) € J:=1[0,T]x[0,b]. (2.1)

avec les conditions initiales :

u(t,0) = ¢(t); telo,T], (2.2)

onT)b>0,f: JXxRXxR—R, ¢:[0,0] > Retr:[0,7] - R des
fonctions continues.
Définition 2.1.1. Une fonction continue u € C(J,R) est une solution du

probleme (2.1) — (2.2), si :

U(O,ZL’) - ¢(x)7 u<t’0) = 1/J(t)7 ¢<O) - ¢(0)

et u vérifie l’équation (2.1) dans J.
Lemme 2.1.1. Soit f : J xR xR — R une fonction continue. Alors
le probleme (2.1) — (2.2) est équivalent au probleme du solution d’équation

intégrale suivante :

u(t,z) = p(t,z) + /0 t /0 " h(r, €)dedr,
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ou h e C(J), avec
ht,2) = f (t,x,w,x) + t J h(m)) .
0 0

2.2 Reésultats d’existence et unicité

Maintenant, nous donnons une condition suffisante pour I'existence et I'uni-

cité de la solution du probléme (2.1) — (2.2).

Théoréme 2.2.1. Supposons que ’hypothése suivante est vérifiée :

(Hy) - Pour u,v,w,z € R il existe des constantes k >0, 0 < ¢ < 1,
\f(t,x,u,v)—f(t,x,w,z) \§k|u—w|+c|v—z|

St
Tbk “1
1—c¢

(2.3)

alors, le probléme (2.1) — (2.2) admet une solution unique définie sur J.
Preuve. On considére opérateur N : C(J,R) — C(J,R); définit pour tout
h e C(J,R). On a

(Nu)(t,x) = u(t,x) +/0 /OI h(r,&)d¢dT; (t,x) € J,
avec h € C(J),

ht,x) = f (t,x, u(t,z) + /0 t /0 ) h(T,g)dng,h(t,x)).
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Donc d’aprés le Lemme 2.1.1, les solutions du probléme (2.1) — (2.2) sont
les points fixes de I'opérateur V.

Soient u,v € C(J) et (t,x) € J. On a,

| (Nu)(t,2) — (Nv)(t,2) |< / / o(t.2) | dedr,  (2.4)

avec

h(t,z) = f(t,x,u(t,x), h(t,x))

et

g(t,l’) - f(t,x,v(t,x),g(t,x)).

Donc, d’aprés I'hypothése (H; ), nous avons
| h(t2) — g(t,2) |< k| u—v | +c | h(t,2) - g(t,2) |
d’ou

[ hta) —g(t) | < 2t a) o) |

IN

1—_CHU—UHC-
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En suite, d’aprés 1'égalité (2.4) on a

| W)t - o)) | < [ [T e dea,

k T b
< vl [ [ den
1—c o Jo
Donc
Tbk
| N() = N(0) fle< == [ u=vle.

D’aprés (2.3) il s’ensuit que N est une contraction, d’ot N admet un point
fixe unique u d’apreés le théoréme 1.3.1.

La fonction u est la seule solution du probléme (2.1) — (2.2).
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Exemple 1. Considérons le probléme suivant :

(

2 _ 1 .
(Dru)(t,7) = somemmmuamoracsy ¢ (G e) € [0,1] [0, 1],
u(0,z) =% 2z €[0,1],

u(t,0)=t; tel0,1].

\

(2.5)

Posons

1
et (14 |u |+ v [)’

flt, x,u,v) = V(t,xz) €0,1] x [0,1].

Il est clair que la fonction f est continue.

Pour tout u,v,w,z € Ret (t,x) € [0,1] x [0, 1],

| f(t,z,u,0) — f(t,x,w,z) | =

5et+1x+2 <(1—|—i+v) B (1+;+2))'

1
< W(|U—w|+|v—z|)
1
Donc, la condition (H;) est satisfaite avec k = ¢ = 5% Aussi la condition
(2.3) est vrais pour T'=b = 1.
En effet
Tbk 1

1.

= <
1—c be?2—-1
D’aprés, le théoréme 2.2.1, le probléme (2.5) admet une unique solution sur

0,1] % [0, 1].
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2.3 Reésultats d’existence

Le théoréme suivant nous donne une condition pour que le probléme (2.1) —
(2.2) admet une solution.
Théoréme 2.3.1. Supposons que ’hypothése suivante est vérifiée :

(Hy) - I existe deux fonctions p,q € C(J,Ry), telles que :

| f(tw,u0) | <ptx) [u] +q(tz) [ o]

Pour tout (t,z) € J et u,v € R.
Si
Top* +q" < 1, (2.6)

o

p*= sup p(t,z), ¢ = sup q(t,x),
(t,x)ed (t,x)ed

alors le probléme (2.1) — (2.2) admet au moins une solution définie sur J.

Preuve. Soit By, la boule bornée fermée convexe de I'espace de Banach C'
définit par :
Bu = {ue C(J) | u fle < M},
ou
1 — (Tbp* + q*)’

M > u*+

avec

pt= sup |u(t, ).
(t,x)ed
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On définit Popérateur de point fixe N : By, — By, pour tout h € C(J,R)

telle que :

(Nu)(t, ) = plt, z) + /0 t /0 " h(r €)dedr: (1 x) € J = [0,T] % [0,].

Avec, h € C, on a

hit,z) = f (t,x, ult, ) + /0 t /0 " h(r, €)dedr, h(t,x)) .

Etape 1 : N est continue.

Soit (uy,)nen une suite telle que u,, — u dans By, pour tout (t,z) € J, on

a

(Nun)(t2) — (Nu) ()] < |ultz) + / /Oihnv,@dgdf—u(uas)— / /jhwdsdf

/Ot /Ox ho(T,&)dédT — /Ot /Ox h(r,&)dédr

/ / (. €) — B, €)| dédr,
0 0

IN

IN

avec hy,, h € C(J,R), on a

ho(t,x) = f(t, z,un(t, ), ho(t, x))

et

h(t,x) = f (t,z,u(t,z), h(t,x)).
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Puisque u,, — u quand n — oo et f est une fonction continue.

Alors, d’aprés le théoréme de la convergence dominée on obtient

N(up)— N(u).

n—oo

Etape 2 : B), est uniformément bornée.

V(t,z) € J, he C(J,R), on a

(Nu)(t,z) = pu(t,x) —I—/O /Of h(r,&)d&dr,

ou

Wt ) = f <t,x, u(t, z) + /0 t /0 " h(r, €)dedr, h(t,:c)) |

/Ot /Ox h(r,&)dédr

[(Nu)(t, )| < |p(t =)| +

D’aprés (Hz), nous avons

|h(t,x)] < p(t, ) +q(t, x)[n(t, )|

u(t ) + /0 t /0 *h(r€)dedr

IN

p (e + [ [ btrgitear ) + olne.o)

alors

I lle <p*(w*+To | hilc) +a" [ hle,

(2.7)
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donc

p*/,l/*
hlle < = M,.
Ille <= (Tbp* +q*) "

En suite, d’apres I’égalité (2.7) implique

(Nu)(t,2)] < |ult,z)] + / / My dédr

Donc

Comme By est bornée, alors N(Byy) est uniformément bornée.

Etape 3 : N(Byy) est équicontinue.

Soient (t1,x1), (t2,x2) € J 11 < ty et x1 < g, s0it u € By. On a
| (Nu)(tz, z2) — (Nu)(tr, 71) |

Y

< ‘,u(tg,xg)—l—/OQ/O 2h(7’,§)d§d7’—,u(tl,xl)—/01/0 1h(7’,§)d§d7’

ou

h(t,x) = f (t,x,,u(t,x)—i—/ot /0 h(r,&)dédr, h(t,x)).
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D’ou

| (Nu)(te, x2) — (Nu)(ty,z1) | < |ulte, v2) — p(ty, 1)

]Cm./gw2h<r,g)dgd7--jghjgxlh(T,g)dng
jﬁbijifzh(ng)dde
‘Awlmh@gmah

< ulte, w2) — plty, z1)| +

Ahlfmﬂgﬁw

_|_

On obtient alors

| (Nu)(ta, x2) = (Nu)(tr, 1) | < |plla, 22) = pl(ty, 1)

+ (' +p TOMy + ¢" My)[ta(x2 — 1) + 22tz — t1)]

— 0.
(tl,xl)—>(t2,x2)

Donc l'opérateur N(B)) est équicontinue.
Par conséquence, d’aprés les étapes 1 a 3 et le théoréme d’Arzela-Ascoli,

il s’ensuit que l'opérateur N : By, — Bjys est continue et relativement

compact.
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Etape 4 : L’estimation Apriori.

Nous montrons maintenant qu’il existe un ensemble ouvert U C C(J) avec
u # AN (u), pour A € (0,1) et uw € U, ici OU désigne la frontiere de U.
Soit u € C(J) avec u = AN (u) pour certain 0 < A < 1.

D’ou, pour tout (t,z) € J, on a

u(t,z) = Au(t, ) + )\/0 /Ox h(r, &)dédr,

ou

ht,x) = f (t,x, u(t,z) + /0 t /0 ’ h(T,g)dng,h(t,x)).

Donc, pour tout (t,z) € J, on a
| ulle< M.

Si, on pose

U={uecClJ) :|ule< M+ 1},

alors, par ce choix de U, il n’existe aucune v € Ju telle que u = AN (u),
pour certain A € (0,1).

Par conséquence, d’aprés le théoréme 1.3.2. On en déduit que 'opérateur N
admet au moins un point fixe u dans U qui est une solution du probléme

(2.1) — (2.2).
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Exemple 2. Nous considérons maintenant le systéme d’équations différen-

tielles fonctionnelles de la forme :

(
(DFu)(t, =) = 7et+x+2(tlz+|u(m)|) + ﬁ | (Dfu)(t,2) |5 Y(t,x) €[0,1] x [0, 1],

u(0,z) = tz?; x€10,1],

u(t,0) =xz(14+2t); te][0,1].
\
(2.8)
Posons
Ft ) E Lt ) e x 01
r.u,v) = — |V €T .
b) b b) 7et+x+2(1 + ’u‘) 11 9 b) b] b)

Pour tout u,v € R et (¢,x) € [0,1] x [0, 1] nous avons

2
t
|f(t>x7u(t> x)?”(tax)ﬂ - W’u(tam)‘ + ﬁ|v(t7$)‘

L e + = ol
7€2UC 11UC'

On a
2
t _
t —_-
1 * 1 S
= 72 et q = 11 Ainsi la

Alors, la condition Hy est satisfaite avec p*

condition (2.6) elle est vérifie pour 7= b = 1.

En effet
1

* * 1
Thp* +q :@+ﬁ<1'
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Donc, d’aprés le théoréme 2.3.1, le probléme (2.8) admet une solution définie

sur [0,1] x [0, 1].



Chapitre 3

Le Probléme de Darboux pour
les Equations Différentielles
hyperboliques implicites

perturbées

Dans ce chapitre, nous présentons des résultats d’existence pour la classe

d’équations différentielles perturbées du second ordre.



3.1 Introduction 36

3.1 Introduction

Considérons I’équation différentielle hyperbolique perturbée du second ordre

suivante :

(Dru)(t,z) = f(t,z,u(t,2), (Dgu)(t, 7)) + g(t z,u(t,2));  (t,7) € J,

(3.1)
avec les conditions initiales
U(O,I‘) = Qb(x)a YIS [07[)]7
u(t,0) = (t); tel0,T], (32)
¢(0) = (0)

OuJ:=1[0,T] x[0,0], T,b>0,f: IXRXxR—R, g: J xR — R des

fonctions données et ¢, 1) des fonctions continues.

3.2 Existence de solutions

Maintenant, nous allons étudier I'existence d’une solution du probléme (3.1)—
(3.2).

Nous présentons des hypotheéses suivantes :

(Ho1) Les fonctions f et g sont continues.

(Ho2) 11 existe p,q € C(J,Ry) telle que

p(t,z) +q(t,x) | u |
14+ | v |

| f(t,x,u,v) |< , pour (t,z) € J et u,v € R.
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(Hos) Il existe a > 0 telle que pour tout (¢,z) € J
| g(t, z,u) — g(t,z,v) [< a|u—v]| pour u,v €R.

Théoréme 3.2.1. Supposons les hypothése (Ho1) — (Hos) sont vérifies. Si
de plus

Thla+q") <1 (3.3)
alors, le probléme (3.1) — (3.2) admet au moins une solution définie sur J.

Preuve. Considérons les opérateurs F,G €: C' — C définie par,

(Fu)(t,2) = ult, z) + / t / " F(ra& u(r.€), Dhu(r,€))ddr: (t,x) € J

et

@aen) = [ [ otrc.utr.opasar

Alors, les solutions du probléme (3.1) — (3.2) sont les solutions de ’équation

(Fu)(t,z) + (Gu)(t,x) = u(t,x), (t,x) € J.

Nous allons montrer que les opérateurs F' et GG satisfait toutes les conditions

du théoréme 1.3.3. La preuve sera donnée en plusieurs étapes.
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Etape 1 : F est continue.

Soit la suite (u,)nen telle que u,, — u dans C. On a

(Fu)(t,2) = ult, z) + / t / " F(r&u(r. ), D, €))dedr (t,7) € J.

Alors
|(F'up)(t, ) — (Fu)(t, z)| <

/ftxuan) 2 U (7, €) d{dT—//ftxUTf (T, €))dEdT

IN

// Pt (7, €), D2y (7, €)) — f(t 2, u(r, €), DEu(,€)) | dedr.

Puisque u,, — u quand n — oo et f est continue.

Alors, d’aprés le théoréme de la convergence dominée on obtient

n—aoo

Etape 2 : F transforme les bornées dans des bornées dans C'.

On montre que pour tout 6* > 0, il existe £ > 0 telle que

u € By = {U’ S C(‘LR)a H u ||CS 6*}

implique || (Fu) ||¢< ¢.
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Soit u € Bs-. Nous avons

(Fu)(t,) = plt,z) + / / " f(tau(r,€), Diu(r,£))dédr.

D’aprés 'hypothése (Hgz) pour tout (¢,z) € J, on a

[(Fu)(t,2)| < ‘M(t,xH / /:f(t,w,U(T,§)7D?$U(T,§))d£dT

< | ulta) |+ / / f(t, 2, u(r,€), Du(r, €))dédr

T b
< |t x) | +( pltx) |+ | alt.z) | 6°) / / dcdr,

Avec

p'= sup |pu(t,x)|, p"= sup |p(t.z)|, ¢ = sup [q(t,z)].
(t,x)ed (t,x)ed (t,x)ed

Alors
| (Fu) [< p* +To(p" +¢°0%) := L.

Donc

| (Fu) fo< ¢
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Etape 3 : F transforme les bornées dans les équicontinues dans C.

Soient (t1,21), (t2,22) € [0,T] x [0,b],t; < t2, 21 < 2 et soit u € Bs«. On a

| (Fu)(ta, #2) = (Fu)(ty, 21) [< |plte, 22) = p(ty, 21)] +

+ /;2 /Ofm f(r & u(r,€), Diu(r, §))dédr — /Ot1 /Oxl F(r, & u(r, €), D2 u(r, €))dédr| .

Donc

| (Fu)(te, x2) — (Fu)(ty, 21) |< [p(tz, 22) — p(ty, 1))

to T2 )
T / / f(r, €. u(r.€), D2u(r, €))dedr

+ /01/ 2f(T,g,u(T,f’%D?xu(T’g))dng I

/tz/o 2 flr, & ul(T, f),DtQIU(T’ £))dédr
< ulte, w2) — p(ty, z0)| + (0° + ¢°0%)[ta(w2 — 1) + 22(t2 — t1)]

< (p"+ g 0")[ta(w2 — 1) + a(t2 — 11)] — 0.

(tl ,xl)—>(t2 ,1‘2)

Par conséquence, d’apres les étapes 1 a 3 et le théoréme d’Arzela-Ascoli, on

en déduit que F': C' — C est continue et relativement compact.
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Etape 4 : G est une contraction.

Soient u,v € C, pour tout (t,x) € J, on a
t x
@ut.0)= [ [ gltzulre)der, (t.0) €=,
0o Jo
D’ou

| Guta)— (o) | = | t | streatrenair— [ t | ot vt oicar

IN

/0 /Om | 9(7,5710(7, 5)) - Q<T7§7y(7-7 5)) | dde

T b
< a||u—v||c/ / dédr.
o Jo

D’aprés ’hypothése (Hgs), on obtient alors,

I (G)(u) = G) flo < Tha|[u—vc.

Donc, d’aprés (3.3) et comme Tha < Tb(a+q*), alors G est une contraction.

Etape 5 : L’estimation Apriori.

Maintenant il reste & montrer que I’ensemble

u

E={ue C(J,R),u=AF(u) + \G <)\

),pour0<)\<1}

est borné.
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Soit uw € E, on a

u:AF(u)+)\G(§>,

pour 0 < A < 1. Alors pour tout (t,z) € J, on a

u(t, ) :)\,u(t,x)—i—)\/o /0 f(r, & ul(r, 5),Dt2mu(7',§))d§d7'+)\/0 /0 g (T,f, u(7;\, f)) dédr.

D’aprés (Hoz) et (Hps), pour tout (¢, x) € J,

lut,z)| < |u<t,x>|+p*/0/0 dgmq*/ofo | u(r.€) | dedr

A gt 0 dear+a [ [ 0) | ded
s [ [ 1eEE ) gm0 g a [ [ a0 asar

t x t x
< M*+p*// d6d7+q*// | ullc dédr
o Jo 0o Jo

t T
+ a// | w || dédr + Tby*,
0 Jo

ott g* = sup |g(t,z,0)].
(t,x)ed

Il s’ensuit alors

[ulle< p®+Tb(g"+p*) + Thla+¢") | ulle -
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On trouve
JUPLECE
Donc
lulle< M

et I’ensemble F est borné.
D’aprés le théoréme 1.3.3, F' + G admet un point fixe qui représente une

solution du probléme (3.1) — (3.2).

3.3 Exemple
Considérons le probléme perturbée suivant :

1 3 t+x+2(,—2 t 2
(DRt @) = LI L) 42
etz +2(1+ | u(t, x) |)

u(t,0)=t, tel0,1], (35)

u(0,2) = 2%, =z €[0,1].

Posons

e u(t,x) | +2 N )
ooy 0 Boelixo]

flt, x u(t,x),v(t,z)) =

et

1 .
14+ | u(t,z) |)’

g(t,x,u(t,z)) = 3oy (t,x) €10,1] x [0,1].
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Il est clair que ’hypotheése (Hosa) est satisfaite avec p* = 2 et ¢* = e~ 2.

Pour u,u € R et pour tout (¢,z) € [0, 1] x [0, 1],

1 1
gt ) — gt | < \

Betta (Lt [ u(t,z) ) 3ett+2(1+ | a(t, x) |)

IA

36”1”2 ((1+ | ul(tax) ) 1+ Iﬂl(t’x) |)>‘

D’ou

_ 1
| g(t,x,u) —g<t,ZE,U) | < 3ett+a+2

<(1+ | ul(t,w) ) 1+ ﬂl(t,w) I))‘

1

< @Hu—ﬂﬂo

Donc, 'hypothése (Hos) est satisfaite avec a = 353, la condition (3.3) est
vérifiée pour T'=b = 1.
En effet

4

Dong, les hypothéses (Ho1) — (Hopg) sont satisfaites.

D’aprés le théoréme 3.2.1, le probléme (3.4) — (3.5) posséde au moins une

solution définie sur [0, 1] x [0, 1].



Conclusion

Dans ce mémoire, nous avons étudié I'existence et I'unicité des solutions de
quelques classes d’équations différentielles implicites aux dérivées partielles

du second ordre.

Nous avons commencé par quelques préliminaires sur 1’espace de Banach
et quelques définitions d’équation différentielle implicite avec des exemples,
puis nous avons présenté des théorémes de point fixe et des lemmes préli-

minaires.

Ensuite, nous avons montré ’existence et 1'unicité de solutions d’une classe
d’équations différentielles implicites par I'utilisation des théorémes de point

fixe de Banach et théoréme de Leray-Schauder.

Enfin, nous avons démontré ’existence de solutions d’une classe d’équations
différentielles implicite aux dérivées partielles perturbées, nous avons utilisé
cette fois le théoréme de point fixe de Burton-Kirk pour la somme de deux
opérateurs, un opérateur contraction et un autre complétement continu.

Enfin nous avons donné des exemples illustratifs.
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