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Introduction

Le calcul différentiel est un outil dont tout mathématicien, quelle que soit

spécialité, doit en posséder les rudiments.

Pour celui qui ne les a rencontrées qu’au lycée et en première année d’univer-

sité, les équations différentielles sont généralement synonymes de calcul très peu

conceptuels aboutissant à des expressions algébriques ou analytiques constituant

la "solution générale" de l’équation considérée. Au moment d’abord un enseigne-

ment spécifique d’équations différentielles, il est donc fondé à croire (et à redouter)

que ledit enseignement va consister à lui inculque de nouvelles méthodes (dites

de résolution par quadrature) qui lui permettront de déterminer les solutions de

classes de plus en plus larges d’équations différentielles.

Il convient donc d’inique tout de suite que très rares sont les équations dif-

férentielles dont les solutions peuvent s’exprimer à l’aide des fonctions usuelles

telles que sinx ou log x, ou de primitive (= quadratures) de telles fonctions. Aussi

sera-t-on intéressé à formuler des théorèmes d’existence et d’unicité de solution :

l’unique solution constitue alors une (nouvelle) fonction dont on peut envisager

d’étudier les propriétés (périodicité, monotonie, comportement à l’infini) aussi

bien que les fonctions trigonométriques par exemple.
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Les problèmes de géométrie infinitésimale conduisent souvent à des équations

aux dérivées partielles. L’intégration de ces équations est un des problèmes les plus

difficiles de l’analyse. AuXV IIIe siècle, d’Alembert donna la solution générale de

l’équation célèbre des cordes vibrantes, qui régit aussi le mouvement de l’air dans

un tuyau sonore ; les noms de Monge et d’Ampère sont liés ensuite à l’histoire

de l’intégration des équations aux dérivées partielles du second ordre. Pendant de

longues années après les recherches de ces deux grands géomètres, aucun progrès

réel ne fut réalisé dans cette théorie. En 1870, Darboux fit connaître une mé-

thode extrêmement importante qui allait bien au delà des recherches antérieures.

Le champ des équations intégrables fut considérablement agrandi, comprenant en

particulier toute la première classe de la classification d’Ampère. Darboux n’a

pas poursuivi lui-même les applications de sa méthode, mais nombreux ont été

ses élèves,en France et au dehors, qui en ont montré la fécondité.

Dans cette période, entre 1870 et 1880, l’activité scientifique de Darboux fut

prodigieuse. Un des d’objets de l’analyse abstraite est l’étude de l’idée de fonc-

tion, c’est-à-dire de dépendance entre deux ou plusieurs grandeurs. Il a fallu long-

temps avant qu’on se rendit compte de l’étendue extraordinaire de cette notion.

Si Newton et Leibnitz avaient pensé que les fonctions continues n’ont pas né-

cessairement une dérivée, le calcul différentiel n’aurait pas pris naissance. Il est

indispensable qui les choses paraissent d’abord simple. Sans vouloir trop générali-

ser, on peut dire l’erreur quelque fois utile ; certaines époques, une vérité seulement

approché s’est montrée plus féconde que n’a été une connaissance plus complète.
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Aussi Newton n’aurait probablement pas découvert les lois de la gravitation

universelle, si au début de ses travaux, il n’avait pas regardé les lois de Kepler

comme entièrement rigoureuses.

l’objectif de ce travail consiste a étudier l’existence et l’unicité des solutions

pour quelques classes d’équations différentielles implicites. Les résultats obtenus

sont basés sur quelques théorèmes de point fixe. La théorie de point fixe est au

c ?ur de l’analyse non-linéaire puis qu’elle fournit les outils nécessaires pour avoir

des théorèmes d’existence dans beaucoup de problèmes non-linéaires.

Dans cette mémoire en utilisant les théorème de point fixe suivantes (Le prin-

cipe de contraction de Banach, L’alternative non-linéaire de type Leray-Schauder

et le théorème de Burton-Kirk).

Ce mémoire est composé d’une introduction et de trois chapitres.

Dans le premier chapitre, nous présentons des notations, des définitions, certaines

notions préliminaires et des théorèmes principaux qui seront utilisé dans les autres

chapitres.

Dans le deuxième chapitre, on va étudier l’existence et l’unicité des solutions

d’équation différentielle hyperbolique implicite fonctionnelle.

Nous aurons deux résultats, le premier est basé sur le principe de contraction de

Banach par montré l’existence et l’unicité des solutions et le deuxième résultat

basé sur le théorème de Leray-Schauder pour prouver l’existence des solutions

avec un exemple.
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Dans le troisième chapitre, nous présentons des résultats sur l’existence des

solutions pour la classe des équations différentielles perturbées du second ordre et

un résultat basé sur le théorème de point fixe de Burton-Kirk pour la somme de

deux opérateurs, un contraction et l’autre complètement continu, avec un exemple.



Chapitre 1

Préliminaires

Dans ce chapitre, nous introduisons des notations, des définitions et des lemmes

préliminaires qui seront utilisés dans le reste de ce mémoire.

1.1 Espace de Banach

Définition 1.1.1. Soit E un espace vectoriel normé et (xn)n une suite d’éléments

de E.On dira que la suite (xn)n converge vers un élément a ∈ E, si :

∀ ε > 0,∃ N0 ∈ N : ∀ n ∈ N, n > N0 ⇒‖ xn − a ‖6 ε.

Définition 1.1.2. La suite (xn)n est dite de Cauchy, si :

∀ ε > 0,∃ N0 ∈ N : ∀ p, q ∈ N, p, q > N0 ⇒‖ xp − xq ‖6 ε.

Définition 1.1.3. On appelle espace de Banach tout espace vectoriel normé dans

lequel toute suite de Cauchy est convergente.
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Remarque 1.1.1. Il est aisé de montrer que toute suite convergente est une suite

de Cauchy.

Exemple.

L’espace vectoriel Rn muni de l’une des norme équivalentes :

‖ x ‖1= max(| x1 |, . . . , | xn |), ‖ x ‖2= (Σn
i=1 | xi |2)

1
2 , ‖ x ‖3= Σn

i=0 | xi | avec

x = (x0, x1, . . . , xn) ∈ Rn, est un espace de Banach.

1.1.1 Compacité

Définition 1.1.4. (E, d) désigne un espace métrique.

Une partie K de E est dite compacte si, de toute suite (un) d’éléments de K, on

peut extraire une sous-suite convergente vers un élément de K.

En particulier, toute réunion finie ou toute intersection finie de parties com-

pactes est compacte.

Définition 1.1.5. Soient E un ensemble quelconque et A une partie de E. Un

recouvrement de A est une famille (Bi)i∈I des parties de E vérifiant :

A ⊂
⋃
i∈I

Bi.

Proposition 1.1.1. Toute partie compacte de E est fermée et bornée.

Corollaire 1.1.1. Un segment [a, b] est une partie compacte de R. En particulier,

les parties compactes de R ou de C sont les parties fermées et bornées.

Proposition 1.1.2. Si A est une partie compacte de E et si B ⊂ A est fermé,

alors B est compact.
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Théorème 1.1.1. (Théorème de la convergence dominée) [8]

Soit (fn)n≥0 une suite de fonctions complexes mesurables sur X.

On suppose que :

1. fn(x) converge presque partout vers une limite f(x).

2. Il existe g ∈ L1(µ) telle que, pour tout n ∈ N on ait : |fn(x)| ≤ |g(x)|

presque partout en x.

Alors f ∈ L1(µ) et la suite (fn)n≥0 converge vers f dans cet espace :

∫
X

|fn − f |dµ−→
n7→∞

0.

1.1.2 Applications continues sur une partie compacte

Soient (E, d) et (F, d) désignent des espaces métriques compacts.

Définition 1.1.6. On dit qu’un opérateur T est compact ; si et seulement si pour

toute suite bornée (un)n>0 ⊂ X, la suite (Tun)n>0 admet une sous suite conver-

gente dans Y. Dans le cas où X = C([a, b]) ; le théorème suivant d’Ascoli-Arzelà

est généralement utilisé pour prouver la compacité des opérateurs.

Théorème 1.1.2. (Théorème d’Ascoli-Arzelà) [7]

Une famille de fonctions M ⊂ C([a, b]) est relativement compact (i.e M̄ est com-

pact) si et seulement si :

1. M est uniformément bornée.

2. M est équicontinue.

Lemme 1.1.1. Soit f : K → F une application continue où K est une partie

compacte de E. Alors f(K) est un compact de F .
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1.2 Équations différentielles

Définition 1.2.1. En mathématiques, une équation différentielle est une équation

dont la ou les inconnues sont des fonctions, elle se présente sous la forme d’une

relation entre ces fonctions inconnues et leurs dérivées successives. C’est un cas

particulier d’équation fonctionnelle.

On distingue généralement deux types d’équations différentielles :

1) les équations différentielles ordinaires (EDO) où la ou les fonctions incon-

nues ne dépendent que d’une seule variable.

2) les équations différentielles partielles, plutôt appelées équations aux déri-

vées partielles (EDP), où la ou les fonctions inconnues peuvent dépendre de

plusieurs variables indépendantes.

Définition 1.2.2. Une équation différentielle est une équation contenant une ou

des dérivées d’une fonction à une ou plusieurs variables.

L’ordre d’une équation différentielle est l’ordre de la plus haute dérivée appa-

raissant dans l’équation.

Une équation différentielle linéaire homogène est une équation différentielle

linéaire dans laquelle. On dit aussi qu ?elle est ń sans second membre ż.

Exemple

• x2y′′ + 2 = 5x avec y(1) = 3 y′(1) = −1

• y′′ + xy′ − y = 0

• y′′ + 2y′ + 4y = cosx

Une équation différentielle linéaire d’ordre n est une équation différentielle
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qui peut s’écrire sous la forme générale suivante :

a0(x)y(n) + a1(x)y(n−1) + . . .+ an−1 (x)y′ + an(x)y = F (x) a0(x) 6= 0.

1.2.1 Équation différentielle implicite

Équations différentielles ordinaires implicites

Définition 1.2.3. Une équation différentielle ordinaires implicite du pre-

mier ordre est une équation de la forme y′ = F (x, y, y′). Où F est une

fonction continue sur un ouvert U de R× E × E, appelé domaine.

Soient y une fonction de x définie d’un intervalle I dans E et y′, y′′, . . . , yn

les dérivées successives de la fonction y. Cette fonction y est dite solution

si elle est de classe Cn et si

∀x ∈ I; F (x, y(x), y′(x), . . . , yn(x)) = 0.

Notation Le problème de Cauchy :


y′ = f(x, y, y′), (x, y, y′) ∈ I × R2

y(x0) = y0 ∈ R,
(1.1)

alors, le problème de Cauchy (1,1) admet une solution et une seule sur I

de R (et ceci pour tout y0 ∈ R).

1) Pour tout x ∈ I, (x, y(x), y′(x)) ∈ I × R2.

2) pour tout x ∈ I, y′ = f(x, y, y′).

3) y(x0) = y0.
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On suppose que f est continue sur I × R2 et (x0, y0) est le point fixe.

Soit y une fonction définie sur I tell que x0 ∈ I et (y : I −→ R).

On dit y est une solution de (1,3) si et seulement si elle vérifie :

1) Pour tout x ∈ I, (x, y(x), y′(x)) ∈ I × R.

2) y est continue sur I.

3) Pour tout x ∈ I

y(x) = y0 +

∫ x

x0

f(s, y(s), y′(s))ds.

Remarque (L’importance de la condition de Lipschitz)

Soit le problème de Cauchy :


dy
dx

= 3y
2
3

y(0) = 0,

(1.2)

la condition de Lipschitz n’est pas vérifiée au voisinage de 0 et y(x) = x3

est solution sur [0, 1], y(x) = 0 est solution sur [0, 1] également.

Équations différentielles implicites aux dérivées partielles

Le caractère particulier d’une équation aux dérivées partielles (EDP) est de

mettre en jeu des fonctions de plusieurs variables

(x, y, . . .) −→ u(x, y, . . .).

Une EDP est alors une relation entre les variables et les dérivées partielles

de u.
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Définition 1.2.4. Soit f : R −→ R et (x0, y0) ∈ R2, On appelle applica-

tions partielles associées à f en (x0, y0), les deux applications de R dans R

obtenues en figeant l’une des variables :

f1 : x 7−→ f1(x) = f(x, y0) et f2 : y 7−→ f2(y) = f(x0, y).

La notion de dérivée partielle de f en un point (x0, y0) est alors particuliè-

rement simple : il s’agit des dérivées des applications partielles associées à

f en (x0, y0).

Notation 1.2.1. ut est la dérivée partielle de u(t, x) par rapport soit avec

les notations habituelles du calcul différentiel :

ut =
∂u

∂t
.

Soient Ω :=]a, b[×]c, d[ une partie de R2 et f : Ω×R2 −→ R, φ :]c, d[−→ R

deux fonctions. Considérons le problème de Cauchy suivant :

pour tout (t, x) ∈ Ω et u, ut ∈ R2


∂
∂t
u(t, x) = f(t, x, u(t, x), ut(t, x)),

u(0, x) = φ(x); x ∈ [c, d].

Ce problème est appelé EDP implicite avec une condition initiale.

Exemple On considère le problème suivant :


ut(t, x) = 1

4
uxx; t > 0; x ∈ [0, 1],

u(t, 0) = t; u(t, 1) = 2 + t; t > 0.

(1.3)
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Dans cet exemple, nous avons :

f(t, x, u, ut) =
1

4
uxx; t > 0; x ∈ [0, 1]

et

Φ(t) = t; t > 0; Ψ(t, 1) = 2 + t; t > 0.

1.3 Théorèmes de point fixe

En analyse, un théorème de point fixe est un résultat qui permet d’affir-

mer qu’une fonction f admet sous certaines conditions un point fixe. Ces

théorèmes se révèlent être des outils très utiles en mathématiques, princi-

palement dans le domaine de la résolution des équations différentielles.

Théorème 1.3.1. (Théorème de point fixe de Banach) [1]

Soient (E, ‖.‖) un espace de Banach et G : E −→ E une application de E

dans E. Si G est une application contractante i.e. Il existe 0 < k < 1 telle

que pour tout u, v ∈ E

‖(G(u)−G(v))‖ ≤ k‖u− v‖.

Alors G admet un unique point fixe u0(i.e), f(u0) = u0.

Théorème 1.3.2. (Alternative non linéaire de type Leray-Schauder)

[6]

Soient X un espace de Banach, U un ouvert d’une partie convexe D de X

et 0 ∈ U. Supposons que N : U → D est un opérateur continu et compact.

Alors une seule des propriétés suivantes est satisfaite,
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(S1) N admet un point fixe dans U, ou

(S2) Il existe ν ∈ (0, 1) et u ∈ ∂U avec u = ν N(u).

Théorème 1.3.3. (Théorème de point fixe de Burton-Kirk ) [4]

Soient X un espace de Banach et A, B : X → X deux application vérifient :

(i) A est une contraction.

(ii) B est complètement continue.

Alors une seule des propositions suivantes est satisfaite,

(S1) l’équation opérateur u = A(u) +B(u) a une solution, ou

(S2) l’ensemble E = {u ∈ X : u = νA(
u

ν
) + νB(u), ν ∈ (0, 1)} n’est pas

borné.

1.4 Lemmes Préliminaires.

Soit C := C(J) l’espace de Banach de fonctions u : J := [0, T ]× [0, b]→ R

continues de J dans R avec la norme

‖u‖C = sup
(t,x)∈J

|u(t, x)|.

Lemme 1.4.1. Soit h : J −→ R une fonction continue. La fonction u ∈

C(J,R) est une solution du problème suivant :



(D2
txu)(t, x) = h(t, x); (t, x) ∈ J := [0, T ]× [0, b]

u(0, x) = φ(x); x ∈ [0, b],

u(t, 0) = ψ(t); t ∈ [0, T ],

φ(0) = ψ(0),

(1.4)
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si et seulement si la fonction u vérifie l’équation intégrale suivante :

u(t, x) = µ(t, x) +

∫ t

0

∫ x

0

h(τ, ξ)dξdτ, (1.5)

où

µ(t, x) = φ(x) + ψ(t)− φ(0).

Preuve. Soit u(t, x) une solution du problème (1.4). Alors

(D2
txu)(t, x) = h(t, x).

D’où ∫ t

0

∫ x

0

∂2

∂τ∂ξ
u(τ, ξ)dξdτ =

∫ t

0

∫ x

0

h(τ, ξ)dξdτ.

Il s’ensuit alors

u(t, x)− u(0, x)− u(t, 0) + u(0, 0) =

∫ t

0

∫ x

0

h(τ, ξ)dξdτ.

On trouve

u(t, x) = φ(x) + ψ(t)− φ(0) +

∫ t

0

∫ x

0

h(τ, ξ)dξdτ.

Donc on obtient

u(t, x) = µ(t, x) +

∫ t

0

∫ x

0

h(τ, ξ)dξdτ.

Maintenant si u(t, x) vérifie (1,5). Il est claire que u(t, x) vérifie :
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u(0, x) = φ(x), u(t, 0) = ψ(t)

et

(D2
txu)(t, x) = h(t, x); (t, x) ∈ J.

Corollaire 1.4.1. Soit f ∈ C une fonction et u ∈ C(J,R) est un solution

de problème suivant :

(D2
txu)(t, x) = f(t, x, u(t, x), (D2

txu)(t, x)); (t, x) ∈ J := [0, T ]× [0, b]. (1.6)

avec les conditions initiales
u(0, x) = φ(x); x ∈ [0, b],

u(t, 0) = ψ(t); t ∈ [0, T ],

φ(0) = ψ(0),

(1.7)

si et seulement si la fonction u vérifie l’équation intégrale suivante :

u(t, x) = µ(t, x) +

∫ t

0

∫ x

0

h(τ, ξ)dξdτ, (1.8)

ou h ∈ C(J), avec

h(t, x) = f

(
t, x, µ(t, x) +

∫ t

0

∫ x

0

h(τ, ξ)dξdτ, h(t, x)

)
.



Chapitre 2

Le Problème de Darboux pour

les Équations Différentielles

hyperboliques implicites

fonctionnelles

Dans ce chapitre, nous présentons des résultats d’existence et d’unicité des

solutions de la classe d’équations différentielles hyperboliques du second

ordre.
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2.1 Introduction

Considérons l’équation différentielle hyperbolique implicite fonctionnelle sui-

vante :

(D2
txu)(t, x) = f(t, x, u(t, x), (D2

txu)(t, x)); (t, x) ∈ J := [0, T ]× [0, b]. (2.1)

avec les conditions initiales :
u(0, x) = φ(x); x ∈ [0, b],

u(t, 0) = ψ(t); t ∈ [0, T ],

φ(0) = ψ(0),

(2.2)

où T, b > 0, f : J × R × R −→ R, φ : [0, b] → R et ψ : [0, T ] → R des

fonctions continues.

Définition 2.1.1. Une fonction continue u ∈ C(J,R) est une solution du

problème (2.1)− (2.2), si :

u(0, x) = φ(x), u(t, 0) = ψ(t), φ(0) = ψ(0)

et u vérifie l’équation (2.1) dans J.

Lemme 2.1.1. Soit f : J × R × R −→ R une fonction continue. Alors

le problème (2.1) − (2.2) est équivalent au problème du solution d’équation

intégrale suivante :

u(t, x) = µ(t, x) +

∫ t

0

∫ x

0

h(τ, ξ)dξdτ,
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où h ∈ C(J), avec

h(t, x) = f

(
t, x, µ(t, x) +

∫ t

0

∫ x

0

h(τ, ξ)dξdτ, h(t, x)

)
.

2.2 Résultats d’existence et unicité

Maintenant, nous donnons une condition suffisante pour l’existence et l’uni-

cité de la solution du problème (2.1)− (2.2).

Théorème 2.2.1. Supposons que l’hypothèse suivante est vérifiée :

(H1) - Pour u, v, w, z ∈ R il existe des constantes k > 0, 0 ≤ c < 1,

| f(t, x, u, v)− f(t, x, w, z) |≤ k | u− w | +c | v − z | .

Si
Tbk

1− c
< 1, (2.3)

alors, le problème (2.1)− (2.2) admet une solution unique définie sur J.

Preuve. On considère opérateur N : C(J,R) −→ C(J,R) ; définit pour tout

h ∈ C(J,R). On a

(Nu)(t, x) = µ(t, x) +

∫ t

0

∫ x

0

h(τ, ξ)dξdτ ; (t, x) ∈ J,

avec h ∈ C(J),

h(t, x) = f

(
t, x, µ(t, x) +

∫ t

0

∫ x

0

h(τ, ξ)dξdτ, h(t, x)

)
.
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Donc d’après le Lemme 2.1.1, les solutions du problème (2.1) − (2.2) sont

les points fixes de l’opérateur N.

Soient u, v ∈ C(J) et (t, x) ∈ J. On a,

| (Nu)(t, x)− (Nv)(t, x) |≤
∫ t

0

∫ x

0

| h(t, x)− g(t, x) | dξdτ, (2.4)

avec

h(t, x) = f(t, x, u(t, x), h(t, x))

et

g(t, x) = f(t, x, v(t, x), g(t, x)).

Donc, d’après l’hypothèse (H1), nous avons

| h(t, x)− g(t, x) |≤ k | u− v | + c | h(t, x)− g(t, x) |,

d’où

| h(t, x)− g(t, x) | ≤ k

1− c
| u(t, x)− v(t, x) |

≤ k

1− c
‖ u− v ‖C .
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En suite, d’après l’égalité (2.4) on a

| (Nu)(t, x)− (Nv)(t, x) | ≤
∫ t

0

∫ x

0

k

1− c
‖ u− v ‖C dξdτ,

≤ k

1− c
‖ u− v ‖C

∫ T

0

∫ b

0

dξdτ.

Donc

‖ N(u)−N(v) ‖C≤
Tbk

1− c
‖ u− v ‖C .

D’après (2.3) il s’ensuit que N est une contraction, d’où N admet un point

fixe unique u d’après le théorème 1.3.1.

La fonction u est la seule solution du problème (2.1)− (2.2).
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Exemple 1. Considérons le problème suivant :


(D2

txu)(t, x) = 1
5et+x+2(1+|u(t,x)|+|(D2

txu)(t,x)|)
; ∀ (t, x) ∈ [0, 1]× [0, 1],

u(0, x) = x2; x ∈ [0, 1],

u(t, 0) = t; t ∈ [0, 1].

(2.5)

Posons

f(t, x, u, v) =
1

5et+x+2(1+ | u | + | v |)
; ∀ (t, x) ∈ [0, 1]× [0, 1].

Il est clair que la fonction f est continue.

Pour tout u, v, w, z ∈ R et (t, x) ∈ [0, 1]× [0, 1],

| f(t, x, u, v)− f(t, x, w, z) | =

∣∣∣∣ 1

5et+x+2

(
1

(1 + u+ v)
− 1

(1 + w + z)

)∣∣∣∣
≤ 1

5et+x+2
(|u− w|+ |v − z|)

≤ 1

5e2
|u− w|+ 1

5e2
|v − z|.

Donc, la condition (H1) est satisfaite avec k = c = 1
5e2

. Aussi la condition

(2.3) est vrais pour T = b = 1.

En effet
Tbk

1− c
=

1

5e2 − 1
< 1.

D’après, le théorème 2.2.1, le problème (2.5) admet une unique solution sur

[0, 1]× [0, 1].
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2.3 Résultats d’existence

Le théorème suivant nous donne une condition pour que le problème (2.1)−

(2.2) admet une solution.

Théorème 2.3.1. Supposons que l’hypothèse suivante est vérifiée :

(H2) - Il existe deux fonctions p, q ∈ C(J,R+), telles que :

| f(t, x, u, v) | ≤ p(t, x) | u | +q(t, x) | v | .

Pour tout (t, x) ∈ J et u, v ∈ R.

Si

Tbp∗ + q∗ < 1, (2.6)

où

p∗ = sup
(t,x)∈J

p(t, x), q∗ = sup
(t,x)∈J

q(t, x),

alors le problème (2.1)− (2.2) admet au moins une solution définie sur J.

Preuve. Soit BM la boule bornée fermée convexe de l’espace de Banach C

définit par :

BM = {u ∈ C(J) :‖ u ‖C ≤M},

où

M ≥ µ∗ +
Tbp∗µ∗

1− (Tbp∗ + q∗)
,

avec

µ∗ = sup
(t,x)∈J

|µ(t, x)|.
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On définit l’opérateur de point fixe N : BM −→ BM , pour tout h ∈ C(J,R)

telle que :

(Nu)(t, x) = µ(t, x) +

∫ t

0

∫ x

0

h(τ, ξ)dξdτ ; (t, x) ∈ J := [0, T ]× [0, b].

Avec, h ∈ C, on a

h(t, x) = f

(
t, x, µ(t, x) +

∫ t

0

∫ x

0

h(τ, ξ)dξdτ, h(t, x)

)
.

Étape 1 : N est continue.

Soit (un)n∈N une suite telle que un −→ u dans BM , pour tout (t, x) ∈ J , on

a

|(Nun)(t, x)− (Nu)(t, x)| ≤
∣∣∣∣µ(t, x) +

∫ t

0

∫ x

0

hn(τ, ξ)dξdτ − µ(t, x)−
∫ t

0

∫ x

0

h(τ, ξ)dξdτ

∣∣∣∣
≤

∣∣∣∣∫ t

0

∫ x

0

hn(τ, ξ)dξdτ −
∫ t

0

∫ x

0

h(τ, ξ)dξdτ

∣∣∣∣
≤

∫ t

0

∫ x

0

|hn(τ, ξ)− h(τ, ξ)| dξdτ,

avec hn, h ∈ C(J,R), on a

hn(t, x) = f (t, x, un(t, x), hn(t, x))

et

h(t, x) = f (t, x, u(t, x), h(t, x)) .
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Puisque un → u quand n→∞ et f est une fonction continue.

Alors, d’après le théorème de la convergence dominée on obtient

N(un)−→
n7→∞

N(u).

Étape 2 : BM est uniformément bornée.

∀ (t, x) ∈ J, h ∈ C(J,R), on a

(Nu)(t, x) = µ(t, x) +

∫ t

0

∫ x

0

h(τ, ξ)dξdτ,

où

h(t, x) = f

(
t, x, µ(t, x) +

∫ t

0

∫ x

0

h(τ, ξ)dξdτ, h(t, x)

)
.

On a

|(Nu)(t, x)| ≤ |µ(t, x)|+
∣∣∣∣∫ t

0

∫ x

0

h(τ, ξ)dξdτ

∣∣∣∣ . (2.7)

D’après (H2), nous avons

|h(t, x)| ≤ p(t, x)

∣∣∣∣µ(t, x) +

∫ t

0

∫ x

0

h(τ, ξ)dξdτ

∣∣∣∣+ q(t, x)|h(t, x)|

≤ p∗
(
|µ(t, x)|+

∫ t

0

∫ x

0

|h(τ, ξ)|dξdτ
)

+ q∗|h(t, x)|,

alors

‖ h ‖C ≤ p∗(µ∗ + Tb ‖ h ‖C) + q∗ ‖ h ‖C ,
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donc

‖ h ‖C ≤
p∗µ∗

1− (Tbp∗ + q∗)
= M0.

En suite, d’après l’égalité (2.7) implique

|(Nu)(t, x)| ≤ |µ(t, x)|+
∫ T

0

∫ b

0

M0 dξdτ

≤ µ∗ + TbM0 ≤M.

Donc

N(BM) ⊂ BM .

Comme BM est bornée, alors N(BM) est uniformément bornée.

Étape 3 : N(BM) est équicontinue.

Soient (t1, x1), (t2, x2) ∈ J, t1 < t2 et x1 < x2, soit u ∈ BM . On a

| (Nu)(t2, x2)− (Nu)(t1, x1) |

≤
∣∣∣∣µ(t2, x2) +

∫ t2

0

∫ x2

0

h(τ, ξ)dξdτ − µ(t1, x1)−
∫ t1

0

∫ x1

0

h(τ, ξ)dξdτ

∣∣∣∣ ,
où

h(t, x) = f

(
t, x, µ(t, x) +

∫ t

0

∫ x

0

h(τ, ξ)dξdτ, h(t, x)

)
.



2.3 Résultats d’existence 31

D’où

| (Nu)(t2, x2)− (Nu)(t1, x1) | ≤ |µ(t2, x2)− µ(t1, x1)|

+

∣∣∣∣∫ t2

0

∫ x2

0

h(τ, ξ)dξdτ −
∫ t1

0

∫ x1

0

h(τ, ξ)dξdτ

∣∣∣∣
≤ |µ(t2, x2)− µ(t1, x1)|+

∣∣∣∣∫ t2

t1

∫ x2

x1

h(τ, ξ)dξdτ

∣∣∣∣
+

∣∣∣∣∫ t1

0

∫ x2

x1

h(τ, ξ)dξdτ

∣∣∣∣+

∣∣∣∣∫ t2

t1

∫ x2

0

h(τ, ξ)dξdτ

∣∣∣∣ .
On obtient alors

| (Nu)(t2, x2)− (Nu)(t1, x1) | ≤ |µ(t2, x2)− µ(t1, x1)|

+ (p∗µ∗ + p∗TbM0 + q∗M0)[t2(x2 − x1) + x2(t2 − t1)]

−→
(t1,x1)−→(t2,x2)

0.

Donc l’opérateur N(BM) est équicontinue.

Par conséquence, d’après les étapes 1 à 3 et le théorème d’Arzelà-Ascoli,

il s’ensuit que l’opérateur N : BM −→ BM est continue et relativement

compact.
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Étape 4 : L’estimation Apriori.

Nous montrons maintenant qu’il existe un ensemble ouvert U ⊆ C(J) avec

u 6= λN(u), pour λ ∈ (0, 1) et u ∈ ∂U , ici ∂U désigne la frontière de U.

Soit u ∈ C(J) avec u = λN(u) pour certain 0 < λ < 1.

D’ou, pour tout (t, x) ∈ J , on a

u(t, x) = λµ(t, x) + λ

∫ t

0

∫ x

0

h(τ, ξ)dξdτ,

où

h(t, x) = f

(
t, x, µ(t, x) +

∫ t

0

∫ x

0

h(τ, ξ)dξdτ, h(t, x)

)
.

Donc, pour tout (t, x) ∈ J , on a

‖ u ‖C≤M.

Si, on pose

U = {u ∈ C(J) : ‖ u ‖C< M + 1},

alors, par ce choix de U, il n’existe aucune u ∈ ∂u telle que u = λN(u),

pour certain λ ∈ (0, 1).

Par conséquence, d’après le théorème 1.3.2. On en déduit que l’opérateur N

admet au moins un point fixe u dans U qui est une solution du problème

(2.1)− (2.2).
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Exemple 2. Nous considérons maintenant le système d’équations différen-

tielles fonctionnelles de la forme :
(D2

txu)(t, x) = t2

7et+x+2(1+|u(t,x)|) + t
11
| (D2

txu)(t, x) |; ∀(t, x) ∈ [0, 1]× [0, 1],

u(0, x) = tx2; x ∈ [0, 1],

u(t, 0) = x(1 + 2t); t ∈ [0, 1].

(2.8)

Posons

f(t, x, u, v) =
t2

7et+x+2(1 + |u|)
+

t

11
|v|, (t, x) ∈ [0, 1]× [0, 1].

Pour tout u, v ∈ R et (t, x) ∈ [0, 1]× [0, 1] nous avons

|f(t, x, u(t, x), v(t, x))| =
t2

7et+x+2
|u(t, x)|+ t

11
|v(t, x)|

≤ 1

7e2
‖u‖C +

1

11
‖v‖C .

On a

p(t, x) =
t2

7e2

q(t, x) =
t

11

Alors, la condition H2 est satisfaite avec p∗ = 1
7e2

et q∗ = 1
11
. Ainsi la

condition (2.6) elle est vérifie pour T = b = 1.

En effet

Tbp∗ + q∗ =
1

7e2
+

1

11
< 1.
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Donc, d’après le théorème 2.3.1, le problème (2.8) admet une solution définie

sur [0, 1]× [0, 1].



Chapitre 3

Le Problème de Darboux pour

les Équations Différentielles

hyperboliques implicites

perturbées

Dans ce chapitre, nous présentons des résultats d’existence pour la classe

d’équations différentielles perturbées du second ordre.



3.1 Introduction 36

3.1 Introduction

Considérons l’équation différentielle hyperbolique perturbée du second ordre

suivante :

(D2
txu)(t, x) = f(t, x, u(t, x), (D2

txu)(t, x)) + g(t, x, u(t, x)); (t, x) ∈ J,

(3.1)

avec les conditions initiales
u(0, x) = φ(x); x ∈ [0, b],

u(t, 0) = ψ(t); t ∈ [0, T ],

φ(0) = ψ(0).

(3.2)

Où J := [0, T ]× [0, b], T, b > 0, f : J × R× R −→ R, g : J × R −→ R des

fonctions données et φ, ψ des fonctions continues.

3.2 Existence de solutions

Maintenant, nous allons étudier l’existence d’une solution du problème (3.1)−

(3.2).

Nous présentons des hypothèses suivantes :

(H01) Les fonctions f et g sont continues.

(H02) Il existe p, q ∈ C(J,R+) telle que

| f(t, x, u, v) |≤ p(t, x) + q(t, x) | u |
1+ | v |

, pour (t, x) ∈ J et u, v ∈ R.
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(H03) Il existe a > 0 telle que pour tout (t, x) ∈ J

| g(t, x, u)− g(t, x, v) |≤ a | u− v | pour u, v ∈ R.

Théorème 3.2.1. Supposons les hypothèse (H01)− (H03) sont vérifies. Si

de plus

Tb(a+ q∗) < 1 (3.3)

alors, le problème (3.1)− (3.2) admet au moins une solution définie sur J.

Preuve. Considérons les opérateurs F,G ∈: C −→ C définie par,

(Fu)(t, x) = µ(t, x) +

∫ t

0

∫ x

0

f(τ, ξ, u(τ, ξ), D2
txu(τ, ξ))dξdτ ; (t, x) ∈ J

et

(Gu)(t, x) =

∫ t

0

∫ x

0

g(τ, ξ, u(τ, ξ))dξdτ.

Alors, les solutions du problème (3.1)− (3.2) sont les solutions de l’équation

(Fu)(t, x) + (Gu)(t, x) = u(t, x), (t, x) ∈ J.

Nous allons montrer que les opérateurs F et G satisfait toutes les conditions

du théorème 1.3.3. La preuve sera donnée en plusieurs étapes.
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Étape 1 : F est continue.

Soit la suite (un)n∈N telle que un −→ u dans C. On a

(Fu)(t, x) = µ(t, x) +

∫ t

0

∫ x

0

f(τ, ξ, u(τ, ξ), D2
txu(τ, ξ))dξdτ ; (t, x) ∈ J.

Alors

|(Fun)(t, x)− (Fu)(t, x)| ≤

≤
∣∣∣∣∫ t

0

∫ x

0

f(t, x, un(τ, ξ), D2
txun(τ, ξ))dξdτ −

∫ t

0

∫ x

0

f(t, x, u(τ, ξ), D2
txu(τ, ξ))dξdτ

∣∣∣∣
≤

∫ t

0

∫ x

0

| f(t, x, un(τ, ξ), D2
txun(τ, ξ))− f(t, x, u(τ, ξ), D2

txu(τ, ξ)) | dξdτ.

Puisque un → u quand n→∞ et f est continue.

Alors, d’après le théorème de la convergence dominée on obtient

F (un) −→
n−→∞

F (u) .

Étape 2 : F transforme les bornées dans des bornées dans C.

On montre que pour tout δ∗ > 0, il existe ` > 0 telle que

u ∈ Bδ∗ = {u ∈ C(J,R), ‖ u ‖C≤ δ∗}

implique ‖ (Fu) ‖C≤ `.
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Soit u ∈ Bδ∗ . Nous avons

(Fu)(t, x) = µ(t, x) +

∫ t

0

∫ x

0

f(t, x, u(τ, ξ), D2
txu(τ, ξ))dξdτ.

D’après l’hypothèse (H02) pour tout (t, x) ∈ J , on a

| (Fu)(t, x) | ≤
∣∣∣∣µ(t, x) +

∫ t

0

∫ x

0

f(t, x, u(τ, ξ), D2
txu(τ, ξ))dξdτ

∣∣∣∣
≤ | µ(t, x) | +

∣∣∣∣∫ t

0

∫ x

0

f(t, x, u(τ, ξ), D2
txu(τ, ξ))dξdτ

∣∣∣∣
≤ | µ(t, x) | +(| p(t, x) | + | q(t, x) | δ∗)

∫ T

0

∫ b

0

dξdτ,

≤ µ∗ + Tb(p∗ + q∗δ∗).

Avec

µ∗ = sup
(t,x)∈J

| µ(t, x) |, p∗ = sup
(t,x)∈J

| p(t, x) |, q∗ = sup
(t,x)∈J

| q(t, x) | .

Alors

| (Fu) |≤ µ∗ + Tb(p∗ + q∗δ∗) := `.

Donc

‖ (Fu) ‖C≤ `.
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Étape 3 : F transforme les bornées dans les équicontinues dans C.

Soient (t1, x1), (t2, x2) ∈ [0, T ]× [0, b], t1 < t2, x1 < x2 et soit u ∈ Bδ∗ . On a

| (Fu)(t2, x2)− (Fu)(t1, x1) |≤ |µ(t2, x2)− µ(t1, x1)|+

+

∣∣∣∣∫ t2

0

∫ x2

0

f(τ, ξ, u(τ, ξ), D2
txu(τ, ξ))dξdτ −

∫ t1

0

∫ x1

0

f(τ, ξ, u(τ, ξ), D2
txu(τ, ξ))dξdτ

∣∣∣∣ .
Donc

| (Fu)(t2, x2)− (Fu)(t1, x1) |≤ |µ(t2, x2)− µ(t1, x1)|

+

∣∣∣∣∫ t2

t1

∫ x2

x1

f(τ, ξ, u(τ, ξ), D2
txu(τ, ξ))dξdτ

∣∣∣∣
+

∣∣∣∣∫ t1

0

∫ x2

x1

f(τ, ξ, u(τ, ξ), D2
txu(τ, ξ))dξdτ

∣∣∣∣+

∣∣∣∣∫ t2

t1

∫ x2

0

f(τ, ξ, u(τ, ξ), D2
txu(τ, ξ))dξdτ

∣∣∣∣
≤ |µ(t2, x2)− µ(t1, x1)|+ (p∗ + q∗δ∗)[t2(x2 − x1) + x2(t2 − t1)]

≤ (p∗ + q∗δ∗)[t2(x2 − x1) + x2(t2 − t1)] −→
(t1,x1)−→(t2,x2)

0.

Par conséquence, d’après les étapes 1 à 3 et le théorème d’Arzelà-Ascoli, on

en déduit que F : C −→ C est continue et relativement compact.
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Étape 4 : G est une contraction.

Soient u, v ∈ C, pour tout (t, x) ∈ J, on a

(Gu)(t, x) =

∫ t

0

∫ x

0

g(t, x, u(τ, ξ))dξdτ, (t, x) ∈:= J,

D’ou

| (Gu)(t, x)− (Gv)(t, x) | =

∣∣∣∣∫ t

0

∫ x

0

g(τ, ξ, u(τ, ξ))dξdτ −
∫ t

0

∫ x

0

g(τ, ξ, v(τ, ξ))dξdτ

∣∣∣∣
≤

∫ t

0

∫ x

0

| g(τ, ξ, u(τ, ξ))− g(τ, ξ, v(τ, ξ)) | dξdτ

≤ a ‖ u− v ‖C
∫ T

0

∫ b

0

dξdτ.

D’après l’hypothèse (H03), on obtient alors,

‖ (G)(u)−G(v) ‖C ≤ Tba ‖ u− v ‖C .

Donc, d’après (3.3) et comme Tba < Tb(a+q∗), alors G est une contraction.

Étape 5 : L’estimation Apriori.

Maintenant il reste à montrer que l’ensemble

E = {u ∈ C(J,R), u = λF (u) + λG
(u
λ

)
, pour 0 < λ < 1}

est borné.
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Soit u ∈ E, on a

u = λF (u) + λG
(u
λ

)
,

pour 0 < λ < 1. Alors pour tout (t, x) ∈ J , on a

u(t, x) = λµ(t, x)+λ

∫ t

0

∫ x

0

f(τ, ξ, u(τ, ξ), D2
txu(τ, ξ))dξdτ+λ

∫ t

0

∫ x

0

g

(
τ, ξ,

u(τ, ξ)

λ

)
dξdτ.

D’après (H02) et (H03), pour tout (t, x) ∈ J ,

| u(t, x) | ≤ | µ(t, x) | +p∗
∫ t

0

∫ x

0

dξdτ + q∗
∫ t

0

∫ x

0

| u(τ, ξ) | dξdτ

+ λ

∫ t

0

∫ x

0

| g(
u(τ, ξ)

λ
)− g(τ, ξ, 0) | dξdτ + λ

∫ t

0

∫ x

0

| g(τ, ξ, 0) | dξdτ

≤ µ∗ + p∗
∫ t

0

∫ x

0

dξdτ + q∗
∫ t

0

∫ x

0

‖ u ‖C dξdτ

+ a

∫ t

0

∫ x

0

‖ u ‖C dξdτ + Tbg∗,

où g∗ = sup
(t,x)∈J

| g(t, x, 0) | .

Il s’ensuit alors

‖ u ‖C≤ µ∗ + Tb(g∗ + p∗) + Tb(a+ q∗) ‖ u ‖C .
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On trouve

‖ u ‖C≤
µ∗ + Tb(g∗ + p∗)

1− Tb(a+ q∗)
:= M̃.

Donc

‖ u ‖C ≤ M̃

et l’ensemble E est borné.

D’après le théorème 1.3.3, F + G admet un point fixe qui représente une

solution du problème (3.1)− (3.2).

3.3 Exemple

Considérons le problème perturbée suivant :

(D2
txu)(t, x) =

1 + 3et+x+2(e−2 | u(t, x) | +2)

3et+x+2(1+ | u(t, x) |)
(3.4)


u(t, 0) = t, t ∈ [0, 1],

u(0, x) = x2, x ∈ [0, 1].

(3.5)

Posons

f(t, x, u(t, x), v(t, x)) =
e−2 | u(t, x) | +2

1+ | v(t, x) |
; (t, x) ∈ [0, 1]× [0, 1]

et

g(t, x, u(t, x)) =
1

3et+x+2(1+ | u(t, x) |)
; (t, x) ∈ [0, 1]× [0, 1].
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Il est clair que l’hypothèse (H02) est satisfaite avec p∗ = 2 et q∗ = e−2.

Pour u, u ∈ R et pour tout (t, x) ∈ [0, 1]× [0, 1],

| g(t, x, u)− g(t, x, u) | ≤
∣∣∣∣ 1

3et+x+2(1+ | u(t, x) |)
− 1

3et+x+2(1+ | u(t, x) |)

∣∣∣∣
≤

∣∣∣∣ 1

3et+x+2

(
1

(1+ | u(t, x) |)
− 1

(1+ | u(t, x) |)

)∣∣∣∣

D’ou

| g(t, x, u)− g(t, x, u) | ≤ 1

3et+x+2

∣∣∣∣( 1

(1+ | u(t, x) |)
− 1

(1+ | u(t, x) |)

)∣∣∣∣
≤ 1

3e2
‖ u− u ‖C .

Donc, l’hypothèse (H03) est satisfaite avec a = 1
3e2

, la condition (3.3) est

vérifiée pour T = b = 1.

En effet

Tb(a+ q∗) =
4

3e2
< 1.

Donc, les hypothèses (H01)− (H03) sont satisfaites.

D’après le théorème 3.2.1, le problème (3.4) − (3.5) possède au moins une

solution définie sur [0, 1]× [0, 1].



Conclusion

Dans ce mémoire, nous avons étudié l’existence et l’unicité des solutions de

quelques classes d’équations différentielles implicites aux dérivées partielles

du second ordre.

Nous avons commencé par quelques préliminaires sur l’espace de Banach

et quelques définitions d’équation différentielle implicite avec des exemples,

puis nous avons présenté des théorèmes de point fixe et des lemmes préli-

minaires.

Ensuite, nous avons montré l’existence et l’unicité de solutions d’une classe

d’équations différentielles implicites par l’utilisation des théorèmes de point

fixe de Banach et théorème de Leray-Schauder.

Enfin, nous avons démontré l’existence de solutions d’une classe d’équations

différentielles implicite aux dérivées partielles perturbées, nous avons utilisé

cette fois le théorème de point fixe de Burton-Kirk pour la somme de deux

opérateurs, un opérateur contraction et un autre complètement continu.

Enfin nous avons donné des exemples illustratifs.



Bibliographie

[1] S. Abbas, M. Benchohra and G.M. N’Guérékata, Topics in Fractional

Differential Equations, Springer, New York, 2012.

[2] S. Abbas, M. Benchohra and A. N. Vityuk, On fractional order deri-

vatives and Darboux problem for implicit differential equations, Frac.

Calc. Appl. Anal. 15 (2) (2012), 168-182.

[3] H. Brézis. Analyse fonctionnelle. Théorie et application. Dunod, 1999.

[4] T.A. Burton and C. Kirk, A fixed point theorem of Krasnoselskii-

Schaefer type, Math. Nachr. 189 (1998), 23-31.

[5] S. Gonnord, Nicolas Tosel. Théorème d’analyse pour l’agrégation. To-

pologie et analyse fonctionnelle. Ellipses, 1996.

[6] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New

York, 2003.

[7] J. K. Hale and S.V. Lunel, Introduction to Functional Differential

Equations, Applied Mathematical Sciences, 99, Springer-Verlag, New

York, 1993.

[8] G. Messaoud, Sur quelques équations intégrales non linéaires, Mémoire

de Magister, Université de Ouargla, 2012.



BIBLIOGRAPHIE 47

[9] W. Rudin. Analyse réelle et complexe. Masson, 1995.

[10] L. Toudjihounde, Calcul Differentiel, Université d’Abomey-Calavi.


