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Introduction

Les réseaux de files d’attente ont commencé à voir le jour 1909 avec les travaux de
recherches de l’ingénieur danois Agner Krarup Erlang (1878, 1929) sur le trafic télépho-
nique de Copenhague pour déterminer le nombre de circuits nécessaires afin de fournir un
service téléphonique acceptable et d’autre ingénieurs Engset, Palm,..., qui ont contribuent
principalement à ce domaine de recherche sur des réseaux de type téléphonique.

Par la suite, les files d’attente ont été intégrés dans la modélisation de divers domaines
d’activité. On assista alors à une évolution rapide de la théorie des files d’attente qu’on
appliqua à l’évaluation des performances des systèmes informatiques et aux réseaux de
communication. Les chercheurs oeuvrant dans cette branche d’activité ont élaboré plu-
sieurs nouvelles méthodes qui ont été ensuite appliquées avec succés dans d’autres do-
maines, notamment dans le secteur de la fabrication. On a aussi constaté une résurgence
des applications pratiques de la théorie des files d’attente dans des secteurs plus tradi-
tionnels de la recherche opérationnelle, un mouvement mené par Peter Kolesar et Richard
Larson. Gràce à tous ces développements, la théorie des files d’attente est aujourd’hui
largement utilisée et ses applications sont multiples.
Dans ce mémoire on s’intéresse aux réseaux de files d’attente stochastiques. Dans le pre-
mier chapitre nous abordons les processus à la base de l’étude de tels systèmes d’attente
qui sont les processus stochastiques. Nous présentons les concepts de base des processus
stochastiques.
Ensuite dans le deuxième chapitre, nous abordons la terminologie de la théorie des files
d’attente. Certaines définitions et notations qui sont nécessaires dans l’étude des sys-
tèmes de files d’attente (la notation de KANDELL, la formule de LITTLE · · · ) sont
nottamment données. Et nous étudions quelque modèles de files d’attente markoviennes
(M/M/1,M/M/1/K,M/M/c,, M/M/∞, et l’évaluation de leurs paramétres de perfor-
mance.

Enfin, dans le troisième chapitre, nous donnons quelques exemples sur les réseaux de
files d’attente ( réseaux de Jackson, réseaux de Gordon-Newel, réseau de Lu Kumar et
Rybko Stolyar et les réseau de Bramson).[15]
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Chapitre 1

Processus Stochastiques

Les processus stochastiques décrivent l’évolution d’une grandeur aléatoire en fonction
du temps (ou de l’espace). Il existe de nombreuses applications des processus aléatoires
notamment en physique statistique[19]( mouvement des particules dans une substance
physique).
L’étude des processus stochastiques sinsère dans la théorie des probabilités dont elle consti-
tue l’un des objectifs les plus profonds. Elle soulève des problèmes mathématiques inté-
ressants et souvent très difficiles.

1.1 Définitions et propriétés de base :

Définition 1.1.1. Un processus stochastique (ou aléatoire) est une famille de variables
aléatoires (c’est-à-dire, des applications mesurables) définies sur le même espace de proba-
bilité (Ω,F , P ) indexée par T .Si T est un sous-ensemble d’un espace multidimensionnel,
Un processus stochastique est noté par {Xt}t ∈ T . La valeur de la variable aléatoire Xt en
un certain ω ∈ Ω est désignée parXt(ω). , donc nous écrivons (Xn)n≥0 pour le processus
à temps discret et (Xt)t≥0 pour le processus à temps continu.

1.1.1 Processus de comptage

Définition 1.1.1.1. (Processus de comptage)
Un processus stochastique N(t),t ∈ [0,∞[ est un processus de comptage si N(t) est le
nombre d’événements qui ont eu lieu entre 0 et t, alors on a :

– N(t) ≥ 0

– N(t) a des valeurs entières uniquement.
– pour s < t,N(t)−N(s) est le nombre d’événements qui ont eu lieu entre s et t

Un processus de comptage est un processus discret à temps continu. Un second processus
peut être associé au processus des temps d’occurrence ; le processus des temps d’inter-
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arrivées {Zn, n ∈ N0} ou ∀n ∈ N0 la variable aléatoire Zn est le temps d’attente entre les
(n− 1)ieme et nieme occurrences , c-à-d Zn = An−An−1 avec An est le temps d’arrivé du
n ieme client.

Proposition 1.1.1. on a la proposition suivantes sont réalisées :

1. An = Z1 + Z2 + . . .+ Zn ∀n ≥ 1

2. P [s < Zn < t] = P[N(s) < n ≤ N(t)]

3. N(t) = sup {n ≥ 0 : Zn ≤ t}

4. P[N(t) = n] = P [Zn ≤ t < Zn+1]

5. P[N(t) ≥ n] = P [Zn ≤ t]

Démonstration : on a

Zn = An − An−1 (1.1)

An = Z1 + Z2 + . . .+ Zn (1.2)

= A1 − A0 + A2 − A1 + A3 − A2 + . . .+ An−1 − An−2 + An − An−1 (1.3)

= A0 + An (1.4)

= An car A0 = 0 (1.5)

Définition 1.1.1.2. (Processus à accroissements inépendants)
Un processus Xt est à accroissements inépendants si pour toute suite finie t0 < t1 < . . . <

tn , tel que t0 = 0 et Xt0 = 0 les variables aléatoires Xt1 −Xt0 , Xt2 −Xt1 , . . . , Xtn −Xtn−1

sont indépendantes.

Définition 1.1.1.3. Un processus de comptage N(t), t ≥ 0 est un processus de poisson
d’intensité λ > 0 qui vérifie

– N(0) = 0 ;
– le processus est à accroissements indépendants ;
– le processus est à accroissements stationnaires ;
– ∀0 ≤ s ≤ t , la variable aléatoire N(t)−N(s) suit une loi de poisson de paramétre
λ(t− s) .

loi de Poisson et loi exponentielle :

Définition 1.1.1.4. Une variable aléatoire X à valeurs entières suit une loi de poisson
de paramétre λ > 0 si :

∀k ∈ N, P(X = k) =
λk

k!
e−(λk)
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Définition 1.1.1.5. Une variable aléatoire Y à valeurs réelles strictement positives suit
une loi exponentielle de paramètre µ > o si :

∀t ≤ 0, P(Y = t) = µe−(µt)

Théorème 1.1.1. [21] Un processus de comptage (Nt)t≥0 est un processus de Poisson
d’intensité λ si et seulement si ses accroissements Nt+s − Nt sont stationnaires et indé-
pendants, et suivent une loi poisson(λs).

Remarque 1.1.1. [21] En fait ,on peut montrer assez facilement qu’un processus de
comptage (Nt)t≥0 est un processus de poisson ( d’intensité non spécifie) si et seulement
si ses accroissements Nt+s − Nt sont stationnaires et indépendants .Cela montre que ce
processus va correctement modéliser toutes les situations où ces deux hypothèses sont
approximativement vérifiées.
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1.1.2 Processus de renouvellement

Les processus de renouvellement constituent une extension des processus de Poisson
au cas où la loi des durées Un = Tn − Tn−1 entre deux occurrences consécutives n’est pas
nécessairement exponentielle. Ils permettent de modéliser et de résoudre les problèmes de
renouvellement des systèmes, dans le cadre d’une politique de maintenance[22].
Inter-arrivées indépendantes
Soient {N(t), t ≥ 0} un processus de comptage et {Wn, n ∈ N0} le processus des temps
d’inter-arrivées associé à ce processus. Le processus de comptage est un processus de
Poisson d’intensité ν > 0 si et seulement si les variables aléatoires Wn sont indépendantes
et identiquement distribuées selon une loi exponentielle de paramètre ν.[14]

Définition 1.1.2.1. La suite suivante, {Xi : i ∈ {1, 2, 3, . . .}} est une suite de variables
aléatoires positives, indépendantes et identiquement distribuées. Leur distribution est ca-
ractérisée par la fonction de répartition FX . Posons Sn =

∑n
i=1Xi

Définition 1.1.2.2. Processus de renouvellement
on définit N(t) le nombre de renouvellements effectués pendant l’intervalle de temps
[0, t],et t nombre réel positif

N(t) = max {n ∈ {0, 1, 2, . . .} : Sn ≤ t}
N(0) = 0.

Le processus {N(t) : t ≥ 0} est un processus de renouvellement.

1.1.3 Processus de Poisson

Définition 1.1.3.1. Soit (N(t))t>0 un processus de comptage tel que Le processus est à
accroissement indépendants :
∀t0 6 t1 < · · · < tk, les variables aléatoires Ntk −Ntk−1

, . . . , Nt1−Nt0 sont indépendantes.
(N(t))t>0 Ce processus s’appelle le processus de Poisson d’intensité λ .

Définition 1.1.3.2. Pour toute nombre réel t > 0, la variable aléatoire N(t) est de loi de
Poisson de paramètre λt, c’est-à-dire que pour tout entier n non négatif,

P [N(t) = n] = e−λt
(λt)n

n!

Définition 1.1.3.3. Un processus de Poisson N = (Nt)t≥0 d’intensité λ est un processus
de comptage à trajectoires continues à droite[9]tel que :

1. N(0) = 0

2. N est un processus à accroissements indépendants et stationnaires ;

3. pour tout t ≥ 0, Nt suit la loi de Poisson P(λt).
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1.1.4 Processus de naissance et de mort

Dans de nombreuses applications de la vie réelle, l’état du système augmente parfois
de un, et à d’autres moments diminue d’un et aucune autre transition n’est possible. Une
telle chaine de Markov en temps discret Xn est appelée processus de naissance et de mort
[16].

Dans ce cas :

Pij = 0 si |i− j| > 1 et Pij > 0 si |i− j| = 1

Figure 1.1 – Ensemble d’états et transitions dans une chaine de Markov.

Définition 1.1.4.1. On peut réaliser un processus de naissance et de mort de la façon
suivante :

Les arrivées et les départs d’entités obéissent à des lois exponentielles de taux respectifs
λ(n) et µ(n)

– A l’aide d’hypothèse de régularité : deux événements ne peuvent pas se produire
en même temps, donc la probabilité que deux événements se produisent dans un
intervalle de temps dt est négligeable.

– Il y a une transition vers un état voisin, soit par l’arrivée d’un client (naissance),
soit par le départ d’un client (mort).

Si πn(t) est la probabilité pour qu’il a n clients dans le système à l’instant t, l’équation de
Kolomogorov[1] s’écrit, pour n > 0 :

πn(t+ dt) = (1− (λn + µn) dt) πn(t) + µn+1πn+1(t)dt+ λn−1πn−1(t)dt+ o(dt)
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C’est-à-dire, en faisant tendre dt vers 0, pour n > 0 :

d

dt
πn(t) = − (λn + µn) πn(t) + µn+1πn+1(t) + λn−1πn−1(t)

De la même façon, on obtient pour n = 0 :

d

dt
π0(t) = −λ0π0(t) + µ1π1(t)

Le processus de Poisson est un cas particulier du processus de naissance et de mort pour
lequel µn = 0 et λn = λ mais dans ce cas, il n’y a pas de régime stationnaire[7] Les
équations différentielles s’écrivent alors : d

dt
π0(t) = −λ0π0(t)

d’où π0(t) = exp−λt

d

dt
πn(t) = −λ (πn(t)− πn−1(t))

dont la solution est πn(t) = (λt)n exp−λt

n!

1.1.4.1 Processus de naissance

Si la taille d’une population a une transition n −→ n+ 1 donc il correspondant à une
naissance.

1.1.4.2 Processus de mort

Si la taille d’une population a une transition n −→ n− 1 donc il correspondant à une
mort.



Chapitre 2

Systèmes de files d’attente

La théorie des files d’attente est une théorie mathématique relevant du domaine des
probabilités, qui étudie les solutions optimales de gestion des files d’attente, ou queues[4].
Une queue est nécessaire et se créera d’elle-même si ce n’est pas anticipé, dans tous les
cas où l’offre est inférieure à la demande, même temporairement. Elle peut s’appliquer à
différentes situations : gestion des avions au décollage ou à l’atterrissage, attente des clients
et des administrés aux guichets, ou bien encore stockage des programmes informatiques
avant leur traitement. Ce domaine de recherches, né en 1917 , des travaux de l’ingénieur
danois Erlang sur la gestion des réseaux téléphoniques de Copenhague[3] à partir de 1908
, étudie notamment les systèmes d’arrivée dans une queue, les différentes priorités de
chaque nouvel arrivant, ainsi que la modélisation statistique des temps d’exécution.

2.1 File d’attente simple

La file simple
Une file simple (ou station) est un système constitué d’un ou plusieurs serveurs et d’un
espace d’attente. Les clients arrivent de l’extérieur, patientent éventuellement dans la file
d’attente, reçoivent un service, puis quittent la station. Afin de spécifier complètement
une file simple, on doit caractériser le processus d’arrivée des clients, le temps de service
ainsi que la structure et la discipline de service de la file d’attente[13].
Processus d’arrivée[12] : L’arrivée des clients à la station sera décrite à l’aide d’un
processus stochastique de comptage (Nt)t≥0.

– Si An désigne la variable aléatoire mesurant l’instant d’arrivée du nième client dans
le système, on aura ainsi : A0 = 0 et An = inf {t;Nt = n}.

– Si Tn désigne la variable aléatoire mesurant le temps séparant l’arrivée du (n−1)ime

client et du nième client , on a alors :
Tn = An − An−1

13



2.1 File d’attente simple 14

Figure 2.1 – Graphe de file d’attente simple

La plupart du temps, l’arrivée des clients à une file simple est supposée décrite par un
processus de renouvellement. Le processus d’arrivée le plus simple et le plus couramment
employé est le processus de Poisson. C’est un processus de renouvellement qui est tel que
les interarrivées sont distribuées selon une loi exponentielle [13]. On note :
λ : Le taux des arrivées.
1/λ : Est l’intervalle moyen entre deux arrivées consécutives.
Temps de service :
Considérons tout d’abord une file à serveur unique. On note Dn la variable aléatoire me-
surant l’instant de départ du niéme client du système et Yn la variable aléatoire mesurant
le temps de service du n iéme client (temps séparant le début et la fin du service).

Un instant de départ correspond toujours à une fin de service, mais ne correspond pas
forcément à un début de service. Il se peut en effet qu’un client qui quitte la station laisse
celle-ci vide. Le serveur est alors inoccupé jusqu’à l’arrivée du prochain client.

On considérera uniquement des stations dont les temps de service consécutifs sont
décrits par des variables Yn indépendantes et identiquement distribuées (i.i.d.). On note
µ le taux de service : 1/µ : est la durée moyenne de service. La distribution du temps de
service la plus simple à étudier est la distribution exponentielle. Cependant, la propriété
"sans mémoire" de la loi exponentielle fait que celle-ci n’est généralement pas trés réaliste
pour modéliser les phénomènes réels. On est donc souvent obligé de recourir à d’autres
distributions de service [13].
Disciplines de service :

l FIFO : (first in, first out) ou FCFS (first come first served) ou PAPS (premier
arrivé, premier servi) : c’est la file standard dans laquelle les clients sont servis dans leur
ordre d’arrivée. Notons que les disciplines FIFO et FCFS ne sont pas équivalentes lorsque
la file contient plusieurs serveurs. Dans la première, le premier client arrivé sera le premier
à quitter la file alors que dans la deuxième, il sera le premier à commencer son service.
Rien n’empêche alors qu’un client qui commence son service après lui, dans un autre ser-
veur, termine avant lui. En français, le terme PAPS comporte une ambiguité, puisqu’il ne



2.2 Notation de Kendall 15

peut différencier une file "premier arrivé, premier servi" d’une file "premier arrivé, premier
sorti".

l LIFO : (last in, first out) où L C F S (last come, first served) où DAPS
(dernier arrive, premier servi). Cela correspond à une pile, dans laquelle le dernier client
arrivé (donc posé sur la pile) sera le premier traité (retiré de la pile). A nouveau, les
disciplines L I F O et L C F S ne sont pas équivalentes que pour une file mono-serveur.

l RANDOM (aléatoire) : Le prochain client qui sera servi est choisi aléatoire-
ment dans la file d’attente.

l Round-Robin (cyclique) : Tous les clients de la file d’attente entrent en ser-
vice à tour de rôle, effectuant un quantum Q de leur temps de service et sont replacés dans
la file, jusqu’à ce que leur service soit totalement accompli. Cette discipline de service a
été introduite afin de modéliser des systèmes informatiques.

l PS (Processor Sharing) : C’est le cas limite de la distribution Round-Robin
lorsque le quantum de temps Q tend vers 0 . Tous les clients sont servis en même temps,
mais avec une vitesse inversement proportionnelle au nombre de clients simultanément
présents. Si le taux du service est égal à µ et qu’à un instant donné il y a n clients dans
la station, tous les clients sont donc servis simultanément avec un taux µ

n
.

l Avec priorité : Chaque client a une priorité (statique ou dynamique, absolue
ou relative), le serveur sélectionne le client de haute priorité.

– Priorité relative : Un client accède au service selon sa priorité. La file est gérée
par ordre de priorité de la plus forte à la plus faible.

– Priorité absolue : Le service d’un client est interrompu lorsqu’un client de priorité
supérieure se présente devant la file d’attente. Le client dont ce service est interrompu
est remis en tête de la file.

2.2 Notation de Kendall

En théorie des files d’attente, la notation de Kendall est une notation qui permet de
décrire un système à l’aide de six paramétres. Elle porte le nom du mathématicien David
George Kendall, qui l’a introduite en 1953.

La notation de Kendall est une suite de 6 symboles a/s/C/K/m/Z

– a indique la loi de probabilité des instants d’arrivées, par exemple Gl pour la loi
générale indépendante et M pour la loi exponentielle.

– s indique la loi de probabilité de la durée du service (au guichet) ; on utilise les
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mêmes symboles que précédemment.
– C indique le nombre de serveurs (nombre de guichets).
– K est la capacité totale du système, c’est-à-dire le nombre de serveurs (C) plus le

nombre de places en attente.
– m indique la population totale de clients (par exemple : nombre d’inscrits sur une

liste électorale dans le cas d’une file d’attente à un bureau de vote).
– Z désigne la discipline de service, par exemple first in, first out (FIFO alias paps :

premier arrivé, premier servi). Très souvent, les trois derniers symboles de la notation
sont omis avec, par défaut, K infini,m infini et Z en premier arrivé, premier servi.[8]

2.2.1 Loi de Little

La loi de Little est une relation très général qui s’applique à une grande classe de
systèmes. Elle ne concerne que le régime permanent du système. Aucune hypothèse sur
les variables aléatoires qui caractérisent le système (temps d’inter arrivées, temps de ser-
vice,...) n’est nécessaire. La seule condition d’application de la loi de Little est que le
système soit stable. Le débit du système est alors indifféremment, soit le débit de sortie :
ds = de = d. La loi de Little s’exprime telle que dans la propriété suivante :

Théorème 2.2.1. (Formule de Little)Le nombre moyen de clients, le temps moyen passé
dans le système et le débit moyen d’un système stable en régime permanent se relient de
la façon suivante :

L = W × d

2.3 La file M/M/1

Le système d’attente M/M/1 est un système formé d’une seule file d’attente de capa-
cité infinie, d’un unique serveur et la discipline de service de la file est FIFO Les clients
arrivent vers le système selon un processus de Poisson de taux λ > 0 (nombre moyen de
clients arrivant pendant une unité de temps), le taux de service est µ (nombre moyen de
clients servis pendant une unité de temps)

La file peut être considérée comme un processus de naissance et de mort, pour lequel :
Les taux des arrivés λn et de service µn sont :

λn = λ, ∀n ≥ 0

µn =

µ n 6= 0

0 n = 0
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Figure 2.2 – La files d’attante M/M/1

Le système est stable si :

ρ =
λ

µ
< 1

- Si ρ > 1 le nombre de client tend vers l’infini donc le système n’est pas stable.
Régime transitoire :

Pour ce système, le plus simple de la théorie des files d’attente, le flux des arrivées est
poissonnien de paramètre λ et la durée de service est exponentielle de paramètre µ. La
capacité d’attente est illimitée et il y a une seule station de service. Le processus (Xt)

est markovien (doté de la propriété d’absence de mémoire), ce qui rend son étude aisée.
GrÃ¢ce aux propriétés fondamentales du processus de Poisson et de loi exponentielle, nous
avons pour un petit intervalle de temps ∆t les équations différentielles de Kolmogorov,
figure 2.3 : P ′0(t) = −λP0(t) + µP1(t) , n = 0

P ′n(t) = −(λ+ µ)Pn(t) + Pn−1(t) + µPn+1(t) , n = 1, 2, 3, . . . ..

Figure 2.3 – Diagramme de file d’attenteM/M/1

où
Pn(t) = P (Xt = n)

Régime stationnaire :
Quand t −→ ∞, on peut montrer que πn = limt→∞ Pn(t) = Pn existent et sont indépen-



2.3 La file M/M/1 18

dante de l’état initial du processus et que

πn = lim
t→∞

Pn(t) = (1− ρ)ρn ,∀n ∈ N

π = {πn}n≥0 est applé distribution stationnaire, elle suit une loi géométrique On obtient
alors un système d’équations linéaires homogèneµP1 = λP0 , n = 0

λPn−1 + µPn+1 = (λ+ µ)Pn , n = 1, 2, . . .

aux quelles on ajoute la condition
∑∞

n=0 Pn = 1. En additionnent les (n+ 1) premières
équations, on trouve

µPn+1 = λPn

D’où
Pn =

(
λ

µ

)n
P0 , n ∈ N

∞∑
n=0

Pn = 1⇒ P0

∞∑
n=0

(
λ

µ

)n
= 1

alors
Pn = (1− ρ)(ρ)n n = 0, 1, 2, . . .

à condition que
λ

µ
= ρ < 1

On constate que la file M/M/1 est gouvernée par la loi géométrique. -
λ

µ
= ρ est le

coefficient d’utilisation du système ou intensité du trafic.
Les paramétres de performance :

Une importante caractéristique des systèmes de files d’attente est
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– Le nombre moyen de clients dans le système :

L = E(N)

=
∞∑
n≥0

nπn

= (1− ρ)
∞∑
n≥0

nρn

=
ρ

1− ρ

=
λ

µ− λ

– Le nombre moyen de clients en train d’être servis :

Ns = 1− π0 = ρ

– Le nombre moyen de clients dans la file :

N̄Q =
∞∑
n≥1

(n− 1)πn

=
ρ2

1− ρ

De la meme manière,on peut trouver,
∗ La variance du nombre de clients dans le système

σ2 = Var(X)

= (1− ρ)
∞∑
k=0

(K −N)ρK

=
ρ

(1− ρ)2

Le temps moyen de séjour dans le système.On peut l’obtenir en appliquant la formule
de Little.
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– Temps moyen qu’un client passe dans le système :

T̄ =
N̄

λ

=
ρ

1− ρ
1

λ

=

1
µ

1− ρ

=
1

µ− λ

– Temps moyen de service :

T̄s =
1

µ

– Temps moyen d’attente :
T̄Q = T̄ − T̄s

=
λ

µ(µ− λ)

2.4 La file M/M/1/K

Soit K la capacité de la file d’attente : c’est le nombre maximal de clients qui peuvent
être présents dans le système, soit en attente, soit en service. Quand un client arrive alors
qu’il y a déjà K clients présents dans le système, il est perdu. Ce système est connu sous
le nom de file M//M/1//K

L’espace d’états E est maintenant infini : E = {0, 1, 2, . . .} La capacité de la file étant
limitée, même si les clients arrivent en moyenne beaucoup plus vite que ce que le serveur
de la file est capable de traiter, dès que celle-ci est pleine, les clients qui se présentent sont
rejetés. Le nombre de clients dans la file ne peut donc jamais partir à l’infini [17].

De plus, dès qu’un client est autorisé à entrer, il sortira un jour et son temps de séjour
dans la file est fini, puisqu’il correspond au temps de service de tous les clients devant lui
et que ce nombre est limité par K. Sur un temps très long, le débit de sortie sera donc bien
égal au débit d’entrée, ce qui correspond bien à la stabilité inconditionnelle du système.
Le processus de naissance et de mort modélisant ce type de file d’attente est alors défini
de la façon suivante, figure 2.4, figure 2.5 :

λn =

λ si n < K

0 si n > K
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Figure 2.4 – la file M/M/1/K

Figure 2.5 – Évaluation de l’état dans la file d’attenteM/M/1/K

2.5 La file M/M/C

On considère un système identique à la file M/M/1 excepté qu’il comporte C serveurs
identiques et indépendants les uns des autres. On conserve les hypothèses : processus
d’arrivée des clients poissonien de taux λ et temps de service exponentiel de taux µ (pour
chacun des serveurs). Ce système est connu sous le nom de file M/M/C. L’espace d’états
E est, comme pour la M/M/1 infini : E = {0, 1, 2, · · · }. On a un processus de naissance
et de mort de taux :

λn = λ

µn =


0 si n = 0

nµ si 0 < n < C

Cµ si n ≥ C

(2.1)

En effet, lorsque le processus est dans un état n < C, tous les clients sont en service et
sont donc susceptibles de quitter la file. Pour passer de n clients à n − 1 clients en un
temps dt il faut qu’un des n clients termine son service et que les autres ne terminent
pas le leur, ceci pouvant se produire pour le premier, le deuxième,..., ou le n-ième client.
Pour être précis, il faut également rajouter qu’aucun client n’arrive pendant ce temps dt.
La propriété caractéristique de la loi exponentielle nous dit que la probabilité pour qu’un
client termine son service en un temps dt est µdt+ o(dt), la probabilité pour qu’un client
ne termine pas son service est donc 1− µdt+ o(dt) et la probabilité pour qu’aucun client
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n’arrive est 1−λdt+o(dt). La probabilité recherchée se calcule donc de la façon suivante :

pn,n−1(dt) =

(
n∑
j=1

(µdt+ o(dt))(1− µdt+ o(dt))n−1

)
(1− λdt+ o(dt))

Un développement limité au premier ordre nous donne immédiatement que

pn,n−1(dt) = nµdt+ o(dt)

Le taux de transition de l’état n vers l’état n− 1 est donc égal à nµ. De la même façon,
lorsque n ≥ C, seuls C clients sont en service et sont donc susceptibles de quitter la
file, donc de faire passer le processus de l’état n à l’état n − 1. Le taux de transition
correspondant est donc égal à Cµ. Dans tous les cas, une transition d’un état n vers
un état n + 1 correspond à une arrivée de client, soit en un temps dt, à une probabilité
λdt+ o(dt). Le taux de transition est donc égal à λ.

La condition de stabilité est ici λ < Cµ et exprime le fait que le nombre moyen de
clients qui arrivent à la file par unité de temps doit être inférieur au nombre moyen de
clients que les serveurs de la file sont capables de traiter par unité de temps. On peut
calculer πn comme suit :πn−1λ = πnnµ pour n = 1, · · · , C − 1

πn−1λ = πnCµ pour n = C,C + 1, · · ·
(2.2)

soit

 πn =
ρ

n
πn−1 pour n = 1, · · · , C − 1

πn =
ρ

C
πn−1 pour n = C,C + 1, · · ·

où ρ =
λ

µ
. (2.3)

On peut alors exprimer toutes les probabilités en fonction de π0 :
πn =

ρn

n!
π0 pour n = 1, · · · , C − 1

πn =
ρn

C!Cn−C π0 pour n = C,C + 1, · · ·

D’après le diagramme et l’analyse du système en régime stationnaire, à l’aide de la
procédure des équations de Chapman Kolmogorov on obtient les équations suivantes :

λπ0 = µπ1 (2.4)

(λ+ nµ)πn = λπn−1 + (n+ 1)µπn+1 1 ≤ n < c (2.5)

(λ+ cµ)πn = λπn−1 + cµπn+1 n ≥ c (2.6)
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Figure 2.6 – La files d’attante M/M/C

Figure 2.7 – Evaluation de l’état dans la file d’attente M/M/C

avec
∞∑
n=0

πn = 1

La résolution du système ci-dessus présente la distribution stationnaire suivante :

N̄Q =
∞∑
n=1

(n− 1)πn = N̄ − (1− π0) (2.7)

πn =
ρC

C!
(A)n−Cπ0, n ≥ C (2.8)

où

π0 =

[
C−1∑
n=0

ρn

n!
+
ρC

C!

∞∑
n=C

ρn−C

]−1
, ρ =

λ

µ
et A =

λ

Cµ

Cette denière existe si : λ < Cµ

La condition de normalisation nous permet de calculer la probabilité π0, à condition
bien sûr que cette série converge. On peut aisément vérifier que la condition de convergence
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de cette série est identique à la condition de stabilité de la file, soit λ < Cµ.

π0 =
1

C−1∑
n=0

ρn

n!
+

ρC

(C − 1)!(C − ρ)

Lorsque C = 1, on retrouve bien les résultats de la file M/M/1 :

πn = (1− ρ)ρn

Tous les paramétres de performances peuvent se calculer dans le cas où la file est stable
(λ < Cµ) donc ρ < C.)

Débit d :
Le service s’effectue avec un taux nµ dans chaque état où le système contient moins de C
clients et avec un taux Cµ dans chaque état où le système contient plus de C clients :

d =
C−1∑
n=1

πnnµ+
+∞∑
n=C

πnCµ

En remplaçant les expressions obtenues pour les probabilités πn et π0, on retrouve bien
que la file est stable, le débit moyen de sortie est égal au débit moyen d’entrée :

d = λ

Pour la file M/M/C, il est plus simple (au niveau des calculs mis en jeu) de calculer
d’abord le temps moyen de séjour et d’en déduire le nombre moyen de clients.

Temps moyen de séjour W :
Le temps moyen de séjour d’un client se décompose en un temps moyen dans la file
d’attente, plus un temps moyen de service. Il suffit alors d’appliquer la loi de Little à la
seule file :

W = Wq + S =
Lq
d

+
1

µ
=
Lq
λ

+
1

µ

Il reste alors à calculer le nombre moyen de clients en attente dans la file, Lq :

Lq =
+∞∑
n=C

(n− C)πn =
+∞∑
n=C

(n− C)
ρn

C!Cn−C π0 =
ρC+1

C!C

+∞∑
n=C

(n− C)
( ρ
C

)n−C−1
π0

=
ρC+1

C!C

1(
1− ρ

C

)2π0 =
ρC+1

(C − 1)!(C − ρ)2
π0

On en déduit l’expression du temps moyen de séjour
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W =
ρC

µ(C − 1)!(C − ρ)2
π0 +

1

µ

Nombre moyen de clients L :
Le nombre moyen de clients s’obtient alors par application de la loi de Little à l’ensemble
de la file[7] :

L = W × d = W × λ =
ρC+1

(C − 1)!(C − ρ)2
π0 + ρ

2.6 La file M/M/∞
On considère un système composé d’un nombre illimité de serveurs identiques et in-

dépendants les uns des autres. Dès qu’un client arrive, il rentre donc instantanément en
service. Danc cette file particulière, il n’y a donc pas d’attente. On suppose toujours que
le processus d’arrivée des clients est poissonien de taux λ et que les temps de service sont
exponentiels de taux µ (pour tous les serveurs). Ce système est connu sous le nom de file
M/M/∞.[7]

Comme cela a été fait pour la file M/M/C, on peut facilement démontrer que le taux
de transition d’un état n quelconque vers l’état n− 1 est égal à nµ et correspond au taux
de sortie d’un des n clients en service. De même, le taux de transition d’un état n vers
l’état n+ 1 est égal à λ et correspond au taux d’arrivée d’un client.

De façon intuitive, la capacité de traitement de la file est infinie puisque tout nouveau
client se présentant à l’entrée de la file est instantanément traité. La condition de stabilité
exprimant que "le nombre moyen de client arrivant à la file par unité de temps doit être
inférieure à la capacitéde traitement de la file" est donc toujours satisfaite.

Soit πn la probabilité stationnaire d’être dans l’état n. Les équations d’équilibre nous
donnent

πn−1λ = πnnµ pour n = 1, 2, · · ·

Soit πn =
ρ

n
πn−1 pour n = 1, 2, · · · , où ρ =

λ

µ
. On peut alors exprimer toutes les proba-

bilités en fonction de π0 :
πn =

ρn

n!
π0 pour n = 1, 2, · · ·

La condition de normalisation nous donne alors immédiatement π0 :

π0 =
1

+∞∑
n=0

ρn

n!

= e−ρ
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Notons que la série
+∞∑
n=0

ρn

n!
converge pour toutes valeurs de ρ (donc de λ et de µ ), ce qui

est cohérent avec la stabilité inconditionnelle de la file. On obtient finalement :

πn =
ρn

n!
e−ρ pour n = 1, 2, · · ·

Débit d Le service s’effectue avec un taux nµ dans chaque état où le système contient n
clients :

d =
+∞∑
n=1

πnnµ = e−ρ
+∞∑
n=1

ρn

(n− 1)!
µ = e−ρρeρµ = ρµ = λ

Taux d’utilisation du serveur U :

U = 1− π0 = ρ

On retrouve la stabilité inconditionnelle de la file. Nombre moyen de clients L

L =
+∞∑
n=1

nπn = e−ρ
+∞∑
n=1

ρn

(n− 1)!
= e−ρρeρ = ρ

Temps moyen de séjour W : Intuitivement, le temps moyen passé dans le système est

réduit au temps moyen de service, soit
1

µ
On peut redémontrer ce résultat en utilisant la

loi de Little : µ̄

W =
L

d
=
ρ

λ
=

1

µ



Chapitre 3

Réseaux de files d’attente

Les réseaux de files d’attente ont été intégrés dans la modélisation de divers domaines
d’activité dans les années 1960. C’est l’échange de données entre ordinateurs qui a permis
une évolution rapide de la théorie des réseaux de files d’attente, notamment Les problèmes
concernent les temps de traitements de requêtes sur un système centralisé ou encore les
délais, le taux d’occupation des différents nceuds du réseau.

L’aparution de l’Internet et son dévelopement entre les années 70− 90 ont poussé les
mathématisiens à essayer de modéliser ces réseaux.

Des techniques de renormalisation ont été introduites au début des années 1990, dans
le cadre d’étudier les probabilités invariantes des grands réseaux avec perte. Les méthodes
de convergence de processus, de calcul stochastique ont fait ainsi progressivement leur
entrée dans l’étude de ces réseaux.

Dans ce chapitre, qui a été inspiré par le document de Philippe Robert, nous introdui-
sons un Ce ensemble de travaux relatifs à l’étude des réseaux stochastiques. Les réseaux
de files d’attente à forme produit seront donnés (les réseaux de Jackson, le Réseau de
Rybko-Stolyar/Lu-Kumar, le Réseau de Bramson et les réseaux Gordon-Newel). En suite
les principales définitions et notions relatives à la renormalisation d’un processus sont
traitées. Enfin les limites fluides notamment seront données, qui sont les limites des pro-
cessus renormalisés. et on termine le chapitre par des exercices illustrent ces définitions
[15].

3.1 Les réseaux de files d’attente .

Un réseau de Jackson est un ensemble de i files d’attente qui délivre un service ex-
ponentiel de paramètre µiet les clients arrivent dans le réseau à la file i suivant un pro-
cessus de Poisson de paramètre ˇi. Une fois servi par la file i, le client passe à la file j
avec probabilitéPij(avecPii = 0) ou quitte définitivement le réseau avec la probabilité
résiduelle[6]

27
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Un réseau de Jackson est équivalent à un ensemble de filesM/M/1 et la probabilité sta-
tionnaire P(n) du réseau est égale au produit des probabilités marginales Pi(ni) de chacune
des files étudiées en isolation.

3.1.1 Réseaux mono-classe ouvert :

Dans un réseau de files d’attente ouvert, les clients arrivent de l’extérieur, circulent
dans le réseau à travers les différentes stations, puis quittent le réseau. Le nombre de
clients pouvant se trouver à un instant donné dans un réseau ouvert n’est donc pas limité.
Afin de spécifier complètement un réseau ouvert, il faut bien sur caractériser chaque sta-
tion, mais également le processus d’arrivée des clients et le routage (cheminement) des
clients dans le réseau[2]. Dans les réseaux de files d’attente ouverts, les nouveaux clients
de l’extérieur du réseau peuvent rejoindre n’importe quel système de file d’attente, et
lorsqu’ils terminent leur service ils peuvent quitter le réseau [16].
a−Le processus d’arrivée :
Le processus d’arrivée des clients dans le réseau est décrit, comme pour une file simple,
à l’aide d’un processus de renouvellement (il est donc caractérisé par la distribution du
temps d’inter-arrivée). Si l’arrivée des clients suit un processus de Poisson, les inter-
arrivées sont exponentielles et sont caractérisées par un unique paramètre : le taux d’arri-
vée λ. Dans le cas d’un processus d’arrivée non Poissonnien,ce paramètre reste intéressant,
puisqu’il indique le nombre moyen de clients qui arrivent dans le système par unité de
temps, mais devient insuffisant pour caractériser parfaitement larrivée des clients.
b−Routage des clients :

Lorsq’un client termine son service à une station, il faut préciser où ce client va se
rendre : soit à une autre station, soit à l’extérieur (le client quitte alors le réseau).
Il existe cependant d’autres types de routages :

– le routage vers la file la plus courte (routage dynamique) : un client quittant une
station choisira, parmi toutes les destinations possibles, la station qui comporte le
moins de clients

– le routage cyclique (routage déterministe) : les clients quittant une station choisiront
à tour de rôle chacune des stations parmi toutes les destinations possibles.

Dans le cas d’un réseau ouvert, mono-classe, de routage probabiliste et dont tous les
noeuds sont des files M/M/1, la probabilité stationnaire possède la forme produit suivante
[2] :

P (n) =
M∏
i=1

Pi (ni) (3.1)
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Où Pi (ni) est donné comme solution à la file d’attente classique de type M/M/1. Dans
le cas particulier où tous les centres de services contiennent un seul serveur exponentiel (
ci = 1 pour tout i ), l’expression ci-dessus devient :

P (n) =
M∏
i=1

(1− ρi) ρnii , ρi =
λi
µi

(3.2)

La condition de stabilité évidente pour un réseau Jackson est que

ρi =

(
λi
ciµi

)
< 1, i = 1, 2, . . . ,M

Pour résoudre un réseau Jackson, il faut tout d’abord résoudre les équations de trafic pour
obtenir le taux d’arrivée effectif à chaque oeud. Chaque oeud est ensuite résolu isolément
et la solution globale est formée à partir du produit des solutions individuelles [20].

Figure 3.1 – Réseau de e Jackson

Définition 3.1.1.1. Un réseau de files d’attente est un ensemble de files d’attente inter-
connectées. Dans un réseau de files d’attente ouvert, les clients arrivent de l’extérieur,
circulent dans le réseau à travers les différentes stations, puis quittent le réseau. Le nombre
de clients pouvant se trouver à un instant donné dans un réseau ouvert n’est donc pas
limité. La figure ci-dessous illustre un exemple de réseau mono-classe ouvert[2] :

Exmple :
Remontées mécaniques au ski, caisses de grandes surfaces.

3.1.2 Réseaux mono-classe fermés :

Dans un réseau de files d’attente fermé, les clients sont en nombre constant. Soit N

le nombre total de clients du système. Il n’y a donc pas d’arrivée ni de départ de clients.
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Figure 3.2 – Réseau de files d’attente mono-classe ouvert

La spécification d’un réseau fermé se réduit donc à celle des différentes stations et à celle
du routage des clients[11].Pour un mécanisme de routage probabiliste, on définit pij la
probabilité qu’un client qui quitte la station i se rende à la station j. Les pij sont tels
que :

M∑
j=1

pij = 1

Définition 3.1.2.1. Lorsque nous visualisons un système de files d’attente et de serveurs,
nous pensons généralement aux clients qui arrivent de l’extérieur, passent un certain temps
à se déplacer entre les différents centres de service et finissent par disparaÃ®tre complè-
tement.

Cependant, dans un réseau fermé de files d’attente, un nombre fixe de clients circule
en permanence entre les centres de service, pour ne jamais partir. Il a des applications
importantes.Par exemple, il a été utilisé pour modéliser un système informatique mul-
tiprogrammation dans lequel seul, un nombre fixe de processus peut être traité à la fois
[20].

La figure ci-dessous illustre un exemple de réseau mono-classe fermé :
Exmple :

Palettes dans un atelier.

3.1.3 Réseaux multi-classe

Les réseaux de files d’attente peuvent être parcourus par différentes classes de clients.
Soit r le nombre de classes de clients. Ces différentes classes se distingueront par :

– Des processus d’arrivée différents (si le réseau est ouvert),
– Des comportements différents à chaque station (service et discipline de service),



3.1.3 Réseaux multi-classe 31

Figure 3.3 – Réseau de files d’attente mono-classe fermé

– Des routages différents dans le réseau.

Figure 3.4 – Réseau de multi-classe

Comme pour les files simples, les réseaux de files d’attente peuvent être parcourus par
différentes classes de clients. Soit R le nombre de classes de clients. Ces différentes classes
se distingueront par :

– Des processus d’arrivée différent (si le réseau est ouvert)
– Des comportements différents à chaque station (service et discipline de service)
– Des routages différents dans le réseau. On est alors amené à caractériser pour chaque

classe r :
– Pour un réseau ouvert, le processus d’arrivée (pour un processus d’arrivée poissonien,

il suffit alors de donner le taux d’arrivée λr des clients de classe r ) ;
– Pour un réseau fermé, le nombre total Nr de clients de classe r ;
– Le routage de clients. Si on se limite aux routages probabilistes, on définit prij la

probabilité pour qu’un client de classe r qui quitte la station i se rende à la station
j. (Si i ou j est égal à 0, cela fait la différence à 1 ’ "extérieur" d’un réseau ouvert.)

La notion de réseaux multiclasses nous permet d’introduire la notion de réseau mixte qui
est un réseau ouvert vis à vis de certaines classes et fermé vis à vis des autres classes.
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On peut également autoriser certains clients à changer de classe lors de leur chemine-
ment dans le réseau. On définit alors pri,sj la probabilité pour qu’un client de classe r qui
quitte la station i se rende à la station j et se transforme en un client de classe s.

3.2 Les réseaux de files d’attente à forme produit :

3.2.1 Réseau Jackson

Un réseau de Jackson est caractérisé par un ensemble de N files d’attente avec la
displine FIFO, i.e. avec la discipline de service premier arrivé premier servi. dans la file
d’attente d’ordre i avec 1 < i < N , le service est exponentiel de paramètre µi et l’arrivée
des clients dans le réseau à la file i est un processus de Poisson de paramètre λ Une fois le
service du client par la file i est terminé, le client rejoint la file j avec probabilité Pij (avec
Pii = 0 i.e. étant donné dans la file i le client ne peut jamais revenir à la file i ) ou quitte
définitivement le réseau avec la probabilité résiduelle. La matrice R = (Rij, i, j = 0, . . . N)

est définie par, si i 6= 0 et j 6= 0

rij = Pij

ri0 = 1−
N∑
j=1

Pij

r00 = 1

de telle sorte que R est une matrice markovienne. On suppose que toutes les variables
aléatoires utilisées sont indépendantes. Le processus de Markov associé à ce réseau de files
d’attente est à valeurs dans S = NN . En notant pour 1 < i < N, ei = (lj=i; 1 ≤ j ≤ N) le
ime vecteur unité, lamatrice Q de ce processus de Markov est donnée par

qn,n+ei−ej = µj nj > 0, i, j ≤ N

qn,n−ej = µj nj > 0, i, j ≥ N

qn,n+ei = λi i ≤ N

La matrice markovienne R = (Rij; i, J = 0, . . . , N) est supposée avoir 0 comme unique
point absorbant, si (Yn) est une chaine de Markov de matrice de transition R, presque
sûrement (Yn) est constante égale à 0 à partir d’un certain rang.

On fait en outre l’hypothèse que rii = 0 pour tout 1 ≤ i ≤ N (un client ne revient
pas en fin de file d’attente après son service). Si cette condition n’est pas remplie, l’ex-
pression du générateur montre qu’il suffit de remplacer µi par µi/ (1− rii) et les rij par
rij/ (1− rii) j 6= i, pour se ramener à cette situation[15].
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Lemme 3.2.1. [18] Il existe une suite positive
(
λ̄i; 1 ≤ i ≤ N

)
vérifiant les équations de

trafic

λ̄i = λi +
N∑
j=1

λ̄jpji

Pour 1 ≤ i ≤ N , on posera ρi = λ̄i/µi

Définition 3.2.1.1. Un réseau de file d’attente sera dit à forme produit si et seulement
si ses probabilités d’états π(~n) se mettent sous la forme

π(~n) =
1

G

M∏
i=1

ϕ (ni)

où G est une constante de normalisation assurant que
∑

~n π(~n) = 1.

3.2.2 Les réseaux de Gordon-Newel

Le réseau de Gordon-Newel est l’analogue fermé du réseau de Jackson. C’est un réseau
de N files d’attente dans lequel circulentM clients. Pour i = 1, . . . , N , la iime file d’attente
délivre un service exponentiel de paramètre µi. A la sortie de cette file, un client passe à
la file j avec probabilité Pij. La matrice de transition Q du processus de Markov associé
à ce réseau est donnée par

qn,n+ei−ej = µjPji, nj > 0, i, j ≤ N

La matrice P = (pij; i, j = 1, . . . , N) est la matrice de transition d’une chaÃ®ne de
Markov irréductible et, par conséquent, ergodique puisque l’espace d’états est fini. Si
(νi; i = 1, . . . , N) est la mesure invariante de cette chaine,

νi =
N∑
1

νjpji, i = 1, . . . , N (3.3)

ces équations sont les analogues des équations du trafic 3.5, de la même manière les charges
ρi sont définies par

ρi =
νi
µi
, i = 1, . . . , N (3.4)

Le processus de Markov décrivant ce réseau est à valeurs dans

S =

{
n = (ni, n = 1, . . . , N)

N∑
1

ni = M

}
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L’irréductibilité de la matrice de transition P sur l, . . . , N entraine celle de ce processus
de Markov sur S. De la même façon que précédemment, on définit

π(n) =
N∏
1

ρnii , n = (ni, n = 1, . . . , N) ∈ S

et la matrice du processus stationnaire renversé Q̃ vaut

q̃n,n+ei−ej =
νi
ρj
pij nj > 0, i, j ≤ N (3.5)

de la même façon que dans la preuve précédente, les équations 3.3 donnent pour n =

(ni, n = 1, . . . , N) ∈ S et j = 1, . . . , N tel que nj > 0{ ∑
m∈Dj qn,n+m =

∑
i µjpji = µj∑

m∈Dj q̃n,n+m =
∑
i νjpij
ρj

=
νj
ρj

= µj
Partant de l’état n ∈ S, l’état suivant du processus est nécessairement dans un des
n+Dj, j = 1, . . . , N. Les équations (3.1.2) donnent le théorème suivant pour les réseaux
fermés [15] .

Théorème 3.2.2.1. [18] Le réseau ferme de files d’attente de matrice de routage (pij)

décrit précédemment a pour mesure invariante la probabilité

π(n) =
1

K

N∏
1

ρnii n = (ni, n = 1, . . . , N) ∈ S

où, pour i = 1, . . . , N, ρi = νi/µi et (νi) vérifie le système d’equations

νi =
∑
i

νjpji

et K est la constante de normalisation. La constante de normalisation K n’est en gené-
ral pas très simple à exprimer en raison de la taille de l’espace d’états. Des procedures
récursives permettent cependant d’exprimer numériquement K assez simplement.

3.2.3 Le Réseau de Rybko-Stolyar/Lu-Kumar

Ce réseau multi-classe a deux serveurs et quatre files d’attente. Pour i = 1 et 2 , les
clients de classe i arrivent au noeud i suivant un processus de Poisson d’intensité λi où
ils demandent un service de distribution exponentielle de paramètre µi1 puis passent à
l’autre file d’attente pour être servis au taux µi2, voir figure 3.5
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Figure 3.5 – Réseau de Rybko-Stolyar/Lu-Kumar

Ce réseau a été étudié par Rybko et Stolyar (1992) et par Lu et Kumar (1991) dans
une version déterministe. Les clients de classe 1 sont prioritaires quand ils accèdent au
serveur 2 : aucun client de classe 2 ne peut être servi si un client de classe 1 est présent
dans la file 2 .De façon symétrique les clients de classe 2 sont prioritaires dans la file 1 . à
l’intèrieur d’une classe, le service se fait dans l’ordre des arrivées. Les charges desoeuds1
et 2 valent donc respectivement

ρ1 = λ1/µ11 + λ2/µ22 et ρ2 = λ2/µ21 + λ1/µ12

Les conditions ρ1 < 1 et ρ2 < 1 sont donc les conditions habituelles de stabilité rencontrées
jusqu’alors. Rybko et Stolyar (1992) ont montré cependant qu’elles ne suffisent pas et
qu’une condition supplémentaire croisée,

λ1/µ12 + λ2/µ22 < 1 (3.6)

est nécessaire pour assurer l’ergodicité du processus de Markov associé dans N4. La figure
3 représente les trajectoires asymptotiques de ((L1(t), L2(t)) quand les conditions ρ1 < 1

et ρ2 < 1 sont satisfaites mais pas la relation 3.6 On a fait l’hypothèse µ21 + µ21 = +∞
pour simplifier, ce qui signifie qu’à leur arrivée, les clients demandent un service nul dans
la première file d’attente où ils arrivent.

Habituellement, dans les réseaux à forme produit, quand la condition de charge plus
petite que 1 n’est pas satisfaite, le nombre de clients d’au moins un des noeuds tend vers
l’infini presque sûrement. L’instabilité des réseaux ayant une charge plus petite que 1 est
différente : la condition de charge plus petite que 1 implique que chaque noud du réseau
se vide une infinité de fois presque surement mais la durée entre les retours à l’état vide
croit linéairement avec le temps. Ainsi le nombre de clients à chacun des nouds du réseau
oscille entre des valeurs de plus en plus grandes. Globalement en effet, le nombre total de
clients tend presque sûrement vers l’infini [15] .
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3.2.4 Le Réseau de Bramson

Le Réseau de Bramson. Ce réseau est constitué de deux files d’attente servant tous les
clients dans l’ordre de leurs arrivées. Les clients arrivent suivant un processus de Poisson
d’intensité λ à la file 1. Après cette étape, un client passe à la file 2 pour effectuer J − 2

services exécutés séparément : après le k-ième service, 1 ≤ k ≤ J − 2, le client se replace
en fin de file d’attente pour recevoir le k + 1-ième service. Après l’étape J − 1 à la file 2,
le client rejoint la file 1 pour ensuite quitter définitivement le réseau. Pour 1 ≤ i ≤ J , un
client reçoit un service dont la durée a une distribution exponentielle de paramètre µi. Le
service d’un client dépend donc de son étape dans son trajet à travers le réseau. Il n’est
pas difficile de constater qu’un processus de Markov de dimension finie ne peut décrire ce
réseau puisqu’il faut connaitre la classe de chaque client de la file d’attente pour déterminer
le taux auquel il sera servi. L’étude de l’ergodicité d’un tel processus de Markov est très
délicate, la condition exacte d’ergodicité n’est d’ailleurs pas connue, même dans des cas
simples, dès que J ≥ 3. Bramson a montré que le réseau était aussi instable avec des
paramétres λ, J et (µj; 1 ≤ j ≤ J) pour lesquels les charges à chaque noeud λ/µ1 + λ/µJ

et λ/µ2 + . . . + λ/µJ−1 sont strictement plus petites que 1. La divergence du réseau est
similaire à celle du réseau de Rybko et Stolyar.

Ces exemples montrent que l’hétérogénéité seule peut déstabiliser un réseau : même
si, pour chaque noeud du réseau, la charge moyenne de travail qui arrive est strictement
plus petite que sa capacité, le réseau peut osciller de telle sorte que le nombre total de
requêtes dans le réseau diverge. Pour ces contre-exemples, chaque noeud du réseau se
vide une infinité de fois mais globalement le réseau diverge, cette situation est impossible
dans les réseaux classiques. Ces réseaux avec des trafics hétérogènes sont regroupés sous
l’appellation réseaux multi-classe. Dans ce qui suit, (X(x, t)) est un processus markoviens
de sauts càdlàg, irréductible sur un espace d’états dénombrable S qui part de x ∈ S, i.e.
tel que X(x,O) = x ∈ S; on utilise aussi la notation (X(t)) pour ce processus s’il n’y a pas
d’ambiguité sur le point initial. Comme d’habitude la notation Nξ(w, dx), w ∈ Ω, désigne
un processus de Poisson sur R, de paramètre ξ ∈ R+, et tous les processus de Poisson
utilisés sont indépendants. La topologie de Skorokhod sur l’espace des probabilités sur
l’ensemble des fonctions càdlàg D

(
[O, T ],Rd

)
est utilisée constamment [15].

3.2.5 Les réseaux mono-classe ouverts à forme produit

Dans un réseau ouvert, en ce qui concerne Files d’attente simples, comme il est facile
d’étudier la file d’attente M/M/1, les clients entrent dans le système de l’extérieur puis
Après avoir effectué un certain nombre d’opérations, ils quittent le système. Faisons le
Les premiers à ouvrir des réseaux d’attente qui comprennent :

– Un processus d’arrivée des clients dans le système poissonien ;
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– Un seul service à chaque station ;
– Une seule classe de clients ;
– Un temps de service exponentiel à chaque station ;
– Une discipline de service FIFO pour toutes les files ;
– Des routages probabilistes : quand un client a plusieurs destinations possibles à la

fin d’un service, il fait son choix en fonction d’un tirage aléatoire selon une certaine
distribution de probabilité.

Figure 3.6 – Réseau mono-classe ouvert

Nous appelons ces réseaux des réseaux jackson ouverts.λ le taux d’arrivée des clients
dans le réseau et µi le taux de service de la station i, i = 1, . . . ,M . On note M le nombre
de stations. Soit p0i la probabilité qu’un client qui arrive dans le système se rende à la
station i, pij la probabilité qu’un client qui termine son service à la station i se rende à la
station j et pi0 la probabilité qu’un client qui termine son service à la station i quitte le
système. On a :

M∑
j=0

pij = 1; i = 1, . . . ,M (3.7)

A i = 0 l’équation( 3.7) est vraie, avec la convention p00 = 0. Pour que le système reste
stable, il doit File d’attente M/M/1 qui devrait être λ < µ.
Dans le cas des réseaux de files d’attente, la condition de stabilité est logiquement liée,
non seulement au taux d’arrivée des clients dans le réseau et aux taux de service µi des
différentes stations, mais également au cheminement des clients.

Notons ei le taux de visite de la station i ou le nombre moyen de passages à la station
i. Pour i = 1, . . . ,M , en posant λi = eiλ le taux d’arrivée des clients à la station i, on a :
Nous avons déjà mentionné que La condition de stabilité du système :

λi < µi; i = 1, . . . ,M

Calcul des taux de visite [5]
Supposons que le réseau est stable et donc que pour chaque station λi < µi · λi Mesure le
trafic à la station i. C’est donc à la fois le débit moyen d’entrée et le débit moyen de sortie
de la station i. Ce trafic se décompose en plusieurs parties : - le trafic venant de l’extérieur :
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λp0i - le trafic venant de la station j : λjpji pour toutes les stations j = 1, . . . ,M

On a donc :

λi = λp0i +
M∑
j=1

λpij

Comme λi = eiλ, on en déduit le système d’équations que doivent satisfaire les taux de
visite :

ei = p0i +
M∑
j=1

ejpji, i = 1, . . . ,M

Théorème 3.2.5.1. La probabilité stationnaire du réseau possède la forme produit suivante[17] :

p(n) =
M∏
i=1

pi (ni)

où pi (ni) est la probabilité stationnaire d’une file M/M/1 ayant un taux d’arrivé λi et un
taux de service µi, soit pi (ni) = (1− ρi) ρnii avec ρi = λi

µi

Les paramétres de performance peuvent être calculés :
Les paramétres de performances, débit moyen, nombre moyen de clients, temps moyen de
réponse, doivent pouvoir être calculés par file ou pour l’ensemble du réseau :

Réseau Station i
Débit moyen X Xi

Nombre moyen de clients L Li
Temps myen de réponse R Ri

Table 3.1 – paramétres de Perfermances

Les paramétres de performances de chaque station se déduisent de la décomposition
en files M/M/1 :

Xi = λi = eiλ (3.8)

Qi =
ρi

1− ρi
, avec ρi =

λi
µi

(3.9)

Ri =
Qi

Xi

=
1

µi − λi
(3.10)

Les paramétres de performances du réseau s’en déduisent alors immédiatement :

X = λ (3.11)

Q =
M∑
i=1

Qi (3.12)
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R =
Q

X
=
Q

λ
(3.13)

3.2.6 Les réseaux mono-classe fermés à forme produit

Dans un réseau fermé, les clients naviguent initialement dans le système sans Sortez
sans entrer de client externe. Ils sont donc en nombre fixe. Comme dans le cas ouvert,
nous allons d’abord considérer les réseaux de files d’attente Fermé comprend :

– Une seule classe de clients ;
– Un seul serveur à chaque station ;
– Un temps de service exponentiel à chaque station ;
– Une capacité de stockage illimitée à toutes les stations (ou au moins égale à N ) ;
– Des files FIFO ;
– Des routages probabilistes.

La figure ci-dessous illustre un exemple de réseau mono-classe fermé

Figure 3.7 – Réseau mono-classe fermés

Ces réseaux sont connus sous le nom de réseaux de Jackson fermés [16, 13]. On note
M le nombre de stations. N le nombre total de clients, µi le taux de service de la station
i i = 1, . . .M et pij la probabilité qu’un client qui termine son service à la station i se
rende à la station j. Les probabilité pij sont telles que :

M∑
j=1

pij = 1, i = 1, . . . ,M

Dans un réseau fermé, il n’y a bien entendu aucun problème de stabilité puisque le nombre
de clients à chaque station est limité à la population du réseau et ne peut donc croitre
à l’infini : pour toute station i, ni(t) < N, (ni(t) est le nombre de clients présents à la
station i ) à tout instant t. La contrainte de population du réseau impose de plus que la
condition

∑M
i=1 ni(t) = N est en permanence respectée.

Théorème 3.2.6.1. La probabilité stationnaire du réseau possède la { forme produit }
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suivante[7] :

p(n) =
1

G(M,N)

M∏
i=1

fi (ni)

où fi (ni) =
(
ei
µi

)ni
. et G(M,N) est une constante de normalisation.

Calcul des taux de visite :
Dans un réseau fermé, le nombre absolu de fois qu’un client passe par chaque station est
infini. On va donc s’intéresser ici au (ei) taux de visite de la station i ou nombre moyen
de passage à la station i entre deux passages par une station de référence (une station j

telle que, par convention, ej = 1 ). De la même manière que dans le cas ouvert, on peut
montrer que les ei sont solutions du système d’équations :

ei =
M∑
j=1

ejpji, i = 1, . . . ,M

Mais, contrairement au cas ouvert, comme les ei ne sont définis qu’à une constante près, ce
système admet une infinité de solutions. Il suffit alors de choisir une station de référence.

Calcul des paramétres de performances, algorithme de convolution :
Il s’agit d’obtenir les paramétres de performances par station ou pour l’ensemble du
réseau. Mais contrairement au cas ouvert, les paramétres de chaque station ne peuvent
pas se déduire de l’analyse d’une file simple en isolation. Il faut donc manipuler l’expression
des probabilités stationnaires. La première idée est de calculer les probabilités marginales
de chaque station par sommation sur les probabilités stationnaires :

pi(k) =
∑

n∈E(M,N)|ni=k

p(n), i = 1, . . . ,M et K = 0, . . . , N

Les paramétres de performances de chaque station s’en déduisent alors immé-
diatement :

Ui = 1− pi(0)

Xi =
N∑
k=1

pi(k)µi = (1− pi(0))µi

Qi =
N∑
k=1

kpi(k)

Ri =
Qi

Xi

Le problème est qu’un calcul des probabilités marginales par la relation (2.11) nécessite
d’effectuer des sommations multiples très complexes. Heureusement, comme pour le calcul
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de la constante de normalisation, on peut éviter ces sommations multiples. En remplaçant
dans la relation (2.11) l’expression des probabilités stationnaires, on obtient en effet :

pi(k) =
1

G(M,N)

∑
n∈E(M,N)|ni=k

M∏
j=1

(
ej
µj

)nj

=
1

G(M,N)

(
ei
µi

)k ∑
n∈E(M,N)|ni=k

M∏
j=1,j 6=i

(
ej
µj

)nj
On note alors Ei(M,N) l’ensemble de tous les vecteurs n de E(M,N) qui sont tels que la
somme des clients dans toutes les stations autres que la station i,

∑M
j=1 nj 6=i = n (et donc

tels que le nombre ni de clients dans la station i, est égale à N − n) :

Ei(M,N) =

{
n = (n1 . . . nM) |

M∑
j=1,j 6=i

nj = n

}

On note enfin Gi(M−1, n), la constante de normalisation du réseau complémentaire, c’
est−à−dire la constante de normalisation du réseau constitué des M stations du réseaux
initial privé de la station i, et dans lequel on place n clients :

Gi(M − 1, n) =
∑

n∈Ei(M,N)

M∏
j=1,j 6=i

(
ej
µj

)nj
Les probabilités marginales pi(k) s’expriment alors simplement en fonction de ces constantes
qu’il faut donc être capable de calculer :

pi(k) =

(
ei
µi

)k
Gi(M − 1, N − k)

G(M,N)

Calcul des constants de normalisation du réseau complémentaire : Dans un
premier temps il est important de constater que la quantité G(M − 1, N) définie pré-
cédemment n’est rien d’autre que la constante du réseau complémentaire privée de la
dernière station, GM(M − 1, n). On peut alors écrire[5] :

G(M,N) = GM(M − 1, N) + ρMG(M,N − 1)

Et comme il n’y a aucune raison de particulariser la stationM , cette relation peut s’obtenir
pour toute station i de façon rigoureusement identique :

G(M,N) = Gi(M − 1, N) + ρiG(M,N − 1), où ρi =
ei
µi
, i = 1, . . . ,M
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Cette relation nous permet, en l’inversant, d’obtenir par ( déconvolution) sur les constantes
G(M,N), les constantes de normalisations complémentaires :

Gi(M − 1, n) = G(M,n)− ρiG(M,n− 1), i = 1, . . . ,M

Calcul des paramétres de performances en fonction des constantes de norma-
lisation :

On peut exprimer tous les paramétres de performances de la relation i en fonction
des constantes de normalisation qui, comme nous venons de le voir, sont extrêmement
simples à calculer : On peut exprimer tous les paramétres de performances de la relation
i en fonction des constantes de normalisation qui, comme nous venons de le voir, sont
extrêmement simples à calculer :

Ui =
ei
µi

G(M,N − 1)

G(M,N)
, i = 1, . . . ,M (3.14)

Xi = ei
G(M,N − 1)

G(M,N)
, i = 1, . . . ,M (3.15)

Qi =
1

G(M,N)

N∑
k=1

k

(
ei
µi

)k
Gi(M − 1, N − k), i = 1, . . . ,M (3.16)

Ri =
Qi

Xi

=
1

eiG(M,N − 1)

N∑
k=1

(
ei
µi

)k
Gi(M − 1, N − k), i = 1, . . . ,M (3.17)

Il est intéressant de noter à partir de la relation 3.17, que les débits des différentes
stations sont contraints par la relation3.18. Cette relation est connue sous le nom de loi
des flots forcés :

Xi

Xj

=
ei
ej
, pour tout i et j = 1, . . . ,M (3.18)

Remarque 3.2.1. Comme dans le cas ouvert, on peut étendre le théorème de Jackson
(férmé) au cas de stations multi-serveurs (chaque station i comporte Si serveurs iden-
tiques). Toutes les autres hypothèses sont conservées.

Conclusion

Dans ce mémoire on a donné les différents types de réseaux de files d’attente mono-
classe à forme produit :
réseaux ouverts et réseaux fermés et quelques exemples sur ces types ainsi que les para-
métres de performances de chaque modèle.
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