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Introduction

L’intégration au sens de Bochner est utilisé dans plusieurs branches ma-
thématiques comme la théorie des probabilités, Analyse fonctionnelle, équa-
tions différentielles dans des espaces vectoriels, théorie de semi-groupes pour
opérateurs linéaires,... A la fin du dix-neuvième siècle, la théorie d’intégra-
tion de Riemann devient insuffisantes et ses limitations étaient apparentes
alors plusieurs mathématiciens célèbres comme ( Jordan, Borel, Young,..) se
mettent en devoir de la généraliser. C’est ainsi que la communauté mathé-
matique adopta la théorie de Lebesgue, exposée dans une note fondatrice de
1901, puis développée dans le Cours Peccot en introduisant concept de mesure
par Borel vers 1895. La théorie de la mesure et l’intégration de Lebesgue se-
ront ensuite perfectionnées et généralisées par de nombreux mathématiciens
du vingtième siècle, en particulier Carathéodory, Vitali, Radon, Riesz, Haus-
dorff, Kolmogorov et Besicovich ( par ordre chronologique approximatif).

Le cadre classique le plus simple pour définir une intégrale est celui des
fonctions en escalier sur un intervalle [a, b]. L’intégrabilité au sens de Rie-
mann impose des conditions relativement fortes : Une fonction f : [a, b]→ R
est intégrable si et seulement si, pour tout β > 0 donné, on peut subdiviser
l’intervalle [a, b] en sous-intervalles suffisamment fins pour que la somme des
longueurs des sous-intervalles sur lesquels l’oscillation de la fonction f dé-
passe β soit arbitrairement petite.
Plus tard, Lebesgue montrera qu’une fonction f : [a, b] → R est Riemann
intégrable si et seulement si l’ensemble de ses points de discontinuité est de
mesure nulle, au sens où on peut l’inclure dans une union d’intervalles ou-
verts dont la somme des longueurs est arbitrairement petite.
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Ces conditions peuvent sembler assez faibles, puisqu’elles autorisent par
exemple une fonction qui ne serait discontinue qu’en une quantité dénom-
brable de points. Mais il est facile de construire des fonctions bornées ne
remplissant pas ces conditions : le contre-exemple connu est la fonction indi-
catrice de Q, ou sa restriction à un segment. Dans de nombreux problèmes
d’analyse, on rencontre des fonctions qui ne sont pas forcément Riemann-
intégrables. Dans la théorie de Lebesgue, la classe des fonctions intégrables
est beaucoup plus grande. Par exemple, toute fonction bornée est Lebesgue
intégrable. En outre, sa théorie généralise bien celle de Riemann.

C’est par ce problème que Lebesgue motive sa construction dans sa note
de 1901. L’intégrale de Riemann permet d’intégrer des fonctions discontinues,
mais ne permet pas d’intégrer n’importe quelle fonction dérivée, même bornée
c’est à dire si donc f est une fonction continue sur [a, b] et dérivable sur ]a, b[,

il n’est pas garanti que l’identité

(1) f(b)− f(a) =

∫ b

a

f ′(t)dt

ait un sens. En fait, divers auteurs (Volterra, Köpcke, Brodén, Schoenflies)
ont construit des classes de fonctions qui sont dérivables, avec une dérivée
bornée mais non Riemann-intégrable. Alors que,sous des hypothèses simples,
dans la théorie de Lebesgue, la dérivation et l’intégration deviennent des opé-
rations inverses. C’est ainsi que l’identité (1) est automatiquement vérifiée
dès que f est continue, dérivable sur [a, b] et de dérivée bornée.

Sachant qu’une limite de fonctions Riemann-intégrables n’est pas forcé-
ment Riemann-intégrable, même si ces fonctions sont uniformément bornées
alors on ne peut pas échanger les opérations limite et intégrale. Par contre,
Lebesgue parvient à définir un concept de fonctions intégrables qui est inva-
riant par passage à la limite. Par conséquent, sous des hypothèses simples,
l’échange intégrale-limite est presque automatique.

L’intégration par rapport à une mesure est une opération qui associe à
une fonction f à valeurs réelles, une valeur dans R. Une application à valeurs
dans Rn se présente sous forme f = (f1, f2, · · · , fn), ou chaque fi est une
fonction. Intégrer une application à valeurs dans Rn revient alors à intégrer
chaque composante fi et à former le vecteur composé de ces intégrales. En
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revanche, on se pose la question, qu’en est-il pour une fonction à valeurs dans
un espace de Banach de dimension infinie ? La définition de l’intégrale de
Lebesgue comme borne supérieure d’intégrales de fonctions simples ne peut
s’étendre directement aux intégrales à valeurs vectorielles car elle utilise la
propriété d’ordre de R.

Partant de la théorie de l’intégration de Lebesgue pour des fonctions
scalaire, on développe dans ce mémoire, la théorie correspondante pour des
fonctions à valeurs dans des espaces de Banach.

Dans le chapitre 1, on évoque les deux théories d’intégration connues et
étudiées auparavant : intégrale de Riemann et intégrale de Lebesgue.

Le chapitre 2 sera consacré à l’étude de l’intégrale d’une classe de fonctions
à valeurs vectorielles, à savoir, les fonctions simples.

Le chapitre 3, on s’intéresse à la construction de l’intégrale de Bochner,
tout en donnant quelques uns de ses propriétés.
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Chapitre 1

Préliminaires

1.1 Intégration au sens de Riemann

On considère la fonction f définie de [a, b] vers R.

Définition 1.1.1. Soit A un ensemble, la fonction indicatrice

1A(x) =

{
1 si x ∈ A
0 si x /∈ A

est celle qui indique si x est dans A ou non.

Exemple :

Soit A = [1, 5[, alors les images des points x = 0, x = 1 et x = 5 par la
fonction indicatrice sont :

1A(1) = 1, 1A(5) = 0, 1A(0) = 0.

Définition 1.1.2. (Fonction en escalier) La fonction f : [a, b] → R est
dite fonction en escalier sur [a, b], s’il existe une subdivision S = (ti)0<i<n de
[a, b] telle que f soit constante sur chaque intervalle ]ti, ti+1[. La fonction f

s’écrira alors :

f(x) =
n−1∑
i=1

αi1]ti,ti+1[(x) (1.1)

avec : f(a) = α0 , f(b) = αn et αi ∈ R.

9
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Exemples :

1. f(x) = 2 · 1[0,2[(x) + 5 · 1[2,4[(x)− 3 · 1[4,6[(x) + 8 · 1[6,8](x)

2. g(x) = −1 · 1[−5,−3[(x) +
3

2
· 1[−3,0[(x) +

1

2
· 1[0,4](x)

Définition 1.1.3. (L’intégrale des fonctions en escalier) On appelle
intégrale de la fonction en escalier f donnée par (1.1), le nombre réel∫ b

a

f(x)dx =
n−1∑
i=0

αi(ti+1 − ti).

Exemples :

Le calcul de l’intégrale des fonctions en escalier dans l’exemple précédent
donne :∫ 8

0

f(x) = 2×(2−0)+5×(4−2)−3×(6−4)+8×(8−6) = 2·(2+5−3+8) = 24.

et pour g(x) on a :∫ 4

−5

g(x) = −1×(−3−(−5))+
3

2
×(0−(−3))+

1

2
×(4−0) = −1·2+

3

2
·3+

1

2
·4 =

9

2
.

Soit f une fonction bornée définie de [a, b] dans R. Pour définir son intégrale,
on va approcher la fonction f par des fonctions en escalier. Etant donnée
une subdivision S, on définit des fonctions en escalier qui minorent f et qui
majorent f. Soient

E−(f,S)(x) =
n−1∑
i=0

mi1[ti,ti+1[(x) avec mi = inf
x∈[ti,ti+1[

f(x). (1.2)

Et

E+
(f,S)(x) =

n−1∑
i=0

Mi1[ti,ti+1[(x) avec Mi = sup
x∈[ti,ti+1[

f(x). (1.3)

Plus généralement, on peut approcher f par :

Ẽα,f,S(x) =
n−1∑
i=0

f(αi)1[ti,ti+1[(x) (1.4)

avec αi ∈ [ti, ti+1[ est quelconque.
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Définition 1.1.4. (Somme de Darboux) Etant donnée une subdivision S,
on appelle somme de Darboux inférieure, l’intégrale de la fonction en escalier
E−(f,S) définie par (1.2)

A−(f, S) =
n−1∑
i=0

mi(ti+1 − ti).

Et la somme de Darboux supérieure, l’intégrale de la fonction en escalier
E+

(f,S) définie par (1.3)

A+(f, S) =
n−1∑
i=0

Mi(ti+1 − ti).

Définition 1.1.5. (Somme de Riemann) Etant donnée une subdivision
S, on appelle somme de Riemann, l’intégrale d’une fonction en escalier du
type (1.4)

R(f, S, α) =
n−1∑
i=0

f(αi)(ti+1 − ti).

Définition 1.1.6. (L’intégrale de Riemann) Une fonction f : [a, b]→ R
est Riemann-intégrable (sur [a, b]) si pour tout ε > 0, il existe une subdivision
S telle que ses sommes de Darboux vérifient :

A+(f, S)− A−(f, S) 6 ε.

Définition 1.1.7. L’intégrale de Riemann de f est la valeur commune :∫ b

a

f(x)dx = sup
S
A−(f, S) = inf

S
A+(f, S).

De façon équivalente, si f est Riemann-intégrable, on a :∫ b

a

f(x)dx = lim
ρ(S)→0

A−(f, S) = lim
ρ(S)→0

A+(f, S) = lim
ρ(S)→0

R(f, S, α).

pour toute somme de Riemann R(f, s, α) où on rappelle que ρ(S) désigne le
pas de la subdivision S.
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Propriétés :

1. Toute fonction Riemann-intégrable sur un intervalle [a, b] est bornée.

2. Les fonctions continues et les fonctions monotones sont Riemann-intégrables.

3. La linéarité :
Soient f et g deux fonctions Riemann-intégrables et α, β ∈ R alors :∫ b

a

αf(x) + βg(x)dx = α

∫ b

a

f(x)dx+ β

∫ b

a

g(x)dx.

4. Relation de Chasles :
Si f est Riemann-intégrable sur [a, b] et c ∈]a; b[ alors f l’est encore sur
[a, c] et sur [c, b] et on a :∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.

5. Positivité :
Si f est positive et Riemann-intégrable sur [a, b] alors :∫ b

a

f(x)dx > 0.

6. Si f et g sont Riemann intégrables et f 6 g alors :∫ b

a

f(x)dx 6
∫ b

a

g(x)dx.

7. Intégrale et valeur absolue :
Si f est Riemann-intégrable alors :∣∣∣∣∫ b

a

f(x)dx

∣∣∣∣ 6 ∫ b

a

|f(x)|dx.
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1.2 Intégration au sens de Lebesgue

Commençons par donner quelques définitions sur la théorie de la mesure.

Définition 1.2.1. (tribu , σ-algèbre) On dit qu’une famille A de sous-
ensemble de X est une tribu si :

(i) X ∈ A ;
(ii) A est stable par complémentaire si : A ∈ A alors Ac ∈ A ;
(iii) A est stable par réunion dénombrable si : ∀n > 1 , An ∈ A alors⋃

n>1

An ∈ A.

Exemples :

{∅, X} est la tribus grossière , P(X) est la tribus totale.

Définition 1.2.2. (Espace mesurable) On appelle espace mesurable (X,A)

tout ensemble X munit d’une tribu A.

Définition 1.2.3. (La tribu engendrée) Soit A une famille de sous-ensemble
de X (A ⊂ P(X)). On note σ(A) la plus petite tribu de X (pour l’inclusion)
contenant A. On l’appelle la tribu engendrée par A.

Définition 1.2.4. (La tribu borélienne) La tribu engendrée par une topo-
logie (c’est à dire engendrée par la famille A = T des ouverts d’une topologie)
est la tribu borélienne, notée B(X). Les éléments de la tribu borélienne B(X)

s’appellent les boréliens de X.

Définition 1.2.5. (Boréliens réels) On considère X = R =] +∞,−∞[

muni de sa topologie usuelle (topologie de l’ordre qui coincide avec la topologie
engendrée par la distance usuelle | · |). On considère alors sur R la tribu
borélienne B(R) engendrée par les ouverts de sa topologie usuelle. On rappelle
que les ouverts de R sont des réunions dénombrables d’intervalles ouverts⋃
n>1

]an, bn[ (réunion finie ou dénombrable).

Définition 1.2.6. (Mesure) Une mesure µ sur un ensemble mesurable (X,A)

est une application de A −→ [0,+∞] qui vérifie les deux conditions sui-
vantes :



14 1.2 Intégration au sens de Lebesgue

(i) µ(∅) = 0 ;

(ii) Si (An)n>1 est une suite dénombrable d’ensemble de A deux à deux dis-
joints alors :

µ

(⋃
n>1

(An)

)
=
∑
n>1

µ(An) (σ − additivité).

Exemples :

1. Mesure de dénombrement sur (X,P(X)) : soit A ∈ P(X),

η(A) =

{
Card A si A est fini
+∞ sinon.

2. Mesure de Dirac sur (X,P(X)) : soient a ∈ X et A ∈ A,

δa(A) =

{
1 si a ∈ A
0 si a /∈ A.

La mesure de Dirac δa indique si un ensemble contient ou non le point a.
Par exemple : δ0([0, 1]) = 1 , δ0(]0, 1]) = δ0(R∗) = 0 , δ√2(Q) = 0.

Théorème 1.2.1. (La mesure de Lebesgue) Il existe une unique mesure
µ sur (R,B(R)) telle que :

- Pour tout intervalle [a, b] borné, on a : µ([a, b]) = µ(]a, b[) = b− a.
- Pour tout A ∈ B(R), µ(A+ x) = µ(A) avec A+ x = {a+ x ; a ∈ A} .

On l’appelle la mesure de Lebesgue.

Définition 1.2.7. (Espace mesuré) On appelle espace mesuré la donnée
d’un triplet (X,A, µ) avec X un ensemble, A une tribu sur X et µ une mesure
sur (X,A).
Les ensembles de A sont appelés les ensembles mesurables.

Définition 1.2.8. (Négligeable , presque par tout)

1. Un ensemble N de (X,A, µ) est dit µ-négligeable s’il existe A ∈ A tel
que N ⊂ A et µ(A) = 0.
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2. On dit qu’une propriété est vraie µ-presque par tout (µ-p.p.) sur (X,A, µ)

si l’ensemble des x ∈ X pour lesquelles elle n’est pas vraie est négli-
geable.

Définition 1.2.9. (Fonction mesurable) Soient (X,A),(Y,B) deux es-
paces mesurables. Une fonction f : X −→ Y est dite (A,B)-mesurable si et
seulement si ∀B ∈ B , f−1(B) ∈ A.

Définition 1.2.10. (Fonction Lebesgue-mesurable ) La fonction f est
dite Lebesgue-mesurable si ∀a ∈ R, l’ensemble {x ∈ E/f(x) < a} est un en-
semble mesurable.

Définition 1.2.11. (Fonction étagée positive)
Une fonction f : (X,A, µ) −→ R+ est dite étagée positive si elle est de la
forme :

f(x) =
n∑
i=1

αi1Ai
(x)

avec :

1. n ∈ N (n <∞) ;

2. les αi sont des réels positifs ;

3. les Ai sont des ensembles mesurables deux à deux disjoints.

Remarque 1.2.1. Si les Ai sont des intervalles f est dite en escalier.

Définition 1.2.12. (L’intégrale de Lebesgue d’une fonction étagée po-
sitive) Soit f une fonction étagée positive. On appelle intégrale de Lebesgue
de la fonction f le nombre∫

f dµ =

∫
X

f dµ =
n∑
i=1

αiµ(Ai)

avec les précisions suivantes :
- si αi = 0 et la mesure de Ai est infinie, alors αiµ(Ai) = 0 ;
-
∫
f dµ > 0 mais elle peut être infinie.

Définition 1.2.13. (Intégrale de Lebesgue d’une fonction réelle po-
sitive) Soit f une fonction mesurable positive i.e f : (X,A, µ) −→ R+,
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on définit Σ(f) l’ensemble des fonctions en escalier positives inférieures ou
égales à f .
On appelle intégrale de Lebesgue de f le nombre éventuellement infini, tel
que : ∫

f dµ =

∫
X

f dµ = sup
e∈Σ(f)

∫
e dµ.

Définition 1.2.14. (Sommable)
La fonction f est dite sommable au sens de Lebesgue si

∫
f dµ est finie.

Définition 1.2.15. Soit f une fonction à valeurs réelles. On peut définir
deux fonctions auxiliaires f+ et f− par :

f+ =

{
f(x) si f(x) > 0

0 sinon

Et

f− =

{
−f(x) si f(x) 6 0

0 sinon

On a alors : f = f+ − f−.

Définition 1.2.16. (L’intégrale de Lebesgue d’une fonction réelle)
Une fonction f à valeurs réelles est sommable si et seulement si les deux
fonctions f+ et f− sont sommables, et on pose alors :∫

f dµ =

∫
f+ dµ−

∫
f− dµ.

Remarque 1.2.2. - Si
∫
f+dµ et

∫
f−dµ sont infinies alors

∫
f dµ

n’existe pas.
- Si l’un des deux intégrales est infinie et l’autre est fini alors

∫
f dµ est

infinie.

Propriétés :

1. Croissance :
- Si f 6 g sur X, alors : ∫

f dµ 6
∫
g dµ.
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- Si E ⊂ F , alors : ∫
E

f dµ 6
∫
F

f dµ.

2. Nullité :
Si f(x) = 0 pour x ∈ E, alors :∫

E

f dµ = .

Si µ(E) = 0, alors : ∫
E

f dµ = 0.

3. Linéarité :
Soient f et g deux fonctions mesurables et a, b ∈ R+,alors :∫

af + bg dµ = a

∫
f dµ+ b

∫
g dµ.

4. Relation de Chasles :
Si E et F sont deux ensembles mesurables disjoints, alors :∫

E∪F
f dµ =

∫
E

f dµ+

∫
F

f dµ.

1.3 Espace topologique, Espace de Banach

Définition 1.3.1. (Norme et semi-norme) Soit E un K espace vectoriel
(K=R ou C) , on appelle une norme sur E l’application :

‖ · ‖ : E −→ R+

qui vérifie les trois propriétés suivantes :
1) a) ‖x‖ > 0 , ∀x ∈ E

b) ‖x‖ = 0 ⇐⇒ x = 0E

2) ‖λx‖ = |λ|‖x‖ , ∀x ∈ E , ∀λ ∈ K (homogénéité)
3) ‖x+ y‖ 6 ‖x‖+ ‖y‖ , ∀x,y ∈ E (inégalité triangulaire).
Si on supprime le 1) b) i.e. ‖x‖ = 0 n’implique pas que x = 0E alors
‖ · ‖ devient une semi-norme.
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Exemples :

1. Dans R la norme usuelle est donnée par : ‖x‖ = |x|.

2. dans Rn on peut définir plusieurs normes :

a) ‖x‖1 =
n∑
i=1

|xi|.

b) ‖x‖2 =

(
n∑
i=1

|xi|2
) 1

2

( la norme euclidienne ).

c) ‖x‖∞ = max
16i6n

|xi| ( la norme de la convergence uniforme ).

d) ‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

.

Définition 1.3.2. (Suite de Cauchy) Une suite (xk)k d’éléments d’un es-
pace vectoriel normé E est dite de Cauchy si et seulement si :

∀ε > 0, ∃N > 1, ∀k, l > N =⇒ ‖xk − xl‖ 6 ε.

Toute suite convergente est de Cauchy mais la réciproque est fausse en général
par exemple : (X =]0, 1[ et xn = 2−n).

Définition 1.3.3. (Espace topologique) Une topologie sur un ensemble X
est la donnée d’un ensemble T de parties de X, i.e. T ⊂ P(X), vérifiant les
propriétés suivantes :

1) ∅, X ∈ T ;
2) Si U, V ∈ T , alors U ∩ V ∈ T ;
3) Si (Ui)i∈I est une famille de parties de X appartenant à T , alors⋃

i∈I
Ui ∈ T .

L’ensemble X muni de la topologie T est appelée espace topologique.
Les parties de X qui appartienne à T sont dites les ouverts.

Définition 1.3.4. (Les voisinages) Soient (X, T ) un espace topologique et
a ∈ X. On dit qu’une partie V de X est voisinage du point a s’il existe un
ouvert U contient a et inclut dans V .
On note V(a) la famille de tous les voisinages du point a.
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Exemples :

1. Dans (R, | · |) la partie ] − 2, 1] est un voisinage de 0 par contre n’est
pas voisinage de 1.

2. X = {a, b, c, d} , T = {X, ∅, {a, b} , {a, b, c}}, alors V = {a, b, d} est un
voisinage des deux points a et b mais n’est pas voisinage du point d.

Définition 1.3.5. (L’adhérence) Soit (X, T ) un espace topologique et soit
A une partie de X et x ∈ X.On dit que x est adhérant à A si tout voisinage
V de x dans X contient un point de A.
On note A l’ensemble de tout les points adhérant à A.

Exemple :
On considère dans (R, |·|) l’ensemble A = [0, 2]∪[5, 8[∪]10, 20]∪]30, 35[. Alors
A = [0, 2] ∪ [5, 8] ∪ [10, 20] ∪ [30, 35].

Définition 1.3.6. (Densité) Une partie A de X est dite dense si A = X

avec A est l’adhérence de A.

Exemples :

1. Soient X = {a, b, c, d} et T = {∅, X, {a, b} {c, d}} et A = {a, c, d}. Il
est clair (X, T ) que est un espace topologique.
On a : A = {a, b, c, d} = X. Donc A est dense dans X.

2. Dans (R, | · |) on a Q est dense dans R.

Définition 1.3.7. (dénombrabilité) Un ensemble A est dit dénombrable
s’il est en bijection avec l’ensemble N.

Remarque
Un ensemble dénombrable c’est l’ensemble qui s’écrit sous forme d’une suite
i.e A est dénombrable ⇒ A = {x1, x2, · · · }.
Exemple :
Les ensembles N , Z et Q sont dénombrables.

Définition 1.3.8. (Séparabilité) Un espace X est dit séparable s’il contient
une partie dense et dénombrable.
Exemple :
(R, | · |) est séparable car il contient Q qui est dense et dénombrable.
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Définition 1.3.9. (Espace complet) On dit qu’un espace vectoriel normé
est complet si toute suite de Cauchy est convergente.

Définition 1.3.10. (Espace de Banach) on appelle un espace de Banach
tout espace vectoriel normé complet pour sa norme.

Exemples :

1. (R, | · |) est un espace de Banach.

2. les espaces Rn munissent des différentes normes ‖ · ‖1 , ‖ · ‖2 , ‖ · ‖∞
sont des espaces de Banach.

3. tout espace vectoriel normé de dimension finie est un espace de Banach.

4. (B(I,K), ‖ · ‖∞), l’espace des fonctions bornées munit de la norme :
‖f‖∞ = sup

x∈I
|f(x)| est un espace de Banach avec I un ensemble non

vide ( intervalle par exemple ).

5. (C([a, b],K), ‖ ·‖∞),l’espace des fonctions continues sur l’intervalle [a, b]

à valeurs dans K est un espace de Banach ; c’est un sous-espace fermé
de B([a, b],K).

6. `∞(K) le K-espace vectoriel formé des suites bornées (un) à valeurs
dans K est un espace de Banach avec la norme :

‖u‖∞ = sup
n>1
|un|.

7. `1(K) le K-espace vectoriel formé des suites (un) pour lesquelles la série∑
n>1

|un| converge est un espace de Banach avec la norme :

‖u‖1 =
∑
n>0

|un|.

8. `p(K) le K-espace vectoriel formé des suites (un) pour lesquelles la série∑
n>1

|un|p converge est un espace de Banach avec la norme :

‖u‖p =

(∑
n>0

|un|p
) 1

p

.



Chapitre 2

Intégrale de fonctions simples

2.1 Fonctions simples et mesurabilité

Soit X un espace de Banach et (I, E , µ) un espace mesuré.

Définition 2.1.1. On dit qu’une fonction f : I → X est simple s’il existe
une suite finie d’ensembles mesurables Em ⊂ I, m = 1, . . . , p, telle que :

Em ∩ El = ∅, ∀m 6= l et I =

p⋃
m=1

Em

où
f(t) = ym ∈ X, ∀t ∈ Em, m = 1, . . . , p.

C’est à dire, f est constante sur chaque ensemble mesurable Em.

On note par J (µ,X) = J l’ensemble de toutes les fonctions simples
définies sur I.

Remarque 2.1.1. 1. Il est clair que J est un espace vectoriel sur R. Ce
résultat découle du fait que X est un espace de Banach et par suite un
espace vectoriel sur R.

2. Si f est une fonction simple alors ‖f‖X : I → R l’est aussi. En effet,
soit f : I → X une fonction simple donc f(t) = ym ∈ X pour t ∈

Em ⊂ I, m = 1, ..., p avec : I =
p⋃

m=1

Em et Em ∩ El = ∅ pour l 6= m.

21
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L’application ‖f‖X est définit par :

‖f‖ : I → R
t → ‖f‖(t) = ‖f(t)‖ = ‖ym‖ ; t ∈ Em ⊂ I , m = 1, ..., p

.

Ainsi, ‖f‖X est constante sur chaque sous-ensemble Em de I , donc
‖f‖X est simple.

Définition 2.1.2. On dit que f : I → X est mesurable s’il existe une suite
(fn)n∈N de fonctions simples telles que :

lim
n→∞

‖fn(t)− f(t)‖X = 0 pour presque tout t ∈ I.

Il est clair que si f ∈ J alors f est mesurable. En effet , si f est simple,
il suffit de prendre une suite de fonctions simples (fn)n∈N constante égale à
f.

Proposition 2.1.1. Si f : I → X est mesurable alors la fonction réelle
‖f‖X : I → R est mesurable.

Preuve

Supposons que f est mesurable, alors il existe une suite de fonctions
simples (fn)n∈N telle que :

lim
n→∞

‖fn(t)− f(t)‖X = 0 p.p

Puisque (fn)n∈N ∈ J alors, d’après la Définition 2.1.1

‖fn‖ ∈ J , ∀n ∈ N.

Et comme :

0 6 |‖fn(t)‖X − ‖f(t)‖X | 6 ‖fn(t)− f(t)‖X ,∀t ∈ I

alors

lim
n→∞

|‖fn(t)‖X − ‖f(t)‖X | 6 lim
n→∞

‖fn(t)− f(t)‖X = 0,∀t ∈ I

Ce qui entraine
lim
n→∞

‖fn(t)‖X = ‖f(t)‖, ∀t ∈ I

On en conclut que ‖f‖X est mesurable.
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Remarque 2.1.2. Dans le cas où X = R alors, f : I → R est me-
surable au sens de la Définition 2.1.2, si et seulement si, pour tout a ∈
R, l’ensemble {t ∈ I ; f(t) > a} (ou {t ∈ I ; f(t) > a}, {t ∈ I ; f(t) 6 a} ou
{t ∈ I ; f(t) < a}) est mesurable. Pour plus de détails voir [5], Théorème
4.13.

Définition 2.1.3. On dit que f : I → X est faiblement mesurable si

∀x∗ ∈ X∗, x∗(f) : I → R est mesurable.

Les concepts de mesurabilité et de mesurabilité faible sont relativement
proches. Cette relation est donnée par le théorème de Pettis suivant.

Théorème 2.1.1. [4](Pettis) Une fonction f : I → X est mesurable si
et seulement si elle est faiblement mesurable et il y a un ensemble N ⊂ I,
µ(N) = 0 tel que l’ensemble {f(t); t ∈ I \N} ⊂ X est séparable.

On en déduit du théorème de précédent le résultat suivant :

Corollaire 2.1.1. Une fonction f : I → X est mesurable si et seulement si :

f(t) = lim
n→∞

hn(t)

uniformément pour presque par tout t ∈ I où (hn)n est une suite dénombrable
de fonctions mesurables.

Proposition 2.1.2. Si f : I → X est une fonction mesurable alors, il
existe une fonction mesurable bornée g : I → X et une fonction mesurable
h : I → X avec :

h(t) =
∞∑
n=1

xn1En(t), xn ∈ X, n ∈ N, t ∈ I,

où En sont des ensembles mesurables deux à deux disjoints tels que :

f = g + h.
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Preuve

En utilisant le théorème de Pettis, on peut supposer que f(I) est sous-
ensemble séparable de X avec {xn ; n ∈ N} est dense dans f(I)

On définit :

En =

{
t ∈ I ; f(t) ∈ (xn +B(X))) \

n−1⋃
k=1

(xk +B(X))

}
.

Alors I ⊂
∞⋃
n=1

En, En
⋂
Em = ∅ ∀m 6= n.On pose :

h(t) =
∞∑
n=1

xn1En(t)

pour t ∈ I. h : I → X est mesurable et si t ∈ En
⋂
I,alors :

f(t)− h(t) = f(t)− xn ∈ B(X),

i.e ‖f(t) − h(t)‖X 6 1 Posons g(t) = f(t) − h(t), on obtient ‖g(t)‖X 6 1 et
f(t) = g(t) + h(t), t ∈ I

Proposition 2.1.3. Si X est un espace de Banach séparable alors, f : I → X

est mesurable si et seulement si elle faiblement mesurable.

Preuve

Il est clair que si X est séparable alors l’ensemble {f(t), t ∈ I} ⊂ X est
séparable, donc d’après le théorème de Pettis on a l’équivalence.

2.2 Intégrale des fonctions simples

Définition 2.2.1. Soit f : I → X une fonction simple, on définit l’intégrale
de f comme : ∫

I

f =

p∑
n=1

ymµ(Em) =

p∑
m=1

f(Em)µ(Em). (2.1)
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Si A ⊂ I est un ensemble mesurable alors on définit :

fA(t) =

{
f(t) si t ∈ A
0 si t /∈ A

i.e : fA = f · 1A.
Il est facile de remarquer que fA est aussi une fonction simple et on a alors :∫

A

f =

∫
I

fA.

Propriétés :

1. L’intégrale des fonctions simples
∫

: J → X est une application li-
néaire, en effet, soient f et g deux fonctions simples,∫

I

(f + g) =

p∑
m=1

(f + g)(Em)µ(Em)

=

p∑
m=1

(f(Em) + g(Em))µ(Em)

=

p∑
m=1

f(Em)µ(Em) +

p∑
m=1

g(Em)µ(Em)

=

∫
I

f +

∫
I

g.

Et soit α ∈ R, alors :∫
I

αf =

p∑
m=1

(αf)(Em)µ(Em)

=

p∑
m=1

α(f(Em)µ(Em)

= α

p∑
m=1

f(Em)µ(Em)

= α

∫
I

f.

2. Si A,B sont deux ensembles mesurables de I avec A ∩B 6= ∅ alors :∫
A∪B

f =

∫
A

f +

∫
B

f.
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En effet la linéarité de l’intégrale et l’identité fA∪B = fA + fB entraine
que : ∫

A∪B
f =

∫
I

fA∪B

=

∫
I

fA + fB

=

∫
I

fA +

∫
I

fB

=

∫
A

f +

∫
B

f (2.2)

3. Si A est un ensemble mesurable de I et f ∈ J , alors∥∥∥∥∫
A

f

∥∥∥∥
X

6
∫
A

‖f‖X 6 sup
t∈I
‖f(t)‖Xµ(A) (2.3)

En effet, ∥∥∥∥∫
A

f

∥∥∥∥
X

=

∥∥∥∥∥
p∑

m=1

ymµ(A ∩ Em)

∥∥∥∥∥
X

6
p∑

m=1

‖ym‖Xµ(A ∩ Em) =

∫
A

‖f‖X

6 max
m
‖ym‖X

p∑
m=1

µ(A ∩ Em)

= sup
t∈I
‖f(t)‖Xµ(A)

Et
p⋃

m=1

(A ∩ Em) = A.

Remarque 2.2.1. Dans le cas où X = R et f 6 g tel que f, g ∈ J , on a :∫
I

f 6
∫
I

g. (2.4)

Si f > 0 et A ⊂ B alors : ∫
A

f 6
∫
B

f. (2.5)
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Soit f ∈ J une fonction simple, on définit l’application ‖ · ‖1 : J → R tel
que

‖f‖1 =

∫
I

‖f‖X . (2.6)

Cette application admet les propriétés suivantes :

1. Pour tout f ∈ J ,
‖f‖1 > 0.

En effet, soit f ∈ J
‖f‖1 =

∫
I

‖f‖X

Or, 0 6 ‖f‖X alors d’après (2.6) on a :

0 6
∫
I

‖f‖X

Donc
‖f‖1 > 0, ∀f ∈ J

2. ‖af‖1 = |a|‖f‖1, ∀f ∈ J , ∀a ∈ R
En effet, Soient f ∈ J et a ∈ A, on a :

‖af‖1 =

∫
I

‖af‖X

=

∫
I

|a|‖f‖X

= |a|
∫
I

‖f‖X

= |a| · ‖f‖1

3. ‖f + g‖1 6 ‖f‖1 + ‖g‖1 ∀f, g ∈ J
En effet, soient f, g ∈ J

‖f + g‖1 =

∫
I

‖f + g‖X

On sait bien que ‖f+g‖X 6 ‖f‖X +‖g‖X car ‖·‖X est bien une norme
sur X donc d’après (2.6) on a :∫

I

‖f + g‖X 6
∫
I

(‖f‖X + ‖g‖X)
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et à cause de la linéarité de l’intégrale on a :∫
I

‖f + g‖X 6
∫
I

‖f‖X +

∫
I

‖g‖X

Donc :
‖f + g‖1 6 ‖f‖1 + ‖g‖1 ∀f, g ∈ J

4. Si ‖f‖1 = 0 n’implique pas que f(t) = 0 ∀t ∈ I. En effet, il suffit de
considérer le contre exemple suivant : Soit A ⊂ I tel que µ(A) = 0, et
f une fonction constante égale à y 6= 0 sur A et nulle sur I \ A. Ainsi,
par défintion de l’intégrale, on a∫

I

f = yµ(A) + 0µ(I \ A) = 0,

alors que f 6= 0.

D’après ces propriétés, on a bien définie une semi-norme sur J . Cette
semi-norme ‖ · ‖1 est appelée L-seminorme.



Chapitre 3

Intégrale de Bochner

Maintenant, on va considérer une suite de fonctions simples (fn)n∈N ∈ J
avec la semi-norme donnée dans le chapitre précédent.

3.1 Définition de l’intégrale de Bochner

Définition 3.1.1. Une suite de fonctions simples (fn)n∈N est appelée L-zero
si :

lim
n→∞

‖fn‖1 = 0.

On dit que deux suites de fonctions simples (fn)n∈N et (gn)n∈N sont équi-
valentes si leur différence (fn − gn)n est L-zero.

Définition 3.1.2. Une suite de fonctions simples (fn)n∈N est appelée L-
Cauchy si pour tout ε > 0 il existe Nε ∈ N tel que :

‖fp − fq‖1 < ε, ∀p, q > Nε.

On va considérer le complété de l’espace vectoriel J des fonctions simples
sur I avec L-seminorme ‖ · ‖1. le complété de J est donné comme l’espace
des classes d’équivalence des suite de fonctions simples L-Cauchy. Pour plus
de détails voir [2].
L’ensemble des suites de fonctions simples L-Cauchy est un sous-espace vec-
toriel de J . En effet, soient (fn)n et (gn)n deux suites de fonctions simples
L-Cauchy, alors

∀ε > 0, ∃Nε > 0 tel que‖fp − fq‖1 6 ε/2, ∀p, q > Nε

29
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de même

∀ε > 0, ∃Mε > 0 tel que ‖gp − gq‖1 6 ε/2, ∀p, q >Mε.

Ainsi

‖(fp + gp)− (fq + gq)‖1 = ‖(fp − fq + (gp − gq))‖1

6 ‖fp − fq‖1 + ‖gp − gq‖1

6 ε

pour tout p, q > sup(Nε,Mε). Donc la suite (fn+gn)n est une suite L-Cauchy.
De même

‖λfp − λfq‖1 = ‖λ(fp − fq)‖1

= |λ|‖fp − fq‖1

6 λ · ε = ε′

Donc la suite (λfn)n est une suite L-Cauchy.

Lemme 3.1.1. Soit (fn)n∈N une suite de fonctions simples L-Cauchy définie
sur I. Alors il existe une sous suite (fnk

) de (fn) qui converge presque par
tout vers une fonction f : I → X et pour tout ε > 0, il existe un ensemble
mesurable E ⊂ I avec µ(E) < ε tel que (fnk

) converge uniformément sur
I \ E.

Preuve

Comme la suite (fn)n est L-Cauchy alors pour tout k ∈ N il existe Nk ∈ N
tel que si p, q > Nk alors

‖fp − fq‖1 <
1

22n
.

Supposons que Nk < Nk+1, et posons

gk = fNk
,

alors
‖gm − gn‖1 = ‖fNm − fNn‖1 <

1

22n
, ∀m > n.
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On définit pour t ∈ I, la série

g1(t) +
∞∑
k=1

(gk+1(t)− gk(t))

et on montre qu’elle converge absolument vers un élément de X et cette
convergence est uniforme sauf sur un ensemble de I de mesure négligeable.
Pour n ∈ N, on pose :

Mn =

{
t ∈ I ; ‖gk+1(t)− gk(t)‖X >

1

2n

}
Alors :

1

2n
· µ(Mn) =

∫
Mn

1

2n

6
∫
Mn

‖gk+1(t)− gk(t)‖X

6
∫
I

‖gk+1(t)− gk(t)‖X

= ‖gk+1 − gk‖1

6
1

22n

Ce qui entraine à

µ(Mn) <
1

2n
.

Pour n ∈ N, on définit l’ensemble

Zn = Mn ∪Mn+1 · · ·

on remarque alors que Zn+1 ⊂ Zn et

µ(Zn) 6
∞∑
j=n

µ(Mj) <
∞∑
j=n

1

2j
=

1

2n−1

Pour t /∈ Zn et k > n on a :

‖gk+1(t)− gk(t)‖X <
1

2k
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et par conséquent, la série
∞∑
k=n

(gk+1(t) − gk(t)) converge absolument et uni-

formément pour t /∈ Zn.
Supposons que ε > 0 est donné , posons E = Zk, on a pour k assez grand :

µ(E) = µ(Zk) <
1

2k−1
< ε,

par suite les séries
∞∑
k=n

(gk+1(t) − gk(t)) convergent absolument et uniformé-

ment sur I \ E.
Si on prend M =

⋂
Zn, alors µ(M) = 0 et si t /∈ M , alors t /∈ Zn pour

certains n. Par conséquent, les séries g1(t) +
∞∑
k=1

(gk+1(t) − gk(t)) convergent

pour t /∈M, ce qui veut dire lim
k→∞

gk(t) = lim
k→∞

fNk
(t) existe pour presque par

tout t ∈ I, et la suite gk(t) = fNk
(t) converge uniformément sur I \ E.

Lemme 3.1.2. a) Si (fn)n∈N une suite de fonctions simples L-Cauchy
alors

lim
n→∞

∫
I

fn existe.

b) Si (fn) et (gn) sont deux suites de fonctions simples L-Cauchy équiva-
lentes alors

lim
n→∞

∫
I

fn = lim
n→∞

∫
I

gn (3.1)

c) Si (fn) et (gn) sont deux suites de fonctions simples L-Cauchy qui
convergent presque partout vers une fonction f : I → X alors (fn) et
(gn) sont équivalentes et (3.1) reste vraie.

Preuve

a) L’existence de la limite dans a) est facile à montrer. En effet, soit
(fn) une suite de fonctions simples L-Cauchy, pour tout ε > 0,il existe
Nε ∈ N tel que

‖fp − fq‖1 < ε pour tout p, q > Nε.
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Ainsi ∥∥∥∥∫
I

fp −
∫
I

fq

∥∥∥∥
X

=

∥∥∥∥∫
I

(fp − fq)
∥∥∥∥
X

6
∫
I

‖(fp − fq)‖X

= ‖fp − fq‖1

< ε

Ce qui veut dire la suite d’intégrales
∫
I
fn ∈ X, n ∈ N est une suite

de Cauchy et par conséquent elle est convergente c’est à dire que la
limite : lim

n→∞

∫
I
fn existe.

b) Soit ε > 0 donné, comme (fq) et (gq) sont deux suite L-Cauchy équi-
valentes, et d’après a), il existe N ∈ N tel que pour r > N, on a

‖fr − gr‖1 =

∫
I

‖fr − gr‖X < ε.

Et ∥∥∥∥∫
I

fr − lim
q→∞

∫
I

fq

∥∥∥∥
X

< ε,
∥∥∥∥∫

I

gr − lim
q→∞

∫
I

gq

∥∥∥∥
X

< ε.

Ce qui entraine que∥∥∥∥ lim
q→∞

∫
I

fq − lim
q→∞

∫
I

gq

∥∥∥∥
X

6

∥∥∥∥ lim
q→∞

∫
I

fq −
∫
I

fr

∥∥∥∥
X

+

∥∥∥∥∫
I

fr −
∫
I

gr

∥∥∥∥
X

+∥∥∥∥∫
I

gr − lim
q→∞

∫
I

gq

∥∥∥∥
X

6 ε+

∫
I

‖fr − gr‖X + ε

6 3ε

Donc
lim
q→∞

∫
I

fq = lim
q→∞

∫
I

gq.

c) Posons
hq = fq − gq

et soit ε > 0 donné. Il est clair que lim
q→∞

hq(t) = 0 presque par tout car

(fq)q et (gq)q convergent presque par tout vers la même limite et (hq)q

est L-Cauchy i.e. il existe Nε ∈ N tel que pour r, q > Nε on a

‖hq − hr‖1 < ε.
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D’après a), les deux suites (
∫
I
hq) et (

∫
I
‖hq‖X) sont convergentes. Reste

à montrer que

lim
q→∞

∫
I

‖hq‖X = 0

On définit l’ensemble

M = {t ∈ I ; hNε(t) 6= 0} ⊂ I

Pour q > Nε on a∫
I\M
‖hq‖X =

∫
I\M
‖hq − hNε‖X (car hNε(t) = 0 pour t ∈ I \M)

6
∫
I

‖hq − hNε‖X

= ‖hq − hNε‖1

< ε

et d’après le Lemme 3.1.1, il existe un sous-ensemble mesurable Z ⊂M

avec :
µ(Z) 6

ε

sup
t∈I
‖hNε(t)‖X + 1

et une sous-suite (hqs) uniformément convergente vers zéro sur M \ Z.
Par suite il existes0 > Nε tel que pour tout s > s0 et pour t ∈ M \ Z
on a

‖hqs(t)‖X <
ε

µ(I)

et par conséquent, pour s > s0,∫
M\Z
‖hqs(t)‖X <

εµ(M \ Z)

µ(I)
< ε

De même,∫
Z

‖hqs(t)‖X =

∫
Z

‖hqs(t)− hNε(t) + hNε(t)‖X

6
∫
Z

‖hqs(t)− hNε(t)‖X +

∫
Z

‖hNε(t)‖X

6 ‖hqs − hNε‖1 + sup
t∈I
‖hNε(t)‖Xµ(Z)

< ε+ sup
t∈I
‖hNε(t)‖X ·

ε

sup
t∈I
‖hNε(t)‖X + 1

< 2ε
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Alors

‖hqs‖1 =

∫
I

‖hqs(t)‖X

=

∫
I\M
‖hqs(t)‖X +

∫
M\Z
‖hqs(t)‖X +

∫
Z

‖hqs(t)‖X

< ε+ ε+ 2ε = 4ε

Donc lim
s→∞

∫
I
‖hqs(t)‖X = 0 et par conséquent on obtient

lim
q→∞

∫
I

‖hq(t)‖X = 0.

Définition 3.1.3. On note par B l’ensemble de toutes les fonctions f : I →
X pour lesquelles il y a une suite de fonctions simples L-Cauchy (fn), n ∈ N
qui converge vers f presque par tout sur I, i.e.

lim
n→∞

‖fn(t)− f(t)‖X = 0, pour presque tout t ∈ I.

Dans ce cas, on dit que la suite (fn) ∈ J détermine la fonction f ∈ B.
D’après a) du Lemme 3.1.2, il est facile de voir que pour toute suite de
fonctions simples (fn) L-Cauchy, la valeur x(fn) ∈ X peut être attribué à
lim
n→∞

∫
I
fn, c’est à dire

x(fn) = lim
n→∞

∫
I

fn.

De même, en utilisant b) du Lemme 3.1.2, on peut voir que la valeur x(fn) ∈ X
est unique à toutes les suites L-Cauchy qui sont équivalentes à la suite (fn).
Ce qui nous permet de donner la définition suivante,

Définition 3.1.4. Pour f ∈ B, on définit :∫
I

f = lim
n→∞

∫
I

fn (3.2)

où (fn) est une suite de fonctions simples qui détermine f ∈ B. La valeur∫
I
f donnée par (3.2) est appelée l’intégrale de Bochner de la fonction f .

L’ensemble B est appelé l’ensemble des fonctions Bochner-intégrable.



36 3.1 Définition de l’intégrale de Bochner

Remarque 3.1.1. 1. B est un espace vectoriel.

2. Dans (2.1), l’intégrale est définie pour une fonction simple alors que la
relation (3.2) est son extension aux fonctions f ∈ B.

3. A partir du Lemme 3.1.2, on voit que cette notion est définie.

Dans cette présentation, on suit les lignes données dans [2] par S. Lang
mais le lecteur peut trouver l’intégrale de Bochner dans plusieurs livres e.g[3]
ou géneralement dans des livres d’analyse fonctionnelle e.g[1].

Lemme 3.1.3. Si f ∈ B et (fn) est une suite de fonctions simples L-Cauchy
qui détermine f , alors ‖f‖X est intégrable au sens de Bochner et la suite
(‖fn‖X) détermine la fonction réelle ‖f‖X au sens de l’ensemble B.
Dans ce cas on a : ∫

I

‖f‖X = lim
n→∞

∫
I

‖fn‖X = lim
n→∞

‖fn‖1 (3.3)

De plus ∥∥∥∥∫
I

f

∥∥∥∥
X

6
∫
I

‖f‖X (3.4)

Preuve

Comme
|‖fq(t)‖X − ‖fr(t)‖X | 6 ‖fq(t)fr(t)‖X , pour t ∈ I

alors

‖‖fq‖X − ‖fr‖X‖1 =

∫
I

|‖fq(t)‖X − ‖fr(t)‖X |

6
∫
I

‖fq(t)− fr(t)‖X = ‖fq − fr‖1

Ce qui veut dire la suite de fonctions simples à valeurs réelles ‖fq‖X est
L-Cauchy. De plus,

lim
q→∞
‖fq(t)‖X = ‖f(t)‖X pour presque tout t ∈ I

et par conséquent ‖f‖X : I → R est intégrable au sens de Bochner et la suite
(‖fq‖X)q∈N détermine ‖f‖X et par suite l’égalité (3.3) est vérifiée.
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Or, comme la suite (fq ∈ J ) de fonctions simples vérifie la propriété (2.3)
alors ∥∥∥∥∫

A

fq

∥∥∥∥
X

6
∫
A

‖fq‖X

ce qui entraine que

lim
q→∞

∥∥∥∥∫
A

fq

∥∥∥∥
X

6 lim
q→∞

∫
A

‖fq‖X

et d’après (3.2), on a ∥∥∥∥ lim
q→∞

∫
A

fq

∥∥∥∥
X

6
∫
I

‖f‖X

et par suite, (3.3) entraine que∥∥∥∥∫
I

f

∥∥∥∥
X

6
∫
I

‖f‖X .

Ce qui prouve l’inégalité (3.4).
D’après le Lemme 3.1.3, on sait que la limite lim

n→∞
‖fn‖1 ne dépend pas du

choix de la suite de fonctions simples L-Cauchy (fn) qui détermine f , par
conséquent la semi-norme définie pour des fonctions simples f ∈ J peut
s’étendre aux fonctions f ∈ B par la relation

‖f‖1 =

∫
I

‖f(t)‖X = lim
n→∞

‖fn‖1. (3.5)

Ainsi, ‖ · ‖1 : B → R est bien définie et vérifie les propriétés suivantes

‖f‖1 > 0 ∀f ∈ B
‖af‖1 = |a|‖f‖1 ∀f ∈ B et ∀a ∈ R

‖f + g‖1 6 ‖f‖1 + ‖g‖1 ∀f, g ∈ B.

Ces relations sont des conséquences immédiates des propriétés pour ‖ · ‖1

définie sur J .

Lemme 3.1.4. Si f ∈ B et (fn) est une suite de fonctions simples L-Cauchy
qui détermine f , alors

lim
n→∞

‖fn − f‖1 = 0.
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Preuve

Puisque (fq) est une suite de fonctions simples L-Cauchy alors pour tout
ε > 0, il existe Nε ∈ N tel que

‖fr − fq‖1 < ε, ∀r, q > Nε.

On fixe r > Nε et on pose gq = fr − fq ∈ J pour q ∈ N alors presque par
tout t ∈ I,

lim
q→∞

gq(t) = fr(t)− f(t) ∈ B

car
‖gl − gk‖1 = ‖fr − fq‖1

ce qui entraine que la suite (gq) est une suite L-Cauchy qui détermine la
fonction fr − f ∈ B. Par conséquent

‖f − fr‖1 = lim
q→∞
‖gq‖1 = lim

q→∞
‖fq − fr‖1 < ε

Ce qui implique
lim
r→∞
‖fr − f‖1 = 0.

Corollaire 3.1.1. Si f ∈ B alors pour tout ε > 0, il y a une fonction simple
gε ∈ J telle que

‖f − gε‖1 < ε.

i.e. l’ensemble J est dense dans B avec la semi-norme ‖ · ‖1.

D’où le résultat suivant.

Lemme 3.1.5. L’espace (B, ‖ · ‖1) est complet.

Preuve

Soit (gq)q∈N ∈ B une suite de Cauchy pour la semi-norme ‖ · ‖1. D’après
le Corollaire 3.1.1, pour tout q ∈ N, il existe une fonction simple fq ∈ J tel
que :

‖gq − fq‖1 <
1

q
.
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Ainsi,

‖fq − fr‖1 = ‖fq − gq + gq − gr + gr − fr‖1

6 ‖fq − gq‖1 + ‖gq − gr‖1 + ‖gr − fr‖1

<
1

q
+ ‖gq − gr‖1 +

1

r

et par conséquent, la suite (fq) est L-Cauchy. Et d’après le Lemme 3.1.1, il
existe une sous-suite (fqs) de (fq) qui converge presque par tout sur I vers
une fonction f : I → X et la sous-suite (fqs) est L-Cauchy, Donc f ∈ B.De
plus, on a

‖gqs − f‖1 6 ‖gqs − fqs‖1 + ‖fqs − f‖1

ce qui entraine que la sous-suite (gqs) de (gq) converge vers f pour la semi-
norme ‖ · |1 d’après le Lemme 3.1.4. Par conséquent, la suite (gq) converge
aussi pour la semi-norme ‖ · ‖1 vers f ∈ B. C’est à dire que, B est complet.
En utilisant le Lemme 3.1.5, on peut voir facilement qu’on a le résultat sui-
vant.

Corollaire 3.1.2. Une fonction f : I → X appartient à B si et seulement
s’il existe une suite de fonctions simples (fn) ∈ J , n ∈ N telle que :

lim
n→∞

fn(t) = f(t) pour presque tout ∀t ∈ I,

Et
lim
n→∞

‖fn − f‖1 = lim
n→∞

∫
I

‖fn − f‖X = 0.

Par ce corollaire, on obtient que f ∈ B est nécessairement mesurable.
D’autre part, ce corollaire donne une autre définition de l’intégrabilité au
sens Bochner qui est équivalente à la Définition 3.1.3. ( Et la Définition 3.1.4
peut être utilisée pour définir l’intégrale).

Définition 3.1.5. Une fonction f : I → X est intégrable au sens de Bochner
s’il y a une suite de fonctions simples fn : I → X, n ∈ N telle que :

lim
n→∞

fn(t) = f(t) pour presque tout t ∈ I,

et
lim
n→∞

‖fn − f‖1 = lim
n→∞

∫
I

‖fn − f‖X = 0.
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Théorème 3.1.1. Si f : I → X est telle que f(t) = 0 presque par tout sur
I alors f ∈ B et

∫
I
f = 0

Preuve

Il suffit de choisir une suite de fonctions simples (fn) L-Cauchy qui est
identiquement nulle pour tout n ∈ N.

Corollaire 3.1.3. Si f : I → X est intégrable au sens de Bochner et g :

I → X est telle que f(t) = g(t) presque partout sur I alors g est intégrable
au sens de Bochner et ∫

I

f =

∫
I

g.

Preuve

Comme g = g−f +f et (g−f) est intégrable au sens de Bochner d’après
le Théorème 3.1.1 , on obtient immédiatement le résultat.
Remarque
Dans le cas où X = R, i.e. pour f : I → R, l’intégrabilité de Bochner
et l’intégrale de Bochner données dans les définitions 3.1.4 ou 3.1.5 donne
une autre approche de l’intégrabilité de Lebesgue et l’intégrale de Lebesgue.
Ce qui veut dire, la fonction f : I → R est Bochner-intégrable au sens de
la Définition 3.1.4 si et seulement si f est Lebesgue intégrable et les deux
intégrales ont la même valeur.

3.2 Propriétés des fonctions Bochner-intégrable

D’après la définition de l’ensemble B, il est clair que toute fonction f ∈ B
est mesurable au sens de la Définition 2.1.2. Et d’après le Théorème 2.1.1 de
Pettis, si f ∈ B alors f est aussi faiblement mesurable et l’ensemble d’images
de f est séparable presque partout.

Définition 3.2.1. Pour un ensemble mesurable E ⊂ I et f ∈ B on définit :∫
E

f =

∫
I

1E · f = lim
n→∞

∫
I

1E · fn

où la suite (fn)n∈N ∈ J détermine la fonction f.
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Cette définition a un sens du moment que (1E · fn)n∈N est une suite de
fonctions simples qui détermine la fonction 1E · f.
Soit f : I → X une fonction mesurable à valeurs dénombrables de la forme :

f(t) =
∞∑
m=1

ym1Em(t), t ∈ I (3.6)

où Em ⊂ I, m ∈ N sont mesurables et deux à deux disjoints et ym ∈ X.

Lemme 3.2.1. Une fonction f : I → X à valeurs dénombrables de la forme
(3.6) est Bochner-intégrable si

∞∑
m=1

‖ym‖Xµ(Em) <∞.

Preuve

Pour l ∈ N, on définit les fonctions

fl(t) =
l∑

m=1

ym1Em(t), t ∈ I.

alors fl ∈ J pour tout l ∈ N et lim
l→∞

fl(t) = f(t) pour t ∈ I. Alors pour t ∈ I
et k < l, on a par définition :

‖fl(t)− fk(t)‖X =

∥∥∥∥∥
l∑

m=k+1

ym1Em(t)

∥∥∥∥∥
X

et comme ∥∥∥∥∥
l∑

m=k+1

ym1Em(t)

∥∥∥∥∥ 6
l∑

m=k+1

‖ym‖X1Em(t)‖X .

on a

‖fl − fk‖1 =
l∑

m=k+1

‖ym‖Xµ(Em).

A partir de là, on peut voir que la suite (fl) est L-Cauchy si et seulement si

la série
∞∑
m=1

ymµ(Em) converge. Et dans ce cas, la série
∞∑
m=1

ym1Em converge

dans X vers f, il en résulte alors par définition que f ∈ B et∫
I

f =
∞∑
m=1

ymµ(Em)
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et aussi ∫
I

‖f‖X =
∞∑
m=1

‖ym‖Xµ(Em).

Corollaire 3.2.1. Une fonction mesurable f : I → X à valeurs dénombrables
telle que ‖f(t)‖X 6 g(t) presque partout sur I avec g ∈ B est Bochner-
intégrable.

Preuve

On peut utiliser la suite (fl) donnée dans la preuve du Lemme précédent, on
voit alors que

‖fl‖1 =

∫
I

‖fl(t)‖X 6
∫
I

g <∞ ∀l ∈ N

et par conséquent la condition du Lemme 3.2.1 est satisfaite, par suite f soit
Bochner-intégrable.

Théorème 3.2.1. Une fonction mesurable f : I → X est Bochner-intégrable
si et seulement si ‖f‖X : I → R est Bochner-intégrable.

Preuve

Si f ∈ B alors ‖f‖X est intégrable au sens de Bochner. (Un résultat du
Lemme 3.1.3).
Inversement, Supposons que ‖f‖X est Bochner-intégrable. Puisque f est me-
surable alors d’après les Corollaires 3.1.2 et 2.1.1, pour tout k ∈ N, il y a une
fonction mesurable à valeurs dénombrables de la forme :

fk(t) =
∞∑
m=1

ym,k1Em,k
(t), t ∈ I. (3.7)

où Em,k, m ∈ N sont des ensembles mesurables de I deux à deux disjoints
et ym,k ∈ X, m ∈ N avec fk vérifiant la propriété suivante : il existe N ⊂
I, µ(N) = 0 tel que pour tout k ∈ N,

‖f(t)− fn(t)‖X <
1

2kµ(I)
, pour t ∈ I \N (3.8)
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i.e. (fk) converge uniformément vers f sur I \N et par conséquent

‖fk(t)‖X = ‖f(t)− f(t) + fk(t)‖X
6 ‖f(t)‖X + ‖f(t)− fk(t)‖X

< ‖f(t)‖X +
1

2kµ(I)
p.p

et puisque µ(I) < ∞, le Corollaire 3.2.1 implique que fk est Bochner-
intégrable et ∫

I

‖fk‖X =
∞∑
m=1

‖ym,k‖Xµ(Em,k) <∞.

On choisit rk ∈ N tel que
∞∑

n=rk+1

‖ym,k‖Xµ(Em,k) <
1

2k
.

Puisque ‖f − fk‖X est mesurable et l’inégalité (3.8) est vérifiée alors la fonc-
tion ‖f − fk‖X est intégrable et :∫

I

‖f − fk‖X <
1

2kµ(I)
· µ(I) =

1

2k
.

on pose :

gk =

rk∑
m=1

yk,m1Ek,m
.

Alors gk ∈ J et :

fk = gk +
∞∑

m=rk+1

yk,m1Ek,m
.

On a aussi

‖f − gk‖1 =

∫
I

‖f − gk‖X

6
∫
I

‖f − fk‖X +

∫
I

‖fk − gk‖X

<
1

2k
+

∞∑
m=rk+1

‖yk,m‖Xµ(Em,k)

<
1

k
.

Donc f ∈ B.
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Corollaire 3.2.2. Si f : I → X est mesurable et bornée par une fonction
intégrable g : I → R i.e. ‖f(t)‖X 6 g(t) presque partout sur I alors f est
Bochner intégrable .

Proposition 3.2.1. Soit f une fonction mesurable de la forme :

f = g +
∞∑
n=1

xn1En (3.9)

avec g : I → X est une fonction mesurable et bornée, En sont des ensembles
mesurables de I deux à deux disjoints et xn ∈ X, n ∈ N ( voir la Proposition
2.1.2). Alors :
f est Bochner intégrable si et seulement si xn et En, n ∈ N sont choisit tels

que la série
∞∑
n=1

xn · µ(En) soit absolument convergente dans X, et dans ce
cas, ∫

E

f =

∫
E

g +
∞∑
n=1

xn · µ(E ∩ En) (3.10)

pour tout ensemble mesurable E ⊂ I.

Preuve

Supposons que f est Bochner-intégrable s’écrivant sous la forme (3.9). Puisque
g est bornée, alors g ∈ B d’après le Corollaire 3.2.2 et on a aussi

f − g =
∞∑
n=1

xn · 1En ∈ B.

D’après le Théorème 3.2.1, on a∫
I

‖
∞∑
n=1

xn · 1En‖X <∞

cela signifie que∫
I

‖
∞∑
n=1

xn · 1En‖X =
∞∑
n=1

‖xn‖X · µ(En) <∞

parce que En ∩ Em = ∅ pour toutm 6= n. Et la série
∞∑
n=1

xn · µ(En) est absolument convergente dans X.
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Inversement, Si g est bornée et les séries
∞∑
n=1

xn · µ(En) sont absolument

convergentes alors g ∈ B, d’après le Corollaire 3.2.2 et

∞∑
n=1

xnµ(En) ∈ B

d’après le Lemme 3.2.1. Par conséquent, f = g + h est Bochner-intégrable
avec :

h =
∞∑
n=1

xn1En .
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