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Introduction

L’intégration au sens de Bochner est utilisé dans plusieurs branches ma-
thématiques comme la théorie des probabilités, Analyse fonctionnelle, équa-
tions différentielles dans des espaces vectoriels, théorie de semi-groupes pour
opérateurs linéaires,... A la fin du dix-neuviéme siécle, la théorie d’intégra-
tion de Riemann devient insuffisantes et ses limitations étaient apparentes
alors plusieurs mathématiciens célébres comme ( Jordan, Borel, Young,..) se
mettent en devoir de la généraliser. C’est ainsi que la communauté mathé-
matique adopta la théorie de Lebesgue, exposée dans une note fondatrice de
1901, puis développée dans le Cours Peccot en introduisant concept de mesure
par Borel vers 1895. La théorie de la mesure et l'intégration de Lebesgue se-
ront ensuite perfectionnées et généralisées par de nombreux mathématiciens
du vingtiéme siécle, en particulier Carathéodory, Vitali, Radon, Riesz, Haus-

dorff, Kolmogorov et Besicovich ( par ordre chronologique approximatif).

Le cadre classique le plus simple pour définir une intégrale est celui des
fonctions en escalier sur un intervalle [a,b]. L’intégrabilité au sens de Rie-
mann impose des conditions relativement fortes : Une fonction f : [a,b] — R
est intégrable si et seulement si, pour tout § > 0 donné, on peut subdiviser
I'intervalle [a, b] en sous-intervalles suffisamment fins pour que la somme des
longueurs des sous-intervalles sur lesquels 1'oscillation de la fonction f dé-
passe (3 soit arbitrairement petite.

Plus tard, Lebesgue montrera qu’une fonction f : [a,b] — R est Riemann
intégrable si et seulement si ’ensemble de ses points de discontinuité est de
mesure nulle, au sens ott on peut l'inclure dans une union d’intervalles ou-

verts dont la somme des longueurs est arbitrairement petite.
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Ces conditions peuvent sembler assez faibles, puisqu’elles autorisent par
exemple une fonction qui ne serait discontinue qu’en une quantité dénom-
brable de points. Mais il est facile de construire des fonctions bornées ne
remplissant pas ces conditions : le contre-exemple connu est la fonction indi-
catrice de Q, ou sa restriction & un segment. Dans de nombreux problémes
d’analyse, on rencontre des fonctions qui ne sont pas forcément Riemann-
intégrables. Dans la théorie de Lebesgue, la classe des fonctions intégrables
est beaucoup plus grande. Par exemple, toute fonction bornée est Lebesgue
intégrable. En outre, sa théorie généralise bien celle de Riemann.

C’est, par ce probléme que Lebesgue motive sa construction dans sa note
de 1901. L’intégrale de Riemann permet d’intégrer des fonctions discontinues,
mais ne permet pas d’intégrer n’importe quelle fonction dérivée, méme bornée
c’est & dire si donc f est une fonction continue sur [a, b] et dérivable sur |a, b|,

il n’est pas garanti que l'identité

W) 10~ = [ fo

ait un sens. En fait, divers auteurs (Volterra, Képcke, Brodén, Schoenflies)
ont construit des classes de fonctions qui sont dérivables, avec une dérivée
bornée mais non Riemann-intégrable. Alors que,sous des hypothéses simples,
dans la théorie de Lebesgue, la dérivation et I'intégration deviennent des opé-
rations inverses. C’est ainsi que l'identité (1) est automatiquement vérifiée

dés que f est continue, dérivable sur [a, b] et de dérivée bornée.

Sachant qu’une limite de fonctions Riemann-intégrables n’est pas forcé-
ment Riemann-intégrable, méme si ces fonctions sont uniformément bornées
alors on ne peut pas échanger les opérations limite et intégrale. Par contre,
Lebesgue parvient a définir un concept de fonctions intégrables qui est inva-
riant par passage a la limite. Par conséquent, sous des hypothéses simples,
I’échange intégrale-limite est presque automatique.

L’intégration par rapport a une mesure est une opération qui associe a
une fonction f a valeurs réelles, une valeur dans R. Une application a valeurs
dans R" se présente sous forme f = (fi, fo, -+, fu), ou chaque f; est une
fonction. Intégrer une application & valeurs dans R”™ revient alors & intégrer

chaque composante f; et a former le vecteur composé de ces intégrales. En
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revanche, on se pose la question, qu’en est-il pour une fonction & valeurs dans
un espace de Banach de dimension infinie? La définition de l'intégrale de
Lebesgue comme borne supérieure d’intégrales de fonctions simples ne peut
s’étendre directement aux intégrales a valeurs vectorielles car elle utilise la
propriété d’ordre de R.

Partant de la théorie de l'intégration de Lebesgue pour des fonctions
scalaire, on développe dans ce mémoire, la théorie correspondante pour des
fonctions a valeurs dans des espaces de Banach.

Dans le chapitre 1, on évoque les deux théories d’intégration connues et
étudiées auparavant : intégrale de Riemann et intégrale de Lebesgue.

Le chapitre 2 sera consacré a I’étude de I'intégrale d’une classe de fonctions
a valeurs vectorielles, & savoir, les fonctions simples.

Le chapitre 3, on s’intéresse a la construction de l'intégrale de Bochner,

tout en donnant quelques uns de ses propriétés.
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Chapitre 1

Préliminaires

1.1 Intégration au sens de Riemann

On considére la fonction f définie de [a, b] vers R.

Définition 1.1.1. Soit A un ensemble, la fonction indicatrice

4(x) 1 si z€ A
xrT) =
4 0 si ¢ A

est celle qui indique st x est dans A ou non.

Exemple :

Soit A = [1,5[, alors les images des points x = 0, z = 1 et x = 5 par la

fonction indicatrice sont :
Ta(1) =1, 14(5)=0, 14(0)=0.

Définition 1.1.2. (Fonction en escalier) La fonction f : [a,b] — R est
dite fonction en escalier sur [a,b], s’il existe une subdivision S = (t;)o<i<n de
[a,b] telle que [ soit constante sur chaque intervalle |t;, t;11[. La fonction f

s’écrira alors : ,
f(l‘) = Zai]l]tmtwﬂ(x) (11)
i=1

avec : f(a) =ap , f(b) =, et a; € R.
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Exemples :

1. f(l’) =2. ]1[072[(1’) + 5 . ]1[274[(ZE) — 3 . ]1[4,6[(I) + 8 . ]1[6,8] (J])
3 1
2. g(l’) = —1 . 1[_57_3[(.73) + 5 . 1[_370[(1‘) + § . ]1[0’4} (l’)
Définition 1.1.3. (L’intégrale des fonctions en escalier) On appelle

intégrale de la fonction en escalier f donnée par (1.1), le nombre réel

b n—1
a =0

Exemples :

Le calcul de l'intégrale des fonctions en escalier dans ’exemple précédent

donne :

/8 F(2) = 2%(2—0)+5x (4—2)—3x (6—4) +8 % (8—6) = 2-(2+5—3+8) = 24.
0

et pour g(z) on a :

[ ota) = —1x(=3=(=5)+5x (0—(-3)+5x(4=0) = ~1243 3+54 = .

Soit f une fonction bornée définie de [a, b] dans R. Pour définir son intégrale,
on va approcher la fonction f par des fonctions en escalier. Etant donnée
une subdivision S, on définit des fonctions en escalier qui minorent f et qui

majorent f. Soient

n—1

E(},S)(x) = Zmi]l[tiati-&-l[(x) avec m; = xe[;lf?tfiﬂ[f(x). (1.2)
=0
Et
n—1
Ef g(@) =Y Milly,,,,((x) avee M; = S f(z). (1.3)
=0 xre(ls, z+1[
Plus généralement, on peut approcher f par :
B n—1
Eops(x) = ) f(0i) L p((®) (1.4)
i=0

avec a; € [t;, t;11] est quelconque.
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Définition 1.1.4. (Somme de Darbouzx) Etant donnée une subdivision S,

on appelle somme de Darboux inférieure, 'intégrale de la fonction en escalier
E; s définie par (1.2)

n—1

AT(£.8) = milti — 1)

=0

Et la somme de Darbouzr supérieure, [intégrale de la fonction en escalier
E&S) définie par (1.3)

[y

A*(f,S) = 3 M;(tiyr —t5).

i

Il
=)

Définition 1.1.5. (Somme de Riemann) Etant donnée une subdivision

S, on appelle somme de Riemann, lintégrale d’une fonction en escalier du
type (1.4)

—

n—

R(f,S,a) = flaq)(tivr —t5).

7

I
o

Définition 1.1.6. (L’intégrale de Riemann) Une fonction f : [a,b] — R
est Riemann-intégrable (sur [a,b]) si pour tout € > 0, il existe une subdivision

S telle que ses sommes de Darbouz vérifient :
AT(f,8) —A(f.9) <e.

Définition 1.1.7. L’intégrale de Riemann de f est la valeur commune :

b
| #a)dn =sup A~(5.5) = nt 4°(£.5).
a S

De fagon équivalente, si f est Riemann-intégrable, on a :

/bf(x)dm: lim A= (f,8)= lim A"(f,S)= lim R(f,S, ).

p(S)—0 p(S)—0 p(S)—0

pour toute somme de Riemann R(f,s,«) ou on rappelle que p(S) désigne le

pas de la subdivision S.
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Propriétés :

1. Toute fonction Riemann-intégrable sur un intervalle [a, b] est bornée.
2. Les fonctions continues et les fonctions monotones sont Riemann-intégrables.

3. La linéarité :

Soient f et g deux fonctions Riemann-intégrables et «, § € R alors :

/ab af(z) + Bg(z)dr = Oz/abf(x)d:v + ﬁ/abg(x)dx.

4. Relation de Chasles :
Si f est Riemann-intégrable sur [a, b] et ¢ €]a; b] alors f 1’est encore sur

la, c] et sur [c,b] et on a :
b c b
[ i@ [ swe+ [ swar
5. Positivité :

Si f est positive et Riemann-intégrable sur [a, b] alors :

/a ’ F(x)dz > 0.

6. Si f et g sont Riemann intégrables et f < ¢ alors :

/abf(a:)da: < /abg(x)d:c.

7. Intégrale et valeur absolue :

Si f est Riemann-intégrable alors :

/a b f()dz

< [
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1.2 Intégration au sens de Lebesgue

Commencons par donner quelques définitions sur la théorie de la mesure.

Définition 1.2.1. (tribu , o-algébre) On dit qu’une famille A de sous-
ensemble de X est une tribu si :

(i) X € A;

(i) A est stable par complémentaire si : A € A alors A° € A;

(111) A est stable par réunion dénombrable si : ¥n > 1, A, € A alors

UAneA.

n=>1

Exemples :

{0, X'} est la tribus grossiére , P(X) est la tribus totale.

Définition 1.2.2. (Espace mesurable) On appelle espace mesurable (X, .A)

tout ensemble X munit d’une tribu A.

Définition 1.2.3. (La tribu engendrée) Soit A une famille de sous-ensemble
de X (A CP(X)). On note o(A) la plus petite tribu de X (pour l'inclusion)
contenant A. On Uappelle la tribu engendrée par A.

Définition 1.2.4. (La tribu borélienne) La tribu engendrée par une topo-
logie (c’est a dire engendrée par la famille A =T des ouverts d’une topologie)
est la tribu borélienne, notée B(X). Les éléments de la tribu borélienne B(X)

s’appellent les boréliens de X.

Définition 1.2.5. (Boréliens réels) On considére X = R =] 4 0o, —00]
muni de sa topologie usuelle (topologie de l’ordre qui coincide avec la topologie
engendrée par la distance usuelle | - |). On consideére alors sur R la tribu
borélienne B(R) engendrée par les ouverts de sa topologie usuelle. On rappelle
que les ouverts de R sont des réunions dénombrables d’intervalles ouverts

U lan, bn| (réunion finie ou dénombrable).
n>1

Définition 1.2.6. (Mesure) Une mesure p sur un ensemble mesurable (X, A)
est une application de A — [0, +00] qui vérifie les deux conditions sui-
vantes :
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(i) u(®) =0;

(11) Si (Ap)n>1 est une suite dénombrable d’ensemble de A deux a deux dis-

joints alors :

[ (U(An)) => wA,) (o — additivité).

n>1 n=1

Exemples :

1. Mesure de dénombrement sur (X, P(X)) : soit A € P(X),

Card A si A est fini
n(A) = {

+o0 sinon.

2. Mesure de Dirac sur (X, P(X)) : solent a € X et A € A,

5.(A) = 1 si a€eA
U 0 sioad A

La mesure de Dirac ¢, indique si un ensemble contient ou non le point a.

Par exemple : §o([0,1]) =1, do(]0,1]) = 6(R*) =0, 0, 5(Q) = 0.

Théoréme 1.2.1. (La mesure de Lebesgue) Il eziste une unique mesure
wu sur (R, B(R)) telle que :

- Pour tout intervalle |a,b] borné, on a : u([a,b]) = p(]a, b)) = b — a.

- Pour tout A € B(R), (A +z) = pu(A) avec A+xz={a+x;a€c A}.

On Uappelle la mesure de Lebesgue.

Définition 1.2.7. (Espace mesuré) On appelle espace mesuré la donnée
d’un triplet (X, A, u) avec X un ensemble, A une tribu sur X et 1 une mesure
sur (X, A).

Les ensembles de A sont appelés les ensembles mesurables.

Définition 1.2.8. (Négligeable , presque par tout)

1. Un ensemble N de (X, A, u) est dit u-négligeable s’il existe A € A tel
que N C A et u(A) = 0.



1.2 Intégration au sens de Lebesgue 15

2. On dit qu’une propriélé est vraie p-presque par tout (u-p.p.) sur (X, A, )
st l'ensemble des x € X pour lesquelles elle n’est pas vraie est négli-

geable.

Définition 1.2.9. (Fonction mesurable) Soient (X, A),(Y,B) deux es-
paces mesurables. Une fonction f: X — Y est dite (A, B)-mesurable si et
seulement siVB € B , f~1(B) € A.

Définition 1.2.10. (Fonction Lebesgue-mesurable ) La fonction f est
dite Lebesgue-mesurable si Ya € R, 'ensemble {x € E/f(x) < a} est un en-

semble mesurable.

Définition 1.2.11. (Fonction étagée positive)
Une fonction f : (X, A, u) — R, est dite étagée positive si elle est de la

forme : )
fl@) = aily,(z)
avec : -
1. neN (n<o0);

2. les a; sont des réels positifs ;

3. les A; sont des ensembles mesurables deuzr a deuz disjoints.
Remarque 1.2.1. Si les A; sont des intervalles f est dite en escalier.

Définition 1.2.12. (L’intégrale de Lebesgue d’une fonction étagée po-
sttive) Soit f une fonction étagée positive. On appelle intégrale de Lebesque

de la fonction f le nombre

/f duz/Xf duzz::am(fli)

avec les précisions suivantes :
- si oy = 0 et la mesure de A; est infinie, alors a;pu(A;) =0

- [ f du >0 mais elle peut étre infinie.

Définition 1.2.13. (Intégrale de Lebesgue d’une fonction réelle po-
sitive) Soit f une fonction mesurable positive i.e f : (X, A, pn) — Ry,
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on définit X(f) 'ensemble des fonctions en escalier positives inférieures ou
égales a f.

On appelle intégrale de Lebesque de f le nombre éventuellement infini, tel

/fdu: f dp= sup /edu.
X eeX(f)

Définition 1.2.14. (Sommable)

La fonction f est dite sommable au sens de Lebesque si [ f du est finie.

que :

Définition 1.2.15. Soit f une fonction a valeurs réelles. On peut définir

deux fonctions auziliaires f* et [~ par :

o { f(x) sif(x) >0

0 sinon

Et

0 sinon

- { ~f() sif(x) <0

On aalors : f=f"— f~.

Définition 1.2.16. (L’intégrale de Lebesgue d’une fonction réelle)
Une fonction f a valeurs réelles est sommable si et seulement si les deux

fonctions f* et f~ sont sommables, et on pose alors :

[ran=[r du= [ 1 an

Remarque 1.2.2. - Si [ ffdu et [ f~du sont infinies alors [ f du
n’existe pas.
- Si l'un des deux intégrales est infinie et Uautre est fini alors [ f du est

mfinie.
Propriétés :

1. Croissance :
-Si f < gsur X, alors :

/fdug/gdu-
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/fdu</fdw
E F
2. Nullité :

Si f(x) =0 pour x € E, alors :

Lf@:.
/Efduzo.

Soient f et g deux fonctions mesurables et a,b € R alors :

/af+bgdu:a/fdu+b/gdu.

4. Relation de Chasles :

Si E et F sont deux ensembles mesurables disjoints, alors :

/J;uFfdM_[Efdu+Afdu'

1.3 Espace topologique, Espace de Banach

-Si F C F, alors :

Si pu(E) =0, alors :

3. Linéarité :

Définition 1.3.1. (Norme et semi-norme) Soit E un K espace vectoriel

(K=R ou C) , on appelle une norme sur E Uapplication :
-] E— Ry

qui vérifie les trois propriétés suivantes :
1) a) ||| 20,V e E
b) ||z]] =0 <= x=0g
2) || Az]| = |M||z]| , Ve € E, YA € K (homogénéité)
3) Nz +yll < |zl + ||yl , Yo,y € E (inégalité triangulaire).
Si on supprime le 1) b) i.e. ||| = 0 n’implique pas que x = Og alors

Il - || devient une semi-norme.
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Exemples :

1. Dans R la norme usuelle est donnée par : ||z| = |z|.

2. dans R™ on peut définir plusieurs normes :

n
8) [l = 2 fil.
1=

1
n 2
b) |lz|l2 = (Z |xz|2) ( la norme euclidienne ).
i=1

¢) ||zl = max |z;| ( la norme de la convergence uniforme ).

O llell = (3 m-rp); |

=1

Définition 1.3.2. (Suite de Cauchy) Une suite (xy). d’éléments d’un es-

pace vectoriel normé E est dite de Cauchy si et seulement si :
Ve>0,3IN > 1,Vk, | > N = ||z, — 2] <e.

Toute suite convergente est de Cauchy mais la réciproque est fausse en général
par exemple : (X =]0,1] et x, =27").

Définition 1.3.3. (Espace topologique) Une topologie sur un ensemble X
est la donnée d’un ensemble T de parties de X, i.e. T C P(X), vérifiant les
propriétés suivantes :
1) 0,XeT;
2) SiUVeT,alorsUNV €T ;
3) Si (Us)ier est une famille de parties de X appartenant o T, alors
Uu,eT.
i€l
L’ensemble X muni de la topologie T est appelée espace topologique.

Les parties de X qui appartienne o T sont dites les ouverts.

Définition 1.3.4. (Les voisinages) Soient (X, T) un espace topologique et
a € X. On dit qu’une partie V de X est voisinage du point a s’il existe un
ouvert U contient a et inclut dans V.

On note V(a) la famille de tous les voisinages du point a.
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Exemples :

1. Dans (R,|-|) la partie | — 2,1] est un voisinage de 0 par contre n’est
pas voisinage de 1.
2. X ={a,b,c,d} , T =1{X,0,{a,b},{a,b,c}}, alors V = {a,b,d} est un

voisinage des deux points a et b mais n’est pas voisinage du point d.

Définition 1.3.5. (L’adhérence) Soit (X,T) un espace topologique et soit
A une partie de X et v € X.On dit que x est adhérant a A si tout voisinage
V' de x dans X contient un point de A.

On note A l'ensemble de tout les points adhérant o A.

Exemple :
On consideére dans (R, |-|) 'ensemble A = [0, 2]U[5, 8[U]10, 20]U]30, 35[. Alors
A =10,2]U[5,8] U[10,20] U [30, 35].

Définition 1.3.6. (Densité) Une partie A de X est dite dense si A = X

avec A est Uadhérence de A.
Exemples :

1. Soient X = {a,b,c,d} et T = {0, X,{a,b}{c,d}} et A ={a,c,d}. Il
est clair (X, 7T) que est un espace topologique.
Ona:A={ab,cd}=X.Donc A est dense dans X.

2. Dans (R,|-|) on a Q est dense dans R.

Définition 1.3.7. (dénombrabilité) Un ensemble A est dit dénombrable

sl est en bijection avec ’ensemble N.

Remarque

Un ensemble dénombrable c’est I’ensemble qui s’écrit sous forme d’une suite
i.e A est dénombrable = A = {zy, 29, -+ }.

Exemple :

Les ensembles N | Z et Q sont dénombrables.

Définition 1.3.8. (Séparabilité) Un espace X est dit séparable s’il contient
une partie dense et dénombrable.
Exemple :

(R,|-|) est séparable car il contient Q qui est dense et dénombrable.
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1.3 Espace topologique, Espace de Banach

Définition 1.3.9. (Espace complet) On dit qu’un espace vectoriel normé

est complet si toute suite de Cauchy est convergente.

Définition 1.3.10. (Espace de Banach) on appelle un espace de Banach

tout espace vectoriel normé complet pour sa norme.

Exemples :

1. (R,|-]) est un espace de Banach.

2. les espaces R"™ munissent des différentes normes || - |[x , || - |2 5 || - [|oo
sont des espaces de Banach.

3. tout espace vectoriel normé de dimension finie est un espace de Banach.

4. (B(I,K), || - [|s), I'espace des fonctions bornées munit de la norme :
| flloc = sup|f(x)| est un espace de Banach avec I un ensemble non

zel
vide ( intervalle par exemple ).

5. (C([a,b],K), || - ||oo),l’espace des fonctions continues sur l'intervalle [a, b]
a valeurs dans K est un espace de Banach ; c¢’est un sous-espace fermé
de B([a,b], K).

6. (*°(K) le K-espace vectoriel formé des suites bornées (u,) & valeurs
dans K est un espace de Banach avec la norme :

[ufloo = sup |un|.
n=1

7. (1(K) le K-espace vectoriel formé des suites (u,,) pour lesquelles la série
> |uy,| converge est un espace de Banach avec la norme :
n=1

lully =) Junl.
n=0
8. (P(K) le K-espace vectoriel formé des suites (u,) pour lesquelles la série

> |u,|P converge est un espace de Banach avec la norme :

n=1
[ull, = (Zlun!p) :
n=0



Chapitre 2

Intégrale de fonctions simples

2.1 Fonctions simples et mesurabilité
Soit X un espace de Banach et (I, &, i) un espace mesuré.

Définition 2.1.1. On dit qu’une fonction f : I — X est simple s’il existe

une suite finie d’ensembles mesurables E,, C I, m=1,...,p, telle que :

p

EnNE =0, Ym#l e I=|]E,
m=1

ol
flt) =ym € X, Vte E,,, m=1,...,p.

C’est a dire, f est constante sur chaque ensemble mesurable E,,.

On note par J(u, X) = J l'ensemble de toutes les fonctions simples

définies sur I.

Remarque 2.1.1. 1. Il est clair que J est un espace vectoriel sur R. Ce
résultat découle du fait que X est un espace de Banach et par suite un

espace vectoriel sur R.

2. Si f est une fonction simple alors || f||x : I — R [’est aussi. En effet,
soit f: I — X wune fonction simple donc f(t) = y, € X pourt €

P
E,CcIl,m=1,...p avec : I = |J E,, et E,,NE;, =0 pour | # m.

m=1

21
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L’application || f||x est définit par :

A= 1 — R
t = IO =1fON=llymll; t € Em I, m=1,..p

Ainsi, ||f||x est constante sur chaque sous-ensemble E,, de I , donc

| f|lx est simple.

Définition 2.1.2. On dit que f : [ — X est mesurable s’il existe une suite

(fn)nen de fonctions simples telles que :
lim || fu(t) — f(t)[[x =0 pour presque tout t € I.
n—oo

Il est clair que si f € J alors f est mesurable. En effet | si f est simple,

il suffit de prendre une suite de fonctions simples (f,,)n,en constante égale a
f

Proposition 2.1.1. Si f : I — X est mesurable alors la fonction réelle
| fllx : I — R est mesurable.

Preuve

Supposons que f est mesurable, alors il existe une suite de fonctions

simples (f,)nen telle que :

B [[£(6) ~ F()]x =0 pp
Puisque (f)nen € J alors, d’aprés la Définition 2.1.1

fall €T, VYneN
Et comme :
0 < lfn®llx = IF@lx| < [1fa() = F@)Ix, Vi€ T
alors
T [ (O)llx = 17Olx] < L [1fu(6) = S5 =0t € 1

Ce qui entraine
Jim [ f(0)lx = IOl vt € 1

On en conclut que || f||x est mesurable. n
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Remarque 2.1.2. Dans le cas ou X = R alors, f : I — R est me-
surable au sens de la Définition 2.1.2, si et seulement si, pour tout a €
R, l'ensemble {t € I ; f(t) > a} (ou{t €; f(t) >a}, {t€l; f(t) <a} ou
{tel; f(t) <a}) est mesurable. Pour plus de détails voir [5], Théoréeme
4.13.

Définition 2.1.3. On dit que f : I — X est faiblement mesurable si
Va* € X*, z*(f): I — R est mesurable.

Les concepts de mesurabilité et de mesurabilité faible sont relativement

proches. Cette relation est donnée par le théoréeme de Pettis suivant.

Théoréme 2.1.1. [4/(Pettis) Une fonction f : I — X est mesurable si
et seulement si elle est faiblement mesurable et il y a un ensemble N C I,
pu(N) =0 tel que lensemble {f(t);t € I\ N} C X est séparable.

On en déduit du théoréme de précédent le résultat suivant :

Corollaire 2.1.1. Une fonction f : I — X est mesurable si et seulement si :

f(t) = lim h,(t)

n—00

uniformément pour presque par toutt € I ow (hy,), est une suite dénombrable

de fonctions mesurables.

Proposition 2.1.2. §i f : I — X est une fonction mesurable alors, il
existe une fonction mesurable bornée g : I — X et une fonction mesurable
h:I— X avec :

h(t)=> wlp,(t), 1, € X, neN, tel,
n=1

ou E, sont des ensembles mesurables deux a deux disjoints tels que :

f=g+h.
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Preuve

En utilisant le théoréme de Pettis, on peut supposer que f(I) est sous-
ensemble séparable de X avec {x,,; n € N} est dense dans f(I)
On définit :

B, = {t €1 (1) € (wn+ BOOY | (e + B(X))}.

k=1

Alors I C | E,, E.En =0 Vm # n.On pose :

n=1

h(t) = anlp,(t)
n=1
pour t € I. h: I — X est mesurable et si t € E,, [ ],alors :

f@t) = h(t) = f(t) — zn € B(X),

ie || f(t) — h(t)||x <1 Posons g(t) = f(t) — h(t), on obtient ||g(t)||x < 1 et
ft)=9gt)+nh(t), tel

Proposition 2.1.3. Si X est un espace de Banach séparable alors, f : [ — X

est mesurable si et seulement si elle faiblement mesurable.
Preuve

Il est clair que si X est séparable alors 'ensemble {f(¢), t € I} C X est

séparable, donc d’apreés le théoréme de Pettis on a 1’équivalence.

2.2 Intégrale des fonctions simples

Définition 2.2.1. Soit f : I — X une fonction simple, on définit l’intégrale

de f comme :

[ 1= i) = 3 F(Buul ). (2.1)
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Si A C I est un ensemble mesurable alors on définit :

fa(t) :{ g(t) zz i;j

ie: fA:f‘]lA-
Il est facile de remarquer que f4 est aussi une fonction simple et on a alors :

| 1= [

1. L’intégrale des fonctions simples [ : J — X est une application li-

Propriétés :

néaire, en effet, soient f et g deux fonctions simples,

[0 = XU+ 0B

m=1
p

= Y (f(Bw) + 9(En))i(Em)

m=1

= > fED(E) + Y g(En)(Ey)

- 1 [

Et soit a € R, alors :

/I of = S (@f)Eau(En)

= a(f(Em)p(En)

= « Z f(Em),u(Em>

m=1

:a/lf.

2. Si A,B sont deux ensembles mesurables de I avec AN B # () alors :

Juu =17 15
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En effet la linéarité de l'intégrale et I'identité faup = fa + fB entraine

que :

AuBf = /IfAUB
= /]fA"‘fB
= /IfA+/IfB
_ Af+éf (2.2)

3. Si A est un ensemble mesurable de [ et f € J, alors

‘/f < [ 15l < sup L7 @lxta) (2.3)
A X A tel
En effet,
‘/f = D> ymm(ANE, )
A X m=1
< E:MMHMAHE = [ 111
m=1
< max Y| x ZM ANEy,)
m=1
— sup | 0) | xn(4)
Et (AN E,) = A.
m=1

Remarque 2.2.1. Dans le cas ou X =R et f < g tel que f,g € T, on a :

[f<[g (2.4)
Af<éf (2.5)

Sif>0et AC B alors :
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Soit f € J une fonction simple, on définit 'application || - ||; : J — R tel

que
nﬂh=¢Mﬂu. (2.6)

Cette application admet les propriétés suivantes :

1. Pour tout f € 7,
[FalF=x

Hﬂhz/wmx

Or, 0 < || f|lx alors d’aprés (2.6) on a :

o< [l

Ifli=0,VfeT

2. lafllx = lalll fll, Vf € T, Va € R
En effet, Soient f € J et a € A, on a :

En effet, soit f € J

Donc

lafl =1LMHH

= [ laliflx
\d/ﬂﬂu

= lal- I fllx

BoMf+al<|flli+ gl VigeT
En effet, soient f,g € J

Hf+mh=ZWf+mu

On sait bien que || f+g¢||x < ||fllx +]lgllx car |- ||x est bien une norme

sur X donc d’aprés (2.6) on a :

t[W+NX<[WNX+MM)



28 2.2 Intégrale des fonctions simples

et a cause de la linéarité de I'intégrale on a :

S+l < [ s+ [ lals

If+ gl <A+ lgll Vg e T

4. Si || f]l1 = 0 n’implique pas que f(t) = 0Vt € I. En effet, il suffit de

considérer le contre exemple suivant : Soit A C I tel que pu(A) =0, et

Donc :

f une fonction constante égale & y # 0 sur A et nulle sur I\ A. Ainsi,

par défintion de l'intégrale, on a

/If — yu(A) + 0p(I\ A) =0,

alors que f # 0.

D’aprés ces propriétés, on a bien définie une semi-norme sur J. Cette

semi-norme || - ||; est appelée L-seminorme.



Chapitre 3
Intégrale de Bochner

Maintenant, on va considérer une suite de fonctions simples (f,,)nen € J

avec la semi-norme donnée dans le chapitre précédent.

3.1 Définition de I'intégrale de Bochner

Définition 3.1.1. Une suite de fonctions simples (f,)nen est appelée L-zero
St :
Jim || £l = 0.
On dit que deux suites de fonctions simples (f,,)nen €t (gn)nen sont équi-

valentes si leur différence (f,, — gn)n est L-zero.

Définition 3.1.2. Une suite de fonctions simples (fn)nen est appelée L-
Cauchy si pour tout € > 0 il existe N. € N tel que :

pr - fQHI <g, VPM] 2 NE'

On va considérer le complété de 'espace vectoriel J des fonctions simples
sur [ avec L-seminorme || - ||;. le complété de J est donné comme ’espace
des classes d’équivalence des suite de fonctions simples L-Cauchy. Pour plus
de détails voir [2].

L’ensemble des suites de fonctions simples L-Cauchy est un sous-espace vec-
toriel de J. En effet, soient (f,), et (gn), deux suites de fonctions simples

L-Cauchy, alors
Ve > 0, IN. > 0 tel que||f, — fyl1 <€/2, Vp,q=> N.

29



30 3.1 Définition de l’intégrale de Bochner

de méme
Ve >0, IM. > 0 tel que ||g, — golli <e/2,  Vp,q = M..
Ainsi

[(fo+9p) = (fa+ 9l = [[(fo—fo+ (9 —94) 1
< ||fp_fq||1+||9p_gq||1
<

3

pour tout p, ¢ = sup(Ne, M.). Donc la suite (f,,+ gn)n est une suite L-Cauchy.

De méme

||>‘fp_)‘fq||1 = ||>‘(fp_fq)||1
= [Allfp = falh

< Ne=¢
Donc la suite (Af,,), est une suite L-Cauchy.

Lemme 3.1.1. Soit (f,)nen une suite de fonctions simples L-Cauchy définie
sur I. Alors il existe une sous suite (fp,) de (f,) qui converge presque par
tout vers une fonction f : I — X et pour tout € > 0, il existe un ensemble
mesurable E C I avec u(E) < ¢ tel que (f,,) converge uniformément sur
I\ E.

Preuve

Comme la suite (f,,), est L-Cauchy alors pour tout k£ € N il existe N, € N
tel que si p, ¢ > Nj alors

1
||fp - fq”l < 2%

Supposons que Ny < Ng.1, et posons

ngka,

alors

1
Hgm _gnHl = ”me - anHl < ﬁ, Ym >n.
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On définit pour t € I, la série

a1(t) + Z(gk+1(t) — gi(t))

o)
k=1

et on montre qu’elle converge absolument vers un élément de X et cette
convergence est uniforme sauf sur un ensemble de I de mesure négligeable.

Pour n € N, on pose :

1
M, = {t € I: llgess(®) — ge(®)lx > 2—}

Alors :
1 1
— u(M,) = —
5 (M) /M o
< / lgean(t) — ox(®)llx
My,
/I lgksa(®) — g l1x

<
= llgk+1 — gellr
1
< 2771
Ce qui entraine a
1

Pour n € N, on définit ’ensemble
Ly =M, UM,

on remarque alors que 7,1 C Z, et

o0

W2 <) <Y 5= o

J=n Jj=n

Pourt ¢ Z, etk >nona:

1

lgr+1(8) = gr()llx <
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o.°]

et par conséquent, la série > (gr11(t) — gx(t)) converge absolument et uni-
k=n

formément pour t ¢ Z,.

Supposons que € > 0 est donné , posons E = Z;, on a pour k assez grand :

W(E) = (%) < = <=,

ok—1
o
par suite les séries Y (grs1(t) — gr(t)) convergent absolument et uniformé-
k=n

ment sur [ \ E.
Si on prend M = (Z,, alors u(M) = 0 et si t ¢ M, alors t ¢ Z, pour

certains n. Par conséquent, les séries ¢1(¢) + > (gr+1(t) — gx(t)) convergent
k=1

pour t ¢ M, ce qui veut dire klim gr(t) = klim ka(t) existe pour presque par
—00 —00

tout t € I, et la suite gx(t) = fn,(t) converge uniformément sur I \ E. u
Lemme 3.1.2. a) St (fu)nen une suite de fonctions simples L-Cauchy
alors

lim [ f, ewiste.
n—oo I

b) Si(fn) et (gn) sont deux suites de fonctions simples L-Cauchy équiva-
lentes alors

lim [ f,=lim [ g, (3.1)
I

n—oo I n—o0

c) Si (fn) et (gn) sont deux suites de fonctions simples L-Cauchy qui
convergent presque partout vers une fonction f : I — X alors (f,) et

(gn) sont équivalentes et (3.1) reste vraie.

Preuve

a) L’existence de la limite dans a) est facile & montrer. En effet, soit
(fn) une suite de fonctions simples L-Cauchy, pour tout € > 0,il existe
N. € N tel que

pr - qul < ¢ pour tout p,q = N..
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Ainsi
[o=[a] =[]
< /u ~ il
= 1o fill

< €

Ce qui veut dire la suite d’intégrales [ 1 Jn € X, n € N est une suite
de Cauchy et par conséquent elle est convergente c’est a dire que la
limite : nh_}r& [; f existe.

b) Soit € > 0 donné, comme (f,) et (g,) sont deux suite L-Cauchy équi-
valentes, et d’aprés a), il existe N € N tel que pour r > N, on a

Tt =/||fr—gr||x <.
I

/fT_lim/fq /gT—hm 9q
I q— Jr X I q— Jr

Ce qui entraine que

< e.
X

<e,

lim /fq— lim < hm /fq / ” /fr / grll +
q—00 q—00
/ g — lim [ g,
I g—oo J1 X
< 5+/Hfr_ngX+5
I
< 3
Donc
lim / fq = lim
q—00 q—00
c¢) Posons

hg = fo = 94
et soit € > 0 donné. Il est clair que lim h,(t) = 0 presque par tout car
q—00
(fo)q €t (gq)q convergent presque par tout vers la méme limite et (h,),

est L-Cauchy i.e. il existe N, € N tel que pour 7,¢ > N. on a
th — hrHl < €.
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D’aprés a), les deux suites ([, hq) et ([ [|hqllx) sont convergentes. Reste

Jim [ gl =0

M={tel;hy(t)#0}CI

a montrer que

On définit 'ensemble

Pour ¢ > N. on a
/ Ihallx = / Iy — b llx  (car b (£) = 0 pour ¢ € 1\ M)
I\M

M
< [ by = Pallx
I

= lhg = hnclh

< €

et d’apres le Lemme 3.1.1, il existe un sous-ensemble mesurable Z C M

avec !
9

sup ||hn. ()|l x + 1
tel

wZ) <

et une sous-suite (h,,) uniformément convergente vers zéro sur M \ Z.
Par suite il existesy > N. tel que pour tout s > sqg et pour t € M \ Z

on a

et par conséquent, pour s = s,
en(M\ Z)
[ M@l < #LRE <
M\Z w(l)
De méme,

JALACIR

/Z g, (£) — o, (8) + e ()]

< / g, (£) — e ()] + / V. (8)lx
< ths—hNaHl+Stu?|!hNa(t)\|XM(Z)
(S
I
< e+ supl||lhn (t .
ap e Ol - S Ol + 1

tel
< 2¢
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Alors

1724,

l—dmamm

= h, X hqs X hqs X
[WHAM|ﬁ&wH(MI+AH(W

< e4+e+4+2e=4e

Donc lim [} ||k, (t)||x = 0 et par conséquent on obtient
5§—00

q—o0

lim /th(t)HX _0.
I
[ |

Définition 3.1.3. On note par B l’ensemble de toutes les fonctions f : I —
X pour lesquelles il y a une suite de fonctions simples L-Cauchy (f,),n € N

qui converge vers f presque par tout sur I, i.e.
lim ||f.(t) — f(t)|lx =0, pour presque tout t € I.
n—oo

Dans ce cas, on dit que la suite (f,) € J détermine la fonction f € B.
D’aprés a) du Lemme 3.1.2; il est facile de voir que pour toute suite de
fonctions simples (f,) L-Cauchy, la valeur x(s,) € X peut étre attribué a

. N
1}1320 f[ fn, cest a dire

:E(fn) = hm fn

n—oo

De méme, en utilisant b) du Lemme 3.1.2, on peut voir que la valeur x4,y € X
est unique a toutes les suites L-Cauchy qui sont équivalentes a la suite (f,,).

Ce qui nous permet de donner la définition suivante,

Définition 3.1.4. Pour f € B, on définit :

ﬁf:hm J; (3.2)

n—00

ot (fn) est une suite de fonctions simples qui détermine f € B. La valeur

[; f donnée par (3.2) est appelée lintégrale de Bochner de la fonction f.

L’ensemble B est appelé ’ensemble des fonctions Bochner-intégrable.
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Remarque 3.1.1. 1. B est un espace vectoriel.

2. Dans (2.1), lintégrale est définie pour une fonction simple alors que la

relation (3.2) est son extension aux fonctions f € B.

3. A partir du Lemme 3.1.2, on voit que cette notion est définie.

Dans cette présentation, on suit les lignes données dans [2] par S. Lang
mais le lecteur peut trouver 'intégrale de Bochner dans plusieurs livres e.g|3|

ou géneralement dans des livres d’analyse fonctionnelle e.g|[1].

Lemme 3.1.3. Si f € B et (f,) est une suite de fonctions simples L-Cauchy
qui détermine f, alors || f||x est intégrable au sens de Bochner et la suite
(I fzllx) détermine la fonction réelle ||f||x au sens de l’ensemble B.

Dans ce cas on a :

[0 = i [l = fim 15 (33)
I I
De plus
< 3.4
1[4 < [isix (3.4)
Preuve
Comme
fa@llx = (1Ol < [ fe@) f-(#)lx, pourtel
alors

W fallx = I lxl, = / 1Ol — [1£-@lx]
< / 1al)) = £l = 1o — Foll

Ce qui veut dire la suite de fonctions simples & valeurs réelles || f,||x est

L-Cauchy. De plus,
lim || f,(t)[|x = ||f(¢)||x pour presque tout ¢ € I
q—00

et par conséquent || f||x : I — R est intégrable au sens de Bochner et la suite

(Il f4llx)gen détermine || f||x et par suite I'égalité (3.3) est vérifice.
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Or, comme la suite (f, € J) de fonctions simples vérifie la propriété (2.3)

1[4 < [ s
J 5| <m [ s
i [ 5] < [iss

et par suite, (3.3) entraine que
< [0
X I

/1

Ce qui prouve l'inégalité (3.4). ]

alors

ce qui entraine que

lim
qg)OO

et d’aprés (3.2), on a

D’aprés le Lemme 3.1.3, on sait que la limite lim ||f,||; ne dépend pas du
n—oo

choix de la suite de fonctions simples L-Cauchy (f,,) qui détermine f, par

conséquent la semi-norme définie pour des fonctions simples f € J peut

s’étendre aux fonctions f € B par la relation

11 = [ 17Ol =l £l (3.5)
I n—oo
Ainsi, || - ||; : B — R est bien définie et vérifie les propriétés suivantes

1£ll =0 vfeB

laflls = lal||f]l1 VfeBetVaeR
1f+glle < Ifl+ llglh Vf,g€B.

Ces relations sont des conséquences immédiates des propriétés pour || - |1

définie sur J.

Lemme 3.1.4. Si f € B et (f,) est une suite de fonctions simples L-Cauchy

qui détermine f, alors
lim ||f, — f|l1 =0.
n—oo
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Preuve

Puisque (f,) est une suite de fonctions simples L-Cauchy alors pour tout
e > 0, il existe N, € N tel que

||f7" - qul <eg, Vr,g=N..

On fixe 7 > N, et on pose g, = f, — f; € J pour ¢ € N alors presque par
tout t € I,

lim g,(t) = /,(t) = f(t) € B

q—o0

car
Hgl - gk”l = Hfr - qul

ce qui entraine que la suite (g,) est une suite L-Cauchy qui détermine la

fonction f,. — f € B. Par conséquent
1f = felly = Tim f|gg[ly = Tim [|fg = fulls <
q—00 q—00

Ce qui implique
lim || f. — f]l1 = 0.
r—o0
[
Corollaire 3.1.1. Si f € B alors pour tout € > 0, il y a une fonction simple

g- € J telle que
1f —gellh <e.

i.e. l'ensemble J est dense dans B avec la semi-norme || - ||1.
D’ou le résultat suivant.

Lemme 3.1.5. L’espace (B, || - ||1) est complet.
Preuve

Soit (g4)qen € B une suite de Cauchy pour la semi-norme || - ||;. D’aprés
le Corollaire 3.1.1, pour tout ¢ € N, il existe une fonction simple f, € J tel

que :

1
9o — follh < —.
H q q”l q
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Ainsi,
qu_fr“l = ||fq_gq+gq_9r+gr_fr”1
< qu_qul"’||9q_ng1+ng_frH1
1 1
< —+llgg—grlh + -
q r

et par conséquent, la suite (f,) est L-Cauchy. Et d’aprés le Lemme 3.1.1, il
existe une sous-suite (f,,) de (f,) qui converge presque par tout sur I vers
une fonction f : I — X et la sous-suite (f,,) est L-Cauchy, Donc f € B.De
plus, on a

ngs - f||1 < ngs - qu”l + ||qu - f”l

ce qui entraine que la sous-suite (g,,) de (g,) converge vers f pour la semi-
norme || - |; d’aprés le Lemme 3.1.4. Par conséquent, la suite (g,) converge
aussi pour la semi-norme || - ||; vers f € B. C’est a dire que, B est complet.m
En utilisant le Lemme 3.1.5, on peut voir facilement qu’on a le résultat sui-

vant.

Corollaire 3.1.2. Une fonction f : I — X appartient a B si et seulement

sl existe une suite de fonctions simples (f,) € J,n € N telle que :
lim f,(t) = f(t) pour presque tout Vt € I,
Et
lim || f, — f|l1 = lim /||fn — fllx =0.
n—oo n—oo I

Par ce corollaire, on obtient que f € B est nécessairement mesurable.
D’autre part, ce corollaire donne une autre définition de l'intégrabilité au
sens Bochner qui est équivalente a la Définition 3.1.3. ( Et la Définition 3.1.4

peut étre utilisée pour définir 'intégrale).

Définition 3.1.5. Une fonction f : I — X est intégrable au sens de Bochner
sl y a une suite de fonctions simples f, : I — X, n € N telle que :

lim f,(t) = f(t) pour presque tout t € I,

n—oo

lim ||, — £l = lim / 1 fllx = 0.
n—oo n—oo I
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Théoréme 3.1.1. Si f : I — X est telle que f(t) = 0 presque par tout sur
Ialors feBet [, f=0

Preuve

Il suffit de choisir une suite de fonctions simples (f,) L-Cauchy qui est

identiquement nulle pour tout n € N. [ ]

Corollaire 3.1.3. Si f : I — X est intégrable au sens de Bochner et g :
I — X est telle que f(t) = g(t) presque partout sur I alors g est intégrable

)=

Comme g = g— f+ f et (g— f) est intégrable au sens de Bochner d’aprés

au sens de Bochner et

Preuve

le Théoréeme 3.1.1 , on obtient immédiatement le résultat. [ ]
Remarque

Dans le cas ot X = R, i.e. pour f : I — R, l'intégrabilité de Bochner
et l'intégrale de Bochner données dans les définitions 3.1.4 ou 3.1.5 donne
une autre approche de I'intégrabilité de Lebesgue et 'intégrale de Lebesgue.
Ce qui veut dire, la fonction f : I — R est Bochner-intégrable au sens de
la Définition 3.1.4 si et seulement si f est Lebesgue intégrable et les deux

intégrales ont la méme valeur.

3.2 Propriétés des fonctions Bochner-intégrable

D’aprés la définition de 'ensemble B, il est clair que toute fonction f € B
est mesurable au sens de la Définition 2.1.2. Et d’aprés le Théoréme 2.1.1 de
Pettis, si f € B alors f est aussi faiblement mesurable et I’ensemble d’images

de f est séparable presque partout.

Définition 3.2.1. Pour un ensemble mesurable EE C I et f € B on définit :

[Efz/InE-fzgggoflnE-fn

ot la suite (fn)nen € J détermine la fonction f.
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Cette définition a un sens du moment que (1g - f,)nen est une suite de
fonctions simples qui détermine la fonction 15 - f.

Soit f : I — X une fonction mesurable a valeurs dénombrables de la forme :

Z Ymlp, (1), t €1 (3.6)

ou F,, C I, m € N sont mesurables et deux a deux disjoints et y,, € X.

Lemme 3.2.1. Une fonction f: I — X a valeurs dénombrables de la forme
(53.6) est Bochner-intégrable si

> ymllxp(E
m=1

Preuve

Pour [ € N, on définit les fonctions

=Y ymlp,(t), tel

alors f; € J pour tout [ € N et llirn fi(t) = f(t) pour t € I. Alors pour t € [
—00
et k <[, on a par définition :

1fi(t) = fu(®)lx = Z Ymlg, (t)
m=k+1 b'e
et comme z z
m=k+1 m=k+1
on a

l

1= feli =D mllxn(En).

m=k+1
A partir de la, on peut voir que la suite (f;) est L- Cauchy si et seulement si
la série Z Ympt(Ey) converge. Et dans ce cas, la série Z Ym 1, converge

=1 m=1
dans X Vers f, il en résulte alors par définition que f € B et

/If = iymu(E )
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et aussi

[}vnxz:Ejnymwqu%»

Corollaire 3.2.1. Une fonction mesurable f : I — X a valeurs dénombrables
telle que || f(t)||lx < g(t) presque partout sur I avec g € B est Bochner-

intégrable.
Preuve

On peut utiliser la suite (f;) donnée dans la preuve du Lemme précédent, on

voit alors que
Il = [Ialx < [g<ccven
I I

et par conséquent la condition du Lemme 3.2.1 est satisfaite, par suite f soit

Bochner-intégrable. ]

Théoréme 3.2.1. Une fonction mesurable f : [ — X est Bochner-intégrable

si et seulement si || f]|x : I — R est Bochner-intégrable.
Preuve

Si f € B alors || f||x est intégrable au sens de Bochner. (Un résultat du
Lemme 3.1.3).
Inversement, Supposons que || f||x est Bochner-intégrable. Puisque f est me-
surable alors d’apres les Corollaires 3.1.2 et 2.1.1, pour tout k£ € N, il y a une

fonction mesurable a valeurs dénombrables de la forme :
Fo) = ymuls, (1), t € 1. (3.7)
m=1

ou E,,, m € N sont des ensembles mesurables de I deux & deux disjoints
et ymir € X, m € N avec fj, vérifiant la propriété suivante : il existe N C
I, i(N) = 0 tel que pour tout k € N,

(&) — fu(®)]lx < pour t € [ \ N (3.8)

1
2kp(I)’
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i.e. (fx) converge uniformément vers f sur I\ N et par conséquent

I@llx = F@) = F(E) + ful®)llx
< IFOlx + @) = f@)lx

< [[F®llx + j PP

1
2k (1
et puisque p(I) < oo, le Corollaire 3.2.1 implique que f; est Bochner-
intégrable et

S5l = 3 sl En) < o
I m=1

On choisit 7, € N tel que

o0

1
m Eop) < —.
Z Y kel | x (B i) ok

n=rip+1

Puisque ||f — fk]|x est mesurable et I'inégalité (3.8) est vérifiée alors la fonc-

tion ||f — fi|lx est intégrable et :

1 1
7=l < s ) = 51

on pose :

Tk
Ik = E Ykm e,
m=1

Alors g, € J et :
fe=gc+ D Ukmlp,,..
m=ri+1

On a aussi

I = gl = /qu—gknx

< /qu—fkuﬂ/lufk—gkux

1 (o]
< ot > ykamllx (B )

m=ri+1

<1
=

Donc f € B. [ |
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Corollaire 3.2.2. Sv f : [ — X est mesurable et bornée par une fonction
intégrable g : I — R i.e. ||f(t)||lx < g(t) presque partout sur I alors f est

Bochner intégrable .

Proposition 3.2.1. Soit f une fonction mesurable de la forme :
f=g+> alp, (3.9)
n=1

avec g : I — X est une fonction mesurable et bornée, E, sont des ensembles
mesurables de I deuz & deuz disjoints et x, € X, n € N (‘woir la Proposition

2.1.2). Alors :

f est Bochner intégrable si et seulement si x,, et E,, n € N sont chousit tels

o0
que la série Y x, - p(E,) soit absolument convergente dans X, et dans ce

/EfZ/Engi::xn-u(EﬂEn) (3.10)

pour tout ensemble mesurable £ C 1.

cas,

Preuve

Supposons que f est Bochner-intégrable s’écrivant sous la forme (3.9). Puisque

g est bornée, alors g € B d’apreés le Corollaire 3.2.2 et on a aussi

f—g:ixn-]lEneB.

n=1

D’aprés le Théoréme 3.2.1, on a

o0
/||Z$n']lEn||X < oo
I n=1

cela signifie que

(o] (o)
SIS0t = el ulB) < o0
I n=1 n=1
parce que E, N E,, = () pour toutm # n. Et la série

Z Ty - W(E,)  est absolument convergente dans X.
n=1
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o0
Inversement, Si g est bornée et les séries > x, - u(E,) sont absolument

convergentes alors g € B, d’aprés le Corollaire 3.2.2 et

i o (E,) € B
n=1

d’aprés le Lemme 3.2.1. Par conséquent, f = g + h est Bochner-intégrable

n=1

avec :
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